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Abstract
The interest in installing photovoltaic (PV)-based microgrids (MGs) has increased

significantly in the last few years due to the urgent need for reducing greenhouse

gas emissions and improving the reliability as well as the quality of power supply,

particularly in developing countries. However, the critical potential for low-cost op-

eration and uninterrupted power supply lies in the optimal operation and design of

such MGs.

This dissertation presents novel mathematical models and new formulations of op-

timal operation and design for both the residential and industrial MGs. Based on

sophisticated and practical models of the considered MGs, different optimization

problems are formulated and solved to address the grid blackout problem which is

a significant problem in several countries worldwide.

The standard residential PV-Battery is enhanced by adding controllable switches

to handle the practical constraints of the MG operation. Then an optimal power

dispatch strategy based on the concept of an economic model predictive controller

(EMPC) is proposed. The proposed operation strategy aims to cover the load and

meanwhile minimize the total cost of the energy and prolong the battery lifetime

considering the grid blackout problem.

On the other hand, it is well-known that the industrial loads have low power fac-

tors; therefore, the reactive power consumption of the load cannot be neglected. In

this sense, a cost model for the dispatched reactive power from the PV-system and

battery storage system is introduced. Furthermore, a novel cost model for reactive

power generation from the diesel generator is developed. Consequently, a new active-

reactive optimal power dispatch (AR-OPD) strategy for PV-battery-diesel MGs is

introduced to decrease the costs of the dispatched active and reactive power.

The existence of the nonlinear cost function and nonlinear constraints leads to a dy-

namic mixed-integer nonlinear programming (MINLP) optimization problem, which
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is solved by metaheuristic optimization techniques. The computation result shows

that the proposed EMPC framework is able to manage the power dispatch in the

MG cost-effectively and reliably for both grid-connected and islanded mode. More-

over, the proposed operation strategy leads to a significant reduction in the total

costs of the dispatched active-reactive power and battery lifetime loss in comparison

to the traditional rule-based operation strategies. Furthermore, it is approved that

the PV-inverter is able to generate reactive power with very low cost compared to

other energy sources in the MG.

From another perspective, optimizing the sizes of MG components is essential to

guarantee the best performance and maximize the MG profitability. Therefore, a

comprehensive method for the optimal design of both the residential and industrial

MGs is proposed. The proposed method aims to minimize the Levelized cost of

energy (LCOE) considering the limitation of the annual total loss of the power

supply (TLPS) and the MG operational constraints. In the proposed method, spe-

cial attention is given to estimate the battery bank lifetime accurately. For that,

a comprehensive model for the lead-acid battery is utilized to simulate the battery

operation and aging, based on the Physico-chemical processes of the battery.

However, considering the uncertainty of the input parameters play a vital role in

increasing the optimal design accuracy. Therefore, the uncertainties of solar irra-

diance, ambient temperature, blackouts starting time, and blackouts duration are

modeled and added to the optimization problem. However, due to the existence

of random parameters in the optimization problem, it is uncertain to satisfy the

problem constraints. Therefore, the new optimization problem is formulated as

a chance-constrained optimization problem and solved by a stochastic simulation-

based optimization method incorporating Monte-Carlo simulation.

The results showed that neglecting the uncertainties of the input parameter can lead

to a significant error in calculating the optimum size, which drives to a considerable

decrement in the reliability level of the MG. Moreover, it could lead to a wrong

estimation for the LCOE over the MG life, which could lead to wrong investment

decisions. Moreover, it is observed that considering the uncertainty of grid blackouts

plays the most crucial role in ensuring the reliability of the MG.



Zusammenfassung

Das Interesse an der Installation von auf Photovoltaik (PV) basierenden Mikro-

netzen (MGs) hat in den letzten Jahren deutlich zugenommen, da die dringende

Notwendigkeit besteht, die Treibhausgasemissionen zu reduzieren und die Zuverläs-

sigkeit sowie die Qualität der Stromversorgung, insbesondere in Entwicklungslän-

dern, zu verbessern. Das entscheidende Potenzial für einen kostengünstigen Betrieb

und eine unterbrechungsfreie Stromversorgung liegt jedoch im optimalen Betrieb

und Design solcher MGs.

In dieser Dissertation werden neue mathematische Modelle und neue Formulierungen

für den optimalen Betrieb und die optimale Auslegung von MGs sowohl für Wohn-

viertel als auch für die Industrie vorgestellt. Basierend auf hochentwickelten und

praktischen Modellen der betrachteten MGs werden verschiedene Optimierungsprob-

leme formuliert und gelöst, um das Netzausfallproblem anzugehen, das in mehreren

Ländern weltweit ein bedeutendes Problem darstellt.

Die Standard- PV-Batterie für Privathaushalte wird um steuerbare Schalter er-

weitert, um den praktischen Einschränkungen des MG -Betriebs gerecht zu wer-

den. Dann wird eine optimale Leistungsabgabestrategie vorgeschlagen, die auf dem

Konzept eines prädiktiven Reglers mit einem ökonomischen Modell (EMPC) basiert.

Die vorgeschlagene Betriebsstrategie zielt darauf ab, die Last abzudecken und in der

Zwischenzeit die Gesamtkosten der Energie zu minimieren und die Lebensdauer der

Batterie unter Berücksichtigung des Netzausfallproblems zu verlängern.

Andererseits ist bekannt, dass die industriellen Lasten niedrige Leistungsfaktoren

haben; daher kann der Blindleistungsverbrauch der Last nicht vernachlässigt werden.

In diesem Sinne wird ein Kostenmodell für die abgegebene Blindleistung aus dem

PV-System und dem Batteriespeichersystem vorgestellt. Darüber hinaus wird ein
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neuartiges Kostenmodell für die Blindleistungserzeugung aus dem Dieselgenerator

entwickelt. Folglich wird eine neue optimale Wirk-Blindleistungsverteilungsstrategie

(AR-OPD) für PV-Batterie-Diesel-MGs eingeführt, um die Kosten der abgegebenen

Wirk- und Blindleistung zu senken. Die Existenz der nichtlinearen Kostenfunk-

tion und nichtlinearer Nebenbedingungen führt zu einem Optimierungsproblem der

dynamischen gemischt-ganzzahligen nichtlinearen Programmierung (MINLP), das

durch metaheuristische Optimierungstechniken gelöst wird. Das Berechnungsergeb-

nis zeigt, dass das vorgeschlagene EMPC-Rahmenwerk in der Lage ist, die Leis-

tungsverteilung im MG sowohl für den netzgekoppelten als auch für den Inselbetrieb

kosteneffizient und zuverlässig zu steuern. Darüber hinaus führt die vorgeschlagene

Betriebsstrategie im Vergleich zu den traditionellen regelbasierten Betriebsstrate-

gien zu einer signifikanten Reduzierung der Gesamtkosten der abgegebenen Wirk-

Blindleistung und des Batterie-Lebensdauerverlusts. Darüber hinaus wird gezeigt ,

dass der PV-Wechselrichter in der Lage ist, Blindleistung mit sehr geringen Kosten

im Vergleich zu anderen Energiequellen im MG zu erzeugen. Aus einer anderen Per-

spektive ist die Optimierung der Größe der MG-Komponenten von wesentlicher Be-

deutung, um die beste Leistung zu garantieren und die Rentabilität des MG zu max-

imieren. Daher wird eine umfassende Methode für die optimale Auslegung sowohl

der Wohnviertel- als auch der Industrie-MGs vorgeschlagen. Die vorgeschlagene

Methode zielt darauf ab, die nivellierten Energiekosten (LCOE) unter Berücksichti-

gung der Begrenzung des jährlichen Gesamtverlustes der Stromversorgung (TLPS)

und der betrieblichen Einschränkungen des MG zu minimieren. Bei der vorgeschla-

genen Methode wird besonders darauf geachtet, die Lebensdauer der Batteriebank

genau abzuschätzen. Dazu wird ein umfassendes Modell für die Blei-Säure-Batterie

verwendet, um den Betrieb und die Alterung der Batterie zu simulieren, basierend

auf den physikalisch-chemischen Prozessen der Batterie.

Die Berücksichtigung der Unsicherheit der Eingabeparameter spielt jedoch eine

entscheidende Rolle bei der Erhöhung der optimalen Entwurfsgenauigkeit. Daher

werden die Unsicherheiten der Sonneneinstrahlung, der Umgebungstemperatur, der

Blackout-Startzeit und der Blackout-Dauer modelliert und zum Optimierungsprob-

lem hinzugefügt. Aufgrund der Existenz von Zufallsparametern im Optimierungsprob-
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lem ist es jedoch unsicher, die Randbedingungen des Problems zu erfüllen. Daher

wird das neue Optimierungsproblem als ein wahrscheinlichkeitsbeschränktes Opti-

mierungsproblem formuliert und durch eine auf stochastischer Simulation basierende

Optimierungsmethode unter Einbeziehung der Monte-Carlo-Simulation gelöst. Die

Ergebnisse zeigten, dass die Vernachlässigung der Unsicherheit der Eingangsparam-

eter zu einem signifikanten Fehler bei der Berechnung der optimalen Größe führen

kann, was zu einer erheblichen Verminderung des Zuverlässigkeitsniveaus des MG

führt. Darüber hinaus könnte dies zu einer falschen Schätzung für den LCOE über

die Lebensdauer des MG führen, was zu falschen Investitionsentscheidungen führen

könnte. Darüber hinaus ist zu beobachten, dass die Berücksichtigung der Unsicher-

heit von Netzausfällen die entscheidende Rolle bei der Gewährleistung der Zuverläs-

sigkeit des MG spielt.
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Nomenclature

Battery Storage System

∆W (t) The growth in the corrosion layer thickness in lead acid battery.

ηch/ηdis Battery bank charging/discharging efficiency.

γch.lim Parameter for charging power limit.

γdis.lim Parameter for discharging power limit.

λsoc(t) Effective ampere-hour waiting factor.

ρcorr(t) Corrosion layer resistance.

ξch/dis(t) Binary variable for charging/discharging switch status.

Ac(t) Effective consumed ampere-hour from battery bank.

A
′
c(t) Actual consumed ampere-hour from battery bank.

Atotal Total effective ampere-hours lead-acid battery can provide.

Bn.c Nominal capacity of a single battery unit in the battery bank.

BBn.c Battery bank nominal capacity.

BCn.c Nominal capacity of a battery cell.

Ccorr(t) Battery capacity decrement due to corrosion effects.

Cdeg(t) Battery capacity decrement due to degradation effects.

Crem.b(t) Remaining (rest) capacity of the battery.

DOD Battery bank depth of discharge.

facid(t) Factor that represent the effect of acid stratification on lead-acid battery

lifetime.

fI(t) Factor that represent the effect of discharging current on lead-acid bat-

tery lifetime.

fSOC(t) Factor that represent the effect of state of charge on lead-acid battery

lifetime
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Ib(t) Battery current.

Id Battery discharging current.

Igas(t) Gassing current in lead-acid battery.

Ks(t) Corrosion speed variable.

Lf (t) Battery bank lifetime losing factor.

nb.ch(t) Influence of the number of ineffective charging.

Pch.dg(t) Battery bank charging power from diesel generator set.

Pch.g(t) Battery bank charging power from the main grid.

Pch.pv(t) Battery bank charging power from PV-array.

Pch(t) Total battery bank charging power.

Pdis(t) Battery bank discharging power.

Qb.n Battery bank nominal capacity in ampere-hour.

Rcell(t) Battery-cell internal resistance.

SOC(t) Battery bank state of charge.

SOCmin/max Lower/Upper limit of battery bank state of charge.

SOCnorm(t) Normalized battery bank SOC.

Tb(t) Battery temperature.

Vb(t) Battery-cell voltage.

Vb.n Battery bank nominal voltage.

Vcorr(t) Corrosion voltage of lead-acid battery.

Vgas(t) Gassing voltage in lead-acid battery.

Voc(t) Battery-cell open circuit voltage.

Z0 Number of nominal battery cycles.

ZW (t) Number of weighted battery cycles.

Optimal Operation

CT
p /C

T
q Total cost of the consumed active/reactive power from the MG.

CBSS
q (t) Dispatched reactive power cost from battery-inverter.

Cdgi
q (t) Dispatched reactive power cost from DGi.

CPV
q (t) Dispatched reactive power cost from PV-inverter.

Cb.b Capital cost of a battery bank.

Cb.l(t) Cost of battery bank lifetime loss.
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Ce.g Cost of energy dispatch from the grid.

Cf Fuel cost.

Cn.g Net energy cost of the grid-tie line.

Cop.dg(t) Total operation cost of all DGs.

Cp.g/Cexp Cost of active power imported/exported from/to the main grid.

Cq.g Cost of reactive power imported from the main grid.

Cupi/Cdi DGi startup/shutdown cost.

k An EMPC sampling instant.

Np Number of time intervals within the prediction horizon.

Ub Sequence of Np predicted binary control variables.

ub(t) Binary control variables vector.

Uc Sequence of Np predicted continues control variables.

uc(t) Continuous control variables vector.

Diesel Generator

∆PX
inv.loss(t) The power loss in the PV/BSS inverter caused by the reactive power

generation.

ηdgi0 (t) DGi alternator efficiency at unity power factor.

ηdgir (t) Reduction in DGi alternator efficiency.

ηdgi(t) DGi alternator efficiency.

ξdg.i(t) Binary variable for diesel generator status.

ξup/d.dgi(t) Binary variables that represent the changes of each diesel generator

status.

fcon.dgi(t) Fuel consumption of DGi at time t.

fcon.dgi0 (t) Fuel consumption of DGi working at unity power factor at time t.

Ndg Number of diesel generators.

Pdg.l(t) Dispatched active power from DGs set to the load.

Pdisp.dgi(t) Total dispatched active power from DGi alternator.

Pm.dgi(t) Dispatched mechanical power from the diesel engine of DGi.

Pr.dgi DGi rated power at unity power factor.

PFdg.mini
Lower limit of operating power factor for DGi.

PFdgi(t) Operating power factor for DGi.
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Qdisp.dgi(t) Dispatched reactive power from the alternator of DGi.

Sdgi DGi rated apparent power.

Grid-Tie Line

αg(t) Binary variable represents the status of the grid-tie line.

ξdisp(t) Binary variable for power dispatching status from the main grid.

ξexp(t) Binary variable for power exporting status to the main grid.

Blpr Blackout period.

Blst Blackout starting time.

Pav.g(t) Available power from grid-tie line.

Pdisp.g(t) Dispatched active power from main grid.

Pexp(t) Exported active power to the main grid.

Pg.l(t) Power to load from the main grid.

Pg.max Maximum allowed power to be extracted from grid-tie line.

Qdisp.g(t) Dispatched reactive power from the main grid.

Sg.max Maximum allowed apparent power to be imported/exported from/to

the main grid.

Optimal Design

Ω Uncertain variables space.

A Vector of the adjustment factors of the decision variables.

Ca.op.dg Annual operation cost of the diesel generator.

Cg Annual cost of the dispatched energy from the grid.

Cm.b Annual maintenance cost of the battery bank.

Cm.dg Annual maintenance cost of the diesel generator.

Cm.pv Annual maintenance cost of the PV-array.

CCb.b Capital cost of the battery bank.

CCb.inv Capital cost of the battery inverter.

CCbatt Capital cost of a single battery unit in the battery bank.

CCdgi Capital cost of the ith diesel generator rate where i ∈ 1, 2, ..., Ndg.

CCpv.inv Capital cost of the PV-inverter.

CCpv.m Capital cost of a single module unit in the PV-array.

CCpv Capital cost of the PV-array.
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fk The generated probability density function from kernel density estima-

tor.

fG.x Probability density function of solar irradiance.

fT Probability density function of ambient temperature.

hdg.lt Maximum number of operation hours of the DG before reaching the end

of its life.

hop.dg Annual operation hours of a DG during one year.

Linst Length of the PV-array installation area.

Nbatt Total number of batteries in a battery bank.

Nmax
batt Maximum number of batteries that can be installed.

Ndg Number of diesel generators.

Nmax
dg Maximum number of DG that can be installed in the a specified area.

Npv.m Total number of PV-modules in a PV-array.

Nmax
pv.m Maximum number of PV-modules that can be installed in the a specified

area.

Nrep.x Number of replacement of the component during the MG lifetime, the

superscript x can be the battery bank, the diesel generator, the PV-

inverter, or the battery-inverter.

Pr.dgi Rated power of the ith DG where i ∈ 1, 2, ..., Ndg.

Pmax
r.dgi

Maximum Rate power of the ith DG where i ∈ 1, 2, ..., Ndg.

PVinv.size PV-inverter size.

PV max
inv.size Maximum size of the PV-inverter.

r
′

f Inflation rate.

ri Real interest rate.

r
′
i Interest rate.

SGd.min Minimum distance between the PV-strings in a PV-array.

Winst Width of the PV-array installation area.

umax Vector of maximum values of the decision variable.

umin Vector of minimum values of the decision variable.

u* Adjusted decision variables vector.

Power Electronics
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ηBSSinv (t) Battery inverter efficiency.

ηpvinv(t) PV-inverter efficiency.

cr.loss Inverter current dependent loss.

cself Inverter self-losses at standby operation.

cv.loss Inverter output voltage dependent loss.

PX
disp.inv(t) Dispatched active power from PV/BSS inverter.

PX
inv.loss(t) Power losses in PV/BSS inverter.

QX
disp.inv(t) Dispatched reactive power from PV/BSS inverter.

Sb.inv Battery inverter rated apparent power.

Spv.inv PV-inverter rated apparent power.

Microgrid Model

ξ1,...,5 Binary variables for controllable switches’ status.

Pav.l(t) Total available power from the MG to cover the load.

Preq.l(t) Required load power to be covered by the MG.

Qav.l(t) Total available reactive power from the MG to cover the load.

Qreq.l(t) Required reactive power load to be covered by the MG.

PV-System

β PV-module inclination angle.

GB(t) Direct beam solar irradiance measured on the horizontal surface.

GD(t) Diffused solar irradiance measured on a horizontal surface.

G(t) Global solar irradiance measured on the horizontal surface.

φ The latitude of the installation position of the PV-system.

ρ Solar irradiance reflection factor.

e Charge of electron, i.e. 1.602× 10−19.

FF (t) Fill factor of a PV-cell.

FF0(t) Nominal fill factor of a PV-cell.

FF0.stc Nominal fill factor of PV-cell at standard test conditions.

FFstc Fill factor of PV-cell at standard test conditions.

GT (t) Total solar irradiance arriving a PV-cell.

GB(t) Direct beam solar irradiance that arrives the PV-cell without reflection

or scattering.
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GD(t) Diffused solar irradiance which is scattered by the clouds.

GR(t) Reflected solar irradiance by the ground.

I0(t) The dark current in a PV-cell.

Iph(t) The photo-generated current in a PV-cell.

Isc.c.stc Short circuit current of a PV-cell under standard test conditions.

Isc.c(t) Short circuit current of a PV-cell.

Isc.m.stc Short circuit current of PV-module under standard test conditions.

kB Boltzmann’s constant, equal to 1.38× 10−23.

Ki Temperature coefficient of the short circuit current of a PV-cell.

Kv Temperature coefficient of the open circuit voltage of a PV-cell.

nd Diode ideality factor.

Nc.m Number of PV-cells in PV-module.

Nd Number of days in a year (i.e 1 to 365 days).

Np.m Number of parallel PV-modules in PV-array.

Ns.m Number of series PV-modules in a PV-array.

NOCT Nominal operating PV-cell temperature.

Pav.pv(t) Available power from PV-array.

Pdisp.pv(t) The total dispatched active power from the PV-system.

Pmax.c.stc Maximum output power of PV-cell under standard test conditions.

Pmax.c(t) Maximum output power of a PV-cell.

Pmax.m.stc Maximum output power of PV-module under standard test conditions.

Pmax.pv(t) Maximum output power of PV-array.

Ppv.l(t) Power to load from PV-system.

RB Direct beam irradiance factor.

Rp Parallel resistance of a PV-cell.

Rs Series resistance of a PV-cell.

rs(t) Normalized series resistance of a PV-cell.

RD Diffuse solar irradiance factor.

Ta(t) Ambient temperature in Celsius.

Tc(t) PV-cell temperature in Celsius.

Ta.k(t) Ambient temperature in Kelvin.
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Voc.c.stc Open circuit voltage of a PV-cell under standard test conditions.

Voc.c(t) Open circuit voltage of a PV-cell.

Voc.m.stc Open circuit voltage of PV-module under standard test conditions.

voc(t) Normalized open circuit voltage of PV-cell.

Vph(t) The photo-generated voltage in a PV-cell.

Vt Thermal voltage of a PV-cell.

wss Sunset hour angle on a horizontal surface.

w
′
ss Sunset hour angle on a tilted surface.



Acronyms

ACC Annualized capital cost

AMOC Annual maintenance and operations cost

AR-OPD Active-reactive optimal power dispatch

ARC Annual replacement cost

BOS Balance of system cost

CRF Capital recovery factor

DG Diesel generator

EMPC Economic model predictive controler

GA Genetic algorithm

GB Grid blackout

KDE Kernel density estimation

LCOE Levelized cost of energy

MCS Monte Carlo simulation

MG Microgrid

MILP Mixed-integer linear programming

MPC Model predictive controller

OPD Optimal power dispatch

PDF Probability density function

PV Photovoltaic

STC Standard test conditions

TAPC Total annual dispatched power cost

TLPS Total loss of power supply
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Chapter 1

Introduction

1.1 Introduction and Motivation

There is no doubt that electrical energy demand has been significantly increased

in recent years. This increment can be satisfied by expanding the capacity of the

existing electrical power generation system that depends mainly on fossil fuel power

stations. However, due to the steady increase in fossil fuel prices and the consider-

able decrease in the prices of renewable energy systems, such as solar photovoltaics

(see Fig. 1.1), it has become imperative to build hybrid energy systems with a sub-

stantial environmental and economic benefits [1]. In this sense, a microgrid (MG)

concept is a promising approach to facilitate the integration of renewable energy

sources with conventional ones to provide a reliable and cost-effective energy source

[2].

The MG is defined as "a group of interconnected loads and distributed energy

resources with clearly defined electrical boundaries that act as a controllable entity

with respect to the grid and can be connected and disconnected from the grid to

enable it to operate in both grid-connected or island mode" 1[4]. Based on this

definition, a MG can be understood as a local electrical network capable of covering

electrical loads independently of the main network. Moreover, the MG contains the

necessary energy sources to cover the loads, power conditioning equipment such as

power converters, and inverters, as well as an operator to organize the MG opera-

1Based on this definition, hybrid energy systems are considered as MGs in this thesis.
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Figure 1.1: Illustration of the decrement in PV module prices and the increment in crude
oil prices from 1990 to 2018. [3].

tion, see the MG illustration in Fig. 1.2. Besides, the MG can be used to cover the

electrical loads of a single consumer, such as a residential [5] and an industrial [6]

MG, or multiple consumers, such as a campus [7] and a community [8] MG.

From another perspective, due to its ability to work in either a grid-connected or

an island mode [9], MGs are used to provide a reliable and cost-effective energy

source to cover the load during blackout periods. The problem of grid blackout is

a major problem in many countries worldwide [10] that has many economic and

social impacts [11]. Therefore, many studies have been recently made for finding

efficient solutions to develop reliable energy sources for consumers in such situations

by utilizing different renewable energy resources [10, 12, 13, 14, 15]. Among these

sources, the photovoltaic systems (PV-systems) take notable attention as a clean

and cost-effective energy source because of its long lifetime, flexible sizing, and low

cost as well as low maintenance and operation costs. Therefore, there is a rapid

increase in the installation of solar energy systems globally, as shown in Figure 1.3.

In particular, the abundance of solar energy in countries with shortages of electrical

power (mostly in Asia and Africa [16]) has made PV-systems one of the best options

for providing electrical power in those countries.



1.1 Introduction and Motivation 3

Figure 1.2: Representation of a microgrid.

However, due to the fluctuation of the generated power from the PV-systems, using

energy storage system is essential to increase the MG reliability and stability. Elec-

trical energy storage systems have several forms, including pure electrical storage

such as superconducting magnetic energy storage and supercapacitor, mechanical

systems such as compressed air energy storage and flywheels and electrochemical

storage systems such as lead-acid and lithium-ion batteries [17]. Nevertheless, the

electrochemical storage systems are mostly used in MGs because of their ability to

store the electrical energy for long periods, and their low maintenance and operation

costs [18]. However, the main disadvantages of the electrochemical storage systems

are their high capital and replacement costs as well as their short lifetime [18]. Ac-

cordingly, the battery lifetime is an extremely important factor in determining the
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Figure 1.3: Expression of the increment in the installed capacity of PV-systems
worldwide[3].

operating conditions and planning of replacement intervals for the batteries.

From another perspective, it is well recognized that optimizing the MG operation is

a crucial solution to guarantee a low-cost operation and uninterrupted power sup-

ply. However, many technical and economic complexities have to be handled to

achieve this goal [9]. Optimizing the MG operation depends on the coordination of

the power dispatched from the MG components to cover the load demand with a

minimum cost while considering their technical and operational constraints of each

component in the MG. Furthermore, the optimal selection of the MG’s components

and the size of these components increases the MG’s practical and economic effi-

ciency in the long run [19]. Consequently, the optimum operation and design of the

MG still receive significant attention from energy researchers to ensure a stable and

economical electrical source for the consumer. However, optimizing the MG opera-

tion and design are complex problems due to the non-linearity and the complexity

associated with the MG mathematical model.

1.2 Thesis Contributions

The main aim of this thesis is to develop model-based optimal operation and design

algorithms for PV-based MGs, considering the battery lifetime and the problem of
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grid blackout. In this study, considerable attention is given to build an accurate

model for the MG, considering the practical constraints of each component. More-

over, two different layouts for the MG are used based on the application of the MG.

In the residential MG, the DC-layout is employed; whereas, the AC-layout is used

for the industrial MG. An operation strategy based on the concept of an economic

model predictive controller is proposed to optimize the MGs operation. Also, the

reactive power consumption of the load is considered in the industrial MG opera-

tion using a newly developed model to calculate the reactive power generation cost.

However, it was found the optimal design of the MG is essential to increase the con-

sumed energy from the PV-system and to decrease the cost of the generated power

from the MG [20]. Hence, an optimal design algorithm for the MG is developed.

In the developed algorithm, an accurate model for the battery lifetime is utilized.

Besides, the uncertainty of solar power generation, grid blackout starting time, and

grid blackout period are considered to give an accurate estimation for the levelized

cost of energy (LCOE) and robust design for the MG. The contributions of this

thesis can be summarized as follows:

• A comprehensive model for a residential PV-battery MG is developed. In this

model, real operational constraints of the system components and the costs of

the battery lifetime are taken into account.

• A new operation strategy, based on the economic model predictive controller

(EMPC) concept, is proposed to minimize the total operating costs of the PV-

battery MG considering the battery lifetime and the grid blackouts problem.

• A considerably accurate model for an industrial PV-battery-diesel MG is de-

veloped, taking the real operational constraints of the MG components into

account.

• A novel model is introduced to calculate the reactive power generation cost

from the diesel generator. Moreover, the cost model of the dispatched reactive

power from the PV-system and the battery bank is adapted.

• An EMPC-based active-reactive optimal power dispatch strategy is proposed

to minimize the total operating costs of the PV-battery-diesel MG by consid-
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ering the cost of battery lifetime loss and reactive power generation cost under

grid blackout conditions.

• A comparison between different operation scenarios is made to verify the ad-

vantages of the proposed strategies and to illustrate the impacts of considering

the costs of the battery lifetime.

• A novel optimal design algorithm is developed to optimize the sizes of the MG

components to achieve the lowest cost of the produced energy from the MG

over its lifetime, considering the solar radiation, ambient temperature, and

grid blackouts uncertainties.

• A new model is implemented to model the uncertainty of grid blackout starting

time and blackout period using kernel density distribution.

• An improved method to calculate the LOCE utilizing an accurate estimation

of the number of lead-acid battery replacements during the MG lifetime by

considering the impact of battery state of charge, discharging current, num-

ber of cycles, acid stratification, and sulfate-crystal structure on the battery

lifetime.

1.3 Thesis Organization

This thesis is organized as follows:

• Chapter 2: This chapter includes a detailed literature review for the previous

works that have investigated the optimal operation of the MG, the determin-

istic, and the stochastics design of the MG as well as the problem of grid

blackouts.

• Chapter 3: This chapter explores the potential benefits of applying the

EMPC to optimize the operation of a residential PV-battery MG to address

the grid blackout problem. The proposed control strategy aims to cover the

load, meanwhile minimize the total cost of the energy consumed from the grid

and the cost of battery lifetime loss.
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• Chapter 4: In this chapter, an active-reactive optimal power dispatch strat-

egy based on the concept of EMPC is presented. In this operation strategy, the

battery lifetime cost, the active-reactive power generation cost, and the grid

blackout problem are considered. In addition, a cost model for the dispatched

reactive power from the PV-system and battery storage system is developed.

Furthermore, a new cost model for reactive power generation from the diesel

generator is introduced.

• Chapter 5: This chapter introduces a comprehensive method for the opti-

mal design of PV-based MGs, considering the uncertainty of solar radiation,

ambient temperature, and grid blackouts. This method aims to minimize the

LCOE taking into consideration the limitation of the annual total loss of

the power supply (TLPS) and the MG operational constraints. In addition,

a detailed model for battery lifetime estimation is introduced based on the

Physico-chemical mechanism of the lead-acid battery.

• Chapter 6: The final chapter gives a brief conclusion of the main contribu-

tions of the thesis and presents the main perspectives of the study.



Chapter 2

State of the Art

Nowadays, MG is proposed as a cost-effective and practical solution for many prob-

lems in the electrical energy system. Nevertheless, there are still many challenges

that must be resolved to find an effective way to design and operate the MGs. In this

chapter, a detailed literature review about the recent studies that investigated the

problems of MG optimal operation and optimal design will be introduced; moreover,

the studies on addressing the grid blackout problem are presented.

2.1 Microgrid Optimal Operation

During the MG operation, many technical and economic complexities have to be

handled to provide stable, reliable, and cost-effective electrical energy. To satisfy

these requirements, a hierarchical multi-layer structure for the MG control system is

used to manage the power flow inside the MG, as shown in Fig. 2.1 [21], namely, op-

erational, supervisory and planning layers. Each layer is characterized by its control

variables and the speed of execution. In the operational layer, real-time controllers

that are connected to the main components in the MG, take the responsibility to

observe and control the voltage and frequency within milliseconds. It is to note that

the droop control method is mostly used at the operational layer [22]. The next

layer is the supervisory layer, its time frame in the range of seconds to minutes.

In this layer, the controller ensures a stable operation between the MG components

according to the given setpoints by the planning layer. The highest layer is the plan-
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Figure 2.1: Illustration of a hierarchical multi-layer structure for MGs control system.

ning layer, where the controller works in the range of several minutes up to hours. It

is responsible for reliable and cost-effective operation for the MG by specifying the

amount of the dispatched power from the MG components to cover the load demand

with a minimum cost considering their technical and operational constraints. The

latter layer is the subject of interest in this thesis.

2.1.1 Optimal Power Dispatch in Microgrids

Optimal power dispatch (OPD) is necessary to increase the economic efficiency of

the MG by decreasing the MG operation cost e.g., reducing the fuel consumption

cost, decreasing the battery degradation cost and increasing the dispatched power

from the renewable energy sources [23]. Therefore, many researchers have proposed

various approaches to solve the OPD problem. For instance, an optimal power-

sharing scheme was used in [24] to decrease the fuel consumption in a MG with

a PV-array, a wind, and a gas turbine. In [25] an intelligent multi-agent manage-

ment strategy was proposed to minimize the deviation between the forecasted day

ahead production from a PV-system and the actual load to increase the dispatched

power from the PV-system and increase user satisfaction in PV-based MGs. Be-
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sides, a rule-based energy management algorithm was proposed in [26] to maximize

the dispatched power from the PV-system in a grid-connected PV-battery MG. The

authors in [27] proposed continuous and ON/OFF control methods to reduce the

operation cost of a standalone PV-battery-diesel system considering only the cost of

diesel generator fuel consumption. An energy management method was proposed in

[28] to minimize both the fuel consumption and the lead-acid battery degradation

cost in an islanded MG.

For a proper consideration of the dynamic behavior of the MG, a model predictive

controller (MPC) was utilized to predict the future behaviour of the process over a

finite time horizon and determine the optimal control action with respect to a spec-

ified objective function [29]. In [30], an MPC based optimal operation approach for

a grid-connected residential MG was presented to minimize the total operation cost

of the MG considering electricity market prices and renewable energy output power

variation. An optimal power dispatch approach was proposed in [31] to minimize

the diesel generator operation cost in a PV-battery-diesel MG using MPC in com-

bination with mixed-integer linear programming (MILP) optimization problem. A

rolling horizon based energy management strategy was employed in [32] to minimize

the fuel consumption in an isolated MG by optimizing the dispatched power from

the renewable energy sources, the battery bank and the diesel generator, but with-

out considering the battery bank lifetime cost and reactive power cost. A two-stage

MPC-based control strategy was formulated in [33] to improve the power dispatch,

enable a cost-efficient operation, and guarantee reliable power supply in an islanded

PV-battery-diesel MG. MPC was also utilized in [34] to provide optimal scheduling

for the operation of a grid-connected PV-battery system, which maximizes the eco-

nomic benefit of the PV plant considering the electricity market prices. A two-layer

energy management system using MPC was introduced in [35] to minimize the op-

erational cost of the MG in the upper layer and minimize the power fluctuation by

renewable energy resources in the lower layer.

In some exceptional cases, when the cost function in the MPC has a direct reflection

on the system’s economic performance, it is possible to combine the economic pro-

cess optimization with the process control and thus the approach is called economic
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MPC (EMPC) [36]. The potential of using EMPC in electrical energy management

was investigated in [37] to optimize the operation of controllable power generators

for reducing the cost of the generated power. For example, the application of EMPC

in MG was demonstrated in [38] to minimize the cost of the consumed energy in

a community-based PV-battery MG considering the battery lifetime. Moreover,

EMPC was used to reduce the fuel consumption of the diesel generator in a hybrid

energy system [39]. A nonlinear MPC was utilized in [40] to minimize the opera-

tional cost of MGs considering the battery state of charge and temperature limits

as well as the operational constraints of the MG components. In [12], an EMPC

was proposed to optimize the active power dispatch in a hybrid PV-battery system

considering the battery lifetime loss cost. Moreover, it was proved in [12] that con-

sidering the cost of battery lifetime loss in the EMPC is highly essential to decrease

the total operation cost of the studied system.

In general, a battery storage system is considered as a key solution to improve the

performance and reliability of MGs [18]. However, the battery lifetime is an es-

sential factor in determining the operating conditions and planning of replacement

intervals for the batteries. For this reason, the battery lifetime has been considered

in the introduced MG operation algorithms by several researchers. As an example,

the work in [41] proposed a multi-objective optimal operation framework to mini-

mize the power generation cost and maximize the lifetime of the lead-acid battery

in a standalone MG. In that research, the effective ampere-hour (Ah) battery ag-

ing model was used for battery lifetime estimation. The mentioned model was also

used in [42] to formulate the cost of battery lifetime degradation to optimize the

battery operation in an islanded MG. In [38], the battery lifetime was considered by

adding explicit constraints to the optimization problem in the EMPC algorithm to

achieve the desired lifetime degradation limit. An MPC based operation strategy

was proposed in [43] to optimize the daily operation of a standalone hybrid PV-

wind-diesel-battery system. Moreover, the battery bank aging cost was considered

in [43] using an advanced aging model for lead-acid batteries. In another study,

the MPC was utilized in [44] to optimize the charge and discharge pattern of the

battery bank and maximize the economic benefit of a PV-battery MG. An energy
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management strategy for a PV-battery-diesel MG was proposed in [45] to reduce the

fuel consumption by the diesel generators considering the battery lifetime. Different

types of batteries were used in [45] to reduce diesel generator operation hours, and

meanwhile, the battery lifetime was taken into account by controlling the charging

and discharging rates. In [46], the practical degradation cost model of a lithium-ion

battery lifetime was used in the optimization to minimize the total operation cost

of a DC MG. From the studies mentioned above, it can be noticed that different

battery technologies and models we utilized to consider the battery lifetime in opti-

mizing the operation of MGs; however, simplified models were preferred to decrease

the computation time.

2.1.2 Active-Reactive Optimal Power Dispatch in Microgrids

It is important to note that the reactive power dispatch is an integral part of the

AC-power system operation to manage voltage stability and transmission lines losses

[47]. In addition, it was demonstrated that the PV and battery inverters could be

used for reactive power compensation [48, 49]. Therefore, considerable attention has

been paid to optimize both active and reactive power flow in distribution networks

to decrease the renewable energy curtailment and increase the system profitability

by exporting the reactive power to the upstream network [50].

Because of the increasing importance of MGs, more attention has been paid by the

researchers to solve the active-reactive power dispatch (AR-OPD) problem in MGs.

For instance, in [51], two operation modes for grid-connected MG were used to solve

the AR-OPD problem. One operation strategy works in the grid-connected mode

aiming to maximize the revenues based on the energy market prices. The second

operation strategy aims to provide a reliable power supply to the customer in the

islanded mode. Recently, a day-ahead energy management system was proposed in

[52] to solve the AR-OPD problem in a grid-connected MG without considering the

reactive power generation cost. In the operational layer of the MG (see Fig. 2.1)

AR-OPD problem was heavily investigated to ensure the voltage and frequency sta-

bility [53, 54, 55, 56]. For example, in [57, 58], an improved droop control strategy

was presented for reactive power sharing in an islanded MG consisting of multiple
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distributed generation units connected through power electronic converters. In [59],

a two layers control algorithm was proposed to calculate the active and reactive

power setpoints of controllable generators in a grid-connected MG considering the

voltage and the frequency constraints. It is noted that the economic effects of reac-

tive power sharing were not taken into account in the studies mentioned previously.

Several approaches have been developed to calculate the cost of the produced reac-

tive power. The cost of the generated reactive power from a synchronous generator

was formulated in [60] based on the opportunity cost concept. Moreover, it was

found in [61] that the power losses in PV and battery inverters will increase when

they inject reactive power, and this increment cost was used for reactive power pric-

ing. In another work [62], the PV-inverter lifetime reduction due to the reactive

power generation was used to estimate the generated reactive power cost. How-

ever, to the author’s best knowledge, very few previous studies are available that

considered the reactive power generation cost in optimizing the MG operation. The

economic and technical impact of reactive power generation from a PV-system and a

battery bank in a grid-connected MG was discussed in [63]. The results showed that

the PV-system and battery storage system could be cost-competitive, comparing the

grid and the switched capacitors for reactive power generation. The method in [63]

was extended in [64] to provide an analytical approach AR-OPD in a grid-connected

PV-system with battery storage and an electric vehicle charging station considering

reactive power cost.

2.2 Microgrid Optimal Design

MG design is a long-term planning process. In this process, the optimal size and

types of the MG components should be selected in such a way that guaranteed a long-

term reliable and cost-effective energy source based on the customer requirements.

The optimal design of the MG includes a deep understanding of the operation,

lifetime characteristic, and environmental impacts of each component in the MG

that highly increased the problem complexity. Moreover, considering the uncertainty

of fluctuating renewable energy sources and grid blackouts play an essential role

in increasing the optimal design accuracy. To solve the optimal design problem,
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Figure 2.2: Simulation-based optimal design framework.

simulation-based optimization is commonly used to determine the optimal design

parameters of the MG [65]. In this method, the simulation is used to evaluate and

verify the effect of the design parameters given by the optimizer [66]. As shown in

Fig. 2.2, each solution from the optimizer is evaluated based on the MG model;

this process is repeated until the iterates converge to the optimal solution. One

can classify the solution approach for optimal design problem of the MG into two

main categories: 1) deterministic optimal design of MGs, and 2) stochastic optimal

design of MGs. The former can calculate the optimal sizes of the MG components,

but the solution may not be accurate enough to satisfy the design constraints. The

latter provides an optimal solution while satisfying the related technical constraints

considering the load, electricity cost, or power sources uncertainty.

2.2.1 Deterministic Optimal Design of Microgrid

The deterministic optimal design does not take into account the uncertainties in the

MG model parameters. Therefore, it is based on the assumption that the forecasted

values are accurate enough to give a quick and reasonable solution.

Several studies have appeared in recent years to handle the problem of MG optimal
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sizing with different aims and design variables. For grid-connected MGs, different

approaches were proposed to decrease the consumed power cost by increasing the de-

pendency on renewable energy sources. As an example, the work in [67] proposed an

optimal sizing approach for a grid-connected PV-battery system considering differ-

ent electricity pricing tariffs to decrease the annual operation cost of the system. In

[68], an optimal sizing method for a grid-connected PV-battery system is suggested

to minimize the consumer electricity bill. A techno-economic optimal approach was

introduced in [69] to minimize the total net present value of a PV-battery system

for a smart household considering the annual cost of electricity consumption.

From a different perspective, various approaches were stated to optimize the size of

off-grid MGs to decrease the levelized cost of energy and increase system reliabil-

ity. For instance, in [70], an optimal design approach was presented to determine

the optimal size of a PV-wind-battery system to minimize the annual capital cost

while considering a specified total loss of power supply (TLPS) value. An optimal

design method is introduced in [71] to minimize the operation cost of a MG with

a hybrid DC-AC structure. In [72], a household PV-battery system was optimized,

taking the effect of the load increment on the system reliability into account. In

[73], an optimal sizing approach for a standalone residential MG was introduced to

minimize the operation cost, greenhouse gas emissions, and critical dump energy.

An optimization algorithm based on iterative simulation was proposed in [74] to

optimize the PV-array and battery sizes in a standalone PV system, where a de-

tailed dynamic model of the lead-acid battery was utilized to simulate the battery

performance. However, most of the previous studies [67]-[74] did not consider the

battery lifetime degradation effect.

Due to high capital cost and short lifetime of a battery storage system (BSS), com-

pared to other components in a MG, more and more attention has been drawn to

optimizing its size by utilizing different approaches for battery lifetime estimation.

The work in [75] proposed a multi-objective optimization approach to minimize the

TLPS and the cost of the generated energy, where the life loss cost of the lead-

acid battery was considered based on the weighted Ah counting method. In [5],

an optimal sizing method for a residential MG was proposed, where a linear bat-
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tery capacity degradation model was used to estimate the lead-acid battery lifetime

degradation by considering only the discharged power effect. A two-stage approach

was introduced in [76] to determine the battery size, the battery depth of charge, and

the battery lifetime by counting the battery operation cycles. Recently, a bi-level op-

timization model was introduced in [77] to optimize the capacity of the components

in an isolated MG. In the developed model, the battery lifetime was estimated by

considering the total cumulative transfer energy based on the number of charge/dis-

charge cycles. The work in [78] proposed a simplified method to optimize the size of

a grid-connected PV-battery system to minimize the total cost, and meanwhile, the

battery lifetime was considered by using a generalized lifetime estimation model for

both lithium-ion and lead-acid battery. In addition, the optimal sizing of different

battery technologies was investigated in [79] to reduce the total expansion cost of

a grid-tied MG, considering the influence of the battery depth of discharge and the

number of charge/discharge cycles. A linear optimization approach was used in [80]

to optimize the battery size and select the battery technology (lead-acid or lithium-

ion) in a PV-battery residential MG while minimizing the battery bank degradation

cost. In [81], an optimal design method for an off-grid PV-battery system was in-

troduced to determine the PV-system and the battery bank capacity. Moreover, an

electrochemical model was used in [81] to estimate the lithium-ion battery lifetime.

A simplified optimization approach was proposed in [82] to optimize lithium-ion

battery size in a household PV-battery system, where the discharged power effect

on the battery lifetime was considered.

From the above discussions, it can be noticed that lithium-ion and lead-acid batter-

ies are dominant battery technologies used in MG applications. However, due to its

low cost, high safety, and high recyclability rate, lead-acid battery is the most com-

monly used electrochemical energy storage in various fields [83, 84]. Furthermore,

the lead-acid battery is an effective solution for a wide range of applications such

as backup power supplies and hybrid PV-systems especially in developing countries

[85], which is in line with this thesis aim at developing an optimization method to

find the optimal size of PV-systems working in the area suffering from daily and

long periods of grid blackouts.



2.2 Microgrid Optimal Design 17

2.2.2 Stochastic Optimal Design of Microgrid

Deterministic design approaches highly depend on the given input parameters of

the model as any deviation due to uncertainty could lead to a suboptimal solution

[86]. Therefore, several studies have been conducted to incorporate the uncertainty

of renewable power generation in the MG optimal design problem considering dif-

ferent stochastic parameters and models as well as solutions strategies [87, 88]. For

instance, a chance-constrained programming approach was utilized in [89] to de-

sign a standalone wind-PV-battery system considering the non-Gaussian stochastic

model for the produced power by the wind turbine and the PV-system. In [90],

Monte Carlo simulation (MCS) and practical swarm algorithm were used to find

the optimal size of a wind-PV-battery system while considering the wind speed,

solar irradiance and load demand uncertainty. Also, the optimal size of a PV-wind-

battery system was investigated in [91]; meanwhile, MCS was utilized to handle the

uncertainty of wind and PV-system production without considering the seasonal

variation in the developed stochastic model. A concept of design space was applied

in [92] to optimize the size of a PV-battery system incorporating the uncertainty

of the generated power from the PV-array, taking into consideration the desired

confidence level. Besides, the design space approach was used in [93] for sizing an

islanded wind-battery system by considering the wind speed uncertainty. Chance

constrained programming method was used in [94] to address the uncertainties in

renewable resources to optimize a PV-wind-battery system. Recently, a scenario

reduction method is proposed to simplify the impact of the uncertainty in the load

profile and the renewable energy output on MG optimal design problem [95].

Special attention was given to optimize the energy storage system in order to in-

crease MG reliability and decrease the impact of the uncertainty. As an example,

the work in [96] used Markov chain method with MCS to calculate the optimal size

of the energy storage system in a MG to minimize the power mismatch between the

generated power from the renewables and load considering wind speed uncertainty.

Moreover, a stochastic optimization problem was formulated in [97] to find the opti-

mal size of a battery storage system in an islanded MG considering the wind speed

and the load growth factor uncertainty. In [98], the stochastic optimization problem
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was transformed into a deterministic one using the point estimated method with

Cholesky decomposition to optimize the energy storage size considering the inter-

mittent power generation from the wind turbines. In [99], a stochastic programming

technique was used to optimize energy storage system size in a grid-connected MG

to enhance its reliability under wind speed uncertainties. A detailed lead-acid bat-

tery lifetime estimation model was combined with MCS in [100] to optimize the

size of a standalone PV-wind-diesel-battery system considering the wind speed, so-

lar irradiance, and load uncertainty. It is worth to mention that the grid blackout

uncertainty was not considered in the studies mentioned previously.

2.3 Grid Blackout Problem

2.3.1 Problem Description

The rapid growth in electrical loads requires a steady increase in the power gener-

ated to cover the loads as well as a constant upgrade to the distribution network.

However, in many developing countries, it is not always possible to expand the gen-

eration system for economic, technical, or political reasons, resulting in a shortage

of energy supplies to cover the beneficiaries’ loads [101, 102]. In this case, the power

system operator disconnects the loads from the network to maintain the restric-

tions of power system operation such as voltage and frequency limits. To manage

this problem in the long run, electrical distribution companies classify the distri-

bution networks to several zones and distribute the available energy according to a

specific schedule. This situation is still present in many countries throughout the

world [103, 104, 105, 106, 107, 108], and cause a significant economic loss to the

customers [109, 110]. Therefore, many efforts have been made to develop reliable

energy sources to supplement the shortage during the period of blackouts.

2.3.2 Solution Approaches for the Grid Blackout Problem

According to [111], using an adequate design, operation, and integration of dis-

tributed energy resources make it possible to cover the loads in case of planned or

unplanned blackouts. The results obtained in [103] demonstrated the capability of
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a diesel generator as an economical solution to solve the problem of long periods of

grid blackouts. However, the continuous decreasing price of PV-modules and the

expected increase in fuel prices makes hybrid PV-diesel systems more economical

than using pure diesel systems. This concept was extended in [112] where the in-

tegration of distributed diesel generators with the public grid was proposed as a

replacement of the primary grid during the blackout periods. A supervisory control

method was used to guarantee the power supply quality of the primary grid, where

the fuel consumption of the diesel generators is decreased by installing a PV-system.

On the other hand, energy storage has been widely used as a backup system to cover

electrical loads during blackout periods. The work in [113] presented an analytical

approach to evaluate the performance of an electrical energy storage system during

the blackout periods and determined the size of the storage to achieve a specified

reliability level. A grid-interactive PV uninterruptible power supply system was im-

plemented in [107] using a combination of a battery and a diesel generator to solve

the problem of frequent blackouts and voltage instability in India. In [105], a diesel-

battery system was proposed as a solution to compensate planned and unplanned

grid blackouts and meanwhile minimize the operation costs by developing a power

management system.

In [104], it was shown that the optimal design of a hybrid PV-battery system could

make it more beneficial than a diesel-based system for residential loads in the areas

suffering from planned grid blackouts. In another work [114], the authors proposed

a real-time demand-side management approach for a PV-battery system to control

the operational time of the loads. The work in [115] showed the techno-economic

feasibility of using a hybrid PV-battery system as a backup power supply to meet

residential loads, considering the seasonal variation of load profiles. Customer dam-

age cost function due to the occurrence of blackouts was formulated in [116]; the

formulated function was incorporated to find the optimal size of the battery in a

grid-connected PV-battery system. An optimal design method for a grid-connected

MG was discussed in [19, 117] to decrease the power interruption cost. An optimal

design method was introduced in [118] to optimize the size of a grid-connected PV-

battery-diesel MG that proposed an alternative to using a diesel generator to cover
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the load during as frequent grid outages. In [14] a new optimal design method for

residential MGs is proposed to minimize the levelized cost of energy while satisfying

the required annual total loss of power supply percentage, where battery lifetime

and long term daily grid blackout are considered. However, due to the presence of

several factors that affect the grid blackout starting and its duration, it was better to

take into account their uncertainty effect. Nevertheless, the impact of grid blackouts

uncertainty in the MG optimal design problem was considered in very few studies.

For instance, in [119], the battery and the diesel generator sizing problem was inves-

tigated considering the uncertainty of renewable energy outputs and grid blackouts;

however, a simplified stochastic model with linear objective function and constraints

were used to formulate the optimization problem. Recently, a simulation-based de-

sign method for the battery in a grid-connected PV-battery system for emergence

usage was introduced in [120] considering only the yearly grid blackout uncertainty.

Besides, in [121] the influence of battery price and customer damage cost on the

optimal size of a PV-battery system was explored considering the number of yearly

blackouts and its duration uncertainty. It is worth to mention that a parametric

probability density function was used to describes the uncertainty of grid blackout

in the studies mentioned previously.

From another perspective, the work in [122] proposed two operation frameworks

for a PV-battery MG considering grid blackouts. The first one used a receding

horizon based optimal dispatch algorithm to minimize the total power cost in the

grid-connected mode, while the second one used a rule-based algorithm to cover the

load during the blackout periods. Moreover, a master-slave control strategy was

proposed in [106] to reduce the fuel consumption of a PV-diesel-battery system for

non-residential loads to deal with grid scheduled blackouts, i.e., power supply from

the grid is switched off daily for a certain period. The work in [123] provide a load

scheduling approach for a PV-battery-diesel MG considering grid blackout prob-

lem. The developed approach aimed to reduce fuel consumption and increase the

contribution of solar energy in covering the loads. In [124] a predictive energy man-

agement approach was developed for a PV-battery MG to minimize the PV power

curtailment and increase the energy supply reliability, where a periodic blackout
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from the primary grid was addressed without considering the battery lifetime. In

[12], an EMPC was proposed to optimize the active power dispatch in a hybrid PV-

battery system considering the battery lifetime loss cost and grid blackout problem.

It was proved in [12] that considering the cost of battery lifetime loss in the EMPC

is highly essential to decrease the total operation cost of the studied system. This

work was extended in [15] to optimize the performance of a MG considering the

AR-OPD problem for the industrial load.

2.4 Challenges

From the discussions above, it can be seen that many studies have been carried out

on the optimal operation and design of PV-based MGs, which aim to decrease the

operating, investment, and the fuel consumption costs of the MG, as well as the

curtailment of the PV power generation. However, the main drawbacks of previous

studies can be summarized as follows

• The majority of the previous studies relied on the standard DC/AC layout in

MG modeling. This led to disregard many practical operational constraints of

the MG without taking into account the nature of the connected loads.

• Most of the previous studies were focused on the intermittent behavior of

renewable energy sources or the loads as the main problem to be solved. But

the problem of the discontinuous power supply from the primary grid is rarely

considered, although it is still a common issue in many developing countries

in the world.

• Most improvements have been achieved by minimizing the total operation cost

of MGs considering the cost of active power only with or without taking the

battery lifetime cost into account. Nonetheless, it is possible to further improve

the MG operation by considering the cost of active and reactive power, as well

as the battery lifetime simultaneously.

• A large number of the previous studies that focused on calculating the size of

the MGs considered that the battery life is constant, although it is affected
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by the size and operational conditions of the battery, which may lead to a

significant error in the calculation of the levelized cost of energy.

• Great attention has been given to consider renewable energy, load, and price

uncertainties in the MGs design problem. However, less attention has been

paid to consider the grid blackout uncertainty effect in the optimal design

problem.

• Mainly, a parametric probability density function was used to describe the un-

certainty of the grid blackout. However, due to the existence of several reasons

that lead to planned or unplanned blackouts, parametric probability density

function cannot characterize the stochastic behavior of the grid blackout ac-

curately.

In this thesis, the previous drawbacks have been comprehensively investigated to

build improved operation and design methods for grid-connected MGs, considering

the battery lifetime and grid blackout problem.



Chapter 3

Optimal Operation of Residential

Microgrids

This chapter explores the potential benefits of applying the economic model pre-

dictive control (EMPC) to optimize the operation of a residential PV-battery MG

to address the grid blackout problem. The proposed control strategy aims to cover

the load, meanwhile minimize the total cost of the consumed energy and the cost of

battery lifetime loss. For this, a detailed model for the PV-array and solar irradiance

are presented. A battery operating model is described and a weighted Ah model is

used to predict the battery lifetime loss. Besides, a model for grid-tie line status is

introduced. Moreover, a comparison between different operation strategies for the

MG considering the seasonal variation in the load and the PV power generation is

made.

3.1 Switching Model of Residential PV-Battery

Microgrids

It was proved in [125, 126] that the PV-battery MG is an appropriate economical

solution to meet the energy demands of a residential household located in an area

rich in solar energy. Moreover, it was found in [127] that the DC-coupled MG is

more applicable for residential MG because of its simple structure, low system cost,

safety, and ease of maintenance. In this thesis, the DC-coupled architecture of PV-
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Figure 3.1: Schematic diagram of the studied PV-battery MG.

battery MG [127] is modified by adding controllable switches (SW1,...,5) to hold the

operational constraints in the MG, as shown in Fig. 3.1. The MG consists of a

PV-array, a battery bank, an AC charger to charge the battery bank from the grid,

a DC charger to charge the battery bank from the PV-array, a DC/AC inverter to

supply AC power to the load from the battery bank and the PV-array, a grid-tie

line, and a residential load. The mathematical model of the major components of

the MG and their operational constraints are modelled in the following sections.

3.2 PV-System Model

The PV-system is mainly composed of a PV-array to convert the solar energy into

an electrical energy and a power electronic device to enhance the quality of the PV-

array output power. However, multiple factors affect the performance of the PV-

array, such as the installation location, the tilt angle, the azimuth angle, the solar

radiation, and the ambient temperature. In the following subsections, a detailed and

accurate models for the PV-array operation and the solar irradiance components are

explained to emulate the PV-system performance.

3.2.1 PV-Array

The PV-cell is the nucleus of the PV-array that converts the energy of the solar

irradiance to electrical energy. Nevertheless, for practical use, the PV-cells are
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Figure 3.2: The equivalent electrical circuit of a PV-cell.
combined to form the PV-modules, which can be connected either in series or in

parallel to form a PV-array with the desired voltage and current.

In this thesis, the single diode equivalent circuit model of the PV-cell shown in

Fig. 3.2 is used to predict the behaviour of the PV-cell. This model depends on

the PV-cell electrical characteristic and the local weather data to simulate the PV-

cell performance with significant accuracy [128, 129]. According to this model, the

relation between the generated current from the PV-cell Ipv(t) and its voltage Vpv(t)

can be defined with a sufficient accuracy by [130, 131]

Ipv(t) = Iph(t)− I0
(
exp

(
Vpv(t) + Ipv(t)Rs

Vt

)
− 1

)
− Vpv(t) + Ipv(t)Rs

Rp

, (3.1)

where Iph(t) is the photo-generated current that generated because of the photo-

voltaic effect [132], I0 is the dark current, which is generated without the influence

of the solar irradiance, Rs and Rp are the series resistance and the parallel resistance

of the PV-cell, respectively, and Vt is the PV-cell thermal voltage. Nonetheless, Eq.

(3.1) cannot be used directly to obtain the output power prediction of the PV-cell.

This is because there are some parameters such as Iph(t) and I0 cannot be measured

directly. Therefore, it is vital to use a model that depends on the data from the

PV-module manufactures and the meteorological centers measurements.

A practical model is developed by [130] and adapted in [12] is used in this thesis to

calculate the maximum generated power by the PV-cell Pmax.c(t) which takes into

consideration the PV-module specifications, the received solar irradiance as well as

the ambient temperature as follows

Pmax.c(t) = Voc.c(t)Isc.c(t)FF (t) (3.2)
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where the values of both of the open circuit voltage Voc.c(t) and the short circuit

current Isc.c(t) of the PV-cell depend on the received solar irradiance GT (t) and the

temperature Tc(t) of the PV-cell. The instantaneous value of Voc.c(t) and Isc.c(t) are

given by

Voc.c(t) = Voc.c.stc +Kv(Tc(t)− 25), (3.3)

Isc.c(t) = (Isc.c.stc +Ki(Tc(t)− 25)),
GT (t)

1000
(3.4)

where

Tc(t) = Ta(t) +
(NOCT − 20)

800
GT (t), (3.5)

and the subscript stc indicates that the parameter value is calculated under standred

test conditions. The fill factor FF (t) in Eq. (3.2) is the ratio of the maximum power

that can be produced by the PV-cell to the product of the open-circuit voltage and

short-circuit current of the PV-cell. The formula from [130] is used to calculate the

fill factor by

FF (t) =
Pmax.c(t)

Voc.c(t)Isc.c(t)
= FF0(t)(1− rs(t)), (3.6)

where FF0(t) is the nominal fill factor of the PV-cell and given by

FF0(t) =
voc(t)− ln(voc(t) + 0.72)

voc(t) + 1
, (3.7)

as well as rs(t) and voc(t) are the normalized series resistance and the open-circuit

voltage for the PV-cell, respectively, which are calculated by

rs(t) = Rs
Isc.c(t)

Voc.c(t)
, (3.8)

voc(t) =
Voc.c(t)

Vt(t)
, (3.9)

where

Vt(t) =
ndkBTa.k(t)

e
. (3.10)
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The value of the series resistance of the PV-cell Rs depends on the material of the

PV-cell, which is affected by the PV-cell operating conditions. However, this effect

could be insignificant and negligible [133, 134, 135]. According to [130] the Rs value

can be calculated using the available data in the PV-module datasheet [136] by

Rs =
(

1− FFstc
FF0.stc

)Voc.c.stc
Isc.c.stc

, (3.11)

where FFstc and FF0.stc can be calculated by Eq. (3.6) - (3.7) and Eq. (3.9) - (3.10),

respectively, using Pmax.c.stc, Isc.c.stc, Voc.c.stc and Ta.k.stc values of the PV-cell. Note

that the available data in the datasheet normally are for the PV-module and not for

the PV-cells, which are connected in series inside the PV-module. Therefore, the

PV-cell parameters are calculated by

Pmax.c.stc =
Pmax.m.stc
Nc.m

, (3.12)

Voc.c.stc =
Voc.m.stc
Nc.m

, (3.13)

Isc.c.stc = Isc.m.stc, (3.14)

whereNc.m is the number of PV-cells in side the PV-module. Based on the maximum

output of the PV-cell, the output of the whole PV-array can be calculated as follows

Pav.pv(t) = Ns.mNp.mNc.mPmax.c(t) (3.15)

where Ns.m and Np.m are the number of PV-modules connected in series and parallel,

respectively.

3.2.2 Solar Irradiance on a Tilted PV-Module

The PV-module is mostly installed with a tilted angle β to achieve a higher annual

yield. In this thesis, the isotropic model is used to calculate the total solar irradiance

GT (t) received by a tilted PV-module, as follows [137]

GT (t) = GB(t, β) +GD(t, β) +GR(t, β), (3.16)
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Figure 3.3: Components of solar irradiance falling on a tilted PV-module.

where GB(t, β), GD(t, β) and GR(t, β) are the beam, diffused and reflected solar

irradiance, respectively, arriving onto a PV-module with the inclination angle β, as

shown in Fig. 3.3. These components are explained as follow

Beam irradiance Is the solar irradiance, which does not undergo either scattering

or absorption during its journey from the sun to the PV-module, it is called the beam

or the direct irradiance. It can be calculated using the measured solar irradiance on

a horizontal surface by [138]

GB(t, β) = RBGB(t), (3.17)

where GB(t) is the beam irradiance measured on a horizontal surface at ground

level, and RB is the ratio of the beam irradiance arriving on a tilted surface to

that arriving on a horizontal surface. For a PV-module installed in the northern

hemisphere (all locations on Earth that is north of the equator), RB is expressed as

[139]

RB =
cos (φ− β) cos δ sinω

′
ss +

(
π
180
ω

′
ss sin (φ− β) sin δ

)
cosφ cos δ sinωss +

(
π
180
ωss sinφ sin δ

) . (3.18)

Meanwhile, for surfaces in the southern hemisphere, RB is calculated as [139]

RB =
cos (φ+ β) cos δ sinω

′
ss +

(
π
180
ω

′
ss sin (φ+ β) sin δ

)
cosφ cos δ sinωss +

(
π
180
ωss sinφ sin δ

) , (3.19)

where φ is the latitude of the installation position of the PV-system, ωss and ω
′
ss are

the sunset hour angle for a horizontal and a tilted surface, respectively, and δ is the

sun declination angle.
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Figure 3.4: Graphical illustration of the solar declination angle.

In general, the sun hour angle represents its angular displacement east or west of

the meridian, which is changing by 15 degree per hour due to earth rotation on its

axis. The sun hour angle at sunset for a horizontal surface is given by [140]

wss = cos−1 (−tan φ tan δ) . (3.20)

Meanwhile, the hour angle at sunset for a tilted surface is calculated as [139]

w
′

ss = min
[
cos−1 (−tan φ tan δ) , cos−1 (−tan (φ− β) tan δ)

]
. (3.21)

Moreover, the sun declination angle is an angle between a line joining the centers

of the sun and the earth and its projection on the equatorial plane (a plane passing

through the equator of the earth), see Fig. 3.4. The solar declination angle changes

mainly due to the rotation of the earth in its orbit around the sun. Its values is in

the range of −23.45o to +23.45o throughout a year period. The declination angle at

each day can be calculated by [138]

δ = 23.45◦sin

[
360◦284 +Nd

365

]
, (3.22)

where Nd is the number of the day in the year (i.e 1 to 365 days).

Diffuse irradiance It is the solar irradiance that does not directly reach a PV-

module, but was subjected to diffusion during its journey from the sun to the PV-

module due to the clouds or dust in the air. The diffuse irradiance on a tilted surface

can be expressed as [141]

GD(t, β) = RDGD(t) (3.23)
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Table 3.1: Guide values for reflection factor.

Option Value

Asphalt 0.1 - 0.15
Green forest 0.1 - 0.2
Wet ground 0.1 - 0.2
Dry ground 0.15 - 0.3
Grass-covered ground 0.2 - 0.3
Concrete 0.2 - 0.35
Desert sand 0.3 - 0.4
Old snow 0.5 - 0.75
Newly fallen snow 0.75 - 0.9

where RD is the ratio of the diffuse irradiance arriving on a tilted surface to that

arriving on a horizontal plane, which is calculated as

RD =
1 + cos β

2
, (3.24)

and GD(t) is the diffuse irradiance measured on a horizontal surface at ground level.

Reflected irradiance Is the reflected irradiance by the ground and radiated back

to the PV-module, which is given by

GR(t, β) = G(t)ρ
1− cos β

2
(3.25)

where G(t) is the global solar irradiance measured on a horizontal surface at ground

level, and ρ is the diffuse reflection factor from the ground. Table 3.1 shows the

different value of ρ which is determined by the type of the considered surface [141].

3.3 Battery Bank Model

The battery bank is important to increase the dispatched power from the PV-array

in a MG. Moreover, it is necessary to reduce the fluctuations of the generated solar

power and to provide a continuous power supply to the load during the blackout

periods or at low solar irradiance time. The key physical property of the battery

bank is the state of charge (SOC) [142]. However, during the battery operation,
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important practical constraints should be considered. In this thesis, a controllable

switches are employed to handle the battery operational constraints, see Fig. 3.1.

Moreover, a simplified but accurate weighted ampere-hour (Ah)1 model is used to

predict the battery lifetime loss while considering the SOC effect [75]. The battery

bank operational model and cost of battery lifetime loss calculation are explained

in the following subsection.

3.3.1 Battery Bank Operational Model

The SOC of the battery bank increases due to charging from the grid or the PV-

array, and decreases due to discharging to cover the load demand. In this study, the

charging and discharging processes are controlled by the proposed EMPC through

controllable switches, see Fig. 3.1. The change of SOC of the battery bank is

expressed by

SOC(t+ ∆t) = SOC(t) + ηchPch(t)∆t−
Pdis(t)ξ5(t)

ηdis
∆t, (3.26)

where the charging power Pch(t) consists of the charging power from the grid Pch.g(t)

and the charging power from the PV-system Pch.pv(t). Therefore, Pch(t) can be

calculated by

Pch(t) = Pch.g(t)ξ1(t) + Pch.pv(t)ξ2(t), (3.27)

where ξi(t) with i ∈ 1, 2, . . . 5 is a binary variable that represents the status of one

of the controllable switch shown in Fig. 3.1. To prevent overcharging or deep dis-

charging of the battery bank, the SOC should be limited according to the capability

of the battery bank [143], i.e.,

SOCmin ≤ SOC(t) ≤ SOCmax, (3.28)

where SOCmin and SOCmax are the lower and upper limit of the battery SOC,

respectively. The SOCmin is related to the depth of charge of the battery bank by

SOCmin = (1−DOD)SOCmax, (3.29)

1Ah is the consumed current from the battery in one hour.
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and SOCmax is given by

SOCmax = Vb.nQb.n, (3.30)

where Vb.n is the battery bank nominal voltage and Qb.n is the battery bank nominal

capacity in Ah.

To avoid battery overheating, the maximum charging power should be limited [144].

According to [143], the charging power should be constrained by

Pch ≤ γch.limVb.nQb.n (3.31)

where γch.lim is a parameter for the limit of the charging power, which is typically

between 0.1 and 0.2 to enable an optimum charge. Note that the charging and

discharging processes of the battery bank cannot simultaneously take place. In ad-

dition, the battery bank cannot be charged by different chargers (i.e., grid charger or

PV-array charger) at the same time [145]. To satisfy these conditions, the following

constraint should be held

ξ1(t) + ξ2(t) + ξ5(t) ≤ 1. (3.32)

Based on Eq. (3.32), only one of the controllable switches can be ON, i.e., the

battery bank will not simultaneously be charged and discharged. In addition, the

battery bank will not be charged from the grid and the PV-array at the same time.

Due to the synchronization issue of the AC power (matching the frequency, phase

angle, and voltage amplitude), the DC/AC inverter and the grid cannot simulta-

neously supply power to the load. Thus, the following constraints should also be

added

ξ3(t) + ξ4(t) ≤ 1, (3.33a)

ξ5(t) + ξ4(t) ≤ 1. (3.33b)

By the constraint in Eq. (3.33a), the load will not simultaneously be covered from

the grid and the PV-system. Similarly, the load will not simultaneously be covered

from the grid and the battery bank because of the constraint in Eq. (3.33b).
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3.3.2 Cost of Battery Lifetime Loss

Battery manufacturers usually give the expected lifetime of the battery based on

well-defined standard tests [146]. Consequently, the battery lifetime is expressed by

the number of operation cycles measured by discharging the battery with constant

power to a certain depth of discharge and charging it to its maximum value with a

certain charging algorithm [147]. However, in practical operations, the battery does

not work under the so-called standard operating conditions, and thus its lifetime

varies according to the real operating environment [148]. The weighted Ah battery

aging model takes into account the real-time variations to estimate the battery life-

time [146, 149]. It is assumed that the battery lifetime is ended when the battery

Ah throughput reached its maximum value based on its rated value [150]. More-

over, the impact of the consumed Ah on the battery life depends on the battery

operation condition at discharge time. Based on the data from manufacturers of

deep-cycle lead-acid batteries, the total Ah throughput of the lead-acid battery can

be calculated by [75, 41]

Atotal = ε×Qb.n. (3.34)

Here ε is a parameter used to calculate the total Ah throughput over the battery

lifetime based on its nominal capacity, which is equal to 490 [41] for lead-acid bat-

teries. Accordingly, the battery lifetime loss factor Lf (t) is defined as the ratio of

the weighted consumed Ah to the total Ah throughput of the battery [41, 151] ,

which can be expressed as

Lf (t) =
Ac(t)

Atotal
, (3.35)

where Ac(t) is the weighted consumed Ah, which is calculated by

Ac(t) = λsoc(t)A
′

c(t), (3.36)

and A
′
c(t) is the actual consumed Ah from the battery and λsoc(t) is a weighting

factor that graphically related to the battery SOC(t) [41, 151], as seen in Fig. 3.5.

For simplicity, this relationship is expressed mathematically as



34 Optimal Operation of Residential Microgrids

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SOC
norm

(t)

0

0.3

0.6

0.9

1.2

1.5

λ
so

c
 (

t)

Figure 3.5: The relation between SOCnorm(t) and λsoc(t).

λsoc(t) =

a 0 ≤ SOCnorm(t) < 0.5

bSOCnorm(t) + c 0.5 ≤ SOCnorm(t) ≤ 1,

(3.37)

where SOCnorm(t) is equal to SOC(t)/SOCmax, and the parameters a=1.3, b=-

1.5, c=2.05 are calculated based on the battery manufacturer datasheet [41]. From

Eq. (3.37), it can be determined that discharging 1 Ah from the battery bank at

SOCnorm(t) ≤ 0.5 is approximately equivalent to remove 1.3 Ah from the total Ah

throughput of the battery. If SOCnorm(t) = 1 discharging 1 Ah from the battery

bank is equivalent to removing 0.55 Ah from the total Ah throughput of the bat-

tery. According to this analysis, discharging at higher SOCnorm value will be more

beneficial for lead-acid batteries.

Using the calculated Lf (t) in Eq. (3.35), the cost of the lifetime loss of the battery

bank can be calculated by

Cb.l(t) = Lf (t)Cb.b, (3.38)

where Cb.b is the initial cost of the battery bank.

3.4 Grid-Tie Line

In this thesis, the MG described in section 3.1 is considered as being connected to

an electrical grid that is suffering from long periods of a grid blackout. It is assumed

that the blackout starting time BLst and the blackout period BLpr are specified

from the power distribution company and known to the user, as shown in Fig. 3.6.
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Figure 3.6: Illustration of the grid-tie line status.

This problem exists in many countries because there is no enough energy to cover

all the connected loads to the main grid [103, 104, 105, 106, 107]. Therefore, the

electrical power distribution company distributes the available power based on a

predefined schedule. In this study, the available power from the MG is represented

as

Pav.g(t) = αg(t)Pg.max, (3.39)

where

αg(t) =

 0, if blackout occured

1, otherwise.
(3.40)

Here αg(t) represents the status of the grid-tie line, i.e. when αg(t) = 1, the grid

power is available (the grid is ON) and when αg(t) = 0, the grid power is unavailable

(the grid is OFF), see Fig. 3.6. It is to note that the maximum dispatched active

power from the main grid is restricted by the grid-tie line capacity in the grid-

connected mode as follows

Pdisp.g(t) ≤ αg(t)Pg.max, (3.41)

where Pdisp.g(t) is the total dispatched power from the grid and Pg.max is the maxi-

mum allowed active power to be dispatched from the main grid.

3.5 Predictive OPD of Residential Microgrids

This section introduces the optimal power dispatch (OPD) methodology utilized to

manage the power flow through the PV-battery MG. The OPD aims to compensate
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the grid blackout problem depicted in Fig. 3.6 considering the battery lifetime and

the MG operational constraints. In this context, the economic model predictive

controller (EMPC) is used to optimize the operation of the PV-battery MG to

achieve the following major goals

• Provide a reliable energy source to cover the load, and meanwhile, minimizing

the dispatched energy from the grid when it is available.

• Manage the battery bank SOC to guarantee the availability of enough energy

to cover the load during blackout periods.

• Minimize the cost of the lifetime loss of the battery bank.

3.5.1 Implementation of EMPC-Based OPD

In this thesis, the dynamic behaviour of the battery is considered. Therefore, the

operation of the PV-battery for multiple time steps should be taken into account to

optimize the MG operation. Accordingly, model predictive control (MPC) [152, 153]

has been widely used for optimal operation of renewable energy hybrid systems,

because it can explicitly handle system dynamics, data forecasting, and operational

constraints. What distinguishes the MPC from other control methodologies can be

listed below [154]

• The explicit usage of the system model to predict the future system behaviour.

• The computation of the control variables is done by solving an optimization

problem considering the system constraints.

• MPC works based on a receding horizon fashion, i.e. the control variables

are calculated over a specified prediction horizon, and only the first optimal

control values are sent to the system.

The economic model predictive controller (EMPC) differs from the standard MPC

in that the controller provides its actions to improve the economic performance of

the process, rather than tracking a predefine setpoint [155, 156]. The operation

strategy by EMPC is similar to the conventional MPC [29]. In general, control

actions of MPC are obtained by solving a dynamic optimization problem over a
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Figure 3.7: Representation of receding horizon working concept.

specified prediction horizon Np. MPC is performed based on a so-called receding

horizon strategy (see Fig. 3.7), i.e. at each time step, new measurements are taken,

new predictions for the system behaviour over Np are made, and control commands

are computed [153]. Once the optimal control profiles for the prediction horizon are

available, only the values of the control variables for the first time step are applied

as the inputs to the system. The optimization problem of the proposed EMPC is

defined to achieve the stated goals in section 3.5 as follows

min
Uc(t),Ub(t)

J = F1 + F2 (3.42)

where

F1 =

Np−1∑
k=0

Ce.gPdisp.g(t+ k|t), (3.43)

and

F2 =

Np−1∑
k=0

Cb.bLf (t+ k|t). (3.44)

Considering the following constraints

Pav.l(t+ k|t) = Preq.l(t+ k|t), ∀k = 0, ..., Np − 1, (3.45)

SOCmin ≤ SOC(t+ k|t) ≤ SOCmax, ∀k = 0, ..., Np − 1, (3.46)

Pch(t+ k|t) ≤ γch.limVb.nQb.n, ∀k = 0, ..., Np − 1, (3.47)

Pdisp.pv(t+ k|t) ≤ Pav.pv(t+ k|t), ∀k = 0, ..., Np − 1, (3.48)



38 Optimal Operation of Residential Microgrids

Pdisp.g(t+ k|t) ≤ αg(t+ k|t)Pg.max, ∀k = 0, ..., Np − 1, (3.49)

ξ1(t+ k|t) + ξ2(t+ k|t) + ξ5(t+ k|t) ≤ 1, ∀k = 0, ..., Np − 1, (3.50)ξ3(t+ k|t) + ξ4(t+ k|t) ≤ 1

ξ5(t+ k|t) + ξ4(t+ k|t) ≤ 1

∀k = 0, ..., Np − 1. (3.51)

The objective function in Eq. (3.42) aims to minimize the cost of the dispatched

power from the grid-tie line F1, and meanwhile to minimize the cost of battery

lifetime loss. Moreover the decision variables vectors, Uc(t) = [uc(t), ...,uc(t+Np−

1|t)] andUb(t) = [ub(t), ...,ub(t+Np−1|t)] are a sequence of Np predicted continuous

and binary control variables of the PV-battery MG, respectively, where uc(t) and

ub(t) are expressed as follows

uc(t) = [Pch.g(t), Pch.pv(t), Pdis(t), Ppv.l(t)], (3.52)

ub(t) = [ξ1(t), ξ2(t), ξ3(t), ξ4(t), ξ5(t)]. (3.53)

In addition to the constraints of the battery bank described in section 3.3, new

constraints are added to the optimization problem, such as Eq. (3.45) to ensure

the required load Preq.l(t) coverage from the MG, Eq. (3.48) to prevent dispatching

power higher than the available power from the PV-array, and Eq. (3.49) to prevent

dispatching power higher than the allowed power amount from the grid, where

Pav.l(t) = Pg.l(t)ξ4(t) + Ppv.l(t)ξ3(t) + Pdis(t)ξ5(t) (3.54)

Pdisp.pv(t) = Pch.pv(t)ξ2(t) + Ppv.l(t)ξ3(t) (3.55)

Pdisp.g(t) = Pch.g(t)ξ1(t) + Pg.l(t)ξ4(t). (3.56)

The work flow of proposed EMPC is illustrated schematically in Fig. 3.8. At each
time step, the EMPC reads the current value of the SOC(t) and the forecasted load,

grid-tie line status, and PV-array power. Then, it determines the optimal values for

the control variables uc(t) and ub(t) over the prediction horizon Np by solving the

above-defined optimization problem using the optimizer in the EMPC. The control

variables computed for the first time step are applied to the MG model. After

that, the prediction horizon moves to the next time step and the whole procedure is
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Figure 3.8: Flowchart of the proposed EMPC working concept in the residential MG.

repeated. Note that in this study, it is assumed that the values of the solar power

generation, the demand and the available power from the grid in the predictive

horizon are perfectly forecasted.

3.5.2 The Optimization Algorithm of EMPC

The optimization problem formulated in Eqs. (3.42) - (3.51) leads to a mixed-

integer nonlinear programming (MINLP) problem consisting of four continuous and

five binary control variables which are time-dependent during the prediction horizon

(i.e, 9 × Np in total), as shown Eqs. (3.52) - (3.53). In addition, the existence of

the nonlinear cost function and nonlinear constraints leads to a complex MINLP
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Table 3.2: Options of the GA tool in MATLAB to solve OPD problem.

Option Value

Population size 1500
Elite count 100
Crossover function Intermediate
Crossover fraction 0.8
Mutation function Gaussian
Selection function Stochastic uniform
Creation function Uniform
Scaling function Rank based
Function tolerance 1e−3

Constraint tolerance 1e−4

Use parallel true

problem. Genetic algorithm (GA) is an effective stochastic optimization algorithm

developed by Holland [157] and Goldberg [158] inspired by the natural selection

process which mimics the biological evolution. GA is different from traditional

optimization algorithms in that they work with many candidate solutions known as

a population rather than just one solution. At each step, GA modifies a population

of candidate solutions by performing the selection, crossover and mutation processes

to produce new children for the next generation [159]. Over successive generations,

the population will be closer to an optimal solution. The explained process stops

when the best solution in each generation changes by a small amount in comparison

to the subsequent best solution. It is worth to mention that GA has no restrictions

regarding the model of the system or the type of decision variables [160]. Because of

these features, in this study, GA is employed to solve the MINLP problem described

in Eqs. (3.42) - (3.51), by using the GA tool in MATLAB [161]. Meanwhile, parallel

computing is used to speed up the calculations. The parameters used for the GA

tool in MATLAB are given in Table 3.2. Note that the sampling time for the EMPC

is set to be 1 h.

3.6 A Case Study
To illustrate the potential of the proposed OPD method to optimize the operation of

the PV-battery MG shown in Fig. 3.1, a case study is adapted from [143] with the
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Table 3.3: Type, size and capability of the system components of the residential MG.

Component Size/Capability

PV-module (250 Wp)x12= 3 kWp
DC/AC Inverter 3 kW
AC charger 2.88 kW
DC charger 2.88 kW
Battery bank (12 V-200 Ah)x4= 9.6 kWh

Table 3.4: The battery bank parameters in the residential MG.

Parameter DOD ηch ηdis Vb.n Qb.n γch.lim
(-) (%) (%) (V) (Ah) -

Value 0.7 95 95 48 200 0.2

Table 3.5: The PV-module parameters.

Parameter Pmax.m.stc Voc.m.stc Ioc.m.stc NOCT Kv Ki Nc.m n
(W) (V) (A) ◦C (%/◦C) (%/◦C) - -

Value 250 37.6 8.92 46 -0.32 0.05 60 1

components sizes listed in Table 3.3. The parameters of the battery bank are listed

in Table 3.4, while the PV-module specifications in Table 3.5 [136]. The number of

parallel and series-connected modules is taken to be 3 and 4, respectively. The price

of the lead-acid batteries is set to 213 $/kWh [162] which gives Cb.b = 2044.8 $.

To show the effects of the seasonal variations of the load profile and the PV-system

output, two days from each season of a year are selected. The solar irradiance

and temperature data are taken from [163] and shown in Fig. 3.9 (a) and (b),

respectively. According to [143], two daily blackouts are considered, where the first

blackout starts at 6 o’clock and the second one starts at 14 o’clock. Meanwhile, the

blackout duration considered to be 8 hours. Moreover, the maximum allowed power

to be extracted from the grid is 5 kW, and the cost of the consumed power from the

grid is Ce.g = 0.15 $/kWh.

The output of each PV-module is generated using the PV-array model described in

section 3.2 and shown in Fig. 3.9 (c). It is to note that the PV-module is working
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under practical operating conditions. Therefore, the actual output power from the

PV-module is less than its rated power stated in Table 3.5, which is calculated

according to the standard test conditions (STC) [164]. The available power from

the grid, the load profile [165], and the available power from the PV-array are shown

in Fig. 3.10 (a), (b) and (c) (dashed-blue), respectively.

To demonstrate the benefits of using the proposed EMPC-based control strategy

that is introduced in section 3.5, the following three different operation scenarios

are used to operate the PV-battery MG considering the grid blackout problem:

• Scenario A: The backup operation strategy [104], i.e., the MG is used only

to cover the load during the blackout periods, but without using EMPC.

• Scenario B: The EMPC-based operation strategy but without considering

the cost of the battery lifetime, i.e., F2 in Eq. (3.42) is not included.

• Scenario C: The EMPC-based operation strategy with considering the cost

of the battery lifetime, i.e, F2 in Eq. (3.42) is included, which is the proposed

strategy.

The computation is carried out on a desktop with Intel Core I7 CPU 3.4 GHz and

8 GB RAM. The initial values, denoted by (0), chosen for all computations are as

follows : P (0)
ch.g = P

(0)
ch.pv = P

(0)
dis = P

(0)
pv.l = s

(0)
1,...,5 = 0 and SOC(0) = 0.75× SOCmax.

The comparison results are shown in Tables 3.6 - 3.8 and Figs. 3.10 - 3.12. The

results of each operation scenario are discussed below in detail.

• Scenario A: In this scenario, the PV-battery MG is working according to

the backup operation strategy [104], i.e., the grid (when it is available) is

responsible for covering the load and charging the battery bank. The PV-

array with or without the battery bank will cover the load during the blackout

periods only. If there is extra power from the PV-array after covering the load,

it will be used to charge the battery bank.

The results are given in Tables 3.6 - 3.8 (Scenario A) and Fig. 3.10. It can be

observed from the results that the MG highly depends on the grid to cover the

load and to charge the battery bank. As an example, during the day hours in

Summer (e.g., time steps 102-110 in Fig. 3.10), although the available power
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Figure 3.9: PV-array model performance. (a) Global solar irradiance at ground level. (b)
Ambient temperature. (c) The maximum generated power by the PV-module.

from the PV-array is enough to cover the load and charge the battery bank,

the MG dispatches the required energy from the grid. This increases the total

dispatched energy from the grid and decreases the dispatched energy from the

PV-array, as shown in Tables 3.6 and 3.7, receptively.

In contrast, comparing Fig. 3.10 (f) with Fig. 3.11 (f) and Fig. 3.12 (f), it

can be clearly seen that the SOC level of the battery bank is the highest in

Fig. 3.10 (f), because of the high value of the charging power from the grid,

as shown in Fig. 3.10 (d). Therefore, the value of the consumed weighted Ah

from the battery bank will be decreased, which will reduce the lifetime loss of

the battery bank.

As a result, the cost of the dispatched energy from the grid F1 is highly

increased, and the total cost of battery bank lifetime loss F2 is decreased.

Consequently, the total operating costs of the PV-battery MG J is increased,

as shown in Table 3.8.
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• Scenario B: Here, we use the same input data as in scenario A, but EMPC is

used to optimize the PV-battery MG operation, without considering the cost

of the battery lifetime. The results are given in Tables 3.6 - 3.8 (scenario B)

and Fig. 3.11.

Due to considering the cost of the dispatched energy from the grid in the

optimization problem of the EMPC, a huge reduction in the total dispatched

energy from the grid is gained, in comparison to Scenario A, as shown in Table

3.6. This effect decreases the total costs of the dispatched energy from the grid

in comparison to Scenario A, as seen in Table 3.8. The reason behind this is

that the EMPC forces the MG to dispatch power from the PV-array even if

the grid is available during the day hours, as shown in Figs. 3.11 (a) - (c).

On the other hand, reducing the dispatched energy from the grid decreases the

total charging power as well. Therefore, the SOC level of the battery bank is

lowered, as seen in Fig. 3.11 (f).

From Table 3.8, it can be clearly seen that the cost of the dispatched energy

from the grid F1 is decreased and the total cost of the battery bank lifetime loss

F2 is increased, in comparison to Scenario A. As a result, the total operation

costs of the MG J is decreased except in winter where the cost of the lifetime

loss of the battery bank is highly increased due to the lack of generated power

from the PV-array, as seen in Fig. 3.11 (c) (dashed-blue).

• Scenario C: In this scenario, with the same input data as in Scenario B,

but the EMPC is used to optimize the PV-battery MG operation considering

the cost of the battery lifetime. This means that both the cost of the dis-

patched energy from the grid and the battery lifetime loss are considered in

the optimization problem of the EMPC. The results are given in Tables 3.6-3.8

(Scenario C) and Fig. 3.12.

The aim of this scenario is to see the impacts of considering the battery

lifetime cost. Comparing Figs. 3.12 (d), (f) with Figs. 3.11 (d), (f), it is

clearly seen that the total charging power scenario C is increased to raise the

battery bank SOC level. This increment leads to increase in the dispatched

power from the PV-array as seen in Table. 3.7. Meanwhile, the dispatched
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Table 3.6: Dispatched energy from the grid in kWh in two days at each scenario in the
residential MG.

Seasons Scenario A Scenario B Scenario C

Winter 26.1 21.35 21.7
Spring 22.01 12.22 13.07
Summer 33.31 23.24 22.65
Fall 21.65 11.29 13.02

Table 3.7: Dispatched energy from the PV-array in kWh in two days at each scenario in
the residential MG.

Seasons Scenario A Scenario B Scenario C

Winter 5.77 7.38 9.79
Spring 6.29 14.05 15.15
Summer 10.18 19.4 20.59
Fall 5.12 11.73 13.53

Table 3.8: Cost of the dispatched energy for each scenario in the residential MG.

Scenario A Scenario B Scenario C

Seasons F1($) F2($) J($) F1($) F2($) J($) F1($) F2($) J($)

Winter 3.91 5.02 8.93 3.2 6.42 9.62 3.26 5.1 8.36
Spring 3.3 3.51 6.81 1.84 4.46 6.3 1.96 3.66 5.62
Summer 4.99 5.65 10.64 3.48 5.92 9.4 3.39 5.56 8.95
Fall 3.25 3.51 6.86 1.69 4.42 6.11 1.95 3.53 5.48

energy from the grid is slightly increased.

As a result, the cost of the dispatched energy from the grid is slightly in-

creased in comparison to Scenario A, the cost of battery lifetime loss is highly

decreased in comparison to Scenario B, and the total operation cost of the MG

is decreased in all seasons comparing to Scenario A and B, as shown in Table

3.8.

From the above discussion, it can be concluded that the total dispatched energy

from the grid can be considerably reduced, and the dispatched energy from the

PV-array can highly be increased by using the EMPC-based operation strategy for

the PV-battery MG which increases the economic and environmental benefits of

installation of the PV-array. Nevertheless, considering the battery lifetime with the

EMPC is necessary to decrease the cost of battery lifetime loss while reducing the

cost of consumed energy by the load.
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Figure 3.10: MG operation in arbitrary two days for each season for Scenario A. (a)
Available power (dashed-blue) and power dispatch (solid-red) from the grid. (b) Required
load power (dashed-blue) and available power to cover load (solid-red). (c) Available
power (dashed-blue) and power dispatch (solid-red) from PV-array. (d) Charging power
of battery bank (solid-blue) and the charging power limit (dashed-red). (e) Discharging
power of battery bank. (f) Battery bank SOC (solid-blue) and SOC upper and lower
limits (dashed-red).
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Figure 3.11: MG operation in arbitrary two days for each season for Scenario B. (a)
Available power (dashed-blue) and power dispatch (solid-red) from the grid. (b) Required
load power (dashed-blue) and available power to cover load (solid-red). (c) Available
power (dashed-blue) and power dispatch (solid-red) from PV-array. (d) Charging power
of battery bank (solid-blue) and the charging power limit (dashed-red). (e) Discharging
power of battery bank. (f) Battery bank SOC (solid-blue) and SOC upper and lower
limits (dashed-red).
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Figure 3.12: MG operation in arbitrary two days for each season for Scenario C. (a)
Available power (dashed-blue) and power dispatch (solid-red) from the grid. (b) Required
load power (dashed-blue) and available power to cover load (solid-red). (c) Available
power (dashed-blue) and power dispatch (solid-red) from PV-array. (d) Charging power
of battery bank (solid-blue) and the charging power limit (dashed-red). (e) Discharging
power of battery bank. (f) Battery bank SOC (solid-blue) and SOC upper and lower
limits (dashed-red).
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3.7 Conclusions

In this chapter, a new comprehensive model for a residential PV-battery MG is

developed to address the grid blackout problem. The model considers the real oper-

ational constraints of the MG as well as the costs of the battery lifetime. Controllable

switches are added to control the on/off power flows through the MG. The inclusion

of the controllable switches leads to a complex MINLP problem which is solved by

using genetic algorithm. A new OPD strategy based on economic model predictive

control (EMPC) is developed to minimize the total cost of the energy dispatched

from the grid and the cost of battery lifetime loss under grid blackouts. To verify

the effectiveness of the proposed OPD approach, a compersion between a traditional

backup operation strategy and the EMPC-based OPD strategy is made. The re-

sults show that the proposed approach leads to a significant reduction of the cost

of the total energy consumed from the grid while decreasing the curtailment of the

generated power from the PV-array and maximizing the battery lifetime.



Chapter 4

Optimal Operation of Industrial

Microgrid

A particular property of the industrial loads is that they have low power factors.

Therefore, the reactive power consumption of the load cannot be neglected. This

chapter presents an active-reactive optimal power dispatch (AR-OPD) operation

strategy based on the concept of an economic model predictive controller (EMPC).

In this operation strategy, the battery lifetime cost, the active-reactive power gen-

eration cost, and the grid blackout problem are considered. The diesel generator,

the battery-inverter, and the PV-inverter models are added to the developed MG

model in chapter 3. Besides, a cost model for the dispatched reactive power from the

PV-system and battery storage system is developed. Furthermore, a new cost model

for reactive power generation from the diesel generator is introduced. The applica-

bility of the proposed EMPC framework is demonstrated using a real case study to

manage the power dispatch in the MG in a cost-effective and reliable manner for

both grid-connected and islanded mode.

4.1 Modelling of Industrial Microgrids Considering

Reactive Power Dispatch

The MG to be studied is shown in Fig. 4.1. It consists of a PV-system, a battery

storage system (BSS), multiple diesel generators (DGs), grid-tie line, controllable
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Figure 4.1: The proposed PV-battery-diesel microgrid schematic diagram.

switches as well as given active-reactive load profiles. The PV-system includes a

PV-array and an on-grid PV-inverter. The BSS consists of a battery bank with lead-

acid batteries and a battery-inverter. SWch and SWdis are ON/off switches used to

manage the charging and discharging processes. Similarly, SWdisp and SWexp are

used to maintain active-reactive power import/export constraints from/to the grid.

Moreover, SWdg.i are used to manage the DGs’ status.

The MG components are modelled considering all their technical and operational

constraints. The same PV-array model explained in section 3.2 is used in this chapter

to calculate the generated active power from the PV-array. Similarly, the battery

bank model in section 3.3 is used here to simulate the battery bank operation. The
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PV-inverter, the battery inverter, the diesel generator, and the status of grid-tie line

models are explained as follows.

4.1.1 PV and Battery Inverters

The PV-inverter is used to convert the DC-power generated from the PV-array to

AC-power used to cover the load, charge the battery bank, or export it to the main

grid. Meanwhile, the battery inverter introduced here is a bi-directional inverter, i.e.,

it converts the AC-power to DC-power to charge the battery bank. In the opposite

way, it converts the DC-power to AC-power to cover the load. Nevertheless, the

power inversion process in both inverters leads to loss of power inside the inverter,

e.g., in the form of heat, which reduces the inverter efficiency ηXinv(t). Based on the

dispatched power from the inverter PX
disp.inv(t) its efficiency can be calculated by

ηXinv(t) =
PX
disp.inv(t)

PX
disp.inv(t) + PX

inv.loss(t)
(4.1)

where PX
inv.loss(t) is the inverter power loss, and the superscript X can be PV or

BSS (the calculation of the exact value of PX
inv.loss(t) will be discussed in detail in

subsection 4.2.4). It is to note that each of the PV and the battery inverter has its

technical constraints that should be satisfied during the MG operation.

PV-Inverter Operation Constraints The dispatched active power from the PV-

Inverter should be limited by the maximum generated power from the PV-array and

the PV-inverter efficiency as follows

P PV
disp.inv(t) ≤ ηPVinvPav.pv(t), (4.2)

where

P PV
disp.inv(t) = Ppv.l(t) + Pch.pv(t) + Pexp(t). (4.3)

Moreover, the PV-inverter capability to produce both active and reactive power is

limited by its rated apparent power [64]

√
(P PV

disp.inv(t))
2 + (QPV

disp.inv(t))
2 ≤ Spv.inv, (4.4)
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where Spv.inv is the rated capacity of the PV-inverter and QPV
disp.inv(t) is the reactive

power dispatched from the PV-inverter.

Battery Inverter Operation Constraints The dispatched active power from the

battery inverter is limited by the maximum allowable discharging power [166] and

the available energy in the battery, i.e.,

Pdis(t) ≤ min

(
γdis.limSOCmax,

SOC(t)− SOCmin(t)

∆t

)
. (4.5)

where γdis.lim is a parameter for discharging power limit. Besides, the battery in-

verter can produce reactive power during the charging or discharging processes [6]

commensurate with its rated capacity. Therefore, the following constraints should

be added

√
ξch(t)(Pch(t))2 + (QBSS

disp.inv(t))
2 ≤ Sb.inv (4.6)√

ξdis(t)(Pdis(t))2 + (QBSS
disp.inv(t))

2 ≤ Sb.inv, (4.7)

where Sb.inv is the rated capacity of the battery inverter, QBSS
disp.inv(t) is the dispatched

reactive power from the battery inverter, and ξch(t) and ξdis(t) are binary control

variables used to prevent simultaneous charging and discharging during the battery

bank operation. This is held by adding the following constraint

ξch(t) + ξdis(t) ≤ 1. (4.8)

It is worth to mention that in this study, the charging power from each source is

specified individually by the MG controller. Therefore, the total charging power of

the MG is described by

Pch(t) = Pch.pv(t) + Pch.dg(t) + Pch.g(t). (4.9)

where Pch.pv(t), Pch.dg(t) and Pch.g(t) are the charging power from the PV-system,

DGs and the grid-tie line, respectively.
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Figure 4.2: Diesel generator block diagram.

4.1.2 Diesel Generator

Basically, the DG consists of two main parts, as shown in Fig. 4.2. The first part is an

internal combustion engine integrated with a governer that controls the fuel supply of

the engine to maintain the shaft speed as required. The second part is an alternator

incorporated with a voltage regulator to maintain the output terminal voltage [167].

In a DG, the diesel engine is responsible for producing mechanical power and the

alternator converts it to electrical power. However, part of the converted power in

the alternator is lost due to stray, friction, copper, and core losses [168], see Fig.

4.3. Accordingly, the relation between the dispatched electrical power from each

alternator Pdisp.dgi(t) with i ∈ {1, 2, ..., Ndg} and the generated mechanical power

can be expressed as

Pdisp.dgi(t) = ηdgi(t)Pm.dgi(t), (4.10)

where ηdgi(t) is the alternator efficiency whose value depends on the dispatched

power from the diesel generator (the calculation of the exact value of ηdgi(t) will be

discussed in details in subsection 4.2.3).

On the other hand, knowing the changing in the operating status of the DG is

important to accurately calculate its operating cost. To describe the changing in

the DG status, either it started up on or shut down, the following equations are

introduced

ξup.dgi(t) = ξdgi(t)(1− ξdgi(t− 1)), ∀i = 1, 2, ..., Ndg (4.11)

ξd.dgi(t) = ξdgi(t− 1)(1− ξdgi(t)), ∀i = 1, 2, ..., Ndg, (4.12)
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Figure 4.3: The power flow diagram of an alternator. [168]
where ξdgi(t) is a binary variable represents the status of the ith DG as well as

ξup.dgi(t) and ξd.dgi(t) are auxiliary binary variables that represent the changes at

each diesel generator status. If ξup.dgi(t) = 1, it means that the ith diesel generator

is started up at this time step, otherwise no change is occurred. If ξd.dgi(t) = 1,

it means that the ith diesel generator is shut down at this time step, otherwise no

change is occurred.

DG Operation Constraints The total dispatched power from each DG is limited

by the manufacturer specifications to prevent overheating and additional mechanical

stress. Therefore,

√
(Pdisp.dgi(t))

2 + (Qdisp.dgi(t))
2 ≤ Sdgi.max (4.13)

where Pdisp.dgi(t) and Qdisp.dgi(t) are the dispatched active and reactive power from

each DG, respectively, and Sdgi.max is the DG rated apparent power. Besides, the

power factor of the dispatched power have to be within the specified range, i.e.

PFdg.mini
≤ PFdgi(t) ≤ 1, (4.14)

where PFdg.mini
is the minimum allowed value of the DG power factor and PFdgi(t)

is the DG operating power factor at time t, which is given as

PFdgi(t) =
Pdisp.dgi(t)√

P 2
disp.dgi

(t) +Q2
disp.dgi

(t)
∀i = 1, 2, ..., Ndg. (4.15)

Since the frequent operation of the DG at a low load increases the risk of DG engine

failure due to the wet stacking problem [169], the following constraint needs to be

added

Pdisp.dgi(t) ≥ 0.3× Pr.dgi , ∀i = 1, 2, ..., Ndg, (4.16)

where Pr.dgi is the rated power of the DG.
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4.1.3 Grid-Tie Line

The introduced grid-tie line model in chapter 3 is adapted here to include the reactive

power effect. The maximum dispatched active and reactive power from the main

grid as well as the maximum exported active power is restricted by the grid-tie line

capacity in the grid-connected mode as follows

ξdisp(t)×
√
P 2
disp.g(t) +Q2

disp.g(t) ≤ αg(t)Sg.max (4.17)

and

ξexp(t)× Pexp(t) ≤ αg(t)Sg.max (4.18)

where Pdisp.g(t) and Qdisp.g(t) are the dispatched active and reactive power from the

main grid, respectively, Pexp(t) is the exported active power to the main grid, Sg.max

is the maximum allowed apparent power to be imported/exported from/to the main

grid, and αg(t) is used to represent the status of the grid-tie line, i.e.,

αg(t) =

 0, if blackout occured

1, otherwise.
(4.19)

Moreover, the following constraint is added to prevent simultaneous dispatching

from and exporting power to the main grid

ξdisp(t) + ξexp(t) ≤ 1, (4.20)

where ξdisp(t) and ξexp(t) are binary variables that represent the status of SWdisp

and SWexp switches, respectively. It is to note that exporting reactive power to the

main grid is not considered in this study.

4.2 Operation Cost of Industrial Microgrids

For an accurate calculation of the industrial MG operation cost, the cost of the

active-reactive dispatched power from all available sources is considered. Moreover,

the cost of battery lifetime loss due to dispatching active power from the BSS is
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calculated using the introduced model subsection 3.3.2. In the following subsections,

the net energy cost of the grid-tie line, as well as the operation cost of the DGs, the

PV-inverter and the battery inverter will be explained in details.

4.2.1 The Net Energy Cost of the Grid-Tie Line

In this study, it is assumed that the MG can import active and reactive power from

the main grid; meanwhile, it is allowed to export only active power. Therefore, the

net energy cost from the grid-tie line is expressed by

Cn.g(t) = Cp.gPdisp.g(t) + Cq.gQdisp.g(t)− CexpPexp(t), (4.21)

where Cn.g is the net energy cost of the grid-tie line, Cp.g and Cq.g are the cost of the

dispatched active power and reactive power from the main grid, respectively, and

Cexp is the cost of exported active power to the main grid.

4.2.2 Diesel Generator Operation Cost

The main operating cost of the DG is the diesel engine fuel consumption due to

active-reactive power consumption from the alternator. Moreover, in this study, the

startup and shutdown costs of each DG are counted in the problem formulation.

Therefore, the total operation cost of the DG set Cop.dg is formulated as follows

Cop.dg(t) =

Ndg∑
i=1

(Cffcon.dgi(t) + Cupiξup.dgi(t) + Cdiξd.dgi(t))), (4.22)

where fcon.dgi is the hourly fuel consumption of DGi, Cf is the fuel cost in $/l,

Cupi and Cdi are the startup and shutdown costs, respectively. In this study, the

startup cost is considered equal to the fuel consumption cost of the DG during 10

minutes of operation at 25% from its rated capacity. Meanwhile, the shutdown cost

is considered equal to the fuel consumption cost of the DG during 6 minutes of

operation at no load [33], i.e.,

Cupi = Cf
fcon.dgi(0.25× Pr.dgi)

6
, (4.23)
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Cdi = Cf
fcon.dgi(0)

10
. (4.24)

The consumed fuel by each DG can be calculated using the following third order

equation

fcon.dgi(t) = ξdgi × (akiP
3
m.dgi

(t) + akiP
2
m.dgi

(t) + akiPm.dgi(t) + aki), (4.25)

where the equation coefficients ak with k ∈ {1, 2, 3, 4} are fitted to the fuel con-

sumption curve given from the diesel engine data-sheet [170, 171], and Pm.dgi is the

dispatched mechanical power from the diesel engine of DGi, which is related to the

alternator efficiency and the dispatched electrical power from the DG as

Pm.dgi(t) =
Pdisp.dgi(t)

ηdgi(t)
. (4.26)

4.2.3 Cost of Reactive Power from Diesel Generators

The DG generates reactive power to maintain its terminal voltage within the spec-

ified limits based on the load requirements. However, generating reactive power

increases the current flow inside the alternator of the DG [168]. Since the copper

losses inside the alternator increases by increasing the current flow [168], the alter-

nator efficiency is going to be decreased.

Based on the manufacturer’s datasheet, the alternator efficiency at unity power

factor ηdgi0 (t) can be expressed by a third-order polynomial function

ηdgi0 (t) = bkiP
3
disp.dgi

(t) + bkiP
2
disp.dgi

(t) + bkiPdisp.dgi(t) + bki , (4.27)

where the equation coefficients bk with k ∈ {1, 2, 3, 4}, are fitted to the efficiency

curve given in [172] at unity power factor for DGi. However, by a close look at

the alternator efficiency curve (see Fig. 4.4), it can be noticed that the alternator

efficiency is reduced by decreasing the operating power factor of the DG that will be

decreased by increasing the reactive power consumption. In addition, the efficiency

reduction ηdgir (t) can be approximated by a linear relationship with the operating
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Figure 4.4: Diesel generator alternator efficiency curve [172].

power factor, which can be formulated as

ηdgir (t) = ckiPF (t) + cki , (4.28)

where the equation coefficients ck with k ∈ {1, 2}, are extracted from the efficiency

reduction curve given in the alternator data-sheet [172]. Based on this, the actual

alternator efficiency ηdgi(t) at a specified power factor is formulated as

ηdgi(t) = ηdgi0 (t)− ηdgir (t). (4.29)

Now ηdgi(t) can be used to calculate the generated mechanical power from the diesel

engine (see, Eq. (4.26)) and its fuel consumption (see, Eq. (4.25)) at the operating

power factor of the DG. Consequently, to calculate the generated reactive power

cost, the difference between the diesel engine fuel consumption at the unity power

factor and the actual operating power factor is used as follows

Cdgi
q (t) = Cf

(
fcon.dgi

(
ηdgi(t), Pm.dgi(t)

)
− fcon.dgi0

(
ηdgi0 (t), Pm.dgi(t)

))
, (4.30)

where fcon.dgi0 (t) is the diesel engine fuel consumption at the unity power factor.
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Figure 4.5: Efficiency and power loss curves of a 50 kVA PV-inverter [173].

4.2.4 Cost of Reactive Power from Inverter-Based Sources

The PV and the battery inverters are used to convert the DC-power generated

from the PV-array or battery bank to AC-power with very low cost. However, the

inversion process leads to loss of power inside the inverter, e.g., in the form of heat.

Based on an experimental results, it was shown in [61] that the power loss in the

inverter PX
inv.loss(t) depends on the dispatched active and reactive power and can be

approximated by

PX
inv.loss(t) = cself + cv.loss

√
(PX

disp.inv(t))
2 + (QX

disp.inv(t))
2 (4.31)

+ cr.loss((P
X
disp.inv(t))

2 + (QX
disp.inv(t))

2),

where cself is the inverter self-loss at the standby operation, cv.loss is the output

voltage dependent loss, and cr.loss is the current dependent loss, where the superscript

X can be PV or BSS. Eq. (4.31) can be driven using the efficiency curve of the

inverter (which is available in the manufacturer datasheet) by reformulating Eq.

(4.1) as follows

PX
inv.loss = PX

disp.inv

(1− ηXinv)
ηXinv

. (4.32)

As an example, the P pv
inv.loss of a 50 kVA PV-inverter is illustrated in Fig. 4.5 (orange

curve) which is calculated using Eq. (4.32) and the inverter efficiency (blue curve).
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The MG compensates the lost power according to the available energy at each time

step, which increases the operation cost of the MG. The cost of the dispatched

reactive power depends on the additional power loss caused by the reactive power

generation ∆PX
inv.loss(t) and the cost of the active power utilized to cover it. Using

Eq. (4.31), ∆PX
inv.loss(t) can be calculated by

∆PX
inv.loss(t) =



PX
inv.loss(t)− PX

inv.loss0
(t), if

PX
disp.inv(t) 6= 0 & QX

disp.inv(t) 6= 0

cself + cv.lossQ
X
disp.inv(t) + cr.loss(Q

X
disp.inv(t))

2, if

PX
disp.inv(t) = 0 & QX

disp.inv(t) 6= 0

, (4.33)

where PX
inv.loss0

(t) is the power loss in the inverter considering only the dispatched

active power, see Eq. (4.31).

In the PV-inverter, P PV
inv.loss(t) will be covered by the PV-system without additional

cost in case that the available power from the PV-array is enough to cover it. Oth-

erwise, P PV
inv.loss(t) will be covered by the same power used to cover the load, and the

average cost of the dispatched power from the MG will be used to calculate the cost

of the dispatched reactive power from the PV-inverter CPV
q (t) as follows

CPV
q (t) =


0, if Pav.pv(t) ≥ P PV

inv.loss(t)

Cp.gPdisp.g(t) + Cop.dg(t) + Cb.l(t)

Preq.l + P pv
inv.loss(t)

∆P pv
inv.loss(t), otherwise.

(4.34)

where Cp.gPdisp.g is the cost of the dispatched power from the grid, Cop.dg is the

operation cost of the DG set and Cb.l is the cost of the dispatched power from the

BSS.

In the battery-inverter, PBSS
inv.loss(t) will be covered from the battery bank in the case

that the available energy in the battery bank is enough to cover it. In this case, the

battery lifetime loss cost (see section 3.3.2) will be used to calculate the cost of the

dispatched reactive power from the battery-inverter CBSS
q (t). Otherwise, PBSS

inv.loss(t)

will be covered by the same power used to cover the load, and the average cost of



62 Optimal Operation of Industrial Microgrid

the dispatched power from the MG will be used to calculate CBSS
q (t) as follows

CBSS
q (t) =


Cb.l(t), if

Eav.BSS(t)

∆t
≥ PBSS

inv.loss(t)

Cp.gPdisp.g(t) + Cop.dg(t)

Preq.l(t) + PBSS
inv.loss(t)

∆PBSS
inv.loss(t), otherwise.

(4.35)

where Eav.BSS(t) = (SOC(t) − SOCmin(t)) is the available energy in the BSS at

time t.

4.3 Predictive AR-OPD of Industrial Microgrids

The proposed AR-OPD method is built based on the EMPC concept to provide

the profiles of the optimal control variables by solving the formulated optimization

problem over a specified time horizon. The EMPC is responsible for determining

the dispatched active and reactive power set-points for each power source in the

MG to cover the load with minimum cost. Therefore, the objective function of the

optimization problem is formulated to achieve the following goals

• Covering the active and reactive power demand in the islanded or in the grid

connected mode with a minimum cost.

• Reducing the fuel consumption of the DGs.

• Decreasing the cost of battery bank lifetime loss.

• Utilizing the generated energy from the PV-array as much as possible.

Therefore, the objective function of the EMPC is formulated as shown in Eq. (4.36)

to minimize the net energy cost of the grid-tie line F1, the reactive power cost from

the PV and battery inverters F2, the DG total operation cost F3, and the cost of

battery lifetime loss F4. It is to note that the reactive power cost from the DG is

included in F3. Meanwhile, all operation constraints of the MG will be held at the

whole prediction horizon, as stated in Eqs. (4.37) - (4.52).
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min
Uc(t),Ub(t)

J = F1 + F2 + F3 + F4 (4.36)

where

F1 =

Np−1∑
k=0

Ce.gPdisp.g(t+ k|t) + Cq.gQdisp.g(t+ k|t)− CexpPexp(t+ k|t)

F2 =

Np−1∑
k=0

CBSS
q (t+ k|t) + CPV

q (t+ k|t)

F3 =

Np−1∑
k=0

Cop.dg(t+ k|t)

F4 =

Np−1∑
k=0

Cb.initLf (t+ k|t).

subject to,

Pav.l(t+ k|t) = Preq.l(t+ k|t), ∀k = 0, ..., Np − 1,

(4.37)

Qav.l(t+ k|t) = Qreq.l(t+ k|t), ∀k = 0, ..., Np − 1,

(4.38)

P PV
disp.pv(t+ k|t) ≤ ηPVinv (t+ k|t)Pav.pv(t+ k|t), ∀k = 0, ..., Np − 1,

(4.39)√
(Pdisp.pv(t+ k|t))2 + (QPV

disp.inv(t+ k|t))2 ≤ Spv.inv, ∀k = 0, ..., Np − 1,

(4.40)

Pdisp.dgi(t+ k|t) ≥ 0.3Pr.dgi , ∀k = 0, ..., Np − 1,

(4.41)

PFdg.mini
≤ PFdgi(t+ k|t) ≤ 1, ∀k = 0, ..., Np − 1,

(4.42)√
(Pdisp.dgi(t+ k|t))2 + (Qdisp.dgi(t+ k|t))2 ≤ Sdgi , ∀k = 0, ..., Np − 1,

(4.43)

ξexp(t+ k|t)Pexp(t+ k|t) ≤ αg(t+ k|t)Sg.max, ∀k = 0, ..., Np − 1,

(4.44)
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ξdisp(t+ k|t)
√
P 2
disp.g(t+ k|t) +Q2

disp.g(t+ k|t) ≤ αg(t+ k|t)Sg.max, ∀k = 0, ..., Np − 1,

(4.45)

ξdisp(t+ k|t) + ξexp(t+ k|t) ≤ 1, ∀k = 0, ..., Np − 1,

(4.46)

ξch(t+ k|t) + ξdis(t+ k|t) ≤ 1, ∀k = 0, ..., Np − 1,

(4.47)

Pch(t+ k|t) ≤ γch.limVb.nQb.n, ∀k = 0, ..., Np − 1,

(4.48)

Pdis(t+ k|t) ≤ γdis.limVb.nQb.n, ∀k = 0, ..., Np − 1,

(4.49)√
ξch(t+ k|t)(Pch(t+ k|t))2 + (QBSS

disp.inv(t+ k|t))2 ≤ Sb.inv, ∀k = 0, ..., Np − 1,

(4.50)√
ξdis(t+ k|t)(Pdis(t+ k|t))2 + (QBSS

disp.inv(t+ k|t))2 ≤ Sb.inv, ∀k = 0, ..., Np − 1,

(4.51)

SOCmin ≤ SOC(t+ k|t) ≤ SOCmax, ∀k = 0, ..., Np − 1.

(4.52)

In Eq. (4.36) , the control variables of the optimization problem are determined to

specify all the dispatched active and reactive power set-points for each power source

in the MG. Moreover, binary control variables are introduced to specify the status

of the controllable switches in the MG model, see Fig. 4.1. Therefore, the control

variables of the optimization problem are divided into continuous uc(t) and binary

ub(t), hence

uc(t) = [Pg.l(t+ k|t), Pch.g(t+ k|t), Pexp(t+ k|t), Qg.l(t+ k|t), (4.53)

Pdisp.dgi(t+ k|t), Qdisp.dgi(t+ k|t), Pch.dg(t+ k|t), Ppv.l(t+ k|t),

Qdisp.pv(t+ k|t), Pch.pv(t+ k|t), Pdis(t+ k|t), Qdisp.b(t+ k|t)],

and

ub(t+k|t) = [ξexp(t+k|t), ξdisp(t+k|t), ξch(t+k|t), ξdis(t+k|t), ξdgi(t+k|t)]. (4.54)
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According to the calculated control variables the total dispatched active power

from the PV-system Pdisp.pv(t), the total dispatched active power from the DG set∑Ndg

i=1 Pdisp.dgi(t) , the total dispatched active power from the grid Pdisp.g(t) as well as

the available active power Pav.l(t) and the available reactive power Qav.l(t) to cover

the load, are calculated, respectively, by

Pdisp.pv(t) = Ppv.l(t) + Pch.pv(t) + Pexp(t), (4.55)
Ndg∑
i=1

Pdisp.dgi(t) = Pdg.l(t) + Pch.dg(t), (4.56)

Pdisp.g(t) = Pg.l(t) + Pch.g(t), (4.57)

Pav.l(t) = Ppv.l(t) + Pg.l(t) + Pdg.l(t) + Pdis(t), (4.58)

Qav.l(t) = QPV
disp.inv(t) +Qdisp.g(t) +

Ndg∑
i=1

Qdisp.dgi(t) +QBSS
disp.inv(t). (4.59)

The workflow of the proposed EMPC is illustrated schematically in Fig. 4.6. At

each time step, the EMPC updates the battery bank SOC, the DGs status, hourly

solar irradiance, ambient temperature, active power, and reactive power load. Then,

the optimal values of the control variables are calculated for the whole time horizon

using a genetic algorithm (GA) to minimize the stated objective function in Eq.

(4.36). However, only the first optimal control values (at k = 0) are applied to the

MG model. Consequently, the predictive horizon moves to the next time step and

the whole procedure is repeated.

The formulated optimization problem of the EMPC is solved using the GA function

in MATLAB utilizing the function parameters shown in Table 4.1. It is noted that

the sampling time is chosen to be k = 1 h, and the prediction horizon length is

Np = 24 h.

4.4 A Case study

To demonstrate the effectiveness of the proposed AR-OPD framework for optimizing

both active and reactive power dispatch in the MG shown in Fig. 4.1, a real case

study from [12] is adapted and simulated using real temperature and solar irradiance
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Figure 4.6: Flowchart of the proposed EMPC working concept in the industrial MG.

profiles [163]. Moreover, to emphasize the adaptivity of the proposed control strategy

to different environmental conditions, optimizing the MG operation in two days from

each season of a year are considered.

The technical and economic parameters of the main components in the MG are given

in Table 4.2, while the detailed parameters of the battery bank and the PV-panel

are listed in Table 4.3 and 4.4, respectively.

The efficiency curves of the battery-inverter and the PV-inverter are taken from

the corresponding datasheet in [173] and [174], respectively. Besides, the efficiency

curves of the diesel engines are obtained from [170] and [171], while the efficiency

curves of the alternators are taken from [172].

The grid blackouts period and its rhythm are taken from [12]. The blackouts start

at 6 o’clock and 14 o’clock daily; meanwhile, the blackout duration considered to be
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Table 4.1: Parameters of the GA tool in MATLAB to solve AR-OPD problem.

Option Value

Population size 900
Elite count 100
Maximum generations 3000
Crossover function Intermediate
Crossover fraction 0.92
Mutation function Gaussian
Selection function Stochastic uniform
Creation function Uniform
Scaling function Rank based
Function tolerance 1e−3

Constraint tolerance 1e−2

Use parallel true

8 hours. The active and reactive load profiles are obtained from [6] and shown in

Fig. 4.7 (a). The output of the PV-system is generated using the PV-array model

described in section 3.2 and shown in Fig. 4.7 (b) (dashed-blue).

Several scenarios are used to demonstrate the benefit of using the proposed AR-OPD

operation strategy. The following four different operation scenarios to operate the

PV-battery-diesel MG under the grid blackout are considered:

• Scenario A: The proposed AR-OPD operation strategy in section 4.3 is used

to operate the MG with considering the battery lifetime loss cost and the

reactive power cost. Nevertheless, importing reactive power from the main

grid is prevented.

• Scenario B: The proposed AR-OPD operation strategy in section 4.3 is used

to operate the MG without considering the battery lifetime loss cost and the

reactive power cost. Nevertheless, importing reactive power from the main

grid is prevented.

• Scenario C: The proposed AR-OPD operation strategy in section 4.3 is used

to operate the MG without considering the battery lifetime loss cost and the

reactive power cost. Here, importing reactive power from the main grid is

allowed.
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Table 4.2: Technical and economic parameters of the main components in the industrial
MG.

Load

Maximum load 500 kVA
Load power factor 0.8

PV-system

PV-array size 700 kWp
PV-inverter size and type Sunny tripower core1/50 kVA
PV-inverter power factor from 0 to 1
Number of PV-inverters 10

Battery storage system

Total energy capacity 960 kWh
Battery-inverter size and type Sunny tripower storage-60/75 kVA
Number of battery-inverters 7
Battery-inverter power factor from 0 to 1
Charging limiter 0.2
Discharging limiter 1
Ah throughput parameter 390

Diesel generator1

DG1 type and Sdg Cummins QSL9/300 kVA [175].
Diesel engine size and type Cummins QSL9-G5/310 kWm [170].
Alternator size and type Stamford UCI274H/300 kVA [172].
Minimum power factor for DG1 0.8
DG lower limit 0.3 ×Pr.dg1
Fuel cost 1.3 $/l

Diesel generator2

DG2 type and Sdg Cummins QSB7/200 kVA [175].
Diesel engine size and type Cummins QSB7-G5/213 kWm [171].
Alternator size and type Stamford HC4D/200 kVA [172].
Minimum power factor 0.8
DG lower limit 0.3 ×Pr.dg2
Fuel cost 1.3 $/l

Grid

Grid maximum importing/exporting power capability 500 kVa
Active power buying tariff 0.15$/kWh
Reactive power buying tariff 0.0375$/kVAR
Active power selling tariff 0.1$/kWh
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Table 4.3: The battery bank parameters in the industrial MG.

Parameter DOD ηch ηdis Vb.n BBn.c γch
(-) (%) (%) (V) (Ah) -

Value 0.5 95 95 48 40000 0.2

Table 4.4: The PV-module parameters.

Parameter Pmax.m.stc Voc.m.stc Ioc.m.stc NOCT Kv Ki Nc.m n
(W) (V) (A) ◦C (%/◦C) (%/◦C) - -

Value 250 37.6 8.92 46 -0.32 0.05 60 1

• Scenario D: The rule-based operation strategy [176] is used to operate the

proposed MG considering only the active power dispatch.

All computations were undertaken under the MATLAB 8.2 environment, running

on a desktop with an Intel Core I7-3.4 GHz CPU and 8 GB RAM. The results are

shown in Tables 4.5 - 4.7 and Figs. 4.7 - 4.11. The results of each operation scenario

are discussed below in detail.

• Scenario A: It can be noticed from Tables 4.5 - 4.7 that the total cost of the

active and reactive power is the lowest in this scenario. This cost reduction

is due to considering the cost of battery lifetime and reactive power in the

optimization problem of the EMPC. Compared to other scenarios, the MG

controller increases the battery SOC level to reduce the value of the weighted

factor of the dispatched current from the battery (see, Eq. (3.36)) to decrease

the battery lifetime loss, as seen in Fig. 4.7 (e), Fig. 4.8 (e), and Fig. 4.9 (e).

On the other hand, it can be seen from Fig. 4.10 that importing reactive power

from the main grid is prevented and the controller depends on the local power

sources to cover the load, while considering the reactive power generation cost.

As explained in subsections 4.2.3 and 4.2.4, generating reactive power increases

the power losses in the DG as well as in the battery and the PV inverters.

However, the MG compensates the lost power according to the available energy

at each time step. To decrease the cost of reactive power compensation, the

EMPC increases reactive power dispatching from the PV-inverter, especially

in the day time, as seen in Fig. 4.10 at time steps 100-115. Besides, the EMPC

forces the DG to work at a high power factor to decrease the power loss, as
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seen in Fig. 4.10 (c). Therefore, the total cost of the dispatched reactive power

from the MG is the lowest in this scenario, as shown in Table 4.6

Due to considering the startup and shutdown costs in the objective function,

the number of startup and shutdown switches is reduced by decreasing the

frequency of running and stopping the same DG, as seen in Fig.4.7 (d).

• Scenario B: Here, the same input data as in scenario A is used, but EMPC

is utilized to optimize the MG operation without considering the cost of the

battery lifetime. The results are shown in Tables 4.5 - 4.7 (scenario B) and

Fig. 4.8.

Since the battery lifetime cost is not considered in this scenario, the EMPC

increases the discharged power from the BSS to decrease the dispatched power

from the main grid in the grid-connected mode or from the DG in the blackout

periods. However, this operation strategy increases the battery lifetime cost

significantly, which increases the total power cost compared with scenario A,

as seen in Table 4.5. To understand the effect of SOC level on the battery

lifetime cost, one can compare the SOC in Fig. 4.7 (e) with that in Fig.

4.8 (e). It can be seen that the SOC in scenario A is higher than the SOC

in scenario B, and discharging is activated only at high SOC levels, which

decrease its effect on the lifetime cost.

Also, in this scenario, importing reactive power from the main grid is still

forbidden, moreover the reactive power generation cost from the local sources

is neglected. Therefore, the amount of the dispatched reactive power from the

PV and battery inverter is nearly equal. Moreover, from Fig. 4.11, it can be

seen that the operation power factors of the DGs are low in comparison to

that in scenario A.

From Table 4.5, it can be seen that the total cost of the dispatched active

power is increased due to the increment in the cost of battery lifetime loss. In

addition, the cost of reactive power is increased, as shown in Table 4.6, due to

increasing the dispatched reactive power from the BSS and the DGs.

• Scenario C: This scenario is similar to scenario B; however, importing re-

active power from the main grid is allowed. From Table 4.5, we can notice
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that the cost of active power is nearly not affected. Meanwhile, the cost of

reactive power is highly increased compared with its cost in scenarios A and

B, as shown in Table 4.6. This demonstrates that generating reactive power

locally is more cost-effective than importing it from the main grid.

• Scenario D: In this scenario, the conventional rule-based operation strategy

is applied to operate the MG by considering only the active power dispatch.

Here, the PV-system is used to meet the load requirement as the first priority.

If the generated energy from the PV-system is more than the needed load,

the excess energy will be stored in the BSS. In case the PV-system cannot

meet the load, the BSS will work with the PV-system to meet the load while

considering the SOC constraints of the battery bank. However, if the BSS is

not able to meet the deficit energy, the PV-inverter will work with the grid-tie

line to cover the load in grid-connected mode. Otherwise, the PV-inverter will

work with the DG to cover the load in the islanded mode.

The explained operation strategy is illustrated in Fig. 4.9, it can be seen that

the controller depends mainly on the BSS and the PV-system to cover the

load. Therefore, the battery lifetime cost is highly increased, and the cost

of dispatched power from the main grid and from the DG is decreased. As

a result, the total cost of the dispatched power is highly increased compared

with that in scenario A, see Table 4.7.

From the above discussion, we can see that the proposed AR-OPD operation strategy

is able to operate the PV-battery-diesel MG optimally to cover both the active and

the reactive power demand. In addition, it is demonstrated that considering the

battery lifetime cost is necessary to minimize the total operation cost of the MG.

Moreover, considering the reactive power cost has a high impact on optimizing the

power flow in the MG. Furthermore, the results show that the PV-inverter is able

to generate reactive power with very low cost in comparison to the battery-inverter

and the DG.
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Figure 4.7: Active power dispatch in arbitrary two days for each season for scenario A. (a)
Required load active power (solid-blue) and reactive power (solid-red). (b) Available power
(dashed-blue), locally dispatched power (solid-red) and exported power (solid-green) from
the PV-system. (c) Available power (dashed-blue) and power dispatch (solid-red) from the
grid. (d) Total dispatched power from DG1 (solid-blue) and DG2 (solid-green). (e) Battery
bank SOC (solid-blue) and SOC upper and lower limits (dashed-red).
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Figure 4.8: Active power dispatch in arbitrary two days for each season for scenario B. (a)
Required load active power (solid-blue) and reactive power (solid-red). (b) Available power
(dashed-blue), locally dispatched power (solid-red) and exported power (solid-green) from
the PV-system. (c) Available power (dashed-blue) and power dispatch (solid-red) from the
grid. (d) Total dispatched power from DG1 (solid-blue) and DG2 (solid-green). (e) Battery
bank SOC (solid-blue) and SOC upper and lower limits (dashed-red).
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Figure 4.9: Active power dispatch in arbitrary two days for each season for scenario D. (a)
Required load active power (solid-blue) and reactive power (solid-red). (b) Available power
(dashed-blue), locally dispatched power (solid-red) and exported power (solid-green) from
the PV-system. (c) Available power (dashed-blue) and power dispatch (solid-red) from the
grid. (d) Total dispatched power from DG1 (solid-blue) and DG2 (solid-green). (e) Battery
bank SOC (solid-blue) and SOC upper and lower limits (dashed-red).
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Figure 4.10: Reactive power dispatch in arbitrary two days for each season for scenario A.
(a) Dispatched reactive power from the PV-system (solid-blue) and from the battery bank
(solid-red). (b) Total dispatched reactive power from DG1 and DG2 and the dispatched
reactive power from the min grid (solid-red). operating power factor for DG1 (blue-circle)
and for DG2 (green-circle).

Figure 4.11: Reactive power dispatch in arbitrary two days for each season for scenario B.
(a) Dispatched reactive power from the PV-system (solid-blue) and from the battery bank
(solid-red). (b) Total dispatched reactive power from DG1 and DG2 (solid-blue) and the
dispatched reactive power from the min grid (solid-red). operating power factor for DG1

(blue-circle) and for DG2 (green-circle).
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Table 4.5: Cost of the dispatched active power at scenarios A-C in the industrial MG.

Scenario A Scenario B Scenario C

Seasons Cop.dg($) Cp.g($) Cb.l($) CT
p ($) Cop.dg($) Cp.g($) Cb.l($) CT

p ($) Cop.dg($) Cp.g($) Cb.l($) CT
p ($)

Winter 1249.07 723 220.75 2193 1227.43 684.61 446.39 2239.39 1350 646.29 272 2169.56

Spring 814.6 507.25 300.65 1622 782.08 454.33 446.38 1682.8 752.89 448.54 527.89 1739.33

Summer 1105.78 538.88 336.81 1981.48 1011.17 524.92 525.64 2061.73 1107.28 570.66 471.19 2149.12

Fall 853.46 491.27 292.05 1636.79 846.31 455.67 433.01 1735 944.58 395.5 365.66 1705.75

Table 4.6: Cost of the dispatched reactive power at scenarios A-C in the industrial MG.

Scenario A Scenario B Scenario C

Seasons Cq.g($) CBSS
q ($) Cdg

q ($) CPV
q ($) CT

q ($) Cq.g($) CBSS
q ($) Cdg

q ($) CPV
q ($) CT

q ($) Cq.g($) CBSS
q ($) Cdg

q ($) CPV
q ($) CT

q ($)

Winter 0 21.05 10.59 4.33 41.82 0 24.6 8.38 7.19 44.8 51.31 27.22 9.96 5.21 93.71

Spring 0 17.64 8.8 2.92 18 0 27.04 6.82 4.48 21.66 34.41 21.56 9.84 2.67 68.49

Summer 0 25.51 8.94 3.71 18.74 0 34.71 7.73 6.29 22.26 42.87 30.68 6.84 8.95 42.25

Fall 0 19.9 10.06 2.07 30.01 0 30.25 8.65 5.08 37.19 33.48 23.57 10.52 3.62 37.71
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Table 4.7: Cost of the dispatched energy for scenarios A and D in the industrial MG.

Scenario A Scenario D

Seasons Cop.dg($) Cp.g($) Cb.l($) CT
p ($) Cop.dg($) Cp.g($) Cb.l($) CT

p ($)

Winter 1249.07 723 220.75 2193 1058.8 702.02 1291.8 3052.5

Spring 814.6 507.25 300.65 1622 813.78 412.41 1137.6 2363.8

Summer 1105.78 538.88 336.81 1981.48 1117.7 408.84 866.80 2393.3

Fall 853.46 491.27 292.05 1636.79 719.79 420.25 1153.1 2293.1

4.5 Conclusions

In this chapter, an AR-OPD approach is introduced to optimize both the active

and the reactive power dispatch in a PV-battery-diesel MG under grid blackout

condition. In this study, the active-reactive power generation cost and the bat-

tery lifetime are taken into account. A detailed model for a PV-battery-diesel MG

with both active-reactive power economical and technical constraints are developed.

Moreover, a novel model is introduced to calculate the reactive power generation cost

from the DG. It is demonstrated by a real case study that considering the battery

lifetime cost is necessary to minimize the total operation cost of the MG. Besides,

considering the reactive power cost has a high impact on the optimal power flow

in the MG. Moreover, it is approved that generating reactive power locally is more

cost-effective than importing it from the main grid. Furthermore, the results show

that the PV-inverter is able to generate reactive power with very low cost compared

with the battery-inverter. Finally, the results show that the proposed operation

strategy leads to a significant reduction (up to 31 %) in the total operation cost of

the MG in comparison to the conventional rule-based operation strategy.



Chapter 5

Optimal Design of PV-based

Microgrids Under Uncertainty
The optimal design of a MG is challenging since multiple components, and com-

plicated operating conditions have to be taken into account. In this chapter, a

comprehensive method for the optimal design of both the residential and industrial

MGs that were studied in chapter 3 and 4 is proposed to determine the optimal size

of the MG components under the considerable uncertainties. The proposed method

aims to minimize the levelized cost of energy (LCOE), where the limitation of the

annual total loss of the power supply (TLPS) and the operational constraints are

addressed. However, neglecting the uncertainties of the input parameters could lead

to an unreliable design for the MG. Therefore, the uncertainties of solar irradiance,

ambient temperature, blackouts starting time, and blackouts duration are mod-

eled and considered in the optimization problem. Chance constrained optimization

(CCOPT) with Monte-Carlo simulation approaches are utilized to formulate and

solve the stochastic optimal design problem. Due to the high capital cost and short

lifetime of the battery bank, compared to other components in the MG, especial

attention is given in this chapter to estimate the battery bank lifetime accurately.

For that, a comprehensive model for the lead-acid battery is utilized to simulate the

battery operation and aging, based on the physio-chemical processes of the battery.

5.1 Problem Formulation

Optimal design of a MG means finding the optimal sizes of its components to reach

the lowest price for the produced energy from the MG over its lifetime. However,



5.1 Problem Formulation 79

due to the diversity of energy sources within the MG and the difference in the meth-

ods of operating each of them, it is difficult to find a reliable solution to the optimal

design problem. Moreover, the existence of integer decision variables in the design

problem leads to a mixed-integer nonlinear programming (MINLP) problem. Also,

incorporating input parameters uncertainties adds stochastic terms to the optimiza-

tion problem. Therefore, the optimal design problem of the MG can be, in general,

defined as a stochastic MINLP optimization problem.

Since there exist random parameters in the optimization problem, it will be uncer-

tain to satisfy the problem constraints. Chance constrained optimization (CCOPT)

methods have been recognized as comparative approaches for solving constrained

optimization problems under uncertainty. The CCOPT was introduced in [177] as

an efficient solution method for financial planning problems. Due to its effectiveness,

it has been used in various fields, such as optimal power flow [178, 179, 180], water

management [181], chemical engineering [182], robust control [183], robotics [184]

and many others. In CCOPT, the inequality constraints in the stochastic optimiza-

tion problem will be satisfied with a predefined probability value to ensure a specific

level of reliability.

In this study, the proposed optimal design method aims to minimize the LCOE,

considering the limitation of the annual TLPS taking into account the uncertainty

of the input parameters. Therefore, a chance constraint Pr{TLPS(x,u, ζ) ≤

TLPSmax} ≥ αrel is used to satisfy the limitation of the TLPS by a predefined

probability level αrel. Based on that the optimal design problem of the MG can be,

in general, defined as a chance constrained MINLP optimization problem expressed

as follows:

min
u
E[J(x,u, ζ)]

s.t. (5.1)

umin ≤ u ≤ umax

Pr{TLPS(x,u, ζ) ≤ TLPSmax} ≥ αrel

ζ ∈ Ω.
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In Eq. (5.1), E[f(x,u, ζ)] is the objective function to be minimized which is the

expected value of the levelized cost of energy, x is the vector of the state variables

that comprise the dispatched power from the MG components, u is the vector of

the decision variables, ζ is the vector of random variables (i.e. uncertainty) which

includes the solar radiation, ambient temperature, the blackout starting time and

the blackouts period as well as umin/max are the lower/upper limits of the decision

variables. The chance constraint is expressed in which Pr{ • } is the probability

operator and αrel is the pre-defined probability level. As an example, if αrel =

0.95 this means that in the presence of uncertainty ζ the maximum allowed TLPS

constraint is to be satisfied by 95%.

In this study, the decision variables are adjusted before their evaluation to make

them compatible with the real sizes of the MG components as follows

u∗ = A� u (5.2)

where � denotes component-wise multiplication, A is the vector of adjustment fac-

tors , and u∗ is the adjusted decision variables vector (more details will be given in

subsection 5.6.1).

5.2 Modeling the Uncertain Parameters

Several studies have been conducted to investigate the effect of the input parameters

uncertainty on the MG optimal design problem [86]. However, most of the previous

studies take into account the uncertainty of the generated power from the renewable

energy sources [92, 91, 89] and the power consumption by the load [90, 95]. More-

over, it was shown in [12] that the power generation from the PV-system depends

on the solar irradiance and the ambient temperature; therefore, considering the un-

certainty for both is essential for reliable calculation of the generated power from

the PV-system [185]. In this chapter, in addition to the uncertainty of the generated

power from the PV-system, more importantly, the uncertainty of the grid blackout

is taken into account in the optimization problem. Moreover, for appropriate con-

sideration of the load consumption variation, the deviation in the load consumption

in workdays and weekends as well as the seasonal variation in the load profiles are
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Figure 5.1: Illustration of the grid-tie line status variable αg.

considered.

To include the input parameters uncertainty in the optimal design problem, a stochas-

tic model has to be built. In general, there are two methods to model the uncer-

tainties of random parameters using probability density function (PDF), namely the

parametric and the non-parametric techniques [186]. The parametric PDF involves

standard distribution functions, e.g., Gaussian, Beta and Binomial, that are able

to describe the stochastic behavior of the data accurately and their parameters can

be calculated from the data sets. The non-parametric techniques are used in case

the parametric distributions cannot characterize the stochastic behavior of the data

accurately.

5.2.1 Blackouts Uncertainty Model

For an accurate stochastic representation of the main grid blackouts, the uncertainty

of the blackout starting time Blst and the blackout period Blpr are investigated, see

Fig. 5.1. The model of the grid-tie line status αg (which was introduced in section

3.4) is reformulated to include the blackout uncertainty as follows

αg(Blst, Blpr) =

 0, Blst ≤ t ≤ Blst +Blpr

1, otherwise,
(5.3)

where Blst and Blpr are stochastic parameters. Different models were utilized to

model blackout uncertainties, such as normal probability distribution [187], bell-

shaped distribution [188], Poisson distribution [121], and Weibull distribution [113]

. However, due to the existence of several reasons that lead to planned or unplanned
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blackouts, it is hard to find a general parametric PDF that describes the uncertainty

of blackout parameters. Therefore, the method of kernel density estimator (KDE)

is used in this study to estimate the uncertainty of Blst and Blpr. KDE or Parzen’s

window is a non-parametric density estimator that can formulate its shape from the

data itself [189]. KDE builds for similar data samples their own probability density

curve; then these curves are smoothed and combined in one curve that represents

the PDF for all samples [190, 191]. As an example, a histogram of random samples

is shown in Fig. 5.3(a), to build a PDF representing these samples by KDE, each

pin in the histogram is replaced by Gaussian PDF, as shown in Fig. 5.3(b) (orange

curves). After that, the Gaussian PDFs are summed together to build the kernel

estimate, see Fig. 5.3(b) (blue curve). The general formula of the kernel density

estimator fk for any real values of x is given by [189]

fk(x) =
1

nh

n∑
i=1

K
(x−Xi

h

)
, (5.4)

where n is the samples number, h denotes the bandwidth that controls the smooth-

ness of the KDE probability density curve, K is a smooth function called the kernel

function [189], X1, X2, ..., Xn are the random samples. It is noteworthy to mention

that the value of the bandwidth parameter is important to shape the KDE. Choosing

a high value for the bandwidth leads to a smooth KDE that may hide some charac-

teristics of the distribution. Meanwhile, a small bandwidth value may over-estimate

some characteristics of the distribution. In this study, the ksdensity function in

MATLAB [192] is utilized to generate the PDFs of the blackout starting time and

blackout period. In ksdensity the optimal value of the bandwidth is calculated

based on the method proposed in [190].

The way of calculating the PDFs of the blackout starting time and the blackout pe-

riod from a historical data is summarized in Fig. 5.4 and explained by the following

steps

• Step 1: The status of the grid-tie line was observed and recorded for three

months in an area suffering from long periods of daily blackouts [193].

• Step 2: The daily status of the grid-tie line is extracted.
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Figure 5.2: Representation of Cartesian product to generate of the combined blackout
samples.

• Step 3: The blackout starting time and the blackout period in each day are

determined and recorded.

• Step 4: The PDFs of the blackout starting time and the blackout period are

calculated using KDE.

In this study, one blackout per day is considered, where the starting time and the

period of this blackout are uncertain. Therefore, each daily blackout sample is a

pair from the blackout starting time and blackout period (blst, blpr). The Cartesian

product is used to combine the blackout starting time and the blackout period to

generate produce all possible pairs that represent the daily blackouts. The genera-

tion of the combined blackout samples (blst, blpr) is illustrated in Fig. 5.2.

5.2.2 Solar Irradiance Uncertainty Model

The uncertainty of the solar irradiance has seasonal and diurnal patterns [194].

However, it was shown in [195] that the Beta PDF can describe the solar irradiance

uncertainty with sufficient accuracy, which is given by [196, 195]

fG.x =
Γ(ψ + %)

Γ(ψ)Γ(%)
G(%−1)
x (1−Gx)

(ψ−1), for ψ ≥ 0, % ≥ 0, (5.5)
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Figure 5.3: Kernel density estimator illustration. (a) Data representation as a histogram.
(b) Individual probability density curve for each data value (orange curves) and the overall
kernel distribution (blue curve).
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Figure 5.4: Representation of building the PDF of the blackout starting time and blackout
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Figure 5.5: Illustration of solar irrdiance in one day.

where Gx is the solar irradiance, fG.x is the PDF of the solar irradiance, and x refers

to the solar irradiance type that can be global, direct or diffused. Moreover. ψ and

% are the Beta-PDF parameters, which can be calculated from the mean value µ

and the standard deviation σ of the historical data as [197]

ψ = (1− µ)
(µ(1 + µ)

σ2
− 1
)
, (5.6)

% =
ψµ

(1− µ)
. (5.7)

For an accurate representation of the solar irradiance uncertainty, a separate Beta-

PDF for the solar irradiance at each hour is generated (see Fig. 5.5) considering the

seasonal variation. The shown steps in Fig. 5.6 are followed to extract the needed

hourly data for building the solar irradiance PDF from a yearly historical data as

follows:

• Step 1: The yearly solar irradiance historical data for the PV-system installa-

tion site is collected [163].

• Step 2: The solar irradiance data for each season is extracted from the yearly

data.

• Step 3: The solar irradiance data for each day is extracted from the seasonal

data.

• Step 4: The solar irradiance data for each hour is extracted from the daily

data.
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• Step 5: The mean value and the standard deviation of the solar irradiance at

each hour is calculated to build the Beta-distribution model for the specified

hour.

It is to note that the above steps are repeated for the global, direct and diffused

solar irradiance.

5.2.3 Ambient Temperature Uncertainty Model

It was reported in [198] that the normal (Gaussian) PDF is the best parametric

distribution used to fit the ambient temperature uncertainty, which is given by [199]

ft =
1

σ
√

2π
exp

(
− (Ta − µT )2

2σ2
T

)
, (5.8)

where ft is the PDF of the ambient temperature Ta, µT is the mean value, and

σT the standard deviation of the ambient temperature historical data. A separate

normal PDF for the ambient temperature at each hour is generated considering its

seasonal variation (the same steps for extracting the hourly data that is explained in

subsection 5.2.2 are followed to extract the hourly data of the ambient temperature).

5.3 Detailed Model for Lead-Acid Battery

Due to its low cost, high safety, and high recyclability rate, lead-acid battery is the

most used electro-chemical energy storage system in various fields [83]. Furthermore,

lead-acid battery is still an effective solution for a wide range of applications, such

as back-up power supplies and hybrid PV systems, especially in the developing

countries [85]. In this section, a comprehensive model that includes the battery

current, the battery voltage and the battery state of charge (SOC) performances

is applied to describe the battery operation. Moreover, the aging of the lead-acid

battery is included considering the impact of SOC, the discharging current, the

number of cycles, the acid stratification, and the sulfate-crystal structure on the

battery lifetime.
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Figure 5.6: Representation of building the PDF of the hourly solar irradiance.
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5.3.1 Operational Model of Lead-Acid Battery

In order to estimate the energy storage in a battery, an accurate model is required.

Several models have been proposed to simulate the lead-acid battery performance. A

basic model, which depends only on the amount of charging and discharging power

to predict the SOC for the next time step was widely used [143]. However, this

model does not take into account the battery technology characteristics and battery

operation condition. Moreover, an equivalent electric circuit model was used to

model the transient performance of the battery [200]. However, this model lacks

accuracy due to the small number of adjustable parameters in the model. In this

thesis, a detailed and accurate model for the lead-acid battery, which was proposed

by [201] and adapted by [202] is used. This model takes into consideration the most

physio-chemical process in the lead-acid battery [203].

The most relevant physical properties of the battery during its operation are the

battery voltage Vb(t) and its SOC [204]. In [202], the Vb(t) and the SOC of each cell

in the battery during charging and discharging are described based on the modified

Shepherd equation [14] as follows

Vb(t) = Voc(t) + Ib(t)Rcell(t), (5.9)

where

Voc(t) =


V0,c − gc(1− SOC(t)), if Ib(t) > 0

V0,d − gd(1− SOC(t), if Ib(t) < 0
, (5.10)

and

Rcell(t) =


ρc

BCn.c
+ ρc

BCn.c

McSOC(t)
Cc−SOC(t)

, if Ib(t) > 0

ρd
BCn.c

+ ρd
BCn.c

Md(1−SOC(t))
Cd−(1−SOC(t))

, if Ib(t) < 0,
(5.11)

where Voc(t) is the battery-cell open circuit voltage, Ib(t) is the battery current,

which is positive during charging and negative during discharging, V0,c/d is the open

circuit cell voltage at full charge, Rcell(t) is the battery cell internal resistance, and

BCn.c is the nominal capacity of the battery cell. Moreover, Mc/d, ρc/d , and gc/d

are lead-acid battery parameters , where their values are taken from [33].

By considering that the battery charging/discharging power Pch/dis(t) is a function
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of battery current and voltage
(
Pch/dis(t) = Vb(t)Ib(t)

)
, Ib(t) can be calculated in

terms of power and battery parameters by

Ib(t) =
−Voc(t) +

√
V 2
oc(t) + 4PX(t)Rcell(t)

2Rcell(t)
, (5.12)

where PX(t) is positive during charging, and negative during discharging in which

the superscript X can be ch/dis.

The battery cell SOC is calculated by considring the cell current [205] as

SOC(t) = SOC(t− 1) +
1

BCn.c
(Icell(t)− Igas(t))∆t, (5.13)

where Icell(t) is the battery cell current, and Igas(t) is the gassing current. Note that,

the battery cell current during the charging process depends on the applied charring

method. Here, the constant current/constant voltage (CC/CV) method [206] is

considered for battery charging. This mothed has two stages. In the first stage,

a constant current is applied to charge the battery until the battery reaches the

cut-off voltage. In the second stage, the voltage is kept constant while the current is

decreased until the battery is fully charged. Based on the CC/CV charging method,

the battery cell current can be calculated as follows [202]

Icell(t) =


Ib(t) if Vb(t) ≤ Vb.max

min(Ib(t),
Vb−Voc,c(t)
Rcell,c(t)

) else,
(5.14)

where Vb.max is the cut-off voltage, which is specified by the battery manufacturer

datasheet. It is worthy to mention that Icell(t) = Ib(t) during discharging.

The gassing current in lead-acid batteries (caused by hydrogen and oxygen gassing

inside the battery) depends on the applied voltage and the temperature and can be

calculated using the following equation derived from the Tafel approximation [202]

Igas(t) =
BCn.c
100Ah

Igas,0(t)exp(cu(Vb(t) − Vgas) + cT (Tb(t) − Tgas), (5.15)

where Igas,0, Vgas, and Tgas are the normalized gassing current, gassing voltage,

and gassing temperature, respectively. Morover, cu and cT are the voltage and
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temperature coefficients, respectively, while Tb(t) is the battery temperature. Note

that, Igas,0 is the only parameter in Eq. (5.15) that changes during the battery’s

operation, while all other parameters can be assumed to be constant under normal

operating conditions. Therefore, Igas,0(t) is given by

Igas,0(t) = Igas,c + Igas,r
ρcorr(t)

ρcorr.max(t)
, (5.16)

where Igas,c is the gassing current initial value, Igas,r is a gassing current parameter,

ρcorr.max(t) is the maximum resistance of the corrosion, and ρcorr(t) is the corrosion

layer resistance, which will be explained in the subsection 5.3.2. It is to note that

SOC(t) should be kept between the upper and lower bounds, i.e.,

SOCmin ≤ SOC(t) ≤ SOCmax (5.17)

where SOCmin = 1−DOD and SOCmax is the normalized battery capacity.

5.3.2 Aging Model of Lead-Acid Battery

Estimating the battery lifetime is an essential issue in the energy system planning

and operation. Therefore, many approaches have been worked out in the literature

to estimate the battery lifetime [207]. The weighted Ah battery aging model that

was introduced in chapter 3 is extended in this chapter to include the impact of the

SOC, the discharge current and the acid stratification. The work in [205] proposed

a detailed weighted Ah throughput model for lifetime estimation of a lead-acid bat-

tery based on the real operating conditions of the battery [208]. This model is used

in this study to estimate the battery lifetime by considering the main effects that

decrease the battery capacity. The corrosion of the positive electrode and the degra-

dation of the active mass in the battery are the two critical aging mechanisms which

were investigated in [205].

Corrosion has a direct effect on the battery cell resistance by adding a new corrosion

coating with weaker conductivity, which increases the total internal resistance of the

battery cell and decreases the conductivity between the battery grid and the active

material. Meanwhile, battery degradation causes capacity loss due to changes in
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the mechanical structure of the electrode. This leads to a decrease in the porosity

of the electrode and reduces the surface area of the electro-chemical reaction [150].

Based on the above explanation, the remaining (rest) capacity of the battery Crem.b(t)

is modeled by

Crem.b(t) = Cdis.0 − Ccorr(t)− Cdeg(t), (5.18)

where Cdis.0 is the normalized discharge capacity of the battery, Ccorr(t) and Cdeg(t)

are the battery capacity decrement due to corrosion and due to degradation, re-

spectively. It is noteworthy to mention that the battery should be replaced when

its remaining capacity is 80% of its nominal capacity [205]. The effect of battery

corrosion and degradation is explained below in details.

Corrosion It happens when the lead of the positive electrode is converted to lead

oxide, which has a lower conductivity. Moreover, the newly formed material has a

lower density and a higher specific volume that increase the mechanical stress inside

the battery. As a result, the contact between the active material and the positive

electrode is decreased. Note that, the growth in the corrosion layer thickness ∆W (t)

is correlated to the corrosion voltage Vcorr(t) [205] by

∆W (t) = Ks(t)

(
∆W (t−∆t)

Ks(t)

)1/0.6

+ ∆t, Vcorr < 1.74 (5.19)

∆W (t) = ∆W (t−∆t) +Ks(t)∆t, Vcorr ≥ 1.74, (5.20)

where Vcorr(t) is the voltage of the positive electrode of the battery, which is given

by

Vcorr(t) =



Vcorr,0 − 10
13
gcDOD(t) + Ib(t)

ρc(t)
2BCn.c

(
1 +Mc

SOC(t)
Cc−SOC(t)

)
, if

Ib(t) ≥ 0,

Vcorr,0 − 10
13
gdDOD(t) + Ib(t)

ρd(t)
2BCn.c

(
1 +Md

DOD(t)
Cc−DOD(t)

)
, if

Ib(t) ≤ 0,

(5.21)
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Figure 5.7: The relation between the corrosion speed factor and the corrosion voltage [202].

and Vcorr,0 is the corrosion voltage of a fully charged battery without current flow.

Moreover, Ks(t) is the corrosion speed variable given by

Ks(t) = Ks,f (t)exp(Ks,T (Tb(t)− Tcorr)), (5.22)

where Ks,T is the temperature factor calculated by Ks,T = ln(2)
15

, Tcorr is the corro-

sion refrence temperature (Tcorr = 298 [205]), ks,f (t) is the corrosion speed factor

illustrated in Fig. 5.7. Based on the above calculation, the corrosion layer resistance

ρcorr(t) and the capacity loss due to corrosion Ccorr(t) can be calculated as

ρcorr(t) = ρcorr,max
∆W (t)

∆Wmax

, (5.23)

Ccorr(t) = Ccorr,max
∆W (t)

∆Wmax

, (5.24)

where the parameters ρcorr,max and ∆Wmax are the maximum resistance and thick-

ness of the corrosion layer , respectively, when the battery cell reaches its maximum

lifetime [205].

Degradation It describes the battery capacity loss due to the battery cycling. The

nominal number of cycles is provided in the battery data-sheet, which is determined

under the standard operating condition. However, the battery capacity deterioration
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is affected by the real operating SOC and the discharging current values. Therefore,

the weighted cycles number ZW (t) is used instead of its nominal value in calculating

the degradation of the battery capacity Cdeg(t) [205] by

Cdeg(t) = Cdeg,maxexp

(
− cZ

(
1− ZW (t)

1.6Z0

))
, (5.25)

where Cdeg,max is the maximum value of the battery capacity degradation, Z0 is

the nominal battery cycles number given in the data-sheet, and cZ is a parameter

(equal to 5.0 [205]). The weighted number of cycles is calculated by considering the

discharging current, SOC, and acid stratification effects as

ZW (t) =
1

BCn.c

∫ t

0

|Id(τ)|fSOC(τ)facid(τ)dτ (5.26)

where Id(τ) is the battery discharging current, facid is a factor that represents the

effect of acid stratification, and fSOC is a factor that includes the effect of SOC. It

can be noticed from Eq. (5.26) that the Ah throughput (=
∫ t
0
|Id(τ)|) is not only

integrated; but, it weighted by the factors that include the effects of the SOC and

the acid stratification, which occurs due to the actual operating conditions of the

battery. Here, the fSOC is given by

fSOC(t) = 1 + (cSOC,0 + cSOCmin
(1− SOCmin(t)|tt0)fI(t)(t− t0), (5.27)

where cSOC0 and cSOCmin
are parameters taken from [205]. (SOCmin(t))|tt0 is the

lowest state of charge since the last full charge at time t0. From Eq. (5.27), it can

be noticed that the lower the SOC and the longer the battery remains at low SOC,

the more the SOC impact increases. fI(t) is the current factor representing the

effect of the discharged battery current, which is given by

fI(t) =

√
Iref
Id(t)

3

√
exp

(nb.ch(t)
3.6

)
. (5.28)
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where Iref is the discharge current at C10 (the current that the battery can discharge

it continuously for 10 hours). From the first term in Eq. (5.28), it can be noticed

that for lower discharge current, the impact of the current factor is increased. This

was experimentally demonstrated in [209] that at a low discharge current, larger

sulfate crystals are created, which are hard to be dissolved during the next charging

process. Therefore, the crystals number increases at each cycle and remains at the

negative electrode of the battery, which decreases its conductivity. The second term

in Eq. (5.28) represents the influence of the number of ineffective charging processes

nb.ch, which is given by

nb.ch(t) =


nb.ch(t− 1) +

0.0025−(SOCref−SOCmax.n)2

0.0025
, if SOClimit ≤ SOC(t) ≤ 0.9999,

nb.ch(t− 1), else.

(5.29)

where SOCmax.n is the maximum SOC since the time that the SOC had reached

its SOCref , where SOCref = 0.95 [205].

Acid stratification is caused by the inhomogeneous acid concentrations in the elec-

trolyte that develops large sulphate crystals and strong aging effect [210]. The

influence of acid stratification facid(t) is calculated by [205]

facid(t) = 1 + fstrat

√
Iref
|Ib(t)|

, (5.30)

where the degree of acid stratification fstrat(t) is modeled by

fstrat(t) = fstrat(t− 1) + f+(t)− f−(t), (5.31)

here f+(t) and f−(t) represent the increment and decrement in the acid stratification,

respectively. The f+(t) happens due to cyclic operation and is given by

f+(t) = cplus(1− SOCmin(t)|tt0)exp(−3fstrat(t− 1))
|Id(t)|
Iref

, (5.32)

where cplus is a factor for the increment of the acid stratification. Meanwhile, the

acid stratification decreases by gassing at the battery cell voltage higher than 2.3
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V. According to [205], the decrement in acid stratification f−(t) is given by

f−(t) = cminus

√
100

BCn.c

Igas(t)

Igas,0
exp(cu(Vb.cell − Vref )

+ cT (Tb(t)− Tgas)) +
8D

z2
fstrat(t− 1)2(Tb(t)−20oC)/10k, (5.33)

where cminus is a factor for the decrement of the acid stratification, Vb.cell is the

battery cell voltage, and Vref is the reference voltage, which equals to 2.5 V.

5.4 Optimization Problem Formulation

The main objective of this study is to find the optimal design for the MG to be able

to provide a cost-effective and reliable power supply to the load in the long run. The

objective function and the constraints of the optimization problem are formulated

and explained in the following subsections.

5.4.1 Objective Function

The levelized Cost of Energy (LCOE) is the standard criterion for evaluating energy

systems investments [211]. In LCOE, the costs of acquiring, owning, operating and

maintaining the energy system over its lifetime are included [212]. Therefore, the

objective function to be minimized in this context is defined as

min
u
LCOE (5.34)

where u = [Npv.m, PVinv.size, Nbatt, DOD,Ndg, Pr.dgi ] is the decision variables vector.

In u, Npv.m is the number of PV-modules, PVinv.size is the size of the PV-inverter,

Nbatt is the number of batteries, Ndg is the number of DGs, and Pr.dgi is the DG

rated power where i ∈ 1, 2, ..., Ndg.

The LCOE is calculated by dividing the total annual cost of the dispatched

power (TAPC) by the total annual dispatched power from the MG Pdisp.t [212],
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which can be expressed as

LCOE =
TAPC∑Tmax

t=1 Pdisp.t
, (5.35)

where

TAPC = ACC + AMOC + ARC, (5.36)

and Tmax is equal to 8760 (i.e. the total number of hours in one year), ACC is the

annualized capital cost, AMOC is the annualized maintenance and operation cost,

and ARC is the annualized replacement cost.

Annualized Capital Cost It is the capital cost of the MG distributed over its

lifetime. To consider this issue, the capital recovery factor (CRF ) is used to share

the total capital cost (TCC) of the MG over its lifetime considering the interest rate

as

ACC = TCC × CRF, (5.37)

where

CRF =
ri(1 + ri)

ltmg

(1 + ri)ltmg − 1
, (5.38)

and ltmg is the total lifetime of the MG, and ri is the real interest rate, which takes

into account the inflation rate by

ri =
r
′
i − rf

1 + rf
, (5.39)

where r′i and rf are the nominal interest rate and the inflation rate, respectively. It

is to note that the total capital cost TCC includes the cost of all components of the

MG, i.e.,

TCC = CCpv + CCb.b +

Ndg∑
i=1

CCdgi + CCpv.inv + CCb.inv, (5.40)

where CCpv, and CCb.b are the PV-array and the battery bank capital cost, respec-

tively, CCdgi is the ith DG capital cost, CCpv.inv, and CCb.inv are the PV-inverter

and the battery-inverter capital cost, respectively.
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However, installing the PV-panels and the battery bank requires many accessories

that have to be added for fixing, protection, and electrical connections. The cost of

these accessories can be included by adding the balance of system cost (BOS) as

[14]

CCpv = Npv.mCCpv.m(1 +BOSpv), (5.41)

and

CCb.b = NbattCCbatt(1 +BOSbatt), (5.42)

where Npv.m is the total number of PV-modules in the PV-array and Nbatt is the

battery number in the battery bank. CCpv.m and CCbatt are the cost of a PV-module

and the cost of a single battery, respectively.

Annualized Maintenance and Operation Costs The maintenance cost could

be variable or fixed. The fixed cost comes from the scheduled maintenance actions

that should be run based on the manufacturer recommendations. Meanwhile, the

variable maintenance cost comes from the sudden disruptions during the operation.

Because of the difficulty of predicting the variable maintenance cost, only the fixed

cost is considered here. Besides, the amount of the dispatched power from each power

source is considered in the operation cost calculation. The annual maintenance and

operation cost is given by

AMOC = Cm.pv + Cm.b + Cg + Cm.dg + Ca.op.dg, (5.43)

where Cm.pv and Cm.b are the annual maintenance cost of the PV-array and the

battery bank, respectively, Cg is the annual cost of the dispatched energy from the

grid tie-line, Cm.dg and Ca.op.dg are the total annual maintenance and operation costs

of the diesel generator set, respectively.

The cost of the dispatched power from the grid is given by

Cg = Ce.g

Tmax∑
t=1

Pdisp.g(t), (5.44)
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where Ce.g is the cost of each kWh dispatched from the grid, Pdisp.g(t) is the total

dispatched power from the grid at time t. The operation costs of the diesel generator

set include the fuel consumption cost as well as the startup and shutdown costs.

Ca.op.dg is formulated as

Ca.op.dg(t) =
Tmax∑
t=1

Ndg∑
i=1

(Cffcon.dgi(t) + Cupξup.dgi(t) + Cdξd.dgi(t))), (5.45)

where Cf is the fuel cost in $/l, fcon.dgi(t) is the diesel engine fuel consumption, Cup

and Cd are the startup and shutdown costs, respectively. ξup.dgi(t) and ξd.dgi(t) are

auxiliary binary variables that represent the changes at each diesel generator status

(further details can be found in subsection 4.2.2). The fuel consumption function is

approximated by a linear function [213] that can be expressed as

fcon.dgi(t) = AdgPdisp.dgi(t) +BdgPr.dgi , (5.46)

where Adg is a constant with the value of 0.246 l/kWh and Bdg is a constant with

the value of 0.08415 l/kW .

Annualized Replacement Cost Some components in the MG have to be replaced

once or multiple times through the MG lifetime, namely the battery bank, the

battery inverter, the PV-inverter, and the DG. To calculate the replacement cost of

each component, three steps are followed. Firstly, the lifetime of each component is

separately estimated, then the present worth value (PWV ) is used to convert the

cost of the component at the replacement time to its present value, and the final step

is distributing the estimated cost over the MG lifetime using the CRF . Therefore,

the annualized replacement cost is defined as follows

ARC = CRF × Compsize × PWV (Nrep.x, ltx), (5.47)

where Compsize is the component size, Nrep.x is the number of replacement of the

component during the MG lifetime, and ltx is the estimated lifetime of it. The

superscript x can be the battery bank, the diesel generator, the PV-inverter, or the
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battery-inverter. Moreover, the PWV is given by [14]

PWV =

Nrep.x∑
R=1

Compcost
1

(1 + i)R×ltx
, (5.48)

where

Nrep.x =

⌈
ltmg
ltx

⌉
− 1. (5.49)

The battery lifetime is explained in details in subsection 5.3.2. The lifetime of the

PV/battery-inverter is assumed to be fixed and equals 10 years. The diesel generator

lifetime is defined by the maximum number of hours that can be operated, which is

given by the manufacturer. Therefore, the lifetime of the DG is defined by

ltdg =
hdg.lt
hop.dg

, (5.50)

where hdg.lt is the maximum number of operation hours of the DG before reaching

the end of its life and hop.dg is the total operation hours of the DG during one year.

5.4.2 Constraints

Finding the optimal solution of the MG design problem must be done while satisfying

the financial and physical constraints of the problem as well as the required reliability

level. Therefore, the following inequalities are added to the optimization problem:

0 ≤ Npv.m ≤Nmax
pv.m (5.51a)

0 ≤ PVinv.size ≤PV max
inv.size (5.51b)

0 ≤ Nbatt ≤Nbatt.max (5.51c)

0 ≤ DOD ≤DODmax (5.51d)

0 ≤ Ndg ≤Ndg.max (5.51e)

0 ≤ Pr.dgi ≤Pmax
r.dgi

∀i = 1, ..., Ndg (5.51f)

0 ≤ TCC ≤TCCmax. (5.51g)
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Figure 5.8: Illustration of a PV-array installation.

It is to note that the maximum number of the PV-modules Nmax
pv.m depends on the

area of installation (Apv.inst) for the PV-array. Consequently, the maximum numbers

of the PV-modules can be calculated as follows [214]

Nmax
pv.m = Nsg ×Nm.sg, (5.52)

where

Nsg =

⌊
Linst

SGd.min

⌋
+ 1, (5.53a)

Nm.sg =

⌊
Winst

Wpv.m

,

⌋
(5.53b)

where Nsg is number of the PV-strings, Nm.sg is the maximum number of PV-

modules per string, Linst is the length of installation area, Winst is the width of

installation area, and Wpv.m is the width of the PV-module. Moreover, SGd.min is

the minimum distance between the PV-strings (see Fig. 5.8), which is very important

to prevent the self-shading between the PV-strings and is given by [215]

SGd.min = PVm.l ×
sin(γs + β)

sin(γs)
, (5.54)

where PVm.l is the module length (see Fig. 5.8) and γs is the angle of the sun. A role

of thumb to calculate γs is that at noon on December 21 in the northern hemisphere

must be no shading on the PV-strings [215].
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In addition to the constraints stated in Eqs. (5.51a) - (5.51g), the following con-

straint is used to guarantee an acceptable annual loss of power supply TLPSmax

percentage during the MG operation

TLPS(x,u, ζ) ≤ TLPSmax (5.55)

where TLPS is the annual total loss of power supply that happens when the available

power from the MG is not enough to cover the load. Accordingly, the TLPS is

calculated by [70]

TLPS =

∑Tmax

t=1 Lp(t)

Tmax
× 100, (5.56)

where Tmax equals to 8760 hours and Lp(t) is a binary variable, i.e., Lp(t) = 1 when

the available power from the MG is lower than the required load, else Lp(t) = 0.

Since the TLPS value is affected by the uncertainty of the considered stochastic

parameters, it will be uncertain to satisfy Eq. (5.55). Therefore, this constraint is

formulated as a chance constraint

Pr{TLPS(x,u, ζ) ≤ TLPSmax} ≥ αrel. (5.57)

Based on Eq. (5.57), the restriction of the TLPS will be satisfied with a predefined

probability level αrel.

5.5 Solution Method

It was mentioned in section 5.1 that the stochastic optimal design problem is formu-

lated as CCOPT to handle the uncertainties of the input parameters. There are two

main approaches to solve CCOPT, namely, the analytic approximation and the nu-

merical approximation approaches [216]. In both methods the chance constraints are

converted into equivalent deterministic constraints. However, the analytic approx-

imation methods use parameterized functions to represent the CCOPT problems

as deterministic optimization problems. A state of the art analytic approximation

approach consisting of an inner and an outer analytic approximation of chance con-

straints was proposed [217]. In this approach, the CCOPT is approximated by two

parametric nonlinear programming (NLP) problems, which can readily be solved
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by an NLP solver. On the other hand, in the numerical approximation methods, a

set of samples for the random variables is used to compute the chance constraints

by deterministic ones approximately [65]. Subsequently, the deterministic nonlinear

optimization problem is solved to obtain an approximate solution to the CCOPT

[218].

In this study, the formulated optimization problem is a stochastic MINLP prob-

lem, which cannot be solved using the available analytic approximation methods.

Therefore, a numerical approximation method is utilized to convert the CCOPT to a

deterministic mixed-integer nonlinear optimization problem. As a result, simulation-

based optimization is used to give an approximate solution of the optimization prob-

lem.

5.5.1 Simulation-Based Optimization

Simulation-based optimization is commonly used to determine the optimal design

parameters of the MG [65]. In this method, the model is used to evaluate and verify

the effect of the design parameters given by the optimizer [66]. This iteratively con-

tinues until the iterates converge to the optimal solution. Applying this method to

solve the problem of optimal design of a MG considering the battery lifetime requires

the computation of the battery life at each iteration to calculate the replacement

cost of the battery bank accurately (by utilizing the developed battery aging model

in subsection 5.3.2).

Solving the deterministic optimal design problem of MGs by a simulation-based opti-

mization method is summarized by the given flowchart in Fig. 5.9. At each iteration,

the proposed decision variables by the optimizer are evaluated using the MG model.

At first, the TLPS of the design parameter is evaluated, if TLPS ≤ TLPSmax is

satisfied, the objective function will be calculated. Otherwise, the given solution by

the optimizer is considered unfeasible and the optimizer will give new design param-

eters. To calculate the value of the objective function, the annualized maintenance,

and operation costs are calculated by hourly simulating the system model. Then,

the simulation continues until the battery’s remaining capacity reached 80 % of its

nominal value to calculate the battery life. Finally, the LCOE is calculated and
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evaluated by the optimizer.

It is worthwhile to mention that the heuristic-based iterative optimization methods

are widely utilized to solve such a simulation-based optimization problem [219]. In

this study, the genetic algorithm (GA) is used to find the optimal design parame-

ters because of its ability to solve complex optimization problems irrespective of the

model of the system [160]. In GA, a population of candidate solutions is evolved to-

ward better solutions by applying mutation, crossover and selection processes [159].

Meanwhile, the MG model is used to evaluate these solutions. However, it is no-

ticed that some of the candidate solutions are evaluated multiple times through the

optimization process, which increases the total solution time of the optimization

problem. Therefore, the standard GA algorithm in MATLAB is modified by adding

a temporary memory to store all the given solutions by the optimizer and the val-

ues of LCOE and TLPS related to them. In this way, each given solution by the

optimizer is tested before it is evaluated by the MG model. If the solution already

evaluated, the stored LCOE and TLPS values are called back directly without

running the MG model.

5.5.2 Stochastic Simulation-Based Optimization

The solution of the CCOPT problem by a numerical approximation method requires

the calculation of the probability of the chance constraint and the expected value of

the objective function by a set of samples extracted from the PDFs of the uncertain

parameters [65]. For this, Monte-Carlo Simulation (MCS) is used to evaluate the

effect of the extracted samples using the MG model. MCS is a technique for esti-

mating the value of an unknown quantity by running the simulation multiple times

using random samples from the PDF of each uncertain parameter and analyzing the

results [220] to obtain one representative value. Solving the CCOPT problem by a

simulation-based optimization method is summarized by the given flowchart in Fig.

5.10. For each given solution by the optimizer, the battery lifetime is calculated

using the mean values of the uncertain input parameters utilizing the explained

battery aging model in subsection 5.3.2. Then, the MCS is used to calculate the

TLPS and LCOE values for each extracted sample from the PDF of the uncertain
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Figure 5.9: Flowchart of the deterministic simulation-based optimal design method.

input parameters. After that an approximated solution for the chance constraint

reliability (see Eq. (5.57)) is calculated by

Pr{TLPS(x,u, ζ) ≤ TLPSmax} =
Number of valid samples

Total number of the simulated samples
,

(5.58)
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Figure 5.10: Flowchart of the stochastic simulation-based optimization.

where the value of TLPS in the valid samples are lower than TLPSmax. Finally the

expected value of the LCOE is calculated and evaluated by the optimizer. These

procedures repeated until the stopping criteria of the optimizer is satisfied.

It is worthwhile to mention that the iterations of MCS are stopped when the specified

maximum number of iterates is reached. The iterations number in MCS is chosen

so that both the simulation time and the change in the mean value of the LCOE

are acceptable.
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5.6 Case Studies

The proposed optimal design method in this chapter is applied to optimize the res-

idential and the industrial MGs that have been studied in chapter 3 and chapter 4,

respectively. The proposed optimal design strategy is analyzed using a case study

from Gaza city in Palestine (latitude=31.42◦ and longitude =34.38◦) with a real so-

lar irradiance data taken from [163] and grid blackout historical data that recorded

in one installed project in Gaza city. The main parameters of the battery cell are

given in Table 5.1; other parameters can be found in Table A.1. Besides, the main

parameters of the economic model are listed in Table 5.2.

However, the optimal tilting angle of PV-panels is independent of the other design

parameters for both MGs. Therefore, the optimum tilt angle is taken at which the

irradiance on the titled PV-module becomes the maximum. The isotropic model

(explained in subsection 3.2.2) is used to calculate the total solar radiation falling

on the tilted PV-module at each tilt angle β from 0◦to 90◦, see Fig. 5.11. As shown

in the mentioned figure, the highest solar irradiance can be captured by the PV-

module when it is titled with 29.6 ◦..

As mentioned in subsection 5.2.1, the uncertainty of the starting time and the period

of the grid blackout are modelled using KDE. Fig. 5.12. (a) shows the histogram

of the blackouts starting times (orange bars) and the best PDF that fit the data

probability (blue line). Similarly, Fig. 5.12. (b) shows the histogram of the black-

outs periods (orange bars) and the best PDF that fit the data probability (blue

Table 5.1: Parameters of Lead-acid battery.

Parameter Bn.c Z0 Cdis,0 V0,c V0,d
(Ah) (-) (-) (V) (V)

Value 100 750 1.185 2.21 2.13

Table 5.2: Economic model parameters of MG design [221, 12].

Parameter r
′
i rf Cf Cg lts

(-) (-) ($/l) ($/kWh) (years)

Value 6.89% 3.16% 1.3% 0.15% 20



108 Optimal Design of PV-based Microgrids Under Uncertainty

0 10 20 30 40 50 60 70 80 90
PV-panel tilt angle (dgree)

1200

1400

1600

1800

2000

2200

2400

A
nn

ua
l r

ad
ia

tio
n 

kW
h/

m
2
/y

r

Optimal angle

Figure 5.11: Relation between the PV-module tilt angle and the falling solar radiation.

line). On the other hand, the histogram solar irradiance data (orange bars) and

the corresponding PDF (blue line) for each season are shown in Fig. 5.13. From

Fig. 5.13 it can be shown that the Beta-PDF is able to model the solar irradiance

uncertainty with accepted accuracy. This also corresponds to what was mentioned

in [222].

All the computation is carried out on a Linux server with 64 processor of type

AMD_Epyc7601 X86_64 using MATLAB 2018b software.

The optimal values of the design parameters and the sensitivity analysis of different

parameter are investigated in details in the following subsection. It is to note that

the confidence level in the optimization problem is chosen to be 98 %.

5.6.1 Optimal Design of the Residential MG

The size of the studied PV-battery MG in chapter 3 is considered here to be op-

timized. The decision variables in the introduced optimization problem in section

5.4 is changed to include only the PV-array and the battery bank size as well as

the DOD value of the battery bank. Because of their small sizes, the power loss of

power electronic devices in the MG is neglected. To consider the daily and seasonal

variation in the residential load profile, four seasonal days in workdays and weekends

are used, as shown in Fig. 5.14. The MG components’ capital cost and maintenance

cost are shown in Table 5.3. Moreover, the maximum value of the TCC is considered

to be 3500 $. The maximum TLPSmax is selected to be 2% with a reliability level

of 98 %.

The maximum and the minimum values of the decision variable in the optimiza-
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(a)

(b)

Figure 5.12: Representation of grid blackout starting time and grid blackout period. (a)
histogram of the blackouts starting times (orange bars) and the best PDF that fit the data
probability (blue line). (b) histogram of the blackouts periods (orange bars) and the best
PDF that fit the data probability (blue line).

tion problem constraints are stated in Table 5.4. Here, the adjustment factors are

added to Table 5.4. These factors are used to reduce the search space for the op-

timizer and to make the optimization results more compatible with the practical

sizes of the components. As an example, the battery bank in the residential MG

works with 24 v and the nominal voltage of a single battery is 12 v, that means the
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(a) (b)

(c) (d)

Figure 5.13: Solar irradiance data histogram (orange bars) and the corresponding PDF
(blue line) for each season, (a) in winter, (b) in spring, (c) in summer, (d) in autumn.

minimum number of batteries to be installed should be 2, and the battery number

must be an even number. Therefore, the decision variable of the number of batter-

ies in the battery bank assigned to be an integer decision variable with minimum

value 1 and the maximum value 10; meanwhile, the adjustment factor is 2. This

means all possible numbers of batteries that will be evaluated by the MG model are

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20 ].

On the other hand the maximum number of the PV-modules is calculated based on

the available area using Eq. (5.52) - (5.54). The latitude and longitude of the MG

installation place are utilized to calculate the sun’s angle (γs) at noon on December

21, using an online calculator available at [223], which gives γs = 34.9◦. The used

parameters and the calculation results of the calculation of the maximum number

PV-modules are stated in Table 5.5.
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Figure 5.14: The considered load profiles for a residential load

Table 5.3: Microgrid components’ capital coat, maintenance cost and lifetime.

Parameter unit capital cost maintenance cost lifetime

PV-array 550 $/kWp 0.5%CCpv 20
Battery bank 150 $/kWh 1%CCb.b to be calculated.

Table 5.4: Decision variables maximum values, minimum values and adjustment factor in
optimal design problem.

Parameter Minimum value Maximum value A

Number of PV-modules 1 12 1
Number of Batteries 1 10 2
DOD 10 80 0.01

Table 5.5: Parameters and results of the maximum number of the PV-modules calculation.

Parameters Linst(m) Winst(m) PVm.l(m) Wpv.m(m)

7 4 1.65 0.99

Results SGd.min Nsg Nm.sg Nmax
pv.m

2.63 3 4 12

It is worth to mention that the MG works according to a predefined rule-based op-

eration strategy [14, 224] considering the operation constraints described in Chapter

3. The used operation strategy consists of two phases are summarized in algorithm

1. In phase I, the aim of the MG is to meet the load demand. If the available power

from the PV-array is higher than the required load, it will be used to cover the load;

otherwise, the battery bank and the PV-array will work together to cover the load.

If the battery bank is not able to cover the deficit energy, the power from the main

grid will be used if it is available; otherwise, the load will not be covered and the
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Algorithm 1: The residential Microgrid operation algorithm.
Input: GT (t), Ta(t), αg(t).

Calculate the available power from the PV-array using the explained model in

section 3.2;

Phase I, covering the load

if Pav.pv(t) ≥ Preq.l(t) then

Pdisp.pv(t) = Preq.l(t);

else if Pdis.max(t) + Pav.pv(t) ≥ Preq.l(t) then

Pdisp.pv(t) = Pav.pv(t);

Pdis(t) = Preq.l(t)− Pdisp.pv(t);
* Update the battery SOC(t), see section 5.3.1;

* Update the battery aging variables, see section 5.3.2;

else if αg(t) == 1 then

Pdisp.g(t) = Preq.l(t);

else

Lp(t) = Lp(t− 1) + 1 ;

end

Phase II, charging the battery bank

if SOC(t) ≤ SOCmax & Pdis(t) == 0 then

if Pav.pv(t)− Pdisp.pv(t) ≥ 0 then

Pch = min (Pav.pv(t)− Pdisp.pv(t), Pch.max(t));
else if αg(t) == 1 then

Pch(t) = Pch.max;

else

Pch(t) = 0;

end

* Update the battery SOC(t), see section 5.3.1;

* Update the battery aging variables, see section 5.3.2;

end

Lp(t) will be set to one. In phase II, if the battery needs to be charged, the extra

power for the PV-array will be utilized to charge the battery bank; otherwise, the

battery will be charged from the main grid if there is no blackout.

The Lead-Acid battery aging model that is explained in 5.3.2 is utilized here to sim-
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Figure 5.15: The impact of battery bank size on battery capacity.
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Figure 5.16: The impact of depth of discharge on battery capacity.

ulate the battery aging behavior. To study the impact of the battery bank size, the

battery lifetime is calculated with different numbers of batteries. From Fig. 5.15, it

can be seen that increasing the number of batteries will lead to an increase in the

battery lifetime. However, at a specific number of batteries, this increment has a

negative effect. The reason behind this is that increasing the number of batteries at

the same operating conditions will decrease the discharged current from each battery

cell, which will increase the influence of the current factor in the degradation of the

battery capacity, see Eq. (5.28).

It was reported in [205] that the SOC has a high impact on the battery lifetime.

Operating the battery at a low DOD value leads to an increase of the active mass

degradation in the battery. Here, the effect of battery DOD is illustrated in Fig.

5.16. It can be seen that increasing the DOD value indeed decreases the battery life-

time. This effect arises due to the increased mechanical stress on the active masses

and from the increasing size of the sulfate crystals [205].

To illustrate the importance of considering the input parameters uncertainties, two

scenarios are considered in solving the problem of optimal design of the residential

MG. In the first scenario, the problem is solved using the deterministic values of the

input parameters. In this scenario, the mean values of the solar irradiance and the
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Table 5.6: Optimal design results of the residential MG.

Parameter Nbatt Npv.m DOD LCOE αrel
(-) (-) (-) ($/kWh) (%)

Scenario 1 (deterministic) 8 10 0.56 0.1835 27.8

Scenario 2 (stochastic) 10 12 0.68 0.2059 98

ambient temperature in each season are calculated and used to build a yearly input

data. Besides, the mean values for the starting time and the period of daily grid

blackouts are used. Noting that the mean value of the blackout starting time and

the blackout duration are 12 and 9, respectively. The deterministic simulation-based

optimal design method that explained in subsection 5.5.1 is used in this scenario.

In the second scenario, the problem is solved using the stochastic models of the in-

put parameters. Moreover, the stochastic simulation-based optimal design method

explained in subsection 5.6.2 is used to solve the problem.

The optimal battery bank and the PV-array sizes, as well as theDOD optimal value,

for both scenarios, are stated in Table 5.6. It can be noticed from the mentioned

table that the size of the battery bank and the PV-array, as well as the DOD value,

are larger in scenario 2. Moreover, the reliability level of the chance constraint is

calculated for both scenarios. It can be said that neglecting the input parameters

uncertainty leads to a considerable decrement in the reliability level of the MG.

The impact of the number of batteries and PV-modules on the reliability level is

shown in Fig 5.17. Here, the number of batteries is increased gradually while fixing

the other design parameters (taken from the optimal results of solving the stochastic

optimization problem). Similarly, the effect of the number of PV-modules is tested.

It can be noticed that the reliability level of the MG is increased by increasing the

number of batteries and PV-modules. However, the number of batteries impact is

higher than the impact of the PV-modules numbers. It is worth to mention that

the increment in the level of reliability is directly proportional to the increment in

LCOE, as demonstrated by Fig 5.18.

The effect of the design parameters on the LCOE and TLPS are studied sepa-

rately (using the results of solving the deterministic optimization problem). From

Fig. 5.19 it can be noticed that the number of batteries has the highest impact on
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the TLPS. As shown in Fig. 5.19 (a), increasing the battery number, decreasing

the TLPS; however, it increases the LCOE due to the increment in the ACC and

ARC. The effect of the number of PV-modules on the LCOE is illustrated in Fig.

5.19 (b). It can be seen that increasing the PV-panel number decreases LCOE.

However, when the number of PV-modules increases so that the energy generated
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Table 5.7: Decision variables maximum values, minimum values and adjustment factor.

Parameter Minimum value Maximum value A

Number of PV-Modules 10 1450 1
PV-inverter size (kW ) 1 50 10
Number of batteries 1 200 4
Size of diesel generatori (kW ) 1 50 10
Number of diesel generators 0 3 1

Table 5.8: Parameters and results of the maximum number of the PV-modules calculation.

Parameters Linst(m) Winst(m) PVm.l(m) Wpv.m(m)

75 50 1.65 0.99

Results SGd.min Nsg Nm.sg Nmax
pv.m

2.63 29 50 1450

by the panels becomes greater than the needed power to cover the load and to charge

the battery bank, LCOE is increased. Moreover, it can be seen from Fig. 5.19 (c)

that increasing the battery lifetime has a considerable effect on the LCOE that

cannot be ignored. The reason behind is that the increase of the battery lifetime

decreases the number of battery replacement, which decreases the replacement cost

in LCOE, see subsection 5.4.1.

5.6.2 Optimal Design of the Industrial MG

In this section, the studied MG in chapter 4 is considered to be optimized. The

PV-array size, the PV-inverter size, the battery bank size, the DOD value, the

number of DGs, and the size of each DG are chosen to be the decision variables of

the optimization problem. It is to note that the battery inverter size is chosen to be

equal to the maximum allowable dispatched power from the battery bank (see, Eq.

(4.5)).

The maximum and minimum values of the decision variables values, as well as their

adjustment factors, are stated in Table 5.7. The maximum number of the PV-

modules is calculated based on Eqs. (5.52) - (5.54) taking into account the available

area for installing the PV-array. The used parameters and the calculation results

of the PV-modules number calculation are stated in Table 5.8. Besides, the MG
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Table 5.9: Microgrid components’ capital coat, maintenance cost and lifetime.

Parameter unit capital cost maintenance cost lifetime

PV-array 550 $/kWp 0.5 % 20 (years)
PV-inverter 300 $/kW 0.5 % 10 (years)
Battery bank 150 $/kWh 1 % to be calculated
Batt-inverter 300 $/kW 0.5 % 10 (years)
Diesel Generator 250 $/kW 8 % 10000 (h)

components’ capital cost, maintenance cost percentage from the capital cost and

lifetime are shown in Table 5.9. Moreover, the maximum value of the TCC is con-

sidered to be 720000 $.

It was proved in [11] that losing the power supply in industrial facilities is very

costly. Therefore, the maximum TLPSmax is selected to be 0% (i.e., there is no loss

of power supply in the whole year) with a reliability level of 98 %. Moreover, to

consider the daily and seasonal variations in the industrial load profile, four seasonal

days in workdays and weekends are used, as shown in Fig. 5.20.

The MG works based on a predefined rule-based operation strategy considering the

operation constraints described in chapter 4. The used operation strategy consists

of two phases and summarized in algorithm 2. In phase I, the MG aims to meet

the load demand and power losses. Hence, the PV-system has the priority to cover

the load; if the Pav.pv is not enough, the PV-inverter will work with the grid (if it is

available) to utilize the Pav.pv in covering the load. Otherwise, the PV-system and

the battery storage system will work together to cover the load considering the limit

of battery bank SOC and the Pav.pv. Else, the PV-inverter will work with the DGs

to utilize the Pav.pv considering the DGs operational limits. If the available power

from all sources in the MG is not able to cover the load loss of power supply will

occur, and the Lp(t) will be set to one.

In phase II, if the battery bank needs to be charged, it will be charged from the DGs

if and only if one of the DGs is working lower than its minimum operating load, see

Eq. (4.16). Otherwise, the extra power for the PV-array will be utilized to charge

the battery bank or the battery will be charged from the main grid if there is no

blackout.

Since multiple DGs are used in the studied MG, it is essential to build an appropri-

ate operation strategy to specify the dispatched power from each DG based on its
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Algorithm 2: The industrial Microgrid operation algorithm.
Input: GT (t), Ta(t), αg(t).

Calculate the available power from the PV-array using the explained model in

Section 3.2 ;

Phase I, covering the load

if Pav.pv(t) ≥ Preq.l(t) then

Pdisp.pv(t) = Preq.l(t);

else if αg(t) == 1 then

Pdisp.pv(t) = Pav.pv(t);

Pdisp.g(t) = Preq.l(t)− Pav.pv(t);

else if Pdis.max(t) + Pav.pv(t) ≥ Preq.l(t) then

Pdisp.pv(t) = Pav.pv(t);

Pdis(t) = Preq.l(t)− Pdisp.pv(t);
* Update the battery SOC(t), see section 5.3.1;

* Update the battery aging variables, see section 5.3.2;

else if Preq.l(t) ≤ Pdg.max then

Pdisp.pv(t) = Pav.pv(t);

Pdisp.dg(t) = Preq.l(t)− Pdisp.pv(t);

else

Lp(t) = Lp(t− 1) + 1 ;

end

Phase II, charging the battery bank

if SOC(t) ≤ SOCmax & Pdis(t) == 0 then

if Pdisp.dg(t) ≤ Pdg.min then

Pch = min (Pdg.limit(t)− Pdg.min, Pch.max(t));
else if Pav.pv(t)− Pdisp.pv(t) ≥ 0 then

Pch = min (Pav.pv(t)− Pdisp.pv(t), Pch.max(t));
else if αg(t) == 1 then

Pch(t) = Pch.max;

else

Pch(t) = 0;

end

* Update the battery SOC(t), see section 5.3.1;

* Update the battery aging variables, see section 5.3.2;

end
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Algorithm 3: Operation algorithm of multiple diesel generators.
Input: Pdisp.dg(t),DGr, Ndg.

Phase I, selecting which DG will be turned on from DGr vector;

Preq = Pdisp.dg(t)

while Preq > 0 do

if Preq ≤ max[DGr] then

% find all possible DGs that can cover the load.

DGmin = find(Preq ≤DGr)

% choose the smallest DG to cover the load and store it in the selected

DGs vector SLdg.

SLdg(count) = min[DGmin]

%update the required power that have to be covered by the DGs.

Preq = Preq − SLdg(count)

% delete the selected DG from the DG vector to prevent double check.

find(DGr == SLdg(count)) = [ ]

else
% find the smallest DG to cover the load with minimum difference

between the DG size and the required load.

SLdg(count) = min[ |DGr − Preq| ]
Preq = Preq − SLdg(count)

find(DGr == SLdg(count)) = [ ]

end

count = count+ 1

end

Phase II, distribute Preq.dg(t) on the selected DGs

DGr = sort(SLdg,descend) % sort the vector SLdg in descend order.

Pdisp.dgi(t) = 0.3× SLdg % dispatch the minimum limit of SLdg.

% dispatch the rest of the required power from SLdg

for i = 1 : length(SLdg) do
Pdisp.dgi(t) = Pdisp.dgi(t) + 0.7× SLdgi
if Preq.dg(t) ≤

∑i
k=1 Pdisp.dgk(t) then

Pdisp.dgi(t) = Preq.dg(t)−
∑i−1

k=1 Pdisp.dgk(t)

break
end

end

* Update the DGs’s status.
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Figure 5.20: The considered load profiles for an industrial load.

size. In this study, a separate operation method is implemented to select which DG

has to be turned ON and to specify the dispatched power from it, considering the

DG operation limits. The operation method consists of two phases and summarized

in algorithm 3. In phase I, the DG to be operated is selected so that the priority is

given to the DG with a size closest to the required load. In phase II, the amount

of the dispatched power from each DG is determined so that it is ensured that the

minimum operating limit of the DG is satisfied, and the DG is running as closely as

possible to its full capacity.

To show the importance of considering input parameter uncertainties, the optimal

design problem of PV-battery-diesel MG is solved in multiple scenarios, which are:

• Scenario 1: the optimal design problem of PV-battery-diesel MG is solved

using deterministic simulation-based optimization employing the mean values

of grid blackout starting time, grid blackout duration, solar irradiance and

ambient temperature.

• Scenario 2: the optimal design problem of PV-battery-diesel MG is solved

using stochastic simulation-based optimization considering the uncertainty of

grid blackout starting time, grid blackout duration, solar irradiance and am-

bient temperature.

• Scenario 3: the optimal design problem of PV-battery-diesel MG is solved us-

ing simulation-based optimization employing the mean values of grid blackout

duration, solar irradiance and ambient temperature. However, it is considered
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Table 5.10: Optimal design results of the Industrial MG.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

PV-array 1450 1450 1450 1450
PV-inverter (Kw) 280 280 280 280
Battery size 568 568 464 488
DOD (%) 76 73 65 79
Diesel number 3 3 3 3
Diesel generator (Kw) 60 80 70 60
Diesel generator (Kw) 120 170 130 120
Diesel generator (Kw) 270 250 220 170
Battery life (year) 3.03 3.17 3.58 2.53
LCOE ($/Kw) 0.1896 0.2169 0.1729 0.1643
TLPSmax (%) 0 % 0 % 0 % 5 %
αrel (%) 100 % 100 % 16.61 % 62.09 %

that the blackout starts at midnight to include the daily low load period in

the grid blackout duration.

• Scenario 4: the optimal design problem of PV-battery-diesel MG is solved

using simulation-based optimization using the mean values of grid blackout

starting time, grid blackout duration, solar irradiance and ambient tempera-

ture. However, the TLPSmax is considered to be 5 %.

The results of solving the mentioned four scenarios are stated in Table 5.10. It can

be seen that there is no significant difference in the components’ sizes in scenario

1 and scenario 2. Moreover, it can be noticed that the total rated capacity of the

DGs in both scenarios is equal to the maximum load value (which is 500kW) which

makes the MG able to cover the load at any time (i.e. TLPS = 0). Nonetheless, the

difference in DGs sizes is due to the difference in load levels that require coverage by

the DGs. Moreover, there is a notable difference in the LCOE values in scenario 1

and scenario 2, even if the components’ sizes are nearly equal. As a result, it can be

said, if the uncertainties of the input parameters are not considered in optimizing

the size of a PV-battery-diesel MG could lead to a wrong estimation for the output

energy cost over the MG life, which could lead to wrong investment decisions.

It worth to mention that a lower LCOE values can be achieved in scenario 1 and

scenario 2 if the TCC constraint is neglected. As an example the effect of increasing

the battery number is shown in Fig. 5.21, it can be noticed that a lower LCOE can
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Figure 5.21: Impact of number of batteries design problem. (a) the relation between the
number of batteries the LCOE in scenario 1. (b) the relation between the number of
batteries the LCOE in scenario 2.

be reached with 600 and 760 batteries in scenario one and two, respectively. This

leads to a remarkable result that a bigger size of the battery bank is required to

decrease the LCOE in case the input parameter uncertainties are considered.

In scenario 3, the blackout duration is shifted to include only a low load duration

(from 0 to 8 o’clock, see Fig. 5.20). As shown in Table 5.10 the total rated capacity

of the DGs is equal to the maximum load value in the specified period (which is

420kW) to cover the load at any time during the blackout duration (i.e. TLPS = 0).

However, testing the reliability level of the chance constraint using the optimal so-

lution of this scenario gives a very low-reliability percentage. This is because the
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Figure 5.22: The annual cost analysis of the PV-battery-diesel MG.
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Figure 5.23: Analyze the effect of increasing the battery number on the annual costs.

MG is not able to cover loads higher than the size of the DGs in the event of a

grid blackout in periods other than the specified period in the optimization prob-

lem. Therefore, it is highly essential to consider the grid blackout uncertainty to

guarantee to cover the load at any time in the year.

In scenario 4, the value of TLPSmax constraint is changed to be 5 %(i.e., the

customer accept a loss of power supply of 5 % of the annual number of hours of

operation). While, the mean values of grid blackout duration, solar irradiance and

ambient temperature in solving the optimal design problem. As noted in Table 5.10,

the sizes of the battery bank and the DG set are smaller than their sizes in scenario

1. Besides, testing the reliability level of the chance constraint (at TLPS = 5 %)

using the optimal solution of this scenario gives a low-reliability percentage.
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Figure 5.24: Impact of PV-inverter size on the design problem. (a) the relation between
PV-inverter size and the LCOE. (b) the relation between PV-inverter size and the dis-
patched power from the PV-array.

The annual cost analysis of the MG (in scenario 1) is illustrated in Fig. 5.22. It can

be seen that the cost of the dispatched power from the grid, and the DGs operation

and maintenance costs Co&m.dg are the substantial costs. Based on the followed op-

eration strategy of the MG, these costs can be reduced by increasing the PV-system

and the battery bank capacities. Therefore, the maximum number of PV-modules is

selected by the optimizer as the optimal solution. In addition, increasing the number

of batteries decreases the operation and maintenance cost of the DG (as shown in

Fig. 5.23); however when the decrement in the DGs operation cannot compensate

the increment in ACC, ARC, and battery charging costs (see, the dashed black line

in Fig. 5.23), then the LCOE start to rise as shown in Fig. 5.21.

The importance of considering the PV-array size in the design problem was heavily

investigated in section 5.6.1. Here the PV-inverter is added to the optimization

problem. Its size affects the LCOE by its capital and replacement costs, see Fig.
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Figure 5.25: Efficiency curve of a 50 kVA PV-inverter [173].
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Figure 5.26: Effect of number of diesel generators.

5.24 (a). Moreover, it affects the AMOC by specifying the maximum power that

can be dispatched from the PV-array and the amount of the loosed power in the PV-

inverter, see Fig. 5.24 (b). Besides, it can be shown in Fig. 5.25 that the behavior of

the PV-inverter efficiency depends on the amount of the dispatched power from it.

For instance, the PV-inverter works at high efficiency when the dispatched power is

between 25 - 80% from it is nominal value; therefore, it is essential to optimize the

PV-inverter size to keep it works in its high-efficiency range as much as possible.

It is worth to mention that several simple approaches have been used to size the

PV-inverter; one standard method is selecting the PV-inverter to be equal to the

nominal value of the PV-array. This method could lead to an oversized inverter

which can cause an increment in the LCOE and force the inverter to work in the

low-efficiency region. Other studies proposed the array to inverter ratio (AISR) pa-
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rameter that represents the relation between the PV-array size and the PV-inverter

size. It was found in [225] that the AISR value is affected by the PV-module and the

PV-inverter technology as well as the solar irradiance condition in the installation

site. However, it has been found that the optimal AISR value between 1 and 1.6.

Based on the optimal results in this study it is found that the AISR value is 1.29 in

both cases.

From Eq. (5.46) it can be noticed that the fuel consumption of the DG is affected

by the dispatched power from it and its rated power. Therefore, it is essential to

select the DG size to be compatible with the connected load. Besides, the allowed

power from the PV-system that can be shared with it can be limited to satisfy the

minimum dispatched power from the diesel generator, see Eq. (4.16). Based on the

initial results in [226], it was found that using multiple diesel generators with differ-

ent sizes can increase the allowed dispatched power from the PV-array and decrease

the total operation cost of the DGs. This is also demonstrated in Fig. 5.26; it can

be noticed that increasing the number of DGs (with the same total rated capacity)

decreases the total fuel consumption of the MG as well as the LCOE.

5.7 Conclusion

A comprehensive optimal design approach for PV-based MGs is proposed in this

chapter to increase the reliability level of supplying the electrical energy to a load

connected to the grid-tie line, which has long periods of blackouts. In this approach,

the solar irradiance, ambient temperature, blackouts starting time, and blackouts

duration uncertainties are modeled and considered in the optimization problem.

A simulation-based optimization approach is used to solve the stochastic MINLP

problem. The proposed approach is able to optimize the sizes of MG’s components;

meanwhile, the levelized Cost of Energy is minimized, and the required annual

total loss of power supply is satisfied. Moreover, the proposed model takes into

consideration the battery capacity deterioration due to the MG operating conditions.

A detailed lead-acid battery aging model is used to estimate the battery lifetime in

which the corrosion layer thickness and active material degradation are considered.
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In addition, the impact of the depth of discharge and the battery bank size on the

battery lifetime is investigated by computation study. Besides, the impacts of the

uncertainties of the input parameters on the resulted solution are studied. The

results showed that the uncertainties of the input parameters have a considerable

effect on the optimal design problem’s final solution and the value of the LCOE,

especially in PV-battery MG. Moreover, it was shown that the uncertainty of grid

blackout has a higher effect than the uncertainty of solar irradiance and ambient

temperature.



Chapter 6

Conclusions and Future Challenges

To overcome the problem of grid blackouts, consumers relied on diesel generators

and chemical batteries as an ideal solution to this problem. However, due to the

pollutants resulting from the use of diesel generators and the short life of the bat-

teries, it became essential to find a cheap and environmentally friendly solution.

Due to the high technology development in recent years, it has become feasible to

integrate the PV-systems with conventional electrical power sources to build a local

MG that can supply the required energy reliably and cost-effectively. Moreover, it

is well recognized that optimizing the MG operation and design is a key solution

to guarantee a low-cost and uninterrupted power supply. However, many technical

and economic complexities have to be handled to achieve this goal. This leads to

complex optimization problems, which are not easy to be solved.

In this thesis, a model-based optimal operation and design algorithms for a PV-

based MGs considering the battery lifetime and the problem of a grid blackout was

developed. For this, an accurate model for the proposed MGs was introduced, tak-

ing into account all operational constraints of the MG components. Besides, the

differences between the residential and the industrial loads were considered. There-

fore, different models were developed based on the type of the connected load.

To improve the operation efficiency of the residential MG, an OPD strategy was

proposed to minimize the total operating cost of a PV-battery MG considering the

battery lifetime and the grid blackout problem. A compersion between the tradi-

tional backup operation strategy and the EMPC-based OPD strategy was made.
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The results showed that the proposed approach leads to a significant reduction in

the cost of the total energy consumed from the grid while decreasing the curtailment

of the generated power from the PV-array and maximizing the battery lifetime.

The proposed operation strategy was extended to optimize the active-reactive power

dispatch in a PV-battery-diesel microgrid considering the battery lifetime cost, the

reactive power cost, and the grid blackout issue. For this, a novel model was in-

troduced to calculate the reactive power generation cost from the diesel generator.

Moreover, the cost model of the dispatched reactive power from the PV-system and

the battery bank was adapted. It was demonstrated by a real case study that con-

sidering the reactive power cost has a high impact on the optimal power flow in

the MG. Moreover, it was proved that generating reactive power locally is more

cost-effective than importing it from the main grid. The results showed that the

PV-inverter could generate reactive power with a very low cost compared with the

battery inverter. Finally, the results showed that the proposed operation strategy

leads to a significant reduction in the total cost of the dispatched active and reactive

power while maximizing the battery lifetime.

From another perspective, a new optimal design method for the introduced MGs was

proposed to minimize the LCOE while satisfying the required annual TLPS per-

centage, where the battery lifetime and the problem of long term daily grid blackout

were considered. A comprehensive lead-acid battery model that includes the bat-

tery current, voltage, and state of charge performances was applied to describe the

battery operation. An improved method to calculate the LOCE was developed

utilizing an accurate model to estimate the lead-acid battery life. In this model,

the impacts of SOC, discharging current, the number of cycles, acid stratification,

and sulfate-crystal structure on the battery life were taken into account. Moreover,

computation studies were made to reveal the effect of battery depth of discharge

and the number of batteries on the battery lifetime.

It is well known that the deterministic design approaches highly depend on the given

input parameters of the model as any deviation due to uncertainty could lead to a

suboptimal solution. Therefore, a stochastic optimal design problem was formulated

considering the uncertainties of solar irradiance, ambient temperature, blackouts
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starting time, and blackouts duration. For this, a novel model is implemented to

model the uncertainty of the grid blackout starting time and the blackout period

using kernel density estimation. Besides, the stochastic optimal design problem was

defined as a chance-constrained optimization problem. Accordingly, a stochastic

simulation-based optimization method incorporating Monte-Carlo simulation was

used to solve the optimal design problem to minimize the LCOE considering a spe-

cific reliability level for the TLPS constraint.

The results showed that the battery bank size has the highest impact on the LCOE

and the MG reliability. Moreover, it was proved that considering the uncertainties

of the input parameters is essential to calculate the accurate annual cost of the dis-

patched energy for proper investment decisions.

Although a lot of question has been answered in this thesis, there is still space for

further researches to improve the MG design and operation. The future research

aspects related to this study can be summarized as follows:

• The developed MG model can be improved to incorporate several types of

energy storage systems, such as super-capacitors and lithium-ion batteries.

• The developed optimal power dispatch framework can be extended to include

the demand side management issue.

• The proposed operation strategy can be extended to consider the voltage and

the frequency limitations at the point of connection with the main grid.

• Parameters estimation of the energy storage system can be included in the

operation strategy for accurate estimation for the lifetime of the energy storage

system.

• Selecting the type of energy storage system can be added as a decision variable

in the optimal design problem.

• The proposed operation strategy can be adapted to be able to work on an

embedded system. Also, the optimal design approach can be adapted to work

with a graphical user interface for ease of use.



Appendix A

Parameters of the detailed lead-acid

battery model
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Table A.1: Parameters for detailed lead-acid battery model [202][205].

Parameter Symbol Value

Parameters for the operational model

Open circuit cell voltage at full charge V0,c/d 2.21/2.13 V
Electrolyte proportional constant gc/d 0.08/0.2 V
Charge transfer over voltage ρc/d 0.26/0.28 ΩAh
Charge transfer over voltage coefficient Mc/d 0.4308/0.4308
Normalized capacity Cc/d 1.004/1.185
Gassing voltage Vgas 2.23 V
Gassing temperature Vgas 298.15 K
Voltage coefficient of gassing current Cv 11.513 1/K
Temperature coefficient of gassing current CT 0.0693 1/K
Gassing current initial value Igas,c 0.02 A
Gassing current parameter Igas,r 0.06 A

Parameters of corrosion effect calculation

Corrosion voltage at full charge Vcorr,0 1.75 V
Maximum thickness of corrosion layer ∆Wmax 306.6 V
Maximum resistance of corrosion layer ρcorr,max 2.3713 ΩAh
Maximum corrosion capacity loss Ccorr,max 0.300822683568

Parameters of degradation effect calculation

Maximum degradation capacity loss Cdeg,max 0.2344
Constant slope for the SOC factor CSOC,0 6.614× 10−5h−1

Impact of the minimum SOC on the SOC factor CSOCmin
3.307× 10−3h−1

Reference voltage Vref 2.5 V
Reference current Iref -10 A
Factor for the increment of the acid stratification Cplus 1/30
Factor for the decrements of the acid stratification Cminus 0.1
Diffusion constant for sulfuric acid D 20× 10−9m2/s
Battery height z 30 cm
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