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Abstract: Varying compliance (VC) is an unavoidable form of parametric excitation in rolling bearings

and can affect the stability and safety of the bearing and its supporting rotor system. To date, we

have investigated VC primary resonance in ball bearings, and in this paper other parametric VC

resonance types are addressed. For a classical ball bearing model with Hertzian contact and clearance

nonlinearities between the rolling elements and raceway, the harmonic balance and alternating

frequency/time domain (HB–AFT) method and Floquet theory are adopted to analyze the VC

parametric resonances and their stabilities. It is found that the 1/2-order subharmonic resonances,

2-order superharmonic resonances, and various VC combination resonances, such as the 1-order

and 2-order summed types, can be excited, thus resulting in period-1, period-2, period-4, period-8,

period-35, quasi-period, and even chaotic VC motions in the system. Furthermore, the bifurcation

and hysteresis characteristics of complex VC resonant responses are discussed, in which cyclic fold,

period doubling, and the second Hopf bifurcation can occur. Finally, the global involution of VC

resonances around bearing clearance-free operations (i.e., adjusting the bearing clearance to zero or

one with low interference) are provided. The overall results extend the investigation of VC parametric

resonance cases in rolling bearings.

Keywords: ball bearing; VC parametric vibration; subharmonic resonance; combination resonance;

HB–AFT method; Floquet theory

1. Introduction

Faraday [1] previously recognized the phenomenon of parametric resonance when he studied the

response frequency of surface waves in a fluid-filled cylinder with vertical excitations. Researchers

have subsequently carried out extensive investigations of parametric resonances for various nonlinear

vibration systems in the field of neutrino oscillations [2], quantum fields [3], ship dynamics [4],

Brownian dynamics of water droplets [5], bubbles oscillating in water [6], micro-electro mechanical

systems [7,8], and rotor dynamics [9,10]. Therefore, the topic of parametric resonance is a basic scientific

problem in the field of nonlinear dynamics.

Rolling bearings are widely used in rotating machineries due to their advantages of lower

friction compared to sliding bearings and ease with which they can be selected from a manufacturer’s

catalogue [11]. There are two major effects of a healthy rolling bearing on machine vibration [12,13]:
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spring characteristics and the excitation force on the supported structure. In the dynamic design of

the bearing-rotor system, the excitation characteristics of rolling bearings should be given adequate

consideration. Varying compliance (VC) excitation is induced when rolling elements move along the

bearing raceway with an external load, which results in time-varying bearing stiffness in the rotor

system. Thus, VC excitation is an inevitable case of parametric excitation [9,14].

Sunnersjö [9] found that VC excitation can result in periodic and irregular non-periodic vibrations

in cylindrical roller bearings using digital simulation and experiments. Fukata et al. [14] identified that

VC vibration may exhibit subharmonic, quasi-periodic, chaotic, and beat motions at critical speeds,

considering a two-degree-of-freedom ball bearing model with Hertzian contact nonlinearity. Mevel and

Guyader [15,16] studied the routes to chaos in ball bearings and noted the chaos due to period doubling

in the resonant speed range. Tomović [17] found that the VC vibration amplitude of rolling bearings is

directly related to the bearing deflection in two specific boundary positions of the rolling elements,

and a simplified rolling bearing model for description of VC vibrations was presented. Regarding VC

hysteresis characteristics, Sankaravelu et al. [18] found a hysteretic amplitude–frequency response in

ball bearing VC vibration using an early shooting method. Ghafari et al. [19] investigated the hysteresis

behaviors using static bifurcation analysis and provided closed-form expressions of VC periodic

solutions using the generalized averaging method. Based on Hertzian contact resonance [20,21],

Zhang et al. [22–25] investigated the mechanism, influence, and suppression of VC resonant hysteresis

in ball bearings. Theoretical and experimental results showed that the primary contact resonance

exhibits soft spring behavior in the direction exerting constant force, and the coexistence of soft and

hard spring characteristics in the direction with zero external force. In addition, Zhang et al. [26]

noted a case of complex coupling VC resonance caused by the superposition of VC parametric primary

resonance and 1:2 internal resonance. The above research is mainly focused on the primary VC resonant

responses. However, it should be noted that a small parametric excitation may produce remarkable

responses, even if the excitation frequency significantly differs from the linear natural frequencies

of the system [27]. Other parametric resonance types may also exist in a parametric system, such as

superharmonic, subharmonic, and combined cases.

Rapid, flexible, and automated development requires higher stability and safety characteristics

in rotating machineries, which promotes the study of super- and subharmonic resonances, and

their combinations, in rolling bearing-rotor systems. Tiwari et al. [28,29], Harsha et al. [30,31], and

Bai et al. [32] presented the amplitude and stability of VC responses for a rolling bearing-rotor system

in a large speed range; however, the mechanism of the resonant amplitude has been little addressed.

Ehrich [33] observed high-order subharmonic vibration responses under low damping and strong

nonlinearity conditions in high speed rotating machinery with asymmetric bearing supports, based on

the numerical integration of a finite difference formulation. Yoshida et al. [34] showed the soft and hard

hysteretic 1/2-order subharmonic resonances in different degrees of freedom of a ball bearing-rotor

system using the multi-scale method. Although this study also found combination resonances between

the 1/2-order subharmonic resonance intervals, this has not been analyzed in depth. Bai et al. [35]

established a 6DOF nonlinear ball bearing-rotor model and found that the occurrence of 2-order

subharmonic resonance is provoked by the coupling of Hertzian contact and internal clearance

nonlinear factors of ball bearings. Wu et al. [36] noted that the subharmonic hysteretic resonance

become significant and the resonance amplitude moved to lower frequencies as the assembly gap

increased for an angular contact high-speed ball bearing system. However, these studies [33–36] relate

to the case of external excitations from unbalanced rotors, for which a small excitation produces a large

response only if the frequency of the external excitation is close to that of the linear natural frequency

of the system, and it is essentially different from that of the parametric excitation system. Therefore, a

global mechanism analysis of VC parametric resonances in rolling bearings is necessary.

Bearing clearance is a basic parameter of rolling bearings, and has a significant effect on bearing

life, installation, and bearing stiffness [11,12]. Yammamoto [37] previously showed that the resonant

frequency and amplitude can be reduced to some extent as the clearance adjusts. Oswald et al. [38]
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noted that the bearing life declines gradually with positive clearance and rapidly with increasing

negative clearance, and the life can be maximized for a small negative operating clearance. In the field

of bearings, it is generally considered that adverse vibration and noise behaviors can be reduced by

adjusting the ball bearings to zero clearance [39]. In particular, a clearance-free operation is usually

desirable for precision or high-speed machinery, such as machine tools and turbines [11]. Therefore, the

study of VC parametric resonances in clearance-free operations for rolling bearing systems is valuable.

The harmonic balance and alternating frequency/time domain (HB–AFT) method is an effective

means to obtain the steady-state harmonic solutions of a general nonlinear system. It can be used

to quickly obtain the frequency domain information of the nonlinear term for the harmonic balance

process of the AFT discretization technology [40]. Kim et al. [41] and Guskov et al. [42] developed

the generalized HB–AFT method to analyze the quasi-periodic response characteristics of multiple

degrees-of-freedom and multi-frequency excitation systems. Zhang et al. [22] embedded continuation

and Hsu’s Floquet stability analysis technology into the HB–AFT method, which can automatically track

the periodic response and bifurcation characteristics of nonlinear systems. Recently, Chen et al. [43]

developed a harmonic balance method combined with the model incremental transfer matrix of the

system, which is highly convenient for dealing with systems with multiple degrees-of-freedom.

The motivation of the present work is to provide a better understanding of the VC parametric

resonances in a ball bearing. The mechanisms of various new cases of parametric resonances are

provided mainly using the HB–AFT method with the Floquet theory, and their detailed response

characteristics, such as time series, orbit, stability, and hysteresis, are investigated. The global

amplitude–frequency responses around the bearing clearance-free operations are examined in detail

and predicted.

2. Description of Ball Bearing VC Vibration

Considering the nonlinearities of VC parametric excitation, bearing clearance, and the Hertzian

contact between the rolling elements and raceway, a classic two degrees-of-freedom ball bearing model

is studied here. This model has been verified for qualitative and quantitative analysis of the response

characteristics of radial VC motions in ball bearings [14–16,24], and the JIS6306 specification shown in

Table 1 is adopted in this article.

Table 1. Specifications of JIS6306 ball bearing [22].

Item Value

Contact stiffness Cb (N/m3/2) 1.334 × 1010

Ball diameter Db (mm) 11.9062
Pitch diameter Dh (mm) 52.0

Number of balls Nb 8
Equivalent mass m (kg) 20

Damping factor c (Ns/m) 200
Radial load W (N) 196

As shown in Figure 1, the instant angular location of the ith ball is denoted as:

θi = 2π(i− 1)/Nb +Ωt (1)

with ball passing frequency (i.e., the cage angular velocity) of:

Ω = ωS(1−Db/Dh)/2 (2)

Then, the contact deformation between the ith ball and bearing raceways is expressed as:

δi = x cosθi + y sinθi − δ0 (3)
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where ωs and 2δ0 denote the rotor shaft speed and the radial internal bearing clearance, respectively.

Assuming only Hertzian contact deformations are considered, the nonlinear restoring forces Fx

and Fy are:
[

Fx

Fy

]

= Cb

Nb
∑

i=1

(δiG[δi])
1.5

[

cosθi

sinθi

]

(4)

where G[·] is a Heaviside function, taking 1 if δi ≥ 0 represents the condition of contact, or else taking 0,

which denotes the contact loss between the rolling element and raceway.

The VC motion of a rigid Jeffcott rotor-ball bearing system can be expressed as:

m

[ ..
x
..
y

]

+ c

[ .
x
.
y

]

+

[

Fx

Fy

]

=

[

W

0

]

(5)

Due to the Hertzian contact deformation relationship, the system has hard spring

characteristics [44–46]. The approximate linearized static stiffness of System (5) in the direction

of static load Ws can be expressed as [46]:

kWs =
dWs

dδWs
=

1.5Ws

δWs
(6)

where δWs denotes the total deformation along the direction of Ws.

Equation (6) is clearly not applicable for the estimation of the dynamic stiffness of a ball bearing

system during operation. The dynamic stiffness characteristics of rolling bearings have a significant

impact on the nonlinear response characteristics of their supporting systems [12,22,26]. According

to the restoring forces of Equation (4), the radial linearized dynamic stiffness of the system can be

approximated as [15]:
[

kxx(t)

kyy(t)

]

=

[

∂Fx(t)/∂x

∂Fy(t)/∂y

]

(7)

Then, the dynamic resonant frequencies of the system can be expressed as:

[

ωxx(t)

ωyy(t)

]

=















√

kxx(t)/m
√

kyy(t)/m















(8)

and the equivalent resonant frequencies ωx0, ωy0 can be estimated from the arithmetic mean of

Equation (8) [22].

The VC parametric excitation frequency occurs due to the ball passage frequency, which can be

expressed as:

ΩVC = Nb ·Ω (9)

Many cases of resonance might exist in a parametric excitation system with many

degrees-of-freedom [27,47,48], and the conditions of possible excited VC parametric primary,

subharmonic, and superharmonic resonances are:

ΩVC ≈
{

n ·ωxx, m ·ωyy, 1/n ·ωxx, 1/m ·ωyy

}

(10)

where the VC parametric primary resonance can occur when n(m) = 1; 1/h-order subharmonic

resonances can emerge when n(m) = h; the h-order superharmonic resonance may be excited when

n(m) = 1/h. In addition, VC parametric combination resonance might occur in (but is not limited to) the

following conditions:

ΩVC ≈ n ·ωxx ±m ·ωyy ± 1/ j ·ωxx ± 1/k ·ωyy (11)
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and “≈” denotes an approximation to the value in Equations (10) and (11); h, m, n, j and k are positive

integers, where h , 1.

Moreover, due to the possible hysteresis characteristics of the dynamic stiffness of a nonlinear

system [25,49], multiple resonance cases might coexist.

 

Figure 1. Schematic diagram of (a) the ball bearing system, and (b) its two degrees-of-freedom

spring model.

3. Methodology

For a periodically excited nonlinear vibration system, a periodic motion is called the period-M

motion if the period of the response is M times the excited period, and the M-order subharmonic

resonance interval must contain period-M solutions. The process of deriving the VC period-M solution

and the stability analysis for the studied System (5) is given below.

3.1. HB–AFT Method for Obtaining VC Period-M Solution

To improve the accuracy and efficiency of obtaining the VC period-M solution, one can introduce

a dimensionless displacement X = [X, Y]T = [x/δ0, y/δ0]T, and dimensionless time τ = Nb·Ω·t/M; then,

Equation (5) can be expressed as:

X′′ (τ) = F(X(τ), X′(τ),λ) (12)

Here, let the control parameter λ =Ω for tracing the amplitude–frequency response curves, and for

System (12) the period TVC of the VC period-M solution is 2π. Then, X(τ) and F(·) can be expressed as:

[

X

F

]

=

[

a0

c0

]

+
K
∑

k=1

[

[

ak

ck

]

cos(kτ) −

[

bk

dk

]

sin(kτ)] (13)

According to the process of harmonic balance, insert Equation (13) into Equation (12) and obtain

the following 4K + 2 algebraic relationships:

g(P, Q,λ) = 0 (14)

where the harmonic coefficients of X(τ) and F(·) are:

[

P

Q

]T

=

[

a0, a1, b1, a2, b2, . . . , aK, bK

c0, c1, d1, c2, d2, . . . , cK, dK

]T

(15)

To obtain P from Equation (14), it should first formulate Q by P, because Equation (14) contains

8K + 4 unknown harmonic coefficients of P and Q, and this process can be completed by the following

AFT technology.
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The discrete sample of X(τ) is given by the inverse discrete Fourier transform as:

X(n) = Real{

K
∑

k=0

Pkei(2πkn/N)} (16)

and the discrete time domain sample of Equation (12) is:

F(n) = F(X(n), X′(n),λ) (17)

Then, by discrete Fourier transform, Q can be expressed as:

Qk =
φ

N

N−1
∑

n=0

F(n) ei(−2πkn/N) (18)

Herein, Pk = ak + i bk; Qk = ck + i dk; N is the numbers of samplings in the time domain, and

n = 0, . . . , N − 1; φ = 1 if n = 0, or else φ = 2.

At this moment, Q is formulated by P as shown in Equation (18). Taking P as an unknown

variable, one can obtain the harmonic solution of X(τ) by solving the nonlinear algebraic Equation

(14). In order to avoid the singular case at the turning point and track P automatically, the arc-length

continuation is introduced by transforming Equation (14) into following form [22]:















dg
dP

dP
ds +

dg
dλ

dλ
ds = 0

dP
ds

dPT

ds +
(

dλ
ds

)2
= 1

(19)

where s denotes the arc-length parameter of curve (P(s), λ(s)).

Finally, Equation (19) can be solved by the predictor–corrector procedure [50], where the value of

the initial condition (P(s0),λ(s0)) = (P,λ)0 is searched for using the HB–AFT process above.

3.2. Floquet Stability Analysis of VC Period-M Solution

In the following section, the detailed process of stability analysis for VC period-M solution U∗(τ)

obtained in Section 3.1 will be given by using Floquet stability theory [51].

Introducing U = [X, X′, Y, Y′]T = [X1, X2, X3, X4]
T, transform System (12) into:

U′(τ) = H(τ, U(τ)) =





































X2
1
m (W−Fx

δ0Ω
2
M

−
cX2
ΩM

)

X4

− 1
m (

Fy

δ0Ω
2
M

+ cX4
ΩM

)





































(20)

whereΩM = Nb·Ω /M.

For Equation (20), superpose ∆U to perturb the VC period-M solution U∗(τ), i.e.,

(U∗(τ) + ∆U)′ = H(τ, U∗(τ) + ∆U) (21)

and retain only linear terms in the disturbance as:

∆U′ = ∂H(τ, U∗(τ))/∂U∗(τ) · ∆U (22)

Then, the local linear stability of U∗(τ) can be provided by the stability information of Equation

(22). As U∗(τ) is a period-M solution of the System (20), ∂H(τ, U∗(τ))/∂U∗(τ) is also a periodic variable

matrix, and the stability of the VC period-M solution U∗(τ) can be determined by the eigenvalues of

the Floquet monodromy matrix of Equation (22).
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The Hsu method [22] is used to calculate the Floquet multiplier λm and, according to the three

means of λm passing the unit circle of a complex plane, the period-M solution U∗(τ) can lose stability

as follows [51]:

• A transcritical, symmetry-breaking, or cyclic-fold bifurcation may originate when the leading

multiplier crosses through the unit circle at +1. Herein, the cyclic-fold bifurcation emerges only at

the turning point of a solution branch.

• A period-doubling bifurcation occurs when the leading multiplier crosses the unit circle at −1.

• A secondary Hopf bifurcation occurs when a complex pair of multipliers moves out of the

unit circle.

4. Results

4.1. The VC 2-Order Superharmonc Resonance, 1/2-Order Subharmonic Resonance and the Case of ωx0 + ωy0

=Ωvc Combination Resonance

For δ0 = 1.5 µm, Figure 2 shows the VC period-1 and period-2 solution branches traced by the

HB–AFT method with arc-length continuation. Predicting from Equations (8) and (9), the equivalent

resonant frequencies of the two degrees of freedom of System (5) are about ωx0 = 1908.14 rad/s and

ωy0 = 1297.36 rad/s. Thus, the amplitudes in the R1 and R2 frequency ranges, including ωx0/Nb =

238.52 rad/s and ωy0/Nb = 162.17 rad/s, are the VC primary resonances excited in the x and y directions

of the system, respectively. These two primary resonances exhibit soft spring and soft–hard spring

characteristics in the vertical and horizontal directions, respectively, which agrees with previous

theoretical and experimental studies [22,24]. Moreover, 1/2-order subharmonic resonances in two

degrees of freedom are excited in R3 and R4 intervals, where the subharmonic resonant amplitudes are

around 2·ωx0/Nb = 477.04 rad/s and 2·ωy0/Nb = 324.34 rad/s.

 

Figure 2. For δ0 = 1.5 µm, stable (solid) and unstable (dashed) varying compliance (VC) periodic

peak-to-peak frequency–response curves in x (red line) and y (black line) directions.

As shown in Figure 3a, the resonant amplitude in the R4 range is excited by supercritical

period-doubling bifurcations at points A1 (see Table 2) and A2, where the leading Floquet multipliers

cross the unit circle at −1. The response characteristics of the period-1 and period-2 motions before

and after period-doubling transitions at point A1 are presented in Figures 4 and 5, and the response

amplitude of y(τ) clearly increases after the bifurcation. Then, the leading Floquet multiplier of the

stable VC period-2 solution crosses the +1 axis at A3 and A4 (see Table 3), and cyclic fold bifurcation

occurs at these two points. This causes significant resonant hysteresis and jumping behaviors in the

1/2-order subharmonic resonance in the horizontal direction. For example, as the control parameterΩ

increases, the stable period-2 branch suddenly jumps to the stable period-1 branch from point A4 to A5.

For the 1/2-order subharmonic resonance asΩ around 2·ωx0/Nb = 477.04 rad/s (i.e., R3 range), as shown

in Figure 3b, supercritical and subcritical period-doubling bifurcations trigger the VC period-2 resonant

responses at points B1 and B2, respectively. At this time, the subharmonic resonant frequency–response
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curve bends to the left, and this soft spring characteristic is consistent with the hysteresis characteristics

of the primary resonance in the vertical direction asΩ around ωx0/Nb = 238.52 rad/s.

 

(a) 

 

(b) 

Figure 3. For δ0 = 1.5 µm, frequency–response curves of 1/2-order subharmonic resonances of the two

degrees-of-freedom of the system, (a) in the horizontal and (b) vertical directions.

 

(a) 

 
(b) 

Figure 4. For δ0 = 1.5 µm, response characteristics of the VC period-1 motion when Ω = 310 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) time series and their frequency spectra.
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(a) 

 
(b) 

Figure 5. For δ0 = 1.5 µm, response characteristics of the VC period-2 motion when Ω = 330 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) time series and their frequency spectra.

Table 2. Period-1 motion Floquet multipliers λm around A1.

Ω 316.3645 316.4645 316.5645 316.6645

λm

0.021 + 0.987i 0.019 + 0.987i 0.018 + 0.988i 0.017 + 0.988i
0.021 − 0.987i 0.019 − 0.987i 0.018 − 0.988i 0.017 − 0.988i
−0.988 + 0.009i −0.995 −1.002 −1.006
−0.988 − 0.009i −0.980 −0.974 −0.969

Table 3. Period-2 motion Floquet multipliers λm around A4 (counterclockwise, see Figure 3a).

Ω 341.7310 341.7316 341.7316 341.7315

λm

−0.536 + 0.817i −0.535 + 0.818i −0.535 + 0.818i −0.535 + 0.818i
−0.536 − 0.817i −0.535 − 0.818i −0.535 − 0.818i −0.535 − 0.818i

0.987 0.998 1.001 1.002
0.968 0.957 0.954 0.953

Moreover, the stable period-2 solution branch undergoes supercritical period-doubling bifurcation

at B3, generating a stable period-4 branch B3-B4. Then, a period-8 solution branch B4-B5 is excited by

supercritical period-doubling bifurcation at point B4., where point B5 is the cycle-doubling bifurcation

point. In the above bifurcation process, the strongly excited resonant period-2 and period-4 motion

modes in the x direction become saturated at B3 and B4 points, and the energy spills over into the

period-4 and period-8 motion modes in the y direction as Ω decreases, respectively. This typical

saturation phenomenon has been discussed in [26,27]. In short, the 1/2-order subharmonic resonances

are aroused by the period-doubling bifurcation instability, and they contain complex hysteresis
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characteristics. Finally, as shown in Figure 6, the above results agree well with the numerical bifurcation

diagrams from the local-maxima method [52].

 

(a) 

 
(b) 

Figure 6. For δ0 = 1.5 µm, numerical bifurcation diagrams of local maxima (a) y(τ) and (b) x(τ) whenΩ

sweeps up (black dots) and down (red dots).

Furthermore, another resonant amplitude is excited aroundωx0/Nb +ωy0/Nb = 400.69 rad/s (i.e., the

resonant range R5 between intervals R3 and R4 presented in Figure 2), and this case of resonance results

in strong coupling to the two degrees-of-freedom of the system as shown in Figure 6. In terms of the

bifurcation characteristics concerned, as a pair of complex conjugate Floquet multipliers move out of the

unit circle (see Table 4), subcritical and supercritical secondary Hopf bifurcations occur at points B6 and

B7, respectively, leading quasi-period responses excited at point B7. The response characteristics of the

quasi-period motion atΩ = 400 rad/s is presented in Figure 7; as there are incommensurable frequency

components, the Poincare mapping of the response orbit tends to a closed point set. Herein, the values

of the main incommensurable dimensionless VC frequencies p and q are about 0.5936 and 0.4074,

respectively, and p + q = 1, where the value 1 is the dimensionless VC excitation frequencyΩVC =Nb·Ω.

Moreover, for the original time scale, the corresponding main frequency components of the response are

Nb·Ω·p ≈ 1899.52 rad/s and Nb·Ω·q ≈ 1303.68 rad/s, which are close to the predicted equivalent resonant

frequencies ωx0 = 1908.14 rad/s and ωy0 = 1297.36 rad/s of the two degrees-of-freedom of System (5).

This indicates that the case of ωx0 + ωy0 =ΩVC combination resonance (i.e., the 1-order summed type

of combination resonance) [39,53] occurs in range R5, and quasi-period resonant responses are excited.

In general, the typical combination resonance of multiple degrees-of-freedom systems often causes

quasi-period motions [27,54,55]. Therefore, it can be considered that the combination resonance is one

of the physical mechanisms of the generation of VC quasi-period motions in rolling bearing systems.

In addition, due to the nonlinearities from Hertzian contact and bearing clearance, this combination

resonance has soft hysteresis characteristics, and the quasi-period response jumps to the VC period-1

motion branch asΩ decreases to 388.20 rad/s.
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Table 4. Period-1 motion Floquet multipliers λm around B7.

Ω 406.9645 407.0645 407.1645 407.2645

λm

−0.018 + 1.031i −0.019 + 1.006i −0.019 + 0.971i −0.066 + 0.923i
−0.018 − 1.031i −0.019 − 1.006i −0.019 − 0.971i −0.066 − 0.923i
−0.014 + 0.831i −0.016 + 0.851i −0.017 + 0.883i 0.027 + 0.925i
−0.014 − 0.831i −0.016 − 0.851i −0.017 − 0.883i 0.027 − 0.925i

 

(a) 

 
(b) 

Figure 7. For δ0 = 1.5 µm, VC quasi-period response characteristics, (a) orbit (black line) and its

Poincare mapping (red dots), (b) frequency spectrum whenΩ = 400 rad/s.

For certain applications, such as high-speed or high-precision machines, to increase bearing

stiffness and reduce the run-out and noise due to elastic deformation or clearance [11,39], it is possible

to eliminate clearance and introduce small interference (negative clearance) in the bearings. Figure 8

presents frequency–response curves of the VC parametric response for δ0 = −1.5 µm. In this case,

the equivalent resonant frequencies of the two degrees-of-freedom of System (5) are about ωx0 =

1959.49 rad/s and ωy0 = 2105.55 rad/s. Compared to the case of δ0 = 1.5 µm, the resonant excitation

frequency is higher in the horizontal direction than in the vertical direction, and this frequency exchange,

due to the adjusting of bearing clearance, was previously illustrated by Fang [56] and Zhang [25],

respectively. Herein, the VC primary resonances asΩ rotates around ωx0/Nb = 244.94 rad/s and ωy0/Nb

= 263.19 rad/s, 1/2-order subharmonic resonances as Ω rotates around 2·ωx0/Nb = 489.88 rad/s and

2·ωy0/Nb = 526.38 rad/s, and the case of ωx0 + ωy0 =ΩVC combination resonance asΩ rotates around

ωx0/Nb + ωy0/Nb = 508.13 rad/s are also excited. The difference compared to the case of δ0 = 1.5 µm is

that, as shown in Figure 9, the primary and 1/2-order subharmonic resonances of the system in vertical

directions (i.e., the R1 and R3 ranges) exhibit soft–hard and hard spring characteristics, respectively, and

the bifurcations excited by the combination resonance at the points C1 and C2 are all supercritical Hopf

types. These bifurcation characteristics are clearly illustrated by the numerical bifurcation diagrams in
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Figure 10. In addition, the VC 2-order superharmonic resonances of the two degrees-of-freedom of the

system are strongly excited asΩ rotates around 1/2·ωx0/Nb = 122.47 rad/s and 1/2·ωy0/Nb = 131.60 rad/s

(i.e., the R6 and R7 ranges in Figure 8), respectively. Figure 11 presents the response characteristics of

the 2-order superharmonic resonance in the y direction of the system, in which the superharmonic

frequency component dominates the period-1 response of y(τ).

 

Figure 8. For δ0 = −1.5 µm, stable (solid) and unstable (dashed) VC periodic peak-to-peak

frequency–response curves in x (red line) and y (black line) directions.

 

(a) 

 
(b) 

Figure 9. For δ0 = −1.5 µm, frequency–response curves of (a) primary resonances, and (b) 1/2-order

subharmonic resonances of the two degrees-of-freedom of the system.
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(a) 

 
(b) 

Figure 10. For δ0 = −1.5 µm, numerical bifurcation diagrams of local-maxima (a) y(τ) and (b) x(τ) when

Ω is sweeping up (black dots) and down (red dots).

 

(a) 

 
(b) 

Figure 11. For δ0 = −1.5 µm, response characteristics of the VC superharmonic motion when

Ω = 131.6 rad/s, (a) orbit (black line) and its Poincare mapping (red dots), (b) time series and their

frequency spectra.
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4.2. Global Response Characteristics of VC Resonances around the Bearing Clearance-Free Operations

Figure 12 shows the power spectra of the dynamic displacement parameter (DDP) [9]: DDP =

xpeak-to-peak + ypeak-to-peak, where xpeak-to-peak = x(t)max − x(t)min, and ypeak-to-peak = y(t)max − y(t)min.

To reflect the hysteresis characteristics, here the larger DDP values are selected from the two DDP

values obtained as the controlled parameterΩ runs up and down. It is clear that the system contains

many types of VC parametric resonances. From Section 4.1, some resonance types of the two

degrees-of-freedom of the system have been confirmed, such as the primary resonances (i.e., R1 and

R2), 1/2-order subharmonic resonances (i.e., R3 and R4), 2-order superharmonic resonances (i.e., R6 and

R7), and the case of ωx0 + ωy0 =ΩVC combination resonance (i.e., R5). Moreover, the cases of 1/2·(ωx0 +

ωy0) =ΩVC combination resonance (i.e., the 2-order summed type of combination resonance [39,57])

and 1/2·(1/4·ωx0 + ωy0) =ΩVC combination resonance (labelled as R8 and R9, respectively) were found

in our recent work [25]. As shown in Figure 13, these resonant locations can be predicted well by the

equivalent resonant frequencies ωx0 and ωy0 from the arithmetic mean of Equation (8) atΩ = 700 rad/s,

where we assume that the system is far from any resonance when Ω takes 700 rad/s to achieve an

almost linearized dynamic stiffness (7). In addition, there are the other cases of 1/2·(1/2·ωx0 + ωy0)

=ΩVC and 1/2·(ωx0 + 1/2·ωy0) =ΩVC combination resonances (labelled as R10 and R11, respectively)

excited as the bearing clearance δ0 increases beyond 2.0 µm.

 

Figure 12. Power spectra of response amplitude around the bearing clearance-free operations.

 

Figure 13. The locations of primary resonances (blue lines), 1/2-order subharmonic resonances (black

lines), 2-order superharmonic resonances (green lines), and combination resonances (red lines) predicted

by the equivalent resonant frequencies ωx0 and ωy0.

As shown in Figures 12 and 13, the equivalent resonant frequency ωy0 quickly falls relative to ωx0.

This results in the resonant amplitudes R2 and R4 shifting to a significantly lower frequency, and the

locations of primary resonance R1 and the 1/2-order subharmonic resonance R4 to be closer. For δ0 =

4.0 µm, the equivalent resonant frequencies of the two degrees-of-freedom of System (5) are about

ωx0 = 1881.47 rad/s and ωy0 = 1047.21 rad/s, and the amplitudes of R1 and R2 as Ω rotates around

ωx0/Nb = 235.18 rad/s and ωy0/Nb = 130.90 rad/s in Figure 14 are the two VC primary resonances,
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respectively. Herein, the primary resonance R1 and the 1/2-order subharmonic resonance R4 are close

to a slight superposition.

The case of ωx0 + ωy0 = ΩVC combination resonance is triggered from the subcritical and

supercritical secondary Hopf bifurcations occurring at points E5 and E6, and bends to the left,

exhibiting strong soft spring characteristics (see Figure 15). There are abundant quasi-period responses

(e.g., see Figure 16), tori doubling (e.g., see Figure 17) [22,51], and even chaotic motion (e.g., see

Figure 18) excitements. Moreover, VC period responses such as period-35 and period-8 motions are

also excited by this combination resonance as shown in Figures 19 and 20, respectively. Based on

the above analysis, it is clear that the VC parametric combination resonance can result in various

response types to the system for a bigger bearing clearance δ0. One reason is that, due to the coupling

nonlinearities from the bearing clearance and the Hertzian contact of System (5), the amplitude of the

combination resonance strongly bends to the left with a large interval ofΩ, and this causes the main

frequency components p and q of the response to be modulated significantly, because:

Nb ·Ω ·

[

p

q

]

≈

[

ωx0

ωy0

]

. (23)

Secondly, considering the soft spring characteristics of the combination resonance tail, the

equivalent resonant frequencies [ωx0, ωy0] in Equation (23) reduce asΩ sweeps down; for example, as

the values of the main frequency components [p q] are [0.6345, 0.3655], [0.6312, 0.3688], [0.6259, 0.3741],

[22/35, 13/35], and [5/8, 3/8] whenΩ takes 368 rad/s, 363 rad/s, 357 rad/s, 355 rad/s and 353 rad/s (see

Figures 16–20), respectively. In addition, [ωx0, ωy0] predicted from Equation (23) becomes smaller

gradually, except ωy0 at Ω = 355 rad/s (see Table 5). Thirdly, in essence the dynamic stiffness (7) is

time-varying and influenced by the response characteristics, so the equivalent resonant frequencies

ωx0 and ωy0 might also fluctuate to some extent. Furthermore, due to the dangerous bifurcation [58]

shown at points E7 and E8, there are also other complex hysteresis and jumping behaviors in the case

of ωx0 + ωy0 =ΩVC combination resonance.

 

Figure 14. For δ0 = 4.0 µm, stable (solid) and unstable (dashed) VC periodic peak-to-peak

frequency–response curves in x (red line) and y (black line) directions.
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(a) 

 
(b) 

Figure 15. For δ0 = 4.0 µm, numerical bifurcation diagrams of local maxima (a) x(τ) and (b) y(τ) when

Ω sweeps up (black dots) and down (red dots) around 345–375 rad/s.

  
(a) (b) 

Figure 16. For δ0 = 4.0 µm, response characteristics of the VC quasi-period motion whenΩ = 368 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) frequency spectrum.

  
(a) (b) 

Figure 17. For δ0 = 4.0µm, response characteristics of the VC quasi-period motion (the tori-doubling case)

whenΩ = 363 rad/s, (a) orbit (black line) and its Poincare mapping (red dots), (b) frequency spectrum.
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(a) (b) 

Figure 18. For δ0 = 4.0 µm, response characteristics of the VC chaotic motion when Ω = 353 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) frequency spectrum.

 

(a) 

 
(b) 

Figure 19. For δ0 = 4.0 µm, response characteristics of the VC period-35 motion whenΩ = 357 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) frequency spectrum.
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(a) (b) 

Figure 20. For δ0 = 4.0 µm, response characteristics of the VC period-8 motion when Ω = 355 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) frequency spectrum.

Table 5. The equivalent resonant frequencies of the system predicted from Equation (23).

Ω 353 355 357 363 368

ωx0 (rad/s) 1767.54 1775.00 1795.20 1833.00 1867.97
ωy0 (rad/s) 1056.46 1065.00 1060.80 1071.00 1076.03

For δ0 = 4.0 µm, the cases of 1/2·(ωx0 + ωy0) = ΩVC, 1/2·(1/2·ωx0 + ωy0) = ΩVC, and 1/2·(ωx0

+ 1/2·ωy0) = ΩVC combination resonances are excited as Ω is close to 1/2·(ωx0 + ωy0)/Nb = 183.04

rad/s, 1/2·(1/2·ωx0 + ωy0)/Nb = 124.25 rad/s, and 1/2·(1/2·ωx0 + ωy0)/Nb = 150.32 rad/s (i.e., the R8, R10,

and R11 ranges in Figure 14), respectively. The locations of these combination resonances are clearly

exhibited by the numerical bifurcation diagrams in Figure 21. Herein, the case of 1/2·(ωx0 + ωy0) =

ΩVC combination resonance is triggered from the supercritical secondary Hopf bifurcations occurring

at points E3 and E4, and results in quasi-period (e.g., see Figure 22) and period-4 resonant responses

(e.g., see Figure 23) in the system; the main frequency components of the response satisfy 1/2·(p + q)=

1, which has been indicated in [25]. Figure 24 shows the quasi-period responses excited in the cases of

1/2·(1/2·ωx0 + ωy0) = ΩVC and 1/2·(ωx0 + 1/2·ωy0) = ΩVC combination resonances, respectively, and

there are chaotic motions excited in the case of the 1/2·(ωx0 + 1/2·ωy0) =ΩVC combination resonance as

shown in Figure 25. It has been found in a number of studies [5,6,10–16] that the quasi-period motion

is a typical characteristic of VC vibrations in rolling bearing systems. However, to date, its physical

mechanism has not been given. From above analysis, it is clear that various cases of combination

resonances are internal physical mechanisms of excited quasi-period responses.

  

(a) (b) 

Figure 21. For δ0 = 4.0 µm, numerical bifurcation diagrams of local maxima (a) x(τ) and (b) y(τ) when

Ω sweeps up (black dots) and down (red dots) around 100–200 rad/s.
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(a) 

 
(b) 

Figure 22. For δ0 = 4.0 µm, response characteristics of the VC quasi-period motion whenΩ= 181.2 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) frequency spectrum.

  

(a) (b) 

Figure 23. For δ0 = 4.0 µm, response characteristics of the VC period-4 motion when Ω = 180 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) frequency spectrum.
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(a) (b) 

Figure 24. For δ0 = 4.0 µm, the orbits (black line) and their Poincare mappings (red dots) of the VC

quasi-period motion when (a)Ω = 126 rad/s, and (b)Ω = 154.6 rad/s.

 

(a) 

 
(b) 

Figure 25. For δ0 = 4.0 µm, response characteristics of the VC chaotic motion whenΩ = 154.5 rad/s,

(a) orbit (black line) and its Poincare mapping (red dots), (b) time series and their frequency spectra.

Comparing Figures 12 and 13, it is clear that not all cases of the predicted VC parametric resonances

will be excited; for example, the predicted 1/2-order subharmonic resonance R3 in the interval a-a.

For δ0 = −1.1 µm, the equivalent resonant frequencies of the system are about ωx0 = 1921.18 rad/s and

ωy0 = 1915.54 rad/s, and only three resonance amplitudes emerge, where the 1/2-order subharmonic

resonance is excited by the supercritical period-doubling bifurcations at D1 and D2 (see Figures 26

and 27). Therefore, although the rolling bearing is an inherently nonlinear mechanical part [59],
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adjusting the bearing clearance may make it operate in a linear range to some extent, and thus avoid

some resonances.

 

Figure 26. For δ0 = −1.1 µm, stable (solid) and unstable (dashed) VC periodic peak-to-peak

frequency–response curves in x (red line) and y (black line) directions.

  

(a) (b) 

Figure 27. For δ0 = −1.1 µm, the response characteristics in 1/2-order subharmonic resonance, (a) the

frequency–response curves in x (red line) and y (black line) directions, and (b) numerical bifurcation

diagrams of local maxima of y(τ) whenΩ sweeps up (black dots) and down (red dots).

4.3. Discussion on the Verification of Global VC Parametric Resonances

Different from previously works on parametric VC primary resonances, in this paper we extend to

study many other parametric VC resonance types such as 1/2-order subharmonic resonances, 2-order

superharmonic resonances, and various VC combination resonances. For verification of these new

findings, we use our proposed method to reanalyze a classical work from Fukata et al. [14], where they

presented that sub/super-harmonic, multi-period, quasi-periodic, and chaos-like motions emerge in

System (5). As shown in Table 6, this ball bearing model has a larger bearing clearance δ0 = 20 µm and

a lighter radical load W = 58.8 N compared to the above-studied model.

Table 6. Specifications of the ball bearing in [14].

Item Value

Contact stiffness Cb (N/m3/2) 1.334 × 1010

Ball diameter Db (mm) 11.9062
Pitch diameter Dh (mm) 52.0

Number of balls Nb 8
Bearing clearance δ0 (µm) 20

Equivalent mass m (kg) 16
Damping factor c (Ns/m) 2940

Radial load W (N) 58.8
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Figure 28 presents frequency–response curves of the VC parametric response of the model in

Table 6. In this case, the equivalent resonant frequencies of the model are about ωx0 = 1463.75 rad/s

and ωy0 = 370.74 rad/s. Compared to the case of δ0 = 4.0 µm in Section 4.2 (i.e., ωx0 = 1881.47 rad/s

and ωy0 = 1047.21 rad/s), the resonant excitation frequencies fall a lot in Fukata’s model. Herein, the

VC primary resonances asΩ rotates around ωx0/Nb = 182.97 rad/s and ωy0/Nb = 46.34 rad/s are also

excited (i.e., the R1 and R3 ranges). These two primary resonances exhibit soft spring and soft–hard

spring characteristics similar to the case of δ0 = 4.0 µm studied. Through supercritical and subcritical

period-doubling bifurcations trigger at points F1 and F2, the 1/2-order subharmonic resonance in the

horizontal direction is strong excited in a wide range R4 asΩ rotates around 2·ωy0/Nb = 92.68 rad/s,

and VC period-2 resonant responses occur. It should be note that 2-order superharmonic resonance

in the vertical direction dominates the resonant amplitude R6 in the vertical direction as Ω rotates

around 1/2·ωx0/Nb = 91.48 rad/s, because the main frequency component of x(τ) in this range is 2-order

harmonics (i.e., the response characteristics at Ω = 88 rad/s presented in Figure 29). Moreover, the

period-2 solution branch F1-F2 undergoes period-doubling bifurcations at F3, F4, F5 and F6, generating

period-4 branch F3-F4 and F5-F6. Especially, there are various VC motion types arising subsequently

on branch F5-F6, including chaotic responses, and this branch contains the beat/chaos-like range b-b

described by Fukata et al. [14] (see Figure 30).

Figure 28. Stable (solid) and unstable (dashed) VC periodic peak-to-peak frequency–response curves

in x (red line) and y (black line) directions.

(a) 

Figure 29. Cont.
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(b) 

Figure 29. Response characteristics of the VC period-2 motion whenΩ = 88 rad/s, (a) orbit (black line)

and its Poincare mapping (red dots), (b) time series and their frequency spectra.

 

(a) 

 
(b) 

Figure 30. The peak-to-peak frequency–response curves of literature [14], in (a) x and (b) y directions.

Herein, the blue and red lines are the period-1 and period-2 solution branches of Figure 28, respectively,

obtained by our work.
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Furthermore, the stable period-1 solution branch undergoes supercritical Hopf bifurcations at

points F7 and F8, and the coming unstable solution branch F7-F8 (i.e., R5 range around ωx0/Nb + ωy0/Nb

= 229.31 rad/s) contains various VC responses such as period-5, period-6 and beat/chaos-like motions

(see Figure 30). The response characteristics of the quasi-period motion as Ω rotates at 242.2277

(i.e., in literature [14], ωs takes 6000 rpm) are presented in Figure 31. Herein, the values of the main

incommensurable dimensionless VC frequencies p and q are about 0.7715 and 0.2285, respectively, and

p + q = 1, where the value 1 is the dimensionless VC excitation frequency ΩVC = Nb·Ω. Moreover,

for the original time scale, the corresponding main frequency components of the response are Nb·Ω

·p ≈ 1495.03 rad/s and Nb·Ω ·q ≈ 442.79 rad/s, which are close to the predicted equivalent resonant

frequencies ωx0 = 1463.75 rad/s and ωy0 = 370.74 rad/s of the two degrees-of-freedom of System (5). As

stated in Section 4.1, this indicates that the case of ωx0 + ωy0 = ΩVC combination resonance occurs

in range R5. Different from the previous analysis (see Figures 7b and 16b), as shown in Figure 31b,

in this case the response–frequency spectrum contains component of 2·q, so there may be the case

of ωx0 + 1/2·ωy0 = ΩVC combination resonance also excited in R5, and actually the value ωx0/Nb +

1/2·ωy0/Nb = 206.14 rad/s (see Figure 28) is in range R5. This can explain why the instability range R5

excited by the combination resonance is so large in Fukata’s model. In other words, due to the more

asymmetric stiffness characteristics (where ωx0 = 1463.75 rad/s and ωy0 = 370.74 rad/s), Fukata’s model

can contain more types of parametric resonances, and these resonances may overlap (literature [27]

contains a detailed discussion of this overlapping phenomenon). Due to the vibration mechanism

being more complicated, many researchers [44,60] have devoted themselves to investigating the

dynamic characteristics of asymmetric rolling bearing-rotor systems. The response characteristics

of the period-5 motion as Ω rotates at 211.9492 rad/s (i.e., in literature [14], ωs takes 5250 rpm) are

presented in Figure 32, where its main frequency components p and q are 4/5 and 1/5, respectively;

satisfying p + q = 1, and using the above analysis process, it can be found that this period-5 response is

also excited by the case of ωx0 + ωy0 =ΩVC combination resonance. Therefore, the case of ωx0 + ωy0 =

ΩVC combination resonance is the internal mechanism of excitation of various types of VC responses

in R5 range described by Fukata et al. [14] (see Figure 30). In addition, it can be easily verified by our

analysis process that the resonant amplitude R12 comes from 6-order superharmonic resonance in the

vertical direction, because this resonant range emerge asΩ rotates around 1/6·ωx0/Nb = 30.50 rad/s (see

Figures 28 and 30). As shown in Figure 33, our above analysis results agree well with the numerical

bifurcation diagrams.

 
 

(a) (b) 

Figure 31. Response characteristics of the VC quasi-period motion when Ω = 242.2277 rad/s

(i.e., in literature [14], ωs takes 6000 rpm), (a) orbit (black line) and its Poincare mapping (red

dots), (b) frequency spectrum.
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(a) (b) 

Figure 32. Response characteristics of the VC quasi-period motion when Ω = 211.9492 rad/s

(i.e., in literature [14], ωs takes 5250 rpm), (a) orbit (black line) and its Poincare mapping (red

dots), (b) frequency spectrum.

 

Figure 33. Numerical bifurcation diagrams of local maxima of y(τ) whenΩ sweeps up (black dots) and

down (red dots).

For experimental verification, because the VC vibration response is a weak signal, the vibration

is usually measured by non-contact displacement sensor in experiments [24,34,61]. The hysteresis

characteristics of primary contact resonances have been validated by our previous work [24], and other

parametric VC resonances types shown in this paper may be verified in the similar experimental process.

5. Conclusions

In this paper, we investigated the response characteristics of the global VC parametric resonances

in a ball bearing system around the bearing clearance-free operations, considering the nonlinearities

of bearing clearance and the Hertzian contact between the rolling elements and raceway. The VC

period-M motions and their stabilities were traced using the HB–AFT method and Floquet theory.

It was shown that the system can contain primary resonances, 1/2-order subharmonic resonances,

2-order superharmonic resonances, and various cases of combination resonances. The 1/2-order VC

subharmonic resonances are excited by supercritical/subcritical period-doubling bifurcations, leading

to the emergence of VC period-2 motions. Moreover, it was found that the cases of ωx0 + ωy0 =

ΩVC, 1/2·(ωx0 + ωy0) = ΩVC, 1/2·(1/4·ωx0 + ωy0) = ΩVC, 1/2·(1/2·ωx0 + ωy0) = ΩVC, and 1/2·(ωx0 +

1/2·ωy0) = ΩVC combination resonances can be excited by supercritical/subcritical secondary Hopf

bifurcations. Due to the frequency modulation from hysteresis and dynamic stiffness characteristics, the

VC parametric combination resonance can result in various VC motion types, such as period-4, period-8,

period-35, different cases of quasi-period, and even chaotic responses in the system. Furthermore, it

was indicated that the parametric combination resonance is an internal physical mechanism of VC



Appl. Sci. 2020, 10, 7849 26 of 28

quasi-period responses trigged in the rolling bearing system. The above results indicate that adjusting

the bearing clearance can control the resonant amplitude and its location. Finally, the classical study

from Fukata et al. [14] was reanalyzed by our proposed method and the experimental verification

of our findings was also discussed. This paper helps clarify the mechanism of complex nonlinear

vibration behaviors in rolling bearings.
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