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Abstract

To satiate the rapidly growing demand for capacity by wireless devices,
upcoming Fifth Generation (5G) mobile radio systems are targeting di-
verse and in some measure, extremely demanding concepts, techniques,
and scenarios with respect to the number of served users, data rates,
and latency. Significant performance benefits are expected from mas-
sive MIMO, especially in combination with tight inter-cell cooperation
including Joint Transmission Coordinated MultiPoint (JT-CoMP), User
Equipment (UE)-sided interference cancellation and ultra dense deploy-

ment of small cells.

The millimeter Wave bands for 5G will be allocated in 2019, so for now,
all the performance targets of 5G have to be supported by the below
6 GHz Radio Frequency (RF) bands. This means that for paired and
unpaired spectrum, Frequency Division Duplex (FDD) as well as Time
Division Duplex (TDD) have to be supported. Massive MIMO, typically
conceptualized as a strong over provisioning of antennas versus served
users, asserts to solve various complicated issues like inter-cell interfer-
ence, Multi-User MIMO (MU-MIMO) scheduling, coverage holes and
capacity limits. However, it is deemed to work only for TDD systems as
massive MIMO downlink transmission for FDD systems is particularly
challenging due to two requirements. First, the Channel State Informa-
tion (CSI) has to be obtained from a large number of antennas without
an unreasonable overhead due to the transmission of orthogonal down-
link reference signals from these antennas. Second, the relevant channel
estimates have to be made available at the network side without an un-
realistic uplink control signaling overhead. An exploding overhead for
orthogonal reference signals or limited CSI accuracy, leads to pilot con-
tamination, which has been shown to upper bound performance in the
literature and is detrimental especially for sensitive interference cancel-
lation schemes. Hence, to reduce the number of tranceivers in the FDD
massive MIMO system, we have devised a framework based on the Grid
of Beams (GoB) concept. It transforms the large number of antennas
into effective antenna ports which can then even use the existing refer-

ence signals from Long Term Evolution - Advanced (LTE-A). Moreover,



to effectively combat inaccuracy issues in the CSI fed back to the base
station, we need channel prediction algorithms which provide reliable
performance over a large prediction horizon. To this end, we have de-
vised an enhanced hybrid algorithm based on two state-of-the-art chan-
nel prediction algorithms. It provides strong prediction performance

even for channel components received with low Signal-to-Noise Ratios.

Moreover, quintessential massive MIMO schemes concentrate on the
base station side with the goal to achieve high spectral efficiency by MU-
MIMO or large coverage by strong beamforming gains. The UE-sided
analysis is typically limited to four or mostly eight antenna elements per
UE, which can be justified by the corresponding UE complexity and the
limited space to place more antenna elements for the below 6 GHz case.
However, UE-sided beamforming would provide many benefits, ranging
from improved channel estimation and prediction accuracy, effective in-
terference suppression up to coverage and spectral efficiency gains on
the system level. For this reason, we have proposed the novel concept
of ‘virtual beamforming’ which allows us to form virtual massive MIMO
arrays at the UE, even if it has a single physical antenna element. The
UE is assumed to be moving at a constant speed and the received sig-
nals for the adjacent time slots are stored. These measurements are
then utilized to form beamformers as if they were received by separate
antenna elements. We only capture a small spatial sub-section of the
channel and thus lose energy but this loss is partially compensated by
the beamforming gain. Virtual beamforming leads to a reduction in
the number of relevant multipath components per channel component
as well as in the number of channel components themselves and gives
a prediction accuracy gain of approximately 10 dB lower normalized
mean square error compared to the case of a single antenna UE. On the
other hand, virtual beamforming applied directly to the user data can
be very inefficient as it requires the re-transmission of data symbols. To
overcome this challenge we have devised a parallel transmission scheme
over a set of coded virtual beams. This allows us to reduce the effect
of the inherent re-transmission penalty of virtual beamforming and we
have shown that reliable communication is possible. In addition, we
have also devised a framework to combine varying number of virtual

and physical antenna elements into a virtual massive MIMO array.
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Zusammenfassung

Um den schnell wachsenden Kapazitatsbedarf drahtloser Geréte zu be-
friedigen, zielen die kommenden Mobilfunksysteme der fiinften Gen-
eration (5G) auf unterschiedliche und teilweise extrem anspruchsvolle
Konzepte, Techniken und Szenarien in Bezug auf die Anzahl der ver-
sorgten Nutzer, Datenraten und Latenzzeiten ab. Von massive MIMO
werden erhebliche Leistungsvorteile erwartet, insbesondere in Kombina-
tion mit einer engen Zusammenarbeit zwischen den Zellen, einschlieflich
Joint Transmission Coordinated MultiPoint (JT-CoMP), Interferenzun-
terdriickung auf der Seite des Endgerats (UE) und einem extrem dichten

Einsatz von kleinen Zellen.

Die Millimeterwellenbénder fiir 5G werden 2019 zugewiesen, daher
miissen vorerst alle Leistungsziele von 5G von den Funkfrequenzbéndern
unter 6 GHz unterstiitzt werden. Das bedeutet, dass fiir gepaartes und
ungepaartes Spektrum sowohl Frequency Division Duplex (FDD) als
auch Time Division Duplex (TDD) unterstiitzt werden miissen. Mas-
sive MIMO, typischerweise als starke Uberprovisionierung von Antennen
gegeniiber den bedienten Nutzern konzipiert, verspricht, verschiedene
herausfordernde Probleme wie Interzell-Interferenzen, Multi-User-MIMO
(MU-MIMO) Scheduling, Abdeckungsliicken und Kapazititsgrenzen zu
l6sen. Es wird jedoch davon ausgegangen, dass es nur fiir TDD-Systeme
funktioniert, da eine massive MIMO-Downlink-Ubertragung fiir FDD-
Systeme aufgrund von zwei Anforderungen eine besondere Herausfor-
derung darstellt. FErstens muss die Kanalzustandsinformation (CSI)
von einer groflen Anzahl von Antennen erhalten werden, ohne dass ein
unangemessener Overhead durch die Ubertragung orthogonaler Downlink-
Referenzsignale von diesen Antennen entsteht. Zweitens missen die
relevanten Kanalschétzungen auf der Netzwerkseite ohne einen unre-
alistischen Overhead fiir die Uplink-Steuersignalisierung zur Verfiigung
gestellt werden. Ein explodierender Overhead fiir orthogonale Referenz-
signale oder eine begrenzte CSI-Genauigkeit fithrt zu einer Pilotver-
schmutzung, die in der Literatur als leistungsbegrenzend beschrieben

wurde und insbesondere fir empfindliche Interferenzunterdriickungssys-
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teme nachteilig ist. Um die Anzahl der Transceiver in einem FDD-
Massive-MIMO-System zu reduzieren, haben wir daher ein Framework
entwickelt, das auf dem Grid of Beams (GoB)-Konzept basiert. Es wan-
delt die grofle Anzahl von Antennen in effektive Antennenports um, die
dann sogar die vorhandenen Empfangssignale von Long Term Evolu-
tion - Advanced (LTE-A) nutzen kénnen. Um Ungenauigkeiten in der
CSI, die zur Basisstation zuriickgefiihrt wird, effektiv zu bekdmpfen,
bendtigen wir aulerdem Algorithmen zur Kanalvorhersage, die eine zu-
verlédssige Vorhersage tiber einen moglichst groflen Zeithorizont liefern.
Zu diesem Zweck haben wir einen verbesserten hybriden Algorithmus
entwickelt, der auf zwei modernen Kanalvorhersagealgorithmen basiert.
Er liefert eine zuverlassige Vorhersage auch fiir Kanalkomponenten, die

mit niedrigen Signal-Rausch-Verhéltnissen empfangen werden.

Dariiber hinaus konzentrieren sich die wesentlichen Massive-MIMO-
Schemata auf die Basisstationsseite mit dem Ziel, eine hohe spektrale
Effizienz durch MU-MIMO oder eine groe Abdeckung durch starke
Beamforming-Gewinne zu erreichen. Die UE-seitige Betrachtung ist typ-
ischerweise auf vier oder meist acht Antennenelemente pro UE beschrénkt,
was durch die entsprechende UE-Komplexitat und den begrenzten Platz
zur Platzierung weiterer Antennenelemente fiir den Fall unter 6 GHz
gerechtfertigt werden kann. UE-seitiges Beamforming wiirde jedoch
viele Vorteile bieten, die von einer verbesserten Kanalschatzung und
Vorhersagegenauigkeit iiber eine effektive Storungsunterdriickung bis
hin zu einer besseren Abdeckung und spektralen Effizienz auf Syste-
mebene reichen. Aus diesem Grund haben wir das neuartige Konzept des
"Virtual Beamforming" vorgeschlagen, das es uns ermoglicht, virtuelle
Massive-MIMO-Arrays am UE zu bilden, auch wenn es nur ein einziges
physisches Antennenelement hat. Es wird angenommen, dass sich das
UE mit einer konstanten Geschwindigkeit bewegt und die Empfangssig-
nale fiir die benachbarten Zeitschlitze gespeichert werden. Diese Mes-
sungen werden dann zur Bildung von Strahlformern verwendet, als ob
sie von separaten Antennenelementen empfangen wiirden. Wir erfassen
nur einen kleinen rdumlichen Teilbereich des Kanals und verlieren da-
her Energie, aber dieser Verlust wird teilweise durch den Gewinn der
Strahlformung kompensiert. Virtuelles Beamforming fiithrt zu einer Re-
duzierung der Anzahl relevanter Mehrwegekomponenten pro Kanalkom-
ponente sowie der Anzahl der Kanalkomponenten selbst und ergibt einen
Gewinn an Vorhersagegenauigkeit von ca. 10 dB geringerem normal-

isierten mittleren quadratischen Fehler im Vergleich zum Fall eines UE
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mit einer einzelnen Antenne. Auf der anderen Seite kann virtuelles
Beamforming, das direkt auf die Nutzdaten angewendet wird, sehr in-
effizient sein, da es die erneute Ubertragung von Datensymbolen er-
fordert. Um diese Herausforderung zu iiberwinden, haben wir ein paral-
leles Ubertragungsschema tiber einen Satz kodierter virtueller Strahlen
entwickelt. Dadurch kénnen wir den Effekt der inharenten Wiederiiber-
tragungsstrafe des virtuellen Beamforming reduzieren und wir haben
gezeigt, dass eine zuverldssige Kommunikation moglich ist. Dariiber hin-
aus haben wir ein Framework entwickelt, um eine unterschiedliche An-
zahl von virtuellen und physischen Antennenelementen zu einem virtuellen

Massive-MIMO-Array zu kombinieren.
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Chapter 1

Introduction



1. INTRODUCTION

1.1 Motivation

1.1.1 A Brief Introduction to 5G

The pioneering scientist and inventor, Nikola Tesla predicted mobile phones back
in 1909 and smart phones in 1926 when he said in an interview with Collier’s
magazine, “ When wireless is perfectly applied the whole earth will be converted into
a huge brain, which in fact it is, all things being particles of a real and rhythmic
whole. We shall be able to communicate with one another instantly, irrespective
of distance. Not only this, but through television and telephony we shall see and
hear one another as perfectly as though we were face to face, despite intervening
distances of thousands of miles; and the instruments through which we shall be able
to do this will be amazingly simple compared with our present telephone. A man
will be able to carry one in his vest pocket” [Berl5].

It took us many decades to reach Tesla’s vision but we are definitely there
and ready for the next step. Smart phones have become a necessity for daily life
by providing the functionality of several devices like a camera, music player, radio,
navigation tool, entertainment and social media device, and even as a digital wallet.
To enable these functions, cellular networks have been concurrently going through
a dramatic technological evolution resulting in, the so called, generations of cellular
networks which are typically abbreviated as the number of the generation followed
by a capital G. For a detailed description of the evolution of the cellular networks,
please see [RTMRO6]. Here, we provide a short summary, which is also tabulated
in Figure 1.1. The 1G networks, introduced in the 1980s, were analog systems that
focused on the provisioning of voice services. The introduction of 2G networks in
the 1990s was enabled by the advancement of digital processing techniques. The
foundation of 2G was the Global System for Mobile (GSM) communications, which
is one of the most famous communication systems and is still in use in most parts
of the world. GSM uses circuit switching technology to enable voice services and
also introduced messaging services. Circuit switching is suited to voice traffic but
could not provide high data rates for bursty data traffic and thus, GSM was up-
graded through General Packet Radio Service (GPRS) and later by Enhanced Data
Rates for GSM Evolution (EDGE), both of which allow the additional provision-
ing of data services via packet switching. The GSM, GPRS, and EDGE networks
rely on Time Division Multiple Access (TDMA). Another contemporary class of 2G
networks was also introduced that instead relies on Code Division Multiple Access
(CDMA), known as IS-95A and IS-95B, popularized mainly by Qualcomm. The
TDMA based technologies evolved into 3G cellular networks in the form of High
Speed Packet Access (HSPA), whereas the CDMA based IS-95 systems evolved



into the CDMA2000 series [HM00, BDHMO1]. The Fourth Generation (4G) is com-
prised of the well-known Long Term Evolution (LTE) and Long Term Evolution
- Advanced (LTE-A) technologies which focus on technologies like Multiple-Input
and Multiple-Output (MIMO) and Orthogonal Frequency Division Multiplexing
(OFDM) to increase throughput [HT09,SBT11].

Peak “5G” volume
around 2040

Next generation Global standard

around 2020

Research & Std 5G - Infinite Capacity

4G — LTE/LTE-Advanced L 2

3G — WCDMA/HSPA/HSPA +

2G — GSM/GPRS/EDGE 4

Figure 1.1: A short summary of the evolution of cellular networks [Taf13].

As stated by Tom Marzetta, it is a timeless truth that the demand for wire-
less throughput will always grow [Marlb]. It is evident in future trends as there
will be devices other than just smart phones connected to the network including
(connected) cars resulting in the envisioned Internet of Things (IoT). Additionally,
the introduction of new applications like virtual or augmented reality, and services
like instantaneous language translation impose new challenges and influence the
requirements for a future Fifth Generation (5G) mobile network.

As the name suggests, 5G is the 5* major rung in the evolutionary ladder of
cellular mobile networks. There is no official concrete definition of 5G yet but
according to a 5G-Public Private Partnership (5G-PPP) white paper, “5G will not
only be an evolution of mobile broadband networks. It will integrate networking,
computing and storage resources into one programmable and unified infrastructure.
The impact of 5G will go far beyond existing wireless access networks with the aim
for communication services, reachable everywhere, all the time, and faster.” [GP15].
Hence, it is generally believed that 5G will combine evolving current systems like
LTE-A and WiFi, with revolutionary novel technologies to meet the demanding new
performance requirements. Nokia foresees that the users will expect a Zero latency
Gigabit experience from a 5G system [Nokl16]. Zero latency in this context means
that 5G needs to bring down latency low enough, so that whatever the use case,
the radio interface does not become the bottleneck. Gigabit experience translates to

data reception and transmission speeds of Gigabits per second to users. The other
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general requirements for 5G have been summarized in Figure 1.2.

10000 x more traffic

10-100 x more devices

Capacity 11 I';,L!';Scond Performance
4 requirements

105 = 2020+
M2M ultra low cost
Cost Flat energy

Latency

Energy
consumption

User I1 Gbit/s
data rates peak data rates

10 Mbit/s
wherever needed Ultra
reliability

Coverage
Figure 1.2: The summary of key requirements for 5G [Nok16].

The research and development work on 5G, carried out by both industry and
academia, was started at the start of this decade and has progressed significantly.
The overall network requirements, implementation challenges, candidate technolo-
gies and their enablers have been studied and expressed in various publications like,
for example, in [ABC*14, DGK*13,BHL*14,0BB*14, HRTA14, CLRH" 14]. There
are also several dedicated European Union projects working on 5G like the recently
concluded METIS T [Quel5], its successor METIS II and FANTASTIC5G. Five
core services have been envisioned in the FANTASTIC5G project to be the driving
force of 5G (which are similar to the requirements found in [ITU15] and [3GP17]),
namely [Sch16]:

1. Mobile BroadBand (MBB)

2. Massive Machine Communications (MMC)

3. Mission Critical Communications (MCC)

4. Broadcast/Multicast Services (BMS)

5. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2X) communications
A common key element that all these core services share is ubiquitous coverage.

In this thesis, we will focus on the MBB core service for below 6 GHz frequency
bands. The motivation behind this is that all the newly allocated Radio Frequency
(RF) bands will be below 6 GHz as discussed in the World Radiocommunication

Conference 2015 (WRC2015) [IR15]. The availability of centimeter and millimeter
Wave (mmWave) bands will be decided in the upcoming WRC2019. However, many



companies like Qualcomm and Nokia, plan to introduce their 5G products as soon
as the 2018 Winter Olympics in South Korea. This means that for now all the
expected 5G traffic growth must be supported by the below 6 GHz frequency range

as shown in Figure 1.3.
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Figure 1.3: Timeline of spectrum allocation for 5G.

1.1.2 Mobile BroadBand: Massive MIMO and CoMP

Mobile BroadBand, which is the marketing name for high-speed wireless internet,
has been the impetus behind the exponential growth of mobile networks as it enabled
humans to satisfy an essential need, that is, to be able do more while on the go
instead of being anchored to a physical location. For 5G, the focus of MBB will
again be to address the human-centric demands for access to advanced multimedia
content like streaming 8K video and 3-Dimensional (3D) or holographic videos, and
other very demanding applications and services like virtual and augmented reality.
The question that now arises is, how to meet this high demand for wireless? The

potential solutions fall into either of the three categories:

1. deploy more base stations with each serving a proportionately smaller area,

2. squeeze the most out of all the spectrum bands by exploiting the currently

underutilized or unused spectrum, and

3. efficiently use multiple antennas at the base stations and/or at the User Equip-
ments (UEs).

The deployment of more base stations as epitomized by small cells is a promis-
ing technology but it is covered extensively in literature, for example, in [JMZ"14,
BLM*14,WHG"14,GPA*15,MPT*13], and not the focus of this thesis. Also, gains
based on the provisioning of new spectrum bands and bandwidth will soon reach a
ceiling as the amount of available electromagnetic spectrum cannot increase [Mar15].
Thus, the solution of interest then comes in the form of the most important innova-

tion in wireless communications known as MIMO which relies on multiple-antenna
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systems at both ends of the transmission link. MIMO systems offer additional
Degrees of Freedom (DoFs) in the spatial dimension because in typical urban envi-
ronments, radio waves experience multipath propagation resulting in independent
channels between the multiple transmit and receive antennas. These additional
DoFs can be exploited in four ways for data transmission: the achievable data rate
can be increased by the transmission of multiple data streams, the inherent array
gain can provide robustness against noise and signal degradation, interference can
be avoided through appropriate spatial processing, and the quality of the connection
can be improved by the multiple transmission of a single data stream.

MIMO technology which formed the backbone of 4G systems like LTE-A, had
been limited to a maximum of 8 antennas [Wan13,3GP09]. To meet the demands
of 5G, we need to go bigger and this has exactly happened in the form of massive
MIMO which employs the use of a colossal number of coherently and adaptively
operated service antennas [LTEM13,Mar10]. This results in immense improvement
in throughput, coverage and energy efficiency by focusing the signal energy into
tiny regions of space during transmission and reception.

Massive MIMO is typically defined as a system in which the number of service
antennas M, is at least an order of magnitude higher than the number of users Ny;
that is, My /Ny > 10 [JMZ*14]. This definition is controversial as the real design
parameter is the number of users Ny because the number of transmit antennas My
is generally fixed in a deployment and not a variable. It has been shown in [BLM15]
and [DAZ*'14] that massive MIMO performs quite well in the range My /Ny < 10
and it is even possible to let My/Ny = 1, which leads to a small per terminal rate
but the sum spectral efficiency is still very high. Hence, a simple definition of a
massive MIMO system is, “It is a system with unconventionally many active antenna
elements, Mr, that can serve an unconventionally large number of terminals, Ny .
One should avoid specifying a certain ratio Mr /Ny, since it depends on a variety of
conditions, for example, the system performance metric, propagation environment,
and coherence block length” [BLM15].

Another important component of 5G MBB is cooperation between base sta-
tions, also known as Coordinated MultiPoint (CoMP) [IDM*11,FKV06,SRH13|. In
CoMP, either just the control-plane information or additionally user-plane infor-
mation is shared between the base stations, depending on the CoMP scheme used.
This means that CoMP can be considered as a geographically distributed MIMO
system comprising the antennas of the multiple distributed base stations and the
antennas of the multiple UEs served by them [BJ713,SKM*10]. The aim of CoMP
is to eliminate the interference between adjacent cells which is beneficial for the
overall performance but especially helps the users close to the cell borders.

To exploit the spatial dimension through MIMO or CoMP and jointly serve



multiple users on the same time and frequency resource, base stations employ spatial
precoding in the downlink [FG98]. Precoding is performed in such a way that at the
geographic location of each user, the signals transmitted from the multiple antennas
overlap constructively for each user’s own data signal and deconstructively for all
the other users’ signals. To perform precoding, knowledge of the full Channel State
Information at the Transmitter (CSIT) is required. The availability of accurate
CSIT is paramount for massive MIMO and CoMP to perform properly but efficient

acquisition of CSIT is one of the main challenges faced by these schemes.

1.2 State-of-the-Art

Let us first consider a point-to-point link between a transmitter and receiver. Ide-
ally, both of the participants should be able to communicate with each other si-
multaneously, referred to as Full-Duplex (FD) transmission, but it is very diffi-
cult to achieve as pointed out by Andrea Goldsmith, “It is generally not possible
for radios to receive and transmit on the same frequency band because of the in-
terference that results. Thus, bidirectional systems must separate the uplink and
downlink channels into orthogonal signaling dimensions typically using time or fre-
quency dimensions” [Gol05]. In reality, most wireless communication systems like
4G LTE are half-duplex that emulate a full-duplex system through a separation of
the directional communication channels either in frequency (known as Frequency
Division Duplex (FDD)) or in time (known as Time Division Duplex (TDD)).
However, it has been proven that full-duplex communication is indeed possible
in [CJST10,JCK™11, BMK13,SSG"14,DS10, TZH16] and for 5G systems, further
research is being carried out as FD could potentially result in a doubling of the
transmission speed. Nevertheless, FD systems are still in their infancy with a po-
tential gain of 40-80% over half-duplex in small area systems [Rik15]. Thus, the
first iteration of 5G systems would still use half-duplex FDD or TDD transmission.

Channel State Information (CSI) is usually required at both the base station and
the UE. It is utilized to alter the Modulation and Coding Scheme (MCS), the power
allocation and user scheduling among other things. Massive MIMO systems as
envisioned by Tom Marzetta, rely on TDD operation because in such systems, uplink
reference signals can provide the base station with not only the uplink CSI but also
the downlink CSI because of channel reciprocity which results in a reduction in the
overhead of CST acquisition [Mar15]. Moreover, the time required to transmit uplink
pilots is independent of the number of base station antennas in TDD mode [Mar10].

On the contrary, in FDD systems, CSI is estimated or predicted at the UE by
making use of Channel State Information Reference Signals (CSI-RSs) or pilots,

which is then quantized to reduce the overhead and fed back to the base station
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through a low-rate feedback link. This means that FDD systems require consider-
ably more time and resources for CSI acquisition as compared to a TDD system.
Additionally, they quickly become unfeasible with an increasing number of antenna
elements as the time required to transmit downlink reference signals or pilots is
proportional to the number of base station antennas. To summarize, FDD massive

MIMO systems suffer from the following practical issues:
e large number of RF chains are required
e reference signal and feedback overheads are huge
e global CSI sharing needs to be done in real-time
e the computational complexity for precoders at the base stations is huge.

In spite of that, FDD systems dominate over TDD in current cellular networks
because they offer benefits continuous channel estimation, small latency, backward
compatibility etc. Hence, it is important to develop solutions for FDD massive
MIMO systems as most operators have paired spectrum, especially under 6 GHz,
which they would like to migrate from older technologies to 5G for better perfor-
mance.

The current body of research on FDD massive MIMO CSI acquisition typically
falls into three categories based on: temporal correlation, spatial correlation and
compressive sensing. All of these potential solutions, generally assume some form of
sparsity in the channel that can be exploited. This sparsity can arise from a strong
spatial correlation requiring the estimation of only a few strong eigen-directions or
from the Channel Impulse Responses (CIRs) being sparse in time due to a limited
number of scatterers around the base station.

Temporal channel correlation is leveraged by [CLK15, CCLM13] to reduce the
CSIT overhead by utilizing trellis-code based quantization codebooks. In contrast,
a memory-based channel training sequence design is presented in [CLB14]. They
have proposed both open-loop and closed-loop training frameworks with the results
favoring the closed-loop training framework as it provides a better performance
especially in the low Signal-to-Noise Ratio (SNR) regime and for high number of
transmit antennas. It reduces the overhead because the UE only needs to indicate to
the base station, the best subsequent training signal to be sent out of the common
set of training signals shared in advance between them, based on the previously
received training signals and prior knowledge of the channel. In [RL14] and refer-
ences therein, the authors have utilized a compressive sensing approach to exploit
this sparsity. However, it is important to note that at mmWave frequencies, the
CIRs may be sparse [AASST14] but at lower frequencies, for example the below
6 GHz range which we are interested in, measurement results show that sparsity

assumptions are rather dubious [GERT15].
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Similarly, the spatial correlation of channel coefficients can also be exploited to
reduce the CSIT overhead. The pioneering work in this category was presented
in [ANAC13] and extended in [NAAC14, Nam14, JMCN15, AASS*14]. They have
proposed the Joint Spatial Division and Multiplexing (JSDM) scheme which divides
the users into groups with approximately the same channel covariance eigenspace.
A two-stage precoding is performed, namely the pre-beamforming matrix and a
Multi-User MIMO (MU-MIMO) precoding matrix for the effective channel, which
includes the pre-beamforming as well. This provides the ability to counteract
both inter-group interference and the interference inside each group. Other some-
what similar two-stage precoding and user grouping schemes have been proposed
by [CL14,XYM14].

In addition to the CSI acquisition overhead, practical MIMO systems suffer from
a phenomenon called channel out-dating or channel aging [TH13]. This means that
the channel has already changed resulting in a mismatch in the fed-back CSI and
the real channel before the CSIT is used at the base station. This phenomenon is
more pronounced in high mobility environments and results in a severe performance
degradation. The underlying cause of this is feedback delay, which is inevitable as
channel estimation or prediction, processing, and feedback require a certain amount
of time. A promising solution has been recognized in the form of prediction of the
channel information into the future which can effectively combat the performance
degradation due to feedback delays [DHHHO00a, RHSKO08]. For a detailed survey of

the state-of-the-art of channel prediction schemes, please refer to Section 4.2.

1.3 Open Issues

Channel State Information overhead reduction and improved channel prediction for
practical, below 6 GHz, FDD massive MIMO systems is a new topic. For this
reason, several issues related to the prediction performance, the reference signal
design, and the overall CoOMP framework are still open. The most important open

issues are summarized as follows:
1. Can massive MIMO work in FDD operation?

2. How can we effectively use massive MIMO in the FDD mode without unbear-

ably increasing the reference signal overhead?

3. How does the overall framework of an FDD based massive MIMO system look
like at the system level especially with the incorporation of CoMP?

4. How can we predict the weaker channels in the FDD massive MIMO case?

5. How can we reduce the CSI acquisition overhead in an effective manner with-

out resorting to sparsity in the channel?
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6. How can we avail the benefits of massive MIMO at the UE side as well?

7. How can we efficiently reduce the number of channel components and multi-

path components in the received signal of the UE?

1.4 Contributions and Outline of the Thesis

The main focus of this thesis is the development of massive MIMO techniques for the
more challenging FDD case to reduce the CSI acquisition overhead and to enhance
the performance of channel prediction schemes. Overall, the techniques developed
in this thesis enable us to provide an optimistic answer to the first open issue: Yes,
massive MIMO can work in FDD operation.

We start off with a description of the overall system or network level concept
of a prospective FDD 5G cellular network in Chapter 2. As CoMP, especially in
the form of Joint Transmission Coordinated MultiPoint (JT-CoMP), is an impor-
tant candidate for achieving the required performance goals for 5G, an Interference
Mitigation Framework - Advanced (IMF-A) has been developed in the EU project
ARTIST4G [GS12]. We provide a detailed description of the core components of
this framework. The main benefit of IMF-A is that it effectively mitigates inter-
cooperation area interference, allowing for transmission schemes to be optimized
for just one cooperation area. To cater for the requirements of 5G, an evolution
of the IMF-A was presented in the EU project METIS I [BA15]. This, hence-
forth called 5G IMF-A, augments massive MIMO and small cells to the existing
IMF-A. The main challenges for its implementation in FDD is the large number
of antenna elements resulting in a severe reference signal overhead leading to pilot
contamination. We have devised to use the Grid of Beams (GoB) concept to limit
the number of antenna elements to a few directive beams spread out to cover the
whole sector. This provides several potential benefits and addresses open issues
2 and 3 [AZH15b, ZAS16]. In favorable propagation conditions like Line-Of-Sight
(LOS) with high Ricean factors, GoB may even achieve a similar performance to the
reciprocity based TDD massive MIMO beamforming, in terms of the downlink sum-
rate. In other scenarios, the performance of GoB degrades as compared to TDD
beamforming [FRT17]. Despite that, for FDD operation, GoB is being consid-
ered as the most commercially viable solution for massive MIMO! [KN15]. Another
challenge is the availability of reliable CSIT which can be reliably resolved through
channel prediction. However, reliable channel prediction over large distances is a
difficult problem. Thus, in the next chapters we investigate this channel prediction

problem in detail.

L An exemplary scenario would be to downscale 128 antenna elements to 16 GoBs.
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Chapter 3 provides the underpinnings of the wireless channel. We discuss
the fading phenomenon and its types. The variations in the channel stem from
multipath propagation between the base station and the UE. The geometry of the
environment and the transmission bandwidth influence the number of multipath
components, and their corresponding delays and Angles of Arrival (AoAs). If the
UE is moving slowly, the scattering environment might remain the same and hence
the channel varies very slowly in time. Such a channel is easier to predict as the
history of the channel provides a good fit to the future of the channel. If the UE is
moving at a high speed, the scattering environment changes very quickly, especially
if there is birth and/or death of multipath components due to a change in the active
scatterers. Such a channel is harder to predict as the history of the channel might
not provide a sufficient fit to the future. In addition, the scatterers might move as
well, but this is usually a far slower process than the fading due to the movement
of the UE. Moreover, in this chapter, we also take a look at the dimensionality of
a real-world massive MIMO channel in a CoMP and 5G scenario. The methods
to accurately and effectively model the wireless channel are also elaborated with a
focus on ray-tracing methods and models used in this thesis for the simulation of
systems and to access the performance of channel prediction algorithms.

Chapter 4 is dedicated to channel prediction schemes. We start off by pro-
viding a survey of the state-of-the-art prediction schemes and by distinguishing
the factors which affect the performance and influence the design of the various
prediction schemes. We identify that for 5G, pilot-based prediction schemes make
more sense, as compared to blind schemes, as they are easier to implement and
provide a reliable performance. We consider two state-of-the-art schemes in de-
tail [MDHOS8, Arol1], as both of them provide a good performance in their own
regard [DAZ"14]. In pilot-based prediction schemes, to predict the future CIR or
channel frequency response, the channel is estimated through pilots or reference
signals at several consecutive time snapshots which provides a history of the chan-
nel variation. Statistical methods are then used to utilize these estimates to form
a prediction of the future channel response. The majority of channel prediction
schemes proposed for MIMO systems assume that the MIMO channel is composed
of independent parallel links and then employ methods devised for Single-Input and
Single-Output (SISO) systems to predict these links [SLC08, WE06]. The downside
of such an approach is that it does not consider the correlation between the antenna
elements, which is inevitably present in a practical MIMO system [SFGKO00]. In
dense scattering environments, these schemes provide a prediction only over a tiny
distance, on the order of a few tenths of the wavelength, and prediction beyond a
wavelength is realistically not possible. Furthermore, such schemes require training

over several wavelengths to accurately predict the channel [TV01]. A better utiliza-
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tion of the spatial DoFs of the MIMO channel can lead to a reliable prediction up to
several wavelengths. To better incorporate the spatial correlations and improve the
performance of state-of-the-art channel prediction algorithms, we have proposed a
novel hybrid method, derived from the two schemes, which allows catering for the
noise enhancement effect present in the AutoRegressive (AR)-based models, ad-
dressing open issue 4, and also exploits the structure of the MIMO channel which
is usually neglected by numerous state-of-the-art prediction schemes [AZH17].

The spatial DoFs provided by the massive MIMO systems can also be utilized to
reduce the complexity of the channel prediction problem itself through curtailment
into smaller spatial sub-divisions. To this end, Chapter 5 introduces the novel con-
cept of virtual beamforming, which enables the UE to reap the benefits of massive
MIMO, irrespective of its number of antenna elements addressing open issues 5, 6
and 7 [AZH15a]. At the UE, the spatial selectivity provided by virtual beamforming
is far more useful due to the large AoA spread as compared to beamforming opera-
tions at the base station side [AZH15b]. By forming a narrow beam and pointing it
in an appropriate direction, we can capture the most significant sub-division of the
overall channel. This results in a reduction in the number of channel components
and multipath components, and in the feedback overhead as well. The energy loss
incurred by forgoing a major portion of the channel is adequately compensated by
the beamforming gain. Virtual beamforming also subdues the time-varying nature
of the channel leading to a much smoother evolution in time, which makes it easier
to predict with sophisticated prediction schemes.

Chapter 6 details the challenges and their potential solutions regarding data
transmission through virtual beams. The creation of virtual beams at the UE
leads to the re-transmission of data symbols from the base station, to enable the
various consecutive time samples to serve as the virtual antenna elements. This
re-transmission is obviously undesirable as it causes a reduction in the through-
put of the system. We propose, for single antenna UEs, the utilization of circular
orthogonal codes to form multiple virtual beams to partially recover the loss of
throughput [AZH16]. We have also extended this concept to cover UEs with multi-
ple antennas, which might be the more relevant case for 5G, enabling the complete
recovery of re-transmission throughput loss.

In summary, we have scrutinized the feasibility of utilizing Grid of Beams at the
base station side and found them to be a promising option for massive MIMO in
FDD operation. Moreover, we have developed novel beamforming schemes for the
UE side, which enable us to procure the benefits of massive MIMO for UEs with
a limited number of antennas leading to a reduction of multipath components and
channel components, the feedback overhead, and enhances the channel prediction

performance. The above mentioned benefits of GoB, virtual beamforming and a
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combination of both schemes were thoroughly analyzed at the link-level, utilizing
measured and ray-traced channels for realistic urban macro scenarios. The results
of this analysis were contributed to the Work Package 3 of METIS-I project and to
the Work Package 4 of FANTASTIC5G project. Overall, the work in this thesis, in
conjunction with the general work carried out in the METIS-I and FANTASTIC5G
projects, can provide a first practical solution to the challenge of implementing a
FDD-based massive MIMO system in a cooperative scenario. The novel virtual
beamforming scheme and the specifics of its implementation for data transmission
that are presented here, have been implemented in Nokia’s 5G demonstrator called
AMOoRE (Advanced Mobile Radio Realtime Experience), and are being presented
by Nokia to standardization bodies.
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2. COOPERATIVE COMMUNICATIONS IN 5G: AN OVERVIEW

Chapter Summary

In this chapter, the current status of the cooperative communications framework
in the 5G cellular networks is elaborated. We also discuss the challenges involved
in the realization of such a cooperative framework. The target of this thesis is to
provide potential solutions to these challenges as discussed in Section 2.3.4.

The need for interference mitigation is explained in Section 2.1.1 and the opti-
mization options available in a cellular network are discussed in Section 2.1.2. Sec-
tion 2.2 describes the IMF-A, developed in the ARTIST4G project, in detail and
elaborates on its building blocks while Section 2.3 details the evolution of IMF-A,
by further enhancements developed in the METIS-I and FANTASTICAG projects,
to a bG technology.

2.1 Introduction

The, so called, Interference Mitigation Framework - Advanced (IMF-A) was first
developed in the European Union funded project ARTIST4G! [GS12] and then
further enhanced in METIS-1? [BA15]. Currently, it is being finalized for its first
deployment as a Fifth Generation (5G) technology in the ongoing European project
FANTASTIC5G? [PM16].

2.1.1 The need for Interference Mitigation

A future 5G radio system should provide a significantly higher performance com-
pared to the current systems like Long Term Evolution (LTE) or Long Term Evolu-
tion - Advanced (LTE-A). One of the core services defined for 5G is Mobile Broad-
Band (MBB) and the primary Key Performance Indicators (KPIs) for MBB are data
throughput, latency, coverage and mobility. Out of these KPIs data throughput is
riddled with the most challenges due to the expected demand for very high data vol-
umes and end-user data rates, as described in Table 2.1, for downlink transmission

for a future 5G system.

The upcoming cellular networks will mainly be interference-limited because of
densification and aggressive frequency-reuse, hence potent interference avoidance or

mitigation techniques, especially ones which require minimum effort for hardware

LARTIST4G - Advanced Radio Interface Technologies for Fourth Generation (4G) Systems.
Duration: January 2010 - June 2012.

2METIS - Mobile and wireless communications Enablers for Twenty-twenty (2020) Information
Society. Duration: November 2012 - April 2015. https://www.metis2020.com/.

3FANTASTIC5G - Flexible Air iNTerfAce for Scalable service delivery wiThin wlreless
Communication networks of the 5% Generation. Duration: July 2015 - June 2017. http:
//fantasticbg.eu/.
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Specifications LTE LTE-A 5G

Downlink Throughput 100 Mbps | 1 Gbps 10 Gbps and higher,
1 Gbps anywhere

Uplink Throughput 50 Mbps | 500 Mbps 1 Gbps and higher

Latency (round trip time) | 10 ms less than 5 ms | less than 1 ms

Table 2.1: A comparison of the primary KPIs for MBB [WD14].

and infrastructural upgrades are of great interest. To this end, a powerful IMF-A
has been developed which will enable us to achieve the required coverage and data
throughput [GS12]. It is the main distinguishing factor for 5G compared to what
is considered in LTE or LTE-A [BA15]. Currently deployed networks, for example,
LTE, avoid inter-cell interference by restricting reuse of resources in the adjacent
cells but this hampers overall system performance. Hence, intuitively the best way
to achieve a higher spectral efficiency is to actively use the whole spectrum at all
times in all cells, leading to a reuse factor of one. Sophisticated schemes like Inter-
Cell Interference Coordination (ICIC) or enhanced ICIC, have been introduced in
LTE but these schemes do not completely eliminate the interference. Therefore,
the gains are limited to small and medium load conditions. Hence, for a powerful
inter-cell interference mitigation, strong cooperative schemes like Joint Transmission
Coordinated MultiPoint (JT-CoMP) between adjacent sites, are required as shown
in the ARTIST4G and METIS-I projects along with adequate optimization of other
system parameters described in Table 2.2 [GS12] [BA15]. This framework together
with a set of supporting enablers might brand 5G as the first interference free or

interference exploiting cellular radio system.
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s oise floor
RIF T
Rate region — g / Interference
with IF L/ floor (IF)
y/
Rate region L/
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I / . R
RéF I Rx2nax / T2

Optimum achieveable rate
region for JP CoMP

Figure 2.1: Rate regions with and without interference floor [ZMK13].

To understand the pernicious consequence of a strong inter-cell interference floor

in an interference-limited scenario that is in the case of a very low noise floor, we

17



2. COOPERATIVE COMMUNICATIONS IN 5G: AN OVERVIEW

consider a simple example carried over from [ZMK13]. Figure 2.1 illustrates the
exemplary rate region of two user User Equipments (UEs). The rate region for
a conventional cellular system is represented by the small blue rectangle. If we
assume that the noise floor is very low and there is no interference floor, then the
achievable rate region with R and Ry'®* is indicated by the large gray area.
This rate is ideally only limited by the maximum Modulation and Coding Scheme
(MCS). Under the assumption of a strong interference floor which is indicated by
the light blue lines, the Coordinated MultiPoint (CoMP) gains are mostly hidden
leaving only minor rate gains as indicated by the light blue area. Consequently, the
development of a simple and robust inter-cell interference floor shaping technique
was deemed very significant. Such a method was developed in ARTIST4G and will

be explained in Section 2.2.2.

2.1.2 Optimization Options for a Cellular System

There are several Degrees of Freedom (DoFs) available for the optimization of a
cellular system. To distinguish between these DoFs, we divide them into three
separate sets of parameters based on the time scale at which they fluctuate and the
quantities which influence these sets of parameters [GS12]. The, so called, influence
quantities are related to the environment, data traffic and user-specific properties

and are summarized in Table 2.2.

Influence Time Scale | Degrees of Freedom

Quantity

Environment Years/month | Deployment
Sectorization

Antenna properties

Static frequency reuse

Data Traffic Days/hours | Electrical down tilt

Hand-over parameters

Switching on/off base stations

Semi static (fractional) frequency reuse

Semi static clustering

Semi static resource allocation (among overlap-
ping clusters)

Inter-cluster interference

User-specific Seconds/ Scheduling/user grouping

milliseconds | Dynamic resource allocation (within a cluster)
Spatial signal processing algorithms

Table 2.2: Structure of a three-level optimization framework considering cooperative cel-
lular networks to avoid interference [GS12].
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Out of these three parameter sets, we can consider the environmental parameters
to be mainly static. Based on network requirements, the hardware and infrastruc-
ture for the base stations are installed at appropriate locations and then properly
divided and orientated into multiple sectors. After that, the type and number of an-
tennas, their antenna patterns, and mechanical tilting are also optimized. Once all
these parameters are set, they typically remain fixed for months or even years unless
some very big change, like the construction of new buildings, makes it inevitable to
re-optimize them.

The second set of parameters related to data traffic within the network typi-
cally vary over days or hours. These traffic dependent parameters like, for example,
electrical down-tilt or handover parameters, can be adapted automatically and fall
under the umbrella of Self-Organizing Networks (SON). However, semi-static user
related parameters like frequency-reuse, clustering and resource allocation among
cooperation clusters can also be similarly categorized, as they are also managed in
a time scale of hours when complexity is considered. Traffic conditions also influ-
ence the size of the cooperation clusters and the performance requirement of the
CoMP techniques. For example, a higher frequency-reuse can be utilized during low
traffic situations needing simple base station cooperation while a more aggressive
frequency-reuse can be used during high traffic situations enabled by a strong coop-
eration scheme. In this aspect, cooperation clusters are formed by the coordinating
base stations which can overlap during high load, to ensure a frequency-reuse factor
one, where inter-cluster interference present in such systems can be reduced by, for
example, electrical down-tilt. This resulted in the development of the cover shift
concept which is explained in Section 2.2.1.

The third and most important set of optimization parameters is user-specific
optimization which helps to avoid interference within a cluster by considering the
positions of the users and the channel conditions. It is essential to have high per-
forming algorithms and techniques to optimize these parameters as they vary on
the scale of seconds and milliseconds and have a direct effect on the performance of
a CoMP system.

2.2 Interference Mitigation Framework - Advanced

The IMF-A, developed in the ARTIST4G project, is designed for systems operating
below the 6 GHz frequency range and LTE 4 x 2 Multiple-Input and Multiple-
Output (MIMO), supporting both Time Division Duplex (TDD) and Frequency
Division Duplex (FDD) modes in typical urban macro or micro scenarios with inter-
site distances of approximately 500 m [GS12]. The main building blocks of the

framework are sketched in Figure 2.2. At the heart of IMF-A lies a transmission
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2. COOPERATIVE COMMUNICATIONS IN 5G: AN OVERVIEW

technique called JT-CoMP. The aspiration of JT-CoMP is to convert a cellular
network riddled with inter-cell interference into one which exploits this interference
for a better data transmission [JMZ*14].

CoMP can be defined in simple terms as a scheme which sends and receives data
to and from a UE by means of several points (base stations) to ensure, that even
at the cell edges, the optimum performance is achieved. The CoMP techniques,
can generally be divided into two categories: coordinated and cooperative trans-
mission. For the coordinated transmission case, the exchange of only control-plane
information takes place between the base stations to avoid inter-cell interference
by, for example, making beneficial user scheduling decisions. This control informa-
tion could be, for example, the Signal-to-Interference-plus-Noise Ratio (SINR) or
the Channel State Information (CSI). On the other hand, cooperative transmission
schemes incorporate the additional exchange of the user-plane data. This data can
be used in various ways depending on the required system performance as there
is usually a trade-off between performance and complexity, and different backhaul
requirements. Typically, for all cases, Joint Precoding (JP) is performed over the
whole CoMP set (set of cooperating base stations). Then, simultaneous data trans-
mission from multiple points can be executed, which is called Joint Transmission
(JT) [IDM*11]. Alternatively, the data transmission can take place from one cell at
a time depending on the quality of the link, referred to as Dynamic Cell Selection
(DCS). The coordinative approaches are more robust against practical impairments
like outdated CSI but theoretically, cooperative techniques provide a better system
performance. Between the cooperative schemes, JT-CoMP was chosen as the main
scheme for IMF-A in ARTIST4G because even though it is practically challenging,
it has the capability to provide the best performance through:

Macro-diversity gains: As the transmission is carried out over multiple indepen-

dent fading channels, the effect of fading can be reduced through averaging.

Beamforming gains: The coherent combination of transmission from several an-
tennas can potentially increase the average received Signal-to-Noise Ratio (SNR) at
the UE.

Interference cancellation: As data transmission is simultaneously carried out
from all the cooperating base stations, JT-CoMP constructively and destructively
combines the superposition of several to potentially many signal components, with
the aim to maximize the desired received signal at the UE while concurrently min-

imizing the mutual interference.

In this overview, we will elaborate on the practical challenges involved with

the implementation of JT-CoMP and their potential solutions, namely the tor-

20



toise concept and the cover shift concept, developed in the ARTIST4G and METIS
projects [GS12, BA15].

High speed backhaul
Central
Processing .
Uit Tortoise concept:

Center of cooperation area with
high Tx Power and low tilt

Edges of cooperation area with
low Tx Power and high tilt

Cooperation Area

10 active UEs per cell

Figure 2.2: Interference mitigation framework based on cooperation areas formed by
cooperating over nine cells or three sites. The tortoise concept is also illustrated with the
center (dark blue) having higher transmit power and lower downtilt as compared the the
edges of the cooperation area (light blue). [GS12].

2.2.1 Cover Shift Concept: Partial CoMP

Under the assumption of a network-wide base station cooperation to eliminate inter-
cell interference, theoretical gains of 300 percent or more, as compared to isolated
MIMO base stations, have been promised in [FKV06]. However, taking practical
constraints into account, the performance gains drop to the order of 50 to 100 per-
cent [GS12]. The practical constraints include but are not limited to feedback delay,
synchronization errors, sub-optimal user selection and overhead (feedback and refer-
ence signal). In addition, even though a network-wide cooperation would eliminate
the interference, it is intuitive to see that cooperation has to be limited to a few
cells of the full network, forming clusters or cooperation areas. The reasoning behind
this is that in a network-wide cooperation, channel information and user data would
have to be exchanged between all the base stations. This is not practically feasible
as it will cause the number of pilots, the backhaul traffic and the feedback overhead
for the CSI reporting to explode. However, the formation of such cooperation areas
intrinsically leads to residual inter-cooperation area interference [TKBH12]. The
tortoise concept which is detailed in Section 2.2.2 provides a solution to reduce this
inter-cooperation area interference.

The optimum method of creating a cooperation area would be to perform user-

centric clustering which means that each UE in the cooperation area is served
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2. COOPERATIVE COMMUNICATIONS IN 5G: AN OVERVIEW

from its three strongest cells. It is evident from system level simulations that
considerable potential performance gains can be achieved by doing so [MF11]. In
practice, user-centric cooperation is quite challenging because it requires all the UEs
in a cooperation area to be served by the same set of base stations, i.e., all UEs have
the same set of the strongest cells. The probability of finding UEs associated to a
single set of base stations is exceedingly low for realistic radio channel conditions
with several Non-Line-Of-Sight (NLOS) components and strong shadowing.

Instead of performing optimum user-centric clustering, partial CoMP employs a
static and structured approach by expanding the cooperation area from the com-
monly used three cells to over three adjacent sites with three sectors per site, re-
sulting in a total of nine cells [ZMK13]. Such enlarged cooperation areas increase
the number of UEs which contain their three strongest cells inside the cooperation
area. The expansion of cooperation areas is beneficial from a practical standpoint,
as only two inter-site backhaul connections between adjacent sites will be required
for such an expansion. In order to limit the complexity for channel prediction and
feedback schemes, the channels from the three strongest of the overall nine cells
are measured by the UEs and reported. This partial reporting of channel informa-
tion was the inspiration to name this scheme partial CoMP. It is also important
to note that even for very large cooperation areas, there will be inter-cooperation
area (out-of-cluster) interference. So, for a cooperation area comprised of nine cells,
inter-cooperation area interference is detrimental and typically spoils most of the
joint transmission performance gains. There are a lot of users at the edge of the
cooperation area, which constitutes a large fraction of the total area because of
geometrical reasons, and these users are severely affected by this inter-cooperation
area interference.

A new dimension for optimization, that is overlapping cooperation areas which
have been named cover shifts or super cells, was introduced to deal with the inter-
cooperation area interference [GS12]. A UE at the edge of the cooperation area can
be scheduled into another cover-shift, where it is in the center of another cooperation
area which utilizes different radio resources like sub-bands and/or sub-frames as
shown in Figure 2.3a. The main criterion for the assignment of cooperation area-
centric UEs to a certain cover shift is that it should include the three strongest cells
for all the jointly served UEs. In the case of homogeneous networks, each site is
involved in a total of six cover shifts as shown in Figure 2.3b [ZMK13]. Essentially
this means that the overall system has a frequency reuse equal to one as each site
serves all cover shifts simultaneously. Additionally, a certain data rate can always
be guaranteed in the network because it can adapt the used frequency and/or time

resources per cover shift [TKJ*15].
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2.2.2 Tortoise Concept: Interference Floor Shaping

The use of enlarged and overlapping cooperation areas, as introduced by the cover
shift concept, significantly reduces the inter-cooperation area interference but this
only holds for the three strongest cells. In urban environments with a homogeneous
network layout, strong path-loss variations lead to a high number of cells with a
similar received power. This results in an inter-cell interference floor which does not
affect the UEs at the center of the cooperation area because of their strong signal
power from their serving cells but the UEs at the edge of the cooperation area suffer
significantly. The challenge is the high number of interfering cells which are usually
distributed over large geographical areas. To reduce interference, we can go ahead
and integrate these far-off cells into the cooperation areas but this would escalate

quickly into network-wide cooperation which is undesirable.
Cover Shift 2
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(a) Shape of received power and tilt allo-
cation is depicted for the tortoise concept.
The blue colored beams belong to the three
depicted sites forming the blue cooperation

(b) Six cover shifts for site 1. Each trian-
gle defines the three sites for cooperation
with the solid triangle defining the main
cooperation area. The cover shifts utilize

area and the size of the beams indicates the
transmit power. The teal and gray colored
discs represent other cooperation areas uti-
lizing different resource elements called as
cover shifts.

different frequency and/or time resources.

Figure 2.3: A visualization of the cover shift and tortoise concepts [ZMK13].

To reduce the commonly received interference power, i.e., the interference floor,
originating from other cooperation areas, the cover shift concept might be extended
by cell-specific vertical antenna tilting per cooperation area. This is motivated by
several measurement campaigns in real networks which show that using antenna
down-tilt supported by active antenna systems, interference can be limited to a
few cells [JMZ"14]. The general goal is to minimize outbound interference and to
maximize signal strength at the center of the cooperation area. For that purpose,

wideband precoders are utilized, meaning that the same precoding weights are used
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for all the sub-carriers, to semi-statically or statically form one or more wideband
beams at each cell [GS12]. The concept is similar to Grid of Beams (GoB), as
explained in Section 2.3.3. On the outbound beams, a strong down-tilt is applied,
for example 15°, and one might reduce the transmit power of the outbound beams
by, for example 3 to 6 dB, as well compared to the inbound beams, concentrating
the signal power into the center of the cooperation area. In comparison, inbound
beams utilize a small vertical tilt of, for example 7° [GS12]. As a result, a tortoise
like shape of the interference power is achieved, thus significantly curtailing the
leakage of interference outside the cooperation area as illustrated in Figure 2.3a.
The partial CoMP scheme and the tortoise concept are complementary schemes
as each cover shift serves only the cooperation area-centric UEs benefiting from
stronger coverage, whereas the UEs at the edge of the cooperation area which suffer

due to heavy tilting are scheduled into another cover shift.

2.3 Evolution of the IMF-A to 5G: The OPpor-
tunistic CoMP Concept

An evolution of the interference mitigation framework to fulfill the requirements
of 5G has been developed in the latest European projects called METIS-I and
Fantastic5G, which we will refer to as 5G IMF-A [BA15,PM16]. It again targets
the below 6 GHz frequency range for both TDD and FDD modes in typical urban
macro or micro scenarios with inter-site distances of approximately 500 m. The goal
is to have an even higher spectral efficiency to improve the main relevant KPlIs, i.e.,
data throughput as well as coverage for the Mobile BroadBand (MBB) core service.
Two main issues have been identified in [GS12] that upper bound the JT-CoMP
gains for a typical homogeneous macro cellular 4 x 2 MIMO scenario. The first
issue is that a high percentage of the indoor UFEs are noise limited, as opposed
to interference limited outdoor UEs, due to a high outdoor-to-indoor penetration
loss of 20 dB or more. The second issue stems from the relatively broad beams
formed by the A/2-spaced four element arrays, often used in macro cells. As the
beams overlap each other and experience similar path loss and small-scale fading,
there is a severe correlation between the adjacent beams. As a result of this strong
inter-beam interference, only a few users can be served simultaneously. To solve
these issues and achieve the spectral efficiency goals, the two main ingredients of
the evolution of IMF-A are massive MIMO and a tight cooperation with small
cells [Zir15, BA15]. An overall schematic is provided in Figure 2.4 which shows
the addition of massive MIMO arrays at the base stations and the transformation
of IMF-A into a HetNet by the inclusion of small cells and Local Area Networks
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Figure 2.4: Evolution of IMF-A to 5G [JMZ™'14].

2.3.1 Small Cells

The inclusion of small cells into the urban macro scenario leads to a network com-
prised of a combination of different cell types which is called a Heterogeneous Net-
work (HetNet) in 3rd Generation Partnership Project (3GPP). Such a deployment
poses several new challenges because a high number of small cells with differing
and potentially limited backhaul connections, which results in dubious coordina-
tion capabilities, are added into the network. Additional challenges arise due to the
different radio conditions for the macro and small cell layers, for example, macro
cells are typically placed quite high ranging between 20 to 50 m with an approxi-
mate transmit power of 49 dBm for a 20 MHz bandwidth and therefore deliver good
coverage. In comparison, small cells are normally placed below the rooftop level,
at approximately 10 m, with a significantly lower transmit power of 23 to 30 dBm
only. This disparity in radio conditions means that despite the shorter distance
between a small cell and the UE, the macro base station is often received with a
higher power than the small cell.

When a potentially large number of small cells is added to the network, it be-
comes tightly packed with cells, eventually becoming extremely dense [GSA15].
The complexity for a tight cooperation in such an Ultra Dense Network (UDN)
increases significantly, for example, an extremely high backhaul rate of several tens
to hundreds of Gbit/s might be required as shown in [JMZ"14]. In addition, the
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2. COOPERATIVE COMMUNICATIONS IN 5G: AN OVERVIEW

complexity for matrix inversions required for JT-CoMP precoding or the effort for
multi-cell scheduling also explodes. Hence, the simplest solution to the HetNet sce-
nario is to allocate different carrier Radio Frequency (RF) bands (non co-channel)
to the macro and the small cell layer but this leads to an inefficient use of resources.
Hence, efficient co-channel deployments are preferable and can be implemented by
using interference coordination techniques in either time or frequency like Inter-
Cell Interference Coordination (ICIC) or enhanced ICIC [PWSF12]. Such schemes
provide a fine granular coordination between the macro and the small cell layer,
depending on the load conditions. The term coordination here means that a distur-
bance to the other layer is prevented by switching off one of the layers in time or
frequency. An even better approach is to opportunistically activate only parts of the
small cells when needed and is termed as OPportunistic CoMP (OP-CoMP) [Zir15].

2.3.2 Massive MIMO

Massive MIMO schemes, following the pioneering work of Larsson and Marzetta
[LTEM13], have received significant attention from both the academia and industry
in the last few years. Intuitively, massive MIMO can be thought of as a natural
extension of conventional MIMO by upgrading from base stations equipped with
a few antennas to ones rigged with a colossal number of antennas. This large
provision of antennas provides additional DoFs in the spatial domain which allows
the network to simultaneously serve more UEs by multiplexing the signals on the
same time-frequency resource for various UEs and by directing radiated energy in
an efficient manner towards intended UEs through narrower beams. In addition,
it leads to a significant reduction of transmit energy and, as a result, a strong
interference suppression [RPL*13]. There is no fixed upper bound on the total
number of antennas and one description, for example, states that the provisioning
of antennas is ten times larger than the total number of streams served to all UEs in
a cell [JMZ*14]. Massive MIMO could be used as an in-band backhaul scheme as an
enabler of ultra dense networks or it could be used as an access scheme to facilitate
the evolution of IMF-A to 5G. We are interested in its role as an access scheme.
The implementation of massive MIMO, and MIMO in general, as an access scheme
can be carried out in two ways: Single-User MIMO (SU-MIMO) and Multi-User
MIMO (MU-MIMO).

2.3.2.1 Massive SU-MIMO

In SU-MIMO, also called point-to-point MIMO, the communication takes place
between a base station equipped with multiple antennas and a UE that has multiple

antennas as well. Other UEs are served in separate time and/or frequency resources.
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The general idea is to transmit distinct information on each of the transmitter
antennas resulting in a transmit signal vector which is then multiplied by the channel
matrix to form the received signal vector. Then if the condition number, defined as
the ratio of the highest singular value to the lowest, of the channel matrix is low,
i.e., it is well-conditioned, the distinct transmitted signals can be recovered reliably.

Although SU-MIMO is employed in current wireless systems like, for example,
the IEEE 802.11ac standard, it does not effortlessly scale beyond 8 x 8 antennas
for various reasons. The first and biggest issue is that in Line-Of-Sight (LOS)
conditions, the rank of the channel matrix drops to one which means that only one
data stream can be reliably supported. Hence, apart from an increase in the SNR
enabled by the array gain, this dependency on propagation conditions means that
data streams equivalent to the number of antennas cannot be maintained all the
time resulting in a loss of throughput. The second problem is that the promised
multiplexing gains of min(Myp, Mg) are not achievable at the edge of the cell due
to the typically low SINRs. The third problem is that the deployment of more
antennas is sometimes not possible at the UE because of physical constraints, and
the added complication and cost of electronic chains required for each antenna.
Similarly, rather sophisticated signal processing is required at both the transmission
ends to achieve the maximum system performance. The last issue is that increasing
the number of antennas results in a proportional increase in the amount of time
required for training to learn the channel matrix, irrespective of whether TDD or
FDD is used.
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Figure 2.5: A very simple representation of the difference between SU-MIMO and MU-
MIMO.
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2.3.2.2 Massive MU-MIMO

A MU-MIMO system is a MIMO system which has been split up at the UE side;
the base station still has M7 antennas whereas, in the simplest case, there are Mg

independent and geographically distributed single-antenna UEs. A simple compar-
ison between SU-MIMO and MU-MIMO is shown in Figure 2.5. The surprising
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benefit of MU-MIMO is that even though some UEs will suffer due to poor quality
channels, the sum throughput is not affected in general [GKHT07,LCGT12].

The benefit of MU-MIMO over SU-MIMO is that it is less affected by the propa-
gation environment. If the UEs are generally more separated in the angular domain
as compared to the angular resolution of the base station antenna array, MU-MIMO
can provide relatively good performance even under LOS conditions. Another bene-
fit is that single-antenna UEs can be used. The main issue with the implementation
of massive MU-MIMO is still the huge time and resources spent on acquiring CSI
which grows with both the addition of base station antennas and users, especially
for FDD systems.

The contradictory approach adopted by [Mar15] to make massive MIMO scalable

is to increase the size of the overall system and

1. the number of users is far fewer than the provision of base station antennas,

2. TDD is employed and the downlink CSI needs to be available only at the base

station, and

3. simple linear schemes are employed for both precoding multiplexing on the

downlink and decoding demultiplexing on the uplink.

2.3.3 Grid of Beams

The important thing to consider now is how to implement massive MIMO for FDD
systems. Even though TDD is superior and the scheme of choice in literature, most
of the licensed spectrum below 6 GHz is available for FDD. The basic approach uses
downlink pilots to inform the UEs of the channel and then CSI is transmitted to
the base station on the uplink. The problem here is that the required duration of
the training interval grows proportionally to the number of base station antennas.
This significantly caps the maximum number of antennas at the base station and
to maintain a large ratio of antennas over served UEs, this would cause an extreme
reduction in the number of UEs served. In addition, the transmission of CSI on the
uplink would result in an additional overhead.

For the 5G IMF-A framework, the baseline concept assumes large cooperation
areas with a total of nine macro cells and any or each of these cells are equipped
with an massive MIMO array. The feasible configurations for the implementation
of massive MIMO are presented in Figure 1 of [LTEM13|. The most practical con-
figuration would be to have a Uniform Rectangular Array (URA) with 16 x 16 or
32 x 16 antenna elements leading to a total of 256 or 512 antenna elements per mas-
sive MIMO array. Such a huge provision of antennas means that a straightforward

implementation of FDD massive MIMO is not possible due to reasons mentioned
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previously. Hence, we need a method to downscale the number of effective antennas
while still retaining the benefits of massive MIMO. Such a method is provided by
the GoB concept which falls under the category of fixed beamforming [SHRS08|. A
pre-defined set of precoding vectors V, is applied to the available antenna elements
to generate the GoB with a certain number of equally spaced and, most of the time,
narrow beams. This introduces a Spatial Division Multiple Access (SDMA) aspect
to the system, as multiple UEs can be served on the same time and/or frequency
resource. When applied to each sector of a macro cell, this can improve coverage
and at the same time reduce inter-beam interference within each sector.

Each beam of the GoB defines one antenna port, transmitting one specific or-
thogonal Channel State Information Reference Signal (CSI-RS). Therefore, UEs
measure the beamformed GoB as channel components instead of measuring the
channels to the physical antenna elements. As an example, consider that 8 fixed
beams are formed per cell resulting in a reduction in the number of channel compo-
nents per cell from 256 to 8. This means that the 40 orthogonal CSI-RSs, as defined
for LTE release 10, might be sufficient for massive MIMO channel estimation, and
permit 5 orthogonal muting patterns for the adjacent cells, thus ensuring low down-

link pilot contamination which is a major issue for massive MIMO [JAMV11].
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Figure 2.6: A schematic of GoB concept to convert a massive MIMO antenna array into
a limited set of beams.

For 5G IMF-A, the enlarged cooperation area comprises 9 macro cells which
means that if each of them supports a 16 x 16 = 256 antenna array, there will be
a total of 2304 channel components without any beamforming. In addition, each
antenna usually supports two polarizations and 5G IMF-A is targeting two elevation
angles for better coverage and throughput. This results in 256 x 2 x 2 = 1024

channel components per cell or 9216 channel components over the entire cooperation
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area rendering the system unmanageable. Therefore, considering 8 azimuth and 2
elevation beams per polarization, reduces the number of channel components per cell
from 1024 to just 32 and for the overall cooperation area from 9216 to 288. To make
this even more tractable, the UEs can select the beams relevant to them based on
some criteria, like a received power threshold, and estimate and report the channels
only for the relevant beams resulting in further reduction in the overall complexity
and feedback overhead. A simple schematic of GoB is provided in Figure 2.6.
Another benefit of GoB is that it does not entail any specific system requirements
that would otherwise be the case for adaptive schemes, like for example, the Joint
Spatial Division and Multiplexing (JSDM) framework which requires user grouping
and works only in the LOS scenarios [KTC15].

Considering a single cell, after the base station has acquired full CSI knowledge
from the explicit feedback of relevant channel components from each UE, it can
calculate the optimum MU-MIMO precoder matrix W. The overall system can be
described by the following received signal in the downlink for all the UEs and for
one particular sub-carrier,

y=HVWx +z (2.1)

where,

e H € CMr*Mr jg effective channel matrix of the Mp single-antenna UEs served

by the cell with My = 1024 being the total number of transmit antennas

o V ¢ CMrxMaos contains the cell-specific unitary precoders for the static wide-
band beams with Mg, = 32 being the number of GoB and Mg.g > M.

o W c CMcon*Mr jg the MU-MIMO precoder matrix

x € CMr>1 ig the vector of user data, and

z € CMr*1 s the vector of Additive White Gaussian Noise (AWGN).

2.3.4 Implementation Challenges for 5G IMF-A

As we have discussed throughout this chapter, inter-cell interference is a major lim-
iting factor for cellular networks and coordination between the cells of the network
is one of the most promising approaches to deal with this interference. The main
enablers of the 5G IMF-A framework like JT-CoMP and massive MIMO, are riddled
with challenges which must be solved for an effective implementation. A flexible
scheme for the formation of cooperation clusters is required which IMF-A handles
by forming enlarged cooperation areas. The interference from outside the cluster
is managed by interference floor shaping and the cover-shift concept. The other
unresolved challenges have been the focus of this thesis, and we have investigated

and proposed potential solutions for the following challenges:
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Reduction in reference signal overhead can be handled by the novel pilot

design concept called ‘coded CSI reference signals [ZAS16].

Efficient feedback compression and reduction in delay is achieved through
a combination of spatial processing and channel prediction farther into the future

as discussed in Chapter 5.

Availability of accurate CSI at the base station is accomplished through
efficient channel prediction schemes with reduced complexity as discussed in Sec-
tion 4.5.

2.4 Summary

In this chapter, we have discussed the advanced interference mitigation framework
which has been developed to combat interference in future cellular networks. The
key components of this framework are JT-CoMP implemented in combination with
proper interference floor shaping. The evolution of this concept to 5G, incorporates
small cells and massive MIMO arrays at the base stations. It has been identified
that the main challenge for such a framework, especially in the below 6 GHz range
and FDD, is the acquisition of accurate CSI at the base station. Concepts like
the Grid of Beams can help to reduce the overall dimension of massive MIMO,
hence reducing the CSI feedback overhead, and channel prediction can efficiently
combat feedback delay and provide reliable CSI to the base station. In addition, we
have developed an enhanced channel prediction scheme to predict weak channels
efficiently as discussed in Chapter 4. Moreover, we have developed novel UE-sided
beamforming schemes which enable us to simplify the massive MIMO channels
leading to a better channel prediction performance. These schemes are discussed in
Chapters 5 and 6.
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Chapter Summary

In the previous chapter, we have provided an overview of the status of the coop-
erative communications framework in 5G. As discussed in Section 2.3.4, one of the
main challenges to realize such a framework is the availability of accurate and up-
to-date channel information at the base stations. The best potential solution to
this is channel prediction but before we delve into the details of channel prediction,
we need to take a look at the channels themselves. Hence, this chapter is dedicated
to wireless communication channels. In Section 3.2, we discuss the channel effects
that shape the transmitted signal like, for example, attenuation, multipath fading,
Doppler shift, and scattering. In Section 3.3, we detail how a downlink channel can
be represented at the UE. In Section 3.4, we discuss channel modeling schemes and
particularly focus on ray-tracing channel modeling tools like [lmProp and WinProp.
The benefit of using ray-traced channels is that characteristics of measured channels

can be emulated to test the real world performance of algorithms.

3.1 Introduction

In the previous chapter, we have discussed both the baseline Interference Mitigation
Framework - Advanced (IMF-A) and its evolution to the Fifth Generation (5G).
We have also discussed the building blocks of such a framework and the dominant
requirement for it to work; the availability of accurate Channel State Information
(CSI). Before we delve into methods to acquire reliable CSI, like for example, channel
prediction schemes, we first look at the composition and general description of
wireless Multiple-Input and Multiple-Output (MIMO) channels, and analyze the

various methods to model such channels.

3.2 Characterization of the Channel

In a wireless communications system, the channel is the logical connection between
the transmitter and the receiver which conveys the information signal through elec-
tromagnetic waves. In contrast to a physical connection, like optical fiber or cable,
the wireless channel is defined by the environment in which the transmitter and
the receiver reside and it is very important to characterize it because decoding
the transmitted signals correctly becomes an intractable problem without correct
channel information. Hence, the wireless channel is usually characterized as a math-
ematical model which describes the various effects experienced by the signal as it
travels between the transmitter and the receiver. All these effects shape the trans-

mitted signal in a particular manner and are usually named accordingly, for example,
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attenuation, multipath fading, Doppler shift, and scattering [SA05].

3.2.1 Multipath Propagation

As the wireless propagation environment is not fixed, the signals usually travel
through two or more paths on their way to the receiver which are characterized by
different attributes like phase shift, attenuation, and delay. At the receiver, all the
signals from these paths superpose either in a constructive or a destructive manner
resulting in peaks or deep fades in the channel envelop as illustrated in Figure 3.1;
a phenomenon generally known as fading. It can be classified into three categories

based on the time scale of variation:

Path-loss is the attenuation in signal power with distance that an electromagnetic
wave experiences as it propagates through space. It is typically characterized by em-
pirical methods, collectively known as radio wave propagation models, for example,
the Okumura-Hata model [Sey05].

Slow fading, also called large-scale fading, is generally caused by the shadowing
effects of a large obstruction on the main signal path, resulting in the signal power to
vary slowly around the mean which is often modeled using a log-normal distribution
[TVO05].

Fast fading, also known as small-scale fading, usually stems from the movement
of the transmitter, receiver and/or the scattering sources within the multipath en-
vironment and imposes fast changes in the amplitude and phase of the transmitted
signal. It is the most challenging to deal with and proper system design is required

to cater for it or preferably take advantage of it, for example, using time diversity.

3.2.1.1 Doppler Spread and Coherence Time

The relative motion between the base station and the UE and/or the movement
of the scattering objects in the channel, induce a time-varying characteristic to
the channel which can be described by two parameters called Doppler spread and
coherence time.

In a multipath environment, if a pure sinusoidal tone of frequency fo is trans-
mitted, then there will be frequency components in the received signal spectrum,
known as the Doppler spectrum ®,(fp), ranging from fo — fpmax t0 fo + fD.max
where fp max is the maximum Doppler shift. The term fp is a function of the rel-
ative velocity of the UE, and the angle between the direction of its movement and
the direction of arrival of the scattered waves. Based on the value of fp, a broad-

ening of the received spectrum occurs which is quantified by the Root Mean Square
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CTF [dB]

Figure 3.1: A general illustration of the effect of multipath fading. The blue rectangle rep-
resents a User Equipment (UE) and the example is generated using the IlmProp channel
modeling tool.

(RMS) Doppler spread (fp)rums. It is defined as the range of frequencies over which

the received Doppler spectrum is essentially non-zero [Skl01],

I (fo = fo)2@u(fp)d s
(fo)rms = | == (3.1)
J @, (fp)dfp

where fp is the mean Doppler shift defined as,

T fou(fo)dfo
fo ="
[ ®u(fo)dfp

(3.2)

The Coherence time (At)c, which is a statistical measure of the time duration
over which the Channel Impulse Response (CIR) is essentially invariant, enables
the time domain characterization of the time-varying nature of the frequency dis-
persiveness of the wireless channel [Rap96]. The implication is that two signals
arriving with a greater time separation than (At)s would be affected differently by
the channel. Coherence time is the time domain dual of the RMS Doppler spread
and is inversely proportional to it,

(At)e o (3.3)

(fD)RMS
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If the bandwidth of the baseband signal exceeds the maximum Doppler spectrum
(Bp), the effects of Doppler spread at the receiver are negligible. Hence, the channel
is characterized as a slow fading channel. On the contrary, if the coherence time of
the channel is shorter than the reciprocal bandwidth of the baseband signal, then
during the transmission of the signal, the channel will change causing distortion at

the receiver. Hence, the channel is characterized as a fast fading channel.

3.2.1.2 Delay spread and Coherence Bandwidth

The time dispersive nature of the wireless channel is described by the Delay spread
and the coherence bandwidth. The delay spread is a measure of the multipath
richness of a communications channel and can be understood as the difference in
the arrival time of the significant earliest and the latest multipath components. It
has a profound effect on the Inter-Symbol Interference (IST) and is usually quantified
in terms of the RMS delay spread. To calculate RMS delay spread, we first need to
determine the mean excess delay 7, which is given as the first moment of the power
delay profile ¢ (7) [TVO05],
TT(,Oh(T)dT
=0 (3.4)
({ op(T)dr

The second moment of the mean excess delay is given as,
[ T2on(T)dr
0

]

[ on(r)dr
0

T2 =

(3.5)

The RMS delay spread is defined as the second central moment of the power delay
profile,

[ (r = 7)2pn(r)dr
TRvs = | s (3.6)
({g@h(T)dT

= - (72 (3.7)

The coherence bandwidth (Af)c, is a statistical measure of the range of frequencies
over which two frequency components have a strong potential for amplitude cor-
relation. Hence, if the frequency separation between two sinusoids is greater than
(Af)c, they are distinctly affected by the channel. The coherence bandwidth is
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related to the RMS delay spread as,

1

TRMS

(Af)o o

(3.8)

Based on the coherence bandwidth, we can classify a wireless channel into the

following two categories:

Flat fading (narrowband): A channel can be qualified as flat, if it passes all the
spectral components with roughly an equal gain and a linear phase. This means
that the coherence bandwidth of the channel exceeds the transmission bandwidth

of the signal.

Frequency-selective fading (wideband): In a frequency-selective channel, the
different spectral components encounter uncorrelated fading. In this case, the co-
herence bandwidth of the channel is smaller than the transmission bandwidth of

the signal.

3.3 Representation of the Channel

In the previous section, we have discussed the various types of fading inherent in
wireless channels. In this section, we will present an introduction to the modeling
of a wireless channel in a future 5G system. As the system incorporates multiple
antennas at both ends, employs multi-carrier transmission schemes, multiple polar-
izations and elevation tilts, the dimensionality of the channel increases accordingly.

We have elaborated the proper representation and dimension of this channel.

3.3.1 Multiple-Input and Multiple-Output

MIMO has become an essential part of current and future cellular networks. In a
traditional sense, MIMO translates to a provisioning of multiple antennas at both
the transmitter and the receiver, for example, point-to-point or Single-User MIMO
(SU-MIMO). However, in a modern usage the term MIMO can be used for all the
techniques that simultaneously support multiple data streams over the same radio
channel, for example, like Multi-User MIMO (MU-MIMO) and COoperative MIMO
(CO-MIMO).

Consider that we have, in the downlink of a Frequency Division Duplex (FDD)
system, Mr antennas at the base station and Mg antennas at the UE, in the case of
SU-MIMO or Mpg single-antenna UEs in the case of MU-MIMO. The time-varying
MIMO channel can then be represented by an Mg x Mr matrix Hy(¢, 7), which is
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Figure 3.2: An illustration of the first set of Bello functions.

defined as,
hll(T, t) h12(7', t) . thT (T, t)
hor(T,t)  hao(T,t) ... h t
M) = | 1200 0 han (0 (3.9)
hMRl(Tyt) hgl(T,t) hMRMT(Tat)

where each entry A, m, (T, t) denotes the time-variant CIR between the mpg™ receive
and my™ transmit antennas. It quantifies the attenuation and phase shift induced

by the wireless channel in the signal that arrives at the receiver with a delay 7,

Ny,

P (T3 8) = D 0, (0)0(T — 7)) (3.10)

np=1

where o, and 7,,, denote the complex amplitude and delay associated with the n Lt

path respectively. Note that we will mostly consider downlink transmission unless
stated otherwise but we will drop the subscript d from now on for ease of notation.
Utilizing the channel matrix, the overall MIMO system can now be modeled by the

received signal as,
¥(t) = [ H(r,0)x(t = 7)dr +n(t (3.11)

where x = [21(t) ... zp,.(t)]" is the transmit signal vector and n(t) is a vector
modeling the effect of Additive White Gaussian Noise (AWGN) and interference.
If we assume that the bandwidth of the transmitted signal is narrower than the
coherence bandwidth, then the channel frequency response can be considered flat
across frequency. The channel frequency response can be computed through a

Fourier transform of the CIR as they are Fourier transform pairs with respect to the
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delay variable 7 according to the first set of Bello functions! as shown in Figure 3.2
[Bel64]. This leads to a discrete-time description of the MIMO system corresponding
to Equation (3.11), given as,

y=Hx+n (3.12)

H(tp) h(zt)
60
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Figure 3.3: An example of the various equivalent representations of the time-varying chan-
nel through Bello functions. The channel corresponds to the IlmProp scenario depicted
in Figure 3.5 with a central frequency of 2.6 GHz and 20 MHz bandwidth.

3.3.2 Polarization

Current cellular networks, like Fourth Generation (4G) Long Term Evolution (LTE)
systems, use antennas at the base station which are usually dual polarized. Polariza-
tion specifies the geometrical orientation of the electric field emitted by the antenna
in the far field. The benefit of dual polarization, in addition to the spatial multiplex-
ing gain provided by MIMO, is polarized multiplexing which can provide further
improvements in spectral efficiency or transmit diversity.

For a single polarization, the equations in the previous section would hold, but
for dual polarization, each antenna housing contains two antennas ports which com-
prise an antenna element, one using vertical polarization (v) and the other horizon-

tal polarization (h). In this case, a,, in equation (3.10) is replaced by a 2 x 2

!Bello system functions allow the characterization of a linear time-variant function through
four equivalent descriptions. An example of these descriptions for an IlmProp channel is provided
in Figure 3.3.
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polarimetric weight matrix,

oy ozZLh
ny, nr

This signifies that each entry in the matrix Hy(7,t) in equation (3.9) is replaced
by a polarimetric sub-matrix resulting in an increase in the total number of antennas

and consequently the size of the matrix.

3.3.3 Orthogonal Frequency Division Multiplexing

It has been established that 5G systems will use some form of multi-carrier trans-
mission and new schemes are under consideration like, for example, Filter Bank
Multi-Carrier (FBMC) [PM16, PNCZ"16]. However, the potential benefits and
practical impairments of these schemes are still under investigation. Hence, in this
thesis, we will consider one of the most widely used multi-carrier schemes called
Orthogonal Frequency Division Multiplexing (OFDM) [NP00, LHKK15].

OFDM is a subset of Frequency Division Multiplexing (FDM) in which a single
wideband channel comprises numerous densely-packed and overlapping narrowband
sub-channels. These sub-channels, also called sub-carriers, are orthogonal to each
other and are used to carry parallel data streams without interfering with each
other. The individual sub-carriers are usually modulated through a conventional
modulation scheme like Quadrature Amplitude Modulation (QAM). OFDM pro-

vides several advantages over single-carrier schemes:

e It can cope with severe channel conditions like frequency-selective fading and
narrowband interference without complex time-domain equalization filters.
It simplifies channel equalization by dealing with numerous slow modulated
narrowband sub-channels where each can be expressed as a scalar complex

gain, instead of a fast modulated wideband channel.

e Due to the orthogonal nature of the sub-carriers and insertion of guard inter-

val, it is robust against ISI.

e [t exhibits a low sensitivity to time synchronization errors and can be imple-

mented efficiently utilizing Fast Fourier Transform (FFT).

e OFDM facilitates link adaptation in multi-user systems by permitting the
division of the radio resource into small time-frequency resource blocks. These
blocks can use separate link adaptation parameters and can be allocated to

different users.

The drawbacks of OFDM are its high sensitivity to frequency offsets and Doppler
shifts, high Peak-to-Average-Power Ratio (PAPR), efficiency loss caused by the
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insertion of cyclic prefix, and the requirement of a relatively complex receiver ar-
chitecture.

To describe the OFDM channel, we start with the description of the single
antenna case, i.e., Single-Input and Single-Output (SISO). The data stream to be
transmitted is mapped onto symbols from a known constellation, and generally
additional measures like encoding and interleaving are also taken for robustness
against errors. These symbols are then partitioned into frequency domain vectors
x g of length Ng¢ so that each element in the vector corresponds to one OFDM sub-
channel. The subscript B indicates that the full bandwidth of the Ngg sub-carriers
is being considered here. The Inverse Fast Fourier Transform (IFFT) is used to
convert each vector xp into a vector Fi'xpz of length N, where F is the Ngc x Ngc

Fourier matrix, given as,

Fla,b] = b e2mab/Nsc. ¢ h=0,1,..., Ngc — 1 (3.14)
Nsc

which implies that FF! = Iy, .. For transmission, a cyclic prefiz is appended to
the signal, the length of which is set to surpass the maximum expected delay spread
of the channel. It is then transformed by a digital-to-analog converter into a time
domain analog signal which modulates the carrier. For reception, an analog-to-
digital converter brings the noisy and distorted signal back into the digital domain,
and the cyclic prefix is removed. If the baseband CIR of length Ny is represented by
g, then the received signal vector in time domain can be represented (by omitting

the time index for simplicity) as [Arol1],

yi = circ([g"  Oix(nge—np))F'x5 + 1 (3.15)

where n is the AWGN vector with covariance matrix o2y, and considering a vector

a=[aga ...a,_1], the circ(-) operator is defined as,

ap a; ... QAp—1
Ay — a v Qp—
cire(a) = |~ T (3.16)
aq as ... Qo

Hence, circ(a) is a square circulant matrix with a as its first row and its eigenvalue

decomposition is given as,

circ(a) = Fdiag(y/ NscFa)F (3.17)
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Therefore, we can apply the FFT to get the frequency domain received signal,

vy = Fy,
= F(circ([gT OlX(NSC,NL)])FHxB +n)
= FF" diag(hp) FFxp + Fn (3.18)
= diag(hp)xp + zp (3.19)
= diag(xp)hp + zp (3.20)

where hp = /NscF(cire([g"  O1x(ngo—np)]), is the channel frequency response or
Channel Transfer Function (CTF) for the Ng¢ sub-channels, and zgp = Fn is the
noise vector in the frequency domain with a covariance matrix o2Iy,.

Now we extend the OFDM system description to MIMO systems, commonly
known as MIMO-OFDM, it is a popular transmission scheme for multi-user systems.
Consider we have My single-antenna users in a multi-user scenario communicating
with a base station with Mp antenna elements. The transmission and reception
chains contain the same constituting blocks and steps as described for the SISO
case. As the UEs are separated appropriately from each other, their channels fade
independently. Hence, in the context of channel prediction or estimation, we can
observe only a single user without any loss of generality leading to a Multiple-Input
and Single-Output (MISO) system description. Thus, the received MISO signal for

My transmit antennas is given as,

Mr
YBMISO = D diag(xg”T))hg”T) +zp (3.21)

mT:1

If we horizontally stack the transmitted symbol matrices for all the individual trans-

mit antenna elements into the following matrix,

Xp = x4 x2 . x (M) (3.22)
and the channels into a column vector hp yiso = [(hg))T (hggMT))T]T, we can

represent, the received signal in matrix form as,

yB,miso = Xghp wiso + zp (3.23)

Our focus is on pilot-based channel prediction schemes, so we assume Pilot Sym-
bol Assisted Modulation (PSAM) [NESB97,Cav91]. The known reference signals or
pilots are regularly placed into the time-frequency grid along with the data symbols
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Frequency

- - Reference Signal

Data Signal

Figure 3.4: A generic representation, inspired from the reference signal placement in LTE,
of the time-frequency grid in OFDM systems.

Time =—————p

as shown in Figure 3.4. The channel prediction scheme then observes and oper-
ates on this pilot grid only and the channel estimates for all the other locations
are obtained through interpolation or extrapolation. To extract the pilot symbols
from the received signal yp miso spanning the complete bandwidth, we introduce
a Nrs X Nsc extraction matriz E which upon multiplication with a vector of size
Ngc x 1, extracts the appropriate Nrg reference signal containing Resource Elements

(REs) at a time. If we denote the set of indices for the reference signal subset as

R ={xo,...,xNus—1}, the extraction matrix contains Ngg ones,
1 0 <a < Ngs
:E]{a7 xa] = (324)
0 Otherwise

An example of the extraction matrix for a small number of sub-carriers (for the pur-
pose of illustration), Nsc = 10, the reference signals, Ngs = 4, and R = {4,6,7,9}

is as follows,

(3.25)

o O O
o O O O

o O O
o O O =
o O O O
o O = O
S = O O
o O O O
_ o O O
o O O O

0 0

It is important to note that the extraction matrix E corresponds to a single time
slot containing reference signals. For such an upcoming time slot, we would need
another matrix E with ones in the appropriate positions for that time slot. The

extraction matrix has the following properties [Aroll]:
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1. Considering an Ngc x 1 vector a, the operation E diag(a) E' produces a
Ngs x Ngg diagonal matrix with elements taken from a which correspond to

the indices in R.

2. EE is an Ngc x Ngc diagonal matrix with ones at the " diagonal entries

and zeros otherwise.

3. Right multiplication with E!E nulls out the columns of a matrix A in a way

that AEYE is all zeros except for the columns which contain a 1 in EFE.

4. Tt holds that Ediag(a) = Ediag(a) E!E as the non-zero columns of the matrix
E diag(a) already correspond to the indices in R.

To obtain the measurement signal y corresponding to the Nrg pilot sub-carriers,

we multiply equation (3.21) by E:

y = Eyp wmiso

Mt
= > {(E diag(x\%"™)) h'™) 4 Bz (from Equation 3.21)
mT:1
Mt
= > {E diag(xgnT)) EH)(Eh%nT)) + z(m1)} (from the last property of E)
mT:1
Mt
= Z {diag(x(mT))h(mT) + Z(mT)}
mT:1
(h(l)) (z(l))
(h(MT)) (Z(MT))
— Xh+tz (3.26)

where X is the block diagonal pilot matriz which holds known orthogonal reference
signals, h is a column vector containing the corresponding channel coefficients which

we need to estimate and z is the corresponding noise vector.

3.3.4 Tensor Channel of 5G IMF-A

To specify the dimensions of the downlink channel in the IMF-A employing Joint
Transmission Coordinated MultiPoint (JT-CoMP) and MU-MIMO, let us consider
a cooperation area comprising N¢ cells where each cell has My transmit antenna
elements, Np polarizations per antenna element!, Ng elevation tilts?, Ngc OFDM

sub-carriers, and Ny OFDM symbols. Then, the overall channel as seen by Mg

!Typically cross-polarized antennas are used with a +45° orientation leading to Np = 2 as
discussed in Section 3.3.2
2The first implementation of 5G IMF-A is targeting two elevation angles as shown in Figure 2.6
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single-antenna UEs in the IMF-A framework can be represented by a tensor of

order seven,
H € CNexNpxNgxMpxMpxNscxNe (3.27)

It is evident that performing prediction on this complete tensor channel is a mon-
umental task. To carry out efficient prediction, we need to reduce the order and
dimensions of the channel tensor. The first step in this direction is provided by the
5G IMF-A framework, as it condenses the large number of transmit antennas My
into a manageable number of grid of beams Mq.g. In addition, the grid of beams in
the azimuth and elevation dimension can be regarded together with a correspond-
ing assignment of antenna ports to each beam, hence eliminating the need for the

elevation tilt dimension. This results in a 6" order channel tensor,

H € CNexNpxMgopxMpxNscxNi (3.28)

The channel prediction algorithms exploit correlations present in the various di-
mensions to predict the channel in the future because we cannot infer anything
about the channel in a dimension where there is no correlation as the past is in-
dependent of the future. Hence, further dimensionality reduction can be achieved
by individually predicting the channels for dimensions with little to no correlation.
The cells belonging to separate sites exhibit almost no correlation because they are
segregated by large distances in an urban scenario. Even the cells that belong to a
single site might exhibit little correlation because they are usually radiating towards
different directions with a distinct set of scatterers. Moreover, there is usually little
correlation between the polarizations and in a MU-MIMO scenario, the users that
are typically randomly distributed within the cooperation area, experience uncorre-
lated channels. Hence, we can consider only a single user at a time. This also holds
in the case of SU-MIMO with a single user having Mg antennas elements, as UE-
sided beamforming can be employed which reduces the My dimension to 1 as the
individual channels for the UE antennas are replaced by the effective beamformed
channel. In addition, we only need to consider the Nrg sub-carriers corresponding
to reference signals as we perform pilot-aided channel prediction. Hence, for a par-
ticular cell ng, a certain polarization np, and a single effective receive antenna mg,

the channel tensor has now only order 3,

H € CMaonxNrsxNe (3.29)
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3.4 Channel Modeling Approaches and Tools

Channel modeling, in a strict sense, is a term which stands for the modeling of the
CIR [Del07]. However, in a wider sense, it denotes the modeling of all the physical
processes that effect a signal on its way, from the transmitter to the receiver. The
motivation to develop accurate channel models is to better understand the effect
of parameters such as carrier frequency, bandwidth, delay and Doppler spread, and
speed of the UE on the wireless channels. It also has the following objectives from

a communications research and development standpoint:

e enables better comprehension of the physics of wireless systems which is cru-

cial to efficiently design upcoming communications schemes,

e allows us to evaluate the performance of a potential scheme in a realistic

environment, and
e it provides a standard arena to compare two or more schemes.

Modeling of SISO systems is fairly easy as it is sufficient to consider just the
fading statistics of the channel. This can be achieved by considering Doppler shifts
and power-level distributions and the resulting channels are quite realistic with
respect to these characteristics. In contrast, modeling MIMO systems is not that
trivial as they incorporate the spatial dimension which leads to the consideration of
additional parameters like the angles of arrival and departure, and arbitrary antenna
geometries. As we are interested in MIMO or MIMO-OFDM prediction schemes
is this thesis, we will discuss modeling schemes and tools for single or multi-user
time-variant frequency-selective wideband MIMO channels.

The general categorization of channel models is a complicated undertaking as
there are a huge number of channel models which typically employ the same mod-
eling principle and differ only in the finer details. One way to classify channel
models is to distinguish between them based on the potential applications of the
synthetic channels like, for example, link-level or system-level channel modeling. An
alternative categorization can be based on the modeling principle like, for example,
stochastic channel models, geometry-based channel models and directional channel

models.

3.4.1 Geometry-based Channel Models

Geometry-based channel models, also known as deterministic channel models, use
the underlying physical phenomenon governing wireless propagation to model the
channel. This modeling approach, is site dependent and suitable for link-level simu-
lations, as it takes into consideration all the geomorphological features of a propaga-

tion environment. This requires momentous effort as the electromagnetic properties

47



3. WIRELESS MIMO-OFDM CHANNEL MODELS

and position of everything affecting propagation have to be known. The interac-
tion between the electromagnetic waves and the propagation environment can be

modeled in two ways:

The full-wave approach: This approach directly applies Maxwell’s equations, in
either differential or integral form, as they can, in combination with electromag-
netic boundary conditions, provide a measurement of the field strength at all points
and times. A brute force method can solve either formulation of Maxwell’s equa-
tions, or the well-known Method of Moments (MoM) can be used for the integral
formulation. Alternatively, methods like the Finite Element Method (FEM) and
Finite Difference Time Domain (FDTD) method can be used to solve the differen-
tial formulation. The accuracy of all these methods is remarkable but comes at the
expense of exorbitant computational requirements in most environments. Hence, a
more practical approach is to employ approximations to Maxwell’s equations as a

basis for solution.

The Geometrical Theory of Diffraction (GTD): This approach approximates
the planar electromagnetic waves as rays that follow Snell’s laws for reflection and
transmission, and, in addition, might also allow the appropriate inclusion of diffrac-
tion and diffuse scattering [Kel62, BK94]. Thus, GTD-based models are commonly
referred to as ray-tracing models. These models become more accurate for higher
frequencies and for environmental objects much larger than the wavelength. This
is in accordance with the Rayleigh criterion which allows us to distinguish between

smooth and rough reflecting surfaces and is given as,

A

A < 8 - cos(1))

(3.30)
where Agq is the standard deviation of the roughness height to a reference height
and 1 is the angle of incidence. A smooth surface will lead to specular reflection
whereas a rough surface will lead to diffuse scattering which is the most challenging

phenomenon to describe appropriately.

There are several ray-tracing based channel models available in literature like
[vDH94,FPK*06,dJH99, KGW*14], but in this work, we will consider two modeling
tools that we will use later in our experiments and simulations, namely IlmProp and
WinProp.

3.4.1.1 IlmProp Channel Model

IlmProp is a geometry-based channel modeling tool for wireless communications

developed at the Communications Research Laboratory of TU Ilmenau [Del07,
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DHS03]. ImProp exhibits the beneficial properties of both ray-tracers and hy-
brid or directional channel models. It approximates the propagation as a sum of
rays, like hybrid channel models but extensively models the physical environment
by specifically defining the complete trajectories of the multipath components and
by an accurate modeling of the 3-Dimensional (3D) polarimetric antenna radiation
patterns. However, unlike traditional ray-tracers, it does not require the electromag-
netic properties of all the physical objects currently in the environment. IlmProp
can be used both in a measurements-based approach and in a non-measurements-
based approach but we are interested in the latter approach as for measurements,
we use WinProp as explained in Section 3.4.1.2. This allows us to arbitrarily de-
fine parameters to generate channels which optimally help us to investigate the

performance of particular schemes in various scenarios.

N
LOS path-.

NLOS paths’- . \ ~ )

Figure 3.5: An urban macro propagation scenario generated with the IlmProp

IlmProp assumes an uplink channel with the base station as the receiver, and
the UE or UEs as the transmitter(s). However, we can use the computed CIR for
the downlink as well since wireless links are, in general, reciprocal [Kin63]. As an
example, Figure 3.5 depicts a simple urban macro scenario where the UE is moving
away from the base station. There are four buildings in the transmission path with
a total of 280 scatters. The UE also sees a direct path from the transmitter. The
parameters (delay spread, Doppler spread, etc.) of the channels created with the
IlmProp are fairly close to real channel parameters in the corresponding scenario.

The benefit of IlmProp is that we can define all the simulation parameters like
the number of antenna elements at both the base station and the UE, OFDM
simulation parameters, bandwidth, time sampling frequency, and center frequency
of the system differently. Thereby, we can modify one or two parameters and analyze
their effect on the performance of our prospective schemes. This gives us a lot of

flexibility to rigorously test our schemes in practical situations.
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3.4.1.2 WinProp Channel Model and Measured Channel

WinProp - Propagation Modeling, is a simulation tool which is now a part of the
FEKO software suite by Altair HyperWorks [Win13]. WinProp is a ray-tracer that
provides accurate empirical propagation models for both indoor and outdoor macro
scenarios. It includes rigorous 3D ray-tracing models capable of predicting the path
loss, delay and angular spread. Moreover, the directional CIR, angular profile and
propagation paths can be computed for both Line-Of-Sight (LOS) and Non-Line-
Of-Sight (NLOS) cases.

Base
Station

™ Terminal
= i
0

T

(a) Google Maps picture of Nokia (b) WinProp model of Nokia Campus
Campus in Munich in Munich

[ f=
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Figure 3.6: A comparison of the map of Nokia campus and its simplified model used in
WinProp

In this thesis, we use WinProp to produce ray-traced channels for a single site
macro scenario at the Nokia campus in Munich as shown in Figure 3.6b. We assume
a base station at a height of 30 meters, equipped with an Uniform Linear Array
(ULA) of 16 standard Kathrein antennas capable of forming narrow beams with a
roughly 2° Half-Power BeamWidth (HPBW). The central frequency of the system
fc is 2.6 GHz and the system bandwidth is 20 MHz. The UE moves in a straight
line away from the base station, at an approximate distance of 300 m and at a height

of 2.1 m, with a 1 cm resolution, resulting in a total of 50 locations (represented
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by the red rectangle in Figure 3.6b). For each of these receiver locations within
the propagation environment, WinProp computes trajectories and path-strengths

for all multipath components as shown in Figure 3.7.

Figure 3.7: A depiction of the trajectories and last interaction points of rays arriving at
one UE location.

A benefit of using WinProp with a model of the Nokia campus is that we have
real-world measurements available, for the same scenario, but for a single antenna
BS and UE. This allows us to validate the channels produced by WinProp and to
test the real-world performance of our schemes and algorithms. In WinProp, we can
add more BS antennas to simulate massive MIMO or we can define different move-
ment resolutions and locations for the UEs to evaluate the NLOS conditions and
efficiency of beamforming algorithms. This is not possible with measurements alone,
as acquiring channel measurements is a time consuming and expensive process.

A comparison of the measured and ray-traced CIR produced by WinProp is given
in Figure 3.8. The channels generated by the ray-tracer exhibit similar characteris-
tics as compared to the real measurements which shows the capability of WinProp
to model real-world scenarios. However, differences are often present in modeled
channels as compared to their corresponding measured channels, for example, in
this case the measurements exhibit far more variations. The main contributing

factors leading to this difference are important to understand. They are typically
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Figure 3.8: A comparison of the CIR of the measured and ray-traced channels.

the death and birth of multipath components, diffuse scatterers in the environment
which are usually not modeled by the ray-tracers, or the extremely high number of
multipath components comprising a typical outdoor channel component. Another
important fact to consider is that ray-tracing is computationally complex, hence
some trade-offs have to be made to lower the complexity like limiting the number of
reflections and diffractions for all multipath components. Also, it is hard to develop
accurate models which perfectly represent the environment. Some slight ray-tracing

model simplifications are inevitable as shown in the comparison in Figure 3.6.
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Figure 3.9: A comparison of the singular values of CIR and CTF of the measured channel
revealing the underlying low-rank structure in both domains.

It is interesting to check whether the same measured channel exhibits a low-rank
structure. This can be accomplished through a matrix Singular Value Decomposi-
tion (SVD). The normalized singular values of the channel in both time domain and
frequency domain are plotted in Figure 3.9. We can observe that it does indeed have
an underlying low-rank structure in both domains. For an exemplary threshold of
—20 dB, we can see that in both cases the number of significant singular values
is reduced by a factor of two. This can help us to remove noise from the channel

measurements and leads to a much smoother CIR or CTF. For this reason, we have
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developed a Higher Order Singular Value Decomposition (HOSVD)-based denois-
ing scheme, detailed in Section 4.5, which additionally takes the multi-dimensional
structure of the massive MIMO channel into account to mitigate the effect of noise

on the channel, prior to prediction with a state-of-the-art scheme.

3.5 Summary

In this chapter, we have discussed the underlying phenomena that govern the time-
varying and frequency-selective nature of the wireless channel. We have also ex-
plored the overall dimension of a massive MIMO channel in a 5G setting and pre-
sented ways to properly represent it mathematically. In the latter part of the
chapter, we discuss the various ways in which a wireless channel can be modeled
and explicitly investigate ray-tracing based methods as they can provide a channel
model which is almost identical to a measured channel in the same scenario, pro-
vided that an accurate model of the environment is available. The two ray-tracing
tools considered and used in this thesis are the IlmProp and WinProp because both

of them have their respective merits and benefits for different types of analysis.
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Chapter 4

Channel Prediction Schemes
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4. CHANNEL PREDICTION SCHEMES

Chapter Summary

This chapter is dedicated to channel prediction, one of the main enablers of co-
operative communications in 5G. In this chapter, we have provided a survey of
channel prediction schemes in Section 4.2. Afterwards, we explore two state-of-the-
art channel prediction schemes: Kalman-based channel prediction in Section 4.3
and a tensor-based prediction scheme in Section 4.4. Finally, we have detailed our
novel channel prediction scheme in Section 4.5 which combines the benefits of both
previously discussed schemes to a provide better prediction performance especially
for channels received with poor Signal-to-Noise Ratio (SNR). This HOSVD-based
denoising scheme has been published in [AZH17].

4.1 Introduction

Channel estimation and prediction schemes have been investigated and improved
for a long time as they are an essential component of most practical communica-
tions systems and particularly of Multi-User MIMO (MU-MIMO) systems [LCS98,
LCG*12]. For downlink transmission, in order to successfully decode the transmit
signal at the User Equipment (UE), an accurate channel estimate is required. In
addition, capacity or spectral efficiency gains are achieved through strong spatial
multiplexing which requires an accurate knowledge of Channel State Information at
the Transmitter (CSIT) for all UEs especially in Frequency Division Duplex (FDD)
systems where channel reciprocity is not present. In such systems, the Channel
State Information (CSI) is estimated at the receiver and then fed back to the trans-
mitter. In practical systems, the CSIT is usually imperfect due to mobility and the
corresponding out-dating or aging of the channel, which implies a mismatch between
the actual and fed-back radio channels due to feedback delay [TOKM11]. This is
where channel prediction comes into play as it can efficiently combat feedback delays
for uplink reporting and therefore has been identified as one of the main enablers for
Coordinated MultiPoint (CoMP) and massive MIMO [BA15]. Furthermore, large
prediction horizons are a means for less frequent reports and a correspondingly
low reporting overhead [TH13], or for improved power control, Multiple-Input and
Multiple-Output (MIMO) precoding, multi-user scheduling, and adaptive modula-
tion [AS14].

4.2 A Survey of Channel Prediction Schemes

Several criteria can be used to classify channel prediction schemes as discussed in

the following.
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The dimensionality of the channel being predicted. The channel could be a
Single-Input and Single-Output (SISO) channel or a MIMO channel. Channel pre-
diction of SISO channels, especially ones experiencing flat fading, has been studied
extensively in the past. It is usually implemented by modeling the time varia-
tion in either the channel impulse response h(7,t) or the channel transfer function
H(f,t) (which are interchangeable representations as governed by the Bello func-
tions shown in Figure 3.2), as an AutoRegressive (AR) process of a certain order.
This approach has been followed in [CV09,SAE03,DH07,DHHHO00b,3GP17,Ekm02,
HKM10, HKM10, HK07, LS08, HW98, OHHO04]. The future state of the channel is
then predicted using past estimates by employing a linear predictor that minimizes
the Mean Square Error (MSE).

A question now arises on the motivation behind the extensive use of predictors
based on AR models. To answer this, we assume the plane wave approximation
which typically holds for macro scenarios. Under such an approximation, a distant
cluster of reflectors or scatterers can be modeled as a damped complex sinusoid
which, in turn for exponential damping as is the case for a distant Cauchy cluster,
can be modeled as a stochastic AR1 process [Ekm02]. Thus, for channels with a
single cluster of reflectors or scatterers, an AR1 process is a good approximation of
the channel dynamics. However, in order to describe the contributions from many
clusters, the AR1 processes can be summed up which leads to an Auto Regressive
Moving Average (ARMA) process. But, when the poles of such an ARMA model lie
near the unit circle, an AR model can render a good approximation to the dynamics
of, for example, a fading channel tap. This is advantageous as it is typically harder

to estimate zeros as compared to the poles [Ekm02].

Most MIMO channel prediction schemes adapt these SISO channel prediction schemes
as well by individually applying these algorithms to each of the MIMO links. This
is not an effective solution as correlation is typically present between the antenna
elements at the transmitter or the receiver, which in this case hampers performance
but can be exploited for a performance gain in a properly designed MIMO channel

prediction scheme.

The availability of reference signals at the receiver. In the case of channel
estimation, we can distinguish between blind or pilot-based schemes based on the
availability of reference signals. Blind channel estimation schemes typically fall un-
der the umbrella of non-coherent detection, meaning that the phase information is
not available at the receiver. An equalization filter is inferred from the received
signal which is the inverse of the Channel Impulse Response (CIR), rather than the
estimation of the CIR itself [SHP07, MDCDO02]. When it comes to channel predic-

tion, we cannot do it in a similar fashion. Hence, current systems like Long Term
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Evolution (LTE) and Long Term Evolution - Advanced (LTE-A) employ coherent
detection and it is strongly believed that the Fifth Generation (5G) systems would
also employ some form of coherent detection. In pilot-based estimation and predic-
tion, the channel is observed through pilots or reference signals which are located

on fixed positions in the time-frequency grid and are known to the receiver.

The type of correlation that is exploited to infer the past information to
predict the future channel. In pilot-based prediction schemes, the information
contained in the reference signals is available to the UE until the current time instant
t. This information about the channel is usually in the form of correlations between
the past channel samples [BG06]. This correlation could be in the time domain,
frequency domain and/or in the spatial domain. Thus, we can further classify the
pilot-based channel prediction schemes by distinguishing them based on the type of

correlation that is exploited to predict the channel.

Most SISO channel prediction schemes assume the channel to be a stochastic Wide
Sense Stationary (WSS) process in time and just consider correlation in the time
domain by using the temporal AutoCorrelation Function (ACF). In practical sys-
tems, the ACF might be time-varying, calling for adaptive filtering schemes to
track the temporal evolution. Examples of such methods are Recursive Least
Squares (RLS) [DH07, MVK95], Least Mean Squares (LMS) [WC97, KAKS87] and
the Kalman filter [KAKS87].

This concept is typically extended to MIMO and even MIMO-Orthogonal Frequency
Division Multiplexing (OFDM) channel prediction schemes by treating each antenna
pair and also each sub-carrier as independent SISO channels and exploiting the
temporal statistics for prediction [ZJCZ08, KP108, MCCKO07, Arol1]. Such a direct
application of SISO schemes does not take advantage of the spatial correlations
present in the MIMO channels, which when exploited correctly, provides potential
gains as proposed in [SS06]. The authors used an AR model to predict a beamspace
transformed CSI and then performed an inverse transformation on the predicted
CSI which reduces the effective number of rays comprising the channel, leading to

improved prediction performance.

Another approach is to perform a 2-step prediction as proposed by [WEO06] for
MIMO and extended by [LFYH14] to MIMO-OFDM, which utilizes Minimum Mean
Square Error (MMSE) filtering, both in the time-domain and in the spatial domain,
to exploit the spatio-temporal characteristics of the channel for a better prediction

performance.

The type of fading experienced by the channel. In practical systems, many
of the UEs are mobile and thus experience fast fading, which can be further cat-

egorized into flat or frequency-selective fading. Flat fading channels are rela-
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tively easy to predict as the channel does not vary a lot across the sub-carriers
and even the same AR model can be used to model the neighboring sub-carriers
[DHHHOOb, HKM10, HK07]. Things become more challenging when considering
frequency-selective channels as the channel can vary significantly from one sub-
carrier to the next and needs to be modeled accordingly. OFDM transmission plays
a beneficial role in this respect as it divides the frequency-selective wideband channel

into several flat narrowband channels which can be predicted with ease [Aroll].

The way in which CSI is assumed to be available at the receiver. The
current and past knowledge about the CSI is utilized by prediction schemes, in the
form of a model which captures the dynamics of the fading channel, to predict the
future CSI. The mainly used ways to model the channel lead to two broad categories
of prediction schemes: parametric-model based prediction and channel frequency

response based prediction.

In parametric-model based schemes, the channel is modeled utilizing a set of param-
eters which characterize the channel response, typically like the number of paths,
path gains and path delays [YLCCO1]. Other parameters like the Angle of Arrival
(AoA) and Angle of Departure (AoD), which can be expressed in terms of azimuth
and/or elevation, can also be included to make the model more comprehensive. The
current or future channel response can be reconstructed in the receiver by estimat-
ing or forecasting these parameters. Intuitively, parametric-model based schemes
appear to be the ideal channel prediction approaches as they model the underlying
parameters causing fading in the channel. If these parameters are known and vary
at a slower rate than the actual channel itself, the channel can be reliably predicted

into the future.

To estimate the parameters, the first thing to determine is the number of paths,
which can be achieved through several available criteria for model order selection
[Hay96]. Secondly, under the assumption of frequency domain reference signals,
estimating the path delays is equivalent to the estimation of AoA using an antenna
array [Swi98]. Hence, super-resolution spectral estimation methods, like Estimation
of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [RK89,HN98,
HRDO08] and MUltiple SIgnal Classifier (MUSIC) algorithm [Sch86], can perform
this function. Lastly, typical linear estimators can be employed to obtain the path
gains from the estimates of path delays. These methods have been applied in
the prediction of SISO channels in [VTR00, HW98, DXL01, AJJF99]. The SISO
parametric-model schemes have also been applied to predict MIMO channels in
[VS07] and to MU-MIMO channel in [SLCO08], although in these cases the spatial
structure of the channel is not utilized. Advanced methods utilizing the structure
of the MIMO channel have been proposed in [Che07] and [Adel5].
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The parametric-model based prediction schemes are typically suited to sparse chan-
nels comprised of a few dominant paths as in the case of millimeter Wave (mmWave).
In this case, the number of unknown parameters is less than the dimension of the
channel correlation matrix which is practically only possible in rural scenarios. This
is a serious drawback as most of the users are typically located in urban areas. In
addition, averaging over a long symbol sequence is required to obtain the correlation
matrix for the subspace-based parameter estimation schemes. This means that the
parametric-model based schemes might not be suitable for bursty communication
systems like LTE-A or 5G, especially for our target case of below 6 GHz. Hence, in

this thesis we will not pursue parametric-model based channel prediction schemes.

In channel frequency response based schemes, the channel is observed through ref-
erence signals and the schemes operate directly on the channel frequency response.
Two distinctions can be made based on the availability of statistical knowledge
about the channel frequency response. When no statistical information is available,
the channel frequency responses are treated as deterministic but unknown and can
be estimated through the Least Squares (LS) or Maximum-Likelihood (ML) meth-
ods. The drawback is that the performance is typically below average because of the
unavailability of channel knowledge. On the other hand, when the channel statistics
are known, Bayesian estimation and prediction schemes can be used, which treat
the channel frequency responses as random variables with known statistics. Such
schemes offer significant performance gains by properly exploiting this statistical
information. In this case, a linear MMSE predictor can be utilized to predict, for
example, SISO channels. The prediction of MIMO channels requires a special design

to capitalize on the spatial correlations.

Most of the common channel frequency response based schemes employ AutoRe-
gressive (AR) modeling to describe the statistical state of the channel frequency
response [SM97, KM81]. AR based schemes work under the assumption that a
weighted linear combination of the past estimates contains enough information to
provide a forecast of the channel frequency response in the future [DHHHOOD].
The AR coefficients are typically computed to minimize the MSE, which requires
the receiver to be cognizant of the AutoCorrelation Functions (ACFs) of the chan-
nel [DHO7], which are usually unknown and need to be estimated from the noisy
channel estimates. Several methods are available in the literature to estimate the
ACFs, for example, via a solution of the Yule-Walker equations [BB05], the Burg
method which typically provides the best performance [SMO05], and the covariance

and modified-covariance methods [SK03].

One of the major drawbacks of channel frequency response based, especially AR

based, schemes is that they suffer from the problem of error propagation which
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makes them unappealing for long-range channel prediction. The error propagation
problem stems from the fact that the AR model of a discrete channel is typically
formulated for a single-step prediction via linear extrapolation. When prediction
is performed more than one step ahead, the extrapolated channel samples at the

previous time instants are used, compounding the error terms.

Another shortcoming of these schemes is their high sensitivity to noise which even
makes short term prediction rather challenging [FC02]. The noise sensitivity is
typically minimized by oversampling the channel, basically boosting the Signal-to-
Noise Ratio (SNR). However, we have devised a scheme which utilizes subspace
processing to exploit the structure of the MIMO channel to suppress the noise prior

to prediction, as discussed in Section 4.5.

As one of the benchmarks to test the performance of the algorithms developed in
this thesis, we will mostly use a channel frequency response based scheme. This
scheme forms a state-space model of the channel knowledge through AR modeling,
which is then utilized by a Kalman filter to perform channel prediction, as proposed
by [Arol1]. This scheme has been essentially designed for Multiple-Input and Single-
Output (MISO)-OFDM systems and has been later extended further to MIMO-
OFDM and CoMP by [AS14].

4.3 Kalman Filter-based Prediction

Channel prediction is a complex process, especially for MIMO and massive MIMO
systems, as it needs to incorporate the maximum amount of information possible
for each of the antenna links between the transmitter and the receiver, and the
frequency sub-carriers, in the case of OFDM transmission. In addition, various
UEs experience different channel conditions based on their position and speed in
the environment. Hence, we need an algorithm which can take all the information
available about the channel ranging from fading statistics to pilot arrangements in
the time-frequency grid and provide a suitable filter to predict the MIMO channels.
All this can be achieved dead on by the Kalman filter, which is known to be the
best linear estimator given the input characteristics. It is also capable of providing
these estimates during the transient phase when these characteristics change [K*60].
Moreover, it provides a significant complexity reduction as compared to a Wiener
filter. Another benefit of using a Kalman filter for prediction is that it provides a
measure of uncertainty about the prediction estimate, which is data dependent and

directly corresponds to system performance.
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State Space Model for a Single Sub-carrier

To construct the state space model for the Kalman filter, we follow [Arol1] and begin
by modeling a single channel coefficient as an AR process. This channel coefficient
can either be a tap in an impulse response h(7,t) or the complex-valued channel
H(fy,t) for a single pilot sub-carrier fi, but we will only consider the later case. The
local scattering environment and the velocity of the UE, determine the behavior of
each coefficient, which is commonly oscillatory and justifies the use of AR models
to capture the temporal variation. The channel coefficient h;, = H(f,t;) can be
modeled as

he, + arhe, | + ...+ aghy,_, = uy,, (4.1)

where ¢ is the model order, {a;}{_, are the AR parameters and w;, is the process
noise that excites the process. When no prior information is available about the
channel, the AR parameters can be assigned based on the approximate Doppler
statistics of the environment in which the UE is residing. For example, under
the assumption that the moving UE is surrounded by equally distant and evenly
distributed scatterers and there is no Line-Of-Sight (LOS) between the base station
and the UE, the Jakes’ model can be used [JC94|. The Jakes” Doppler spectrum is
defined as,

> - ) ‘fD‘ S fD max
¢H(fD) — 7TfD,max \/1_(fD/fD<,max)2 , (42)

0 ; |fD| >fD,maxv

where P is the average received power with respect to an isotropic antenna. Jakes

model leads to the following autocorrelation function,
@H(At) =P- JO(QWfD,maxAti) (43)

where Jj is the zero-order Bessel function of the first kind. An even more simplified
way could be to construct AR models with flat Doppler spectra based on just the
knowledge of the maximum Doppler frequency fp max-

We will consider that prior information is available, in the form of a noise-free
training segment of length Ny.i,. In this case, the AR parameters can be estimated
based on blocks of the available measurements through the Yule-Walker method,
also known as the ACF method, or covariance and modified-covariance methods. In
the analysis conducted by [Aroll] on measured channels, the Yule-Walker method
outperformed the other methods in terms of prediction performance and on the
agreement between theoretical and experimental values. Hence, we will use this as

the method of choice for AR parameter estimation.
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If we consider that the set of all the past measured channel coefficients h;, =
{ht,_y,-..,hs} is available over a time segment Ny, = 100 and a model order

q = 4 of the system, we can define the following matrices,

0O 0 0 0 he,
hy O 0 0 he,
he, hy 0 0 h,
he, hy hy O he,
hig  hey  hay g hy,
A= ; . b=— , (4.4)
htse higy hugy g htgs
ey hig higr Tiigs 0
0 huy hiy huor 0
0 0 huyy luy 0
0 0 0 hy, 0

where A € CWwant0)xa apnd b € CWiraint9x!  Under the additional assumption
that these channel measurements are noise-free, the vector of AR parameters can
be defined as,

a=la,...a." (4.5)

Hence, by utilizing the matrices defined in (4.4), we can set up an over-determined

system of equations as,
Aa = b, (4.6)

A point estimate a is then found by solving for a in

(A"A)a = A'b (4.7)
(ATA)"'AMb (4.8)

w>
\

It is called the autocorrelation method because AYA is an estimate of the autocor-
relation matrix of the channel. The Toeplitz structure of A®A allows us to solve
the system (4.7) with the Levinson recursions.

In the case of noisy measurements, we can form a matrix A similarly as A in (4.4)
but with noisy channel measurements instead of noise-free channel measurements.
Let us assume that the complex-valued white noise present in the measured channel

coefficients is of unit variance. Then we may calculate,
APA ~ A"A — I, (4.9)
where 7 is the number of non-zero elements in each column of A and is equal to
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Nirain in this case, and I, is an identity matrix of size ¢ x ¢. Since it holds that
A"b ~ A"b because of the whiteness of the noise, Equation (4.7) can now be
approximated as,

(A"A —yI)a = A"b (4.10)

We can write the Equation (4.1) on the operator form as,

1

he, = . 4.11
N I B aqc*qut“ (4.11)
or by means of the z-transform as,
q q
h(z) = : u(z) = : u(z)  (4.12)

29+ a1z 4+ ...+ q (z—=p1)(z—pa)... (2= pg)

where ¢! is the backward unit delay operator. After estimating the AR parameters
a, we can calculate the corresponding poles {p;}{_; of the AR process from (4.12).
We use these poles to construct a state space model for the fading channel coefficient
hti )

X,Sll = ng)—i-muti, (4.13)
! o= p'x), (4.14)

i

where x§}) is the state vector of length ¢. The state space is chosen on the diagonal

canonical form, so that Q is diagonal. The elements of Q € C?*9, m € C?*! and

p € C?! are set as follows,

Qli.i] = pi, 4.15)

mi] = J[ (pi—p)7", (4.16)
e

pli] = pi™', i=1...4¢ (4.17)

where Q[i, ] represents the i-th diagonal element of the matrix Q, m[i] and p[i]

represent the element at index ¢ of the vectors m and p respectively.

State Space Model for Multiple Sub-carriers

By following the steps in the previous section, we have formed the state space model
for one particular sub-carrier. To model the complete SISO channel, we need to
model each sub-carrier in the channel. We can track w parallel pilot sub-carriers
if they are correlated. This correlation depends on the spacing between them and

the coherence bandwidth of the channel. To track w sub-carriers, we set up a block
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diagonal state space,

xi) = {diag(Q,...,Q)}x{” + {diag(m, ..., m)}u? (4.18)
= {L 2 Q}x” + {I, ® m}u?, (4.19)
A B
= Axg)—i—Bug), (4.20)
h{? = {diag(p.....p)}x (4.21)
= {L@pkx’ =Cx?, (4.22)
C

where ® represents the Kronecker product and Xg) is the state vector which now
has a length qw. A € C9*% is diagonal and B € C?** and C € C**? are block
diagonal matrices with w blocks each. Ideally, we should employ different state space
models for the individual sub-carriers, but as long as the narrowband assumption
holds, which is practically the case for OFDM systems, the same model can be
used for all w sub-carriers which means that the same AR parameters and thus the
same poles. The covariance matrix of the sub-carriers, Ry = E{Xt(?)xt(iz)H}, can
be directly estimated from the noisy measurements of the time-frequency channel.
On the other hand, the calculation of the process noise covariance matrix, L =
E{u§2)u§2)H} and the prior I'y = E{ng)xig)H}, from the covariance matrix of the
sub-carriers Ry, 2 is not trivial but can be calculated explicitly by using Theorem
4.2.1 in [Arol1].

State Space Model for Multiple Transmit Antennas

We can continue this modeling strategy to model a MISO system by augmenting a
third hierarchical level to the state space model. According to the authors of [Arol1],
the model of a MISO system corresponds to a MIMO system, where each receive
antenna is modeled separately, which does not result in a loss of generality or
achievable performance in the context of channel prediction. The state space models
can be set up simultaneously for each of the receiver antennas and the overall
complexity of the receiver scales linearly with the number of antennas. The state

space model for one receive antenna is thus given as,

Xz(fi)l = diag(A4,... ,AMT)XIE?) + diag(By, . . ., BMT)ugf), (4.23)
= Fx{) + Gu?, (4.24)
n® = diag(Cy,...,Ch,)xY = Hx!?, (4.25)
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where My is the number of transmit antennas. The matrices corresponding to the
and Cl,...,CM

different transmit antenna elements A;, ..., Ay, By,..., By -

T

are individually calculated as,

= I,0Q; (4.26)
B, = diag(m;,...,m;)
= I, ®m; (4.27)
C; = diag(pi,...,p:)
= I, ®p; (4.28)
utilizing corresponding matrix Q;, and vectors m; and p;, where ¢ = 1,..., M.

The model matrices are now of size F € CiwMrxawMr G ¢ CrwMrxwMr and H €
CwMrxqwMr = which is rather large, in general, but the matrices are sparse and
thus require little memory for storage. Under the assumption of independence
between the My transmitting antennas, the process noise covariance matrix 2 =

H ( H
E{ugf)ugf) } and the prior Iy = E{Xg(‘j)xg) } can be accordingly constructed as,

[
I

diag(Ll, ey LMT) (429)
diag(I‘l, c. 7FMT) (430)

=
I

The final step is to model the measurements, in which the fading channel is
observed in Additive White Gaussian Noise (AWGN) through the reference signals,

v, = Xy hg) + z, (inserting value of hg) from Equation 4.25) (4.31)
= X, Hx? 4z, =3,xY + 2, (4.32)
J
.

2

where X, € C¥*“M7 js the matrix that holds the time-varying reference sym-
bols as introduced in equation (3.26) and z;, is AWGN with the covariance matrix
R = E{z;,2z;,"}. The overall model that can accurately model the qw My channel

coefficients in the system is now given as,
XE?L = Fxs) + Gug), (4.33)
yi, = Jxt¥ 42, (4.34)
where the vectors x[()g), ug) and z;, are white, zero-mean, and Gaussian with covari-

ance matrices ITy > 0,2 > 0 and R > 0 (meaning that the matrices are positive
definite).
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Once we have modeled the state space as shown above, we apply the Kalman
filter algorithm presented in Table 4.1 of [Arol1] to estimate or predict the channel.
From the state estimate vector we can compute the channel estimate for one receive
antenna by,

h, = Hx”, (4.35)

and the P-step prediction estimate by,

h,., = HF'x. (4.36)

4.3.1 Performance Assessment of Kalman Prediction on Mea-

surements

We have applied this predictor in our publications [DAZ*14], [AZH15b] and [AZH15a]
and have shown that when the channel has a reasonable number of multipath com-
ponents, this predictor performs quite well.

Here, as an example consider the local-area scenario in [DAZ"14]. Specific local-
area measurements have been performed by Umer Zeeshan in a cooperation project
between NSN and TU Dresden (TUD) under the supervision of Michael Grieger.
The measurements were carried out with the TUD LTE testbed within a single room
of a typical office building. The base station and the UE are both static and placed
at a height of 1.62 m and at a distance of 5.46 m apart from each other. The total
system bandwidth is 20 MHz and the total number of pilots Nrg is 200. The central
RF-frequency f. is 2.68 GHz and the measurement is carried out for a duration
of 2.1 seconds with a sampling time of 1 ms. The measurements were made for
different scenarios, like the basic static case, and for cases where different numbers
of people are moving between the base station and the UE. A basic depiction of the
measurement setup and the scenario where a person is moving around while waving
a big board in his hand is illustrated in Figure 4.1

The moving people act as scatters and affect the fading behavior of the channel
as can be observed in Figure 4.2. The channel is almost static when there is no
movement between the base station and the UE (case (a)). However, when a person
is moving around (case (b)) or additionally waving a big board (case (c¢): move-
board scenario), we see that it induces some severe fading at select pilot sub-carriers
and time instances.

The time variance of the radio channel is one issue, but it is more interesting
to see how well state-of-the-art prediction, like the Kalman filter scheme being
discussed in Section 4.3, can exploit the relatively slow channel fluctuations. For

evaluation, we track w = 8 parallel pilot sub-channels at a time with a spacing of
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Figure 4.1: A general illustration of the move-board measurement scenario

90 kHz between them which is less than the coherence bandwidth. As there are 200
pilot sub-carriers in total, we need 200/8 = 25 parallel Kalman filters to track the
complete channel. Similarly, to ensure that the channel remains stationary during
the prediction and hence the state space model remains valid, we train over a 100
ms time segment and then estimate/predict the channel for up to 100 ms. We model
our channel coefficients on an AR process of order 1, as we found out that such a
model represents these indoor channels appropriately.

We use the normalized mean square error (NMSE) to characterize the perfor-
mance of the predictor as it provides a direct relative measure for the degradation
due to channel prediction. The NMSE is computed as an expectation over all time

slots for every pilot sub-channel,

E{lle|?} _ E{|h -2}

NMSE = 0% = -
POE(InE o E{h?}

(4.37)

where h € C'9%1 is the true channel and h € C'9%1 is the estimated channel, for
a particular sub-carrier under consideration.

Figure 4.3 shows the NMSE performance versus the prediction time for the
different investigated scenarios. It was shown in [GS12] that an NMSE below —10
dB is required to have successful link adaptation and/or scheduling. We can see
that the NMSE is below —10 dB until a prediction horizon of 18 ms for the static
case (case (a)) and 8 ms with one person moving (case (b)). This means that in a
local-area, a relatively large prediction horizon with a correspondingly low feedback

overhead seems to be possible.

68



MChannel Transfer Function (dB)

QN
N

2500

190 2000
100 5 oy 1%
%0 =~ 500
Pilot Subcarriers 00 Time Samples (ms)
(a) Case (a): Static Scenario
)
=
=
s
5
5
R
B
w
=4
8
£
©
o
c
o
=
O .
~ 2500
2000
1500
~ 1000
500
Pilot Subcarriers 0 0 Time Samples (ms)
(b) Case (b): One person is moving
o
=
f =
S
5
f=4
=]
o
k>
2
8
=
©
c
f=4
o
=
o .
2500

e 2000

1500

: 1000
500

Pilot Subcarriers 0 0 Time Samples (ms)

(c) Case (c): A person is moving with a board

Figure 4.2: The channel transfer functions (CTFs) H(f,t) for different indoor measure-
ment scenarios. The pilot spacing is 15 kHz.
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Figure 4.4: NMSE at a prediction horizon of 8 ms for the move-board scenario (case (c)).

Figure 4.4 shows the NMSE for various time samples and pilot sub-channels at
a prediction horizon of 8 ms for the move-board scenario (case (c)). We can observe
that at most of the sub-carriers, the NMSE is quite similar with a mean value of
—11 dB. This scenario has the worst performance out of all the three scenarios, but
a much better prediction performance seems to be possible by proper scheduling.
We can avoid to schedule users in sub-channels containing frequency notches with
corresponding fast channel fluctuations, hence a higher NMSE. We see from the

histogram that the NMSE in the logarithm domain is close to Gaussian distributed.
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4.4 HOSVD Based Channel Prediction

We will now discuss a subspace based channel prediction scheme, proposed by
[MDHO08]|, which takes the channel frequency response in tensor form and operates
on it in a higher order subspace to transform the tensor elements. The prediction
is then performed in this transformed domain providing substantial performance
gains as compared to prediction conducted directly on the channel coefficients.
Let us represent the sampled channel frequency response of a time-variant frequency-

selective massive MIMO channel as a four-dimensional tensor H € CMrxMrxNrsxNe
where Mt and Mg are the number of antenna elements at the base station and at
the UE, while Ngg and N; are the number of snapshots, sampled in the frequency
and the time domain corresponding to the reference (pilot) signals, respectively.
Interpolation and extrapolation can be used to get the complete channel for all
time samples and all sub-carriers Ngc. In practical systems, different polarizations,
and/or elevation angles are also present, which can add other dimension(s) resulting
in a five- or six-dimensional channel tensor. However, in this chapter, we only con-
sider one polarization and no angular variation in the elevation domain, and assume
that the past noisy channel estimates are available. Thus, grouping together the
last N; estimates for all antennas and frequencies gives us the estimated channel

tensor H € CMr*MrxNesxNi - The noisy channel estimates #H can be modeled as,
H=H+E (4.38)

where £ is the noise term of appropriate size. It is introduced by the channel
estimator, and contains independent and identically distributed complex Gaussian
entries with average power 02. Let Ry g, f;.4, denote the channel tensor element
corresponding to the channel between the mp-th transmit antenna, and the mg-th
receive antenna at baseband frequency f; = jAf and time ¢, = kAt, where Af is
the sub-carrier spacing and At is the time sampling interval of the system under
consideration.

The Higher Order Singular Value Decomposition (HOSVD) of such a four-

dimensional channel tensor is given as [LMV00, Tuc66],
,}N{«stl U1 XQUQ X3U3 X4U4 (439)

where every U,; n = 1,...,4 is a unitary matrix of size I,, x I, (where I, =
My, Mg, Ngs, Ny for n = 1,2, 3,4 respectively) consisting of the n-mode singular
vectors, & € ClixI2xxI1 5 the core tensor, and x,, denotes the n-mode product of
a tensor with a matrix (please refer to Appendix A for further details). Note that

the HOSVD decomposition of a two-dimensional tensor, which is a matrix, reduces
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to the Singular Value Decomposition (SVD) decomposition.

In order to perform tensor-based prediction, we sub-divide the channel tensor H
into several sub-tensors. Let #(t;) denote such a sub-tensor containing the elements
fzmT,mvaj,tk where mp € {1,2,..., Mr}, mp € {1,2,..., Mg}, f; € {—%Jrl, —%Jr
2,..., —%} and t € {i — Nyy + 1,4 — Ny, +2,...,i}. Here, t; denotes the current
time and Ny, the number of sub-tensor time snapshots. The values N;, and Ngg are
chosen in such a way that the terms N; At and NrsAf stay within the coherence
time and coherence bandwidth of the channel respectively, while both the antenna
dimensions are kept fixed. Hence, we can consider that the bases U,,,n # ¢ where
¢ is the prediction dimension (in this case time snapshots), to remain constant in
the vicinity of the observed and current channel coefficients. The n-th basis matrix
can be calculated as the matrix of the left singular vectors of the n-mode unfolding.
From these bases, we can generally compute a transformed tensor A(;) estimated
from the known channel sub-tensor H(t;), being considered here as [MDHO08],

A(tz) = 7‘2(751) X1 UIII X9 UIQ{ X3 Ugl
= Sx, Uy e CMrMmxinexiy (4.40)

We can track the evolution of the channel in the time domain through the ten-
sors A(ti—ng+1), Alti—Ng+2), - - -, A(t;), where Ny is the number of sub-tensors. In
addition, employing a linear prediction filter such as a Wiener filter, denoted as
F(-), these sub-tensors can be used to predict the channel at a future time instant
t, = tiyp where P is the prediction horizon, as [MDHOS],

me,mR,»fjvtp = F(amT,mmfj,tk (tio)) (4'41)
for each value of mr, mg, f; and ti, where t;; € {i—No+1,i—No+2,...,4}, and (A)
denotes predicted values. Various filtering methods F'(-) can be used to predict the
transformed tensor coefficients in the future ranging from linear filters, non-linear
filters to even adaptive filters [MDHO0S].

As the time dimension of each sub-tensor corresponds to the coherence time of
the channel and it is usually composed of multipath components whose directions
of arrival and departure change slowly in time, the channel will span a common
signal subspace so that a reduced number r,, where n = 1,2, 3, of basis vectors per
tensor dimension n is sufficient to represent it. Here, 0 < r, < I, are the ranks of
the different matrix unfoldings, called n-ranks. Therefore, we can reliably predict

H utilizing a low rank approximation of A, computed generally as,

H(t,) = AH(L,) x, UM x, Ul s Ul (4.42)
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where Ug"] € Clnxrn n = 1,2,3, is the matrix comprised of r, n-mode singular
vectors, which define the signal subspace corresponding to the r, strongest n-mode
singular values, and Al (t,) € Crixr2xrsxNig jg the predicted transformed tensor,
truncated to correspond to the signal subspace singular vectors.

Overall, the prediction of the time-variant frequency-selective 4D channel tensor,

is partitioned into My - Mg - Ngrg SISO channel predictions.

4.4.1 Performance Analysis of Tensor-based Prediction

In order to assess the performance benefit, we use synthetic channel frequency
responses generated with the IlmProp [Del07, DHS03], a geometry based channel
modeling tool for wireless communications discussed in Section 3.4.1.1. We use the
same simple urban macro scenario depicted in Figure 3.5, as the propagation envi-
ronment for the discussion of the simulation results. In this scenario, the 4-element
Uniform Linear Array (ULA) mounted on the UE is moving away from the base
station with a speed of 10 km/h | while a second 16-ULA is acting as the base sta-
tion. There are four buildings in the transmission path with a total of 280 scatters.
The UE also sees a direct path from the transmitter. The parameters (delay spread,
Doppler spread, etc.) of the channels created with the IlmProp are fairly close to
real channel parameters in the corresponding scenario. The OFDM simulation pa-
rameters consist of Ngg = 64 reference signals over a 20 MHz bandwidth and a time

sampling frequency of 0.5 ms. The center frequency of the system f, is 5 GHz.
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Figure 4.5: Higher-order singular values of the tensor corresponding to the n-th dimension
of the channel sub-tensor.
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The values of the massive MIMO channel tensor n-mode singular values in all
dimensions for the IlmProp macro scenario are displayed in Figure 4.5. The first n-
mode singular value corresponds to the strongest singular vector in each dimension
and is significantly higher than the other singular values. Singular vectors corre-
sponding to weak singular values can be neglected, for example, in the transmit
antenna dimension (1-mode) we can neglect the singular vectors starting from the
5-th. The reason for this is that the first r, singular vectors corresponding to the
rn largest singular values lie in the signal subspace while the remaining (I,, — r,)
can be expected to lie in the noise subspace. Since the noise is white Gaussian, it
is expected that the noise contributes the same value to all singular values defining
the cut-off threshold (as can be observed in Figure 4.5 that all weak singular val-
ues have the same power). Since there are [, n-mode singular values in the n-th
tensor dimension, the cut-off threshold at(}?) for that dimension can be estimated

as [MDHOS],

n Ue
o) = - (4.43)

where o2 is the average power of the noise term in equation (4.38). Neglecting the
singular values corresponding to the noise subspace and using, for this particular
example, 1| = 4,79 = 3,r3 = 2 and r4 = 2 singular vectors in each dimension
corresponding to the signal subspace in equation (4.42), enables us to predict the

channel utilizing its low-rank approximation.
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Figure 4.6: NMSE as a function of SNR and prediction horizon for tensor and matrix
subspace based prediction schemes.

In Figure 4.6, we have plotted the NMSE as a function of the SNR and the pre-
diction horizon, for the HOSVD based prediction scheme under consideration and a
matrix subspace based prediction scheme from [MDSH06]. We can clearly see that
prediction performed on the transformed tensor elements, rather than on a matri-

cised version of the channel, provides intrinsic spatial noise reduction leading to a
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better prediction performance. Moreover, the results are worse for the case when
prediction is performed directly on the channel coefficients (please see [MDHOS]).
On the downside, this scheme invokes additional complexity due to the tensor trans-

formations and HOSVD computation.

4.5 Combined Scheme: HOSVD followed by Kalman
filter-based Prediction

In practical systems, the SNR or Signal-to-Interference-plus-Noise Ratio (SINR) is
usually not that high and noise plays a significant role in prediction performance.
It has been observed that in a MIMO or massive MIMO system, there are several
weak channels with very low SNR compared to the strongest channels, but they
still need to be estimated or predicted for good coverage and spectral efficiency.
Correspondingly, in Grid of Beams (GoB) systems, it has been noted that a UE
observes more than one serving beam and some of these beams could be very weak,
in terms of the SNR, compared to the strongest one. For a better prediction of
such weak channels, we propose an HOSVD based denoising step to clean the noise
in the channels before using any of the state-of-the-art prediction schemes. This
scheme and the corresponding results have been published in [AZH17].

As discussed in Section 4.4, massive MIMO channels exhibit a multi-dimensional
structure, but most of the channel prediction algorithms are derived based on two-
dimensional models. Consequently, the multi-dimensional data have to be unfolded
as a vector or a matrix to be processed. These operations result in a loss of structure,
which could lead to several issues like a decrease in performance and a lack of
robustness. To preserve this structural information, it is beneficial to represent the
massive MIMO channel as a multi-dimensional array, called a tensor. In this case,
we use the truncated HOSVD to exploit the structural information and denoise the
channels prior to prediction with state-of-the-art two-dimensional methods.

In [MDHOS| as discussed in Section 4.4, the authors proposed to perform predic-
tion on the individual elements of the truncated transformed tensor using Wiener
filters which can be computationally expensive. Our approach is to do the chan-
nel denoising and prediction separately. The benefit is that the denoising step can
be considered as an additional module and depending on the SNR of the received
channel, for example, in a cooperative scenario, can be switched on or off. This
would considerably reduce the complexity and provide an overall adaptive solu-
tion. In addition, any state-of-the-art channel predictor can be utilized without any
modifications.

Assume that we have access to the 4D noisy estimated channel tensor H €
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CMrxMrxNrsxNe at the receiver, where My and Mp are the number of antenna
elements at the base station and at the UE, while Ngs and N, are the number
of snapshots, sampled in the frequency and the time domain corresponding to the
pilot signals, respectively. We can divide this tensor into several sub-tensors, in the
time and frequency dimensions, so that each sub-tensor stays within the coherence
time and coherence bandwidth of the channel. We can then calculate the HOSVD
of each channel sub-tensor using equation (4.39), which gives us the core tensor S
and the factor matrices U,, comprised of basis vectors in each dimension. As the
time dimension of each sub-tensor corresponds to the coherence time of the channel
and it is usually composed of multipath components whose directions of arrival and
departure change slowly in time, the channel will span a common signal subspace
so that a reduced number r,, where n = 1,2,...,4, of basis vectors per tensor
dimension n is sufficient to represent it. Here, 0 < r, < I, denotes the number
of dominant components of the different matrix unfoldings. Therefore, using a low

rank approximation of 8, it is possible to denoise the channel as [AZH17],
H = Strorarsral o U, U <, U <, Ul (4.44)

where Ul ¢ C*™ | n = 1,2,...,4 , is the matrix consisting of 7, n-mode
singular vectors (defining the signal subspace) corresponding to the r, strongest
n-mode singular values, and Slr72:73:m4 ¢ Crixr2x73xT4 g the core tensor consisting
of elements corresponding to the signal subspace singular vectors.

Since we have defined the tensor model and the HOSVD of the massive MIMO
channel, let Ay g, f.t, denote the truncated tensor element corresponding to the
denoised (or cleaned) channel between the myp-th transmit and the mp-th receive
antenna at baseband frequency f; = jAf and time ¢, = kAt.

Here, the state-of-the-art prediction scheme of choice is the Kalman filter-based
channel prediction as discussed in Section 4.3. We construct a state space model
for the Kalman filter by modeling the truncated tensor element as an AR process.

The denoised tensor channel coefficient f,,. . fi.4, b time 7 can be modeled as

hmTamvajatk + alhmT:mvaj:tk_l +.o.o+ aqhmTymRyijtk_q = Uy (4'4‘5)

where ¢ is the model order and is equal to 2 in our simulation example, {ay, ..., a,}
are the AR parameters, and wu, is the process noise that excites the process. The
estimation of AR parameters based on blocks of measurements, the formulation of
the three-hierarchical state space models to model the overall MIMO tensor, and
the prediction scheme are detailed already in Section 4.3. Overall, the prediction

of the time-variant frequency-selective denoised massive MIMO channel tensor is
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partitioned into My - Mg - Ngs/w SISO channel predictions, where w is the number
of sub-carriers modeled together in the Kalman based prediction scheme. The value

of w is set to & in the simulations.
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Figure 4.7: A representation of the denoising effect of the HOSVD processing. The
channel transfer function H(f,t) for one particular transmit and receive antenna pair is
shown here.

4.5.1 Performance Benefits of HOSVD-based Denoising

To analyze the benefit of such an HOSVD based denoising, we utilize the same
simulation setup as described in Section 4.4.1. Discarding the singular values that
most likely correspond to the noise subspace, leads to clean channels which are
very close to the respective true channels. This can be very helpful for channel
prediction. An example of this cleaning effect is shown in Figure 4.7 for an SNR of
10 dB.

The NMSE is used to characterize the performance as it provides a direct relative

measure for the degradation due to channel prediction. The NMSE of the massive
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Figure 4.8: Normalized Mean Square Error (NMSE) comparison of prediction performance
of noisy channels vs denoised channels using HOSVD-based subspace processing. SNR
for the different curves is 0 dB, 10 dB, 20 dB and 40 dB.

MIMO channel tensor is given as,

E{|I# — #H|*}

NMSE =
E{[[#]*}

(4.46)

Figure 4.8 shows a comparison of the prediction performance of the Kalman
filter for the noisy channel and for the denoised channel, for the scenario under
consideration. The four curves correspond to an SNR of 0 dB, 10 dB, 20 dB and
40 dB from top to bottom, respectively. The performance difference is bigger for
low SNR values, where the proposed method reduces the NMSE significantly. At 0
dB SNR, the HOSVD based prediction outperforms the direct Kalman filter-based
prediction by 7 dB at 1 ms prediction horizon. This is due to the fact that the de-
noised channel contains the singular vectors corresponding to the strongest singular
values (signal subspace) while neglecting most of the noise subspace. Although the
Kalman filter can also cater for noisy measurements as observed in Figure 4.8, the
pre-denoising step definitely improves the performance at low SNR. It should be
noted that if the noise level value is not determined appropriately, we might neglect
a part of the signal subspace or include the noise and therefore increase prediction
errors resulting in less gain. At higher SNRs, we do not see any gain because the
noise does not play a significant role and the inherent noise filtering of the Kalman
filter is enough to provide a good prediction.

We can see in Figure 4.8 that at a 1 ms prediction horizon and 10 dB SNR,
the NMSE is approximately —13 dB. For the same value of prediction horizon and
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SNR, we can observe in Figure 4.6 that the NMSE is 0.05, which corresponds to
approximately —13 dB as well. Hence, both solutions provide a similar performance
with regards to the NMSE. However, the benefit of the proposed scheme is that the
HOSVD based denoising step can be turned off at high SNRs, as it provides no
further gain. Moreover, in practical scenarios, the Wiener filter suffers from various
problems like, for example, the need for large memory filters and the recalculation of
the filter coefficients at each prediction step. With a state-space formulation, such
as the one incorporated in a Kalman filter, such problems can be mitigated [K*60].

This leads to an overall lower complexity solution from a practical standpoint.

4.6 Summary

In this chapter, we have surveyed the distinguishing design features, performance
and shortcomings of various state-of-the-art channel prediction schemes. We have
identified that channel frequency response based channel prediction schemes, despite
being relatively conventional and old school as compared to parametric-model based
schemes, are more suitable for bursty transmission which is usually the case for
cellular traffic. Thus, they still might be the scheme of choice for future 5G networks.
We look at two state-of-the-art channel frequency response based schemes in detail,
namely Kalman filter-based prediction and a tensor based prediction scheme. We
have then proposed a hybrid scheme which combines the benefits of each scheme,
the noise reduction capability of the tensor framework and the low complexity of
the Kalman filter-based predictor, while overcoming the drawbacks to potentially

provide a more well rounded, better performing and useful scheme.
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Chapter Summary

This chapter motivates the benefits of beamforming at the UE side through a novel
scheme called virtual beamforming. We observe a reduction in the number of chan-
nel components and also in the number of multipath components within each chan-
nel component. As a consequence, we see an improvement in the overall channel
prediction performance irrespective of the prediction algorithm used. The results
are further improved with the application of Grid of Beams (GoB) at the trans-
mitter side. We have already introduced the GoB concept in Section 2.3.3 and in
Section 5.3, a comprehensive description of virtual beamforming is presented. The
contents of this chapter have been published in [AZH15a, AZH15b].

5.1 Introduction

It has been identified that User Equipments (UEs) with interference suppression
capabilities allow for less complex coordination schemes at the base stations, and
that fundamental enablers like channel prediction should be considered in order
to overcome the limitation due to feedback delays [GS12]|. Interference cancella-
tion capabilities can even be enhanced if the network assists the UEs in this task.
Moreover, a joint optimization of base station clustering, beamforming design and
received signal processing at the UE can be exploited to achieve higher spectral and
energy efficiency.

The beam pattern of an antenna array depends on various parameters like the
inter-element distance, number of antenna elements, orientation of the array, and
the beamforming scheme to name a few. The beamwidth of the mainbeam-lobe of
the beam pattern is physically limited for a given set of parameters and exhibits
an inverse relationship with the number of antenna elements, and consequently the
aperture of the array. At the UE, we have limited space and power, which will
limit the maximum number of antenna elements at the UE side (especially below
6 GHz). This translates to a limited beamforming gain, poor interference rejection
capabilities, a relatively large Half-Power BeamWidth (HPBW), inadequate channel
prediction quality due to a high number of received multipath components, and a
bad condition number of the channel matrix. Hence, we need to make use of or
imitate the physical features of an array artificially to reduce the beamwidth and/or
increase the beamforming gain.

By controlling the phase and relative amplitude of the signal at each antenna
element in an array, a beamformer allows us to achieve spatial selectivity at the
transmitter, the receiver or both transmission ends. This can help us in reducing

the number of multipath components, and potentially channel components as well,
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in the channel frequency response, hence making the channel prediction problem
easier.

A number of beamforming techniques is available in the literature and the one
being considered here for UE-sided beamforming is the novel virtual beamforming
concept [ZH13, AZH15a]. We will assess virtual beamforming by itself at the UE
side, and also in combination with the Grid of Beams (GoB) concept, discussed in
Section 2.3.3, at the base station side. Virtual beamforming is analogous to the
Synthetic-Aperture RADAR (SAR) schemes, which are quite well-known and well-
developed in the RADAR literature [MPIY*13]. A virtual beamformer is equipped
with a few, or even a single antenna element, but utilizes the movement of the UE
to generate a virtual Uniform Linear Array (ULA) with a larger aperture. This
enables us to reap the benefits of large arrays with a limited number of physical
antenna elements, as in the case of cellular UEs. An inherent drawback of virtual
beamforming is that it requires strict time synchronization and the data symbols
need to be re-transmitted. These drawbacks are discussed in detail in Section 5.3
and in Chapter 6.

5.1.1 Benefits of UE-Sided Beamforming

The availability of steerable beams with very narrow HPBW at the UE can be bene-
ficially exploited in various ways. For example, in the case of downlink transmission
and especially for Frequency Division Duplex (FDD), one of the main benefits would
be the ability of the UE to adapt autonomously to changing channel and interfer-
ence conditions, without involving any control information exchange with the base
station, therefore allowing fast reactions to channel variations. In addition, a nar-
row beam might reduce the number of multipath components from several hundreds
to a few tens, thereby improving channel predictability as well as reducing overhead
for feedback of Channel State Information (CSI), without the need of any central
coordination [ZTKW16]. Furthermore, the number of relevant channel components
might be reduced to some extent by suitably pointing the receive beam, which again
reduces feedback overhead and provides further robustness, e.g., for massive MIMO
precoding including Joint Transmission Coordinated MultiPoint (JT-CoMP) (dis-
cussed in Section 2.2) over several distributed sites [AZH15b]. In that sense, narrow
beamforming at the UE side will quite possibly be the main enabler in 5G to achieve
the intended performance gains on the system level.

Beamforming at the UE side is more effective in reducing the number of multi-
path components as compared to the typical implementation of beamforming only at
the base station side, especially in typical urban macro Non-Line-Of-Sight (NLOS)
scenarios. The reason for this is the high spread of the AoA at the UE which
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User Equipment

Base Station

SISO link

Delay, power, AoA profile

Delay, power, AoD profile

(a) An illustration of the comparison of the Angle of Departure
(AoD) spread at base station with the Angle of Arrival (AoA) spread
at the UE. The power and delay of the various paths are also depicted
for both transmission ends.
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(b) Received power over AoA and delay in microseconds for all mul-
tipath components in a ray-traced channel at the Nokia campus.

Figure 5.1: A depiction of the benefits of UE-sided beamforming to reduce the number of
multipath components by selecting a spatial subset of the channel.

means that a narrow beam pointed in the direction with the strongest multipath
components will filter out a high number of multipath components from the other
directions. In contrast, even though the AoD spread at the base station is smaller
when the GoB concept is used, in NLOS scenarios the reflections of the beams are
spread out in many directions and suffer from power degradation, reducing the ef-
fectiveness of the beamforming scheme. An illustration is provided in Figure 5.1a
where we can see the typical comparison of the AoD spread at the base station side
as compared to the AoA spread at the UE side. The center of the gray circles rep-
resents the location of the base station and the UE, at the respective sides, and the
radii of the gray circles represent various delay values. The blue circles represent

the beams on both sides. The location of the vertical bars represents the AoD and
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the AoA profiles, at the respective sides, with the length of the bar representing the
power of that particular multipath component. The observable multipath compo-
nents after beamforming are represented with white bars, whereas those represented
with red bars are filtered out. It is apparent that a stronger reduction in the number
of multipath components is possible at the UE side.

A supporting practical example to the general illustration is shown in Fig-
ure 5.1b, which shows the received power of all multipath components as a function
of the AoA and delay of the received signal for ray-traced channels generated using
WinProp (please see Section 3.4.1.2). The UE is placed at the center (0,0), the red
dots show the evolution over 50 time samples of the relative direction of the last
interaction points of the multipath components. The radius from the center defines
the delay values as shown by the two circles. We can see that some multipath
components are evolving quite significantly over time, indicating a strong Doppler
shift, while others are almost constant. A suitably pointed narrow beam can take
advantage of these almost constant multipath components and produce a channel

which is, as a consequence, easier to predict.

5.2 A Primer on Beamforming

Before we delve into the specifics of the novel virtual beamforming scheme, let us
go through the basics of beamforming.

A fundamental property of an antenna array is that phase shifts are introduced
into the radiation vectors by the relative displacements of the antenna elements with
respect to each other. These phase shifts add up constructively in some directions
and destructively in other directions leading to a directional radiation pattern for
the antenna array. This stems from the translational phase-shift property of Fourier
transforms, according to which, a translation in time or space turns into a phase
shift in the Fourier domain.

Let us consider a generic array comprised of identical antenna elements that
are placed at the positions dg,d;,ds,... in 3-Dimensional (3D) space, with the
amplitudes of the excitation currents given as wy, wy, wa, . . . as shown in Figure 5.2a.
Please note that dy can be placed at the origin and wy can be set to 1 without loss
of generality.

The current density vector J has a magnitude equal to the electric current
density and it points in the direction of flow of the electric charge!. Thus, the
current density vector of the n-th antenna is J,(r) = w,J(r — d,). Based on

this translated current, the corresponding radiation vector, which is the 3D Fourier

Note that J is a vector but it is mostly represented with a capital letter in the literature.
That notation has been followed here as well.
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z

widq

wodo

T T

(a) Several antennas translated to different  (b) A exemplary linear array along the x-
locations and fed with different excitation axis. Here, 6 is the co-elevation angle and
amplitudes. ¢ is the azimuth angle.

Figure 5.2: Various array configurations.

transform of the current density, is given as [Orf16],
F,(k) = w,e’ ¥ F(k) (5.1)

where k = ktt = 27“? is called the wave vector with t being the radial unit vector,
F(k) is the radiation vector of a single antenna element at the origin and F,, (k) is
the radiation vector of the n-th element of the array®. The term e*"dn stems from

the translational phase shift property. The total radiation vector is now given as,

Fiom(K) = Fo+ F1 + Fy + ... = woe™ PF(K) 4+ w e VF(K) + woe’™ LF(k) + . ..
(5.2)
As the factor F(k), is common to all the terms, we can rewrite the above equation

as,

Fioa(k) = (wOeJdeO + wyelAd 4 wge]de2 + ... ) F(k) (5.3)

A(k)
Fiota(k) = A(k)F(k) (5.4)

The term A(k) is called the array factor which can also be denoted as A(T) or
A(0,¢). The array factor, in itself, encapsulates all the translational phase shifts
and the relative weighting coefficients of the array elements. Equation (5.4) tells us

that the combined effect of an array comprised of identical antenna elements, is to

'Once again, the vectors F and F,, are represented with capital letters to keep in sync with
the literature.
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modify the radiation vector of a single antenna element by the array factor. This

property is known as array pattern multiplication [Orf16].

5.2.1 Uniform Linear Arrays

Let us consider a one-dimensional array with equally-spaced antenna elements along
the x-axis placed at locations z,,n = 0,1,2,..., My — 1, where M, is the total
number of elements in the array, as shown in Figure 5.2b. The array factor is then

given as,
Ma—1

All,9) = > w,e’ = aneﬂ““w" (5.5)
n=0 n

where d,, = z,%X. If we set k, = ksin(f) cos(¢) and as the array is comprised of
equally-spaced elements leading to x,, = nd, where d is the distance between the
elements, the array factor can now be expressed as,
Mp—1 _
A(97¢) — Z wnejkndsm(e)cos(¢) (56)
n=0
The angular dependence of the array factor stems from the term k,d = kd sin(6) cos(¢).

Hence, we can define the variable [Orf16],
W = kyd = kdsin(0) cos(9) (5.7)

The variable v is called the digital wave number and it is a normalized version of
the wave number k,. It is measured in the units of radians per (space) sample.

Now, we can also define the array factor in the digital wave number space as,
Mp—1

A(yp) = X_% wye’" (5.8)

If we set the polar angle to 8 = 90°, then for an array along the x-axis, we can

measure its array factor only in the xy-plane, leading to,

) = kdcos(¢) (5.9)

In this case, the azimuthal angle varies over —m < ¢ < 7, but as the array response
is symmetric in 1, it can be evaluated only for 0 < ¢ < w. To make such an
array even simpler, assume one having equal weights for all antenna elements, and

therefore, the name uniform linear array. If the array consists of M, isotropic
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elements at locations x,, = nd, where n =0,1,..., My — 1, we can define,

1

=—0,1,....1" 1
MA[” 1] (5.10)

w = [wp, wr, . .. ,wMA_ﬂT

so that the sum of the weights is unity. The corresponding array factor is given as,

1 Malt 1 eMav 1
() — pom L~ 5.11
W) =5 2 " = e (5.11)

This array factor can be viewed as a window-based narrow-beam design using a
rectangular window and is the spatial analog of a low-pass Finite Impulse Response
(FIR) averaging filter in discrete-time digital signal processing [Orf16]. Another
way to express A(v) is as follows,

M+

_Sin(TE) -1y
AlY) = My sin(2)° (5.12)

5.2.2 Fundamentals of Linear Arrays

When designing ULAs, one needs to understand and consider the basic fundamen-
tals for a successful design. To this end, we will briefly explain concepts like visible

region, grating lobes, beamwidth, and steering angle.

Visible Region and Grating Lobes

By the definition of ¥ in equation (5.9), we can observe that the array factor A(v) is
periodic in ¥ with period 27. Hence, it is sufficient to know it within —7 < ¢ <,
a single Nyquist interval. If we vary the azimuthal angle ¢ from 0° to 180°, the

value of 1) = kdcos(¢), varies in the range,
—kd < < kd (5.13)

This range of variation of 1 is called the wisible region and its total width is ¥, =
2kd. Tt is dependent on the quantity kd = Q{d. For example, if d < A\/2, it means
that kd < 7 leading to a visible region . < 27. Hence, the visible region is less
than one Nyquist interval. On the other hand, when d = \/2, kd = 7 and the
visible region covers the whole Nyquist interval v, = 27.

In the case of d > A\/2, kd > 7 and the width of the visible region is more
than one Nyquist interval 1y > 2. This means that the values of A(t)) are
over-specified and repeat over the visible region leading to grating lobes. These are
basically mainbeam lobes pointing in undesired directions. They are the spectral

images produced by the sampling process and in -space, these images fall in other
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Nyquist intervals as opposed to the central one.

The number of complete Nyquist intervals that fit within the width of the visible
region dictates the number of grating lobes in an array pattern, that is, ¢, =
kd/m = 2d/A\. Typically, grating lobes are undesirable and can be completely
avoided by setting d < \/2.

Array Pattern Steering

The array along the x-axis that we have discussed so far, has been designed to
have its maximum directive gain at broadside, or in other words, at ¢ = 90°.
The array factor A(1) has its maximum at ¢» = kdcos(¢) = 0, i.e., |A|max = |A(0)].
However, the main motivation to design antenna arrays is to steer the array pattern,
without physically rotating it, towards some desired direction, say ¢g leading to a
corresponding wave number 1y = kd cos(¢y).

This task of steering the beam can be accomplished by wave number translation
in ¢-space. This implies that the broadside pattern A(¢)) needs to be replaced by
the translated pattern A(y) — 1)y). Consequently, we can define the steered array

factor as,

A'()) = Ay = 1ho) (5.14)

and the translated wave number variable as,

U =1p — o = kd(cos(¢) — cos(¢o)) (5.15)

/
ny

In order to calculate the steered array weight coefficients w!, we can make use
of the translation theorem of Fourier transforms, according to which the weight
coefficients of the translated pattern A’(1) are given as [Orf16],

/ j—
=

w!, = wye Yo" (5.16)

The steered array is also occasionally called a phased or scanning array due to
the progressive phase factors e 7%0" present in the weights in equation (5.16). The

steered array factor is now given as,

Mp—1 Mp—1

A'(¢) — Z w;eﬂm — Z wne—ﬂbonewn
n=0 n=0
Ma—1 Ma—1 )
= > WP — > w, e = A@W) (5.17)
n=0 n=0

Hence, the of maximum of A’(¢) coincides with the maximum of A(¢)’), which

occurs at ¥ = 1y, or at the azimuthal angle ¢ = ¢,.
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(a) Array factor and a representation of the visible
region ;s for d = \/4.
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(c) Array factor and a representation of the visible

region 1yis for d = A\/2. The 3dB bandwidth Awsgp
is also depicted.
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(e) Array factor and a representation of the visible
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(b) Azimuthal beam pattern for d = /4.
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(d) Azimuthal beam pattern for d = A\/2.
The 3dB bandwidth A¢sqp is also de-
picted.
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(f) Azimuthal beam pattern for d = X. The
presence of grating lobes can be observed.

Figure 5.3: Array factor and azimuthal beam patterns for varying elemental spacing of a
16-element ULA. The fundamental concepts of arrays are illustrated.
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In the case of a steered array, the concepts of visible region carries over with
minor adjustment. Hence, as the azimuthal angle ¢ varies from 0° to 180°, the

translated wave number v’ of equation (5.15) varies over the shifted visible region,
—kd(1 4 cos(¢g)) < ¢ < kd(1 4+ cos(¢y)) (5.18)

The total width of the visible region remains 2kd. Now, the condition for the
absence of grating lobes also needs a little modification and is obtained with the

help of the following inequality,
[¢] < kd|(cos(¢) + cos(do))| < kd(| cos(@)] + | cos(go)|) < kd(1+ |cos(po)]) (5.19)

Hence, 1" must remain strictly less than 27 to ensure no grating lobes, which results

in the sufficient condition,

kd(1+ |cos(¢o)]) < 2w (5.20)
2w
TE R o))
i< (5.21)

~ (L +[cos(¢o))
Beamwidth

When it comes to the beam pattern of a uniform array, two major features are
its beamwidth and its side-lobe level. The beamwidth refers to the width of the
mainbeam lobe where the power drops by a certain value. That value is, typically set
at 3 dB, leading to the definition of Half-Power BeamWidth (HPBW). In v-space,

it is defined for an array with large M, as,

27
A = 0.886— 5.22
Vi = 0856 27 (5:22)
where JETZ represents half of the base of the main-lobe as the first nulls in the array

factor concerning the main-lobe occur at +vy; = j:]\%. The HPBW in angle space

Agsqp can be calculated by differentiating the equation (5.9) and is given as,

A

Ag¢sqp = 0.886
¢3dB MAd

(5.23)

Here, Mad is the effective aperture of the array. It is important to note that the
beamwidth gets narrower with increasing M,. However, the side-lobe level for
My > 6 becomes independent of M, and is capped at a value of 13 dB for uniform

arrays. In order to achieve lower side-lobe levels, proper non-uniform weights must
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be designed.
For the steered array, the HPBW in angle space is given as [Orf16],

0.886 A\
A °o < < 180°
sin(¢g) Mad ™~ 0° < ¢o < 180

A¢sap = (5.24)

/ A
2410.886——b =0, 180°
MAd ) ¢0 ’

Here, b is a so-called broadening factor, the value of which depends on the choice

of the window function and the side-lobe level. For the uniform arrays considered
so far, b = 1. Moreover, the presence of the value sin(¢g) in the denominator
means that the beamwidth increases as the beam is steered from broadside towards

end-fire.

5.3 Virtual Beamforming

To avail the benefits of narrow beams, one would require numerous antennas at the
UE, in order to have a large aperture Mygd, where Myg is the number of virtual
antenna elements. For centimeter as well as millimeter Wave (mmWave) systems,
another important ingredient of future Fifth Generation (5G) systems, a massive
number of antenna elements can be placed at the base station as well as at the
UE-side due to their very short wavelength A, of only a few centimeters to even a
few millimeters. On the contrary, in the case of sub-6 GHz systems, for example,
at 2.6 GHz Radio Frequency (RF) frequency, the wavelength A is about 0.12 m,
i.e., of similar size as a typical smart phone. Thus, with typical A/2-spacing, an
exemplary array of 10 x 10 = 100 antenna elements would already end up in an
array size of 0.3 x 0.3 m?, which is way beyond the size of a typical user device.
Moreover, finite battery power as well as limited space for placing a high number of
RF-chains including power amplifiers, filters, analog-to-digital converters etc., are
further reasons to expect UEs with a few to a very few antenna elements. So even
for the 5G time frame, one can expect just two to maybe eight antenna elements
per UE.

For that reason the question arises, how to make the best use of a limited number
of UE antennas with a limited overall aperture size of about one to a few \? Our
answer to this question is virtual beamforming [ZH13, AZH15a], which is a scheme
that allows us to reap the benefits of a much larger virtual ULA at the UE, even if
it has only a single physical antenna element.

Virtual beamforming is a scheme which allows us to utilize the movement of the
UE to generate a virtual ULA [ZH13, AZH15a]. The idea behind it is to combine
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Myg € N adjacent received signal measurements. Ideally, the UE is moving at a
constant speed and on a straight line during the measurement phase to provide
equidistant measurements. But, this is not a limiting factor as acceleration and
haphazard movements of the UE can be catered for easily, through a proper adap-
tation of the phase changes. The UE can then consider these measurements, which
have been acquired over time, as measurements acquired by the antenna elements of
an ULA. A schematic is provided in Figure 5.4. This enables the creation of large
virtual massive MIMO arrays at the UE side with a limited number of physical
antenna elements. For example, if the UE has 4 physical antennas the combination
of 8 previous received signal measurements results in a virtual massive MIMO array
of size 8 x 4 = 32. The downsides to this approach are that the UE has to wait for
the time it takes to receive Mvyg signals before it can use the virtual ULA and the
same data symbols have to be transmitted over all the Myg time slots. This re-
transmission is not an issue in the case of channel prediction as the reference signals
are repeated periodically. However, it poses a challenge for data transmission as it
translates to a reduction in throughput by Myp, but we have provided a potential

remedy for this in Chapter 6.

N Myg
havivs Ty K
\/

Time fe -

Figure 5.4: A schematic of the virtual beamforming scheme. The green link shows the
current location of the UE whereas the the gray links depict the previous locations of the
UE where measurements have been stored to perform virtual beamforming.

As an example, consider a downlink Orthogonal Frequency Division Multiplexing
(OFDM) system with central RF frequency fo = 2.6 GHz and a 15 kHz sub-
carrier spacing. For estimation and prediction of Multiple-Input and Multiple-
Output (MIMO)-OFDM channels, Channel State Information Reference Signals
(CSI-RSs) are inserted, per Long Term Evolution (LTE) specifications [3GP11,
Wan13], at every 6" sub-carrier in the frequency domain and every 5 or 10 ms in
the time domain. For a particular link between transmit antenna mr (or a GoB
beam mgop) and receive antenna mpg (which is the only antenna in the case of single

antenna UEs), the elements of the sampled time-variant channel frequency response
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matrix at the UE after down-conversion and bandpass filtering are given as,
H(TLRs, nt) = H(fo + 6 . TLRsAf, to + ntAtCSI). (525)

where ngrg € 1,..., Ngg is the index of the reference signals, n; € 1,..., N; is the
time index, Af is the spacing between the reference signals in frequency, and Atcsy
is the spacing between the reference signals in time. The UE is assumed to be
moving with a constant speed along a straight line which leads to regular CSI-RSs.
Note that irregular movements of the UE can be used for virtual beamforming as
well, if known, for example, from the corresponding sensor data of the UE. For a
mobility independent performance evaluation of the scheme, the calculations can
also be carried out in the spatial domain. This results in the channel matrix having
elements H(ngs,ny) = H(ngrs,nro + npAng) with ny, € 1,..., N being the UE
locations according to Figure 5.4.
We can calculate the virtually beamformed vectors as,

h,, = H(1... Ngs,ns...n; + Myp — 1)w € CVrs*!, (5.26)

t

for ny = 1...N; — Myg + 1. To get the complete effective beamformed channel

after N, time samples, we combine all the vectors h,, into one matrix Hyp €
CNrsxNe=Mve+1l  Here,

W= [Wi,. .., W)t € CMvext (5.27)

is the weight vector which is applied to generate each h,,.

5.3.1 Selection of Weights for the Virtual Beamformer

Generally, the optimum virtual complex weight vector w should be chosen accord-
ing to the number of virtual antenna elements, the relative distance between two
measurement locations, overall Rx power, delay and power distribution of multipath
components in a certain beam direction, interference power from other cells or sites,
etc. However, as we focus mainly on a single link, we typically use a fixed phase
shift 1y between adjacent measurements. The primary issue in choosing the weights
for a fixed look direction is that one would like to have a very narrow main-lobe
and very small side-lobes. However, this is not possible as these are conflicting re-
quirements and the beamforming weights need to be designed around the trade-off
between main-lobe width and side-lobe level. There are several ways to choose the
weights by utilizing window designs like uniform, Dolph-Chebyshev, Taylor-Kaiser

and binomial, each of which offers a certain performance in regards to this conun-
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drum. The uniform array weights provide the narrowest main-lobe but also with
the highest side-lobes whereas the Dolph-Chebyshev weights provide the narrowest
main-lobe for a given side-lobe level, e.g., of 20 dB. The binomial array weights, on
the other hand, provide the widest main-lobe but with totally no side-lobes [Orf16].
A comparison is provided in Figure 5.5. As we are after the narrowest beams to
simplify the channels as much as possible, we choose the uniform scheme giving us

the weight vector with elements,

Winys (Vo) = e~ Womve (5.28)

180° 180°

-135° - -135°

(a) Uniform (b) Dolph-Chebyshev
90° . 90°
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/’///
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/.
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B 1 d) Taylor-K

Figure 5.5: A comparison of the beamwidth of various beamforming weights for an ULA
with d = A/2 and M = 16.

The received power is an important criterion as a conventional omni-directional
reference receiver will collect all the power, from all multipath components, and
from all directions, while a narrow beam might receive only a small portion of that
power. We can choose the phase shift 1)y in such a manner that the beam is steered
towards the significant multipath components in terms of received power. This leads

to a general reduction in the number of multipath components forming the virtually

95



5. VIRTUAL BEAMFORMING

beamformed channel Hyg, but still includes the significant multipath components
comprising the channel and allows us to simultaneously exploit sufficient virtual
beamforming gains.

For geometrical reasons, multipath components in the broadside direction are
less effected by Doppler as compared to multipath components coming from the end-
fire directions. Hence, it is beneficial to search for suitable beams in the broadside
direction first, especially as it offers beam patterns with typically the lowest HPBW.

Once we have chosen an appropriate g = kdcos(¢g), we can calculate the
complex-valued virtual beam pattern A(6, ¢g) over the azimuth angle ¢y € [—, ..., 7]
as the far field superposition of all virtual antenna elements transmitting a w =
M%/B[l, 1,...,1]T € CMvex! yector in the direction ¢y. The beam pattern generated
by the virtual ULA is symmetric on both sides of the UE.

5.4 Evaluation of the Benefits of GoB and Virtual

beamforming

5.4.1 Number of Channel Components

The Interference Mitigation Framework - Advanced (IMF-A), introduced in Sec-
tion 2.2, uses interference floor shaping to decouple cooperation areas formed by
the nine cells of the three cooperating sites. The advantage of this is that one can
focus primarily on a single cooperation area for the evaluation of different aspects,
like the parameter of interest here, the received power over various outdoor UE lo-
cations. The results for such a typical cooperation area can be found in Figure 5.6a,
based on a WinProp ray-tracing simulation in the Munich city center (Karlsplatz
area). Parameters are close to the 3rd Generation Partnership Project (3GPP) case
1, i.e., an RF frequency of 2.6 GHz, a 20 MHz bandwidth, LTE parameters, a 30 m
height of the base station sites and a tilt of 7°. Each cell forms a GoB of 8 equally
spaced narrow beams with an HPBW of 2 degrees in the horizontal and 6 degrees
in the vertical direction. The path loss is calculated via the accumulation of the
power of all the beams from all 3 sites. To generate such narrow beams, massive
MIMO antenna arrays with 16 x 32 = 512 elements are assumed.

It is interesting to see how many of the channel components or beams from all
3 sites will typically be received by the UEs at different locations, which is shown
in Figure 5.6b. Defining relevant channel components as those which fall within a
certain received power window, typically less than 20 dB below that of the strongest
channel component, we can see that for most of the inner part of the cooperation

area, the number of relevant channel components is below 20 or even below 10
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Figure 5.6: A depiction of the benefit of GoB over a three site cooperation area with
real measurements for the outdoor UEs in the Munich city center. The black and white
squares mark the location of the base stations, respectively.

in some cases. In contrast, at the border area of the cooperation area, the UEs
might receive 50 or more relevant channel components. The reason is that at the
cooperation area border, there are no really strong serving channel components, but
instead the UEs experience an interference floor. Fortunately, with the cover shift
concept from [ZMK13], cooperation area border UEs will be scheduled into another
cover shift, so that these UEs become the center UEs within another cooperation
area.

So far we have evaluated the benefits of just GoB, to help reduce the number
of relevant channel components. In order to evaluate the benefit of additional UE-
sided beamforming in the form of virtual beamforming, we consider a single site
scenario at the Nokia campus in Munich. We have employed WinProp (discussed
in Section 3.4.1.2) to produce a ray-traced channel with a 1 ¢m resolution linear grid
resulting in a total of 50 UE locations (see Prediction Area 2 in Figure 5.7). The
base station has an ULA of 16 Kathrein antennas, allowing again to form narrow
beams of about 2° HPBW.

For a single site case, we can carefully calibrate the virtual beam direction to find
the best reduction in channel components possible, in combination with the GoBs at
the transmitter side. Figure 5.8 shows the number of relevant channel components
for a virtual beam formed by combining 32 antenna elements, steered in various
directions. We can observe that the number of relevant channel components can be
halved by the application of virtual beamforming. For example, when pointed in
the right direction like 2 or 3 degrees in this case, at a reasonable threshold level of
less than 20 dB.
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Figure 5.7: WinProp ray-tracing scenario for the Nokia Campus in Munich.
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Figure 5.8: Color-coded number of relevant channel components for various virtual beam-
forming directions and varying threshold levels

5.4.2 Number of Multipath Components

Minimizing the number of channel components is important to reduce the CSI
reporting overhead and to increase the overall robustness of the cooperation or
massive MIMO precoding. However, another significant issue is the number of

multipath components within each channel component, which seems to be of great
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importance for the CSI predictability. To get an idea of the benefit of massive
MIMO techniques like the GoB and virtual beamforming, to help reduce the number
of relevant multipath components, a sub-area of the Nokia campus in Munich (see
Prediction Area 1 in Figure 5.7) has been ray-traced on a 5 m x 5 m grid in
WinProp, resulting in approximately 200 UE locations. The base station again has
an ULA of 16 standard Kathrein antennas.

200
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=
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Beam index (Various beam directions)
e

|
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Location Index

Figure 5.9: Number of multipath components over location 1 to 200 for beam index 1 to
18. Here, MPC is short for multipath component.

As a first test, we form a narrow beam at the base station and then steer
it in 10° steps from —90° to +90°, resulting in 18 beams overall. Our goal is
to identify the variation in the number of multipath components for all 200 UE
locations, with no beamforming performed at the UE side and for each of the
steered beams. The result is shown in Figure 5.9 and we can see that the number of
multipath components varies quite significantly from a few multipath components
to more than 100 multipath components. This means that in a NLOS scenario,
the direction of the serving beam at the base station and the location of the UE
within the environment, play an important role in terms of the number of multipath
components. The location of the UE can be beneficially exploited by employing UE-
sided beamforming.

As a further result, see Figure 5.10 where the number of multipath components
has been evaluated for a varying threshold defining the relevance of a multipath
component. Again, there is a great difference between the different beams being
the parameter of the various curves. It can be observed that the serving beams
(all the GoB beams received with enough power to serve UEs) experience a strong
reduction in the multipath components, something like 10 multipath components,
in the case of a threshold of —20 dB. For the reflected beams (all the GoB beams

received with a lower received power than acceptable for a reliable communica-
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Figure 5.10: Number of multipath components for decreasing threshold from —5 to —45
dB with beam index as parameter for a single measurement location. Here, MPC is short
for multipath component.

tion), massive MIMO techniques bring much smaller gains despite the very narrow
transmit-beams, comprising on the order of 100 multipath components. This means
that the massive MIMO beamforming, like GoB at the transmitter side, will reduce

the number of multipath components mainly for the serving beams.
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Figure 5.11: Number of multipath components for a Single-Input and Single-Output
(SISO) channel versus the strongest serving beam over all 200 locations. Here, MPC is
short for multipath component.

Figure 5.11 provides the number of multipath components for all 200 UE loca-
tions for the strongest serving beam (red line) versus that of a SISO channel (blue
line) at the same location. Almost for all locations, with minor exceptions, the
GoB beam has a lower number of multipath components, typically ending up at 10
to 30 multipath components. However, this reduction in the number of multipath

components due to massive MIMO beamforming for the serving beam(s) is rela-

100



tively modest and it is even lower for the reflected beams. It can be explained by
the relatively small AoD at base station cells, i.e., even very narrow beams excite a
large portion of the multipath components and only a few of them are suppressed.
In contrast, at the UE side with a large AoA, beamforming is much more effective
in down selecting multipath components (as discussed in Section 5.1.1) which can
be verified in Figure 5.12 for the Prediction Area 2 of Figure 5.7, with the opti-
mum beam direction. Unfortunately, placing many antennas at the UE side is very

challenging which solidifies the importance of schemes like virtual beamforming.
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Figure 5.12: Number of multipath components for a SISO channel versus the strongest
serving beam over all 200 locations. Here, MPC is short for multipath component.

5.4.3 Channel Prediction Performance

In order to appraise the benefit of reducing the number of multipath components
on the performance of channel prediction, we again consider the Prediction Area
2 of Figure 5.7. The single antenna UE is slowly moving, and by storing and
combining several measurement time instances, it forms a virtual antenna array of
size 16 or 32 elements [AZH15a]. Note, alternatively we can consider UEs with
16 or 32 physical antenna elements. Each of the 16 base station ULA elements is
a standard Kathrein antenna comprising 16 antenna elements each, resulting in a
massive MIMO antenna array at the base station of size 16 x 16 = 256; placed at
a typical macro site height of 30 m. The base station-UE distance is about 300 m
and the UE moves along a line of 50 points with a resolution of 1 cm at a height of
2.19 m.

We again use parameters close to the 3GPP case 1. The reduction in the num-
ber of multipath components directly affects the time-variance of the relevant taps
resulting in a far smoother evolution of the Channel Impulse Response (CIR). For

that reason, we have applied the most simple linear prediction per tap of the CIR
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Figure 5.13: NMSE vs prediction horizon for various effective channels

by calculating the amplitude and phase difference of two consecutive time slots and
extrapolating this linearly. As usual for linear prediction, the long term perfor-
mance is degrading fast. But, for the interesting prediction horizon of about 10 ms
and mobile speeds up to 15 km/h, corresponding to about 0.3\ to 0.4\ at an RF
frequency of 2.6 GHz, this very simple scheme achieves a very good performance
for the combination of beamforming schemes which results in the smallest number
of multipath components. It achieves an extremely low Normalized Mean Square
Error (NMSE) of approximately —20 dB at a prediction horizon of 2 cm (corre-
sponding roughly to 0.2)), for all the beamforming schemes under consideration.
It also achieves an NMSE of —15 dB at prediction horizons up to 6 cm (0.6)) for
a combination of GoB at the transmitter side and virtual beamforming over 32

antenna elements at the receiver side.

5.5 Summary

In this chapter, we have introduced the novel UE-sided beamforming scheme, called
virtual beamforming. We have shown the benefit of virtual beamforming to reduce
the number of channel components and multipath components, in combination with
base station-sided beamforming scheme like GoB, and have shown that a significant
improvement is possible in channel prediction performance, with a proper system
design. Virtual beamforming helps to subdue the abrupt variations present in a
time-varying and frequency-selective channel, resulting in smoother channel fre-

quency responses which are easier to predict by any channel prediction schemes.
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6. DATA TRANSMISSION OVER VIRTUAL BEAMS

Chapter Summary

This chapter details the challenges encountered when considering virtual beams for
data transmission. A potential solution is provided in Section 6.3, in the form of
multiplexing of user data by coded transmission and reception over virtual beams.
This approach enables us to partially overcome the inherent re-transmission penalty
of virtual beamforming. The re-transmission penalty arises from the need to re-
transmit data or pilot symbols as the virtual beam is formed by combining mea-
surements over from a single antenna UE. Moreover, we also present a model for
combining virtual and physical antenna arrays in Section 6.4, which can help further

reduce the re-transmission penalty. This work has been published in [AZH16].

6.1 Introduction

Virtual beamforming, as discussed in Section 5.3, enables the generation of a (vir-
tual) Uniform Linear Array (ULA) at the User Equipment (UE) side, even for single
(physical) antenna UEs [ZH13, AZH15a]. The idea behind it is to utilize the move-
ment of the UE and store the Myg € N adjacent received signal measurements,
which can then be thought of as the signal received at the various antenna elements
of an array. A weighting vector w = [w,...,,wiry]7T € CMVEX! s then applied
to these measurements to generate the beamformed channel. The complex weight
vector w should be chosen according to the number of virtual antenna elements, the
relative distance between two measurement locations, and the desired application
of virtual beamforming.

In the previous chapter, we have already established that virtual beams provide
a better prediction performance with larger prediction horizons. However, this per-
formance gain is only for a part of the channel in the beam direction. We essentially
eliminate all the other parts of the channel that we cannot predict reliably. Hence,
as we need information about the complete channel, the question arises, how to
incorporate the virtual beams for user data transmission? There are two potential

answers to this question:

e One way to go about this could be to predict or estimate the channel for
one beam direction, then rotate the beam in another direction and predict
or estimate the channel for that direction. We continue doing this until we
have covered the complete 360° around the UE. We then combine these chan-
nels to get the complete predicted channel for the UE, and feed this channel

information back to the base station for precoding and data transmission.

e Another way, and a potentially better solution, is to incorporate orthogonal

coding to simultaneously employ multiple virtual beams for data transmission.
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We will discuss both these solutions in detail in the following sections.

6.2 Combine Virtual Beams to Get Complete Chan-

nel

The simplest way to design the complex weights for virtual beamforming is to use a
fixed phase shift ¢y between adjacent locations giving us the weighting vector with
elements wy,,, (1) = e™7Y0™ve_ For a given 1 (refer to equation (5.15)), we can cal-

culate the complex-valued virtual beam pattern A’() by utilizing equation (5.17).

Side lobe 150° A 30°
Interference \ \
o
o [ -30 20 -10 ] o
180 > B 0

—~150° \/-30°

(a) Uniformly weighted beams (b) Sector beams of width 30° each

Figure 6.1: Multiple virtual beams rotated in various azimuthal directions are overlaid
on top of each other to capture the complete channel. The idea is to showcase the
inherent challenges and problems of this approach. The co-elevation angle as depicted in
Figure 5.2b, is fixed at 8 = 90°.

A conventional omni-directional reference receiver will collect all the power, from
all the multipath components and from all directions, while a narrow beam might
receive only a small portion of that power. This allows us to divide the channel into
parts which can be predicted with fewer errors and for a longer time because the
beamformed channel is comprised of very few multipath components [AZH15a]. To
estimate the complete channel, we need to rotate the beam in all directions to cap-
ture all multipath components and then combine them using a suitable combining
strategy. A straightforward summation would be easy to implement, but ignores
the side-lobes which will typically cause inter-beam interference. Additionally, there
is overlap between the adjacent beams which would result in some multipath com-
ponents contributing twice to the combined channel as shown in Figure 6.1a. There
are gaps between adjacent beams as well due to the elliptical shape of typical beam
patterns. Due to the difference in beamforming gain in these gaps, some multipath

components will contribute with lower power as compared to others in the combined
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6. DATA TRANSMISSION OVER VIRTUAL BEAMS

channel. If we move the beams further apart to reduce the overlap, the size of the
gaps would increase, which is highly undesired.

Ideally, we would like to have rectangular beams which could cover all 360° with
minimal overlap and coverage gaps but it is not possible to design such beams.
However, we can design sector beams which are based on the inverse discrete-space
Fourier transforms of the array factor and are very close to rectangular beams as
shown in Figure 6.1b [Orfl16]. Such beams allow us to set very low stop-band
attenuation values to minimize inter-beam interference from side-lobes. The sectors
can also be designed to have minimal gaps and overlaps between adjacent beams.
The downside is that such sector beams have wide lobes and thus the benefits of
UE-sided beamforming, like a reduction in the number of channel components and
multipath components, are not achieved properly.

From a hardware perspective, the UE needs to be capable of simultaneously
forming the beams in all directions, predicting the channel for each individual beam
and then combining them together at each time slot so that there is no additional
time penalty to virtual beamforming. Another important factor to consider is the
width of the individual beams to be combined to get the complete channel. Very
narrow beams give us far better prediction performance [AZH15a, AZH15b], but
more beams need to be predicted individually and then combined together resulting
in higher complexity. Furthermore, in case of narrow beams, potentially a high
number of virtual beams have to be combined so that estimation errors can be
expected to add up to large error terms. Hence, it makes sense to find a solution that

enables reliable and efficient use of the virtual beams directly for data transmission.

6.3 Orthogonally Coded Data Transmission over

Virtual Beams

One of the biggest drawbacks of virtual beamforming is that it requires the retrans-
mission of Mypg data symbols, resulting in a reduction in throughput, by a factor
of Myg. This means that there is a trade-off between prediction performance and
data throughput. To counter this loss in throughput, we devise the use of multi-
ple virtual beams segregated through orthogonal codes (for which a schematic is
provided in Figure 6.3) [AZH16].

The main challenge for multiplexing of user data by coded transmission over
virtual beams is that at the UE, the code is inevitably coupled with the beam
shape. Often orthogonal codes have values which change sign from one value to
the next, for example, +1 or —1 in Hadamard codes. Such codes can result in

a complete reversal of the phase shift between adjacent antenna elements, which
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results in undesired beam shapes and a loss of gain as shown in Figure 6.2a for an
antenna spacing of A\/10. Here, we denote the first row of the Hadamard matrix of
size 32 as code 1 (all ones code) and can observe that it has a desirable beam shape
with the look direction at 90°. On the contrary, code 2, which is another row of
the Hadamard matrix, has no preferred direction and cannot be used as a suitable
beam for data transmission. One way to get around this problem is to use nearly

orthogonal circular codes of the form,

Croe = e~ 27 noc mye/Myg (6.1)
where, noc = 0,1,..., Noc, with Noc being the total number of codes or coded
virtual beams, myg = [1,2, ..., Myg]T, and My being the total number of (virtual)

antenna elements. This kind of circular code can give us usable beams, which are
still fully orthogonal to each other, at least at the transmitter side, as shown in

Figure 6.2b. Hence, we will use circular codes for our user data multiplexing scheme.

Beam Pattern [dB]
Beam Pattern [dB]

50 100 150 200 250 300 350 0 50 100

1.%0 260 2.%0 300 350
Incident Angle [°] Incident Angle [°]
(a) Hadamard Code (b) Circular Code

Figure 6.2: A comparison of beam patterns of two codes over a 32 element virtual array
having a A\/10 spacing for different types of codes. Here, 0 dB represents the gain of an
isotropic radiator.

6.3.1 User Data Multiplexing Using Two Orthogonal Codes

To explain the main idea, we first start with a very basic setup with a single an-
tenna transmitter and a single antenna UE in an urban macro scenario. The UE
moves on a straight line with a constant speed. The transmit symbols d; and ds
are simultaneously transmitted repeatedly over Myp time slots, where Myp is the
number of measurements that will be stored at the UE to create the virtual antenna
elements. At each time slot, the transmit symbol d; is multiplied by the respective
code bit from the code word c; of length Myg. Similarly, the transmit symbol d,
is multiplied by the code word c,. As in an Orthogonal Frequency Division Mul-

tiplexing (OFDM) system, the sub-carriers are orthogonal, hence they can carry
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separate transmit symbols and the following process can be separately applied to
each of the sub-carriers. The transmission vector of length Myg x 1 is then given

as,

X = c; dy + ¢y ds. (6.2)

A simple schematic is provided in Figure 6.3, where the green link is the actual
location of the UE and the gray dashed lines show the past locations and stored
measurements for the UE over time.
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Figure 6.3: A simple schematic of the coded data transmission and reception over virtual
beams using two orthogonal codes

When the UE has moved for Myg time slots, we can combine the measurements
from these locations to generate the virtual beams. As the codes are coupled with
the beams, we use the codes themselves as the receive-beamforming weights, hence
wil = cll and wil = cl! (Figure 6.2b). The received beam signal for code 1 is given

as,

1 (diag(h)x +n)
1 (diag(h)(c1 dy + ¢z dz) + )

= cl(diag(h)c, d; + diag(h)cy dy + n)
1 (diag(h)

= cli(diag(h)c,) d; + c}(diag(h)cy) da + ci'n (6.3)
—_—— ~—
A XTio ni

where, h € CMvB*! ig the vector containing the time-variant channel coefficients
of the channel transfer function H(f,t) (refer to the Bello functions shown in Fig-

ure 3.2) for one particular sub-carrier. Similarly, the beam for the second code is
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given as,

Yy = ch (diag(h)x + n)
= c(diag(h)(c; d; + ca d) + n)
= cl(diag(h)c, d; + diag(h)cy dy + n)
= cfl(diag(h)c,) di + cH(diag(h)cy) dy + céir: (6.4)
XTy B na

where A and B are the desired signal parts whereas XTi5 and XT5; are the sum
cross-talk levels, respectively, for data symbols d; and dy, and n; and ns are the
corresponding noise samples.

We observe that the individual additional noise terms in each of the measure-
ments are added together and amplified by the beamformer. For Independent Iden-
tically Distributed (IID) noise values, this leads to the same overall noise power as
known for a physical antenna array. But, there is a penalty for the virtual versus
the physical antenna array, as in the case of virtual beamforming, the received-
power per time slot is limited to that of the physically available antenna elements.
So for the user data multiplexing, virtual beamforming provides no to very little

beamforming Signal-to-Noise Ratio (SNR) gains.
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Figure 6.4: Sum cross-talk levels X719 and XTb; over sub-carriers using codes of length
32 for a measured channel.

The codes are orthogonal at the transmitter but after passing through the time-
variant channel, they are no longer perfectly orthogonal at the receiver of the UE.
This leads to the cross-talk terms X7j9 and X75;. These sum cross-talk terms
can be calculated as the channel h is known because of prior channel estimation
and/or channel prediction performed at the UE side. In contrast, the base station
transmitter knows only the reported Channel State Information (CSI) per virtually

beamformed radio channel and therefore cannot estimate this cross-talk level.
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If the cross-talk level is low, we can formulate a system of linear equations as,

Y| dq 1y
AR [

It can be solved for the desired symbols d; and ds through a Least Squares (LS) esti-

A XTlg
XTy B

mation or if the second-order statistics of the noise are known, through a Minimum
Mean Square Error (MMSE) estimation.

Figure 6.4 shows the sum cross-talk levels for an urban macro measured channel
with noise. The channel measurements were acquired at the Nokia campus in
Munich as described in Section 3.4.1.2. A sum cross-talk level of 0 dB means
that the codes became non-orthogonal after passing through the channel and the
undesired symbol in a certain receive beam has the same magnitude as the desired
one. Hence, the desired data symbol cannot be resolved properly from the received
signal. We can see that cross-talk levels below —15 dB or even —20 dB can be
achieved, which would insure reliable communication over the coded virtual beams.
The cross-talk goes above —10 dB for some of the sub-carriers. However, through
proper user scheduling, the areas with high cross-talk levels can be avoided. This
way every UE might be able to constantly remain below the minimum cross-talk

level threshold most of the time.
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Figure 6.5: Sum cross-talk level XTj5 and XT5; over sub-carriers using codes of length

32 for a ray-traced IlmProp channel. The various curves correspond to different velocities
of the UE.

In order to assess the affect of channel variation on cross-talk levels, we have
plotted the cross-talk levels for varying UE velocities in Figure 6.5. The SNR is
0 dB. This time we have used the ray-traced I[lmProp channel from the geometrical
scenario described in Section 3.4.1.1. To analyze the effect of varying velocity with
measured channels is not possible as it would require a new measurement campaign.

On the other hand, the IlmProp allows us to vary the velocity of the UE with ease;
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a feature which is not present (at the time of writing) in WinProp ray-tracing
tool. However, it should be noted that the overall cross-talk levels are far lower
as compared to our measured channel because the IlmProp scenario is very simple
compared to the Nokia campus scenario. We can see that for pedestrian velocities
up to 15 km/h, the cross-talk levels are fairly similar. However, as the velocity
increases, the cross-talk level gets worse as well. This means that there is a direct

correlation between the variations in the channel and the cross-talk level.

6.3.2 User Data Multiplexing Using Four Orthogonal Codes

We can now expand the same setup of a single antenna transmitter and a single
antenna UE in an urban macro scenario to four orthogonal codes. Therefore, we
can transmit 4 data symbols over Myg time slots. This increases the efficiency from
2/Myg to 4/Myg. We again consider a single sub-carrier. The transmission vector

of length Mygp x 1 is given as,
X =C1 d1 + Co d2 +cC3 d3+C4 d4. (66)

Similar to the case with two codes, when the UE has moved for Myg time slots,
we combine the measurements from these locations to generate the virtual beams.

The received beam signal for code 1 is given as,

! (diag(h)x + )
cl(diag(h)(c, di + cy dy + c3ds + ¢4 dy) + 1)
ci'(diag(h)c, d; + diag(h)c, dy
+ diag(h)cs d3 + diag(h)cy dy + n)
= c['(diag(h)c;) dy + i (diag(h)cy) dy

hh==¢C

A XTio
+ ct(diag(h)es) ds + cll(diag(h)cy) dy + ci'n (6.7)
— — ~—~—
XT3 XTha ni

Similarly, the received beams for the other three codes are given as,

Yy = cg(diag(h)cl) dy + cgl(diag(h)cg) do

XTs1 B
+ ci(diag(h)cs) ds + c5(diag(h)cy) dy + cyn (6.8)
— — ~~
XT3 XToqy n2
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ys = cy (diag(h)cy) di + i (diag(h)cy) dy

XT31 XT32
+ ci(diag(h)cs) ds + ¢y (diag(h)c,) dy + cyn (6.9)
— — ~
C XT34 n3

Yy = cf(diag(h)cl) dy + cf(diag(h)cg) ds

XT41 XT42
+ ci(diag(h)cs) ds + ¢ (diag(h)cy) dy + ciin (6.10)
— —_— ~—~—
XTys D ng

where A, B, C' and D are the desired signal parts and now each code has cross-talk
from the other three codes. Once again, the sum cross-talk levels at the UE, can
be calculated as the channel h is known at the UE receiver. If the cross-talk level

is low, we can formulate a system of linear equations,

Y1 A XTyo XTiz XTiy| |dy ni

XT: B X153 XT.
Y2 _ 21 23 24 2| 4 T2 (6.11)
Y3 X151 XT3 C XT3\ |ds ns

Ya XTyn XTyp XTys D dy Ny

=N

which can be solved, similarly to the two-code case, for the desired data symbols

dy, ds, ds and dy through least-squares or MMSE estimation.

e

Cross-talk level [dB]

0 50 100 150 200 250
Subcarriers

Figure 6.6: Sum cross-talk level over sub-carriers between 4 codes of length 32 for a
measured channel.

Figure 6.6 shows the sum cross-talk level for four coded multiplexed streams for

an urban macro measured channel with noise. We can see a similar trend as in the
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two code case, where a cross-talk level below —20 dB can be achieved quite easily

by properly adapting the beams to the sub-carriers.

6.4 Orthogonally Coded Data Multiplexing over

Combined Beams

A virtual antenna array of size 32, as evaluated above for a single antenna UE, would
need the multiplexing of 32 data streams to achieve the same efficiency as a physical
antenna array of the same size. An extension of the coded data multiplexing scheme,
from 4 parallel streams to 16 or 32 orthogonal streams, is obviously challenging. In
addition, beamforming SNR gains are lower or even zero for virtual arrays (when
compared to physical arrays), as the transmit power has to be shared between the
codes. The user data transmission, therefore, mainly benefits from the improved
suppression of the interferer and the larger channel prediction horizon. Note, as
the Channel State Information Reference Signals (CSI-RSs) do not have to share
codes, but repeat the same signal multiple times, channel estimation itself profits
also from SNR gains.

The above mentioned issues suggest combining the benefits of the two worlds
by enhancing a limited set of physical UE antennas with virtual beamforming. For
example, an 8 antenna UE would require only 4 retransmissions to form a combined
physical-virtual 32 element antenna array, which additionally can achieve a 9 dB
SNR gain. In this case, full efficiency is already achieved by the multiplexing of
4 data streams over four orthogonal codes of length four, transmitted in four time
slots.

Instead of transmitting four streams to one UE, one might alternatively serve
four streams to four different UEs which are spatially located far apart from each
other. This would relax the fixed coupling of code and beamforming weights. In that
case, the streams will be separated by Multi-User MIMO (MU-MIMO) precoding
instead of the orthogonal transmit-codes. In practice, the number of active UEs
might often be limited and a suitable mode adaptation might be needed.

In the following, we will investigate in more detail another potential setup, which
combines low complexity with large virtual beamforming gains. It is based on the
observation that the 32 virtual antenna elements array discussed so far, uses a
very low virtual antenna spacing of just 1 cm (equal to A/10 for the given Radio
Frequency (RF) frequency of 2.6 GHz). The channel prediction quality is mainly
affected by the Half-Power BeamWidth (HPBW) of the virtual beamformer, which
itself depends on the aperture of the virtual array. This is defined by the distance

between the outer most antenna elements and will be unchanged by down-sampling
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6. DATA TRANSMISSION OVER VIRTUAL BEAMS

of antenna elements, for example, to a \/2-spacing.

Serving beam Base Station
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Figure 6.7: Order of data transmission over one base station beam to a combined 8
element antenna, consisting of 2 physical UE antennas and 4 virtual steps

An exemplary setup is given in Figure 6.7 for a 2-antenna element UE plus
four virtual time steps forming a virtual eight element array with \/2-spacing. The
figure additionally illustrates the overall timing diagram of the proposed concept.
The base station transmits, for example, over one beam of a fixed Grid of Beams
(GoB) the complex scalar transmit-signal x;;, comprising the elements of the four
orthogonal codes c;; to cy4; corresponding to the four virtual beams and the data

symbols d"lj to dflj. It is given as,
wij = [c1j Caj sy caj[dy; dy; dy; di]” (6.12)
where,

e The second subscript j is related to the time instant under consideration, i.e.,
t1, t1 4+ Toniee, t1 + 20 5nie or t1 + 3Tgnir, where Ty is the fixed time split

between different positions of the UE which is moving at a constant velocity.

e The first subscript ¢ corresponds to the superscript in the transmit symbols
and indicates the selected data symbols from the block of data for the parallel
data streams d;; to dy4;. The length of the data blocks denoted by D has to
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be adapted to the time Ty, and the symbol timing so that a continuous data
transmission can be achieved. Correspondingly, the transmission of x(;1);

compared to x;; is shifted by the timing of one symbol tsymbol-

For the given example, the UE receives x;; with the two receive antennas leading

to the received vector,
Yij = [hljxij hgjxij]T + l’lj. (613)

where z;; is affected by the corresponding channel coefficients for the different an-
tenna elements and the received noise vector n;. The UE stores all the received
vectors y;; into the matrix Y to apply, after full reception, the combined beam-
formers to all the data sets.

Let us assume a UE moving with a speed of 43 km/h, then one has to set
Tiniee to a value of 10 ms to achieve a A spacing between two transmission steps,
or equivalently, the A/2 spaced combined virtual antenna array of Figure 6.7. For
this scheme, the HPBW would be just 6 degrees compared to 17 degrees for the 32

element virtual antenna array.

6.5 Summary

In this chapter, we discussed the challenges posed by virtual beamforming for data
transmission, that is, the re-transmission penalty which causes a loss of throughput.
We have devised an orthogonal coding based scheme to reduce the effect of the re-
transmission penalty by forming more than one orthogonal virtual beams. We have

also proposed the potential extension of the scheme for multiple antenna UEs.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

The results presented in this thesis hold significance to cellular system designers as
we move towards the standardization and implementation of Coordinated Multi-
Point (CoMP) and massive MIMO in Fifth Generation (5G) and beyond 5G net-
works. We have presented a framework that supports an effective implementation
of massive MIMO systems in Frequency Division Duplex (FDD) operation.

A detailed description of the proposed Interference Mitigation Framework -
Advanced (IMF-A) and its evolution for 5G, which additionally supports massive
MIMO and small cells, is presented in Chapter 2. The IMF-A was designed with
the goal to mitigate interference between cooperation areas. This enables the devel-
opment of high-performing advanced transmission and reception schemes focusing
on a single cooperation area. However, the inclusion of massive MIMO is chal-
lenging for FDD systems as the scheme is, in essence, defined for Time Division
Duplex (TDD) systems. In TDD systems, the increasing number of antennas leads
to channel hardening, which essentially means that the fading channels behave as
deterministic channels because the channel fluctuations average out over the anten-
nas. This means that there is no need to transmit reference signals and estimate the
channel as the current realization of the channel is close to its average value. This
is not the case for FDD systems and the channel needs to be estimated for each of
the antenna elements. For pilot-assisted channel estimation, this means that a huge
number of pilot or reference signals needs to be transmitted, taking away precious
resources. As a solution to the exploding reference signal overhead for FDD mas-
sive MIMO systems, we have proposed to use the Grid of Beams (GoB) concept,
which enables us to squeeze the large number of massive MIMO antennas into a
few effective beams. These beams are spread out to cover the entire sector, similar
to a traditional Chinese fan, with minimal overlap. The benefit is that these beams

comprise the effective channel components and the User Equipments (UEs) only
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need to estimate the few strongest channel components, resulting in a significant
reduction in Channel State Information (CSI) reporting overhead.

The underlying challenge for a practical and efficient implementation of both
CoMP and massive MIMO, is the large number of channel components and the
huge number of multipath components present within each channel component.
Channel prediction has been identified as the scheme which could effectively resolve
this issue. Channel prediction algorithms available in the literature (an overview
is provided in Section 4.2), whether parametric-model based or channel frequency
response based, directly utilize the channel knowledge available in its respective
format, to predict the channel in the future. This imposes an upper bound on the
prediction performance, which is usually worse than the required performance in
terms of the Normalized Mean Square Error (NMSE) for a reliable communication
that is typically dictated by the physical conditions and geometry of the environ-
ment within which the base station and the UE reside. As a part of this thesis,
we have analyzed and detailed two state-of-the-art channel prediction algorithms
in Section 4.3 and Section 4.4. In Section 4.5, we have devised a scheme which
combines the best of both state-of-the-art algorithms and works very well, specifi-
cally in the low Signal-to-Noise Ratio (SNR) region. The basic idea is to perform a
Higher Order Singular Value Decomposition (HOSVD) on the channel tensor and
mitigate the noise by means of a low-rank approximation prior to predicting the
channel with the Kalman filter. This gives, for our particular example scenario, a 7
dB prediction NMSE gain as compared to just the Kalman filter-based prediction
scheme. Another benefit is that, in the case of high SNR, the HOSVD step can
simply be omitted to lower the complexity of the overall system.

The most significant contribution comes in the form of a method which enables
UEs to form narrow beams, as if the UEs were equipped with massive MIMO arrays,
even if the UEs only have a single physical antenna element. This method is called
virtual beamforming and is introduced in Chapter 5. The general idea is that we
exploit the movement of the UE and store the received signals for several time slots.
These measurements are then perceived as if they were received by the individual
elements of a physical antenna array. The drawbacks are obvious. For example, as
we need to transmit the same signal over the time slots forming the virtual beam,
we have to wait for the time it takes to gather the measurements. Therefore, we
need good time synchronization and the UE is moving at ideally a constant speed
which we either know or can estimate. On the other hand, if applied appropriately,
the benefits can be enormous as well. For example, virtual beamforming allows
us to simplify or reduce the physical limitations of the channel prediction problem
itself by effectively reducing the number of multipath components in each channel

component. This enables better prediction performance and a reduction in the CSI
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reporting overhead in FDD systems.

Lastly, in Chapter 6 we have proposed a solution to transmit user data over
the virtual beams. Virtual beamforming directly applied to user data can be very
inefficient as the data symbols need to be transmitted multiple times. To overcome
this challenge we have proposed parallel transmission over a set of coded virtual
beams. We have shown that many parallel coded beams can be supported reliably,
which allows us to downgrade the re-transmission penalty of data symbols, inherent
in virtual beamforming systems. We have also proposed a method to combine an
arbitrary number of physical and virtual antenna elements to form virtual massive
MIMO arrays. The benefit of having more physical antennas is that fewer re-
transmissions are required to form an overall large effective massive MIMO array,

giving a better throughput.

7.2 Future Work

For future work, it would be interesting to evaluate other schemes to form even
narrower beams as compared to virtual beamforming. The challenge is that the
Half-Power BeamWidth (HPBW) of a Uniform Linear Array (ULA) is dictated
mainly by its aperture, and partially by the number of antenna elements and the
spacing between them. Thus, using linear methods, we can only achieve the HPBW
provided by virtual beamforming or any other beamforming scheme utilizing phys-
ical antennas. For this reason, one has to look for other ways to achieve narrower
beams. We have already proposed two ways to achieve an even narrower HPBW.

First, we have proposed a scheme to artificially induce similar effects as physical
mutual coupling in virtual antennas [ZA16a, AZH15a]. It has been known in the
literature for quite some time and was recently shown by [IN14] that mutual coupling
can induce super-directivity. This results in extremely slender beams with very
low HPBW. The problem is that it requires huge input currents to achieve super-
directivity in physical antennas and results in large Ohmic losses. We do not have
this problem with virtual antennas and artificially induced mutual coupling, as it
is basically post-processing of the received signals.

Second, we have proposed a novel UE-sided nonlinear processing scheme which
also achieves super-directivity like effects [ZA16b]. In this scheme, we use two
separate beamformers and multiply their respective beamformed received signals
together, either in the frequency domain or in the time domain. This gives us
the equivalent of very narrow beams, in terms of the reduction in the number
of multipath components in a given direction. The main caveat though is that

nonlinear processing comes with many challenges and it is not trivial to deal with,
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for example, it would require a proper modification of the transmit symbols as
well. We have already analyzed the benefits it has on multipath component and
feedback reduction, both on the link-level and on the system-level. However, the
main mathematical aspects like the SNR of the resulting received signal, its higher-
order statistics and decoding of the desired symbols still require further study. For
this reason, both of these schemes have been excluded from this thesis.

In the analysis presented in this thesis, we have only considered a single active
UE at a time and looked at the performance improvements for various parame-
ters only at the link-level. For implementation purposes and practical adoption of
schemes like virtual beamforming, it would be essential to have a look at the overall
system-level performance, at least within a single cooperation area. To this end,
our schemes have been implemented in Nokia’s 5G system-level simulator called
AMOoRE (Advanced Mobile Radio Realtime Experience), which analyses and show-

cases the latest advancements in 5G.
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Appendix A

Definitions

n-mode product of a Tensor with a Matrix

The general description of an n-mode product # x,, U,, of a tensor H € Ch>f2x-xIn
with a matrix U € C/»*Ir isan (I} X Iy X ... X I,y X J, X I X ... x Iy) tensor

whose elements are calculated as,

n T1yeery Tn—1:Jn,tn+41y-s = 11,82y0005 i ujnyin :
(H X U) in—1,Jn,in+1,-IN ZHH 12,..iN (A 1)

i'n,

where the subscripts i1,1s,...,ix denote the indices of the corresponding tensor

dimensions.

Properties of the Core Tensor

The two significant properties of the core tensor S are as follows:

Orthogonality: if a # b, two sub-tensors S; —, (the n-th dimension is set to the

fixed value a) and S;, -, are orthogonal for all possible values of n, a, and b.

Ordering: the n-mode singular values of H denoted as a}f‘) are defined as the
higher-order norms of the core tensor ||S;,—,|lm where p =1,2,...Iy. They exhibit
the following property for all values of n:

1Si, =1l > [|Si=2llt > - [|Sip=1y |l > 0.
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List of Abbreviations

3D 3-Dimensional

3GPP 3rd Generation Partnership Project
4G Fourth Generation

5G Fifth Generation

ACF AutoCorrelation Function

AoA Angle of Arrival

AoD Angle of Departure

AR AutoRegressive

AWGN Additive White Gaussian Noise
CDMA Code Division Multiple Access

CIR Channel Impulse Response

CO-MIMO COoperative MIMO

CoMP Coordinated MultiPoint

CRB Cramer Rao Bound

CSI Channel State Information

CSI-RS Channel State Information Reference Signal

CSIT Channel State Information at the Transmitter

CTF Channel Transfer Function

DCS Dynamic Cell Selection

DoFs Degrees of Freedom

ESPRIT Estimation of Signal Parameters via Rotational Invariance Tech-
niques

FBMC Filter Bank Multi-Carrier

FD Full-Duplex

FDD Frequency Division Duplex

FDM Frequency Division Multiplexing

FDTD Finite Difference Time Domain
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List of Abbreviations

FEM
FFT
GoB
GTD
HetNet
HOSVD
HPBW
ICIC
ICN
IFFT
11D
IMF-A
IoT

1P

ISI

JP
JSDM
JT
JT-CoMP
KPIs
LMS
LOS

LS

LTE
LTE-A
MBB
MCS
MIMO
MISO
ML
MMSE
mmWayve
MoM
MSE
MU-MIMO

Finite Element Method

Fast Fourier Transform

Grid of Beams

Geometrical Theory of Diffraction
Heterogeneous Network

Higher Order Singular Value Decomposition
Half-Power BeamWidth

Inter-Cell Interference Coordination
Information Centric Networking
Inverse Fast Fourier Transform
Independent Identically Distributed
Interference Mitigation Framework - Advanced
Internet of Things

Internet Protocol

Inter-Symbol Interference

Joint Precoding

Joint Spatial Division and Multiplexing
Joint Transmission

Joint Transmission Coordinated MultiPoint
Key Performance Indicators

Least Mean Squares

Line-Of-Sight

Least Squares

Long Term Evolution

Long Term Evolution - Advanced
Mobile BroadBand

Modulation and Coding Scheme
Multiple-Input and Multiple-Output
Multiple-Input and Single-Output
Maximum-Likelihood

Minimum Mean Square Error
millimeter Wave

Method of Moments

Mean Square Error

Multi-User MIMO
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List of Abbreviations

MUSIC
NLOS
NMSE
OFDM
OP-CoMP
PAPR
PSAM
QAM
RE

RF
RLS
RMS
SDMA
SINR
SISO
SNR
SON
SU-MIMO
SVD
TDD
TDMA
UDN
UE
ULA
URA
WSS
ZF

MUItiple SIgnal Classifier
Non-Line-Of-Sight

Normalized Mean Square Error
Orthogonal Frequency Division Multiplexing
OPportunistic CoMP
Peak-to-Average-Power Ratio

Pilot Symbol Assisted Modulation
Quadrature Amplitude Modulation
Resource Element

Radio Frequency

Recursive Least Squares

Root Mean Square

Spatial Division Multiple Access
Signal-to-Interference-plus-Noise Ratio
Single-Input and Single-Output
Signal-to-Noise Ratio
Self-Organizing Networks
Single-User MIMO

Singular Value Decomposition
Time Division Duplex

Time Division Multiple Access
Ultra Dense Network

User Equipment

Uniform Linear Array

Uniform Rectangular Array

Wide Sense Stationary

Zero Forcing
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List of Symbols

a,b,c
a,b,c

A B C
A B,C
h,h H,H

S

Scalers

Column Vectors

Matrices

Tensors

Channel coefficient, vector, matrix and tensor
Number of Cells

Number of Transmit antennas

Number of Receive antennas

Number of Grid of Beams

Number of served Users

Number of Sub-Carriers

Number of time slots

Number of Virtual Beamforming antennas
Number of Reference Signals

Number of Paths/Taps

Received Signal Vector

MU-MIMO Precoding Matrix

GoB Precoding Matrix

Data Symbol Vector

Noise Vector in Time Domain

Noise Vector in Frequency Domain

Delay

Complex Amplitude

Signal-to-Noise Ratio of the Received Signal
Coherence Time

Coherence Bandwidth

Doppler Frequency
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Fourier Matrix
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