
Building High-Quality Merged Ontologies
from Multiple Sources with Requirements

Customization

Dissertation
zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik
der Friedrich-Schiller-Universität Jena

von M.Sc. Samira Babalou
geboren am 14.10.1987 in Karaj, Iran

ii

Printed and/or published with the support of the German Academic Exchange Service.

iii

Gutachter
Prof. Dr. Birgitta König-Ries
Friedrich-Schiller-Universität Jena, 07743 Jena, Thüringen, Deutschland

Prof. Dr. Adrian Paschke
Freie Universität Berlin, 10589 Berlin, Deutschland

Tag der öffentlichen Verteidigung: 19.02.2021

v

Declaration of Authorship
Hiermit erkläre ich,

• dass mir die Promotionsordnung der Fakultät bekannt ist,

• dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder
Ergebnisse eines Dritten oder eigenen Prüfungsarbeiten ohne Kennzeichnung
übernommen und alle von mir benutzten Hilfsmittel, persönliche Mitteilungen
und Quellen in meiner Arbeit angegeben habe,

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe
und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von
mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der
vorgelegten Dissertation stehen,

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder
andere wissenschaftliche Prüfung eingereicht habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des
Manuskripts haben mich folgende Personen unterstützt:

• Prof. Dr. Birgitta König-Ries

Ich habe die gleiche, eine in wesentlichen Teilen ähnliche bzw. eine andere Abhandlung
bereits bei einer anderen Hochschule als Dissertation eingereicht: Ja / Nein.

Jena, den 10. August 2020

[Samira Babalou]

vii

To my Family

ix

Deutsche Zusammenfassung

Ontologien sind das semantische Modell von Daten im Web. In vielen Fällen decken
einzelne Ontologien nur einen Teil der interessierenden Domäne ab, oder es existieren
unterschiedliche Ontologien, die die Domäne unter verschiedenen Gesichtspunkten
modellieren. In beiden Fällen kann durch die Vereinigung (engl. Merging) zu einem
integrierten Wissensgraphen ihre Komplementarität genutzt und einheitliches Wissen
über eine bestimmte Domäne erworben werden. Die Vereinigung ist wichtig, aber es
gibt mehrere Herausforderungen, die mit bestehenden Ansätzen nicht zufriedenstellend
gelöst werden können. Dazu gehören mangelnde Skalierbarkeit, Anpassbarkeit und
Qualitätskontrolle. Diese Dissertation trägt zur Verbesesser aller drei Aspekte bei .

Bestehende Ansätze aufgrund der Verwendung einer binären Vereinigungsstrategie eher
schlecht auf das Vereinigen mehrerer Ontologien skalieren. Eine Reihe von binären
Vereinigungen kann schrittweise auf mehr als zwei Ontologien angewendet werden.
Dieser Ansatz ist jedoch für eine große Anzahl von Ontologien nicht ausreichend
skalierbar und praktikabel. Das Vereinigen mehrerer Ontologien in einem einzigen
Schritt unter Verwendung einer sogenannten n-fachen Strategie wurde bisher nicht
ausführlich untersucht. Es ist notwendig, eine effiziente n-fache-Technik zu entwickeln,
die sich auf die Vereinigung mehrerer Ontologien skalieren lässt. Daher wollen wir
untersuchen, inwieweit die n-ary-Strategie das Skalierbarkeitsproblem lösen kann. Um
eine große Anzahl von Quellontologien verarbeiten zu können, haben wir uns zum
Ziel gesetzt, die Zeit und die Ablaufkomplexität im Vergleich zu binären Vereinigungen
zu reduzieren und gleichzeitig mindestens die gleiche Qualität des Endergebnisses zu
erzielen oder sogar zu verbessern.

Insgesamt trägt diese Dissertation zu folgenden wichtigen Aspekten bei:

1. Unsere n-ary Merge-Strategie verwendet eine Reihe von Quell-Ontologien und
deren Abbildungen als Eingabe und generiert eine zusammengefügte Ontologie.
Anstatt vollständige Ontologien paarweise nacheinander zusammenzufügen,
gruppieren wir für eine effiziente Bearbeitung Konzepte über Ontologien hinweg
in Partitionen und fügen diese zuerst innerhalb und dann über die Partitionen

x

hinweg zusammen. Die experimentellen Tests an bekannten Datensätzen
bestätigen die Machbarkeit unseres Ansatzes und zeigen seine Überlegenheit
gegenüber binären Strategien hinsichtlich Ablaufkomplexität und Laufzeit.

2. Wir machen einen Schritt in Richtung parametrierbarer
Zusammenführungsmethoden. Wir haben eine Reihe von GMR (Generic
Merge Requirements) identifiziert, deren Erfüllung von zusammengeführten
möglicherweise erwartet wird. Wir haben die Kompatibilität der GMRs mit
einer graphbasierten Methode untersucht. Anhand von Anwendungsfallstudien
für die vom Benutzer ausgewählten GMRs zeigen wir mögliche Obermengen
kompatibler GMRs auf, die gleichzeitig erfüllt werden können.

3. Wenn mehrere Ontologien zusammengeführt werden, können Inkonsistenzen
aufgrund unterschiedlicher Weltanschauungen auftreten, die in den
Quellontologien codiert sind. Zu diesem Zweck schlagen wir eine neuartige,
auf Subjektiver Logik basierende Methode vor, um die beim Zusammenführen
von Ontologien auftretenden Inkonsistenzen zu behandeln. Wir wenden
diese Logik an, um die Vertrauenswürdigkeit widersprüchlicher Axiome, die
Inkonsistenzen innerhalb einer zusammengeführten Ontologie verursachen,
einzustufen und abzuschätzen. In den experimentellen Tests analysieren wir die
Eigenschaften der inkonsistenten zusammengeführten Ontologien und zeigen,
dass die inkonsistenten zusammengeführten Ontologien, die durch unseren
Ansatz repariert werden, mit konsistenten zusammengeführten Ontologien
konkurrenzfähig sind, die durch menschliches Eingreifen erreicht werden.

4. Angesichts der zentralen Rolle, die die zusammengeführten Ontologien bei
der Realisierung realer Anwendungen spielen, besteht ein starker Bedarf an
der Entwicklung von Bewertungsmethoden, mit denen ihre Qualität gemessen
werden kann. Um die Qualität der zusammengeführten Ontologien systematisch
bewerten zu können, bieten wir einen umfassenden Kriterienkatalog in einem
Bewertungsrahmen. Die vorgeschlagenen Kriterien decken eine Vielzahl von
Merkmalen jedes einzelnen Aspekts der zusammengeführten Ontologie in
strukturellen, funktionalen und benutzerfreundlichen Dimensionen ab. Wir
bewerten die strukturellen Maßnahmen zusammen mit GMRs. Wir führen eine
systematische Formulierung ein, um die funktionalen Maßnahmen anhand des
Verwendungszwecks und der Semantik der zusammengeführten Ontologie zu
bewerten und Kriterien für die Dimension der Usability bereitzustellen.

5. Der letzte Beitrag dieser Forschung ist die Entwicklung des CoMerger-Tools,
das alle oben genannten Aspekte implementiert, auf die über eine einheitliche
Schnittstelle zugegriffen werden kann.

xi

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Dr. Birgitta
König-Ries for her continuous support of my Ph.D. study, for her patience, and immense
knowledge. She gave me a great opportunity to learn a lot from her and to believe and
trust in my abilities. I would like to give special thanks to Prof. Dr. Adrian Paschke for
the time and effort he devoted to review and evaluate this thesis.

My sincere thanks also go to my colleges Dr. Alsayed Algergawy, who supported and
advised me in the first year of my Ph.D., and Sirko Schindler, who provided feedback on
my methodology, and to all other in Heinz-Nixdorf Chair for Distributed Information
Systems, which always support me in my work and my personal life. Without their
precious support, it would not be possible to conduct this research.

I would like also to thank my scholarship organization, German Academic Exchange
Service (DAAD), which has supported me financially for four years.

My deepest gratitude thanks goes to my family for their big love, generous support and
huge encourage. Many thanks to my friend through all years in Jena for showing me the
beauty of life making my mind relax during the hard. This dissertation would not have
been possible without their warm love, continued patience, and endless support.

Finally, I would like to thank myself for my hard-working time and persistent to
accomplish my Ph.D.

xiii

Abstract

Ontologies represent the semantic model of data on the web. For many usecases,
individual ontologies cover just a part of the domain of interest or different ontologies
exist that model the domain from different viewpoints. In both cases, by merging
them into an integrated knowledge graph, their complementarity can be leveraged and
unified knowledge of a given domain can be acquired. Merging is important, but
there are several challenges associated with it that existing approaches do not solve
satisfactory. These include lack of scalability, customizability, and quality control. This
thesis contributes to all three.

Existing approaches scale rather poorly to the merging of multiple ontologies due to
using a binary merge strategy. A series of binary merges can be applied incrementally
to more than two ontologies. However, this approach is not sufficiently scalable and
viable for a large number of ontologies. Merging multiple ontologies in a single step,
employing what is called an n-ary strategy, has not been extensively studied so far. It
is a necessity to develop an efficient n-ary technique that scales to merging multiple
ontologies. Thus, we aim to investigate the extent to which the n-ary strategy can
solve the scalability problem. To handle a large number of source ontologies, we aimed
to reduce the time and operational complexity compared to the binary merges while
achieving at least the same quality of the final result or even improve upon it.

As a whole, this thesis contributes to the following important aspects:

1. Our n-ary merge strategy takes as input a set of source ontologies and their
mappings and generates a merged ontology. For efficient processing, rather than
successively merging complete ontologies pairwise, we group related concepts
across ontologies into partitions and merge first within and then across those
partitions. The experimental tests on well-known datasets confirm the feasibility
of our approach and demonstrate its superiority over binary strategies in terms of
operational complexity and time performance.

2. We take a step towards parameterizable merge methods. We have identified a set
of Generic Merge Requirements (GMRs) that merged ontologies might be expected

xiv

to meet. We have investigated and developed compatibilities of the GMRs by
a graph-based method. Through use case studies, for the given user-selected
GMRs, we show possible supersets of compatible GMRs that can be fulfilled
simultaneously.

3. When multiple ontologies are merged, inconsistencies can occur due to different
world views encoded in the source ontologies. To this end, we propose a novel
Subjective Logic-based method to handling the inconsistency occurring while
merging ontologies. We apply this logic to rank and estimate the trustworthiness
of conflicting axioms that cause inconsistencies within a merged ontology. In
the experimental tests, we analyze the characteristics of the inconsistent merged
ontologies and show the inconsistent merged ontologies repaired by our approach
is competitive with consistent merged ontologies achieved by human intervention.

4. Given the central role the merged ontologies play in realising real world
applications, there is a strong need to establish evaluation methods that can
measure their quality. Thus, to assess the quality of the merged ontologies
systematically, we provide a comprehensive set of criteria in an evaluation
framework. The proposed criteria cover a variety of characteristics of each
individual aspect of the merged ontology in structural, functional, and usability
dimensions. We evaluate the structural measures along with GMRs. We define the
systematic formulation to evaluate the functional measures against the intended
use and semantics of the merged ontology and provide criteria for the usability
dimension.

5. The final contribution of this research is the development of the CoMerger tool that
implements all aforementioned aspects accessible via a unified interface.

xv

Contents

I Problem Definition 1

1 Introduction 3
1.1 Motivation & Problem Statements . 3
1.2 Research Solution . 7
1.3 Research Hypothesis . 9
1.4 Research Contributions . 11
1.5 Outline of the Thesis . 12

2 Literature Review 15
2.1 Existing Ontology Merging Approaches . 15
2.2 Overview of Existing Data Model Merging 21
2.3 Classification of the Ontology Merge Approaches 21

2.3.1 Binary vs. N-ary Merge . 21
2.3.2 One-level vs. Two-levels Merge . 22
2.3.3 Symmetric vs. Asymmetric Merge 22

2.4 Survey on Generic Merge Requirements . 23
2.5 Literature on Ontology Inconsistency Handling 26

2.5.1 Ontology Inconsistency Handling in the Single Development
Environment . 26

2.5.2 Inconsistency Handling in the Ontology Merging Domain 26
2.6 Survey on the Ontology Quality Assessment 27

2.6.1 Ontology Quality Assessment in the Single Deployment Scenario . 28
2.6.2 Quality Assessment in the Ontology Merging Context 29

2.7 Summary . 30

II Approach 33

3 Solution Overview 35

xvi

4 Multiple Ontology Merging Method 37
4.1 Introduction . 39
4.2 Preliminaries . 40
4.3 The Workflow of N-Ary Merge Method in CoMerger 43
4.4 Initialization Phase . 43
4.5 Partitioning Phase . 45

4.5.1 Partitioner Goals . 46
4.5.2 Finding Pivot Classes P . 46
4.5.3 Partitioner: a Structure Driven Strategy 47
4.5.4 Partitioning Phase Characteristics - Summary 48

4.6 Combining Phase . 49
4.6.1 Intra-combination: Independent Merge 49
4.6.2 Inter-combination: Dependent Merge 50
4.6.3 Combining Phase Characteristics- Summary 51

4.7 N-ary Merge Algorithm . 51
4.8 Example . 52
4.9 Summary . 54

5 Generic Merge Requirements 59
5.1 Introduction . 61
5.2 GMRs Classification . 61
5.3 GMR Overview . 62
5.4 Proposed Approach for Checking GMR Compatibility 67

5.4.1 Building GMRs Interactions Graph G 69
5.4.2 Clique Finder . 75

5.5 Ranking the Compatible Sets . 77
5.6 Conflict Resolution . 79

5.6.1 Conflicts Occurring by One type Restriction 80
5.6.2 Conflicts Occurring by Property Value’s Constraint 81

5.7 Summary . 83

6 Handling Inconsistencies 85
6.1 Introduction . 87
6.2 Preliminaries . 87

6.2.1 Example: an Inconsistent Ontology 90
6.2.2 Subjective Logic Theory . 90

6.3 Proposed Method for Inconsistency Handling by Subjective Logic 94
6.3.1 Negative Observation . 94
6.3.2 Positive Observation . 95
6.3.3 Atomicity . 96
6.3.4 Combining Opinions . 97
6.3.5 Applying Conditional Opinions to Reflect the Dependencies 97

6.4 Inconsistency Handling Workflow . 99
6.5 Algorithm . 100
6.6 Repair plan . 100
6.7 Example: Applying Our Method on an Inconsistent Ontology 101

xvii

6.8 Summary . 103

7 Quality Assessment for the Merged Ontology 105
7.1 Introduction . 107
7.2 Preliminaries & Background . 107

7.2.1 Ontology Ranking vs. Ontology Quality Evaluation 108
7.2.2 Insufficiency of Global Scoring . 108
7.2.3 Evaluation Domains . 109
7.2.4 A Customizable Evaluation . 109

7.3 Evaluation Standards . 110
7.4 Proposed Quality Indicators for the Evaluation of Merged Ontology . . . 114

7.4.1 Extending Ontology Evaluation Frameworks 114
7.4.2 Quality Evaluation Function . 117
7.4.3 Associated Quality Indicators of Evaluation Dimensions 119

7.5 Ontology Merging Quality Assessment Workflow 125
7.6 Summary . 126

III Evaluation 129

8 Experimental Evaluation 131
8.1 Datasets . 131
8.2 Implementation . 133
8.3 Overview of Experimental Tests . 133

9 CoMerger: Proposed Tool 135
9.1 CoMerger Overview . 135
9.2 CoMerger Architecture . 136
9.3 CoMerger Component . 137

9.3.1 GMRs Compatibility Checker . 137
9.3.2 Multiple Ontologies Merger . 137
9.3.3 Merged Ontology Evaluator . 138
9.3.4 Consistency Checker . 138

9.4 CoMerger GUI . 138
9.5 Summary . 139

10 Experimental Tests on the N-ary Merge Method 145
10.1 Test Setting . 147

10.1.1 Adjusting Parameters . 147
10.1.2 Adjusting Binary Methods . 148
10.1.3 Building Different Versions of Merge 148
10.1.4 Adjusting Refinements . 148

10.2 Experimental Results . 149
10.2.1 Characteristics of the N-Ary Merged Result 149
10.2.2 Answering Competency Questions 153
10.2.3 Binary versus N-ary . 156

10.3 Summary . 158

xviii

11 Experimental Tests on GMRs 165
11.1 Use Case Study on Compatibility Checker 167

11.1.1 First Use Case . 167
11.1.2 Second Use Case . 167
11.1.3 Third Use Case . 168

11.2 Use Case Study on Conflict Resolution . 169
11.3 Summary . 170

12 Experimental Tests on Inconsistency Handling of Merged Ontologies 173
12.1 Characteristics of Inconsistent Ontologies 175
12.2 Answering Competency Questions . 178
12.3 Scalability . 180
12.4 Summary . 181

13 Experimental Tests on the Quality Assessment of the Merged Ontology 183
13.1 Quality Evaluation of the Structural Dimension 186
13.2 Quality Evaluation of the Functional Dimension 187

13.2.1 Quality Assessment of Intended Use with Competency Questions
Testing . 187

13.2.2 Quality Assessment of Intended Semantics with Query Testing . . 189
13.3 Quality Evaluation of the Usability Dimension 191
13.4 Time Performance . 191
13.5 Overall Result Demonstrations . 193
13.6 Total analyzing . 193
13.7 Analyzing the Fulfilment of the Principles of Evaluation Standards 196
13.8 Summary . 197

IV Conclusion 199

14 Summary 201

15 Future Work 205

V Appendix 207

A Competency Questions on Conference domain 209

B GMR Implementation 213

C User Help 225
C.1 Merging Ontologies . 226
C.2 Quality Assessment . 228
C.3 Consistency Checker . 231
C.4 Compatibility Checker . 232
C.5 SPARQL Query Endpoint . 234

xix

Bibliography 237

xxi

List of Figures

1.1 An example query on the merged ontology 5
1.2 Five sample source ontologies. 6
1.3 The merged ontologies in each step of the binary merge. 6
1.4 Two sample consistent ontologies and an inconsistent merged ontology. . 8
1.5 The merged ontology for the given source ontologies. 9

3.1 Solution overview. 36

4.1 Example of overlapping bio-ontologies from BioPortal. 40
4.2 CoMerger architecture. 43
4.3 Taxonomy and non-taxonomy relations for a sample class. 47
4.4 Three sample source ontologies. 55
4.5 The initial merge model IM for the given source ontologies. 56
4.6 Generating two blocks for the given source ontologies. 57
4.7 Augmenting the blocks with non-taxonomy relations. 57

5.1 Generic Merge Requirements (GMRs) classification. 62
5.2 Two sample source ontologies. 63
5.3 Two different merged ontologies for the given source ontologies. 64
5.4 The workflow of GMRs’ compatibility checker. 68
5.5 Compatibility along with four cases. 73
5.6 Sorted GMRs based on their compatibility degree. 76
5.7 GMRs interaction graph with samples cliques. 77
5.8 All maximum compatible sets for the user-selected GMRs {R7, R9, R10, R16}. 80
5.9 A conflicting merged ontology and the repaired one. 80
5.10 The attributed Restriction GraphRG for six OWL Restriction types. 82

6.1 Examples of various inconsistency and incoherence [FHP+06]. 89
6.2 Example of an inconsistent ontology with its statistics. 91
6.3 Opinion triangle with example opinion [Jøs16]. 93

xxii

6.4 Our workflow to handle inconsistency of the merged ontology. 100
6.5 Applying Subjective Logic on the inconsistent merged ontology. 103

7.1 The relationship between an ontology and a conceptualization. 123
7.2 Workflow of ontology merging quality assessment. 126

9.1 CoMerger architecture. 136
9.2 CoMerger components. 137
9.3 GUI of adjusting the desired GMRs. 140
9.4 Ontology merging GUI. 141
9.5 The GUI for customizable evaluation of the merged ontology. 142
9.6 The result of the consistency test. 143

10.1 Effect of taxonomic weight and non-taxonomic weight. 147
10.2 Class, property, and instance coverage with the number of unpreserved

structure coverage of n-ary merge. 151
10.3 Number of local and global refinements, oneness, unconnected classes

and cycle of the n-ary merge. 151
10.4 Comparing translated axioms with corresponding entities. 152
10.5 Number of blocks versus class overlap, max cardinality, and distributed

axioms. 152
10.6 Comparing distributed axioms. 152
10.7 Runtime performance of the merge method. 156

12.1 Competency Question-based experimental tests. 179
12.2 The scalability test of processing the unsustainable root concepts. 179
12.3 The scalability test of processing all unsatisfiable concepts. 179

13.1 The GUI for structural quality evaluation. 188
13.2 Functional quality’s evaluation via Competency Questions. 190
13.3 Functional measure’s evaluation via queries. 191
13.4 Runtime performance within the evaluation framework 192
13.5 Overall result’s view within the evaluation framework. 192
13.6 Total Analyzing of the merged ontologies within the evaluation framework.194
13.7 Query endpoint GUI. 195

B.1 R1- Repair solution. 214
B.2 R2- Repair solution. 215
B.3 R3- Repair solution. 215
B.4 R4- Repair solution. 216
B.5 R5- Repair solution. 216
B.6 R6- Repair solution. 217
B.7 R7- Repair solution. 217
B.8 R8- Repair solution. 217
B.9 R9- Repair solution. 218
B.10 R10- Repair solution. 218
B.11 R11- Repair solution. 218
B.12 R12- Repair solution. 219

xxiii

B.13 R13- Repair solution. 219
B.14 R14- Repair solution. 220
B.15 R15- Repair solution. 220
B.16 R16- Repair solution. 221
B.17 R17- Repair solution. 221
B.18 R18- Repair solution. 222
B.19 R19- Repair solution. 222
B.20 R20- Repair solution. 223

C.1 Merger GUI. 226
C.2 Merging Result GUI. 227
C.3 Setting of the evaluation criteria. 228
C.4 Evaluation results. 229
C.5 Evaluator GUI. 230
C.6 Parameter setting of consistency test. 231
C.7 Consistency test result. 231
C.8 Compatibility checker GUI. 232
C.9 Result of compatibility checker. 232
C.10 Generic Merge Requirements (GMR)s information page 233
C.11 Running a single query. 234
C.12 Running different queries. 235

xxv

List of Tables

1.1 Number of operations for merging sample source ontologies. 6

2.1 Generic Merge Requirements (GMRs). 25
2.2 Summary of existing ontology merging methods: Merge strategy (binary

or n-ary); Merge type (one-level or two-levels); Merge nature (symmetric
or asymmetric); Fulfilled GMRs; Inconsistency handling (�) or not (×),
×∗ shows the approach handles other types of inconsistencies rather than
classical ones; Evaluation technique of the merged result. 32

4.1 The used notations, symbols, and nomenclatures in Chapter 4. 38
4.2 Corresponding pairs between the source ontologies given in Figure 4.4. . . 54
4.3 A map model M and its elements with their reputation degree. 54

5.1 The used notations, symbols, and nomenclature in Chapter 5. 60
5.2 Corresponding pairs between the source ontologies given in Figure 5.2. . . 62
5.3 Scope of changes by applying GMRs in the merged ontology. 70
5.4 The scopes and operations of each GMR. The symbol ? indicates an

alternative solution. 72
5.5 Compatibility interaction between GMRs with separated sub-scopes. . . . 74
5.6 Compatibility interaction between GMRs with the intersection of

sub-scopes. 75
5.7 Conflicts between six OWL restrictions. 84

6.1 The used notations, symbols, and nomenclature in Chapter 6. 86
6.2 Example opinions for x1 from four source ontologies O1-O4. 102

7.1 The used notations, symbols, and nomenclature in Chapter 7. 106
7.2 Variables of the quality evaluation function for each quality dimension. . . 118
7.3 Dimension, aspect, indicator, and type of the ontology merging evaluation

task. 127

xxvi

8.1 Dataset statistics. 132

10.1 The used notations, symbols, and nomenclatures in Chapter 10. 146
10.2 Number of taxonomic and non-taxonomic relations for the datasets. 147
10.3 The settings for generating twelve variants of the merged ontologies. . . . 149
10.4 Answering CQs on the different versions of merged ontologies. 154
10.5 Comparing n-ary (N), balanced (B), and ladder (L) merge strategies. . . . 156
10.6 Characteristics of the n-ary merged result- OAEI dataset. 160
10.7 Characteristics of the n-ary merged result- BioPortal dataset. 161
10.8 Comparing n-ary (V4), balanced (V7), and ladder(V10) merge strategies. . . 162
10.9 Comparing n-ary(V5), balanced (V8), and ladder (V11) merge strategies. . . 163
10.10Comparing n-ary(V6), balanced (V9), and ladder (V12) merge strategies. . . 164

11.1 The used notations, symbols, and nomenclature in Chapter 11. 166
11.2 All possible compatible maximum sets for user-selected GMRs U =

{R2, R3, R8, R16}. 168
11.3 All possible compatible maximum sets for user-selected GMRs U =

{R3, R6, R13}. 169
11.4 All possible compatible maximum sets for user-selected GMRs U =

{R3, R6, R13}. 170
11.5 Three sample merged ontologies with their OWL restriction. 170
11.6 CQs answers on the conflicted and revised merged ontology. 171

12.1 The used notations, symbols, and nomenclature in Chapter 12. 174
12.2 The characterization of the consistency test. 176

13.1 The used notations, symbols, and nomenclature in Chapter 13. 185
13.2 Occurrence of unsatisfied GMRs. 186
13.3 True or false positive and negative responses. 189
13.4 Evaluating the usability quality of the merged ontologies. 192

A.1 The Competency Questions for the conference domain of the OAEI
benchmark. 210

A.2 The Competency Questions (CQs) used in conflict resolution test. 211

B.1 The used notations and symbols in Appendix B. 213

xxvii

List of Symbols and Nomenclature

GMR General Merge Requirement
R1-R20 individual GMRs
CQ Competency Questions
N n-ary merge strategy
B balanced merge strategy
L ladder merge strategy
O an ontology
e an entity of an ontology
E the entities of an ontology
C a set of classes in an ontology
c a class in an ontology
P a set of properties of an ontology
p a property of an ontology
I an individual of an ontology
c′ an integrated class
pi a property of an ontology
Ii an individual of an ontology
Sig(O) a signature of an ontology
OS a set of source ontologies
Oi one of the source ontologies
OM a merged ontology
O′M an inconsistent merged ontology
M a mapping set between the source ontologies
M′ an imperfect mapping set between the source ontologies
n number of source ontologies
rel a relation between two entities
cs a corresponding set between the source ontologies
CS a set of corresponding between the source ontologies
csCj a corresponding class

xxviii

csPj a corresponding property
M a map model including a group of correspondences over multiple ontologies
≡ a correspond operator between entities
Card(cs) a cardinality value of a corresponding set
ct a class in the merged ontology
Conn(ct) number of connections of a class
L a block
CL a set of blocks
k number of blocks
IM the initial merged model
P a set of pivot classes
reputation(ct) a reputation degree of a class
taxo_rel(ct) taxonomy relation of a class
non_taxo_rel(ct) non-taxonomy relation of a class
wt weight degree of taxonomy relation
wnt weight degree of non-taxonomy relation
inter_rel(Li,Lj) inter-relatedness degree of two blocks
distaxiom a set of distributed axioms between two blocks
str degree of the structure preservation
on oneness- properties that have multiple domains or ranges
Cu unconnected classes in an ontology
cyc cycles in the class hierarchy
RG Global refinements on the merged ontology
RL local refinements on the blocks
Cor all corresponding entities
Card the max cardinality of a corresponding set
n number of source ontologies
k number of blocks
ds distributed axioms between two blocks
tr translated axioms
ov amount of overlap between source ontologies
|Mer.| number of merge operations
V1-V12 twelve versions of the merged ontologies
d1-d12 twelve tested datasets
v subClassOf relation between two classes
U a set of user-selected GMRs
UC a compatible subset of U
UEC an extra compatible set of GMRs related to U
G GMRs interactions graph
V a set of vertices in the graph
E a set of edges of in the graph
K number of vertices in the clique
KC-Clique compatible clique with K vertices

xxix

KC-max-Clique compatible clique with maximum K vertices
RS a set of compatible sets with U
rs a compatible set with U
l number of rs inRS
Si scope of changes by a GMR on OM

µ(Rj) a set of axioms getting effect by applying Rj ∈ GMRs on OM

‖ compatibility between two GMRs
∦ incompatibility between two GMRs
fd compatibility degree of a GMR
|rsz| the number of GMRs in the compatible set rsz
|U| the number of GMRs in U
|U ∩ rsz| the number of GMRs that contain in both rsz and U
Scorei(rsz) scoring rsz
Total_Score(rsz) total scoring of ranking the rsz
Ψ(U) the number of GMRs’ aspect in U
Ψ(rsz) the number of GMRs’ aspect in rsz
Ψ(U ∩ rsz) the number of common aspects in both rsz and U
|GMRsAspect| the total number of aspects of GMRs
SH Subsumption Hierarchy
depth(vi) deep of datatype vi on SH
RG attributed Restriction Graph for detecting and solving OWL restriction
cases A-N different solution for restriction conflicts
P a proposition
x an axiom
X a set of axioms
X the trustworthiness of axiom sets
w an opinion
wOi
x an opinion of axiom x from Oi

bOi
x a belief of axiom x from Oi

dOi
x disbelief of axiom x from Oi

uOi
x an uncertainty of axiom x from Oi

aOi
x the atomicity of axiom x from Oi

r number of positive observations
rOi
x number of positive observations about x by Oi

s number of negative observations
sOi
x number of negative observations about x by Oi

A an agent
Cun a set of unsatisfiable concept in O′M
RootCun a set of root unsatisfiable concepts in O′M
J a set of justifications
Jd a justification
|= entail

xxx

2 not entail
⊆ subset relationship
(proper (or strict) subset relationship
Ψxj (J) axiom frequency for xj in J
ΨOj (J) number of conflicting axiom sets belong to Oi

Γ(Oi) total number of axioms in Oi

Γxj (Oi) number of axioms in Oi containing elements of xj
fxj (Oi) the fraction of axioms in Oi containing elements of xj
α the provenance of the axioms
β the provenance of the elements of the axioms
Ok(L) ontology using logical language L under commitment k
EOM

quality evaluation function
D an evaluation dimension
S a set of inputs for the evaluation function
ċ coefficient of measurement error
mp a measurement procedure of evaluating quality indicators
m the output (numerical value) of EOM

L logical language
C conceptualization
Ik(L) intended model
k commitment to certain I for L
4 a set of relevant entities
W a set of possible worlds
R a set of intensional relations
TP True Positive
FP False Positive
FN False Negative
TN True Negative
n
Ok(L)
TP number of TP of Ok(L)

n
Ok(L)
FP number of FP of Ok(L)

n
Ok(L)
FN number of FN of Ok(L)

P Precision
R Recall
Σ R total number of unsatisfied GMRs
Σ e total number of anomalous entities
P1-P22 principles of the evaluation standards

1

Part I

Problem Definition

3

1
Introduction

This chapter starts with the motivation and problem statements of the thesis in
Section 1.1. Section 1.2 briefly discusses our proposed solution. Section 1.3 presents
the research hypothesis. The research contributions are explained in Section 1.4. The
chapter is concluded with an outline of the structure of the thesis in Section 1.5.

1.1 Motivation & Problem Statements

Ontologies are formal, explicit descriptions of a given domain [Gru+93]. They
represent the semantic model of data on the Semantic Web and allow capturing domain
knowledge. Oftentimes, more than one ontology is created for concepts of the same
domain. These ontologies either cover a part of the given domain or model the domain
from different points of view. In this fashion, multiple heterogeneous ontologies are
independently developed, where each one covers particular aspects of a domain of
discourse but overlaps to a certain degree with others. To support the interoperability
between these ontologies, they themselves need to be integrated. By merging them into
an integrated knowledge model, their complementarity can be leveraged, and unified,
more comprehensive knowledge of the domain can be acquired.

To merge the ontologies, first, the correspondences between them should be recognized
via the ontology matching process. Then, each group of corresponding entities is
combined into one single entity, and their relations are reconstructed to generate the
merged ontology. There have been considerable works on ontology matching as an
independent problem (see [RB01; KS03] for some surveys). Due to the successful
development of ontology matching systems (cf. the result of OAEI1 (Ontology
Alignment Evaluation Initiative) [AFF+19]), we assume that the corresponding entities
between the ontologies are given. In this view, merging the ontologies is a process
of creating a unified merged ontology from a set of source ontologies with a set of
correspondence pairs extracted from a given mapping [PB03].

1http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/

4 Chapter 1. Introduction

The merge process plays an important role in multiple different aspects of the Semantic
Web, such as ontology reusing [CR16], knowledge discovery [FFKJ19], and query
processing [LBBH15] to reduce development efforts, cost, and time. Moreover, merging
ontologies is becoming increasingly important for applications from a wide variety of
domains ranging from biomedicine [FFKJ19] and food production [Doo+18] to social
networks [PC19] and cultural heritage [ZPVOS18], to name just a few.

Motivation of Merging Ontologies. To demonstrate an application of merging
ontologies, we recall a real world use-case taken from [FFKJ19] in the domain of
medical imaging, where the associated knowledge is expressed and shared across
different ontologies. Clinical imaging plays a central role in medical diagnosis and
treatment. To improve the ability to automate reasoning about diseases and their
manifestations in medical imaging examinations, the authors sought to map Radiology
Gamuts Ontology (RGO) [BLKJ14] concepts to ontologies that organize and characterize
human diseases (Disease Ontology (DO) [SAN+11]) and the manifestations of those
diseases (Human Phenotype Ontology (HPO) [RKB+08]). Integration of RGO’s causal
knowledge expressed direct causal relationships between DO diseases and HPO
phenotypic abnormalities and allowed to formulate queries about causal relations using
the abstraction properties in those ontologies. Thus, one can formulate queries of
varying levels of abstraction within their hierarchies like “Which musculoskeletal system
disease may cause an abnormality of the digestive system?” (see Figure 1.1). As a
result, RGO concepts are categorized within the hierarchies of disease and phenotypic
abnormalities in order to enable to posit axioms that link DO and HPO entities at
multiple levels in their hierarchies. This information can support clinical diagnosis, data
mining, and knowledge discovery.

Most existing ontology merging approaches such as [PK19; PC19; Fah17; ZRL17;
MTFH14; RR14; JERS+11; JRGHB09] are limited to merging two ontologies at a time, due
to using a binary merge strategy. However, there is an increasing demand to interoperate
with more than two ontologies toward acquiring the desired knowledge for researchers
in real-world applications of the Semantic Web. In principle, a series of binary merges
can be applied incrementally to more than two ontologies, thus merging more than
two ontologies. However, this approach is not sufficiently scalable and viable when
the number of ontologies to merge grows [Rah16]. Nevertheless, merging n ontologies
(n > 2) in a single step, employing what is called an n-ary strategy, has not been
extensively studied so far. This may be due to the much more complex search space, and
it still remains one of the key challenges in the future research agenda. It is a necessity to
investigate whether the n-ary strategy can solve the scalability problem. Thus, we aim
to develop an efficient n-ary technique that scales to merging multiple ontologies.

Motivation of performing the n-ary merge. Let us demonstrate our motivation for
performing the n-ary merge with an example and highlight the difference between the
binary and n-ary approaches. Consider the five source ontologies in Figure 1.2. To
estimate the merge effort, we measure three operations during merging: combining
the corresponding entities into an integrated entity |combine|; reconstructing the
relationship |reconst|; and output generation |output|. These measurements are not
exact efforts of the computational complexity of the merge process. However, we
believe they can provide good ground for comparing binary and n-ary strategies. In

1.1. Motivation & Problem Statements 5

Entities of HPO

Entities of RGO

Entities of DO

Which musculoskeletal system disease may cause an abnormality
of the digestive system?

FIGURE 1.1: An example query on the merged ontology of RGO, DO, and HPO
from [FFKJ19].

the n-ary approach, 6 combination operations (for 6 sets of corresponding entities) and
28 reconstruction operations are carried out. This approach needs only one output
generation (see Table 1.1, second row). In the binary-ladder strategy [BLN86], in the
first step, O1 and O2 are combined into an intermediate merged ontology O12. Then,
O12 is merged with O3 and so on. All intermediate ontologies and the final merged
ontology are shown in Figure 1.3, and the required operations are presented in Table 1.1.
The n-ary merged ontology has the same structure as the final merged ontology of
the binary-ladder merge for the given source ontologies. As a total, the binary merge
approach needs 10 combinations, while the n-ary method needs 6, which shows 40%
improvement in our example. The number of reconstruction operations in binary is 28,
while n-ary needs 32 operations, which indicates 12.5% improvement. The n-ary method
needs one time output generation, while the binary approach needs 4 times. While
these numbers are specific to our example, the general pattern will be the same for other
examples. This example demonstrates the n-ary approach promises to outscale binary
methods. The achieved improvements are significant compared to binary approaches,
especially when dealing with a large number of ontologies and processing large-scale
ontologies.

In the literature, processing multiple ontologies is considered a challenging task. For
instance, in the multiple ontologies matching scenario in [HCZQ11], to match 4000
web-extracted ontologies on six computers using a pairwise strategy took about one
year, which indicates the insufficient scalability of pairwise strategies in practice.
As a further example of multiple ontologies merging, the integration process in the
biomedical ontology UMLS Metathesaurus [Bod04] was highly complex and involved

6 Chapter 1. Introduction

𝐶𝐶14
𝐶𝐶17𝐶𝐶15

𝐶𝐶16

𝐶𝐶18

𝐶𝐶13
𝒪𝒪3

𝐶𝐶7

𝐶𝐶10𝐶𝐶8
𝐶𝐶12

𝐶𝐶9
𝐶𝐶11

𝒪𝒪2

𝒪𝒪4 𝐶𝐶19

𝐶𝐶22
𝐶𝐶20

𝐶𝐶23

𝐶𝐶24

𝐶𝐶21

𝐶𝐶25

𝐶𝐶29𝐶𝐶26
𝐶𝐶30𝐶𝐶27

𝐶𝐶28 𝐶𝐶31
𝐶𝐶32

𝒪𝒪5

𝐶𝐶1

𝐶𝐶4𝐶𝐶2
𝐶𝐶6

𝐶𝐶5

𝐶𝐶3

𝒪𝒪1

Legend:

Corresponding entities

is-a relationships

FIGURE 1.2: Five sample source ontologies with their correspondences depicted
by dashed lines.

𝐶𝐶7

𝐶𝐶10
𝐶𝐶12

𝐶𝐶9 𝐶𝐶11

𝐶𝐶1

𝐶𝐶4.
8𝐶𝐶2

𝐶𝐶6

𝐶𝐶5

𝐶𝐶3

𝒪𝒪12

𝐶𝐶17𝐶𝐶15 𝐶𝐶16

𝐶𝐶18

𝐶𝐶7

𝐶𝐶10

𝐶𝐶12

𝐶𝐶 9.
13

𝐶𝐶11

𝐶𝐶1
𝐶𝐶4.
8𝐶𝐶2

𝐶𝐶6

𝐶𝐶5

𝐶𝐶3.
14

𝒪𝒪123

𝐶𝐶17
.20

𝐶𝐶15

𝐶𝐶16

𝐶𝐶18

𝐶𝐶7

𝐶𝐶10

𝐶𝐶12
𝐶𝐶 9.
13

𝐶𝐶11.
19

𝐶𝐶1

𝐶𝐶4.
8𝐶𝐶2

𝐶𝐶6

𝐶𝐶5

𝐶𝐶3.
14

𝒪𝒪1234

𝐶𝐶22

𝐶𝐶23

𝐶𝐶24

𝐶𝐶21

𝐶𝐶17
.20

𝐶𝐶15

𝐶𝐶16.
31

𝐶𝐶18

𝐶𝐶7

𝐶𝐶10 𝐶𝐶12𝐶𝐶 9.
13

𝐶𝐶1

𝐶𝐶2
𝐶𝐶6

𝐶𝐶5

𝐶𝐶3.
14

𝒪𝒪12345

𝐶𝐶22
𝐶𝐶23

𝐶𝐶24

𝐶𝐶21

𝐶𝐶29

𝐶𝐶26

𝐶𝐶30

𝐶𝐶27

𝐶𝐶32

𝐶𝐶11.
19.28

𝐶𝐶4.
8.25

FIGURE 1.3: The merged ontologies in each step of the binary merge for the source
ontologies from Figure 1.2.

TABLE 1.1: Number of operations for merging five sample source ontologies of
Figure 1.2.

Step Source ontologies |combine| |reconst| |output|
N-ary 1 O1 & O2 & O3 & O4 & O5 6 28 1

1 O1 & O2 1 5 1
2 O12 & O3 2 8 1

Binary 3 O123 & O4 4 6 1
4 O1234 & O5 3 13 1

Total 4 O12345 10 32 4

1.2. Research Solution 7

a significant effort by domain experts.

1.2 Research Solution

To handle a large number of source ontologies, we aim to reduce the time and
operational complexity while achieving at least the same quality of the final result or
even improve upon it. For efficiently applying the n-ary method on merging multiple
ontologies, we utilize a partitioning-based method inspired by ontology matching
systems [HQC08; ADMR05; JRASC18]. The idea is to perform partitioning in such
a way that every partition of one schema has to be matched with only a subset of
the partitions (ideally, only with one partition) of the other schema. This results in a
significant reduction of the search space and thus improved efficiency. Furthermore,
matching smaller partitions reduces the memory requirements compared to matching
the full schemas. Following that, in our n-ary method, CoMerger, we develop an
efficient merging technique that scales to many ontologies. We show that by using a
partitioning-based method, we can reduce the complexity of the search space2. Our
method takes as input a set of source ontologies alongside the respective mappings and
generates a merged ontology. At first, the n source ontologies are partitioned into k
blocks (k << n). After that, the blocks are individually merged and refined. Finally,
they are combined to produce the merged ontology followed by a global refinement. We
provide experimental tests for merging a variety of ontologies showing the effectiveness
of our approach over binary approaches.

With developing CoMerger, we focus on three more important aspects:

Parameterizable Merge Method. One aspect that various approaches to ontology
merging differ in is the set of criteria they aim to fulfill, i.e., the requirements that
they expect the merged ontology to meet, such as preserving all classes contained
from the source ontologies in the result (cf. [MFRW00]) or avoiding class redundancy
(cf. [TBL08]). Thus, given a comprehensive set of merge criteria, here called Generic
Merge Requirements (GMR)s, a flexible and parameterizable merge approach can be
achieved. Users can actively choose which requirements are important to them, instead
of allowing only a very indirect choice by picking a merge system that uses their
preferred set of criteria. Unfortunately, not all GMRs are compatible. For instance, one
may want to preserve all properties contained in the original ontology in the merged
ontology. On the other hand, one could wish to avoid cycles. Likely, these goals conflict.
Thus, towards the customization of the merge process, once a user has chosen a set
of important GMRs, a system is needed to check their compatibility and suggest a
maximum subset of requirements that can be met simultaneously.

Inconsistency Handling of Merged Ontology. Given consistent source ontologies, the
resulting merged ontology may be inconsistent due to differing world views encoded
into the source ontologies. An inconsistent ontology by virtue of what has been
stated in the ontology, cannot have any models and entails everything [BCM+03]. The
inconsistencies need to be repaired if one wants to make use of the merged ontology.

2In our context, the search space is the set of entities and their relations that have to be processed for a
specific merge step.

8 Chapter 1. Introduction

Paper

Cmt.owl

Paper

disjointWith

Conference.owl

Extended
Abstract

Paper

subClassOf

Merged_Ontology.owl

subClassOf

disjointWith

Extended
Abstract

AbstractAbstract

subClassOfsubClassOf

Abstract

FIGURE 1.4: Excerpt of two sample ontologies that are consistent themselves, but
the merged ontology, including all of these axioms, is inconsistent.

This resolution is, however, a challenging problem. Let us illustrate this issue with an
example of how the merged ontology can become inconsistent relatively easily. Consider
two fragments of sample ontologies of the OAEI conference benchmark3 in Figure 1.4.
The source ontologies themselves are consistent. However, when the corresponding
classes are combined in the merged ontology, this results in an ontology that is
inconsistent. The merged ontology, including simultaneously the axioms {(Abstract v
Paper), (Abstract v ExtendedAbstract), (ExtendedAbstract v ¬Paper)}, is
inconsistent. In order to turn the merged ontology into a consistent one, one or several of
these axioms need to be removed or altered. Thus, a method is required to suggest some
axioms to be revised. This solution desirably should take into account the knowledge of
the source ontologies.

Quality Assessment of the Merged Ontology. Given the central role the merged
ontologies are supposed to play in realizing real-world applications, there is a strong
need to establish evaluation methods that can measure their quality. Assume the merged
ontology in Figure 1.5 is used in an application. The cycle betweenC5.10,C9, andC6.8 will
cause a reasoner to consider all these entities to be the same [PB03]. Given the structure
of the source ontologies, quite likely, that is not the case. However, if the cycle is broken,
the structure of the source ontology either O1 or O2 is not preserved in the merged
ontology OM . Moreover, users will want to know whether the corresponding entities
are combined in OM . Similar evaluations are useful before using the created OM in an
application. However, the required analysis is not always straight forward, especially
in large-scale ontologies or with a large number of source ontologies. Here, a set of
evaluation indicators can significantly help users to gain an analytical perspective on the
merged ontology. These evaluations should not only focus on the correctness in terms
of structure, but they should also emphasize the correctness concerning its respective
source ontologies. Most studies in ontology merging do not include experimental tests
of the merged ontology (cf. [JERS+11]), or evaluate the accuracy of their generated
alignment on the merge scenarios (cf. [MTFH14]). Other ontology merging systems
(cf. [RR14; JERS+11]) that use a set of criteria to evaluate their methods are usually
limited to a few measures and do not fully cover quality aspects. Thus, there is a gap in
a comprehensive quality assessment of the merged ontology.

3http://oaei.ontologymatching.org/2019/conference/

http://oaei.ontologymatching.org/2019/conference/

1.3. Research Hypothesis 9

Legend:
Corresponding entities is-a relationships

𝐶𝐶1

𝐶𝐶5𝐶𝐶2

𝐶𝐶4

𝐶𝐶3
𝐶𝐶6

𝓞𝓞𝟏𝟏 𝐶𝐶7

𝐶𝐶8 𝐶𝐶11

𝐶𝐶10

𝐶𝐶13
𝐶𝐶12

𝐶𝐶9

𝓞𝓞𝟐𝟐

𝐶𝐶11

𝐶𝐶9

𝐶𝐶7 𝐶𝐶2

𝐶𝐶3

𝓞𝓞𝑴𝑴 𝐶𝐶1

𝐶𝐶12

𝐶𝐶6.8

𝐶𝐶4.13

𝐶𝐶5.10

FIGURE 1.5: The merged ontology OM for the given source ontologies O1 and O2

based on the give correspondences.

In the remainder of this chapter, we present the research hypothesis in Section 1.3,
followed by research contribution in Section 1.4, and the outline of the thesis in
Section 1.4.

1.3 Research Hypothesis

Based on the problem statements in Section 1.1, we define our research hypotheses. The
prime hypothesis of this thesis is the processing of merging multiple ontologies with an
n-ary strategy to be more scalable rather than binary merge:

H1. To scale to many sources, merging multiple ontologies using an n-ary strategy can
generate the same or better results compared to a series of pairwise binary merges, which
results in a performance improvement regarding time and computational complexity.

Merging multiple ontologies can have a complex search space, especially when the
number of source ontologies is increasing. To perform an efficient n-ary merge on
multiple ontologies, the complexity of the search space needs to be minimized. This
requires a methodology to reduce at least two types of complexities: (1) reducing the
time complexity, (2) reducing operational complexity. Partitioning the problem into
smaller subtasks can achieve both. Thus, we present the next hypothesis as:

H2. Given a set of corresponding sets extracted from mappings between source
ontologies, the entities from n source ontologies can be efficiently partitioned into k
blocks in order to facilitate the merge process by providing smaller and more tractable
merging subtasks.

The merged ontology is expected to meet a set of Generic Merge Requirements (GMRs).
Customizing the GMRs within an ontology merging system provides a flexible merging

10 Chapter 1. Introduction

approach. Thus, if a system allows users to select desired GMRs, a system is needed to
determine which user-selected GMRs can be met simultaneously.

H3. Given a set of user-selected GMRs, there is a subset of compatible GMRs that can
be fulfilled simultaneously in binary or n-ary merge method.

The entities inside each block should be merged to create a local sub-ontology where the
user selected GMRs can be applied in a local refinement. Adjusting the GMRs enables a
flexible and customizable merged method. The next step is to construct the final merged
ontology based on the sub-ontologies, which also has to ensure adherence to the GMRs
globally.

H4. The k blocks can be effectively combined to generate a merged ontology in which a
given set of Generic Merge Requirements is compatible fulfilled.

The final merged ontology should be free of inconsistencies. However, since the encoded
knowledge of source ontologies may model different world views, it can easily happen
that the merged ontology is inconsistent. These inconsistencies need to be resolved if
one wants to make use of the merged ontology in some applications. Thus, a capable
method is required to resolve potential issues. This method should make changes such
as deleting or rewriting a part of conflicting axioms to turn the inconsistent merged
ontology into a consistent one. The rewrite process necessitates a preceding step to detect
which axioms among all existing conflicting axioms should be rewritten. Thus a prior
function is required to rank the axioms, ideally by considering the source ontologies
knowledge. Because the inconsistencies in merged ontologies may stem from differing
source ontologies’ perspectives on the domain at hand. The whole of this process can
be accomplished automatically, or a user can review the system’s suggestions and make
necessary changes before applying them.

H5. When the merged ontology is inconsistent, it is possible to effectively repair it into a
consistent merged ontology by changes to the ranked axioms automatically or with user
intervention.

The created merged ontology plays a central role in a variety of Semantic Web
applications. Thus, prior to its usage, the quality and correctness of the merged
ontology should be assessed. This requires a comprehensive set of evaluation criteria
that systematically cover a variety of characteristics of individual aspects of the merged
ontology. These evaluation criteria should also provide an analytic view on how well
the created merged ontology reflects the given source ontologies.

H6. A comprehensive evaluation framework can be used to systematically assess diverse
aspects of the quality of the merged ontology concerning the respective source ontologies.

1.4. Research Contributions 11

1.4 Research Contributions

This thesis exposes a novel approach for merging multiple ontologies in the Semantic
Web domain. We propose an efficient, n-ary ontology merging technique that scales to
many ontologies and addresses the mentioned research hypothesizes. We outline our
main contributions as follows:

1. Merging Multiple Ontologies with an N-ary Strategy:
We present a scalable, multi-ontology merging method. For efficient processing,
rather than successively merging complete ontologies pairwise, we group related
concepts across ontologies into blocks and merge first within and then across those
blocks. The merged ontology built by our approach supports a set of user-selected
Generic Merge Requirements, toward assuring its quality.

2. Utilizing User-Driven Generic Merge Requirements:
We analyze the literature and compile a comprehensive list of Generic Merge
Requirements (GMRs) that are used by different approaches. Users can adjust
the list towards generating the customized merged ontology. We provide first
insights into the compatibility of user-selected and describe a graph-based method
for determining maximal sets of compatible GMRs for the user entry.

3. Inconsistency Handling of the Merged Ontology:
We propose a novel Subjective Logic-based approach [Jøs16] to handling the
inconsistency problem occurring while merging ontologies. Subjective Logic
theory can capture opinions about the world in belief models and provides a set of
operations for combining opinions. We apply this logic to rank and estimate the
trustworthiness of conflicting axioms that cause inconsistencies within a merged
ontology.

4. Assessing the Quality of the Merged Ontology:
We provide a comprehensive set of evaluation criteria to cover a variety of
characteristics of individual aspects of the merged ontology in three dimensions:
(1) structural criteria via the evaluation of the General Merge Requirement
(GMR)s, (2) functional measurements by the intended use and semantics of the
merged ontology, and (3) usability evaluation on ontology and entity annotation.
Evaluating the merged ontology can be performed even independently of the
merge method.

5. CoMerger Tool:
The final contribution of this research is the development of the CoMerger tool
that implements all aforementioned aspects accessible via a unified interface. Our
web-based application is freely accessible via http://comerger.uni-jena.
de/, and the source code is publicly available4 and distributed under an
open-source license.

4https://github.com/fusion-jena/CoMerger

http://comerger.uni-jena.de/
http://comerger.uni-jena.de/
https://github.com/fusion-jena/CoMerger

12 Chapter 1. Introduction

1.5 Outline of the Thesis

The thesis is subsequently organized as follows:

• Chapter 2 surveys the literature in four subdomains (i) ontology merge
approaches, (ii) Generic Merge Requirements, (iii) ontology inconsistency
handling, and (iv) ontology quality assessment.

This concludes Part I, the introduction of this thesis. In Part II, the proposed approaches
will be discussed. This part includes five chapters:

• Chapter 3 presents an overview of the proposed methods that we will present in
the next chapters.

• Chapter 4 introduces the n-ary merge method applied to multiple ontologies.
The method includes three main steps, initialization, partitioning, and combining.
The workflow, algorithm, and an example of the proposed merge method will be
presented in this chapter, too.

• Chapter 5 gives a classification of the Generic Merge Requirements (GMR)s. Each
GMR is discussed in detail, followed by the compatibility checking between them.

• Chapter 6 presents the proposed method to handle the inconsistencies arising in
the merged ontology. The approach is based on the Subjective Logic theory. We
present, first, a brief introduction of Subjective Logic theory and then discuss how
this logic can be applied to debug merged ontologies. An example, algorithm, and
possible repair plan will be present at the end.

• Chapter 7 introduces the quality assessment framework adapted for the evaluation
of merged ontologies in three dimensions. The structural dimension is measured
by General Merge Requirement (GMR)s. The functional dimension is formulated
against the intended use and semantics of merged ontologies, and the usability
dimension is evaluated by considering the ontology and entity annotation.

Part III is dedicated to the evaluation of the proposed methods in this thesis. It includes
six chapters:

• Chapter 8 gives an overview of the experimental tests carried on the proposed
methods in this thesis. The detail of implementation and the used datasets are
introduced in this Chapter, too.

• Chapter 9 presents an overview of the CoMerger tool and its components.
Moreover, the architecture of the tool in the user and system levels is presented,
followed by presenting the GUI of the tool.

• Chapter 10 shows the experimental tests on the proposed n-ary merge method.
The tests include (i) presenting the characteristics of the merged results with
different settings, (ii) analyzing by the Competency Questions, and (iii) comparing
the binary approaches versus the n-ary merge.

• Chapter 11 presents the experimental tests by use case studies on the compatibility
checker and the conflict resolution.

1.5. Outline of the Thesis 13

• Chapter 12 presents experimental tests on the proposed inconsistency handling
method. The tests present characteristics of the inconsistent ontologies along with
analyzing the Competency Questions on the consistent and inconsistent merged
ontologies. Moreover, we show the extent to which the method is scalable.

• Chapter 13 shows the empirical analysis of the proposed quality assessment
dimensions. Moreover, we will present the time performance of the evaluation
metrics, along with the overall result demonstration.

Part IV presents the concluding parts of the thesis. It consists of two chapters:

• Chapter 14 briefly reiterate our assumption, the proposed approaches, and the
discussion of the results. Moreover, we will state the extent to which the research
hypothesizes are satisfied.

• Chapter 15 exposes a set of directives of future work that will enrich and
complement this research.

15

2
Literature Review

In this chapter, first, we present a classification of the ontology merge systems in
Section 2.3. We then survey the literature on Generic Merge Requirements (GMRs) in
Sections 2.4, followed by reviewing inconsistency handling approaches in Section 2.5.
Section 2.6 discusses existing approaches on ontology quality assessment. At the
end of each sections, we briefly describe our method concerning that aspect. This
chapter is continuing by presenting existing model and ontology merging techniques in
Sections 2.2 and 2.1, respectively. We conclude the chapter with a summary of existing
approaches in Section 2.7.

2.1 Existing Ontology Merging Approaches

Ontology merging is the process of creating a merged ontology from a set of source
ontologies based on given mappings [PB03]. There have been proposed a variety of
merge approaches over the last decade. In this section, we give a detailed explanation of
each system. We will classify and analyze the ontology merging systems with respect to
different aspects in Section 2.3.

• ATOM [RR14] stands for Automatic Target-driven Ontology Merging. It merges
a source ontology into the target ontology and aims to preserve the preference of
one target ontology among the source ontologies. The approach at first creates
an intermediate merged result, then refines it based on some of Generic Merge
Requirements (GMRs) to produce the final merged ontology. The target-based
merge has been evaluated with a full merge concerning the number of concepts
and leaf paths.

• Chimaera [MFRW00] is an interactive merging tool. It suggests a set of potential
merging candidates to the user. Chimaera is able to merge the semantically
identical concepts from source ontologies in the merged ontology. Moreover,
the system can identify concepts that should be related via the is-a, disjointness,
or instance relationships. However, it does not support merging properties and
axioms. Chimaera provides about seventy commands in the user interface to

16 Chapter 2. Literature Review

generally edit the ontology and leaves the decision of what to do entirely to the
user. Some of these commands are related to ontology merging, such as “merge
classes” and “move class x to become a subclass of class y”. There are also related
commands for diagnosing tasks such as check for incompleteness, cycles, and
value-type mismatches. Evaluation of this tool has been demonstrated through a
user-study in terms of user actions and the required time for performing the merge
process.

• Chiticariu et al. [CKP08] proposed a method to enumerate multiple integrated
schemas from a set of source schemas. Their method supports refining the
enumerated schemas via user interactions. The integrated schemas are built by
considering all possible choices of merging concepts. Users can specify constraints
on the merging process itself, such as enforcing a pair (or a group) of corresponding
concepts to be always merged or never merged. The evaluation of the method
is narrowed on analyzing the run time performance and the effect of the user
interactions on the number of created integrated schemas.

• CleanTax [TBL08] investigates the merging problem when the relationships
between concepts of different taxonomies can be expressed as algebraic (RCC-5)
constraints [RCC92]. The merge process is performed by combining corresponding
entities and creating a new taxonomy based on the given and inferred alignments.
The consistency of the result is evaluated under global taxonomic constraints such
as parent coverage. The evaluation has been carried with other existing systems
in the view of the characteristics of the merge systems such as disjunctive relation
support and type of supported reasoning.

• CODE [FRP14] stands for Common Ontology DEvelopment. It can be used to
merge more than two ontologies at the same time. CODE merges the entities based
on four different scenarios with respect to the relations between the corresponding
entities between the source ontologies. The inconsistency handling in the view of
classical inconsistency definition in [FHP+06; HPS09] is not presented. However,
the authors deal with a certain type of disjoint conflict. CODE is evaluated through
SPARQL in order to show the knowledge preservation in the merged ontology.
However, in this evaluation, only the number of retrieved entities is compared.

• ContentMap [JRGHB09] stands for a logiC-based ONtology inTEgratioN Tool
using MAPings. It aims at helping users to understand and evaluate the
consequences of merging two ontologies as well as identifying and handling the
possible errors. ContentMap includes computing and selecting the mapping,
computing new entailments, detect and refine of unintended entailments.
This includes any unintended entailments, not especially on the inconsistency
entailments. Thus, inconsistency handling is narrowed to the refining mappings
to prevent the inconsistency in the merged ontology. The approach has been
evaluated only on two pairs of ontologies against the human-created merged
ontology in the view of entailment satisfaction.

• CreaDo [JERS+11] is a parameter-based ontology merging technique that selects a
subset of mapping based on the merge purpose. It allows the creation of a merged
ontology only with relevant information for the specific purpose. To conduct this,

2.1. Existing Ontology Merging Approaches 17

CreaDo uses the ontology modularization technique in [DTI07] to extract ontology
modules (relevant information) from each source ontology. A merge parameter
of CreaDo is a concept of the domain that should be represented in the merged
ontology. Once the merged ontology is created, the detected errors will be reported
to the user and no refinements take place for it. For the evaluation of the method,
the authors reported basic statistics about a few common pitfalls related to the
general design of the ontology taken from [PVSFGP10].

• DKP-AOM [Fah17] imports the first source ontology as the merged ontology
and then performs several operations to build the combined definitions for each
concept from the second source ontologies. Indeed, axioms from source ontologies
are matched together, merging is performed on them, and the combined axioms
are added in the merged ontology. DKP-AOM tries to prevent the inconsistency
in the merged ontology by refining the initial mappings. For the evaluation
of the merged method, the author presented how the method can produce the
merged ontology on a pair of source ontologies by representing which entities can
be merged (based on the detected corresponding entities). The created merged
ontology did not evaluate furthermore, but the accuracy of the created alignment
has been compared with other approaches.

• FCA-Merge [SM01], at first, extracts instances from a given set of domain-specific
text documents by applying natural language processing techniques. Then, based
on this information, it uses the Formal Concept Analysis (FCA) [GW12; Wil09]
technique to produce a lattice of concepts that relates concepts from the source
ontologies. Finally, it derives the merged ontology from the concept lattice with
human interaction. The algorithm suggests equivalence and subclass–superclass
relations. An ontology engineer can then analyze the result and use it as a guide
for creating a merged ontology. No evaluation and consistency checker has been
studied in FCA-Merge.

• GCBOM [PK19] performs the merging ontologies by applying the granular
computing processes, including association, isolation, purification, and reduction
upon the similarity values of corresponding entities. These operations modify the
granularity level in order to produce the final merged ontology. The evaluation
has been performed on two pairs of small ontologies in terms of the size of created
merged ontologies.

• GROM [MTFH14] proposes a formal approach for merging ontologies using
typed graph grammars with algebraic graph transformations. GROM replaces the
equivalent entities from the second source ontology in the first source ontology to
build a common ontology graph. After that, the properties are assigned to create
the global merged ontology, if no conflict (such as maxCardinality conflict) in the
final result occurs through those properties. No experimental test and evaluation
result has been reported in [MTFH14], only the coverage metric (cf. [RR12]) has
been mentioned as one quality metric.

• HCONE-merge [KVS06] uses linguistic and structural knowledge about
ontologies to formalize the Latent Semantics Indexing (LSI) method [DDF+90].
Then, it makes use of the LSI mechanisms for computing all the possible

18 Chapter 2. Literature Review

correspondences by mapping the intended informal meaning of concepts onto
WordNet senses. Based on the detected mappings, the algorithm decides whether
to merge two concepts. For the evaluation of the merged result, the authors
used two small source ontologies, which an expert has created a gold-standard
merged ontology of them. Then, the tool created ontology is compared with the
human-created one in terms of the suggested corresponding entities to be merged.
Thus, this evaluation is not on the evaluation of the merged result, but on the
alignment accuracy.

• HSSM [PC19] generates the formal context for the source ontologies and converts
them to the concept trees. Based on the similarity values (highly relevant, moderate
relevant, and least relevant) within the concept trees, HSSM performs two different
merge process. The dependent merging method merges the highly relevant nodes
with their children nodes. Independent merging technique either merges moderate
relevant nodes and all of the least relevant nodes or merges only the moderate
relevant nodes and drops the least relevant nodes. The evaluation has been
performed on two small ontologies from the social network domain in terms of
the merged ontology’s compactness.

• iPrompt [NM03] is an interactive ontology-merging tool. This system leads users
through the ontology merging process by suggesting what should be merged,
identifying inconsistencies and potential problems, and suggesting strategies to
resolve them. The assumption about inconsistency in iPrompt is different from
the classical definition of the inconsistencies. The consistency is defined as the
conflicting names (i.e., duplicated names), dangling reference (referring a concept
to another one which does not exist in the merged ontology), redundancy on the
class hierarchy (existence of more than one path from a class to a superclass), and
value restriction conflict. The evaluation is carried through a user-study on the
quality of iPrompt’s suggestion by analyzing whether the users follow the tool’s
suggestions.

• Makwana & Ganatra [MG18b] used the Jaccard Similarity Index (JSI) measure to
create groups of ontologies by the k-means algorithm [Mac+67] based on a global
similarity measure. Then, the authors merged the ontologies from a given specific
group using the adapted GROM [MTFH14] tool. Although the authors deal with
merging multiple ontologies, the approach indeed is narrowed to merging two
ontologies per time due using GROM, a pairwise ontology merger. In addition to
the SPARQL queries analyzing, the created merged ontologies have been evaluated
with compactness, coverage, and redundancy (introduced criteria in [RR12]). The
authors extend the explanation of the approach in [MG18a].

• MeMo [ALL10] is a system that calculates the similarity among the source
ontologies to define an order in which the ontologies should be merged. MeMo
uses a clustering technique in order to group the most similar ontologies. Although
the system deals with merging multiple ontologies, it uses a set of the binary merge
to achieve the final merge result. In each step of the running binary merge, MeMo
takes the most two highest similar ontologies and combines them based on the
ideas of Vanilla [PB03] in order to define the merge function. After each binary

2.1. Existing Ontology Merging Approaches 19

merge, MeMO requires to calculate the similarity between the newly merged
ontologies with the remaining source ontologies. The tool created merged ontology
has been compared with the gold standard ontologies in which they were built
by domain experts using iPrompt tool [NM03]. This evaluation emphasized on
difference between the characteristic on the tool created merged ontology with the
human-created one, such as the number of entities, class hierarchy, and label of
entities. The ontologies used in this study are small, where the biggest one has 42
classes, only.

• MoA [KJH+05] finds the alignment between two source ontologies and based on
the type of mappings between two concepts, decides whether to merge them. The
method has been evaluated on three small pairs of ontologies by analyzing the
expert’s positive responses on the MoA’s suggestions.

• OIM-SM [ZRL17] stands for Ontology Integration Method based on Semantic
Mapping. OIM-SM first generates a network-based knowledge model for two
source ontologies by merging the corresponding concepts. Then this model is
split into several blocks. For each block, OIM-SM creates the mapping between
its concepts, and re-align these concepts into a branch of the tree-based model.
Finally, the network-based model is reconstructed to generate a tree-based model
(cycle free) of the final merged ontology. Besides evaluating the accuracy of the
generated mappings, the authors evaluated one pair of source ontologies against
the human-created one in terms of the number of merged concepts and the time of
processing.

• OM [GAC10] merges two ontologies A and B to produce a third ontology C (the
merged result) in order to accumulate enough knowledge about a certain topic.
OM imports the ontology A in the merged result (C) completely, then incrementally
adds and merges the concepts from ontology B on the A’s entities if they do not
contradict knowledge from A. In this view, this method considers the restriction
from both ontologies. The merged ontology achieved by OM has been evaluated
against the human-created merged ontology in terms of result compactness.

• OMerSec [MFBB10] can merge more than two ontologies at the same time. It
performs the merging process by clustering different entities belonging to source
ontologies and making inferences on initial axioms. Then it uses the information
in source ontologies to validate the axioms and build a global ontology. The
classical inconsistency has not been investigated in OMerSec. However, synonymy
and homonymy conflicts have been handled in the global set of concept pairs.
The accuracy of the created correspondences has been compared with the other
approaches, only.

• Onto-Integrator [EGED09] is an interactive tool to merge the ontologies axioms by
providing a set of suggestions to the user. Based on the similarity values between
source ontologies’ entities, Onto-Integrator decides whether to merge them, create
a common superconcept for them, or make one of the concepts as a subconcpet
of the other one. This method creates at first an initial integrated ontology,
then constructs a multiple-lattice to detect additional subsumption cases and
discover new higher-level concept abstractions. Based on the refined mappings,

20 Chapter 2. Literature Review

Onto-Integrator prevents of inconsistency in the merged ontology. The evaluation
has been narrowed to a user-study, in which the users’ discussions on the tool’s
suggestions have been analyzed.

• PORSCHE [SBH08] stands for Performance ORiented SCHEma mediation. It
semi-automatically merges several tree-structured XML schemas and holistically
clusters all matching elements in the nodes of the merged schema. Initially, it
creates an intermediate schema based on one of the source schemas, and then
it incrementally merges the other source schemas with this schema. During the
merge process, if a node from a source schema has no correspondence in the
intermediate schema, a new node is created to accommodate this node. The
classical inconsistency has not been studied in PORSCHE, and only the data type
conflict has been analyzed. The integrity of the merged schema has been evaluated
regarding completeness and minimality measures.

• Radwan et al. [RPSY09] proposed a top-k ranking algorithm for the automatic
generation of the best candidate schemas. The algorithm gives more weight to
schemas that combine the concepts with higher similarity or coverage. The top-k
generated integrated schema is presented to the user, in which the user can select
the final desired merged schema. To carry the merge operation, the authors used
the proposed method of Chiticariu et al. [CKP08]. The evaluation of the proposed
tool has been carried via a user-based study by analyzing the number of actions
that the users perform to achieve the final merged result.

• SAMBO [LT06] is a general framework for aligning and merging ontologies in
interaction with the user to decide on the suggested alignments. SAMBO uses a
simple technique to merge the corresponding entities. However, the underlying
assumption about the merge method is not made explicit. The users can ask the
SAMBO system to check the consistency of the merged result using an existing
reasoner, but to the best of our knowledge, there is no explicit inconsistency
handling in this system. The evaluation is mostly related to the alignment accuracy
in order to compare the quality of the corresponding entities’ suggestions with the
human suggested ones.

• SASMINT [UA10] stands for Semi-Automatic Schema Matching and INTegration
system. The input of the system is a pair of schemas of relational databases, and
XML is chosen as the output in SASMINT for representing the integrated schema.
The user can modify and approve the result of the created alignment. After the user
validation process, schema integration is performed by applying several schema
derivation rules. These rules are customized in the relational schemas such as table
renaming or columns union’ rules. The approach follows an asymmetric strategy,
which in the case of naming conflict, the preferred source ontology’ naming is
applied. The authors checked certain types of conflicts in the area of the database
schema, such as databases’ key conflict. For the evaluation, the authors used the
completeness and minimality criteria.

2.2. Overview of Existing Data Model Merging 21

2.2 Overview of Existing Data Model Merging

There are quite different studies on the merging data models such as [BDK92; PB03;
BDK92; QKL07; MRB03]. Since our contribution is related to ontologies merging not
model merging, we briefly survey the literature in the model merging studies in this
section. However, we emphasized to a greater extent on the details of ontologies merging
systems in the previous section.

A theoretical aspect of model merging has been started in the early work in [BDK92].
The authors give a general formalism of merge operation and show how to resolve
a certain kind of conflict on the database schema level to produce a unique result.
Later, in the Vanilla system [PB03], the authors provided a more practical solution by
expanding the work in [BDK92]. Vanilla is a system that proposed several operations
for the model merging with instantiating on ontologies merging. The first notation
of Generic Merge Requirements (GMRs) has been introduced in Vanilla to present
a set of requirements for model management. These works were later extended by
GeRoMe [QKL07] and Rondo [MRB03] systems. GeRoMe presents a merge algorithm
that is based on the intensional relationships between models. This enables the
integration of models represented in different modeling languages. Rondo is introduced
as a model management system prototype in which high-level operators are used to
manipulating models and mappings between models. A set of generic operators,
including merge operation, has been implemented in Rondo. In general, these merging
model prototypes have been used as the base for the several ontology merging systems
such as [RR14; CKP08; ALL10].

2.3 Classification of the Ontology Merge Approaches

Merge approaches can be outlined from three different perspectives: (1) binary vs. n-ary,
(2) one-level vs. two-levels, and (3) symmetric vs. asymmetric.

2.3.1 Binary vs. N-ary Merge

Merging strategies basically have been divided into two main categories [BLN86]:
“binary” and “n-ary”. The binary approach allows the merging of two ontologies at a
time, while n-ary strategy merges n ontologies (n > 2) in a single step. To deal with
merging more than two ontologies, the binary strategy requires a quadratic complexity
of the merging process in terms of involved ontologies. However, the number of
merging steps is minimized in the n-ary strategy. Most methodologies in the literature,
such as [RR14; NM03; JRGHB09] agree on adopting a binary strategy due to the
simplicity of the search space. Applying a series of binary merges to more than two
ontologies is not sufficiently scalable and viable for a large number of ontologies [Rah16].
The existing n-ary approaches [SBH08; FRP14; CKP08; MFBB10] deal with merging
multiple ontologies in a single step, however, each of these systems suffers certain
drawbacks. In [SBH08], the final merge result depends on the order in which the source
tree-structured XML schemas are matched and merged. The scalability of the approach
in [FRP14; MFBB10; CKP08] is not clear since the experimental tests carried on a few

22 Chapter 2. Literature Review

small source ontologies. For instance, in [CKP08], only three source ontologies have been
merged. Despite the efforts of these research studies, developing an efficient, scalable
n-ary method has not been practically applied and still is one of the crucial challenges in
this field.

In our proposed method, we develop a scalable n-ary strategy to merge multiple
ontologies at the same time by utilizing a divide and conquer approach.

2.3.2 One-level vs. Two-levels Merge

Merging ontologies either in a binary or n-ary strategy can be categorized into two
different types: “one-level merge” and “two-levels merge”. The one-level merge approaches
tend to create the merge result in one processing step without creating an intermediate
result (cf. [JERS+11; MFRW00; SM01]). In contrast, in the two-levels merge type, an
intermediate merge result is produced at the first level. Then, in the second level, the
intermediate result is processed to generate a final merge result. In this merge type,
a set of refinements is carried on the intermediated result. For instance, applying a
set of GMRs in ATOM [RR14], utilizing granular processing in GCBOM [PK19], and
considering source ontologies’ restrictions in OM [GAC10] have been performed. The
output of the second level in literature identically is called merged ontology. Whereas, the
outcome of the first level comes under different names, such as an integrated concept graph
in ATOM [RR14], network-based knowledge model in OIM-SM [ZRL17], common ontology
graph in GROM [MTFH14], or intermediate schema in PORSCHE [SBH08].

The proposed method of this thesis, CoMerger, is built upon the two-levels technique.
CoMerger creates at first an initial merged model. Then, through local and global
refinements, the intermediate result is refined to generate the final merged ontology.

2.3.3 Symmetric vs. Asymmetric Merge

The merge process can be performed based on the two natures [RR14]: ”symmetric merge”
and ”asymmetric merge”. The newly created merged ontology can keep safe the structure
of one of the preferred source ontologies. This case calls an asymmetric merge, where
the source ontologies have a different priority and are not considered equally important
(cf. [RR14; MTFH14; Fah17]). In contrast, the symmetric merge considers all of the source
ontologies with equal priority, where the merged ontology may or may not resemble
any of the source ontologies’ structure (cf. [CKP08; MFRW00; JERS+11]). The symmetric
merge aims at maintaining all information of the source ontologies to achieve complete
coverage. On the other side, the purpose of asymmetric approaches is to discard part
of the information from the non-preferred source ontology to reduce redundancy in the
merged ontology.

In CoMerger, the user can decide to perform the symmetric or asymmetric merge. In the
last case, the user can adjust the preferred ontology.

2.4. Survey on Generic Merge Requirements 23

2.4 Survey on Generic Merge Requirements

The Generic Merge Requirements (GMRs) have been first introduced in the Vanilla
system [PB03]. Later other merge approaches implicitly or explicitly took them into
consideration [RR14; MFRW00; CKP08; TBL08; FRP14; JRGHB09; JERS+11; SM01; PK19;
MTFH14; PC19; NM03; ALL10; ZRL17; GAC10; EGED09; SBH08; RPSY09; LT06; UA10].
GMRs are a set of Generic Merge Requirements that the merged ontology is expected
to achieve. To provide customizable GMRs through CoMerger, as our contribution,
we surveyed the literature to compile a list of GMRs. This investigation leads to
extracting twenty GMRs, summarized in Table 2.1, which will be explained in more
detail in Chapter 5. We extracted GMRs by studying three different research fields:
(1) ontology and model merging methods, (2) ontology merging benchmarks, and (3)
ontology engineering domain:

1. Ontology and model merging methods: The GMRs R1-R6, R8-R16, R19 have been
extracted from existing ontology and model merging methods such as [RR14;
JRGHB09; JERS+11]. These approaches aim to implicitly or explicitly meet at least
one of the GMRs on their created merged ontology.

2. Ontology merging benchmarks: The existing benchmarks [MFH16; RR12] on
the ontology merging domain introduced general desiderata and essential
requirements that the merged ontology should meet. The criteria stated in
these benchmarks are based on earlier research in [DB10], a study of the quality
measurement of the merged ontology. In this respect, R1, R4, R7- R9 have been
extracted from these research studies.

3. Ontology engineering: Researchers of the ontology engineering domain [NM+01;
PVSFGP12; RDH+04] came up with a set of criteria to present the correctness of an
ontology, which is developed in a single environment. It is worthwhile to consider
these criteria also on the merged ontology because the newly created merged
ontology may be viewed the same as the developed ontologies in this category.
Not all of these criteria can be extended in the ontology merging scenario since
some relate to the problem of the source ontologies modeling, in which the merge
process can not affect them. In this regards, we recast R15 - R20 from this category.
By recast, we mean customizing them in the ontology merging scenario in which,
if the source ontologies do not fulfill those criteria, the merged ontology does not
obligate to follow them. For example, R20 emphasizes that the classes should not
be unconnected in the merged ontology. However, if the source ontologies include
unconnected classes, then this GMR is hard to be achieved in the merged ontology.
To make GMRs’ definitions free of the source ontologies modeling errors, we recast
them in the context of the ontology merging domain. In this follow, the recast
definition of R20 is that all connected classes from the source ontologies should
not be unconnected in the merged ontology.

There is a slight overlap between the criteria of the categories above. Some of GMRs such
as R16 and R19 belong to both merge approaches and ontology engineering categories.
Some others, e.g., R1, and R8 are shared between the ontology merging systems and
benchmarks. This is due to the fact that the mentioned categories are not significantly

24 Chapter 2. Literature Review

separated because all are covering particular aspects of ontology modeling but overlap
to a certain degree of ontology process.

2.4. Survey on Generic Merge Requirements 25

TABLE 2.1: Generic Merge Requirements (GMRs).

R1- Class preservation
All classes of (all/target) source ontologies should be preserved in the

merged ontology [RR14; MFRW00; CKP08; TBL08; FRP14; JERS+11; MTFH14]
[NM03; MG18b; SBH08; RPSY09; DB10; PB03; MFH16; RR12; UA10; ALL10].

R2- Property preservation
All properties of (all/target) source ontologies should be preserved

in the merged ontology [RR14; CKP08; TBL08; FRP14; PB03; EGED09].
R3- Instance preservation

All instances of (all/target) source ontologies should be preserved
in the merged ontology [RR14; CKP08; FRP14; SM01; PB03].

R4- Correspondence preservation
The corresponding entities from source ontologies should be

mapped to the same merged entity [RR14; NM03; PB03; RR12].
R5- Correspondences’ property preservation

The merged entity should have the same property of its
corresponding entities [NM03; PB03].

R6- Property’s value preservation
Properties’ values from the (all/target) source ontologies should be

preserved in the merged ontology [NM03; PB03].
R7- Structure preservation

The hierarchical structure of source ontologies’ entities should
be preserved in the merged ontology [DB10; ALL10; SJRG14].

R8- Class redundancy prohibition
No redundant classes should exist in the merged ontology [TBL08]

[PK19; PC19; GAC10; SBH08; LT06; DB10; MFH16; PB03; RR14; UA10].
R9- Property redundancy prohibition

No redundant properties should exist in the merged ontology [CKP08; MFH16; EGED09].
R10- Instance redundancy prohibition

No redundant instances should exist in the merged ontology [SM01; MTFH14].
R11- Extraneous entity prohibition

No additional entities other than the source ontologies’ entities should be
added in the merged result [PB03].

R12- Entailment deduction satisfaction
All entailments of the (all/target) source ontologies should

be satisfied in the merged ontology [JRGHB09; TBL08].
R13- One type restriction

Any merged entity should have one data type [PB03].
R14- Property value’s constraint

Restriction on property’s values from source ontologies should
be applied without conflict in the merged ontology [JRGHB09; PB03].

R15- Property’s domain and range oneness
The merge process should not result in multiple domains

or ranges defined for a single property [PVSFGP12].
R16- Acyclicity in the class hierarchy

The merge process should not produce a cycle in the class hierarchy [CKP08]
[ZRL17; RPSY09; LT06; DB10; JERS+11; NM+01; PB03; PVSFGP12; RR14].

R17- Acyclicity in the property hierarchy
The merge process should not produce a cycle between properties

with respect to the is-subproperty-of relationship [PVSFGP12; FMB12].
R18- Prohibition of properties being inverses of themselves

The merge process should not cause an inverse recursive definition on
the properties [PVSFGP12].

R19- Unconnected class prohibition
Each connected class from source ontologies should not be

unconnected in the merged ontology [JERS+11; PB03; PVSFGP12].
R20- Unconnected property prohibition

Each connected property from the source ontologies should not be
unconnected in the merged ontology [NM03; PVSFGP12].

26 Chapter 2. Literature Review

2.5 Literature on Ontology Inconsistency Handling

The classical inconsistency definition has been stated in [FHP+06; HPS09]. According to
that, an inconsistent ontology is an ontology, that by virtue of what has been stated in the
ontology, cannot have any models and entails everything. In this section, we survey the
inconsistency handling concerning this definition.

Mostly, ontologies’ inconsistency handling in the literature (cf. [HVHH+05; KPSCG06;
LPSV06; SPF+12]) has been contemplated in the context of ontology development in
the single environment. However, the possibility of inconsistencies handling in the
ontology merging domain has not sufficiently been examined in the literature. The main
difference between the two is that inconsistencies in a single ontology are typically the
result of modeling errors and thus relatively easy to correct. In contrast, inconsistencies
in merged ontologies may stem from differing perspectives on the domain at hand, each
of them correct in their own right. Resolving these inconsistencies is more problematic
and can be facilitated by determining the degree of trust of the respective source
ontologies. This can be a considerable challenge even for experts in the face of modestly
sized ontologies. In this regard, we distinguish between two different inconsistency
handling scenarios: (1) ontology inconsistency handling in a single development
environment, and (2) inconsistency handling in the ontology merging domain.

2.5.1 Ontology Inconsistency Handling in the Single Development
Environment

Handling inconsistencies developed in the single environment has attracted
considerable attention within the research community. In [FHP+06], the authors
provided a well-accepted notion of inconsistency. Upon that, in other studies [HPS09;
KPSH05; SC+03; PSK05], the authors provided a systematic way to detect
the unsatisfiable concepts and their justifications within an inconsistent ontology.
Unsatisfiable concepts are those who cannot be true of any possible individual, that is,
they are equivalent to the empty set. Justification is a minimal subset of an ontology that
causes it to be inconsistent. The detected justification sets have been further processed
with a variety of research studies such as [KPSCG06; LPSV06] to be ranked or analyzed.
In [KPSCG06], a single metric is used to rank the justifications. The approach in [LPSV06]
ranks the axioms based on the history of the ontology’s editing process, which might
not be realistic in practice. Similarly, there is a group of studies such as [HVHH+05;
PDT06] on handling inconsistency in the ontology evolution process. These approaches
commonly keep different versions of the ontology to handle inconsistencies.

2.5.2 Inconsistency Handling in the Ontology Merging Domain

In the ontology merging domain, the merged result is built basically based on the
knowledge provided by the source ontologies. The impact of the source ontologies’
knowledge on the merged results is a key point that must be taken into account
when we deal with inconsistencies in the merged ontology. This consideration has
been investigated in [JHQ+09; PTP+18] within the multiple ontologies domain. The
approach in [JHQ+09] considers multiple ontologies that are networked via mappings

2.6. Survey on the Ontology Quality Assessment 27

for distributed and networked environments, only. For the repair process, the approach
focuses on repairing the mappings, and only axioms in the mappings could be removed
to resolve the inconsistency. Moreover, their ranking function does not depend on
the assumption of the source ontologies. The proposed method in [PTP+18] builds a
consistent ontology in the ontology aggregation setting, which mostly depends on using
a reference ontology result, the submitted preference profile by the users.

Techniques used in alignment debugging can also be reviewed in this scenario. For
instance, research studies in [EGED09; FMB12; JRGHB09; JRGH12] examined the
inconsistency problem in the merged ontology based on the alignment of the respective
source ontologies. In principle, this type of study deals with the initial stages of
the ontology merging process to prevent the inconsistency in the merged ontology by
analyzing the list of mappings. They process the given mapping before using them in
the merging entities. If the specific mapping makes the merged result inconsistent, this
mapping is dropped, i.e., a set of corresponding entities does not consider as correspond
and does not merge. The removal of these alignments would achieve consistency in the
merged ontology. The approach in [FMB12] is quite different from the works above.
The assumption about inconsistency definition in this method is different from the
well-known inconsistency definition in [FHP+06; HPS09]. The authors considered other
types of modeling errors, such as redundancy and cycle on class or property hierarchies
with the notation of inconsistency. However, following [FHP+06; HPS09], we do not
consider these types of modeling errors as the inconsistency. Moreover, our method is
not narrowed to debugging alignment since we aim to generalize it on handling the
inconsistent merged ontology, independent of the merge method that it builds upon.

In this thesis, we consider the knowledge of source ontologies in the handling of the
inconsistencies within the merged ontology by using the Subjective Logic theory [Jøs16].
This provides the necessary mechanisms to capture the subjective opinion of different
communities represented by the source ontologies on the trustworthiness of each axiom
in the merged ontology and identifies the least trustworthy axioms. To the best of
our knowledge, the only study which considers Subjective Logic in this context is the
approach in [SPF+12]. However, the authors only utilized the atomicity value and
omitted the belief, disbelief, and uncertainty degree from this theory. Moreover, no
agent’s opinion combination has been considered. Lastly, we apply Subjective Logic to
handle inconsistencies within the ontology merging domain, not in a single development
environment, where the source ontologies assumptions play a central role.

2.6 Survey on the Ontology Quality Assessment

We distinguish between two different ontology evaluation scenarios: (i) ontology
evaluation in a single deployment scenario, and (ii) ontology evaluation in the context
of ontology merging. The first one focuses on how well (in terms of structure) the
single ontology is created, independent of any other ontology. While the evaluation
in the second scenario emphasizes the correctness and comparisons concerning to its
respective source ontologies. The evaluation methods developed for the first scenario are
not sufficient to address all relevant aspects in the second scenario, therefore, warrants

28 Chapter 2. Literature Review

its own evaluation methods. Although the first scenario has been widely covered, the
evaluation of merged ontologies has received far less attention.

2.6.1 Ontology Quality Assessment in the Single Deployment Scenario

Many approaches aim to assess the quality of one given ontology independent of its
relatedness to other ontologies or the ones it was built upon. These approaches are
analyzed and classified in a few research studies [HS14; BGM05; RC15]. In this section,
we present a summary of the introduced classifications.

• Gold-standard comparison [HS14; RC15]: This typically compares an ontology
against a gold-standard, which is suitably designed for the domain of interest. The
gold-standard evaluation methods require a well-constructed ontology to serve as
a reference in that domain. According to [HS14], a major limitation of this approach
is that the gold standard itself needs to be evaluated, and it is crucial to establish
the quality of the gold standard. Creating a suitable gold ontology is a challenging
task [RC15] since it should be one that was created under the same conditions with
similar goals to the ontology that want to be evaluated.

• Application or task-based evaluation [HS14; BGM05]: This analyzes how effective an
ontology is in the context of an application or a use-case. This type of evaluation
considers that a given ontology is intended for a particular task, and is only
evaluated according to its performance in this task. There exist two main issues
with the task-based approach to ontology evaluation [HS14]. First, it is hard to
generalize the results of a task-based evaluation because what is applicable in
one application context may not be applicable in another. Second, this is highly
suitable for a small set of ontologies and would certainly become unmanageable in
an automated setting with a variable number of ontologies.

• User-based evaluation [HS14]: This generally involves evaluating the ontology
through users’ experiences. User study evaluation concerns two problems [HS14]:
it is difficult to establish objective standards on the criteria for evaluation, and it is
also hard to establish who the right users are.

• Data-driven evaluation [HS14; BGM05; RC15]: Corpus-based approach [RC15] or
namely data-driven evaluation [HS14; BGM05] compares the ontologies with
existing data about the respective domain. They are used to evaluate how
far an ontology sufficiently covers a given domain. Based on [HS14], the
major limitation of data-driven ontology evaluation is that domain knowledge
is implicitly considered to be constant. This is contradictory to the literature’s
assertions about the nature of domain knowledge.

• Criteria-based evaluation [RC15; BGM05]: These approaches mainly measures how
far an ontology adheres to certain desirable criteria. In [RC15], criteria-based
evaluation approaches are considered as the most efficient technique in evaluating
the clarity of an ontology. The clarity could be evaluated using simple
structure-based measures, or more complex metrics. In addition, this type of
approach is capable of measuring the ability of the used tools to work with the
ontology by evaluating the ontology properties. Moreover, criteria-based measures

2.6. Survey on the Ontology Quality Assessment 29

are efficient in detecting the presence of contradictions by evaluating the axioms in
an ontology. The general problem of criteria based evaluation in [BGM05] has been
relegated to the question of how to evaluate the ontology concerning the individual
evaluation criteria. On the positive side, these approaches allow us to combine
criteria from different aspects. In this regard, we evaluate mainly the CoMerger by
criteria-based evaluation technique.

2.6.2 Quality Assessment in the Ontology Merging Context

In this section, we present the evaluation strategy of the existing ontology merging
systems categorized in the introduced classification from Section 2.6.1.

• Gold-standard comparison: The tool-created merged ontology has been compared
against a human-created one in a couple of ontology merging systems
such as [JRGHB09; ZRL17; GAC10; ALL10] and in the ontology merging
benchmarks [MFH16; RR12]. In the proposed ontology merging systems, the
comparison has been performed in terms of the size of merged result [ZRL17;
GAC10], class hierarchy and size [ALL10], the time of processing [ZRL17], and the
entailment satisfaction [JRGHB09]. The evaluation in these approaches encounters
with two main drawbacks. First, the ontologies in these tests are small in size.
For instance, in [ALL10], the biggest ontology includes 42 classes, only. So,
the assessment of the quality on the medium or large scale ontologies is not
intelligible. Second, only a few pairs of ontologies have been evaluated. Thus,
we cannot generalize that the underlying evaluation is accurate on a variety of
ontologies. For instance, in [JRGHB09; ZRL17; GAC10], one or two pairs of source
ontologies have been tested. Two benchmarks for the ontology merging domain
are introduced in [MFH16; RR12]. Benchmark [RR12] includes simple taxonomies,
and only the number of paths and concepts of the tool-created merged ontology
with the human-created ones are evaluated. Other criteria on the properties are not
considered. Thus, it could not be extended for non-taxonomy ontologies. To our
knowledge, this benchmark is not publicly available, so others are unable to use
it. Benchmark [MFH16] included a few small ontologies. The authors presented
criteria, achieved by their tool [MTFH14] without any comparison with human
results.

• Application or task-based evaluation: To the best of our knowledge, the evaluation of
the merged ontology in the context of an application or a use-case scenario has not
been covered in the literature.

• User-based evaluation: Some researchers in [MFRW00; RPSY09; EGED09; NM03;
KJH+05] provided a platform for user-based evaluation in the ontology merging
scenario. Mostly, the authors analyzed the number of actions that a user performs
to achieve the merged ontology (cf. [MFRW00; RPSY09]), or on the required time
for the merge process (cf. [MFRW00]). In [NM03; EGED09; KJH+05], the authors
analyzed to what extent users agree with the tool’s suggestions. Thus, it is mainly
related to the merge method’s evaluation, not on the merge result. Moreover, the
ontologies in this evaluation are small, and mostly only a few pairs of ontologies
are evaluated by the users (cf. [KJH+05]). The task of user-based evaluation

30 Chapter 2. Literature Review

generally is a labor-intensive task for humans, and insufficient, especially for
large-scale ontologies or a large number of source ontologies.

• Data-driven evaluation: To the best of our knowledge, this approach is also barely
used. Some semi-related attempts, such as [LBBH15] have been proposed, where
a set of corpora and ontologies are merged to build a merged ontology. Their
evaluation focuses only on query processing analysis. However, data-driven
evaluation requires analyzing how well the created merged ontology covers a topic
of the domain-corpus or how well it fits the domain knowledge by comparing
ontology concepts. These issues are not covered in [LBBH15].

• Criteria-based evaluation: The authors in [RR14; PK19; PC19; FRP14] considered
the evaluation of the merged ontology’s size or compactness (introduced metric
in [RR12]). In addition, in [RR14], the number of leaf path is examined. In
other researches [MG18b; SBH08; UA10] two more criteria, namely coverage, and
redundancy (introduced criteria in [RR12; DB10]) have been considered. Moreover,
in CreaDo [JERS+11], the authors reported basic statistics about a few common
pitfalls related to the general design of the ontology taken from [PVSFGP10].

To summarize, most approaches lack sufficient experimental evaluation on the
merged result (cf. [SM01]). In others, such as GROM [MTFH14], the experimental
evaluations have been narrowed down to the detected mappings, not the merged
result. Moreover, user-based evaluation is a complex, time-consuming, error-prone
task, and hard to achieve for large-scale ontologies. State of the art is far from an
adequate benchmark. The ontology merging systems that evaluate their methods with
criteria-based techniques are usually limited to a few measures and do not fully cover
the most required aspects of the merged ontology’s quality. This concludes a need for
a comprehensive evaluation and demonstrates a gap in analyzing how well the merged
result is.

In this thesis, we propose a new quality assessment for the merged ontology based
on a set of criteria. In [GCCL05], the authors provided a theoretical framework for
modeling ontology evaluation. We extend our evaluation criteria on top of the categories
proposed there classified into structural, functional, and usability measures. We provide
the formulation for them and analyze how these dimensions can be evaluated on the
merged ontology in practice. We formulate the structural measures via General Merge
Requirement (GMR)s, define the systematic formulation to evaluate the functional
measures against the intended use and semantics of the merged ontology, and provide
criteria for the usability dimension. As our novelty, we bring these dimensions with
the systematic formulations rather than the theoretical aspects in [GCCL05] within
the context of the merged ontology’s evaluation. Moreover, we consider desirable
characteristics towards an ideal evaluation into our formulation.

2.7 Summary

Table 2.2 shows a summary of existing ontology merge approaches in six main features
introduced in the previous sections. The merge strategy (binary or n-ary) and the type of
merge (one-level or two-levels) for each approach are specified in columns 3-4. Whether

2.7. Summary 31

the nature of the merge process is symmetric or asymmetric, is presented in column 5.
Column 6 indicates the GMRs that are fulfilled implicitly or explicitly by each ontology
merge approach.

Column 7 shows to what extent the approach deals with inconsistency on the merged
result in three categories: (i) the symbol � demonstrates that the system deals with
inconsistency based on the assumption of classical inconsistency defined in [FHP+06;
HPS09]; (ii) the notation × indicates that no inconsistency handling is carried; and (iii)
the symbol ×∗ shows that the approach deals with other types of inconsistencies rather
than classical inconsistency.

The last column illustrates the evaluation technique used in each system in order to
assess the quality of the merged result. If the evaluation technique belongs to none
of the categories in Section 2.6, we mark it by “others”. However, the exact evaluation
technique of each method is already explained in Section 2.1. In case that the ontology
merge approach provided no evaluation on the merged result, we mark it by × in
Table 2.2. Those approaches which are narrowed only on the evaluation of the generated
alignments and did not perform further evaluations on the merged ontology’s quality
are also shown by ×. The last row of Table 2.2 reports the characteristics of CoMerger,
the proposed method of this thesis.

32 Chapter 2. Literature Review

TABLE 2.2: Summary of existing ontology merging methods: Merge strategy
(binary or n-ary); Merge type (one-level or two-levels); Merge nature (symmetric
or asymmetric); Fulfilled GMRs; Inconsistency handling (�) or not (×), ×∗ shows
the approach handles other types of inconsistencies rather than classical ones;

Evaluation technique of the merged result.

Merge Merge Merge Fulfilled Inc. Evaluation
No. Approach

Strategy Type Nature GMRs Han. Technique
ATOM R1-R4,

1
[RR14]

binary two-levels asymmetric R16 × criteria-based

Chimaera
2

[MFRW00]
binary one-level symmetric R1, R16 × user-based

Chiticariu R1-R3,
3

et al.[CKP08]
n-ary one-level symmetric R9, R16 × others

CleanTax R1, R2,
4

[TBL08]
binary two-levels symmetric R8, R12 ×∗ others

CODE
5

[FRP14]
n-ary one-level symmetric R1-R3 ×∗ criteria-based

ContentMap
6

[JRGHB09]
binary two-levels symmetric R12, R14 � gold-standard

CreaDo R1, R16,
7

[JERS+11]
binary one-level symmetric R19 × criteria-based

DKP-AOM
8

[Fah17]
binary two-levels asymmetric - � ×

FCA-Merge
9

[SM01]
binary one-level symmetric R3, R10 × ×

GCBOM
10

[PK19]
binary two-levels asymmetric R8 × criteria-based

GROM
11

[MTFH14]
binary two-levels asymmetric R1, R10 × ×

HCONE-
12

merge [KVS06]
binary tow-levels symmetric - × ×

HSSM
13

[PC19]
binary one-level asymmetric R8 × criteria-based

iPrompt symmetric/ R1, R4-
14

[NM03]
binary one-level

asymmetric R6, R20 ×∗ user-based

Makwana &
15

Ganatra [MG18b]
binary two-levels asymmetric - × criteria-based

MeMo
16

[ALL10]
binary one-level symmetric R1, R7 × gold-standard

MoA
17

[KJH+05]
binary one-level symmetric - × user-based

OIM-SM
18

[ZRL17]
binary two-levels symmetric R16 × gold-standard

OM
19

[GAC10]
binary two-levels asymmetric R8 ×∗ gold-standard

OMerSec
20

[MFBB10]
n-ary two-levels symmetric - ×∗ ×

Onto-Integrator
21

[EGED09]
binary two-levels symmetric R2, R9 � user-based

PORSCHE
22

[SBH08]
n-ary two-levels symmetric R1, R8 ×∗ criteria-based

Radwan
23

et al. [RPSY09]
binary one-level symmetric R1, R16 × user-based

SAMBO
24

[LT06]
binary one-level symmetric R8, R16 × ×

SASMINT
25

[UA10]
binary one-level asymmetric R1, R8 × criteria-based

symmetric/
26 This thesis n-ary two-levels

asymmetric
R1-R20 � criteria-based

33

Part II

Approach

35

3
Solution Overview

Our proposed solution covers in four main directions:

1. N-ary Merge Method:
Our solution is a partitioning-based approach to enable the merging multiple
ontologies. It takes as input a set of source ontologies alongside the respective
mappings and automatically generates a merged ontology. At first, the n source
ontologies are divided into k blocks, and a local refinement is applied to them.
After that, the blocks are combined to produce the merged ontology followed by a
global refinement.

2. Merge Requirements:
As our solution, we compile a list of Generic Merge Requirements (GMR)s which
a merged ontology expects to achieve them. We provided a compatibility checker
between the user-selected GMRs by a graph-based theory.

3. Inconsistency Handling:
We propose a Subjective Logic-based solution to handling the inconsistency
problem occurring while merging ontologies.

4. Quality assessment technique:
We formulate a set of quality assessment criteria into structural, functional, and
usability dimensions in the context of merged ontology.

Figure 3.1 shows a high-level view of these four main components of our solution. Each
of these four main components will be discussed in the following chapters.

36 Chapter 3. Solution Overview

GMR N-ary Merge

Inconsistency
Handling

Quality
Assessment

FIGURE 3.1: Solution overview.

37

4
Multiple Ontology Merging Method

A Partitioning-based Method for N-Ary Strategy Merge

This chapter starts with a general overview of the proposed method in Section 4.1. The
preliminaries and basic definitions used in the n-ary method are described in Section 4.2.
The architecture of the n-ary method in CoMerger is depicted in Section 4.3. This is
mainly subdivided into (i) initialization, (ii) partitioning, and (iii) combining phases,
described in Section 4.4, Section 4.5, and Section 4.6, respectively. The algorithm of
this method is presented in Section 4.7. The list of used notations, symbols, and
nomenclatures is in Table 4.1. The contents of this chapter have been previously
published in [BKR20a; BKR20b; BALKR17].

38 Chapter 4. Multiple Ontology Merging Method

TABLE 4.1: The used notations, symbols, and nomenclatures in Chapter 4.

Notation Description
O an ontology
e an entity of an ontology
E the entities of an ontology
C a set of classes in an ontology
c a class in an ontology
P a set of properties of an ontology
p a property of an ontology
I an individual of an ontology
Sig(O) a signature of an ontology
OS a set of source ontologies
OM a merged ontology
M a mapping set between the source ontologies
rel a relation between two entities
cs a corresponding set between the source ontologies
CS a set of corresponding between the source ontologies
csCj a corresponding class
csPj a corresponding property

M
a map model including a group of correspondences over
multiple ontologies

≡ a correspond operator between entities
Card(cs) a cardinality value of a corresponding set
ct a class in the merged ontology
Conn(ct) number of connections of a class
L a block
CL a set of blocks
n number of source ontologies
k number of blocks
IM the initial merged model
P a set of pivot classes
reputation(ct) a reputation degree of a class
taxo_rel(ct) taxonomy relation of a class
non_taxo_rel(ct) non-taxonomy relation of a class
wt weight degree of taxonomy relation
wnt weight degree of non-taxonomy relation
inter_rel(Li,Lj) inter-relatedness degree of two blocks
distaxiom a set of distributed axioms between two blocks
GMR General Merge Requirement
R1-R20 individual GMRs

4.1. Introduction 39

4.1 Introduction

Ontologies represent the semantic model of data on the web and are widely developed
and reused in different domains. For any given usecase, oftentimes, individual
ontologies cover just a part of the domain of interest, or different ontologies exist that
model the domain from different viewpoints. In both cases, by merging them into an
integrated knowledge graph, their complementarity can be leveraged.

Merging and reusing ontologies becomes increasingly important for several usecases
and applications from a wide variety of domains from biomedicine [FFKJ19] and food
production [Doo+18] to social networks [PC19] and cultural heritage [ZPVOS18], to
name just a few.

Nowadays, the applications of the Semantic Web demand to interoperate with more than
two ontologies towards acquiring unified knowledge for researchers, because a large
number of ontologies have been developed for a given domain. For instance, there are
188 ontologies available in the Health domain, 68 ontologies in the Anatomy domain, and
50 ontologies in the Biological Process domain in BioPortal1. The different ontologies in
each category cover particular aspects of the domain of discourse but overlap to a certain
degree. For instance, Figure 4.1 demonstrates small views of three biomedical ontologies
from BioPortal: Protein Ontology (PR)2, Adverse Event Reporting Ontology (AERO)3, and
Alzheimer’s disease ontology (ADO)4. Corresponding classes, extracted by the mapping
tool5 of BioPortal, are represented by dashed lines. Merging these disparate ontologies
into a coherent one is a necessary and demanding process in many applications, such
as ontology building, extension, and evolution. Using merging methods to create a new
ontology is more cost-efficient than building it from scratch [UKMZ98]; and also saves
a lot of development effort in ontology reusing [CR16]. Additionally, maintaining the
ontology versioning [KF01] can be achieved by an integration process. Another objective
of ontology integration can be seen in query answering. For instance, KaBOB [LBBH15]
provides a platform for integrated biological data by using ontologies, where biologists
have real-time query possibilities without having to know internal structures of data.

As a whole, with the continuously increasing amount of data being produced,
developing solutions to deal with the simultaneous merging of multiple ontologies is
becoming necessary. Existing ontology merging approaches [GAC10; JERS+11; PC19;
PK19; RR14; ZRL17] are limited to merging two ontologies at a time, partly due to
using a binary merge strategy. In contrast, merging n ontologies (n > 2) in a single
step, employing what is called an n-ary strategy, has not been extensively studied so far.
In principle, to merge more than two ontologies, a series of binary merges can be applied
incrementally. However, this approach is not sufficiently scalable and viable for a large
number of ontologies [Rah16].

1https://bioportal.bioontology.org;AccessonMarch2020
2https://bioportal.bioontology.org/ontologies/PR
3https://bioportal.bioontology.org/ontologies/AERO
4https://bioportal.bioontology.org/ontologies/ADO
5http://bioportal.bioontology.org/mappings

https://bioportal.bioontology.org; Access on March 2020
https://bioportal.bioontology.org/ontologies/PR
https://bioportal.bioontology.org/ontologies/AERO
https://bioportal.bioontology.org/ontologies/ADO
http://bioportal.bioontology.org/mappings

40 Chapter 4. Multiple Ontology Merging Method

GDP

Fiat object part

Object

Entity

Cellular-component
Molecular entity

Organism

Quality

Protein-coding

Material entity

Independent continuant
Continuant

Material entity

Fiat object

Object

Object aggregate

Quality

Protein Ontology Adverse Event Reporting Ontology

Clinical thing

Entity

Independent_entity

Object

Material_entity

Object_boundary

Disease cause

Alzheimer's disease ontology

Zinc

Fiat_object_part

Continuant

Sequence_feature

Gene

Organic amino compound
Amino acid chain

Protein

Material information bearer

Project
Gene

FIGURE 4.1: Example of overlapping bio-ontologies from BioPortal. Dashed lines
show corresponding entities.

Thus, the n-ary strategy has been introduced as a feasible and efficient method in [Rah16]
to overcome the limitations of binary merge. However, due to the much more complex
search space, the n-ary strategy remains one of the key challenges in the future research
agenda. Mostly, the n-ary strategy needs several optimization techniques, especially in
two directions: (1) reducing the time needed to complete the task and (2) reducing the
computational complexity. The optimization techniques can facilitate the n-ary merge
process, but the achieved result is expected to have at least the same quality with the
binary merge approaches or even improve upon it.

For efficiently applying the n-ary method on merging multiple ontologies, we utilize
a partitioning-based method. In our n-ary method, CoMerger, we develop an efficient
merging technique that scales to many ontologies. We show that, by using a
partitioning-based method, we can reduce the complexity of the search space. In our
context, the search space is the set of entities and their relations that have to be evaluated
for a specific merge step. Our method takes as input a set of source ontologies alongside
the respective mappings and generates a merged ontology. At first, we create k << n
blocks populated by partitions of the source ontologies. After that, the blocks are
individually merged and refined. Finally, they are combined to produce the merged
ontology followed by a global refinement. We provide experimental results in Chapter 10
for merging a variety of ontologies, showing the effectiveness of our approach over pure
binary approaches.

4.2 Preliminaries

Before presenting our method, we outline our assumptions about ontologies, ontology
matching, and ontology merging.

An ontology is a formal, explicit description of a given domain [Gru+93]. It consists of
a finite list of fundamental terms and the relationships between these terms to create
the conceptual model of the domain. In the OWL language [MVH+04], ontologies are

4.2. Preliminaries 41

presented by a set of axioms, or statements, that are used to describe concepts and
the relationships between them. In particular, each axiom makes a statement about
the domain of interest. The building blocks of axioms are entity expressions. Entities
correspond to the important terms or concepts in the domain and include classes,
properties, individuals (instances), and data types. Properties are subdivided into object,
data, and annotation properties. Also, the set of entities that appear in the ontology is
called the signature of the ontology. In the formal context, we consider the ontology as:

Definition 4.1. An ontology O = (T ,A) consists of a Tbox T , a finite set of axioms
describing constraints on the conceptual schema and an AboxA, which contains assertions about
individuals. It contains a set of classes C, properties P , and individuals I , O = (C,P, I). The
signature of the ontology constituting of the entity axioms is indicated by Sig(O).

We use the term entities E to refer to the union of the classes, properties, and individuals
in the ontology.

The ontology matching process or ontology alignment [RB01] takes a pair of source
ontologies as input and produces a group of mappings (matches) between the elements
of the source ontologies. The mapping between ontologies includes a set of corresponding
entities. Formally, we present the mapping (also called match) between ontologies,
adapted from [RB01] as follows:

Definition 4.2. Mapping M of two ontologies O1 and O2 consists of a set of tuples
(e1, e2, rel, c), where e1 ∈ O1 and e2 ∈ O2, rel describing the relationship between e1 and
e2, c is a confidence value, usually, a real number within the interval (0, 1].

The mapping relationship can be one of equality, similarity, or subset (is-a) types. In
CoMerger, we consider the similarity type with at least a given confidence value.

Separation of Match and Merge. In this thesis, we explicitly separate the ontology
matching and merging problems. There have been considerable works on ontology
matching as an independent problem (see [RB01; KS03] for some surveys). The
successful development of ontology matching systems increases the potential possibility
that not only this research but also future studies on ontology merging use the results
of these matching algorithms as input. Thus, ontology merging and matching will
become more, rather than less, distinct over time. In the literature, some existing
ontology merging systems, such as [ZRL17; JERS+11], generate the mapping between
the source ontologies themselves. Some others [PB03; RR14] assume the mapping is
given. We follow the second group. Since the accuracy of the existing ontology matching
tools is relatively high (see the result of OAEI6 (Ontology Alignment Evaluation
Initiative) [AFF+19]), we use the achievements of those systems. In CoMerger, we
assume that corresponding sets between two ontologies are known. They can be
obtained from curated mappings or ontology matching tools.

Since existing mappings are usually generated for pairs of ontologies only, we maintain
a map model M to combine the information across a group of correspondences over
multiple ontologies, as follows:

6http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/

42 Chapter 4. Multiple Ontology Merging Method

Definition 4.3. A model of mappings M over multiple ontologies is built based on the
corresponding sets CS = {cs1, ..., cst}. Each element of M holds a set of related corresponding
entities between the source ontologies, i.e., Mi = {eOj

1 , ..., eOh
d }, d ≥ 2, Mi ∈M, Oj , Oh ∈ OS .

We use ≡ to indicate that two entities are corresponding to each other. Assuming that
the underlying mappings found eO1

1 ≡ eO2
2 and eO1

1 ≡ eO3
3 , we create one entry in M to

combine this information into one corresponding set csj = {eO1
1 , eO2

2 , eO3
3 } containing all

three entities. The cardinality of the corresponding set is given by Card(csj). It indicates
the number of involved entities in a given csj ∈ CS . In our given example, that is
Card(csj) = 3.

We formulate the ontology merging process, extracted from [PB03], as follows:

Definition 4.4. Ontology mergingMerge = (OS ,M,OM) is the process of creating a merged
ontologyOM from a set of source ontologiesOS = {O1, ...,On} given a set of corresponding sets
CS extracted from their mappingsM, fulfilling a certain set of requirements.

In an informal way, the ontology merging task is defined as follows: given a set of source
ontologies OS , it creates a new ontology OM , which is called a merged ontology. OM

includes some, but not necessarily all entities fromOS , where the corresponding entities
are merged into new integrated entities. The merged ontology is expected to fulfill a
set of requirements and criteria, assuring its quality. We assume that users will have
quality requirements towards the merged ontology as specified in Chapter 5 and that
the merging process strives to meet them.

The type of merging process can be symmetric or asymmetric [RR14]. In the symmetric
merge, all source ontologies have equal priority. However, in the asymmetric merge, the
source ontologies have a different priority and are not considered equally important. In
the last case, one of the source ontologies is the target ontology, and the structure of the
preferred (target) source ontology should be kept safe in the merged ontology. In this
chapter, we assume a symmetric merge strategy.

The partitioning-based technique has been successfully applied by the several ontology
matching systems [ADMR05; HQC08; JRASC18]. These systems first partition the source
ontologies and then perform a partition-wise matching. Every partition of the first
ontology has to be matched with only a subset of the partitions (ideally, with only
one partition) of the second ontology. These systems showed a significant reduction
of the search space and thus improved efficiency. Moreover, matching smaller partitions
reduces the memory requirements compared to matching the full ontologies.

Ontology partitioning vs. module extraction: Our method is based on the ontology
partitioning. It differs from the module extraction paradigm. The task of partitioning an
ontology is the process of splitting up the set of ontology’s axioms into a set of modules
so that the union of all modules is semantically equivalent to the original ontology. In
contrast, the task of module extraction consists of reducing an ontology to the sub-part,
the module, that covers a particular sub-vocabulary. To be precise, for a given ontology
and a set of terms from the ontology, a module extraction mechanism returns a module,
supposed to be the relevant part of the original ontology that covers the given terms
(see [dSSS07] for more comparison).

4.3. The Workflow of N-Ary Merge Method in CoMerger 43

Initialization Combining Partitioning

Intra-combination

Inter-combination

GMRs
Catalogue

Pivot Classes Finder

Partitioner

Initial Merge
Model Builder

Entity
Integrator

Correspondences
Processor

Translator

Input Output

FIGURE 4.2: CoMerger architecture.

4.3 The Workflow of N-Ary Merge Method in CoMerger

Fig. 4.2 shows the workflow of our proposed n-ary method, which mainly includes:

• The Input of this model is a set of source ontologies OS alongside the respective
mappingsM.

• In the Initialization phase, the source ontologies OS and the corresponding sets CS
extracted from the given mappingsM are processed to construct an initial merge
model IM .

• In the Partitioning phase, the initial merge model, constructed upon the n source
ontologies, is divided into k blocks based on structural similarity.

• In the Combining phase, first, the created blocks are merged and individually
refined. Then, they are combined into the merged ontology OM .

• The merged ontology OM is returned as the Output of this process.

In the following, we describe each phase in detail.

4.4 Initialization Phase

The initializer function takes as input a set of source ontologies with their corresponding
sets and generates an initial merge model IM (see Equation 4.1).

IM ⇐ initializer(OS , CS) (4.1)

Definition 4.5. An initial merge model IM contains the intermediate result of the merge
process, built upon the source ontologies and their correspondences.

44 Chapter 4. Multiple Ontology Merging Method

Our initialization phase is partially similar to the preliminary process in [RR14] with an
extension for processing multiple ontologies. The initial merge model (see Definition 4.5)
is built through the following processes:

1. Initial merge model builder: We build an initial merge model IM and parse the
source ontologies by extracting corresponding and non-corresponding entities into
IM .

2. Correspondences processor: The list of corresponding sets CS from the given
mappings is processed to build the model of mappings M over multiple ontologies.
If several entities from multiple source ontologies correspond to each other, one
joined entry for all of them is created in this model.

3. Entity integrator: For each entry of M, a new integrated entity in IM is created.
This means the corresponding entities are combined into a new integrated one
and do not individually exist in IM . If the entities within a single set of
correspondences have different labels, the newly generated integrated entity will
have multiple labels. For instance, for two corresponding classes c1 and c2, the new
integrated class, namely c(1)(2), is created in IM .

4. Translator: To construct the initial relations between the entities, we process
axioms in IM . If an axiom’s entity has corresponding entities in M, the respective
integrated entities will be replaced with the original entity in each axiom. In
iPrompt [NM03], different steps have been done on merging classes and properties.
Following this strategy, our translator process includes:

• Translating the class expression axioms based on corresponding classes cscj
to establish the relationships between classes: For instance, for merging the
corresponding classes c1 and c2, whose already combined entity has been
integrated in step 3 under the name c(1)(2), all sub and superclasses of c1 and
c2 are added to the integrated entity c(1)(2). In the same process, all other
references of the property axioms from c1 and c2 become reference to the
integrated entity c(1)(2) and the original references to c1 and c2 are deleted.

Unlike the approach in [NM03] for merging the individuals, we consider
the individuals’ migration, only, because we assumed that the given
correspondences do not include the correspondences between individuals.
Thus, this step includes the processing of class assertions axioms in order to
migrate the individuals to their respective (integrated) classes. Note that this
process also included the translation of the constraint axioms. However, in
this step, in the case of any conflicts between the source ontologies’ constraint
axioms, no conflict solution takes place. It will be done in the refinements
step.

• Translating the property expressions axioms based on corresponding
properties cspj to characterize and establish relationships between properties:
For instance, to translate the axioms of two corresponding properties p1

and p2, whose integrated property p(1)(2) has already been created in step
3, (integrated) domains and ranges of p1 and p2 are added to the integrated

4.5. Partitioning Phase 45

property p(1)(2). Similarly, all other (integrated) references from p1 and p2 are
added to the integrated property p(1)(2) and the original references are deleted.

For two corresponding properties, iPrompt [NM03] suggests merging their
respective classes. In this case, iPrompt infers these classes as the new
corresponding set. We differ from this approach, in which the classes of the
corresponding properties will not merge if they are not included in the given
corresponding sets. We narrow our assumption only on the given mappings
and do not infer new corresponding sets.

The proposed four steps in this phase generate the initial merge model IM . This model
can be used to derive a merge result in a straightforward manner. CoMerger differs from
using IM alone, by its focus on applying a set of local and global refinements, including,
e.g., structural preservation, acyclicity, or constraint and entailments satisfaction to
achieve a quality-assured merged ontology. Thus, a set of modeling errors, such as
violations of cardinality restrictions or cycles on the class hierarchy, can be handled on
the OM , which shows the trustable result rather than IM .

4.5 Partitioning Phase

To partition the source ontologies, we use a set of pivot classes P . This is inspired by
work in [DA07], where a set of predetermined points has been successfully used in the
partitioning method. The partitioning process generates ontologies’ blocks, with the
following definition:

Definition 4.6. A block L is a subset (or whole) of one (or more) source ontologies Sig(L) ⊆
n⋃

i=1
Sig(Oi),Oi ∈ OS with no overlap with other blocks.

We assume:

• Blocks are restricted to do not have overlap and are disjoint, i.e., Sig(Lj) ∩
Sig(Lt) = ∅, ∀j, t ∈ CL, j 6= t.

• CL = {L1, ...,Lk} is the set of all blocks.

• k represents the number of blocks.

In this regard, the ontology merging task Merge(O1, ...,On) is decomposed into a block
merging task Merge(L1, ...,Lk). The number of blocks is noticeably smaller than the
number of source ontologies, i.e. k << n:

Merge(O1, ...,On)⇒Merge(L1, ...,Lk) (4.2)

Thus, the Partitioner component in Figure 4.2 is accelerating the merge process by dividing
the entities of the initial merge model IM into the k blocks.

46 Chapter 4. Multiple Ontology Merging Method

4.5.1 Partitioner Goals

Each partitioning method has an objective function or objective goals and criteria to
act based on that. In software engineering, the notions of cohesion and coupling
have been associated with different aspects of software quality (see [PHZY17] for a
survey). The cohesion represents the high relevance of the elements within the same
module, while the coupling denotes little relevance of elements across different modules.
Similar to software module metrics, ontology module metrics are designed to quantify
ontology modules’ properties. Thus, the objective of the partitioning phase in CoMerger
is to maximize intra-block similarity (cohesion) and minimize inter-block similarity
(coupling). This indicates that entities within one block are close to each other in terms
of structure, while the entities of different blocks are distant from each other. For each
block, a sub-ontology will be created in the intra-combination phase in Section 4.6. Then,
intra- and inter-similarity can be measured on the sub-ontologies’ level. We design our
partitioning objective function according to this general goal.

Next, we will discuss our approach to finding pivot classes and the divide method.

4.5.2 Finding Pivot Classes P

Function PivotF inder, as shown in Equation 4.3, takes as input the corresponding sets
CS and the source ontologies (to find connectivity degree). It generates a set of pivot
classes P by measuring a value, called reputation degree, for each class of IM .

P ⇐ PivotF inder(CS,OS) (4.3)

The reputation degree is built upon two factors:

• Cardinality degree: For a given class ct ∈ CS , the cardinality degree shows how
much the class has overlap with other source ontologies’ classes. Classes with
high Card(ct) values in CS show the best overlap within OS . Putting a class
that has a high number of related corresponding classes in one block can cause
more corresponding (overlap) classes to be located in the block. Thus, it increases
intra-block similarity and can achieve the objective of our partitioner.

• Connectivity degree: A class with high connected entities show the importance
of that class in terms of its centrality [ABKD15]. Thus, to calculate the reputation
degree of the classes, we consider the number of connections of each class, too.
Assigning a high connected class in a block can cause more respective connected
classes to be located on that block. The reason to consider the connectivity degree
alongside with cardinality measure is to avoid creating blocks with small sizes.
Since contemplating only the cardinality metric tends to choose isolated classes
as the pivot classes. Thus, taking into account the connectivity degree helps to
overcome this drawback.

The connectivity degree of a class is indicated by the number of associated taxonomic
(subClassOf) and non-taxonomic (semantic) relations for the class in its respective source
ontology. For instance, Figure 4.3 shows the taxonomic and non-taxonomic relations for

4.5. Partitioning Phase 47

Reviewer

PaperAuthorNot
Reviewer

External
Reviewer

Administrator

Bid

Review

assignExternalReviewer

assignedByReviewer

readPaper

Non-taxonomic relation

Reviewer

UserConference
Member

Meta-
Reviewer

Taxonomic relation

FIGURE 4.3: Taxonomy and non-taxonomy relations for the Reviewer class of cmt
ontology.

the Reviewer class of the cmt ontology from the Conference track7. The Reviewer class
has 3 taxonomic and 13 non-taxonomic relations. This example demonstrates how a class
can be augmented with several relationship types. One can assign different weights for
taxonomic or non-taxonomic relations based on the source ontologies’ nature. Thus, we
calculate the connectivity degree of a class Conn(ct) with user pre-determined weights
(wt and wnt) on taxonomy taxo_rel and non-taxonomic non_taxo_rel relations, as given
by Eq. 4.4.

Conn(ct) = wt × |taxo_rel(ct)|+ wnt × |non_taxo_rel(ct)| (4.4)

Thus, we calculate a reputation degree of each class based on the connectivity degree
Conn(ct) and cardinality of corresponding classes Card(ct) as given in Eq. 4.5.

reputation(ct) = Conn(ct)× Card(ct), ∀ct ∈ CS (4.5)

The largest sets of corresponding classes in CS that also have a high number of
connections are very promising to be considered as P . In this regard, P is achieved
by a sorted list of CS’s elements based on their reputation degrees.

4.5.3 Partitioner: a Structure Driven Strategy

Function Partitioner (Equation 4.6) takes as input all classes from IM , divide them
based on a structural-based similarity, and returns a set of blocks CL = {L1, ...,Lk} as
output.

CL ⇐ Partitioner(IM ,P) (4.6)

7http://oaei.ontologymatching.org/2019/conference/index.html

http://oaei.ontologymatching.org/2019/conference/index.html

48 Chapter 4. Multiple Ontology Merging Method

Our partitioning method is based on structural-based similarity. Thus, it considers
classes close in the hierarchy as strongly related and places them in the same block.
Thus, once a class is assigned to a block, all its adjacent classes (on the hierarchy levels
of the respective source ontology) consequently will be added. In this regard, the first
block L1 is created by the element of P , which has the highest reputation degree. For
each corresponding class cscj ∈ P , where cscj = {cOi

1 , ..., cOh
d }, all classes of cscj , i.e., c1

until cd with all their adjacent classes on their respective ontologies are added to the
block. Then, the next element of P is selected to create a new block if at least one of its
classes has not been assigned to the previous blocks. This process is continued until all
the elements of P are processed. Following this process, the overall number of blocks
is automatically determined based on the ratio of the number of P’s elements and the
amount of overlap (shared classes) between P’s elements.

The partitioning process is restricted by two assumptions:

• If the taxonomy relation of P’s element is null, no block will be created for it. This
condition helps to prevent the creation of very small blocks. Indeed, no other
classes will be assigned to this block because the partitioning phase assigns the
classes based on taxonomic relations.

• If some unconnected classes are left that do not belong to any block, they will not
be added to any block, because they do not require any refinement in the block.
However, the unconnected classes will be added directly to OM .

4.5.4 Partitioning Phase Characteristics - Summary

In this section, we aim to emphasis on the features and characteristics of our proposed
partitioning strategy, as follows:

• Merging the n source ontologies is decomposed into the merging k blocks, where
k << n. This helps to improve scalability and efficiency.

• The partitioning process divides the source ontologies into blocks.

• The partitioning process has low computational complexity since it does not need
to run a similarity membership function. Thus, it scales well into a large number
of ontologies with many classes.

• The partitioning process utilizes the structural similarity between classes by
considering the adjacent relationship between them. Thus, it increases the
intra-block similarity of blocks (in terms of hierarchical structure), and decreases
the inter-block similarity.

• Using pivot classes accelerates the partitioning process.

• By applying two restrictions, more high-quality blocks can be achieved.

4.6. Combining Phase 49

4.6 Combining Phase

In this phase, the created blocks are combined to generate the final merged ontology. To
achieve that, we split the combining process into two steps:

4.6.1 Intra-combination: Independent Merge

In this step, all blocks are processed to be merged and refined. Thus, the
intraCombination function in Equation 4.7 takes as input the created blocks, and
generate k sub-ontologies. Each created sub-ontology is a refined ontology model and
can be used separately.

subOntologies⇐ intraCombination(CL) (4.7)

Merging a smaller number of blocks reduces the memory requirements compared to
merging all source ontologies. This results in a significant reduction of the search space
and thus improved efficiency. To further improve performance, the block merging
may be performed in parallel. Intra-combination parallelization enables the parallel
execution of independently executable mergers to utilize multiple processors for a faster
merging process. Thus, in the intra-combination step, the entities inside the blocks are
combined to create local sub-ontologies. This step requires:

1. Assigning properties to the blocks

2. Applying a set of refinements to the blocks

In the next subsections, we will describe them in detail.

4.6.1.1 Assigning Properties

In the previous subsection, all classes are divided into disjoint blocks. However, these
blocks cannot be directly used because the property axioms, which connect these classes,
are missing. Thus, we need to add the properties of the classes to their respective blocks
and construct the relationships between classes. We retrieve all axioms from IM , which
in this model, the corresponding properties being already translated. Thus, each class
is augmented by the original or translated properties axioms, including all taxonomy
and non-taxonomy relations. So, in this follow, the taxonomy relations between classes
as well as non-taxonomic relations are built for each block. A straightforward and yet
effective approach is to assign each axiom to a block in which at least all its entities are
contained. To keep the blocks disjoint, each axiom should belong to one and only one
block. If the classes of each axiom are distributed across multiple blocks, they are not
added to any block and are marked as distributed axioms distaxiom (see Definition 4.7).

Definition 4.7. A distributed axiom is an axiom whose entities are distributed among multiple
blocks.

For instance, if A ∈ L1 and B ∈ L2, then, A v B will not be added to either L1 or L2 and
it is marked as a distaxiom. Their inclusion is delayed until the next step.

50 Chapter 4. Multiple Ontology Merging Method

4.6.1.2 Applying Local Refinements

Up to now, the blocks are created based on the classes. They are augmented by the
properties. However, each block should be checked for possible errors or conflicts. Thus,
in this step, a set of local refinements is applied to the blocks. As a result, each block can
achieve higher quality. Through our tool, in addition to the final merged ontology, users
access the k created local sub-ontologies separately. Utilizing sub-ontologies rather than
source ontologies has the advantage that the created sub-ontologies concisely contain
knowledge about a sub-domain (w.r.t. the knowledge provided by the source ontologies)
as they include all similar entities. An additional advantage is that maintaining the
source ontologies while keeping the existing mapping between them requires much
more effort than keeping the k local sub-ontologies (which the existing mappings
gathered in one place with limited numbers of mappings between them). So, when local
refinements are applied to the blocks, their quality is higher.

4.6.2 Inter-combination: Dependent Merge

In the inter-combination step, the global merged ontology OM is constructed based on
the k created local sub-ontologies. Thus, the interCombination function in Equation 4.8
takes as input the k created sub-ontologies and generates the merged ontology OM as
the output.

OM ⇐ interCombination(subOntologies) (4.8)

To achieve this, we follow a sequential merging process in this step based on calculating
an inter-block relatedness degree, which is explained next.

4.6.2.1 Applying a sequential merging

Inter-block relatedness degree represents how much two blocks differ from each other.
Thus, we calculate the number of shared distributed axioms distaxiom between two
blocks Li and Lj of L to indicate the inter-block relatedness, as shown in Eq. 4.9.

inter_rel(Li,Lj) = |distaxiom(Li) ∩ distaxiom(Lj)| (4.9)

First, the two blocks Li and Lj with the highest inter-block relatedness value (most
similar blocks) are merged into Lij . This includes adding all distributed axioms to
them. Then, the next block, which has the highest inter-block relatedness value with the
recently merged block Lij will be merged. After each block combination, the number
of distributed axioms between the recent merged one and the remaining blocks will be
updated. This process supports that the highest similar blocks can be executed earlier,
and more disjoint blocks are only processed at later steps. Note that, the approach
in [ADMR05] also matched only similar blocks and delayed the processing of dissimilar
blocks. This sequential execution of the merging processes will be continued until all
blocks are merged. If the inter-block relatedness between two blocks is zero, they will

4.7. N-ary Merge Algorithm 51

be entirely disjoined and will not need any merge process. Thus, they will be imported
directly to the OM .

The reason to merge the most similar blocks earlier than the lower ones is that the most
similar blocks have much more distributed axioms. Combining these blocks in the earlier
steps can be more efficient when the blocks are small. Note that, in each sequential
merge, the intermediate merged blocks will get larger. So, it is more efficient in the
number of processes to have less processing when the blocks get more massive.

4.6.2.2 Applying global refinements

A set of global refinements will be applied to the last combined block. Upon that, in the
last step, the merged ontology OM is built.

To apply local and global refinements within CoMerger, we include a list of General
Merge Requirements (GMR)s (see Chapter 5). From GMRs, users can select a subset to be
applied (see Appendix B for details of applying GMRs) according to their requirements.
Fulfilling each GMR makes sure that the merged ontology meets the chosen GMRs if
needed by adapting it, contributing to its refinement. This leads to a generic, flexible,
parameterizable merge method. Moreover, the user can easily adjust this framework by
performing different refinements in intra- and inter-combination steps.

CoMerger provides a flexible merging approach, where users can actively choose which
requirements are essential to them, instead of allowing only a very indirect choice by
picking the right merging method, something that is not transparent to the user.

4.6.3 Combining Phase Characteristics- Summary

We summarize and emphasize the characteristics of the combining phase as follows:

• The combining phase merges the created blocks to generate the merged ontology,
taking into account the fulfilling the selected refinements and goals.

• The combining phase includes two steps: Intra- and inter-combining processes.
The intra-combining process can be run in parallel, to accelerate the speed.

• A two-step refinement process, namely local refinements to the created blocks and
global refinements to the merged ontology, is applied. Thus, the quality of the final
result will be guaranteed.

• The created sub-ontologies based on the blocks’ entities can be used separately.
The sub-ontologies hold the most similar entities in one place. Thus, they are
representing a richer domain knowledge; they require less maintenance of the
inter-mappings.

4.7 N-ary Merge Algorithm

Algorithm 4.1 describes the proposed n-ary merge method. The algorithm accepts a
set of source ontologies OS with the respective corresponding sets CL and generates a
merged ontology OM .

52 Chapter 4. Multiple Ontology Merging Method

Algorithm 4.1: The n-ary merge algorithm for multiple ontologies in CoMerger.

Input: a set of source ontologies OS and the respective corresponding mappings CS ;
Output: a merged ontology OM ;
// Initialization Phase Build an empty initial merge model IM ;

1 Pares source ontologies OS ;
2 Create a map model M based on given correspondence CS fromM;
3 Integrate the correspondence entities;
4 Translate the axioms;

// Partitioning Phase P ⇐ PivotF inder(CS,OS);
5 CL ⇐ Partitioner(IM ,P) ;

// Combining Phase Assign the properties to CL ;
6 subOntologies⇐ intraCombination(CL) ;
7 Apply local refinements on subOntologies;
8 OM ⇐ intraCombination(subOntologies);
9 Apply global refinements on OM ;

10 return OM

First, an empty initial merged model is built (line 1). The source ontologies are parsed
into IM and the map model M is built (lines 2-3). The corresponding entities from M are
integrated in IM and the axioms are translated (lines 4-5). In the partitioning step, first,
the pivot sets P are detected (line 6). Then, the initial merge model IM is divided based
on P to create a set of blocks CL (line 7). In the combining phase, first, the properties are
assigned to blocks (line 8). Then, the intra-combination is applied to blocks to create k
sub-ontologies. This process is followed by applying local refinements (lines 9-10). After
that, the created sub-ontologies are combined in the intra-combination step, followed by
applying the global refinements to create the merged ontology (lines 11-12). Finally, the
merged ontology OM is returned to the user (line 13).

4.8 Example

Figure 4.4 shows three sample ontologies. The first ontologyO1 has 22 axioms, 8 classes,
and 3 properties. The second ontology O2 has 25 axioms, 8 classes, and 4 properties.
The third ontology O3 has 47 axioms, 13 classes, and 6 properties. The correspondences
between the source ontologies (for classes and properties) are shown in Table 4.2. In
this section, we detail the process of merging the given source ontologies and their
respective corresponding sets. Each following step corresponds to the line numbers of
Algorithm 4.1.

• Step 1: An empty IM is built.

• Step 2: The axioms of all three source ontologies are imported in IM . In this stage,
IM contains all 22 axioms of O1, 25 axioms of O2, and 46 axioms of O3. All these
source ontologies as a whole have 19 taxonomic and 32 non_taxonomic relations.

• Step 3: We have 9 pairs of corresponding entities. Thus.
the map model M is built with 8 elements. Since pairs

4.8. Example 53

AbstractO1 ≡ PaperAbstractO2 and PaperAbstracO2 ≡ AbstractO3

are considered as one joint entry in IM . Thus, IM includes: M =
{(c6, c12), (c8, c26), (c7, c13, c25), (c16, c22), (c15, c21), (p8, p11), (p6, p12)}.

• Step 4: The corresponding entities are integrated. Thus, IM includes new 8
integrated entities: c(6)(12), c(8)(26), c(7)(13)(25), c(16)(22), c(15)(21), p(8)(11), p(6)(12). The
original entities are deleted from IM . The max cardinality is 3 here.

• Step 5: All axioms from the source ontologies (existing in IM) will be translated
if their entities exist in M. For instance, axiom Student v ConferenceParticipant
is replaced with Student v ConferenceParticipant_Member. Figure. 4.5 shows
the translated axioms in IM . As a whole, 36 axioms out of 93 in IM are
translated. Indeed, 38.7% of axioms are translated, since the overlap (number
of corresponding entities on the total entities) between the source ontologies is
relatively high (24.14).

• Step 6: To find the pivot classes, we measure the reputation degree of each element
of M. The cardinality Card, connectivity Conn and the reputation degree of each
cs ∈ CS are shown in Table 4.3. Based on the reputation degree, the set of pivot
classes is ordered as: P = {cs3, cs5, cs1, cs4, cs2}.

• Step 7: IM ’s axioms should be divided into different blocks. To this end, the first
element of P , which has the highest reputation degree, is selected to be placed
in the first block L1. Thus, cs3 = (cO1

7 , cO2
13 , c

O3
25) take place at block L1. All is-a

connected entities of cs3 elements, i.e., connected entities of c7, c13, c25 are added
to L1 (see L1 in Figure. 4.6). The next element in P is cs5. The entities of cs5

have not been added in the previous block (L1) yet. So, a new block should be
generated for it. Thus, c15 and c21 with their connected entities construct block
L2 (see L2 in Figure 4.6). The next elements of P , i.e. cs1, cs4 and cs2 have been
already assigned to a block. Thus, no new block will be generated. As a whole,
two blocks CL = {L1,L2} with 10 and 8 classes are created, respectively. Note
that c14 is unconnected on the class hierarchy level. Thus, it is not added to any
blocks. Moreover, although Acceptance and Rejection have an is-a connection
to Decision, but since Decision is not connected to any other classes, these three
classes can not be added to any blocks.

• Step 8: Each block is augmented with the properties. Figure 4.7 shows the blocks
with their properties. Properties p2, p5 and p(6)(12) are marked as distributed
properties and are not added to any blocks. As a whole, there is no is-a distributed
axioms between these two blocks. The two is-a axioms of Decision are marked
as unconnected distributed axioms. There are only 3 non-taxonomic distributed
axioms.

• Step 9: Two sub-ontologies are built for L1 and L2 of CL. The output generation is
based on the user-selected format.

• Step 10: Both sub-ontologies are checked for the refinements based on the
user-selected GMRs. For instance, let us suppose the user selects R1, R15, and R16.
In all blocks, these three GMRs are satisfied, so no more refinement takes place.

54 Chapter 4. Multiple Ontology Merging Method

TABLE 4.2: Corresponding pairs between the source ontologies given in Figure 4.4.

Corresponding Pairs Corresponding Pairs
ShortPaperO1 ≡ PosterO2 SubjectAreaO1 ≡ TopicO3

AbstractO1 ≡ PaperAbstractO2 PaperAbstracO2 ≡ AbstractO3

ExternalReviewerO2 ≡ ExternalReviewerO3 ReviewerO2 ≡ ReviewerO3

ConferenceParticipantO1 ≡MemberO3 assignExternalReviewerO2 ≡ invites_co_reviewersO3

isReviewedByO2 ≡ isReviewedByO3 -

TABLE 4.3: A map model M and its elements with their reputation degree.

cs cs′s elements Card(cs) Conn(cs) reputation(cs)

cs1 cO1
6 , cO2

12 2 (0.75× 1 + 0.25× 2) + (0.75× 1 + 0.25× 1) = 2.25 2× 2.25 = 4.5

cs2 cO1
8 , cO3

26 2 (0.75× 0 + 0.25× 1) + (0.75× 1 + 0.25× 2) = 1.5 2× 1.5 = 3

cO1
7 , cO2

13 , c
O3
25 3

(0.75× 1 + 0.25× 0) + (0.75× 1 + 0.25× 0)
3× 2.75 = 8.25cs3 +(0.75× 1 + 0.25× 2) = 2.75

cs4 cO2
16 , c

O3
22 2 (0.75× 0 + 0.25× 2) + (0.75× 1 + 0.25× 1) = 1.5 2× 1.5 = 3

cs5 cO2
15 , c

O3
21 2 (0.75× 0 + 0.25× 4) + (0.75× 1 + 0.25× 5) = 3 2× 3 = 6

• Step 11: All refined sub-ontologies should be merged to create OM . The
inter_relatedness degree between two blocks is 3. In this step, the distributed
axioms are added to the OM . The classes which could not be added in Step 7
to any blocks are added now to OM .

• Step 12: The OM is checked for the global refinements. R1 and R16 are fulfilled in
the merged ontology. However, R15 is not satisfied. Property p6p12 has multiple
domains, so the oneness refinement R15 is applied. Thus, as a possible solution
(see Appendix B), we create a new class as the union of all its domains (Paper and
Review). We then add this new single class as a domain of property p6p12. As a
whole, 1 global refinement action has been done here and no local refinement.

• Step 13: The final OM is saved based on the user-selected output-format and
returned to the user. OM has 23 classes, 11 properties, and 93 axioms.

4.9 Summary

In this chapter, we proposed a partitioning-based method for merging ontologies. We
used a light-weight partition method with low computational processing to generate
blocks of ontologies. Each block is refined and merged separately. Then they combined
to produce the final merged ontology. We have provided the workflow, the algorithm,
and an example carrying on our method. The main characteristics of our method
summarized as:

• The scalability is achieved by decomposing the merging n ontologies into merging
k blocks, where the number of blocks is smaller than the source ontologies.

• The partitioning process has a low overhead, but it helps for parallel merging and
refining individual blocks.

• Two-step refinements are performed to assure the quality of the merged result.

4.9. Summary 55

Paper

Paper_
Abstract

Reviewer

Poster
Title

isDecidedBy

has_Title

isReviewedBy

disjointWith

assignExternalReviewer

Contribution
𝑐𝑐10

𝑐𝑐11 𝑐𝑐12
𝑐𝑐14

𝑐𝑐13

𝑐𝑐15

External
Reviewer

𝑐𝑐16

𝓞𝓞𝟐𝟐

𝑝𝑝4

𝑝𝑝6
𝑝𝑝5

𝑝𝑝7

𝑝𝑝8

Conference
Part

𝑐𝑐9

Abstract has_topicUser
Member

DocumentPerson
Topic

Reviewer StringreadByReviewer

assignReviewer
hasAddress

Invite_co_reviewer

𝑐𝑐17 𝑐𝑐23

𝑐𝑐19
𝑐𝑐18

𝑐𝑐21

𝑐𝑐25

𝑐𝑐26
External
Reviewer

𝑐𝑐22

Administrator
𝑐𝑐20

𝓞𝓞𝟑𝟑

Review
𝑐𝑐24

𝑝𝑝9

𝑝𝑝13

𝑝𝑝11

𝑝𝑝10

𝑝𝑝14 Decision

RejectionAcceptance

disjointWith

𝑐𝑐28

𝑐𝑐27

𝑐𝑐29

𝑝𝑝16

isReviewedBy
𝑝𝑝12

Author

Co_Author

Short
Paper

Conference
Participant

has_co_author

has_subject

Stringemail

𝑐𝑐1

𝑐𝑐2 𝑐𝑐3

𝑐𝑐6

Subject
Area

𝑐𝑐8

𝓞𝓞𝟏𝟏

Abstract
𝑐𝑐7

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

Student
𝑐𝑐4

Professor
𝑐𝑐5

Non-taxonomic
relation

Taxonomic
relation

Legend

Class

Lable

disjointWith
𝑝𝑝15

FIGURE 4.4: Three sample source ontologies.

56 Chapter 4. Multiple Ontology Merging Method

has_topic

User

Administrator

String

readByReviewer
assignReviewer

hasAddress

assignExternalReviewer
_InviteCoReviewer

Paper

isDecidedBy

has_Title

isReviewedBy

disjointWith

Author

Short
Paper_Poster

has_co_author

has_subject

String
email

𝑐𝑐1

Co_Author
𝑐𝑐2

Conference
Participant_Member

𝑐𝑐3𝑐𝑐18

𝑐𝑐6𝑐𝑐12

Contribution
𝑐𝑐10

𝑐𝑐11
Title
𝑐𝑐14

Person
𝑐𝑐17 Document

𝑐𝑐23

𝑐𝑐19

Reviewer
𝑐𝑐15𝑐𝑐21

PaperAbstract
_Abstract

𝑐𝑐7𝑐𝑐13𝑐𝑐25

SubjectArea
_Topic

𝑐𝑐8𝑐𝑐26

External
Reviewer

𝑐𝑐16𝑐𝑐22

𝑐𝑐20

Review
𝑐𝑐24

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

𝑝𝑝4

𝑝𝑝6𝑝𝑝12
𝑝𝑝5

𝑝𝑝7

𝑝𝑝9

𝑝𝑝13

𝑝𝑝8𝑝𝑝11

𝑝𝑝10

𝑝𝑝14

Decision

RejectionAcceptance

disjointWith

𝑐𝑐28

𝑐𝑐27

𝑐𝑐29

𝑝𝑝16

Student
𝑐𝑐4

Professor
𝑐𝑐5

Conference
Part

𝑐𝑐9

isReviewedBy
𝑝𝑝6𝑝𝑝12

disjointWith
𝑝𝑝15

FIGURE 4.5: The initial merge model IM for the given source ontologies.

4.9. Summary 57

Title
𝑐𝑐14

Person
𝑐𝑐17

Author
𝑐𝑐1

Co_Author
𝑐𝑐2

Conference
Participant_Member

𝑐𝑐3𝑐𝑐18

Student
𝑐𝑐4

Professor
𝑐𝑐5

User

Administrator

Reviewer

𝑐𝑐19

𝑐𝑐15𝑐𝑐21

External
Reviewer

𝑐𝑐16𝑐𝑐22

𝑐𝑐20

𝓛𝓛𝟏𝟏

Paper

Short
Paper_Poster

𝑐𝑐6𝑐𝑐12
Contribution

𝑐𝑐10

𝑐𝑐11

Document
𝑐𝑐23

PaperAbstract
_Abstract

𝑐𝑐7𝑐𝑐13𝑐𝑐25

SubjectArea_
Topic

𝑐𝑐8𝑐𝑐26

Review
𝑐𝑐24

Decision

RejectionAcceptance
𝑐𝑐28

𝑐𝑐27

𝑐𝑐29

Conference
Part

𝑐𝑐9𝓛𝓛𝟐𝟐

FIGURE 4.6: Generating two blocks for the given source ontologies.

Person
𝑐𝑐17

Author
Stringemail

𝑐𝑐1

Co_Author
𝑐𝑐2

Conference
Participant_Member

𝑐𝑐3𝑐𝑐18

𝑝𝑝1

Student
𝑐𝑐4

Professor
𝑐𝑐5

User

Administrator

Reviewer

String

hasAddress

assignExternalReviewer
_InviteCoReviewer

disjointWith

𝑐𝑐19

𝑐𝑐15𝑐𝑐21

External
Reviewer

𝑐𝑐16𝑐𝑐22

𝑐𝑐20

𝑝𝑝7

𝑝𝑝8𝑝𝑝11

𝑝𝑝10

assignReviewer
𝑝𝑝9

𝓛𝓛𝟏𝟏

has_topic
Paper

has_Title

has_subject
Short

Paper_Poster

𝑐𝑐6𝑐𝑐12

Contribution
𝑐𝑐10

𝑐𝑐11

Title
𝑐𝑐14

Document
𝑐𝑐23

PaperAbstract
_Abstract

𝑐𝑐7𝑐𝑐13𝑐𝑐25

SubjectArea_
Topic

𝑐𝑐8𝑐𝑐26

Review
𝑐𝑐24

𝑝𝑝3

𝑝𝑝4

𝑝𝑝14

Decision

RejectionAcceptance

disjointWith

𝑐𝑐28

𝑐𝑐27

𝑐𝑐29

𝑝𝑝16

Conference
Part

𝑐𝑐9𝓛𝓛𝟐𝟐

disjointWith
𝑝𝑝15

FIGURE 4.7: Augmenting the blocks with non-taxonomy relations.

58 Chapter 4. Multiple Ontology Merging Method

In Chapter 10, we will present a set of experimental tests on our method.

59

5
Generic Merge Requirements

This chapter starts with an introduction about GMRs in Section 5.1. The GMR
classification and overview are presented in Section 5.2 and Section 5.3, respectively. The
compatibility checker framework is presented in Section 5.4, which generates a set of all
possible compatible sets based on the user-selected GMRs. We look at the ranking of
these sets in Section 5.5. The resolution of conflicts between GMRs has been investigated
in Section 5.6. Finally, a summary of this chapter is given in Section 5.7. Moreover, a list
of used notations, symbols, and nomenclature is shown in Table 5.1. The contents of this
chapter have been previously published in [BGKR20c; BKR19b; GBKR20].

60 Chapter 5. Generic Merge Requirements

TABLE 5.1: The used notations, symbols, and nomenclature in Chapter 5.

Notation Description
OS a set of source ontologies
OM a merged ontology
ci a class in an ontology
c′ an integrated class
pi a property of an ontology
Ii a individual of an ontology
v subClassOf relation between two classes
GMR Generic Merge Requirements
R1-R20 individual GMRs
U a set of user-selected GMRs
UC a compatible subset of U
UEC an extra compatible set of GMRs related to U
G GMRs interactions graph
V a set of vertices of in the graph
E a set of edges of in the graph
K number of vertices in the clique
KC-Clique compatible clique with K vertices
KC-max-Clique compatible clique with maximum K vertices
RS a set of compatible sets with U
rs a compatible set with U
l number of rs inRS
Si scope of changes by a GMR on OM

µ(Rj) a set of axioms getting effect by applying Rj ∈ GMRs on OM

‖ compatibility between two GMRs
∦ incompatibility between two GMRs
fd compatibility degree of a GMR
|rsz| the number of GMRs in the compatible set rsz
|U| the number of GMRs in U
|U ∩ rsz| the number of GMRs that contains in both rsz and U
Scorei(rsz) scoring rsz
Total_Score(rsz) total scoring of ranking the rsz
Ψ(U) the number of GMRs’ aspect in U
Ψ(rsz) the number of GMRs’ aspect in rsz
Ψ(U ∩ rsz) the number of common aspects in both rsz and U
|GMRsAspect| the total number of aspects of GMRs
SH Subsumption Hierarchy
depth(vi) deep of datatype vi on SH
RG attributed Restriction Graph for detecting and solving OWL restriction
cases A-N different solution for restriction conflicts

5.1. Introduction 61

5.1 Introduction

One aspect that different approaches to merging ontology differ from each other is the
set of criteria they aim to fulfill; that is, the requirements that they expect the merged
ontology to meet. We analyzed the literature and determined which criteria, here called
Generic Merge Requirements (GMRs), are used by different approaches. In summary:

Definition 5.1. Generic Merge Requirements (GMRs) is a set of requirements and criteria that
a merged ontology expects to achieve.

By utilizing GMRs, we can provide a flexible merging approach, where users can
actively choose which requirements are important to them, instead of allowing only
a very indirect choice by picking a merge system that uses their preferred set of
criteria, something that is not transparent to the user. Thus, we take a step toward
user-requirement driven ontology merging by allowing the user to customize the GMRs
when creating merged ontologies.

Unfortunately, not all GMRs are compatible with each other. For example, one might
want to preserve all the classes contained in the original ontologies in the merged
ontology. On the other hand, one could wish to achieve class acyclicity. Likely, these
goals conflict. Therefore, once the user has selected which GMRs are important, a
system is needed that can check whether these GMRs are compatible and can be met
simultaneously. In this chapter, we provide the first insight into their compatibility and
describe a graph-based method to determine maximum supersets of compatible GMRs.
We then rank the suggested sets and return the sorted results to the user.

5.2 GMRs Classification

To discover the most commonly used GMRs, we have studied and analyzed three
different areas or researches, including (i) ontology merging methods [DB10; JRGHB09;
JERS+11; NM03; PB03; RR14], (ii) ontology merging benchmarks [MFH16; RR12],
and (iii) ontology engineering [NM+01; PVSFGP12]. Overall, we classify the GMRs
according to three dimensions subdivided into six aspects (see Figure 5.1). The three
dimensions we identified are:

• Integrity: This dimension refers to the degree of knowledge coverage in the
merge process through (i) the completeness aspect, and to the amount of knowledge
redundancy by (ii) the minimality aspect.

• Model Properties: Within this dimension, the principles of creating a new
ontology model are investigated. In this dimension, (i) acyclicity, and (ii)
connectivity satisfaction aspects are considered.

• Logic Properties: The inference of the expected knowledge with involved
constraints is analyzed in this dimension. This includes (i) deduction, and (ii)
constraint satisfaction aspects.

62 Chapter 5. Generic Merge Requirements

𝑅𝑅12. Entailment deduction
satisfaction

Deduction
Logic Properties

Model Properties

Integrity
𝑅𝑅𝑅. Class preservation

𝑅𝑅𝑅. Property preservation

𝑅𝑅𝑅. Instance preservation

𝑅𝑅4. Correspondence preservation

Completeness

𝑅𝑅5. Correspondences’ Property
preservation

𝑅𝑅6. Property’s value preservation

𝑅𝑅7. Structure preservation

𝑅𝑅8. Class redundancy prohibition

𝑅𝑅9. Property redundancy
prohibition

𝑅𝑅𝑅𝑅. Instance redundancy
prohibition

Minimality

𝑅𝑅𝑅𝑅. Extraneous entity
prohibition

𝑅𝑅𝑅𝑅. Acyclicity in the property
hierarchy

𝑅𝑅18. Prohibition of properties
being inverses of themselves

Acyclicity

𝑅𝑅𝑅𝑅. Acyclicity in the class hierarchy

𝑅𝑅13. One type restriction

𝑅𝑅14. Property value’s constraint

Constraint

𝑅𝑅𝑅𝑅. Property’s domain and
range oneness

𝑅𝑅20. Unconnected property
prohibition

Connectivity

𝑅𝑅19. Unconnected class prohibition

GMRAspectLegend Dimension

FIGURE 5.1: Generic Merge Requirements (GMRs) classification into three
dimensions and six aspects.

TABLE 5.2: Corresponding pairs between the source ontologies given in Figure 5.2.

Corresponding Pairs Corresponding Pairs
ReviewO1

c1 ≡ Review
O2
c10 ReviewerO1

c2 ≡ Reviewer
O2
c11

DocumentO1
c6 ≡ ConferenceDocument

O2
c19 PaperO1

c5 ≡ Paper
O2
c13

PersonO1
c4 ≡ Person

O2
c12 writtenByO1

p1 ≡ has_author
O2
p14

has_idO1
p6 ≡ has_id

O2
p16 -

5.3 GMR Overview

In this section, to explain each GMR in practice, we have designed two sampled source
ontologies, as shown in Figure 5.2. The first ontology O1 has 9 classes (c1-c9), 13
properties (p1-p13), and 4 instances (I1-I4). The second source ontology O2 contains 10
classes (c10-c19) and 12 properties (p14-p25). In both, we include a group of property
restrictions alongside with literals. The highlighted entities in each source ontology have
corresponding entities from the subsequent ontology. Table 5.2 shows the corresponding
pairs between these two ontologies. We have provided two different versions of the
merged ontologies to reflect the variety of applying GMRs, as shown in Figure 5.3.
Through this example, we will provide explanations of each GMR.

We determined six aspects that GMRs can be grouped into:

Completeness refers to knowledge preservation and coverage:

R1. Class preservation: Each class in (all/target)1 source ontologies should have a
mapped class in the merged ontology [RR14; MFRW00; CKP08; TBL08; FRP14;
JERS+11; MTFH14; NM03; MG18b; SBH08; RPSY09; DB10; PB03; MFH16; RR12;
UA10; ALL10].

Ô In OM1 , classes c3, c13-c15 are missing. In OM2 , class c15 is missing. So, R1
fulfilled neither in OM1 nor in OM2 .

1Preserving all entities from all source ontologies or a preferred one.

5.3. GMR Overview 63

𝑐𝑐1:
Review

𝑝𝑝1: writtenBy
𝑐𝑐2:

Reviewer

𝑝𝑝6: has_id

String
𝑐𝑐5:

Paper

𝑝𝑝2: readByReviewer

𝑝𝑝11: subClassOf

𝑝𝑝7: has_title String

𝑐𝑐7:
Author

𝑝𝑝3: hasAuthor

𝑐𝑐6:
Document 𝑝𝑝8: has_email String

𝑝𝑝9 : subClassOf 𝑝𝑝12: subClassOf

𝑝𝑝10: subClassOf

Exact
Cardinality 1

someValuesFrom

𝑐𝑐8:
Conference

𝑝𝑝4: hasMember

𝑝𝑝5: hasCountry 𝑐𝑐9:
Country

𝐼𝐼2:
Greece

𝐼𝐼3:
Japan

𝐼𝐼4:
Australia

𝐼𝐼1:
ESWC2020 𝓞𝓞𝟏𝟏

minCardinality

1

𝑝𝑝13: subClassOf

𝑐𝑐4:
Person

𝑐𝑐3:
ConferenceMember

Legend

Class

Instance

Object property

Datatype Property

subClassOf Property

Annotation Property

Corresponding Entity

Property Restriction

Literal

𝑐𝑐10:
Review

𝑝𝑝14: has_authors 𝑐𝑐11:
Reviewer

𝑝𝑝16: has_id

Integer
𝑐𝑐13:

Paper

𝑐𝑐12:
Person

𝑝𝑝23: subClassOf

𝑝𝑝18: subClassOf

minCardinality 1

𝓞𝓞𝟐𝟐

𝑝𝑝17: has_doi

String

allValuesFrom

𝑝𝑝22: subClassOf

𝑝𝑝21: subClassOf

𝑝𝑝20: subClassOf

𝑝𝑝19: subClassOf

𝑝𝑝15: has_an_abstract 𝑐𝑐14:
Abstract

𝑝𝑝24: subClassOf

𝑝𝑝25: subClassOf

𝑝𝑝26: rdfs:comment

𝑐𝑐15:
ExtendedAbstract

𝑐𝑐16:
RegularContribution

𝑐𝑐17:
WrittenContribution

𝑐𝑐18:
ConferenceContribution

𝑐𝑐19:
ConferenceDocument

FIGURE 5.2: Two sample source ontologies.

64 Chapter 5. Generic Merge Requirements

𝑐𝑐1𝑐𝑐10:
Review

Integer String

exactCardinality

minCardinality 1

1

𝑝𝑝1𝑝𝑝14: writtenBy

allValuesFrom

𝑐𝑐2𝑐𝑐11:
Reviewer

𝑝𝑝27: assignExternalReviewer

𝑐𝑐5𝑐𝑐13:
Paper

𝑝𝑝2: readByReviewer

𝑝𝑝7: has_title String𝑝𝑝17: has_doiString

𝑝𝑝15: has_an_abstract 𝑐𝑐14:
Abstract

𝑝𝑝3: hasAuthor
𝑐𝑐7:

Author

𝑝𝑝8: has_email

String

minCardinality 1

𝑐𝑐8:
Conference

𝑝𝑝4: hasMember

𝐼𝐼1:
EWSC2020

𝑝𝑝5: hasCountry 𝑐𝑐9:
Country

𝐼𝐼4:
Japan

𝐼𝐼2:
Australia

𝑐𝑐4𝑐𝑐12:
Person

𝑝𝑝23: subClassOf

𝑐𝑐6𝑐𝑐19:
Document

𝑝𝑝10: subClassOf
𝑝𝑝9: subClassOf

𝑝𝑝12: subClassOf

𝓞𝓞𝑴𝑴𝟏𝟏

𝑝𝑝26: rdfs:comment
𝑐𝑐20:

ExternalReviewer

𝑐𝑐1𝑐𝑐10:
Review

String

minCardinality 1

𝑝𝑝1𝑝𝑝14: writtenBy

allValuesFrom

𝑐𝑐2𝑐𝑐11:
Reviewer

𝑐𝑐5𝑐𝑐13:
Paper

𝑝𝑝2: readByReviewer

𝑝𝑝7: has_title String𝑝𝑝17: has_doiString

𝑐𝑐14:
Abstract𝑝𝑝3: hasAuthor𝑐𝑐7: Author

𝑝𝑝8: has_email

String

minCardinality 1

𝑐𝑐8:
Conference

𝑝𝑝4: hasMember

𝐼𝐼1:
EWSC2020

𝑝𝑝5: hasCountry
𝑐𝑐9:

Country

𝐼𝐼4:
Japan

𝐼𝐼2:
Australia

𝑐𝑐4𝑐𝑐12:
Person

𝑝𝑝11: subClassOf

𝑐𝑐6𝑐𝑐19:
Document

𝑝𝑝10: subClassOf
𝑝𝑝9: subClassOf

𝑝𝑝22: subClassOf

𝑝𝑝21: subClassOf

𝑝𝑝20: subClassOf

𝑝𝑝19: subClassOf
𝓞𝓞𝑴𝑴𝟐𝟐

𝑝𝑝12: subClassOf

𝑝𝑝13: subClassOf

𝐼𝐼3:
Greece

𝑝𝑝28: subClassOf
𝑝𝑝26: rdfs:comment

𝑐𝑐3:
ConferenceMember

𝑐𝑐16:
RegularContribution

𝑐𝑐18:
ConferenceContribution

𝑐𝑐17:
WrittenContribution

Legend

Class

Instance

Object property

Datatype Property

subClassOf Property

Annotation Property

Corresponding Entity

Property Restriction

Literal

𝑝𝑝6𝑝𝑝16: has_id

𝑝𝑝6𝑝𝑝16: has_id

FIGURE 5.3: Two different merged ontologies for the given source ontologies in
Figure 5.2.

5.3. GMR Overview 65

R2. Property preservation: Each property from the (all/target) source ontologies is
explicitly in or implied by the merged ontology [RR14; CKP08; TBL08; FRP14;
PB03; EGED09].

Ô InOM1 , properties p11, p13, p18-p22, p24, and p25 are missing. InOM2 , properties
p15, p24, and p25 are missing. So, R2 fulfilled neither in OM1 nor in OM2 .

R3. Instance preservation: All instances of (all/target) source ontologies should be
preserved in the merged ontology [RR14; CKP08; FRP14; SM01; PB03].

Ô In OM1 , the instance I2 is missing, whereas OM2 fulfilled R3.

R4. Correspondence preservation: If two entities of the source ontologies are
corresponding2, both should map to the same merged entity in the merged
ontology [NM03; PB03; RR14; RR12].

Ô In both OM1 and OM2 , all corresponding classes and properties are mapped
to the same merged entity. Thus, R4 is fulfilled in both merged ontologies.

R5. Correspondences’ property preservation: If any of the corresponding entities from the
source ontologies has a certain property, the merged entity should also have this
property [NM03; PB03].

Ô For the merged class c5, in OM1 , the property p22 is missing, and in OM2 ,
the property p15 is missing. So, R5 did not fulfill in OM1 and OM2 , as the
properties of the correspondence classes are missed.

R6. Property’s value preservation: Properties’ values from the (all/target) source
ontologies should be preserved in the merged ontology [NM03; PB03]. In case
of conflicts, a resolution strategy is required.

Ô InOM1 , all values from properties are preserved. However, p6p16 faced with a
conflict. In OM2 , the value of p6p16 is missing as during the creating the OM2 ,
the conflicts are solved.

R7. Structure preservation: If two entities are connected via a certain property in a
source ontology, their mapped entities in the merged ontology should be connected
via the respective mapped property [DB10; ALL10], thus preserving the source
ontologies’ structures in the merged ontology. In [SJRG14], this GMR is called a
conservativity principle. It states that the merged ontology should not induce any
change in the concept hierarchies of the source ontologies.

Ô In OM2 , class c7 does not have the same parent as source ontology O1, as it
does not have parent c3. Thus, R7 is not fulfilled in OM2 . In OM1 all classes
have the same parents as the source ontologies’ structure.

Minimality refers to knowledge redundancy and controlling of semantic overlap:

2This can be equality, similarity, or is-a correspondences. In each case, the same type of corresponding
should be preserved.

66 Chapter 5. Generic Merge Requirements

R8. Class redundancy prohibition: A class from the (all/target) source ontologies should
have at most one mapping in the merged ontology [TBL08; PK19; PC19; GAC10;
SBH08; LT06; DB10; MFH16; PB03; RR14; UA10] .

Ô R8 is fulfilled as there are no redundant classes in OM1 and OM2 .

R9. Property redundancy prohibition: A property from the (all/target) source ontologies
should have at most one mapping in the merged ontology [MFH16; CKP08;
EGED09].

Ô There are no redundant properties in OM1 and OM2 . Thus, R9 is fulfilled.

R10. Instance redundancy prohibition: An instance from the (all/target) source ontologies
should have at most one mapping in the merged ontology [SM01; MTFH14].

Ô R10 is fulfilled in OM1 and OM2 as there are no redundant instances.

R11. Extraneous entity prohibition: No additional entities other than source ontologies’
entities should be added in the merged result [PB03].

Ô In OM1 , property p27 and class c20 do not belong to the given source
ontologies. So, R11 does not fulfill.

Deduction refers to the deduction satisfaction with R12:

R12. Entailment deduction satisfaction: The merged ontology is desirable to be able to
entail all entailments of the (all/target) source ontologies [JRGHB09; TBL08]. As
the semantic consequences of the integration, it can include more entailments, but
it should at least not miss knowledge from the source ontologies.

Ô The subClassOf relation c7 subClassOf c3, an entailment from O1 cannot be
entailed by OM2 . So, R12 did not fulfill in OM2 .

Constraint reflects the satisfaction of the ontology constraints:

R13. One type restriction: Two corresponding entities should follow the same data
type [PB03]; e.g., if the range of author_Id in one of the source ontology is
String and in the other one is Integer, then the range of the merged entity
author_Id cannot have both types.

Ô In OM1 , there is a conflict between String and Integer of p6p16. Thus, R13
did not fulfill for OM1 , whereas OM2 fulfills R13.

R14. Property value’s constraint: If the (all/target) source ontologies place some
restriction on a property’s values (e.g., in terms of cardinality or by enumerating
possible values), this should be preserved without conflict in the merged
ontology [PB03; JRGHB09].

Ô The property restriction someValuesFrom on p3, origin from O1, is missing
in both merged ontologies. Moreover, in OM1 , there is a cardinality conflict in
p6p16. So, R14 did not fulfill in both merged ontologies.

5.4. Proposed Approach for Checking GMR Compatibility 67

R15. Property’s domain and range oneness: The merge process should not result in multiple
domains or ranges defined for a single property. This rule is recast from the
ontology modeling issues in [PVSFGP12].

Ô R15 is fulfilled in both OM1 and OM2 .

Acyclicity refers to controlling the chain problem in the merged ontology:

R16. Acyclicity in the class hierarchy: A cycle of is-a relationships implies equality of all of
the classes in the cycle since is-a is transitive. Therefore, the merge process should
not produce a cycle in the class hierarchy [CKP08; ZRL17; RPSY09; LT06; DB10;
JERS+11; NM+01; PB03; PVSFGP12; RR14; FMB12].

Ô OM1 fulfilled R16, however, in OM2 there is a cycle as c5c13 v c16 v c17 v
c18 v c6c19 v c5c13, where v shows the subClassOf relations.

R17. Acyclicity in the property hierarchy: The merge process should not produce a cycle
between properties concerning the is-subproperty-of relationship [PVSFGP12;
FMB12].

Ô R17 is fulfilled in OM1 and OM2 .

R18. Prohibition of properties being inverses of themselves: The merged process should not
cause an inverse recursive definition on the properties [PVSFGP12].

Ô In OM1 and OM2 , there is no violation of R18.

Connectivity refers to the hierarchy connectivity satisfaction:

R19. Unconnected class prohibition: The merge process should not make the classes
unconnected [JERS+11; PB03; PVSFGP12]. Every class that had some connections
in the source ontologies before the merge process should not be unconnected
after the merge process in the merged ontology. In CoMerger, we consider only
connections on the is-a hierarchy.

Ô In OM2 , class c14 is unconnected. Thus, R19 did not fulfill in OM2 , whereas
OM1 fulfilled it.

R20. Unconnected property prohibition: The merge process should not make the properties
unconnected [NM03; PVSFGP12]. Every property that had some connections in
the source ontologies before the merge process should not be unconnected after
the merge process in the merged ontology.

Ô R20 is fulfilled in both OM1 and OM2 .

5.4 Proposed Approach for Checking GMR Compatibility

In the previous section, we introduced a set of GMRs. However, all GMRs are hard to
meet simultaneously for two reasons. First, users will not be interested in all of them.
Depending on the application they want to create an ontology for, some GMRs might be
important to them, while others are trivial. Second, not all GMRs are compatible, e.g.,
it is difficult to apply acyclicity and property preservation at the same time. Thus, an

68 Chapter 5. Generic Merge Requirements

GMRs
Catalogue

Merger

Source
Ontologies

Select
GMRs

Compatible
GMRs

GMRs

Apply
GMRs

Use

Merged
Ontology

𝒰𝒰

𝒢𝒢

Graph Builder

Compatibility Checker
ℛ𝒮𝒮

Clique Finder




ℛ𝒮𝒮

Ranker

FIGURE 5.4: The workflow of GMRs’ compatibility checker within the ontology
merge system.

informal definition of (in-)compatibility between two GMRs is given below, which later
we specify a formal definition:

Definition 5.2. Two GMRs are (potentially) compatible with each other if they both can be
applied simultaneously at the merged ontology. Otherwise, they are (potentially) incompatible.

In this section, we describe our approach to finding maximum compatible supersets of
user-specified GMR. Basically, what we do is first finding the subsets of GMRs specified
by the user that are compatible, and second, extending those by further GMRs (out of the
GMRs the user had not selected) while maintaining compatibility. Our intuition is that,
first, as much as possible of what the user wanted should be met, and second, adding
further GMRs will, in general, improve the quality of the merged ontology.

We propose such a compatibility checker framework within the ontology merge system,
as shown in Figure 5.4. The source ontologies are merged based on the user-selected
GMRs. Users can ask for the compatibility checker of the selected GMRs. To achieve this,
we build a graph G of the interaction between the GMRs. We then recast the problem
at hand to selecting the maximum superset of the user-selected GMRs on the graph.
The compatibility checker method takes as input a set of user-selected GMRs, namely
U , with the GMRs interaction’s graph G. The method uses a clique finder algorithm to
detect a set of compatible sets RS = {rs1, rs2, ..., rsz}. These results are ranked, sorted,
and returned to the user. More precisely, our framework performs the following steps:

• A graph G is built based on the interactions between GMRs.

• The compatible subsets of the user-selected GMRs are extracted from the G. Then,
they will be extended to the maximal compatible superset.

• The detected supersets are ranked and ordered based on criteria.

• An ordered list of ranked compatible sets is returned to the user.

5.4. Proposed Approach for Checking GMR Compatibility 69

In the next subsections, we explain:

• Building the GMRs interaction’s graph G

• Extracting a superset of the graph based on the user-selected GMRs

5.4.1 Building GMRs Interactions Graph G

To build the graph G, we use the Graph Builder component in Figure 5.4. It takes as input
the GMRs catalogue and creates the graph G. The GMRs’ interaction graph G = (V,E)
demonstrates the interaction between GMRs, where V is the set of vertices representing
the GMRs (described in Section 5.3), and E is the set of edges. In this graph, two GMRs
are connected via an edge if they are compatible. To define the compatibility of GMRs
(existence of an edge between two GMRs in G), we set two different conditions:

5.4.1.1 Condition I

The scope of changes by a GMR on the merged ontology can reveal the (in-)compatibility.
Two GMRs are compatible with each other if they do not modify the same scope of
entities. We distinguish between two scopes:

• Direct scope: It is the main scope that is affected by applying a GMR.

Ô Example: Applying R1 adds missing classes, so the direct scope of R1 is the
classes.

• Indirect scope: It is the scope that might be affected by the changes made on the
direct scope.

Ô Example: Applying R8 deletes the redundant classes (direct scope is
redundant classes). However, as a side effect of this operation, this might
cause the properties connected to those classes to become unconnected, or
their instance to be orphaned. Thus, the indirect scopes of R8 are properties
and instances.

We classify the scopes of changes by GMRs into four categories:

• Scope 1- Classes: All classes in the merged ontology, which is the union of:

– Scope 11- Classes origin from source ontologies: These groups of classes belong to
classes of the source ontologies.

– Scope 12- Redundant classes: These groups are the classes origin from source
ontologies, which are repeated.

– Scope 13- Extra classes: These groups of classes are extra classes that do not
belong to any source ontologies. They are created through the merge process.

• Scope 2- Properties: All properties in the merged ontology, which is the union of:

– Scope 21- Properties origin from source ontologies: These groups of properties
belong to the properties of the source ontologies.

70 Chapter 5. Generic Merge Requirements

TABLE 5.3: Scope of changes by applying GMRs in the merged ontology.

Scope Sub-Scope Explanation
Scope 11 Classes origin from source ontologies
Scope 12 Redundant classesScope 1- Classes
Scope 13 Extra classes
Scope 21 Properties origin from source ontologies
Scope 22 Redundant propertiesScope 2- Properties
Scope 23 Extra properties
Scope 31 Instances origin from source ontologies
Scope 32 Redundant instancesScope 3- Instances
Scope 33 Extra instances

Scope4- Values of properties - Values of properties

– Scope 22- Redundant properties: These properties origin from source ontologies
that are repeated.

– Scope 23- Extra properties: These groups of properties are extra properties that
do not belong to any source ontologies. They are created through the merge
process.

• Scope 3- Instances: All instances in the merged ontology, which is the union of:

– Scope 31- Instances origin from source ontologies: These groups of instances
belong to instances of the source ontologies.

– Scope 32- Redundant instances: These instances origin from source ontologies
that are repeated.

– Scope 33- Extra instances: These groups of instances are extra instances that
do not belong to any source ontologies. They are created through the merge
process.

• Scope 4- Value of properties: This scope is related to the values of properties in
the merged ontology.

A brief overview of the scopes of applying GMRs has been shown in Table 5.3.

5.4.1.2 Condition II

Let us illustrate our intuition for requiring the second condition with an
example by considering the interaction between R2 (property preservation) and R5
(correspondences’ property preservation). R2 may make changes to the properties,
and R5 possibly makes changes to the properties of the corresponding classes. So,
both GMRs apply changes on the same set of entities, i.e., properties origin from the
source ontologies (Scope 21). However, it cannot be concluded that both GMRs are
incompatible because the operations that both carry on the merged ontology do not have
any contradiction. R2 uses the add operation to preserve the missing properties. R5 also
uses the add operation to add missing properties of the corresponding classes. Therefore,

5.4. Proposed Approach for Checking GMR Compatibility 71

both these actions can be performed simultaneously in the merged ontologies without
conflict. As a whole, three types of operations are performed to meet the GMRs and
ensure their fulfillment:

• Add:

Ô Example: R1 (class preservation) uses the add operation to preserve the
missing classes in the merged ontology.

• Delete:

Ô Example: R8 uses the delete operation to be free of redundant classes.

• A combination of add and delete:

Ô Example: R4 (correspondence preservation) uses add and delete operations,
where for two corresponding classes c1 and c2 that are not mapped to the
integrated class c′, first, c1 and c2 should be deleted, then c′ added.

Table 5.4 shows the scopes and operations of each GMR. For some GMRs, there may be
different possible operations. We followed only one of possible solutions in CoMerger,
and marked the alternative one by the symbol ?.

Although applying each GMR may change direct and indirect scopes, their operations
carry on the direct scope, only. Therefore, to determine the compatibility of the GMRs,
the type of operations that each GMR performs on the direct scope should be considered.
In this regards, when two GMRs change the same set of entities, they can still be
compatible if both use the same operation.

Let µ(Rj) be a set of entities that get affected by applying Rj ∈ GMRs to the merged
ontology, i.e., their direct scope. Given the conditions mentioned above, we define the
compatibility of between Rj and Rk ∈ GMRs as:

Definition 5.3. Rj is compatible with Rk (Rj ‖ Rk) if Rj and Rk modify the different scope of
entities in the merged ontology, i.e., µ(Rj) 6= µ(Rk). If µ(Rj) = µ(Rk), the type of operation of
applying Rj and Rk should be the same.

Accordingly, there could be four variants on the scope of changes and the types of
operation, depicted in Figure 5.5, as:

Case A- Same Scopes and Same Operations: In this case, the scope of entities affected
by applying Rj and Rk, is the same. Moreover, Rj and Rk use the same type of
operations. Since both GMRs use the same operation on the same set of entities,
they are compatible with each other.

Ô Example: R2 ‖ R7.
R2 makes changes in the properties. R7 makes changes in the is-a properties.
So, these two GMRs address the same set of properties origin from the source
ontologies (Scope 21). Moreover, R2 uses the add operation to add the missing
properties. R7 uses the add operation to add the missing is-a properties
in order to preserve the hierarchy structure of the source ontologies in the
merged ontology.

72 Chapter 5. Generic Merge Requirements

TABLE 5.4: The scopes and operations of each GMR. The symbol ? indicates an
alternative solution.

Direct Indirect
GMR

Scope Scope
Operation Description

R1 S11 - add It adds missing classes of the source ontologies.
R2 S21 - add It adds missing properties of the source ontologies.
R3 S31 - add It adds missing instances of the source ontologies.

S2 add & If two corresponding classes c1 and c2 are not mapped to the one
S11 S3 delete integrated class c′, first, c1 and c2 is deleted, then c′ will be added.

S21
S1 add & It follows the procedure the same as the R4-scope 1-1

R4

S3 delete but one the properties.
R5 S21 - add It adds missing properties of the corresponding classes.
R6 S4 - add It adds missing values of the properties.
R7 S21 - add It adds is-a properties to the respective class.
R8 S12 S2, S3 delete It deletes redundant classes.
R9 S22 S1, S3 delete It deletes redundant properties.
R10 S32 S1 delete It deletes redundant instances.

S13

S23
S1, S2,

R11
S33

S3
delete It deletes extra entities.

S11 -
add

It adds some entities to achieve the entailment the same
S21 -

as the source ontologies.
R12

S31 -
R13 S4 - delete It keeps only one of the data types and deletes the other one.
R14 S4 - delete It keeps only one value of the property and deletes the other one.

add & It might add multiple domains or ranges as
delete the unionOf to the property.R15 S11 S2, S3
delete? It might delete multiple domains or ranges and only keep one of them.

S2 S1 delete It might delete some properties to be free of cycles.
R16

S1 S2, S3 delete? It might delete some classes to be free of cycles.
R17 S2 S1 delete It deletes properties to be free of the cycle on the properties’ hierarchy.
R18 S2 S1 delete It deletes the inverse of properties.

S2 - add It might add is-a relations to connect the unconnected classes.R19
S1 S2, S3 delete? It might delete unconnected classes.

S2
S1 delete? It might delete the unconnected properties.R20
- add

It might use the add operation to connect the unconnected properties
to the classes.

Case B- Same Scopes with Different Operations: In this case, the set of entities, getting
effect by applying Rj and Rk, is the same. But, Rj and Rk use different types of
operations. Since both use the different operations on the same set of entities, they
are incompatible.

Ô Example: R2 ∦ R17.
Both R2 and R17 change properties. R2 uses the add operation to preserve
missing properties, whereas R17 may delete some properties to achieve
acyclicity. Thus, it may happen that applying R17 reverses the changes made
by R7 and vice versa.

Case C- Different Scopes with the Same Operations: In this case, the set of entities, getting
effect by applying Rj and Rk, is different. Moreover, both use the same type of
operations. Since both GMRs using the same operation but on different sets of
entities, they are compatible with each other.

5.4. Proposed Approach for Checking GMR Compatibility 73

Same
Scope

Different
Scope

Same Operations Different Operations

CASE C

CASE A

CASE D

Compatible

Compatible

Compatible

Incompatible

CASE B

FIGURE 5.5: Compatibility along with four cases by the same or different scopes
and operations of applying GMRs.

Ô Example: R1 ‖ R2.
Preserving the classes in the merged ontology causes changes in the classes
in R1 (Scope 11). However, preserving the properties modifies the properties
in R2 (Scope 21). These two GMRs do not change the same group of entities.
Moreover, both use the add operation to apply these GMRs. Since both GMRs
use the same operation but on different sets of entities, they are compatible
with each other.

Case D- Different Scopes and Different Operations: In this case, applying Rj and Rk is
performed on different sets of entities. Moreover, both GMRs use different types of
operations. Since both use different operations on the different entity sets, they are
completely separated and do not affect each other. Therefore, they are compatible.

Ô Example: R1 ‖ R11.
R1 makes changes in the classes origin from source ontologies (Scope 11).
R11, in addition to changing properties, modifies the extra classes (Scope
13). So, the scopes of changes in these two GMRs are on the different entity
sets. R1 uses the add operation, while R11 uses delete operation. Since both
use the different operations on different sets of entities, they are completely
separated. So, these two GMRs are compatible with each other.

Considering the scope and the operation of each GMR stated above, we can conclude
their interaction. For the GMRs with multiple scopes, Table 5.5 shows the detail of
interactions where the effect of the individual scope is considered separately. The concise
version of this table is shown in Table 5.6, in which Rj is considered to be compatible
with Rk if the intersection of all its sub-scopes is compatible. As mentioned earlier, to
build the edges in the GMRs interaction graph G, we use the (in-)compatible interactions,
in which there is an edge between two GMRs, if they are compatible. When there is no
edge between two GMRs, it indicates the incompatibility. Thus, the graph G has edges
between the compatible GMRs, as has been shown in Table 5.6.

74 Chapter 5. Generic Merge Requirements

TABLE 5.5: Compatibility interaction between GMRs, when the sub-scopes are
considered separately. The last column fd shows the compatibility degree.

GMR Compatible GMRs fd
R1 R2, R3, R4(S21), R5-R14, R16-R20 0.94
R2 R1, R3, R4(S11), R5-R15, R16(S22,S23), R17(S22,S23), R18(S22,S23), R19, R20 0.88
R3 R1, R2, R4-R20 1

R4(S11) R2, R3, R5-R11, R12(S21,S31), R13, R14, R16-R20 0.91
R1, R3, R6, R8-R11, R12(S11,S31), R13-R15, R16(S22,S23), R17(S22,S23), R18(S22,S23) 0.73R4(S21) R19(S22,S23), R20(S22,S23)

R5 R1-R3, R4(S11), R6-R15, R16(S22,S23), R17(S22,S23), R18(S22,S23), R19, R20 0.88
R6 R1-R5, R7-R12, R15-R20 0.94
R7 R1-R3, R4(S11), R5, R6, R8-R15, R16(S22,S23), R17(S22,S23), R18(S22,S23), R19, R20 0.79
R8 R1-R7, R9-R20 1
R9 R1-R8, R10-R18, R19(S21,S23), R20(S21,S23) 0.94
R10 R1-R9, R11-R20 1

R11(S13) R1-R10, R12-R20 1
R11(S23) R1-R10, R12-R18, R19(S21,S22), R20(S21,S22) 0.94
R11(S33) R1-R10, R12-R20 1
R12(S11) R1-R3, R4(S21), R5-R11, R13, R14, R16-R20 0.94
R12(S21) R1-R3, R4(S11), R5-R11, R13-R15, R16(S22,S23), R17(S22,S23), R18(S22,S23), R19, R20 0.87
R12(S31) R1-R11, R13-R20 1

R13 R1-R5, R7-R12, R14-R20 0.97
R14 R1-R5, R7-R13, R15-R20 0.97
R15 R2, R3, R4(S21), R5-R11, R12(S21,S31), R13, R14, R16-R20 0.91

R16(S21) R1, R3, R4(S11), R6, R8-R11, R12(S11,S31), R13-R15, R17, R18, R19(S22,S23), R20(S22,S23) 0.78
R16(S22) R1-R15, R17, R18, R19(S21,S23), R20(S21,S23) 0.87
R16(S23) R1-R15, R17, R18, R19(S21,S22), R20(S21,S22) 0.87
R17(S21) R1, R3, R4(S11), R6, R8-R11, R12(S11,S31), R13-R16, R18, R19(S22,S23), R20(S22,S23) 0.78
R17(S22) R1-R16, R18, R19(S21,S23), R20(S21,S23) 0.94
R17(S23) R1-R16, R18, R19(S21,S22), R20(S21,S22) 0.94
R18(S21) R1, R3, R4(S11), R6, R8-R11, R12(S11,S31), R13-R17, R19(S22,S23), R20(S22,S23) 0.78
R18(S22) R1-R17, R19(S21,S23), R20(S21,S23) 0.94
R18(S23) R1-R17, R19(S21,S22), R20(S21,S22) 0.94
R19(S21) R1-R3, R4(S11), R5-R15, R16(S22,S23), R17(S22,S23), R18(S22,S23), R20 0.87
R19(S22) R1-R8, R10-R15, R16(S21,S23), R17(S21,S23), R18(S21,S23), R20 0.87
R19(S23) R1-R10, R11(S13,S33), R12-R15, R16(S21,S22), R17(S21,S22), R18(S21,S22), R20 0.87
R20(S21) R1-R3, R4(S11), R5-R15, R16(S22,S23), R17(S22,S23), R18(S22,S23), R19 0.87
R20(S22) R1-R8, R10-R15, R16(S21,S23), R17(S21,S23), R18(S21,S23), R19 0.87
R20(S23) R1-R10, R11(S13,S33), R12-R15, R16(S21,S22), R17(S21,S22), R18(S21,S22), R19 0.87

The compatibility degree fd for each GMR Rj is driven by Equation 5.1. fd(Rj) is the
number of compatible GMRs with Rj divided by the total number of GMRs, where it is
35 and 20 in Table 5.5 and Table 5.6, respectively. The last column of these tables shows
the compatibility degree of each GMR.

fd(Rj) =
|compatible GMR with Rj |

|GMR|
(5.1)

Figure 5.6 shows the sorted GMRs based on their compatibility degrees when the
intersection of sub-scopes is considered. R3, R8, and R10 are compatible with all other

5.4. Proposed Approach for Checking GMR Compatibility 75

TABLE 5.6: Compatibility interaction between GMRs, when the intersection of
sub-scopes are considered. The last column fd shows the compatibility degree.

GMR Compatible GMRs fd
R1 R2, R3, R5-R14, R16-R20 0.89
R2 R1, R3, R5-R15, R19, R20 0.79
R3 R1, R2, R4-R20 1
R4 R3, R6, R8-R11, R13, R14 0.74
R5 R1-R3, R6-R15, R19, R20 0.79
R6 R1-R5, R7-R12, R15-R20 0.89
R7 R1-R3, R5, R6, R8-R15, R19, R20 0.79
R8 R1-R7, R9-R20 1
R9 R1-R8, R10-R18 0.89
R10 R1-R9, R11-R20 1
R11 R1-R10, R12-R18 0.89
R12 R1-R3, R5-R11, R13, R14, R19, R20 0.74
R13 R1-R5, R7-R12, R14-R20 0.95
R14 R1-R5, R7-R13, R15-R20 0.95
R15 R2, R3, R5-R11, R13, R14, R16-R20 0.84
R16 R1, R3, R6, R8-R11, R13-R15, R17, R18 0.63
R17 R1, R3, R6, R8-R11, R13-R16, R18 0.63
R18 R1, R3, R6, R8-R11, R13-R17 0.63
R19 R1-R3, R5-R8, R10, R12-R15, R20 0.68
R20 R1-R3, R5-R8, R10, R12-R15, R19 0.68

GMRs. R13 and R14 have high compatibility as the scope of their changes is different
from the others. R16, R17, and R18 are the least compatible.

5.4.2 Clique Finder

Given the GMRs interaction graph G and the set U containing the GMRs the user is
interested in, we aim to find the maximum subset of V containing all vertices out of U
and no incompatible nodes. This may not always be achievable since the user might have
chosen incompatible GMRs already. In this case, we search for a maximum subset of V
in G that preserves as many nodes out of U as possible and contains compatible nodes
only. Thus, the Clique Finder component in Figure 5.4 takes as input a set of user-selected
GMRs U alongside with the GMRs’ interaction graph G (see Equation 5.2). It returns a
set of all possible compatible sets, namelyRS = {rs1, rs2, ..., rsl}.

RS ⇐ Clique_Finder(G,U) (5.2)

Each suggested compatible set rs ∈ RS contains (all/part) of the user-selected
compatible GMRs, and compatible GMRs additionally all other. For the given

76 Chapter 5. Generic Merge Requirements

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R8 R10 R3 R13 R14 R1 R9 R11 R6 R15 R2 R5 R7 R4 R12 R19 R20 R16 R17 R18

Compatibility Degree

𝑅𝑅3 𝑅𝑅8 𝑅𝑅10 𝑅𝑅𝑅3 𝑅𝑅14 𝑅𝑅𝑅 𝑅𝑅9 𝑅𝑅11 𝑅𝑅6 𝑅𝑅15 𝑅𝑅2 𝑅𝑅5 𝑅𝑅7 𝑅𝑅4 𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅 𝑅𝑅20 𝑅𝑅16 𝑅𝑅17 𝑅𝑅18

FIGURE 5.6: Sorted GMRs based on their compatibility degree.

user-selected GMRs, U , each suggested compatible set rs is formulated in Equation 5.3.

rs = UC ∪ UEC (5.3)

where, UC is a compatible subset of U , and UEC is an extra compatible set of GMRs
related to U . To obtain the compatible set rs, we recast the problem at hand as clique
extraction on the GMRs’ interaction graph G, where it needs to be the maximal best
match based on the user-selected GMRs. A clique is a set of fully connected vertices. We
thus extract a compatible clique KC-Clique, where K indicates the number of vertices in
the clique, and C denotes that the clique is compatible.

Definition 5.4. TheKC-Clique is a compatible clique iff between all vertices only the compatible
relations exist.

Compatible relations between GMRs are encoded by edges in the GMRs interaction
graph U . KC-Clique includes compatible GMRs from U (called UC) and additional
compatible GMRs related to U ’s elements (called UEC). KC-max-Clique is a clique
containing at least K vertices that is not a subset of any other cliques. To compute the
KC-max-Clique, we use the adapted CLIQUES algorithm described in [TTT06].

To avoid enumerating all possible subgraphs, we set two constraints on the clique
extraction:

1. If a clique does not contain at least K vertices, then neither the clique nor any
other sub-cliques can contain a KC-Clique, because, if the clique does not have the
required number of vertices, it cannot be a KC-Clique.

2. Only vertices in aKC-max-Clique of G can form aKC-Clique, because a vertex which
is not in a KC-max-Clique cannot be in any KC-Clique.

The first constraint contributes to reducing the search space, and the second one narrows
the result to the maximal desired compatible GMRs. Moreover, Definition 5.4 ensures
that the selected GMRs are compatible.

5.5. Ranking the Compatible Sets 77

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟐𝟐𝟐𝟐

𝑹𝑹𝟒𝟒 𝑹𝑹𝟕𝟕

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟐𝟐𝟐𝟐

𝑹𝑹𝟒𝟒 𝑹𝑹𝟕𝟕

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟐𝟐𝟐𝟐

𝑹𝑹𝟒𝟒 𝑹𝑹𝟕𝟕

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟐𝟐𝟐𝟐

𝑹𝑹𝟒𝟒 𝑹𝑹𝟕𝟕

𝒢𝒢 3𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 4𝐶𝐶 − 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

FIGURE 5.7: From left to right: part of GMRs interaction graph G; two different
compatible 3C − Clique; a compatible 4C-max-Clique for U = {R4, R10, R20}.
Green: user-selected compatible GMRs; Red: user-selected incompatible GMRs;

Orange: extra compatible GMRs.

5.4.2.1 Example

To illustrate the clique finder function with an example, Figure 5.7, left, shows part of
the GMRs interaction graph G for six GMRs. An edge between two GMRs indicates their
compatibility. Let us consider that user selects R4, R10, and R20, i.e., U = {R4, R10, R20}.
For the given U , three different cliques have been shown, in which the user-selected
compatible GMRs, the incompatible U ’s elements, and the additional compatible GMRs
related to U are indicated with green, red, and yellow circles, respectively.

Two possible presented 3C-Clique are compatible cliques, where two user-selected GMRs
are considered, and the incompatible one did not include. However, they are not a
maximal clique. The 4C-max-Clique is the best match to the U and indicates the maximal
compatible subset on the sketched G.

5.5 Ranking the Compatible Sets

For each set of user-selected GMRs, there are different possible compatible GMRs sets.
Let RS = {rs1, rs2, ..., rsl} be all possible compatible sets based on the user-selected
GMRs. To figure out which rsz ∈ RS is the best choice, the Ranker component in
Figure 5.4 rates the elements of RS based on different criteria. Therefore, the ranking
process assigns a confidence degree to each suggested compatible set.

Assume that the user selected R7, R9, R10, and R16, i.e., U = {R7, R9, R10, R16}. The
algorithm described earlier finds three possible compatible sets, as:

• rs1 = {R1, R3, R6, R8, R9, R10, R11, R16, R17, R18},

• rs2 = {R1, R3, R8, R9, R10, R11, R13, R14, R16, R17, R18}, and

• rs3 = {R2, R3, R5, R6, R7, R8, R9, R10, R11, R15}.

Thus, RS = {rs1, rs2, rs3}3. To determine which rs is the best choice, we rank all
compatible sets with three different criteria:

3For the given U , there are 18 different maximum compatible sets. To make the example concise, we
consider 3 compatible sets, only.

78 Chapter 5. Generic Merge Requirements

1. The number of user-selected GMRs in each compatible set: The intersection
of the compatible set rsz and the user-selected GMRs U , rsz ∩ U , comprises all
elements which are contained in both rsz and U . Thus, we count the number of
elements that are available in both rsz and U . Let us consider that

• |rsz| is the number of GMRs in the compatible set rsz ,

• |U| is the number of GMRs in the user-selected GMRs (U),

• |U ∩ rsz| is the number of GMRs contained in both rsz and U , and

• |GMRs| shows the total number of GMRs in our system.

Given these notations, Equation 5.4 ranks each suggested compatible set based on
the user preference (in the first part) and the power of the rsz itself (in the second
part of the equation).

Score1(rsz) =
|U ∩ rsz|
|U|

+
|rsz|
|GMRs|

(5.4)

For the given example of this section, rs1 has |rs1| = 10, |U| = 4, |U ∩ rs1| = 3, and
|GMRs| = 20. Thus, the Score1 for rs1 is:

Score1(rs1) = |U∩rs1|
|U| + |rs1|

|GMRs| = 3
4 + 10

20 = 1.25

Similarly, this score for rs2 and rs3 is Score1(rs2) = 1.3 and Score1(rs3) = 1.25,
respectively.

2. The number of user-selected aspects in each compatible set: GMRs have been
categorized in different aspects (see Section 5.3), which users can select. Not only
the number of user-selected GMRs has an effect on the ranking of each compatible
set rs, but also the user intended aspects should be taken into account. Therefore,
the extent to which each suggested compatible set rsz covers the user’s intended
aspects should be considered. Let us consider that

• Ψ(U) is the number of GMRs’ aspects in U ,

• Ψ(rsz) is the number of GMRs’ aspects in rsz ,

• Ψ(U ∩ rsz) is the number of common aspects in both rsz and U , and

• |GMRsAspect| shows the total number of aspects in the GMRs catalouge.

Given these notations, Equation 5.5 ranks each suggested compatible set based on
the user preference aspect (in the first part) and the power of rsz’s aspect itself (in
the second part of the equation).

Score2(rsz) =
Ψ(U ∩ rsz)

Ψ(U)
+

Ψ(rsz)

|GMRsAspect|
(5.5)

In the current example, rs1 has Ψ(U) = 3, Ψ(rs1) = 3, Ψ(U ∩ rs1) = 3, and
|GMRsAspect| = 6. Therefore, the Score2 for rs1 is:

5.6. Conflict Resolution 79

Score2(rs1) = Ψ(U∩rs1)
Ψ(U) + Ψ(rs1)

|GMRsAspect| = 3
3 + 3

6 = 1.5

Similarly, this score for rs2 and rs3 is Score2(rs2) = 1.67 and Score2(rs3) = 1.5,
respectively.

3. Compatibility degree of each GMR: Up to now, the proposed metrics consider the
quantity measure, not quality. This results in obtaining an equal value for those
sets that contain the same number of GMRs and aspects and the same number of
common GMRs and aspects with the user-selected set. In the running example,
there is the same number of GMRs and aspects in rs1 and rs3, i.e., |s1| = 10, |s3| =
10, Ψ(s1) = 3, and Ψ(s3) = 3. Also, the number of common GMRs and aspects in
these sets with user-selected ones is the same. Therefore, they obtained the same
values for Score1 and Score2. However, these two sets are distinct. To reflect the
difference between them, the specific characteristics of each GMR belonging to the
suggested sets should be considered.

As an indicator to represent a difference between GMRs, we use the compatibility
degree of each GMR, as shown in Table 5.6. For Rj ∈ GMRs, the compatibility
degree is the number of compatible GMR with Rj divided by the total number of
GMRs, as shown in Equation 5.1. Therefore, the average value of the compatibility
degree of each element in the suggested compatible set is used as the third ranking
criteria. For the given rsz = {Ri, ..., Rm}, the average compatibility degree of Rs
in rsz is shown in Equation 5.6.

Score3(rsz) = Σm
j=ifd(Rj)×

1

|rsz|
(5.6)

In the given example, Score3(rs1) = 0.845, Score3(rs2) = 0.86, and Score3(rs3) =
0.89.

Thus, the total rank for each rsz is defined by Equation 5.7.

Total_Score(rsz) = w1 × Score1 + w2 × Score2 + w3 × Score3 (5.7)

Considering empirical values of 0.8, 0.1, and 0.1 for w1, w2, and w3, respectively, the total
score for our current example is Total_Score(rs1) = 1.23, Total_Score(rs2) = 1.29, and
Total_Score(rs3) = 1.24. The values are normalized between 0 and 1 and presented in
the descending order to the user. Figure 5.8 shows all the maximum compatible setsRS
for the given example. The rank values for each set has been normalized and ordered in
the GUI.

5.6 Conflict Resolution

In ontologies, the entities can represent real-world constraints, such as type, cardinality,
or value restrictions. However, two ontology developers may model the same
or overlapping entities to describe the common real-world objects with different

80 Chapter 5. Generic Merge Requirements

FIGURE 5.8: All maximum compatible sets for the user-selected GMRs
{R7, R9, R10, R16}.

𝓞𝓞𝟏𝟏

Review has_authors

exCard

Reviewer

has_id

String

1

allValuesFrom

has_authors

has_id

Integer

1minCard

allValuesFrom

Review

Chair

has_authors

has_id

Integer

1exCard

allValuesFrom

Reviewer

Review

minCard

String

1

Chair has_authors

has_id

String

1exCard

allValuesFrom

Reviewer

Review

𝓞𝓞𝟐𝟐 conflicted 𝓞𝓞𝑴𝑴 repaired 𝓞𝓞𝑴𝑴

FIGURE 5.9: From left to right: Fragments of two source ontologiesO1 andO2, the
conflicting merged ontology and the repaired one.

restrictions. When two different restrictions are combined in the merged ontology,
conflict can happen easily. As we stated before, the conflicts between restrictions in the
merged ontology should be resolved. Thus, in this section, we take a deeper look at the
resolution of occurring conflict by R13 (one type restriction) and R14 (property values’
constraint).

5.6.1 Conflicts Occurring by One type Restriction

A datatype property should have at most one range. This has been called the
one-type restriction [PB03]. A conflict can happen in the merged ontology when two
corresponding entities from different source ontologies have different data types4. For
example, in the ontology fragments in Figure 5.9, has_id from O1 and O2 contains
two different datatypes: String and Integer. In the merged result OM , the two
corresponding has_id are integrated into one entity. However, the type entities remain

4The one type conflict can happen only on datatype properties.

5.6. Conflict Resolution 81

separate, so has_id is the origin of two type relationships, which indicates a one type
conflict.

The first step toward reconciling one type conflict is to determine which alternative data
type can be used in the merged ontology. To this end, we build a Subsumption Hierarchy
SH over all supported datatypes in OWL Full. The subsumption relations between the
datatypes in SH are built based on the general data types conversions5. Starting from
depth zero at the root, the most general datatype is placed at the next level. After that,
more precise datatypes are considered.

Upon on SH, the (in-)compatibility between two datatypes can be found as:

Definition 5.5. Two data types are compatible if there is a path in SH between them that does
not go through the root. Otherwise, they are incompatible.

• Conflict solution between two compatible datatypes: Let us consider depth(vi)
shows the level of datatype vi in the SH. For example, the depth of Float in
SH is less than the depth of Double because Double is more precise than Float.
In this regard, we define substitution between two datatypes as:

Definition 5.6. Substitution of two compatible data types vi, vj ∈ SH with depth(vi) <
depth(vj), is the type of vi, since vi is a more general type in SH.

If vi and vj are compatible and have the same depth, e.g., are siblings, the
substitution is the parent type of both in SH.

• Conflict solution between two incompatible datatypes: If vi and vj are
incompatible, then no substitution can be performed on them. In this case,
we follow the proposed solution, instantiation, in the early work of the schema
merging aspects in [BDK92]:

Definition 5.7. The instantiation between two incompatible datatypes is a new type that
inherits from both.

This resolution creates an entirely new type that inherits from both data types
and replaces the two type-of relationships from the respective property by one
type-of relationship to the new type. Therefore, for two contradicting values, an
instantiation of them is a new inherited type of both.

The proposed approach is valid when the values of the restrictions are data types, i.e.,
String, Integer, Float. If they are class types (e.g., Man, Woman, Person), we follow
the semantic relatedness strategy, which we will discuss in the next section.

5.6.2 Conflicts Occurring by Property Value’s Constraint

An ontology may restrict the maximum or a minimum number of occurrences that
a given entity can take part in a relationship or enumerate the possible values of
properties. However, when the source ontologies place restrictions on property’s values,

5We assumed the OWL/RDF data types could be mapped to Java data types and considered the general
data types conversions from: https://docs.oracle.com/javase/specs/jls/se7/html/jls-5.
html#jls-5.5

https://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5
https://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5

82 Chapter 5. Generic Merge Requirements

allValuesFrom

max
Cardinality

min
Cardinality

hasValue

exact
Cardianlity

someValuesFrom

D: restriction class
R: class desc/data range

P: object/datatype property

0

0
0

0

0

0 0
00

0
0

1 1
1

1

1

1

1
1

1

1

ℂ,ℕ

𝔻𝔻,𝔾𝔾,ℕ

𝔸𝔸,ℕ

𝔽𝔽, 𝕀𝕀,ℕ

𝔹𝔹,ℕ𝔼𝔼,ℍ,ℕ

𝕄𝕄,ℕ

𝕁𝕁,ℕ

𝕂𝕂,ℕ 𝕃𝕃,ℕ

D: restriction class
R: class desc/data range

P: object/datatype property

D: restriction class
R: individual/data value

P: object/datatype property

D: restriction class
R: nonnegative integer

P: object/datatype property

D: restriction class
R: nonnegative integer

P: object/datatype property

D: restriction class
R: nonnegative integer

P: object/datatype property

Legend

1

1

0

Possible complex conflict

Possible primitive conflict

No possible conflict

Attribute

Solution Cases
𝔸𝔸 - ℕ

Constraint

FIGURE 5.10: The attributed Restriction GraphRG for six OWL Restriction types.
Three types of interactions (possible complex conflict, possible primitive conflict,

no possible conflict) and adjusted solutions (cases A-N) are presented.

the merged ontology may exhibit conflicts. To detect and reconcile value and cardinality
restriction conflicts, we build an attributed Restriction Graph RG for the six OWL
restrictions allValuesFrom, someValuesFrom, hasValue, exactCardinality,
maxCardinality, and minCardinality. Figure 5.10 shows the graph RG = (V,E).
It is an undirected labeled graph, where V is a set of vertices, and E is a set of edges. The
vertices correspond to the values and cardinality restrictions, while the edges show the
interactions between the vertices. Each vertex holds three attributes: Domain (D), Range
(R), and the properties (P) on which the constraint can be applied. A constraint links a
Domain to a Range and can be applied on object or datatype properties. Domain (D)
and Properties (P) attributes for our vertices have the same values. Thus, we construct
the edges based on the Range (R) attribute, as given by Definition 5.8 and 5.9. The
interactions between vertices can reveal three different states: (1) no conflict (isolated),
(2) primitive, or (3) complex conflict.

Definition 5.8. If the Range (R) attributes of two vertices in theRG are the same, depending on
their values and ranges, there is a possibility of conflict for them. However, two restrictions with
different Range (R) attributes are isolated from each other and can not have any conflicts.

When there is a possible conflict between vertices, the edge between these two vertices
holds label 1. Otherwise, labels of the edges are 0.

Definition 5.9. A primitive conflict is a possible conflict between the same restriction types. A
possible conflict over different restriction types is called a complex conflict.

In theRG depicted in Figure 5.10, all recursive violet-colored edges are types of possible
primitive conflicts. Orange edges between two vertices in RG depict possible complex
conflicts. Each primitive or complex conflict on the values or cardinality constraints
requires a reconciliation method. We developed such methods and derived detailed

5.7. Summary 83

solutions (see Table 5.7) to all 21 interaction restriction cases given by the cases A-N in
Figure 5.10. A summary of the resolution is:

• Cardinality restriction conflicts solution: We use the greatest lower and least
upper bound methods adapted to the individual cases.

• Value restriction conflicts solution: When the value restriction is on a data
property, we follow the approach described in Section 5.6.1. If the value restriction
is related to an object property, we apply the semantic relatedness solution, in this
way, if two values are semantically related, following the generalization of them,
we choose the super class out of them. If the values are siblings, we select their
parent value. When there is no semantic relatedness for two values (i.e., they are
not on the same hierarchy), no automatic reconciliation can be made.

5.7 Summary

Each ontology merging system aims to explicitly or implicitly fulfill a set of Generic
Merge Requirements (GMRs) that their merged ontologies should meet. In this chapter,
we contribute to analyzing them. In particular:

• We provide a comprehensive list of GMRs in the literature, classified and adapt
them in the context of the ontology merging domain.

• Since not all GMRs can be fulfilled at the same time, we propose a graph-based
framework to determine the GMRs compatibility interaction systematically. The
intuition behind using the graph theory is to facilitate the encoding of the GMRs’
compatibility via the graph presentation and reveal the other possible compatible
requirements.

• We propose an automatic ranking method to rates the suggested compatible sets.
The sorted list of them is returned to the user. It helps users to select their
appropriate set easily among all possible existence sets.

• Our proposed framework allows users to specify the most important GMRs for
their specific task at hand and to detect a maximum compatible superset. This
result can then be used to select an appropriate merge method or to parameterize
a generic merge method.

• We tackle (i) one type conflicts by building a subsumption hierarchy on data types
and performing substitution or instantiation on them, (ii) cardinality restriction
conflicts with least upper and greatest lower bound method, (iii) value restriction
conflicts by utilizing the semantic relatedness.

• The proposed framework for checking the compatibility between the GMRs can
be easily extended for the newly embedded GMRs, where building the GMR
interaction’s graph and obtaining their compatibility can be performed in the same
procedure for the new adapted GMRs.

• We embed the GMRs within the CoMerger system, where the users can access to
the logged information of applying GMRs on their merged ontologies.

84 Chapter 5. Generic Merge Requirements

TABLE 5.7: Conflicts between six OWL restrictions. Case A-N corresponds to
solution cases in Figure 5.10.

Conflict
Case Appearance

Type
Solution

value(pimaxCardinality) 6=
primitive

Taking the greatest lower
A

value(pjmaxCardinality) bound to cover both
value(pimaxCardinality) = no

-N
value(pjmaxCardinality) conflict
value(piminCardinality) 6=

primitive Taking the least upper bound to cover bothB
value(pjminCardinality)

value(piminCardinality) = no
-N

value(pjminCardinality) conflict
value(piexcatCardinality) 6=

primitive
No automatic solution,

C
value(pjexcatCardinality) applying user’s preference
value(piexcatCardinality) =

-N
value(pjexcatCardinality)

primitive

value(pimaxCardinality) =
complex Taking the exact number to cover bothD

value(pjexcatCardinality)

value(piminCardinality) =
E

value(pjexcatCardinality)
complex Taking the exact number to cover both

value(piminCardinality) =
complex

Taking the least upper bound from minCardinality and
F

value(pjmaxCardinality) greatest lower bound from maxCardinality to cover both
value(pimaxCardinality) 6= Taking the exact number if they are in the same

G
value(pjexcatCardinality)

complex
range, otherwise no automatic solution

value(piminCardinality) 6=
complex

Taking the exact number, if they are in the same
H

value(pjexcatCardinality) range, otherwise no automatic solution
value(piminCardinality) 6= Taking the least upper bound from minCardinality and

I
value(pjmaxCardinality)

complex
greatest lower bound from maxCardinality to cover both

value(pisomeV aluesFrom) 6=
primitive

for object property: utilizing semantic relatedness, taking

value(pjsomeV aluesFrom)
superclass; for datatype property: utilizing subsumptionJ

hierarchy, taking more general type
value(pisomeV aluesFrom) = no

-N
value(pjsomeV aluesFrom) conflict
value(piallV aluesFrom) 6=

primitive Applying the same solution as Case JK
value(pjallV aluesFrom)

value(piallV aluesFrom) = no
-N

value(pjallV aluesFrom) conflict
value(piallV aluesFrom) 6=

complex Applying the same solution as Case JL
value(pjsomeV aluesFrom)

value(piallV aluesFrom) = no
-N

value(pjsomeV aluesFrom) conflict
value(pihasV alue) 6= primitive

No automatic solution,
M

value(pjhasV alue) applying user’s preference
value(pihasV alue) = no

-N
value(pjhasV alue) conflict

85

6
Handling Inconsistencies

In this chapter, first, we provide an introduction to inconsistency handling in the
ontology merging process in Section 6.1. In Section 6.2, we present the preliminaries
along with an example of an inconsistent merged ontology and the Subjective Logic
theory. We then illustrate our strategy on applying Subjective Logic to handle
inconsistencies of the merged ontology in Section 6.3. We demonstrate the whole
workflow and the algorithm of our approach in Section 6.4 and Section 6.5, respectively.
In Section 6.6, we provide concise insights into the creation of a repair plan. Finally, an
illustrative example of applying our method and a summary of this chapter are given in
Section 6.7 and Section 6.8, respectively.

Moreover, a list of used notations, symbols, and nomenclature is presented in Table 6.1.
The contents of this chapter have been previously published in [BKR19c; BKR19a].

86 Chapter 6. Handling Inconsistencies

TABLE 6.1: The used notations, symbols, and nomenclature in Chapter 6.

Notation Description
OS a set of source ontologies
Oi one of the source ontologies
OM a consistent merged ontology
O′M an inconsistent merged ontology
M a mapping set between the source ontologies
n the number of source ontologies
P a proposition
x an axiom
X a set of axioms
X the trustworthiness of axiom sets
e an entity of an ontology
w an opinion
wOi
x an opinion of axiom x from Oi

bOi
x a belief of axiom x from Oi

dOi
x disbelief of axiom x from Oi

uOi
x an uncertainty of axiom x from Oi

aOi
x the atomicity of axiom x from Oi

r number of positive observations
rOi
x number of positive observations about x by Oi

s number of negative observations
sOi
x number of negative observations about x by Oi

A an agent
Cun a set of unsatisfiable concept in O′M
RootCun a set of root unsatisfiable concepts in O′M
J a set of justifications
Jd a justification
|= entail
2 not entail
⊆ subset relationship
(proper (or strict) subset relationship
v a subclass relationship between two classes
Ψxj (J) axiom frequency for xj in J
ΨOj (J) number of conflicting axiom sets belong to Oi

Γ(Oi) total number of axioms in Oi

Γxj (Oi) number of axioms in Oi containing elements of xj
fxj (Oi) the fraction of axioms in Oi containing elements of xj
α the provenance of the axioms
β the provenance of the elements of the axioms

6.1. Introduction 87

6.1 Introduction

Ontologies reflect their creators’ view on the domain and are thus somewhat subjective.
In the ontology merging process, even if the source ontologies are consistent, the
resulting merged ontology may be inconsistent due to differing world views encoded
into the source ontologies. These inconsistencies need to be resolved if one wants to
make use of the merged ontology. The resolution is, however, a challenging problem.

Most studies on inconsistency handling of ontologies (cf. [HVHH+05; KPSCG06;
LPSV06; SPF+12]) have assumed an isolated environment that an ontology is created
stand-alone from other existing ontologies. Whereas, in the context that an ontology
is built based on the existing ontologies, such as during the ontology merging
process, occurred inconsistencies can be handled by analyzing the respective resources
ontologies. The inconsistencies arising in the single development environment are
mostly the result of modeling errors. Whereas, the inconsistencies occurred in the
merged ontology might stem from different perspectives of the source ontologies for
the given domain, each of them correct in their own right. Thus, we need to determine
which source ontologies’ axioms are the most trustable and can act as a comprehensive
solution for handling the inconsistencies. This can be a considerable challenge even for
experts already in the face of modestly sized ontologies.

To handle the inconsistency of the merged ontologies, we utilize a Subjective Logic-based
approach. Subjective Logic captures opinions about the world in belief models
and provides a set of operations for combining opinions. It provides an effective
environment to manage and combine beliefs over a set of mutually exclusive assertions.
It is applicable when the problem at hand is characterized by considerable uncertainty
and incomplete knowledge. In this regards, we apply Subjective Logic to rank and
estimate the trustworthiness of conflicting axioms that cause inconsistencies within
a merged ontology. We have implemented this approach in a prototypical tool that
automatically can rank the conflicting axiom in an inconsistent merged ontology.
Moreover, through our tool, we suggest the user a set of revised operations for the
conflicting axioms in an inconsistent merged ontology. We will demonstrate the
feasibility and effectiveness of our method by the experimental results carried in
Chapter 12.

6.2 Preliminaries

Before we introduce our method, we outline preliminaries for unsatisfiable
concepts [BCM+03], incoherent [FHP+06] and inconsistent [BCM+03] ontologies along
with justification [HPS09] for an inconsistent ontology:

Definition 6.1. Unsatisfiable concepts Cun are concepts that cannot have any individuals.

The term “concept” here refers to the classes based on Definition 4.1 of an ontology
in Chapter 4. We keep the term in this chapter to be uniform with the unsatisfiable
concept’s definition in literature reviews.

88 Chapter 6. Handling Inconsistencies

An unsatisfiable root concept [KPSCG06] is an unsatisfiable class in which a
contradiction found in the class definition does not depend on the unsatisfiability of
another class in ontology. We use function RootCun to retrieve all the unsatisfiable root
concepts for the given inconsistent merged ontology. If there are a large number of
unsatisfiable concepts in an inconsistent ontology, restricting the repair efforts to the
root concepts may reduce the necessary effort.

A common error for an ontology is incoherence. It indicates that there are unsatisfiable
concepts which is interpreted as an empty set in all the models of its terminology.

Definition 6.2. An ontology O is incoherent iff there exists an unsatisfiable concept in O.

The incoherence can be considered as a kind of inconsistency in the TBox, i.e., the
terminology part of an ontology. An incoherent ontology has an incoherent TBox.
Indeed, incoherence in ontologies corresponds to inconsistency in knowledge bases in
classical logic, where a knowledge base is a finite set of classical formulae. A knowledge
base is inconsistent if and only if there is no model satisfying all its formulae, as given
below:

Definition 6.3. An ontologyO is inconsistent iff there is no model ofO, i.e.,O is unsatisfiable.

We denote an inconsistent merged ontology by O′M while OM denotes a consistent one.

The incoherence does not provide the classical sense of the inconsistency because there
might exist a model for an incoherent ontology [FHP+06]. Thus, we need classical
inconsistency for ontologies.

An inconsistent ontology does not necessarily imply that it is incoherent, and vice versa.
There exists different combinations of the inconsistency and the incoherence. Let us
consider c1, c2, and c3 as sample classes in ontology and a as an instance (individual).
There could be four variants on inconsistency and incoherence relations, as has been
stated in [FHP+06]:

• An inconsistent and coherent ontology: the two disjoint concepts c1 and c2 share
an instance a (see Case I in Figure 6.1).

• A consistent and incoherent ontology: the two disjoint concepts c1 and c2 share a
sub-concept c3 (see Case II in Figure 6.1).

• An inconsistent and incoherent ontology: the two disjoint concepts c1 and c2 share
a sub-concept c3, which has an instance a (see Case III in Figure 6.1).

• An inconsistent but coherent TBox: the two disjoint concepts c1 and c1 share a
sub-concept, which is a nominal a (see Case IV in Figure 6.1).

The propositional logic reasoning community, such as [BS05], have long used the
notion of minimal conflict sets for determining the minimal unsatisfiable subsets of a
set of clauses. These conflict sets are used to gain insight into why a set of clauses
is unsatisfiable. In essence, minimal conflict sets are akin to justifications, given by
Definition 6.4.

Definition 6.4. Let O be an ontology entailing axiom x, i.e., O |= x. Jd is a justification for
x in O if Jd ⊆ O, and Jd |= x, and for all J ′d (Jd J ′d 2 x.

6.2. Preliminaries 89

𝑐𝑐2𝑐𝑐1 Disjoint

𝑐𝑐1

𝑐𝑐2𝑐𝑐1 Disjoint

{𝑎𝑎}

𝑐𝑐2𝑐𝑐1 Disjoint

𝑐𝑐3

𝑎𝑎

𝑐𝑐2𝑐𝑐1 Disjoint

𝑐𝑐3𝑎𝑎 𝑏𝑏

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼) (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼)

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼) (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝑉𝑉)

FIGURE 6.1: Examples of various inconsistency and incoherence [FHP+06].

Intuitively, a justification is a minimal subset of an ontology that causes it to be
inconsistent. Alternatively, in [SC+03], the authors used the term MUPS (Minimal
Unsatisfiable Preserving Sub-Tboxes) for a justification of unsatisfiable concepts in
ontologies. A MUPS for a concept is a minimal fragment of the knowledge base in which
the concept is unsatisfiable. In this chapter, we use the term justification rather than
MUPS1. There may be more than one justification for a single unsatisfiable concept, since
there may be different inconsistency-causing clashes responsible for its unsatisfiability.

Given the above definitions, in this chapter, we assume the following notations:

• A set of unsatisfiable concepts is denoted by Cun = {c1, c2, ..., cu}.

• The ontology justification set J is the set of all justifications and is given by J =
{J1,J2, ...,Jl} where Jd ∈ J . There may be multiple, potentially overlapping
justifications in J .

• Each justification Jd ∈ J includes several axioms, denoted by Jd = (x1, x2, ..., xz).

• Each axiom xj ∈ Jd has a set of entities {e1, e2, ..., et}, which we call the involved
entities in xj . For example, c1 and c2 are involved entities in the axiom x1 : c1 v c2.

1On a practical level, justifications are used by many ontology development and debugging
environments such as Protégé [HTR06].

90 Chapter 6. Handling Inconsistencies

• We represent all axioms belonging to ontology justification set by X and call them
the conflicting axioms set. Indeed, they are a group of axioms that conflicts with
each other and cause a concept to be unsatisfiable.

• The trustworthiness of X is indicated by X .

6.2.1 Example: an Inconsistent Ontology

In this section, we aim to show the introduced notations within an example. Let us
consider four source ontologies conference, confOf, edas, and ekaw from the conference
track of OAEI benchmark2. The mappings between these source ontologies are
generated by the SeeCOnt tool [ABKD15]. We merged the given source ontologies by
our proposed approach in Chapter 4 without applying refinements.

In Figure 6.2, we show the class hierarchy of the built merged ontology, which is
taken from Protégé3 version 5.5. The reasoner shows that the merged ontology is
inconsistent and contains unsatisfiable concepts. In the figure, the unsatisfiable concepts
are shown in red. As a total, the merged ontology has 68 unsatisfiable concepts; 3 of
which are unsatisfiable root concepts, as shown by c1, c2, and c3 in Figure 6.2. For
these 3 unsatisfiable root concepts, there are 10 different justification sets, containing
69 duplicated conflicting axioms. In the figure, we show as an instance, 5 justification
sets (J1-J5), containing 19 distinct (32 duplicated) conflicting axioms (x1-x19). Note that
some axioms appear in several justification sets (cf. x6 in J2 and J4).

Based on our notation, we have:

• Cun = {c1, c2, ..., c68}

• RootCun = {Person,Track,Working_event}

• J = {J1,J2, ...,J10}

• X = {x1, x2, ..., x69}

To transform the inconsistent merged ontology into a consistent one, part of the
conflicting axioms should be revised. Deciding on this issue is somehow complex.
Processing justification sets and repairing ontologies is frequently referred to as ontology
debugging, where we aim to find the hitting sets of the justifications (sometimes called
diagnoses). We contribute to utilizing the Subjective Logic theory to find the least
trustworthy axioms to be revised. In Section 6.7, we will present how our method can be
applied to this example.

In the next subsection, we present the background knowledge of Subjective Logic theory.

6.2.2 Subjective Logic Theory

In traditional binary logic, propositions are considered only in two states. Thus,
believing a proposition about an aspect of the world can be presented by discrete values
of TRUE and FALSE. However, because our knowledge about the world never is perfect,

2http://oaei.ontologymatching.org/2019/conference/index.html
3https://protege.stanford.edu/

http://oaei.ontologymatching.org/2019/conference/index.html
https://protege.stanford.edu/

6.2. Preliminaries 91

68 Unsatisfiable Concepts

3 Roots

Person 𝒄𝒄𝟏𝟏

𝓙𝓙𝟏𝟏
𝑥𝑥1. Person SubClassOf hasName exactly 1 rdfs:Literal

𝑥𝑥2. hasName Domain Conference
𝑥𝑥3. Conference DisjointWith Person

𝑥𝑥1. Person SubClassOf hasName exactly 1 rdfs:Literal
𝑥𝑥2. hasName Domain Conference

𝑥𝑥4. Conference SubClassOf Scientific_Event
𝑥𝑥5. Scientific_Event SubClassOf Event

𝑥𝑥6. Event DisjointWith Person

𝓙𝓙𝟐𝟐

Working_event 𝒄𝒄𝟐𝟐

𝓙𝓙𝟑𝟑

𝑥𝑥7. Working_event SubClassOf hasTopic some Topic
𝑥𝑥8. isTopicOf InverseOf hasTopic

𝑥𝑥9. isTopicOf Range Conference or Paper
𝑥𝑥10. Confernce SubClassOf hasName exactly 1 rdfs:Literal

𝑥𝑥11. hasName Domain Person
𝑥𝑥12. Paper SubClassOf Contribution

𝑥𝑥13. Working_event SubClassOf Event
𝑥𝑥3. Conference DisjointWith Person
𝑥𝑥14. Contribution DisjointWith Event

𝑥𝑥7. Working_event SubClassOf hasTopic some Topic
𝑥𝑥8. isTopicOf InverseOf hasTopic

𝑥𝑥9. isTopicOf Range Conference or Paper
𝑥𝑥10. Confernce SubClassOf hasName exactly 1 rdfs:Literal

𝑥𝑥11. hasName Domain Person
𝑥𝑥12. Paper SubClassOf Contribution

𝑥𝑥13. Working_event SubClassOf Event
𝑥𝑥14. Conference DisjointWith Event
𝑥𝑥6. Event DisjointWith Person

𝓙𝓙𝟒𝟒

Track 𝒄𝒄𝟑𝟑

𝓙𝓙𝟓𝟓

𝑥𝑥15. Track SubClassOf Scientific_Event
𝑥𝑥16. Scientific_Event SubClassOf Event

𝑥𝑥17. Track SubClassOf Conference_part
𝑥𝑥18. Conference_part SubClassOf Paper

𝑥𝑥19. Paper SubClassOf Contribution
𝑥𝑥14. Contribution DisjointWith Event

FIGURE 6.2: Example of an inconsistent ontology: The concepts shown in red are
unsatisfiable. The ontology contains 68 unsatisfiable concepts, which among 3 are
roots, shown by c1-c3. Five justification sets J1-J5, including a set of conflicting

axioms x1-x19, are presented.

92 Chapter 6. Handling Inconsistencies

human expressions may not always determine with absolute certainty whether the given
proposition is TRUE or FALSE. Additionally, when the truth of a statement is evaluated
by one individual (source), it can not represent a general and objective opinion. This
indicates that capturing our perception of reality by traditional logic is applicable to the
idealistic world, only.

Thereby, with our imperfect knowledge, we can only have an opinion about the
proposition. In this view, we can express our opinion with degrees of belief or
disbelief. Moreover, our unawareness of the proposition can be presented as a vacuous
belief, filling the vacancy in the absence of both belief and disbelief. In this field,
Subjective Logic theory [Jøs16] emerges to express subjective opinions and operates on
our subjective perception about the world. The logic uses individual opinions about the
truth of propositions as variables.

Since opinions are subjective, they have ownership assigned whenever relevant. The
owner of an opinion is called an agent. In the formulation of the opinion in Subjective
Logic, superscripts indicate ownership, and subscripts indicate the proposition to which
the opinion applies. For instance, wA

P is an opinion held by agent A about the truth of
proposition P . The agents can express their opinions with degrees of belief (b), disbelief
(d), uncertainty (u), and atomicity (a) about a given proposition (P). In particular:

• Belief (b) is the belief that the proposition is TRUE.

• Disbelief (d) is the belief that the proposition is FALSE.

• Uncertainty (u) is the amount of uncommitted belief.

• Atomicity (a) or a priori probability is the base rate in the absence of all evidence.

These components satisfy b + d + u = 1.0 and b, d, u, a ∈ [0, 1]. An opinion denoted by
wA
P = (b, d, u, a) expresses the belief of the agent A in the truth of the proposition P .

Binomial opinions are represented in [Jøs16] on a triangle, as shown in Figure 6.3. A
point inside the triangle indicates a (b, d, u) triple. The triangle has three axes: belief,
disbelief, and uncertainty. The axes run from one edge to the opposite vertex. The
atomicity is shown as a point on the base line. Given these values, we can demonstrate
the probability expectation (tx) for an opinion. It is formed by projecting the opinion
point onto the base, parallel to the base rate director line. As an instance, the opinion
wx = (0.2, 0.5, 0.3, 0.6) with probability expectation tx = 0.38 is shown in the Figure 6.3.
A strong positive opinion can be represented by a point towards the bottom right belief
vertex. As a whole, if the opinion point is located at the left or right bottom vertex in
the triangle, the opinion is equivalent to boolean TRUE or FALSE. The characteristics of
various binomial opinion classes are listed below. A binomial opinion:

• where b = 1 is equivalent to binary logic TRUE,

• where d = 1 is equivalent to binary logic FALSE,

• where b+ d = 1 is equivalent to a traditional probability,

• where b+ d < 1 expresses degrees of uncertainty, and

• where b+ d = 0 expresses total uncertainty.

6.2. Preliminaries 93

Belief axisDisbelief axis

Uncertainty axis

Atomicity Probability
expectation value

Projector
Opinion
𝑤𝑤

Example opinion:
𝑤𝑤 = (0.2,0.5,0.3,0.6) Director

FIGURE 6.3: Opinion triangle with example opinion [Jøs16].

In the context of merging ontologies, it is the creators of the source ontologies that have
opinions about the trustworthiness of certain axioms. Since we do not have direct access
to the creators, we substitute their opinions by the ontologies that they created in order to
reflect their subjective views. Thus, for us, the source ontologies reflecting the creators’
belief play the agent role.

Let P be a proposition such as:

“Axiom x is trustworthy in the merged ontology OM”.

Then, the binomial opinion w of agent Oi ∈ Os about the proposition P is equivalent
to a beta distribution for the information source x [Jøs16]. An opinion of axiom x from
agent Oi is given by wOi

x . It is expressed by belief bOi
x , disbelief dOi

x , uncertainty uOi
x ,

and atomicity aOi
x with a tuple given by Equation 6.1, where bOi

x + dOi
x + uOi

x = 1.0 and
bOi
x , dOi

x , uOi
x , aOi

x ∈ [0, 1].
wOi
x = (bOi

x , dOi
x , uOi

x , aOi
x) (6.1)

Opinions are formed on the basis of positive and negative evidence. Let rOi
x and sOi

x be
the number of positive and negative past observations about x by agentOi, respectively.
Then, bOi

x , dOi
x , and uOi

x are calculated upon them, as it is shown in Equations 6.2, 6.3,
and 6.4.

bOi
x =

rOi
x

rOi
x + sOi

x + 2
(6.2)

dOi
x =

sOi
x

rOi
x + sOi

x + 2
(6.3)

94 Chapter 6. Handling Inconsistencies

uOi
x =

2

rOi
x + sOi

x + 2
(6.4)

where, 2 in Equations 6.2, 6.3, and 6.4 indicated binomial opinions. Thus, the opinion’s
probability expectation value is computed in Equation 6.5 as the trustworthiness of
axiom x by agent Oi:

tOi
x = bOi

x + aOi
x × uOi

x (6.5)

In order to apply this logic to our problem, we need to formulate rOi
x and sOi

x as a basis
to computing bOi

x , dOi
x , uOi

x , and aOi
x . We contribute to them in the next section. Upon

them, we can calculate the trustworthiness of the conflicting axioms. We will also present
how the combination of opinion can be held by Subjective Logic operators, considering
dependencies across them.

In general, over the last decade, Subjective Logic has been increasingly used in the
Semantic Web. It is successfully applied in a variety of applications, such as ontology
alignments [HS08; Jus04], annotation evaluation [CNF12; CVHF10], recommendation
systems [PK12], and ontology inconsistency handling [SPF+12]. The last one, similar
to us, used the Subjective Logic to solve ontology inconsistencies but in a single
development environment. Moreover, the authors only used the atomicity value and
omitted the belief, disbelief, and uncertainty values. Additionally, they did not consider
the agent’s opinion combination.

6.3 Proposed Method for Inconsistency Handling by Subjective
Logic

We handle inconsistency of the merged ontology by utilizing the Subjective Logic theory.
To achieve this, we formulate negative s and positive r observation along with atomicity
a in Section 6.3.1, Section 6.3.2, and Section 6.3.3, respectively. We then demonstrate
how different opinions can be combined in Section 6.3.4, followed by considering their
dependency in Section 6.3.5.

6.3.1 Negative Observation

To determine the negative observation r for the trustworthiness of the axiom xj
belonging to the conflicting axiom sets X , we use:

• Ψxj (J): the axiom frequency for xj in the justification set J

• ΨOi(X): the number of conflicting axiom sets, belonging to Oi

With the first criterion, we want to observe how many times the axiom xj appears in J ’s
elements. Thus, we count the number of axiom xj in J . With the second one, we aim

6.3. Proposed Method for Inconsistency Handling by Subjective Logic 95

to reflect the view of the Oi. Upon them, we determine the negative observation s for
axiom xj by agent Oi in Equation 6.6.

sOi
xj

=
Ψxj (J)

ΨOi(X)
(6.6)

This idea is similar to the notion of arity of the axiom in [SC+03]. Moreover, it is already
used in [KPSCG06] to accelerate the process of getting rid of unsatisfiable concepts in an
inconsistent ontology.

6.3.2 Positive Observation

To determine the positive observations r of the axiom xj ∈ X , we use the provenance
information of the axiom. Note that each axiom in the merged ontology OM is derived
from one or several source ontologies. Therefore, we can base the positive observation r
for xj by the agent Oi as the multiplication of:

• Provenance information: the existence of the axiom xj in the source ontology Oi

• Effect: the impact of changes of the axiom xj in the merged ontology OM

In our prototype, the existence of an axiom in a source ontology is determined by
searching their equivalent entities based on the given mappings M. This could be
extended to more powerful logic-based approaches.

The second criterion (effect) reflects how much the ontology gets affected if the axiom xj
is removed or altered. For this, we determine how often the elements exj of axiom xj
have been referenced in other axioms in the ontology. We formulate:

• Γxj (Oi): the number of axioms in Oi that contains elements of xj

• Γ(Oi): the total number of axioms in Oi

Then, the fraction of axioms in Oi that contains elements of xj indicates their effect, as
shown in Equation 6.7.

fxj (Oi) =
Γxj (Oi)

Γ(Oi)
(6.7)

The significance of this strategy is based on the following intuition: if the elements in
the axiom are used and referred often in other axioms, changing or removing axioms
related to these elements may be undesired. For example, if a certain class is heavily
instantiated, or if a certain property is heavily used by many classes, then the user needs
to be aware of changing this axiom.

96 Chapter 6. Handling Inconsistencies

Therefore, the positive observation r for axiom xj by agent Oi is determined by
provenance × effect, as shown in Equation 6.8.

rOi
xj

=

{
α× fxj (Oi) if xj ∈ Oi

β × fxj (Oi) if xj /∈ Oi

(6.8)

The provenance of the axioms is represented by the α and β parameters, which can be
determined by the user. If the given axiom does not belong to the source ontology, i.e.,
xj /∈ Oi, but at least one element of the axiom exists in Oi, then fxj (Oi) is multiplied
with β parameter. Otherwise, it is multiplied with α parameter.

6.3.3 Atomicity

The atomicity metric (or namely, base rate or a priori probability) plays an important
role in the absence of evidence for belief, disbelief, and uncertainty. It reflects prior
knowledge about the phenomenon at hand. When there is no other evidence for belief,
disbelief, and uncertainty, we use the available indicator of ontology’s characteristics in
order to determine the atomicity in our context.

To this end, we utilize the centrality measure of the axioms’ elements. Centrality
measures are designed to rank the entities according to their positions in the graph.
They are interpreted as the prominence of entities embedded in an intended structure.
In [ABKD15], centrality measures have been successfully utilized to rank the importance
of ontology’s entities. Following this idea, we use them to express atomicity. This leads
us to use degree centrality [Nie74], which calculates the number of connections of a node.
In a directed graph, there are an in-degree and an out-degree centrality that calculate the
number of input and output links, respectively. In the context of ontologies, we indicate
the in-degree and out-degree with the number of super- and subclasses for a given class.

Therefore, for axiom xj containing t elements xj = {e1, e2, ..., et}, the atomicity a by
agent Oi is shown in Equation 6.9. SubClass(eg) and SuperClass(eg) return the sub-
and superclasses of eg ∈ xj , respectively.

aOi
xj

=
1

|e| ∈ Oi
×

t∑
g=1

|SubClass(eg) ∪ SuperClass(eg)|, eg ∈ xj (6.9)

Through Equation 6.9, the atomicity is calculated by the total number of super- and
subclasses of the elements divided by the total number of elements |e| inOi. It is evident
that the atomicity for an entity increases as it has a larger number of connections in the
class hierarchy.

Summing up, by formulating the negative s and positive r observation alongside with
atomicity a, we can obtain the belief, disbelief, and uncertainty to specify the opinion
of agent Oi for the axiom xj . As a result, the trustworthiness of the axiom xj can be
achieved by Equation 6.5.

6.3. Proposed Method for Inconsistency Handling by Subjective Logic 97

6.3.4 Combining Opinions

Up to now, we have been looking at the opinions of individual agents. The consensus (⊕)
operator [Jøs16] of Subjective Logic computes the combination of opinions of different
agents. Combining the opinions lets to express more trustworthy opinions that are
agreed upon by multiple agents. The consensus operator combines opinions of two or
more independent and possibly conflicting opinions about the same proposition into a
single one that reflects both opinions in a fair and equal way.

Let wO1
x = (bO1

x , dO1
x , uO1

x , aO1
x) and wO2

x = (bO2
x , dO2

x , uO2
x , aO2

x) be opinions respectively
held by O1 and O2 about the same proposition x. Then, the consensus (⊕) for these two
opinions wO1O2

x = wO1
x ⊕ wO2

x is shown in Equation 6.10.

wO1
x ⊕ wO2

x =(
bO1
x uO2

x + bO2
x uO1

x

k
,
dO1
x uO2

x + dO2
x uO1

x

k
,
uO1
x uO2

x

k
,
aO1
x uO2

x + aO2
x uO1

x − (aO1
x + aO2

x)uO1
x uO2

x

uO1
x + uO2

x − 2uO1
x uO2

x

)
(6.10)

where k = uO1
x + uO2

x − uO1
x uO2

x such that k 6= 0 and aO1O2
x = (aO1

x + aO2
x)/2 when

uO1
x , uO2

x = 1.

Thus, by utilizing the consensus operator over the opinions from different agents about
the conflicting axioms, we can achieve a more robust opinion.

6.3.5 Applying Conditional Opinions to Reflect the Dependencies

As we stated before, justifications in the ontology justification set J = {J1,J2, ...,Jl}
might have overlap, i.e., the axioms in the Jd ∈ J might exist in other J s (see the
example in Section 6.2.1). In our prototype, we use the sorted order of justifications set
based on the axiom frequency. The described approach so far does not consider the effect
of the ranked value for the axioms that are already calculated in one Jd, once the other
J s want to be ranked. To overcome this drawback, we use the conditional theory of
Subjective Logic [Jøs16] in order to reflect the effect of dependent opinions.

Let us explain our intuition with an example: Suppose the ontology justification set
includes three justifications, as J = {J1,J2,J3}. Let us consider that axioms are
repeated in multiple J s, such as:

J = {(xJ11 , xJ12 , xJ13), (xJ24 , xJ25 , xJ26 , xJ27), (xJ33 , xJ34 , xJ35 , xJ37 , xJ38)}

where J1 ∩ J2 = ∅ but (J1,J2) ∩ J3 6= ∅. The opinions for axioms belonging to J1 and
J2 are calculated as independent opinions using Equation 6.1. However, some axioms
of J3 have already obtained ranked values from J1 and J2. Although we can use the
previous ranked values from J1 and J2 for x3, x4, x5, x7 in J3, it might happen that these
axioms get differently ranked concerning the remaining axioms in J3. Therefore, in an
incremental process, we calculate a new value in each J , but we also consider the effect
of the previous ranked values for axioms in other J s.

98 Chapter 6. Handling Inconsistencies

In this case, the proposition P , for instance, for axiom x3 writes as:

“x3 ∈ J3 is trustworthy if x3 ∈ J1 already has a trustworthiness of 0.3”.

This idea translates to “IF x THEN y”, which is equal to the probability of the proposition
y given that the proposition x is TRUE. More precise expression is:

p(IF x THEN y) = p(y|x)

This has been represented in [Jøs16] by wy||x with the conditional deduction (}) operator.

Let X = {x, x̄} and Y = {y, ȳ} be two binary frames where there is a degree of relevance
between X and Y. Let us consider that

• wx = (bx, dx, ux, ax) is an agent’s opinion about x being true;

• wy|x = (by|x, dy|x, uy|x, ay|x) is an agent’s opinion about y being true given that x is
true;

• wy|x̄ = (by|x̄, dy|x̄, uy|x̄, ay|x̄) is an agent’s opinion about y being true given that x is
false.

The conditional deduction (}) operator is a ternary operator (i.e., requires 3 input
arguments), as shown in Equation 6.11.

wy||x = wx } (wy|x, wy|x̄) = (by||x, dy||x, uy||x, ay||x) (6.11)

where,

by||x = (bxby|x + dxby|x̄ + ux(by|xax + by|x̄(1− ax)))− ayK
dy||x = (bxdy|x + dxdy|x̄ + ux(dy|xax + dy|x̄(1− ax)))− (1− ay)K

uy||x = (bxuy|x + dxuy|x̄ + ux(uy|xax + uy|x̄(1− ax))) +K

ay||x = ay

(6.12)

Indicator K can be determined according to three different selection criteria detailed
in [Jøs16].

If y relates to multiple x variables, they are combined using the consensus operator, as
shown by Equation 6.13.

wy||(x1,x2,..xj) = wy||x1
⊕ wy||x2

⊕ ...⊕ wy||xj
(6.13)

In our example, several axioms in J3 are already repeated in J1 and J2, i.e.,
wy||(x3,x4,x5,x7).

The deduction operator requires that wy|x and wy|x̄ be formulated in our context.
Suppose wJ1xj

= (bJ1xj
, dJ1xj

, uJ1xj
, aJ1xj

) and wJ2xf
= (bJ2xf

, dJ2xf
, uJ2xf

, aJ2xf
) are already calculated

6.4. Inconsistency Handling Workflow 99

by Equation 6.1. Let for the sake of simplicity y = xJ2f and x = xJ1j . Then, following the

probabilistic conditional p(y|x) = p(y∧x)
p(x) , we re-write p(y|x) as:

wy|x =
wy∧x
wx

(6.14)

where wy∧x = (by∧x, dy∧x, uy∧x, ay∧x) [Jøs16] is shown by Equation 6.15.

by∧x = bybx, dy∧x = dy + dx − dydx,

uy∧x = byux + uybx + uyux, ay∧x =
byuxax + uyaybx + uyayuxax

byux + uybx + uyux

(6.15)

Division operation wy

wx
is defined in [Jøs16], as represented in Equation 6.16.

by\x = by − bx, dy\x =
ay(dy + bx)− ax(1 + bx − by − ux)

ay − ax
,

uy\x =
ayuy − axux
ay − ax

, ay\x = ay − ax
(6.16)

We apply the same approach towy|x̄, wherewx̄ is defined in [Jøs16] aswx̄ = (dx, bx, ux, 1−
ax).

In the next section, we present our workflow to handle the inconsistency of the merged
ontology.

6.4 Inconsistency Handling Workflow

Figure 6.4 shows our workflow to handle the inconsistency of the merged ontology. It
includes an iterative process in five main steps:

1. The merged ontology is tested by off-the-shelf reasoners such as Pellet [SPG+07],
whether it is consistent and coherent.

2. For the inconsistent and incoherent merged ontology, containing unsatisfiable
concepts, a set of conflicting axioms are identified using the reasoner.

3. Trustworthiness of each axiom is computed based on our Subjective Logic-based
approach. The degree of trust for each conflicting axiom will be presented to the
user.

4. For the lowest trustworthiness axiom, a revised plan is generated, and possible
suggestions to repair the ontology are provided to the user.

5. The plan can be applied automatically, or users can make their desired changes
before applying them.

After revising the conflicting axioms by performing a set of processes such as deleting or
rewriting, the merged ontology is tested again with the consistency test of the reasoner.

100 Chapter 6. Handling Inconsistencies

Consistency
test by the
reasoner

Extract
conflicting

axioms

Yes

Apply repair
plan

Consistent merged ontology

No

1
2

45
Determine

trustworthiness
of axioms

3

Inconsistent?

Generate repair
plan

(Delete/Rewrite)

Merged ontology

FIGURE 6.4: Our workflow to handle inconsistency of the merged ontology.

If applicable, the process will be iterated. Sometimes, more than one iteration is required
to make the inconsistent merged ontology into the consistent ones.

6.5 Algorithm

Algorithm 6.1 describes our proposed approach to rank the conflicting axioms in order
to determine the degree of trustworthiness of them. The algorithm takes as input an
inconsistent merged ontology O′M with a set of source ontologies OS . It generates a
consistent merged ontology OM .

At first, unsatisfiable concepts Cun and their justification sets J are extracted (lines 2-3).
After that, for each justification Jd ∈ J , the algorithm checks whether it has some shared
axioms with other J s, i.e., (Jd ∩ {J1,J2, ...,Jd−1} 6= ∅) (line 7). If so, the opinion for
xj ∈ Jd is calculated as the conditional deduction in line 8. Otherwise, it is calculated
as line 10. Then, the opinion combination of all agents takes place (line 13). The ranked
value (trustworthiness) for each axiom xj ∈ Jd is represented by x̄Jdj and calculated in
lines 14-15 . Based on the total ranked axioms, shown by X , a repair plan is generated
and presented to the users (line 18). Users can apply our suggested plan directly or edit
it before applying on the O′M (line 19). The merged ontology is checked again for the
consistency tests. If it is still inconsistent, the whole process will be repeated. Otherwise,
OM is returned as a consistent merged ontology.

6.6 Repair plan

In the repair process, a plan should be generated whose primary goal is to suggest a
repair solution for the least trustworthy axioms while preserving the more trustworthy
axioms. To this end, a library of error patterns extracted from [KPSCG06] has been
embedded in our system. For the least trustworthy axiom of each justification, we check

6.7. Example: Applying Our Method on an Inconsistent Ontology 101

Algorithm 6.1: The Subjective Logic-based algorithm for handling inconsistencies of
the merged ontology.

Input: an inconsistent merged ontology O′M , a set of source ontologies OS ;
Output: a consistent merged ontology OM ;

1 while (O′M is inconsistent) do
2 Cun ⇐ extract unsatisfiable concepts from O′M ;
3 J ⇐ extract justifications for Cun;
4 for (∀ Jd ∈ J) do
5 for (∀ xj ∈ Jd) do
6 for (∀ Oi ∈ OS) do
7 if (Jd ∩ {J1,J2, ...,Jd−1} 6= ∅) then
8 wOi

xj
⇐ wOi

y||(xj) according to Equation 6.11;

9 else
10 wOi

xj
⇐ (bOi

xj
, dOi

xj
, uOi

xj
, aOi

xj
) according to Equations 6.2, 6.3, 6.4,

and 6.9;
11 end
12 end
13 wOxj

= wO1
xj
⊕ ...⊕ wOn

xj
according to Equation 6.10;

14 tOxj
= bOxj

+ aOxj
× uOxj

according to Equation 6.5;
15 x̄Jdj ⇐ tOxj

;
16 end
17 end
18 plan⇐ GenerateRepairP lan(X);
19 O′M ⇐ ApplyP lan(O′M , plan);
20 end
21 OM ⇐ O′M ;
22 return OM

if any of the axioms has a pattern corresponding to one in the library. If so, we suggest it
to the user as a replacement axiom. As a whole, a set of candidate changes is presented
to the user, in which the user can apply the repair plan on a particular or all proposed
axiom(s). Note that the generated plan can be applied automatically, or the user can
customize it before applying.

It might happen that the user-selected plan cannot get rid of all inconsistencies in one
iteration in the ontology. Therefore, the mentioned procedures will be repeated until a
consistent merged ontology will be achieved.

6.7 Example: Applying Our Method on an Inconsistent
Ontology

Let us consider the four source ontologies from Section 6.2.1 that are merged by
the merger component in Figure 6.5. As described before, the reasoner component

102 Chapter 6. Handling Inconsistencies

in Figure 6.5 shows that the merged ontology OM is inconsistent and has three
unsatisfiable root concepts Cun = {c1, c2, c3}, where c1=Person, c2=Working_event,
and c3=Track. There are 10 justification sets for the three unsatisfiable concepts. We
show three J s in the figure, including:

J = {(xJ11 , xJ12 , xJ13), (xJ21 , xJ22 , xJ24 , xJ25 , xJ26), (xJ37 , xJ38 , xJ39 , xJ310 , x
J3
11 , x

J3
12 , x

J3
13 , x

J3
3 , xJ314)}

A remedy for inconsistencies arises in the merged ontology would require the removal
or rewriting a minimal part of the ontology in order to make the merged ontology
consistent. To compute which axioms are less trustworthiness, we follow the presented
Subjective Logic-based approach, as shown in the ranker component in Figure 6.5.

Axioms in the first J are considered independent since there are no previous
justifications for them. Thus, they follow the independent opinion process, as it is shown
in Figure 6.5. In this regard, proposition P , for instance, for x1 ∈ J1 is written as:

“the information source xJ11 is trustworthy in the merged ontology OM”.

We show the opinion of each ontology in Table 6.2. Based on the given values, the
probability exception values are calculated for each opinion in the last column.

TABLE 6.2: Example opinions for x1 from four source ontologies O1-O4.

Ontology Opinion Value Probability exception
O1 wO1

x
J1
1

= (bO1

x
J1
1

, dO1

x
J1
1

, uO1

x
J1
1

, aO1

x
J1
1

) wO1

x
J1
1

= (0.3, 0.5, 0.2, 0.3) tO1

x
J1
1

= 0.26

O2 wO2

x
J1
1

= (bO2

x
J1
1

, dO2

x
J1
1

, uO2

x
J1
1

, aO2

x
J1
1

) wO2

x
J1
1

= (0.7, 0.1, 0.2, 0.2) tO2

x
J1
1

= 0.74

O3 wO3

x
J1
1

= (bO3

x
J1
1

, dO3

x
J1
1

, uO3

x
J1
1

, aO3

x
J1
1

) wO3

x
J1
1

= (0.4, 0.3, 0.3, 0.8) tO3

x
J1
1

= 0.64

O4 wO4

x
J1
1

= (bO4

x
J1
1

, dO4

x
J1
1

, uO4

x
J1
1

, aO4

x
J1
1

) wO4

x
J1
1

= (0.2, 0.6, 0.2, 0.3) tO4

x
J1
1

= 0.26

The combined opinion for xJ11 is calculated as:

wO
x
J1
1

= wO1

x
J1
1

⊕ wO2

x
J1
1

⊕ wO3

x
J1
1

⊕ wO4

x
J1
1

= (0.48, 0.46, 0.06, 0.30)

Thus, the opinion’s probability exception value for axiom x1 based on Equation 6.5 is:

tO
x
J1
1

= bO
x
J1
1

+ aO
x
J1
1

× uO
x
J1
1

= 0.48 + 0.30× 0.06 = 0.50

The opinions for x2, x3 ∈ J1 are calculated accordingly.

Axioms in J2 already have values in J1, so we follow the conditional deduction, as they
are dependent on J1. For instance, for axiom x1 in J2, the proposition P is written as:

“xJ21 is trustworthy iff tO
x
J1
1

= 0.50, and tO
x
J1
2

= 0.27”.

Then, the conditional opinion for this axiom is calculated as:

w
x
J2
1 ||(x

J1
1 ,x

J1
2)

= w
x
J2
1 ||x

J1
1
⊕ w

x
J2
1 ||x

J1
2

= 0.2.

The remaining axioms follow the same process. As a result, x1 ∈ J1, x6 ∈ J2, and
x14 ∈ J3 will be presented to the user for revision, as they are the least trustworthy in
their respective justification sets.

6.8. Summary 103

Reasoner

Information source 𝑥𝑥1 is trustworthy in 𝒪𝒪𝑀𝑀
𝒫𝒫

𝑡𝑡𝑥𝑥1:𝒪𝒪1
𝒫𝒫 = 0.36 𝑡𝑡𝑥𝑥1:𝒪𝒪2

𝒫𝒫 = 0.74

𝑡𝑡𝑥𝑥1:𝒪𝒪3
𝒫𝒫 = 0.64

𝑤𝑤𝑥𝑥1:𝒪𝒪𝑀𝑀
𝒫𝒫 =

𝑤𝑤𝑥𝑥1:𝒪𝒪1
𝒫𝒫 ⊕𝑤𝑤𝑥𝑥1:𝒪𝒪2

𝒫𝒫 ⊕ 𝑤𝑤𝑥𝑥1:𝒪𝒪3
𝒫𝒫 ⊕𝑤𝑤𝑥𝑥1:𝒪𝒪4

𝒫𝒫 =

0.48,0.46,0.06,0.30

𝑡𝑡𝑥𝑥1:𝒪𝒪𝑀𝑀
𝒫𝒫 = 0.50

Conference.owl

𝒪𝒪1

Subjective Logic RankerMerger

Mapping

Edas .owl
𝒪𝒪3

ConfOf.owl
𝒪𝒪2

Inconsistent
merged ontology

𝒪𝒪𝑀𝑀

𝒪𝒪1
Conference.owl

Ekaw .owl
𝒪𝒪4

Merger

Person 𝒄𝒄𝟏𝟏

𝓙𝓙𝟏𝟏
𝑥𝑥1. Person SubClassOf hasName exactly 1 rdfs:Literal

𝑥𝑥2. hasName Domain Conference
𝑥𝑥3. Conference DisjointWith Person

𝑥𝑥1. Person SubClassOf hasName exactly 1 rdfs:Literal
𝑥𝑥2. hasName Domain Conference

𝑥𝑥4. Conference SubClassOf Scientific_Event
𝑥𝑥5. Scienetific_Event SubClassOf Event

𝑥𝑥6. Event DisjointWith Person

𝓙𝓙𝟐𝟐

Working_event 𝒄𝒄𝟐𝟐

𝓙𝓙𝟑𝟑

𝑥𝑥7. Working_event SubClassOf hasTopic some Topic
𝑥𝑥8. isTopicOf InverseOf hasTopic

𝑥𝑥9. isTopicOf Range Conference or Paper
𝑥𝑥10. Conference SubClassOf hasName exactly 1 rdfs:Literal

𝑥𝑥11. hasName Domain Person
𝑥𝑥12. Paper SubClassOf Contribution

𝑥𝑥13. Working_event SubClassOf Event
𝑥𝑥3. Conference DisjointWith Person
𝑥𝑥14. Contribution DisjointWith Event

Ekaw .owl
𝒪𝒪4

Edas .owl
𝒪𝒪3

ConfOf.owl
𝒪𝒪2

𝑡𝑡𝑥𝑥1:𝒪𝒪4
𝒫𝒫 = 0.26

FIGURE 6.5: Ontologies are merged, and the result is inconsistent; The reasoner
detects the justification sets and unsatisfiable concepts of the merged ontology; the
Subjective Logic-based method ranks the axioms belonging to the justifications.
Opinions from four source ontologies are combined by the consensus (⊕) operator

for one proposition P .

6.8 Summary

The main characteristics of our proposed method summarized as:

• We tackle inconsistencies arising in the merged ontology, concerning the respective
source ontologies.

• We utilize the Subjective Logic theory to combine several criteria in order to rank
the conflicting axioms by belief, disbelief, and atomicity values.

• We provide the systematic formulation for the positive rOi
x and negative sOi

x

observation alongside with atomicity aOi
x in the context of an inconsistent merged

ontology.

• The opinions of the agents have been combined in our prototype by the consensus
operators of the Subjective Logic.

• When conflicting axioms belonging to a justification set are dependent on other
sets, we employ the conditional ranking.

105

7
Quality Assessment for the Merged Ontology

This chapter starts with an introduction to the proposed quality evaluation method
in Section 7.1, followed by preliminaries and relevant background knowledge in
Section 7.2. In Section 7.3, we present a set of evaluation principles. Our proposed
framework for the evaluation of the quality of the merged ontology dimensions is
described in Section 7.4, followed by our quality assessment workflow in Section 7.5.
Finally, we present a summary of this chapter in Section 7.6.

Moreover, a list of used notations, symbols, and nomenclature is shown in Table 7.1. The
contents of this chapter have been previously published in [BGKR20b].

106 Chapter 7. Quality Assessment for the Merged Ontology

TABLE 7.1: The used notations, symbols, and nomenclature in Chapter 7.

Notation Description
O an ontology
OS a set of source ontologies
OM a merged ontology
M a mapping between source ontologies
Ok(L) ontology using logical language L under commitment k
EOM

quality evaluation function
D an evaluation dimension
S a set of inputs for the evaluation function
ċ coefficient of measurement error
mp a measurement procedure of evaluating quality indicators
m the output (numerical value) of EOM

L logical language
C conceptualization
Ik(L) intended model
k commitment to certain I for L
4 a set of relevant entities
W a set of possible worlds
R a set of intensional relations
TP True Positive
FP False Positive
FN False Negative
TN True Negative
n
Ok(L)
TP number of TP of Ok(L)

n
Ok(L)
FP number of FP of Ok(L)

n
Ok(L)
FN number of FN of Ok(L)

P Precision
R Recall
P1-P22 principles of the evaluation standards
CQ Competency Question
GMR General Merge Requirement
R1-R20 individual GMRs

7.1. Introduction 107

7.1 Introduction

The ontology merging process plays an essential role within different Semantic Web
applications. The merged ontologies have a central role in realizing real-world
applications. Thus, there is a strong need to develop evaluation methods that can
measure their quality.

Most studies in ontology merging lack sufficient experimental evaluation on the merged
result. Some of these studies evaluate the accuracy of their generated alignment on
the merge scenario (cf. [MFBB10; MTFH14]). The few proposed benchmarks [MFH16;
RR12] are restricted to a few criteria, only, and thus can not be adequately used for
the quality evaluation of merged ontologies. Ontology merging systems such as [RR14;
FRP14; JERS+11] that use criteria-based techniques to evaluate their methods are usually
limited to a few measures and do not fully cover quality aspects. Manual evaluation
of merged ontologies is a complex, error-prone, and labor-intensive task for users or
experts, especially for large-scale ontologies. Automatic evaluation of merged ontologies
can provide a wide range of criteria in different quality aspects. Thus, it helps end-users
and experts to obtain comprehensive knowledge on strengths and weaknesses in order
to build trust for sharing and reusing merged ontologies. If applicable, they can drive
further improvements before involving merged ontologies in their desired application.

To evaluate merged ontologies systematically, we adapt evaluation dimensions from two
well-known ontology evaluation frameworks [DRFBSAG+11; GCCL05] and customize
them in the context of ontology merging. These two works introduced structural
and functional evaluation dimensions. Moreover, the usability in [GCCL05], and the
reliability, operability, and maintainability dimensions in [DRFBSAG+11] are presented.
We build our criteria on top of these classifications, formulate them, and analyze
how these dimensions can be practically evaluated on merged ontologies. Associated
indicators introduced in each dimension are designed by considering evaluation
standards in [BBL76; DGFE16]. The novelty of this research is to bring these dimensions
with systematic formulations in the context of the evaluation of merged ontologies and
make them feasible in practice. A set of experimental tests are conducted in Chapter 13
to demonstrate the feasibility of our assessment.

7.2 Preliminaries & Background

This section introduces the used notations and briefly discusses relevant background
knowledge.

An ontology merging evaluator takes as input a merged ontology alongside respective
source ontologies, their mappings, and user parameters. It generates a set of quality
indicator values as output. Precisely:

Definition 7.1. An ontology merging evaluator measures the quality of the merged ontology
OM based on a set of source ontologies OS , their mappingsM, and user parameters concerning
a set of evaluation quality characteristics.

108 Chapter 7. Quality Assessment for the Merged Ontology

An ontology is a fairly complex structure with several interdependent measurable
features. It is often more practical to focus on the evaluation of different levels
of the ontology separately rather than evaluating the ontology as a whole. Thus,
a set of various quality characteristics is required for measuring different quality
levels [GCCL05]. Evaluating merged ontologies for a particular characteristic depends
on the evaluation of its set of associated sub-characteristics. Likewise, the evaluation
of a particular sub-characteristic depends on its associated indicators. Thus, quality
indicators are statistical measures that indicate output quality. Each quality indicator
is a unit of measurement of quality evaluation. In this view, the quality is presented in
different levels of abstraction, characteristics (dimension), sub-characteristics (aspect), and
sub-sub-characteristics (indicator):

Definition 7.2. A dimension shows the top-level particular quality evaluation of merged
ontologies. It consists of several aspects, each depending on associated indicators.

Given these preliminaries, the remaining part of this section will address:

• The difference between ontology evaluation and ontology ranking

• Insufficiency of the global scoring

• Different domains of evaluation

• Towards a customizable evaluation of merged ontologies

7.2.1 Ontology Ranking vs. Ontology Quality Evaluation

Ontology ranking may be considered similar to ontology quality evaluation in that they
both try to evaluate ontologies based on a set of quality indicators. However, they are
performed for different purposes.

• Approaches to ontology ranking aim to select the best ontology among many
candidates for a given purpose in a project or a particular task. Thus, in this respect,
ontology ranking essentially is similar to a decision-making problem.

• Ontology evaluation aims to identify the strengths and flaws of a given ontology.
Hence, users and developers can make informed decisions according to their needs
for the evaluated ontology.

7.2.2 Insufficiency of Global Scoring

The principle of software quality in [BBL76] shows that there is no single quality
indicator that can give a universally useful rating of software quality. The authors
showed that calculating and understanding the value of a single, overall indicator
for software quality may be more trouble than it is worth. Usually, a global score
is calculated by obtaining the weighted average of the scores of associated quality
indicators. However, obtaining an overall quality rating with the union over the single
indicators suffers two main drawbacks:

1. Weight optimization: Considering equal weights for all associated indicators is
not a fair way to obtain an overall quality rating. Because quality indicators are

7.2. Preliminaries & Background 109

not equally important for users or associated applications and projects. Users,
indeed, are interested in some indicators, not all. Determining different weights
is a challenging task. It mostly needs a preference ordering function [GCCL05],
achievable by user intervention to prioritize indicators and apply local constraints.
Subsequently, for any evaluated ontology, this preference ordering function should
be set individually by the user.

2. Conflicting quality indicators: High quality of all indicators is hard to achieve
simultaneously as they are usually in conflict. For instance, achieving a higher
value for the coverage indicator often conflicts with obtaining low redundancy
because preserving all properties from source ontologies in the merged ontology
frequently causes path redundancy. Thus, coverage and redundancy indicators
might not be simultaneously fully achieved. Moreover, users generally find it
difficult to quantify their preferences in such conflict situations [BBL76].

Therefore, by assessing the quality of merged ontologies, our goal is not to assign a
global score for the evaluation of the merged ontology. As suggested in [BBL76], the best
use for indicators is as individual anomaly indicators to be used as guides for further
developments and usages.

7.2.3 Evaluation Domains

In our quality evaluation framework, the merged results and the underlying merge
method are evaluated. The merge method influences the merge result. Thus, our quality
evaluation covers both parts:

• Evaluation of the merge method: By analyzing merged ontologies, it can be
observed how well the underlying merge method is performed. For example,
the entity coverage percentage in merged ontologies depends on how the merge
method is carried out. Thus, the accuracy of the merge method is indicated with
some aspects of our framework.

• Evaluation of the merge result: Through some aspects of our framework, the
correctness of the merge result is evaluated independently of the underlying merge
method. It is related to the evaluation of the merged ontologies themself. For
instance, whether the merged ontology is consistent, or includes cycles, is related
to evaluating the merge result.

7.2.4 A Customizable Evaluation

There is no single best or preferred quality indicator for ontology evaluation [BGM05].
Instead, choosing an evaluation indicator should depend on the purpose of the
evaluation, the application in which the ontology is to be used, and the aspects of the
ontology we are trying to evaluate. Thus, users should be able to choose the desired
quality indicators for their given purposes or applications. A practical step is taken
toward this customizable evaluation. To achieve this, we provide users a variety of
quality indicators, by which they can customize the required indicators for evaluating a
given merged ontology based on the aim of the evaluation. For each adjusted indicator,

110 Chapter 7. Quality Assessment for the Merged Ontology

users receive detailed analysis and can observe the weakness and strengths of the
evaluated ontology.

7.3 Evaluation Standards

To develop an evaluation framework for the merging process and its result, i.e.,
the merged ontology, we follow the well established Goal-Question-Metric (GQM)
approach [Bas92] from the software evaluation field. GQM is based on the assumption
that the evaluation of any system should be an evaluation of fitness for purpose. Thus,
the evaluation process should be preceded by the identification of the engineering goals
behind the system or technology to be evaluated. The goals are defined in an operational,
tractable way by refining them into a set of quantifiable questions that are used to extract
the appropriate information. The questions are then used to define a specific set of
metrics. Since our aim is to develop a general framework and not specified it to a special
system, we also seek a general goal. The goals and defining questions are described in
the following:

Goal 1. The merged ontology should provide a comprehensive knowledge concerning
the given source ontologies.

Q1. Is the knowledge from the source ontologies reflected in the merged ontology?

Q2. Do the evaluated aspects of the quality of the merged ontology present a
comprehensive evaluation?

Goal 2. The merge process should be user friendly and customizable to user
requirements.

Q3. Can the merged ontology reflect the user requirements?

Q4. Is the result of the evaluation clear for users?

According to the GQM paradigm, these questions can be used to define the set of criteria
that should be employed to evaluate the merged ontology with respect to the presented
goals. We will introduce these criteria in Section 7.4. Moreover, we considered existing
evaluation standards [DGFE16; BBL76] and took them into account in designing our
quality indicators. These works are summarized as follows:

• In [DGFE16], four standards are introduced to provide a framework for
determining a good evaluation for the evaluation society. Standards claim to
substantiate the idea of professional evaluation. The evaluation includes four
principles, (1) usefulness, (2) feasibility, (3) fairness, and (4) accuracy. Each
principle is presented with a group of sub-statements. We consider all the
principles above and adapt the respective sub-statements. Note that some
sub-statements cannot be aligned in our context, as they are related to human
evaluation, such as human error checking.

• In [BBL76], a conceptual framework is established for analyzing the characteristics
of software quality. We adapt the respective characteristics as sub-statements
within the principles introduced in [DGFE16].

7.3. Evaluation Standards 111

Accordingly, we address the following principles and sub-statements (given by Pi) for
evaluating the quality of merged ontologies:

• Usefulness principle:

P1. Detecting involved and affected variables: Issues affecting evaluation and those
affected by it should be identified beforehand to take them into account as far
as possible when creating the evaluation.

Ô In our context, analyzing the source ontologies should be considered,
since they are affected by evaluation and merge results. The application
that wants to use the evaluated ontology should be taken into account as
well because it affects evaluation.

P2. Transparency of the impact of influenced variables: The impact of those involved
in and those affected by evaluation should be transparent and clear. These
values can be used for the classification and interpretation of the results.

Ô The importance degree of the source ontologies and the application that
wants to use the merged ontology should be clear to use these degrees in
concluding the result and interpreting the output.

P3. Clarification of evaluation purposes: The purpose of the evaluation is varied with
quality dimensions. Thus, the purpose of each aspect of quality dimensions
should be clarified separately for the users.

Ô The purpose of each evaluation aspect should be clarified and defined for
the user.

P4. Competence and credibility of the underlying system: The system (environment or
framework) that conducts evaluations should be competent. Thus, the result
of the evaluation can be acceptable.

Ô The reliability of the evaluation tool and framework should be approved.

P5. Selection and scope of indicators: The selection and scope of indicators should
be considered based on evaluation goals.

Ô Users should be able to adjust the scope of the evaluation. Thus, they can
adjust desired quality indicators based on the purpose of the given task.

P6. Automation: The feasibility of the automated evaluation is admired. However,
it depends on the supported aspects of the framework. An automated
ontology evaluation is a necessary precondition [BGM05] for the healthy
development of automated ontology processing techniques.

Ô Evaluation is desired to be automatic as possible for the given quality
dimension.

P7. Completeness of the output: The result of the evaluation should be complete and
comprehensible.

112 Chapter 7. Quality Assessment for the Merged Ontology

Ô The output of evaluation should provide all essential quality aspects by
covering different quality indicators in order to be comprehensive and
complete.

P8. Clarity of the result: The result of the evaluation should be clear and
understandable for the user.

Ô Presenting the result of the evaluation should be understandable for
the user. The understandability of the result can be augmented with a
user-friendly GUI with ease of use feature.

P9. Use and benefits of evaluation: The results should be useful, and the users should
get benefit from the evaluation.

Ô The evaluation criteria are intended to emphasize existing gaps and
weaknesses to provide better insight for the user and suggest a possible
solution when it is applicable. Accordingly, the user could get benefits
from evaluation results.

• Feasibility principle:

P10. Appropriate methods: Evaluation procedures should be chosen in such a
way that, on the one hand, the evaluation is carried out professionally in
accordance with the requirements. On the other hand, the effort for those
involved and those affected is kept in an appropriate ratio to the intended
benefit of the evaluation.

Ô The evaluation methods should consider the requirements and keep in
balance the effort for analyzing source ontologies (those involved in) and
the application that wants to use the merged ontology (those affected by)
with an adequate ratio to the desired evaluation output.

P11. Efficiency of evaluation: The effort for evaluation should be in reasonable
proportion to the benefits of the evaluation.

Ô The amount of effort on producing the desired results should be feasible
in practice (with a reasonable complexity), and the output of the
evaluation should be in appropriate with this complexity.

• Fairness principle:

P12. Formal disposal of indicators: The quality indicators, process, and goal of the
evaluation should be written and available for users.

Ô Each quality indicator is expected to have an exact and systematic
definition, certified goal, and precise implementation of the process in
practice. They should be available for users.

P13. Disclosure of results: The results of the evaluation should be made available.

Ô The output of the evaluation should be available for users.

7.3. Evaluation Standards 113

P14. Comprehensive and fair examination: Evaluations should examine and present
the strengths and weaknesses of the object that wants to be evaluated as fairly
and comprehensively as possible.

Ô In the quality evaluation of the merged ontology, both strengths and
weaknesses should be reported to users. The evaluation should be
comprehensive by covering various aspects.

P15. Impartial implementation and output: The evaluation process and result should
be impartial and unbiased with respect to quality indicators or environments.

Ô The merge evaluation techniques should be independent of the
underlying merge method and environment.

• Accuracy principle:

P16. Description of the object to be evaluated: The theoretical aspect of the object that
wants to be evaluated should be described and documented precisely and
comprehensively.

Ô The theoretical aspect of the given merged ontology and the way that it
is created upon should be comprehensively and accurately described.

P17. Description of purposes and procedures: The purposes and procedures of the
evaluation itself, including the underlying evaluation methods, should be
documented and described so precisely that they can be understood and
assessed.

Ô For each aspect that the user wants to evaluate, there should be a
well-documented description of its objective and implementation of the
evaluation’s function.

P18. Context analysis: The context of the object that wants to be evaluated should
be analyzed in a sufficiently comprehensive and detailed manner and taken
into account when interpreting results.

Ô The merged ontology should be evaluated via some criteria for a given
context.

P19. Declaration of indicators: The quality indicators that are used for evaluation
should be documented with sufficient accuracy so that the reliability and
appropriateness of them can be assessed.

Ô On what basis the indicators are defined should be documented.

P20. Valid and reliable indicators: The quality indicators should be valid and reliable.

Ô On what basis the indicators are defined should be valid.

P21. Justified assessments and conclusions: The evaluative statements made in an
evaluation should be based on explicit criteria and target values. Conclusions
should be explicitly justified based on the given inputs so that they can be
understood and assessed.

114 Chapter 7. Quality Assessment for the Merged Ontology

Ô Concluding the quality of the merged ontology should be based on the
respective source ontologies, their mapping, and parameters.

P22. Meta-evaluation: Meta-evaluation should evaluate evaluations. In order to
make this possible, evaluations should be documented, archived, and made
accessible as far as possible in a suitable form.

Ô A meta-evaluation on the output of the evaluation framework should be
carried.

We consider these sub-statements of principles in designing our quality indicators. In
Section 13.7 of Chapter 13, we demonstrate to which extent our evaluation framework
fulfills the principles.

7.4 Proposed Quality Indicators for the Evaluation of Merged
Ontology

In this section, we first present how we extend the existing ontology evaluation
framework in our context in Section 7.4.1. We then show the quality evaluation function
in Section 7.4.2. Finally, we present the quality indicators in Section 7.4.3.

7.4.1 Extending Ontology Evaluation Frameworks

We use well-known existing ontology evaluation frameworks [DRFBSAG+11; GCCL05]
and adapt in the evaluation of merged ontologies. Their main features are:

• Gangemi et al. [GCCL05] provided a comprehensive framework for ontology
evaluation. At first, the authors created a meta-ontology to provide a
meta-theoretical foundation. In this model, ontologies are considered semiotics
objects to distinguish the different aspects of ontology engineering in practice.
Upon the created meta-ontology, the authors built three evaluation dimensions:
structural, functional, and usability. In the structural dimension, an ontology is
an (information) object. In the functional dimension, it is a language (information
object + intended conceptualization). From the usability viewpoint, the ontology’s
meta-language (the profile about the semiotic context of an ontology) is considered.

• OQuaRE framework [DRFBSAG+11] evaluates the quality of ontologies based
on the software quality standard, ISO/IEC 25000, to make quality evaluation
reproducible. ISO/IEC 25000 [IEC05] is a standard for Software product Quality
Requirements and Evaluation known as SQuaRE. This standard defines a complete
evaluation process of a software product. It suggests a series of quality
characteristics that should be used for measuring quality. The authors considered
ontologies as software artifacts. Thus, ontologies are viewed as the result of the
application of a construction process and are evaluated as products, independently
of the particular development process. In this regard, the OQuaRE framework
provides five adapted dimensions: structural, functional, reliability, operability,
and maintainability.

7.4. Proposed Quality Indicators for the Evaluation of Merged Ontology 115

Next, we explain the introduced dimensions and their associated aspects. For each
introduced quality aspect, we illustrate to which extent they are applicable for evaluating
merged ontologies.

1. Structural dimension: It focuses on the syntax and logical properties of an
ontology.

• Aspects: The structural dimension is evaluated against several aspects, such as
cohesion, redundancy, consistency. The units of measurements are calculated
through a wide range of graph property indicators such as depth, breadth,
cycle, and density.

• Adaptation: In Chapter 5, we have identified Generic Merge Requirements
(GMRs) as important criteria within the ontology merge process. Thus, for
this dimension, we focus on them. Indeed, GMR classification is conducted
based on analyzing three different research areas, including ontology merging
methods, benchmarks, and ontology engineering. Thus, it comprehensively
considers all topological properties of the structural characteristics of merged
ontologies. Note that some aspects of evaluation frameworks mentioned
above [GCCL05; DRFBSAG+11] such as redundancy or cycle are also
included in GMRs. Moreover, we include the consistency measurement of
merged ontologies as proposed in Chapter 6.

2. Functional dimension: It is related to the intended use and semantics of a given
ontology. The evaluation within this dimension is based on the degree to which
functional requirements are accomplished, that is, the appropriateness for its
intended purpose.

• Aspects: In [GCCL05], the functional dimension is evaluated against task and
topic assessment, user satisfaction, modularity, and agreement assessment
aspects. Precision and recall are calculated for each based on how these
aspects are achieved against the built ontology. In [DRFBSAG+11], several
aspects, such as reference ontology, knowledge reuse, and inferencing, are
introduced.

• Adaptation: To make the functional evaluation feasible in practice within our
framework, we use the task assessment aspect and will embed other aspects
in our future work. We use query evaluation and Competency Questions
answering to measure the intended use and semantics of merged ontologies.
This adaption is made in such a way that the tasks achieved by the source
ontologies and those obtained from merged ontologies are compared to
quantify precision and recall.

3. Usability dimension: It focuses on the ontology profile and communication
context of an ontology.

• Aspects: This dimension is evaluated against a set of annotation aspects in all
steps of the ontology life-cycle.

• Adaptation: Annotation information on the life-cycle of merged ontologies
might not always be available. This is because merged ontologies can be

116 Chapter 7. Quality Assessment for the Merged Ontology

created by a merge method or human intervention, which might not be
available during the evaluation process. Thus, we consider those quality
indicators on the ontology and entities annotation, which can be estimated
in reality for a given merged ontology and might be affected by the ontology
merging process.

4. Reliability dimension: It evaluates the capability of an ontology that maintains
the level of performance under stated conditions for a given period of time.

• Aspects: This dimension is evaluated by recoverability and availability
aspects.

• Adaptation: We consider these aspects in the quality indicators of the usability
dimension, such as availability of the ontology URI, and meta-information on
ontology annotation.

5. Operability dimension: It evaluates the effort needed to use an ontology, and in
the individual assessment of such use, by a stated or implied set of users.

• Aspects: The operability dimension is measured through learnability, ease of
use, and helpfulness aspects.

• Adaptation: The introduced aspects require a user-study, which is considered
this dimension for our future work.

6. Maintainability dimension: It evaluates the capability of ontologies that can be
modified for changes in environments, requirements, or functional specifications.

• Aspects: The maintainability dimension is evaluated against several aspects,
including modularity, reusability, analysability, changeability, modification
stability, and testability. These aspects are defined with several quality
indicators, such as the mean number of properties per class, depth of
subsumption hierarchy, and the number of children.

• Adaptation: We do not consider maintainability as a separate dimension.
Because, the aspects of the maintainability dimension are evaluated by the
quality indicators of topological properties such as the mean number of
properties per class, or depth of classes. Such indicators are related to
the structural dimension, which we consider in the structural dimension.
Moreover, considering the statistical properties of ontology elements are
not an appropriate way to evaluate the maintainability aspects such as
modularity, changeability, or reusability. For example, the authors claimed
that the number of properties affects reusability because having a more
precisely defined ontology makes its knowledge more reusable. Likewise,
they claimed that if the mean number of properties per class is large, it can be
concluded that this ontology has good modularity. It is hard for us to accept
these arguments straightforwardly.

The criteria that we adapted above are according to the goals and questions mentioned
in Section 7.3. In particular, the structural quality dimension is based on question one
(Q1), in which the coverage of the merged ontology is evaluated in terms of structure and

7.4. Proposed Quality Indicators for the Evaluation of Merged Ontology 117

entity preservation. Regarding question two (Q2), we seek to provide a comprehensive
evaluation by combining different quality dimensions. The quality criteria in the
functional dimension are derived according to Q3. By adapting the usability dimension,
we aim to concern the clarity and usability of the merged ontology (concerning Q4).

In the following, before describing each dimension in detail, a quality evaluation
function applicable for all dimensions is presented and the respective parameters are
clarified separately for each introduced dimension.

7.4.2 Quality Evaluation Function

Inspired by the general function of the structural dimension evaluation in [GCCL05], we
present the quality evaluation function applicable for all introduced dimensions.

The evaluation of the merged ontology (EOM
) is the process of achieving a quality value

(m) for the given quality dimension (D) on a set of inputs (S) by running a measurement
procedure (mp). In a formal way, the quality function for evaluating the merged ontology
EOM

is given in Equation 7.1.

EOM
= (D,S,mp, ċ) (7.1)

in which:

• D (Dimension) is the quality dimension we want to measure.

• S (Set of input) is a set of inputs.

• mp (Measurement procedure) is the procedure executed to perform the
measurement and achieve the quality value.

• ċ (Coefficient of measurement error) adjusts for context-related variations on
measurement procedure.

Thus, the output value (m) of the quality evaluation function (EOM
) is obtained by

applying a measurement procedure (mp) for a dimension (D) to a set of input (S) with
considering a coefficient (ċ), if available (see Equation 7.2).

mpD,S,ċ −−−→
yields

m (7.2)

The set of output values from quality indicators is the intended result for this function.
The output shows information about the strengths and weaknesses of the given merged
ontology. Upon that, users can draw further improvement in order to increase the
quality of the merged ontology.

In Table 7.2, we show the variables of the quality evaluation function for each dimension
separately. We specify the respective input S, measurement procedure mp, and output
value m, as follows:

• Structural dimension:

118 Chapter 7. Quality Assessment for the Merged Ontology

TABLE 7.2: Variables of the quality evaluation function for each quality dimension.

Dimension Input Measurement Procedure Output
Source ontologies

Counting function Numerical valueMerged ontologyStructural
Mappings

Source ontologies
Counting function

Percentage value
Merged ontology

in range [0,1]
Functional

Competency Question/Query
Source ontologies Conditional boolean Boolean data

Usability
Merged ontology function (True/False)

– S: The inputs of structural dimension evaluation are the set of source
ontologies, the merged ontology, and the respective mappings.

– mp: The usual measuring procedure, as stated in [GCCL05], is counting by
a function that relates a set of entities to a numerical value in terms of the
given quality indicator. The counting procedure might require a non-trivial
algorithm. In Section 7.4.3.1, we present the counting function for each quality
indicator. For some of them, we utilize a reasoner to perform that.

– m: The counting procedure on evaluating the structural dimension generates
numerical (absolute) values.

• Functional dimension:

– S: Evaluation of the functional dimension requires as the input the merged
ontology and the respective source ontologies along with a set of Competency
Questions or queries for the given domain.

– mp: We use a counting procedure to quantify precision and recall for the
matching of merged ontology with its intended semantics or use.

– m: Since the precision and recall are calculated as the fraction of two values,
the output is obtained as a percentage value in the range [0,1].

• Usability dimension:

– S: The input of this dimension is the merged ontology with respective source
ontologies.

– mp: The measurement procedure is carried with a conditional boolean
function to validate whether the respective quality indicator in the merged
ontology is satisfied (true) or not (false).

– m: The functions for evaluating the existence, correctness, and satisfying the
associated quality indicators return a Boolean data type with true or false
values.

Next, we present our quality metrics for each evaluation dimension.

7.4. Proposed Quality Indicators for the Evaluation of Merged Ontology 119

7.4.3 Associated Quality Indicators of Evaluation Dimensions

As we discussed in Section 7.4.1, we build our criteria on top of the classification
introduced in [GCCL05; DRFBSAG+11], including structural, functional, and
usability-related dimensions. Designing each associated quality indicator is carried by
considering the standard principles in [BBL76; DGFE16] (see Section 7.3). To evaluate
the merged ontology in a systematic way, we contribute to formulating the indicators
within each dimension in the context of the ontology merging.

7.4.3.1 Measuring the Structural Dimension

The structural dimension focuses on evaluating syntax (e.g., graph structure), and formal
semantics of the merged ontology. In this form, the topological and logical properties of
the merged ontology are measured by means of an indicator.

As stated in Section 7.4.2, the quality evaluation function of the structural dimension
returns numerical (absolute) values. Structural evaluation functions do not produce any
relative values, such as those represented in [DRFBSAG+11]. Representing the relative
values disputes:

• Finding the appropriate ratio: A relative value is obtained by a division operator,
in which the dividend is divided by the divisor. To achieve a relative value for
each quality indicator, the division operation calls into question how the divisor is
determined. For instance, to present a relative value for the acyclicity indicator in
a merged ontology, we are required to present the number of detected cycles based
on the total number of entities, is-a relations, or the number of classes. All of them
can be feasible since each represents a particular aspect of this quality indicator.
However, none of them can properly illustrate the acyclicity indicator.

• Impact of the individual anomaly: For any given indicator, the influence of each
detected anomaly is different from others. Thus, each anomaly requires a specific
weight. Moreover, an equal weight can not be considered for all anomalies as
they have different priorities. This implies assigning an individual weight for each
anomaly within a quality indicator. For example, in the acyclicity indicator, all
cycles cannot be treated with the same weight. The detected cycles might have
different priorities and important levels. Indicating the effect of each anomaly
effectively is hard to be accomplished.

These challenges prevent the fair presentation of relative values. Therefore, considering
absolute values can overtake them. In this regards, for each quality indicator, we present
the number of occurrences that the indicator is not satisfied in the merged ontology,
a so-called anomaly. For instance, for the acyclicity indicator, we present the absolute
number of cycles in the merged ontology; for the class coverage indicator, we present
the absolute number of classes from the source ontologies that do not preserve in the
merged ontology. To make this evaluation more helpful for the user, the name of those
elements that do not meet the quality indicators will also be listed.

To classify the quality indicators in this dimension, we take advantage of GMR
classification from Chapter 5. This also covers the criteria in the early work on ontology

120 Chapter 7. Quality Assessment for the Merged Ontology

evaluation [DB10]. GMRs consider the topological and structural properties of merged
ontologies. In this follow, in the structural dimension, we evaluate integrity, logic
properties, and model properties aspects alongside the consistency aspect, which are
described as next.

7.4.3.1.1 Measures for integrity. The aim of this aspect is to evaluate the integrity of
a merged ontology based on the knowledge provided by the source ontologies. This
includes:

• Coverage [RR12] or completeness [DB10] to measure the percentage of entities from
the source ontologies that are covered by the merged ontology [DB10]. We evaluate
the coverage by:

– R1. Class, R2. Property, and R3. Instance preservation: These indicators can be
evaluated by counting the numbers of classes, properties, and instances from
the source ontologies that do not have a mapped class, property, and instance
in a merged ontology, respectively.

– R4. Correspondence preservation: For R4, the evaluation function counts
the numbers of given correspondences from source ontologies that are not
mapped to the same entity in the merged ontology.

– R5. Correspondences’ property preservation: The evaluation function counts the
numbers of corresponding entities’ properties that are not included for the
merged entities.

– R6. Property’s value preservation: The evaluation function counts the numbers
of properties’ values from source ontologies that are not preserved in the
merged ontology.

– R7. Structure preservation: The evaluation function counts the numbers of
entities from the merged ontology that do not follow the same structure for
each entity with respect to the source ontologies.

• Redundancy or namely, minimality checks that no redundant entity appears in the
merged ontology [DB10; MFH16; RR12]. We evaluate the redundancy by:

– R8. Class, R9. Property, and R10. Instance redundancy prohibition: The
evaluation functions for these indicators count the numbers of classes,
properties, and instances from the source ontologies that have more than one
mapped entity in the merged ontology.

– R11. Extraneous entity prohibition: For this indicator, the evaluation function
counts the numbers of entities that are not present in the source ontologies
but are in the merged ontology.

7.4.3.1.2 Measures for logic properties. Within this aspect, we evaluate the logical
properties of the merged ontology, which can get the effect by the merge process:

• Deduction satisfaction refers to R12, Entailment deduction satisfaction indicator. With
the help of the embedded reasoner, the evaluation function counts the numbers

7.4. Proposed Quality Indicators for the Evaluation of Merged Ontology 121

of entailments from the merged ontology that are not included in the source
ontologies’ entailment. We follow subsumption, equivalence, and satisfiability
entailments tests from [BPS11].

• Constraint satisfaction evaluates the ontology constraints by:

– R13. One type restriction: The evaluation function counts the numbers
of corresponding entities with different data types that do not have a
compromised type in their respective merged entity.

– R14. Property value’s constraint: The evaluation function counts the numbers
of source ontologies’ restrictions on the properties’ values (e.g., cardinality,
enumerating values) that have not been satisfied in the merged ontology.

– R15. Property’s domain and range oneness: The evaluation function counts the
numbers of properties that have multiple domains or ranges in the merged
ontology.

7.4.3.1.3 Measures for model properties. The principles of creating a new ontology
model are evaluated in this aspect, including:

• Acyclicity to evaluate the existence of cycles in a merged ontology by:

– R16: Acyclicity in the class hierarchy, and R17. Acyclicity in the property hierarchy:
For these indicators, the evaluation function counts the numbers of cycles
between classes and properties concerning subClassOf and subPropertyOf
relationships in the merged ontology, respectively.

– R18. Prohibition of properties being inverses of themselves: An inverse recursive
definition might happen by combining the corresponding entities and their
existing inverse relationships. Thus, to evaluate this indicator, the evaluation
function counts the numbers of inverse recursive definitions on the properties
in the merged ontology.

• Connectivity to evaluate the satisfaction of hierarchical connectivity by:

– R19. Unconnected class, and R20. Unconnected property prohibition: To
evaluate R19 and R20 indicators, the evaluation function counts the number
of unconnected classes and properties in the merged ontology, respectively.

7.4.3.1.4 Measures for consistency. Another aspect of the structural dimension
introduced in [GCCL05; DRFBSAG+11] is the evaluation of ontology consistency. As
mentioned earlier, an inconsistent ontology [HPS09] is an ontology that cannot have any
models and entails everything. Thus, through an embedded reasoner, we detect whether
an ontology is consistent. For an inconsistent ontology, the evaluation function counts
the number of inconsistent classes and present them to users. As stated in the method
presented in Chapter 6, we considered the knowledge of the source ontologies into
account in order to rank conflicting axioms. We then present users the ranked axioms
alongside suggestions for possible repairs to make the merged ontology consistent.

122 Chapter 7. Quality Assessment for the Merged Ontology

7.4.3.2 Measuring the Functional Dimension

The functional dimension is associated with the intended use of a given merged
ontology and its components, i.e., its function. It focuses on the relations holding
between the ontology graph and its intended meaning or semantics. The functional
dimension is coincident with the main purpose of an ontology, i.e., specifying a given
conceptualization, or a set of contextual assumptions about a world, which is expressed
as a set of concepts, their definitions, and their inter-relationships [Usc96].

Functional measures have been quantified by precision and recall in [GCCL05]. In the
context of ontology evaluation, this definition is adapted by choosing an appropriate
domain for positive and negative responses from matching between the structure of
the ontology and the intended usage and semantics. Given a logical language L that
implicitly commits to a conceptualization C, an ontology’s purpose is to capture all
models ofL that are compatible with C and only those. These models are called intended
models Ik(L), k being the commitment to a certain interpretation I for L. In this view,
an ontology O using L is a logical theory designed in such a way that the set Ok(L)
of its models relative to C under the commitment k is a suitable approximation of the
set Ik(L). Thus, a conceptualization C of the ontology, as shown in Figure 7.1, (a), is
demonstrated with a set of relevant entities 4, a set of possible world W , and a set of
intensional relations R, given by C = (4,W,R). From this perspective, precision P and
recall R are defined by Equation 7.3 and Equation 7.4, respectively, where, TP=True
Positive, FP=False Positive, and FN=False Negative.

P =
n
Ok(L)
TP

n
Ok(L)
TP + n

Ok(L)
FP

(7.3)

Precision P is the proportion of intended models Ok(L)
TP ⊆ Ik(L) (True Positives) over 4,

on the sum of all O models Ok(L), which can include False Positives Ok(L)
FP * Ik(L).

R =
n
Ok(L)
TP

n
Ok(L)
TP + n

Ok(L)
FN

(7.4)

Recall R is the proportion of intended models Ok(L)
TP ⊆ Ik(L) (True Positives) over 4, on

the sum of all intended models Ik(L), which can include False Negatives Ok(L)
FN ⊆ Ik(L).

An ontology can accept unintended models, resulting in a lower precision, or can miss
intended models, resulting in a lower recall. Accordingly, the merged ontology can be
labeled with one of the following cases:

When the matching between the merged ontology and its intended use or semantics
quantifies

• high precision and max recall, the functionality of the merged ontology can be
marked by a GOOD label;

7.4. Proposed Quality Indicators for the Evaluation of Merged Ontology 123

𝐺𝑜𝑜𝑑

𝐵𝑎𝑑

𝐿𝑒𝑠𝑠
𝐺𝑜𝑜𝑑

𝑊𝑜𝑟𝑠𝑒

𝐻𝑖𝑔ℎ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,max 𝑟𝑒𝑐𝑎𝑙𝑙 𝐿𝑜𝑤 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,max 𝑟𝑒𝑐𝑎𝑙𝑙

𝑀𝑎𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑟𝑒𝑐𝑎𝑙𝑙 𝐿𝑜𝑤 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, limited 𝑟𝑒𝑐𝑎𝑙𝑙

𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦

FIGURE 7.1: (a) The relationship between an ontology and a conceptualization.
(b) Precision and recall of an ontology evaluation [GCCL05].

• low precision and max recall, the functionality of the merged ontology can be
marked by a LESS GOOD label;

• max precision and limited recall, the functionality of the merged ontology can be
marked by a BAD label;

• low precision and limited recall, the functionality of the merged ontology can be
marked by a WORSE label.

Figure 7.1,(b) shows the possible cases resulting from this category.

The remaining challenges here are:

1. How to measure the intended use and semantics of a merged ontology in practice?

2. How to systematically determine true or false positive and negative responses to
be able to calculate precision and recall?

We make our contribution in dealing with these two challenges in the next.

7.4.3.2.1 Measuring the intended use and semantics of the merged ontology. An
intended conceptualization corresponds to the expertise of an ontology’s intended users.
The expertise boundary is provided by the task that should be accomplished with the
help of the ontology [GCCL05]. Then, an ontology should be aimed at capturing at
least the schema of that expertise. Ontology engineers have to elicit expertise from
the associated developer, or assume a set of data (e.g., here, ontology) as a qualified
expression of expertise and task. Thus, precision and recall of an ontology can be
measured against: a) experts’ judgment, or b) a data set assumed as a qualified
expression of experts’ judgment. We find two scenarios to accomplish it:

124 Chapter 7. Quality Assessment for the Merged Ontology

1. Competency Questions answering: One approach to capture the intended use
of an ontology is to use Competency Questions (CQ)s [GCCL05]. A set of CQs
is complete in the sense that if the ontology can provide correct answers to all
questions, then the ontology can serve its intended purpose [Usc96].

2. Query analyzer: Query can provide the environment to capture the intended
semantics of the merged ontology based on its respective source ontologies. Thus,
we can measure the intended semantics by providing a list of queries which the
source ontologies can or cannot answer, and then compare with the achieved
answers from the merged ontology.

We will explain these two scenarios in detail in Section 13.2 of Chapter 13.

7.4.3.2.2 Measuring the true or false positive and negative responses. We determine
true or false positive and negative responses in the context of the merged ontology. The
responses from the merged ontology should be compared with the responses achieved
from source ontologies. Thus, we define TP , FP , TN , and FN based on the expected
answers of the source ontologies in both environments (tests with CQs or queries).

The exact formulation of TP , FP , TN , and FN in CQ and query scenarios will be
explained in Section 13.2 of Chapter 13.

7.4.3.3 Measuring the Usability Dimension

This dimension focuses on the ontology profile to address the communication context of
the merged ontology. An ontology profile is a set of ontology annotations, the metadata
about an ontology, and its elements. We evaluate this dimension with two aspects (1)
annotation about ontology itself, and (2) annotation about ontology’s entities. In each
aspect, we focus on those quality indicators concerning usability profiling in the context
of the ontology merging.

7.4.3.3.1 Measures for annotation about the ontology itself. During the merge
process, metadata of the source ontologies are combined in the merged ontology. Thus,
in this aspect, we evaluate ontology annotation indicators in two directions: (i) existence,
and (ii) correctness of the following indicators:

• Ontology URI: The ontology URI should not include file extension such as .owl, .rdf,
or .ttl [AGL12]. Thus, the evaluation function for this indicator checks whether the
merged ontology has a URI and the URI is correct.

• Ontology namespace: The evaluation function for this indicator checks that the
merged ontology has a namespace. If so, the namespace should have the correct
syntax.

• Ontology declaration: The ontology should not be failing to declare the
owl:Ontology tag where the ontology metadata should provide it [PVGPSF14].
Thus, for this indicator, the evaluation function checks the existence and
correctness of the ontology declaration.

7.5. Ontology Merging Quality Assessment Workflow 125

• Ontology license: The merged ontology should contain a proper license. This license
should be compatible with all licenses from the respective source ontologies, which
requires modeling compatibility of different licenses.

7.4.3.3.2 Measures for annotation about ontology’s entities. The existence of entity
annotations has already been covered by R2 in the structural dimension (in the view
of considering annotation as the properties). Here, we evaluate the remaining related
aspects on entities’ annotations, which might get an effect while creating the merged
ontology:

• Label uniqueness: Since the ontology merging techniques combine the
corresponding entities, they make remarkable changes to the labels of the
corresponding entities. Thus, following [NM03], for this indicator, the evaluation
function observes whether the created labels are unique.

• Unify naming: The name of entities from the source ontologies might be
heterogeneous with each other. Thus, we aim to observe how the merge process
follows the same convention in the merged ontology. Unify naming will increase
the readability of the merged ontology. Consequently, readability influences
usability quality. For this indicator, the evaluation function checks whether all
entity’s names follow the same naming conventions in the merged ontology, such
as capitalization, or singular versus plural, as proposed in [NM+01; PVGPSF14].

• Entity type declaration: During the merge process, new entities might be created,
or existing ones are combined into one integrated entity. It is important to
check whether these entities have been explicitly declared with their respective
types [HHP+10; PVGPSF14]. Thus, the evaluation function for this indicator
checks whether all entities explicitly have been declared in the merged ontology.

7.5 Ontology Merging Quality Assessment Workflow

Figure 7.2 presents our proposed workflow for assessing the quality of the merged
ontology. The inputs are source ontologies OS , the respective mappingsM, the merged
ontology OM , and a set of Competency Questions (CQ)s or queries as user parameters.
The output is a set of quality values. The ontologies and mapping are parsed, then, the
evaluator engine assesses the quality of the merged ontology for the given dimension.
Afterwards, the result is presented to the user through a GUI. If the evaluation of an
indicator detects some anomalies, further analyzes will be presented to users. They can
automatically repair some detected anomalies through the repair engine.

In practice, users can customize the set of evaluation criteria based on their needs.
They can assess the quality of the merged ontology concerning criteria introduced
in structural, functional, usability, and consistency dimensions. Moreover, users can
compare the source and merged ontologies through the SPARQL endpoint. There is a
set of embedded query patterns for users. However, they can customize their own query
and compare the results of the merged and source ontologies simultaneously.

126 Chapter 7. Quality Assessment for the Merged Ontology

Evaluator Engine

Parser & Builder

Integrity Logic
Properties

Structural
Ontology

Annotation

Entity
Annotation

Intended
Use

Functional Usability

Intended
Semantic

Query
Catalogue

Query
Interface

𝒪𝒪1

𝒪𝒪𝑛𝑛

…

𝒪𝒪𝑆𝑆

GUI for Result Presentation Repair Engine

Ontology Merger Ontology Merger Evaluation

𝒪𝒪𝑀𝑀

User
Parameter

CQ/Query

Model
Properties

GMR
Catalogue

Merger

Query Endpoint

ℳ

Consistency

FIGURE 7.2: Workflow of ontology merging quality assessment.

7.6 Summary

In this chapter, we presented a quality assessment framework for merged ontology
within structural, functional, and usability dimensions. Each quality dimension is
presented with a set of aspects and associated quality indicators. An overview of our
evaluation’s dimensions is shown in Table 7.3. For each dimension, we present the
associated aspects and quality indicators. Moreover, in the last column, we show the
evaluation type of each indicator (as introduced in Section 7.2.3).

7.6. Summary 127

TABLE 7.3: Dimension, aspect, indicator, and type of the ontology merging
evaluation task.

Dimension Aspect Indicator Type

Integrity
Coverage (R1-R7) merge method

Redundancy (R8-R11) merge method
Deduction(R12) merge method

Logic Properties
Constraint (R13-R15) merge method

Model Properties
Acyclictly (R16-R18) merge result

Connectivity (R19-R20) merge result

Structural

Consistency number of inconsistent classes merge result
Intended Use Competency Questions Answering merge result

Functional
Intended Semantics Query Analyzer merge method

Ontology Annotation
Ontology URI, namespace

merge result
declaration, license

Label uniqueness, unify naming
Usability

Entity Annotation
entity type declaration

merge result

129

Part III

Evaluation

131

8
Experimental Evaluation

This chapter starts with presenting the dataset in Section 8.1, which is used in the
experimental test of the thesis. After that, the detail of the implementation is presented
in Section 8.2. Finally, an overview of the experimental test is shown in Section 8.3.

8.1 Datasets

To evaluate the applicability of our approach, we have aimed to use in our experiments
a wide variety of ontologies in terms of number and size. We have selected twelve
datasets, given by d1-d12 (see Table 8.1). Our datasets include sets of ontologies
from the conference (d1-d6), anatomy (d7) and large biomedical (d8) tracks of the
OAEI benchmark1 along with ontologies from BioPortal2 in the domains of biomedical
resource (d9), health (d10), and the union of both (d11) as well as a combination of several
subdomains (d12). The dataset includes a variety of ontologies with different axioms’
size (134 ≤ |Sig(OS)| ≤ 30364) and numbers (2 ≤ n ≤ 55).

We conducted our tests with two different types of correspondences (mappings):

• A perfect mappingM from the OAEI benchmark and BioPortal.

• An imperfect mappingM′ which is produced by an ontology matching system.

While the first shows the general potential of the approach, the latter shows its
applicability in a realistic setting where typically no perfect mapping is available.

Table 8.1 shows our datasets. The number of source ontologies n in each dataset is
shown in column 2. The name of source ontologies and their axioms size Sig(OS) are
shown in columns 3-4. The number of corresponding classesM(′)

|C| and propertiesM(′)
|P |

for imperfect and perfect mappings has been presented in columns 5-8 in Table 8.1,
respectively. To generate the imperfect mapping M′, we use SeeCOnt [ABKD15] with
F-Measure 50%-80%.

1http://oaei.ontologymatching.org/2019/
2https://bioportal.bioontology.org/;accessedat01.10.2019

http://oaei.ontologymatching.org/2019/
https://bioportal.bioontology.org/; accessed at 01.10.2019

132 Chapter 8. Experimental Evaluation

TABLE 8.1: Dataset statistics: The number (n), name, and size (Sig(OS) of source
ontologies with the number classes |C| and properties |P | of their imperfect (M′)

and perfect (M) mappings.

id n Source ontologies OS |Sig(OS)| M′|C| M′|P | M|C| M|P |
d1 2 cmt | conference 318 | 408 7 2 11 3
d2 2 ekaw | sigkdd 341 | 193 8 1 11 0
d3 3 cmt | conference | confOf - | - | 335 14 5 22 11

conference | confOf - | -
d4 4

edas | ekaw 903 | - 33 14 40 13

4
cmt | ekaw - | -

29 8 33 5d5 iasted | sigkdd 539 | -
cmt | conference | confOf - | - | -

d6 7
edas | ekaw | iasted | sigkdd - | - | - | - 57 25 68 27

d7 2 human |mouse 30364 | 11043 1175 2 1490 0
d8 2 FMA_samll | NCI_small 16690 | 2472 2472 0 2480 0

7
AHSO | BNO | CABRO 341 | 281 | 175

6 0 7 0EPILONT | RAO 741 | 1401d9

RNPRIO | RO 219 | 2274

17

ADAR | AHSO | AO 17857 | - | 872
BNO | CABRO | CSSO - | - | 3472
CWD | EPILONT | ICO 134 | - | 9438

IDO | NEOMARK3 | NPI 4665 | 2513 | 401
OF | PCAO | PHARE 5007 | 637 | 2169

d10

PSO | RAO 1879 | 1401

218 48 147 0

d11 19 d9 and d10’s ontologies - 219 48 155 0

55

d9 and d10’s ontologies and 1920 | 2506 | 572
AEO | AHOL | AMINO-ACID 575 | 2619 | 3020

BFO | BHO | BMT | BOF 1993 | 714 | 1969
BP | BSPO | BT | CKDO 2322 | 591 | 21144

CMPO | CN | DIAB 1842 | 5885 | 446
DIAGONT | EOL | FBbi 4617 | 5383 | 682

GDCO | GFO | GRO | HIO 479 | 2736 | 5392
INO | LHN |MCBCC 3769 | 1828 | 3280

MEDO | OBIWS | ONLIRA 355 | 2241 | 548 | 3996
OPB | PEO | PPO | REPO 551 | 5401 | 697

RNPRIO | ROS | SHR 219 | 1726 | 825

d12

UNITSONT | UO | VIVO 340 | 3629 | 4862

967 172 676 0

8.2. Implementation 133

8.2 Implementation

The proposed approach has been implemented in ECLIPSE3 IDE using a verity of
software and languages. JAVA4 and OWL-API [HB11]5 have been mainly used in the core
of the method’s implementation. The GUI has been set with JavaScript, HTML, Tomcat
Server6, CSS, and JS. Pellet reasoner [SPG+07] (version 3) and OWL-API explanation 7

are used to handle the inconsistency of the merged ontologies. Moreover, the SPARQL
language is used for the query endpoint. All the experiments were carried out on Intel
core i7 with 12 GB internal memory on Windows 10 with Java compiler 1.8. The tool
is publicly available on http://comerger.uni-jena.de/ and distributed under an
open-source license8 along with the merged ontologies.

CoMerger allows the user to load the source ontologies in OWL format. The mapping
between the source ontologies can be automatically determined by an embedded
matcher, or it can be provided by the user in RDF format. The merged ontology created
by CoMerger can be in RDF/XML or OWL/XML format.

8.3 Overview of Experimental Tests

To evaluate and validate the applicability of the proposed methods, we conducted a
series of experiments on each aspect:

1. Merging Multiple Ontologies with an N-ary Strategy: In Chapter 10, we will analyze
and evaluate our proposed n-ary method within three different tests: observing
the characteristics of the merged ontologies under different scenarios, analyzing
the constructed logic of the merged ontologies via a set of Competency Questions,
and comparing the n-ary method with binary strategy.

2. Utilizing User-Driven Generic Merge Requirements: In Chapter 11, we will show two
use case studies on the compatibility of user-selected GMRs and on the conflict
resolution.

3. Inconsistency Handling of the Merged Ontology: In Chapter 12, we will show
the characteristics of the inconsistencies of the merged ontology. We then will
investigate the quality of the result by a Competency Questions test on two
different versions of the consistent merged ontologies. Finally, we will show the
time performance of the proposed method.

4. Assessing the Quality of the Merged Ontology: In Chapter 13, we aim to present
a practical assessment of the proposed evaluation framework. To this end, we
will measure the quality of the merged ontologies in the structural, functional,
and usability dimensions. After that, we will present the time performance of

3ECLIPSE, https://www.eclipse.org/
4JAVA, https://www.java.com/
5http://owlapi.sourceforge.net/
6http://tomcat.apache.org/
7http://owl.cs.manchester.ac.uk/research/explanation/
8https://github.com/fusion-jena/CoMerger

http://comerger.uni-jena.de/
https://www.eclipse.org/
https://www.java.com/
http://owlapi.sourceforge.net/
http://tomcat.apache.org/
http://owl.cs.manchester.ac.uk/research/explanation/
https://github.com/fusion-jena/CoMerger

134 Chapter 8. Experimental Evaluation

the evaluation process and the overall result demonstration. We then illustrate
a total analysis of tested datasets. Finally, we will present the extent to which the
evaluation standard has been achieved.

135

9
CoMerger : Proposed Tool

This chapter presents the overview of CoMerger tool in Section 9.1. The architecture of
the tool and its components are demonstrated in Section 9.2 and Section 9.3. The chapter
is concluded by presenting the different GUI of the system and a summary in Section 9.4
and Section 9.5, respectively. The content of this chapter has been partially published
in [BGKR20a].

9.1 CoMerger Overview

Over the decade, several ontology merging tools [CKP08; MTFH14; PC19; PK19; RR14;
NM03] have been developed. However, none of them meets all three requirements:
methods in [MTFH14; NM03; PC19; PK19; RR14] are restricted to merging two
ontologies at a time and are thus not sufficiently scalable. A set of pre-defined merge
requirements is implemented in [NM03; RR14], and thus they lack customization.
Approaches in [CKP08; MTFH14; PC19; PK19; RR14] lack the ability for users to assess
the quality of the merged results and do not provide inconsistency handling. Lastly, to
the best of our knowledge, none of them are available as web-based applications.

We propose CoMerger as the first step towards a comprehensive merging tool focussing
on four important aspects:

• compatibility checking of the user-selected Generic Merge Requirements (GMR)s,

• merging multiple ontologies with adjusting a set of user-selected GMRs,

• assessing the quality of the merged ontology, and

• inconsistency handling of the result.

Next, the architecture of CoMerger tool and the interaction between the mentioned
aspects will be presented.

136 Chapter 9. CoMerger: Proposed Tool

User Level

System Level

Adjusted
Parameters Result

Merge Engine

Consistency
Handling Engine

Evaluator Engine

Query Engine

Merged
Ontology

GMR
Catalogue

Compatibility
Checker Engine

Source
Ontologies MappingMerged

Ontology

FIGURE 9.1: CoMerger architecture.

9.2 CoMerger Architecture

Figure 9.1 shows the architecture of CoMerger and the interaction between its
components. It depicts the data flow between the CoMerger components in two levels. In
the system level, the communication between the components is sketched. The user level
allows a user to interact with the tool through a friendly GUI with different scenarios in
merging ontologies, evaluating the merged ontology and check its consistency, ask for
the compatibility of their selected GMRs, and perform a set of SPARQL queries on the
merged and source ontologies. In all scenarios, users should provide the required inputs
and adjust the parameters based on their needs. The respective results are presented to
the users in each scenario.

The user uploads a set of source ontologies alongside with the mappings. The tool can
read a set of RDF alignment, containing the similarity relations between entities with at
least a given similarity value. If no mapping is given, CoMerger automatically detects
the correspondences by using embedded ontology matching methods. Currently, two
ontology matching approaches are embedded in our tool: SeeCOnt method [ABKD15]
and a string matching based on the Jaccard similarity coefficient [Jac01].

Moreover, the user is able to select the required Generic Merge Requirements
(GMR)s, including, e.g., entities preservation, one type restriction, acyclicity, and
connectivity. The Compatibility Checker engine determines whether it is possible to meet
all requirements simultaneously or there are contradictions. The engine suggests a
compatible superset of the GMRs given by the user. After parsing the source ontologies
and their mappings, the merged ontology is automatically generated by the Merge engine
with taking into account the user-selected GMRs.

Moreover, the quality of the merged ontology can be evaluated via the Evaluator engine
according to the user-selected evaluation aspects. There is a possibility to evaluate

9.3. CoMerger Component 137

SPARQL Endpoint

Single
Query
Viewer

Query Engine

𝒪𝒪𝑀𝑀𝒪𝒪𝑆𝑆

Query
Comparison

Viewer

Query
Catalogue

Consistency Checker

Revise Plan Generator

Apply plan

Consistency
Handling Engine

𝒪𝒪𝑀𝑀𝒪𝒪𝑆𝑆

Evaluator

Result

User evaluation criteria

𝒪𝒪𝑀𝑀

𝒪𝒪𝑆𝑆 Evaluator Engine

Compatibility Checker

GMR Catalogue

𝒪𝒪𝑀𝑀

𝒪𝒪𝑆𝑆

Result

Compatibility
Checker Engine

User Selected
Parameters

Ontology Merger

Correspondences
Finder

Merge Engine

MappingSource Ontologies

Ontology
Parser

Mapping
Parser

Output Generator

Mapping
User Selected
Refinements

Query
Catalogue

𝒪𝒪𝑀𝑀

𝒪𝒪𝑆𝑆

FIGURE 9.2: CoMerger components.

the quality of any given merged ontology independent of the merge process via a
separate interface, Evaluator. Besides the quality criteria, the Consistency Handling engine
can validate whether the merged result is consistent and provide support in repairing
the inconsistencies. Additionally, through the embedded SPARQL endpoint of the
Query engine, the user can compare query results on the merged and source ontologies
simultaneously or individually.

9.3 CoMerger Component

Figure 9.2 presents the individual components of CoMerger tool, each is described as
follows:

9.3.1 GMRs Compatibility Checker

The tool enables the flexible ontology merging process, in which the users can adjust a
set of GMRs. However, not all GMRs are compatible. Thus, the compatibility checker
component in CoMerger verifies which GMRs can be met simultaneously. We utilized
a graph-based method, described in Chapter 5, to capture the maximum compatible
superset of user-selected GMRs.

9.3.2 Multiple Ontologies Merger

Our proposed merge method, described in Chapter 4, takes as input a set of source
ontologies OS alongside the respective mappings M and automatically generates a

138 Chapter 9. CoMerger: Proposed Tool

merged ontologyOM . At first, the n (n ≥ 2) source ontologies are divided into k (k << n)
blocks and a local refinement is applied to them. After that, the blocks are combined
to produce the merged ontology followed by a global refinement. The user can adjust
a set of refinement operations via the embedded GMRs. Moreover, the tool logs the
knowledge-level of the ontology merging process, which can be further analyzed by the
users. Through our tool, in addition to reusing the final merged ontology, users can
access the k created local sub-ontologies.

9.3.3 Merged Ontology Evaluator

To assess the quality and correctness of the merged ontology, we provided a
comprehensive set of evaluation criteria, described in Chapter 7. It covers a variety
of characteristics of each individual aspect of the merged ontology in three dimensions:
(1) structural criteria via the evaluation of the General Merge Requirement (GMR)s, (2)
functional measurements by the intended use and semantics of the merged ontology,
and (3) usability evaluation on ontology and entity annotation. The evaluation criteria
also represent an analytic view on how well the created merged ontology reflects the
given source ontologies. The merged ontology can be evaluated independently of the
merge method by the separated interface in CoMerger. Moreover, users can compare
the results of queries on the merged ontology versus the source ontologies through the
embedded SPARQL endpoint in the tool.

9.3.4 Consistency Checker

The merged ontology should be free of any inconsistencies. However, since the encoded
knowledge of source ontologies may model different world views, it can easily happen
that the merged ontology is inconsistent. It needs to be resolved if one wants to make
use of the merged ontology in further applications. Thus, we developed a Subjective
Logic-based method, described in Chapter 6, to rank the conflicting axioms, which
caused inconsistencies in the merged ontology. The rank function concerns the degree
of trustworthiness of the source ontologies knowledge. Upon that, the tool suggests
the remedies of changes such as deleting or rewriting a part of conflicting axioms to
turn the inconsistent merged ontology into a consistent one. The whole process can be
accomplished automatically, or a user can review the system’s suggestions and make
necessary changes before applying them.

9.4 CoMerger GUI

This section describes the GUI ability of the mentioned components, as:

1. GMRs Compatibility Checker: Figure 9.3 shows the GUI of adjusting the desired
GMRs. Users can set the number of suggested compatible sets and ask for the
compatibility of the selected GMRs.

2. Multiple Ontologies Merger: Figure 9.4 shows the GUI of the merge component.
User can upload the source ontologies and preferably their alignment, and adjust
the desired GMRs along with the evaluation aspects. Once the ontologies are

9.5. Summary 139

merged, users can download the merged ontology, its sub-ontologies (the created
blocks), the result of the evaluation, and the log file.

3. Merged Ontology Evaluator: The users can directly evaluate the merged ontology
through the provided GUI in Figure 9.5. The merged ontology along with
respective source ontologies should be uploaded, and the desired evaluation
aspects need to be adjusted. Other GUIs of this component will be shown in
Chapter 13.

4. Consistency Checker: Independent of the merge process or after that, users can
ask for checking the consistency of the merged ontology by adjusting the required
parameters (see Consistency Test setting in Figure 9.5). The result of consistency
checking is shown in Figure 9.6 for a sample merged ontology. For an inconsistent
merged ontology, a repair plan will be presented.

9.5 Summary

Despite the effort of many research studies, the developed ontology merging systems
still suffer specific problems. In [CKP08; NM03], many user interactions are required,
which might not be feasible for large-scale ontologies. iPrompt [NM03] requires user
interaction for all entity merging, and in [CKP08], the enumerated schemas should be
manually refined by users. To scale to many sources, the merging systems in [MTFH14;
NM03; PC19; PK19; RR14] are insufficient due to merging only two ontologies at a time.
No inconsistency handling is provided in [CKP08; MTFH14; PC19; PK19; RR14]. In
[NM03; RR14], a set of fixed GMRs is implemented without user customization. To the
best of our knowledge, besides iPrompt, the other mentioned systems are not publicly
accessible and reproducible. Moreover, none of them are available as a web-based
application.

In this chapter, we present CoMerger, a customizable online tool for building a consistent
quality-assured merged ontology. The tool can merge multiple ontologies at the same
time by adjusting user preference of merge requirements, check the quality of the
merged ontology, and support for inconsistency handling of the result. Our web-based
application is supported by many modern web browsers. The host server (VM) for the
tool includes 8 cores with CPU 2.39 GHz and 16 GB RAM. The processing time based
on the size and number of source ontologies is reasonable. For instance, merging 17
ontologies with 51461 axioms took 140 seconds with a home internet (44 Mbps speed)
in the Firefox 72.0.2 web browser. Users can opt for a local installation of the tool to
omit delays due to network communication, which the code is publicly available in our
repository1.

1https://github.com/fusion-jena/CoMerger/tree/master/SourceCode

https://github.com/fusion-jena/CoMerger/tree/master/SourceCode

140 Chapter 9. CoMerger: Proposed Tool

FIGURE 9.3: GUI of adjusting the desired GMRs.

9.5. Summary 141

FIGURE 9.4: Ontology merging GUI.

142 Chapter 9. CoMerger: Proposed Tool

FIGURE 9.5: The GUI for customizable evaluation of the merged ontology.

9.5. Summary 143

FIGURE 9.6: The result of the consistency test with a repair plan for an inconsistent
merged ontology.

145

10
Experimental Tests on the N-ary Merge Method

In this chapter, we present the experimental test on the n-ary merge method, described
in Chapter 4. At first, we show the setting of our experimental tests in Section 10.1.
We then provide an experimental evaluation of the proposed approach for merging a
variety of ontologies in Section 10.2, showing the effectiveness of our approach over
purely binary approaches. In particular, we present three tests: In the first test, we
observe the characteristics of the n-ary merged ontologies in Section 10.2.1. In the second
test, we analyze the constructed logic of the merged ontology by answering a group of
Competency Questions in Section 10.2.2. Comparing n-ary and binary merge methods
is demonstrated in the third test in Section 10.2.3. In Section 10.3, a summary of this
chapter is presented.

The list of used notations, symbols, and nomenclatures has been shown in Table 10.1.
The results described in this chapter have been partially published in [BKR20a; BKR20b].

146 Chapter 10. Experimental Tests on the N-ary Merge Method

TABLE 10.1: The used notations, symbols, and nomenclatures in Chapter 10.

Notation Description
O an ontology
OS a set of source ontologies
OM a merged ontology
Sig(O) a signature of an ontology
C a set of classes in an ontology
P a set of properties of an ontology
I an individual of an ontology
str degree of the structure preservation
on oneness- properties that have multiple domains or ranges
Cu unconnected classes in an ontology
cyc cycles in the class hierarchy
RG global refinements on the merged ontology
RL local refinements on the blocks
M a perfect mapping set between the source ontologies
M′ an imperfect mapping set between the source ontologies
Cor all corresponding entities
Card the max cardinality of a corresponding set
n number of source ontologies
k number of blocks
taxo_rel taxonomy relation of a class
non_taxo_rel non-taxonomy relation of a class
wt weight degree of taxonomy relation
wnt weight of non-taxonomy relation
ds distributed axioms between two blocks
tr translated axioms
ov amount of overlap between source ontologies
Mer. number of merge operations
N n-ary merge strategy
B balanced merge strategy
L ladder merge strategy
V1-V12 twelve versions of the merged ontologies
d1-d12 twelve tested datasets
CQ Competency Questions
GMR General Merge Requirement
R1-R20 individual GMRs

10.1. Test Setting 147

0

1

2

3

4

5

d1 d1 d1 d1 d1 d2 d2 d2 d2 d2 d3 d3 d3 d3 d3 d4 d4 d4 d4 d4 d5 d5 d5 d5 d5 d6 d6 d6 d6 d6 d9 d9 d9 d9 d9

1 0.75 0.5 0.25 0 1 0.75 0.5 0.25 0 1 0.75 0.5 0.25 0 1 0.75 0.5 0.25 0 1 0.75 0.5 0.25 0 1 0.75 0.5 0.25 0 1 0.75 0.5 0.25 0

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1𝒘𝒘𝒕𝒕

𝒘𝒘𝒏𝒏𝒏𝒏

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑑𝑑9

𝒌𝒌

FIGURE 10.1: Effect of taxonomic weight wt and non-taxonomic weight wnt on the
number of blocks k.

TABLE 10.2: Number of taxonomic and non-taxonomic relations for the datasets.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

|taxo_rel| 91 134 155 299 414 628 9916 10629 1223 6295 6827 26432
|non_taxo_rel| 424 217 621 1118 521 1489 18976 28533 2848 41461 42755 110450

10.1 Test Setting

In this section, we present: (1) which values for the parameters have been set in
Section 10.1.1, (2) how we build the binary merged ontologies in Section 10.1.2, (3) how
we created different versions of the merged ontologies in Section 10.1.3, and (4) which
refinements are used in the creation of merged ontologies in Section 10.1.4.

10.1.1 Adjusting Parameters

In the experimental results of this section, the values of wt and wnt were empirically
determined to 0.75 and 0.5, respectively, but we make no claim that these are optimal
values. The reason for choosing these values is the tested ontologies are augmented
with a large number of nan-taxonomic relations (see Table 10.2). When the weight of
nan-taxonomic relations is as important as the taxonomic relations, the classes with
less number of taxonomic relations would be selected as the pivot classes. Note that,
assigning classes to the blocks is carried based on the taxonomic relations. In this view,
when a class with less number of taxonomic relations is considered as the pivot of the
block, then only a few classes will be added to that block. As a result, blocks will be
smaller, and the number of created blocks will be bigger and even more than the number
of source ontologies. Thus, we set a higher weight to taxonomic relations.

We also carried a test for all values of wt and wnt in the range [0,1] with distance 0.25,
where the wt + wnt = 1. The results of different weights on the number of blocks are
shown in Figure 10.1. The datasets which are not shown, achieved k = 1 for all weight
setting. The number of blocks depends on the characteristics of ontologies. Thus, in
Table 10.2, we show the number of taxonomic and non-taxonomic relations of merged
ontologies in each dataset. Given the characteristics that they have, the number of blocks
is acceptable.

148 Chapter 10. Experimental Tests on the N-ary Merge Method

10.1.2 Adjusting Binary Methods

Binary strategies allow the merging of two ontologies at a time [BLN86]. They are called
ladder strategies when a new ontology is integrated with an existing intermediate result
at each step. A binary strategy is balanced when the ontologies are divided into pairs at
the start and are integrated in a symmetric fashion.

Let us consider an example when O1, O2, O3, and O4 are source ontologies.

• In the balanced-binary merge, first, O1 and O2 are merged, which results in an
intermediated merged ontology namely O12. Then O3 and O4 are merged, which
creates O34. After that, the created O12 and O34 are merged to produce the final
result.

• In the ladder-binary merge, first, O1 and O2 are merged. Then, O12 is merged with
O3, which results in creating O123. After that, O123 is merged with O4 to create the
final result.

In our experimental tests, we follow the mentioned producers to conduct the binary
merges.

10.1.3 Building Different Versions of Merge

We evaluated our approach under different conditions V1-V12 (see Table 10.3):

1. Using the perfect mapping (M) versus an imperfect mapping (M′)

2. Applying (3) the local refinement process or not (7)

3. Applying (3) global refinements or not (7)

We follow these conditions for n-ary, balanced, and ladder merge strategies. Thus,
we generated six versions (V1-V6) of merged ontology using the n-ary method, three
versions (V7-V9) of binary balanced, and three versions (V10-V12) of the binary ladder.
For the binary merges, we consider the imperfect mapping, only. Because, at each merge
process, the mapping for the created intermediate merged result and one of the source
ontologies is generated on the fly with the ontology matching tool. There is no perfect
mapping for the intermediate merge ontology with one of the ontologies in OS .

10.1.4 Adjusting Refinements

To apply local and global refinements, we select a subset of GMRs (R1-R3, R7, R15, R16,
R19) from Chapter 5. A brief reminder: R1, R2, R3, and R7 are related to class, property,
instance, and structure preservation, respectively. R15 emphasizes on the oneness of
properties, i.e., without multiple domains or ranges. R16 is relevant to class acyclicity
and R19 expresses the degree of connectivity in OM . We use these criteria to observe
how well the merged ontologies are structured.

10.2. Experimental Results 149

TABLE 10.3: The settings for generating twelve variants of the merged ontologies.

N-ary Balanced Ladder
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

Mapping type M M M M′ M′ M′ M′ M′ M′ M′ M′ M′
Global refinement 3 3 7 3 3 7 3 3 7 3 3 7

Local refinement 3 7 7 3 7 7 3 7 7 3 7 7

10.2 Experimental Results

In the first test, we observe the characteristics of the n-ary merged ontologies. In the
second test, we analyze the constructed logic of the merged ontology by answering a
group of Competency Questions (CQs). Comparing binary merge and n-ary methods is
demonstrated in the third test. The inconsistency test will be carried in Chapter 12.

From the existing n-ary merge approaches, Porsche [SBH08] does not target ontologies,
but XML schemas, and the code of OmerSec [MFBB10] is not available. Thus, we
were not able to perform a comparison with existing works. We mainly focus on tests
associated with the characteristics and performance.

10.2.1 Characteristics of the N-Ary Merged Result

In this section, first, we present which criteria we used for the evaluation of the results.
We then present the result and analyze them.

10.2.1.1 Evaluation criteria

To evaluate the characteristics of the created OM , we use three evaluation criteria
categories:

• Integrity: in [DB10], the integrity aspect of a created merged ontology is defined
with three measures:

– The compactness metric represents the size of the merge result. It can be useful
for general information about the OM in the desired application.

– The coverage, or namely completeness, is the percentage of entities presented in
the OS that is included in the OM . It is related to the degree of information
preservation. This includes classes C, properties P , instances I , and the
structurality str coverage. The latest one refers to preserving the structure
of the merged ontology w.r.t. source ontologies. These metrics are related to
the evaluation of R1-R3, and R7 from Chapter 5.

– The redundancy, or namely minimality, checks that no redundant entities
appear in the OM . Since in all created versions of the merged ontologies, no
redundant entities have been found, we do not include this metric in results.

There is a difference between duplicated or redundant entities. Duplicated are
those entities (with the same name and characteristics), which are repeated

150 Chapter 10. Experimental Tests on the N-ary Merge Method

more than one time in the ontologies. For example, class Paper appears
two times in the ontology. In the implementation of CoMerger, classes in
OWL ontologies are defined as SET, which by nature, contains no repeated
elements. Thus, in all tested ontologies, there are no duplicated entities. On
the other hand, redundant means that two entities (possibly with different
names) are the same real entity in the world. For example, classes Document
and ConferenceDocument are referred to one real entity in the world. So,
they are the same entities with different names. If an ontology contains
these two classes, it has redundancy. One way to detect the entities referring
to the same real entity in the world is the mappings given by experts or
generated by an ontology alignment system. Given the alignment between
source ontologies, the mapped entities should not appear separately in the
merged ontologies. If so, we call them redundant entities. Since for a group
of corresponding entities, our approach merges them into an integrated entity,
there are no redundant entities in all tested ontologies, too.

• Evaluation of applying the GMRs: we evaluate to what extent the refinements
play a role. For R15, we count the number of properties that have multiple domains
or ranges and present it as |on|. For R19, we consider only those unconnected
classes in the OM , which were connected in the OS given by |Cu|. For R16, we
calculate how many cycles in the class hierarchy in the OM exist (|cyc|).

• Merge process characteristic: we address the characteristic of the merge process
by measuring:

– Number of created blocks (k)

– Percentage of axioms with taxonomic distributed on the total axioms (dstax%)

– Percentage of axioms with non-taxonomic distributed relations on the total
axioms (dsnon_tax%)

– Percentage of the axioms with taxonomic relations which are unconnected on
the total axioms (dsun%)

– Percentage of the translated axioms on the total axioms (tr%)

– Number of local refinement actions in intra-combinations (|RL|)

– Number of global refinement actions in inter-combinations (|RG|)

10.2.1.2 Results

The full results of running six versions of our n-ary method on twelve datasets have been
presented in Tables 10.6 and 10.7 on the OAEI and BioPortal datasets, respectively. To
highlight analyzing the various aspects, we extracted some of these tests in Figure 10.2
and Figure 10.3, but in analyzing the result, we make a conclusion on the whole result.
Indeed, these figures are a summary for better visualization. Moreover, we show the
results of considering perfect or imperfect mapping in Figure.10.4, the analyzing of the
blocks’ number on the whole datasets in Figure 10.5, and characteristic of the distributed
axioms in Figure 10.6. In particular, we present the achieved results, as follows:

10.2. Experimental Results 151

d5V1 d5V2 d5V3 d5V4 d5V5 d5V6 d10V1 d10V2 d10V3 d10V4 d10V5 d10V6 d12V1 d12V2 d12V3 d12V4 d12V5 d12V6
P 1 1 1 1.01 1 1 0.9 0.9 0.9 1.01 1.01 1 0.95 0.95 0.95 1.03 1.03 1.01
I 1 1 1 1 1 1 0.93 0.93 0.93 0.98 0.98 0.98 0.96 0.96 0.96 0.96 0.96 0.96
str 0 0 0 0 0 1 0 0 71 0 0 87 0 0 176 0 0 579𝑠𝑠𝑡𝑡

0.97
0.975

0.98
0.985

0.99
0.995

1
1.005

d5V1 d5V2 d5V3 d5V4 d5V5 d5V6 d10V1 d10V2 d10V3 d10V4 d10V5 d10V6 d12V1 d12V2 d12V3 d12V4 d12V5 d12V6

𝑃𝑃
𝐼𝐼

𝑑𝑑5 𝑑𝑑10 𝑑𝑑12 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶

𝑑𝑑5𝑉𝑉1 𝑑𝑑5𝑉𝑉2 𝑑𝑑5𝑉𝑉3 𝑑𝑑5𝑉𝑉4 𝑑𝑑5𝑉𝑉5 𝑑𝑑5𝑉𝑉6 𝑑𝑑10𝑉𝑉1 𝑑𝑑10𝑉𝑉2 𝑑𝑑10𝑉𝑉3 𝑑𝑑10𝑉𝑉4 𝑑𝑑10𝑉𝑉5 𝑑𝑑10𝑉𝑉6 𝑑𝑑12𝑉𝑉1 𝑑𝑑12𝑉𝑉2 𝑑𝑑12𝑉𝑉3 𝑑𝑑12𝑉𝑉4 𝑑𝑑12𝑉𝑉5 𝑑𝑑12𝑉𝑉6

FIGURE 10.2: Class C, property P , and instance I coverage with the number of
unpreserved structure str coverage of six versions of n-ary merge for three sample

datasets.

d1V1 d1V2 d1V3 d1V4 d1V5 d1V6 d6V1 d6V2 d6V3 d6V4 d6V5 d6V6 d12V1 d12V2 d12V3 d12V4 d12V5 d12V6
on 0 0 4 0 0 4 0 0 14 0 0 24 0 0 44 0 0 85
Cu 0 0 6 0 0 8 0 0 8 0 0 11 0 0 252 0 0 229
cyc 0 0 1 0 0 0 0 0 4 0 0 0 0 0 4 0 0 13

Chart Title

14 0 0 8 0 0

71

0 0

96

0 0 0 0 0 0 0 08 12 0 12 13 0

21 29

0

34 41

0

52
4

52
4

0

97
7

97
7

0

D1V1 D1V2 D1V3 D1V4 D1V5 D1V6 D6V1 D6V2 D6V3 D6V4 D6V5 D6V6 D12V1 D12V2 D12V3 D12V4 D12V5 D12V6

|𝑜𝑜𝑜𝑜|
|𝐶𝐶𝑢𝑢|

|𝑐𝑐𝑐𝑐𝑐𝑐|

𝑑𝑑1𝑉𝑉1 𝑑𝑑1𝑉𝑉2 𝑑𝑑1𝑉𝑉3 𝑑𝑑1𝑉𝑉4 𝑑𝑑1𝑉𝑉5 𝑑𝑑1𝑉𝑉6 𝑑𝑑6𝑉𝑉1 𝑑𝑑6𝑉𝑉2 𝑑𝑑6𝑉𝑉3 𝑑𝑑6𝑉𝑉4 𝑑𝑑6𝑉𝑉5 𝑑𝑑6𝑉𝑉6 𝑑𝑑12𝑉𝑉1 𝑑𝑑12𝑉𝑉2 𝑑𝑑12𝑉𝑉3 𝑑𝑑12𝑉𝑉4 𝑑𝑑12𝑉𝑉5 𝑑𝑑12𝑉𝑉6

|𝑅𝑅𝐿𝐿| |𝑅𝑅𝐺𝐺|

FIGURE 10.3: Number of local |RL| and global |RG| refinements, oneness |on|,
unconnected classes |Cu| and cycle |cyc| of six versions of the n-ary merge.

• In Figure 10.2, we show the degree of information preservation on the six versions
of our n-ary merge method. The percentage of class coverage C% is shown on
the chart, while the percentage of the property P%, instance I% coverage, and the
absolute number of unpreserved structure |str| are drawn in the table view under
each chart.

• In Figure 10.3, we show the number of local |RL| and global |RG| refinement
actions. In this figure, we also present the statistics about the evaluation of selected
GMRs with |on|, |Cu|, and |cyc|.

• In Figure 10.4, we show the percentage of translated axioms for all datasets along
with the number of corresponding entities in perfectM or imperfectM′ mapping.

• In Figure 10.5, we demonstrate the number of created blocks k for all datasets using
perfectM (V1-V3) or imperfectM′ mappings (V4-V6).

• In Figure 10.6, we present the taxonomic distributed axioms. Moreover, we present
the statistic of the axioms, which are unconnected on the is-a hierarchy level.
We also show distributed non_taxonomic relations. All values are shown as the
percentage of the total axioms

10.2.1.3 Analyzing the results

To analyze the result of these two figures, we examine the result of different versions.

• Investigating the effect of considering no refinements (V3/V6) compared to
applying refinements either locally or globally (V1, V2, V4, V5): We can conclude

152 Chapter 10. Experimental Tests on the N-ary Merge Method

d1M d1M' d2M d2M' d3M d3M' d4M d4M' d5M d5M' d6M d6M' d7M d7M' d8M d8M' d9M d9M' d10M d10M' d11M d11M' d12M d12M'
M(') 14 9 11 9 33 19 53 47 38 37 95 82 1490 1177 2480 2472 7 6 147 266 155 267 676 1139

32.9 31.1 28.5 26.6

42.3
35.3

44.5
39.8 38.3 37.9

48.3
43.1

30.6

42.6 41 38.2

5.3 5.1
8.4

12.1
8.3

11.7 11.1
18.6

0

10

20

30

40

50

d1M d1M' d2M d2M' d3M d3M' d4M d4M' d5M d5M' d6M d6M' d7M d7M' d8M d8M' d9M d9M' d10M d10M' d11M d11M' d12M d12M'

|Translated Axioms|

𝑑𝑑1𝑀𝑀 𝑑𝑑1𝑀𝑀′ 𝑑𝑑2𝑀𝑀 𝑑𝑑2𝑀𝑀′ 𝑑𝑑3𝑀𝑀 𝑑𝑑3𝑀𝑀′ 𝑑𝑑4𝑀𝑀 𝑑𝑑4𝑀𝑀′ 𝑑𝑑5𝑀𝑀 𝑑𝑑5𝑀𝑀′ 𝑑𝑑6𝑀𝑀 𝑑𝑑6𝑀𝑀′ 𝑑𝑑7𝑀𝑀 𝑑𝑑7𝑀𝑀′ 𝑑𝑑8𝑀𝑀 𝑑𝑑8𝑀𝑀′ 𝑑𝑑9𝑀𝑀 𝑑𝑑9𝑀𝑀′ 𝑑𝑑10𝑀𝑀 𝑑𝑑10𝑀𝑀′ 𝑑𝑑11𝑀𝑀 𝑑𝑑11𝑀𝑀′𝑑𝑑12𝑀𝑀𝑑𝑑12𝑀𝑀′

𝑡𝑡𝑡𝑡𝑡

FIGURE 10.4: Comparing translated axioms tr% with corresponding entities inM
andM′.

d1M d1M' d2M d2M' d3M d3M' d4M d4M' d5M d5M' d6M d6M' d7M d7M' d8M d8M' d9M d9M' d10M d10M
' d11M d11M

' d12M d12M
'

ov 13.3 7.8 8.9 6.5 22.5 14 26.4 17.3 15.3 13.6 31.3 20.7 25.1 19.4 28.5 24.3 0.6 0.5 3.7 6 3.6 5.5 5.7 10.4
card 3 2 2 2 4 3 6 4 4 5 13 10 4 2 6 2 2 2 5 18 5 18 11 67
br 2.9 6.5 11.1 11.1 5.3 7.7 2.7 5.4 10.4 10.6 11.9 7.6 0 0 0 0 15.7 16 2.8 0 2.8 0 0 0

0
1
2
3
4
5

d1M d1M' d2M d2M' d3M d3M' d4M d4M' d5M d5M' d6M d6M' d7M d7M' d8M d8M' d9M d9M' d10M d10M' d11M d11M' d12M d12M'

k

𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑𝑑

𝑑𝑑1𝑀𝑀 𝑑𝑑1𝑀𝑀′ 𝑑𝑑2𝑀𝑀 𝑑𝑑2𝑀𝑀′ 𝑑𝑑3𝑀𝑀 𝑑𝑑3𝑀𝑀′ 𝑑𝑑4𝑀𝑀 𝑑𝑑4𝑀𝑀′ 𝑑𝑑5𝑀𝑀 𝑑𝑑5𝑀𝑀′ 𝑑𝑑6𝑀𝑀 𝑑𝑑6𝑀𝑀′ 𝑑𝑑7𝑀𝑀 𝑑𝑑7𝑀𝑀′ 𝑑𝑑8𝑀𝑀 𝑑𝑑8𝑀𝑀′ 𝑑𝑑9𝑀𝑀 𝑑𝑑9𝑀𝑀′ 𝑑𝑑10𝑀𝑀 𝑑𝑑10𝑀𝑀′ 𝑑𝑑11𝑀𝑀 𝑑𝑑11𝑀𝑀′𝑑𝑑12𝑀𝑀𝑑𝑑12𝑀𝑀′

𝑘𝑘

FIGURE 10.5: Number of blocks k versus class overlap ov%, max cardinality Card,
and distributed axioms ds%.

0.
14 0.
69

0.
37

0.
37

0.
38 0.
66

0.
25 0.
6

0.
58

0.
79

0.
16 0.
92

0 0 0 0 0.
07

0.
04

0.
28

0 0.
27

0 0 0

24
.9

30

24 23
.8

30
.3

34
.1

23
.7

30
.4

15
.6

13
.3

39
.5

23
.4

0 0 0 0

36
.8 38

.1

22
.5

0

21
.8

0 0 0

2.
8 5.

8

10
.7

10
.7

4.
9 7.

1

2.
4 4.

8

9.
9

9.
9 11

.8

6.
7

0 0 0 0

15
.6

15
.9

2.
5

0

2.
5

0 0 0

0

5

10

15

20

25

30

35

40

45

d1M d1M' d2M d2M' d3M d3M' d4M d4M' d5M d5M' d6M d6M' d7M d7M' d8M d8M' d9M d9M' d10M d10M' d11M' d11M' d12M d12M'

ds_tax ds_non_tax ds_unCon_tax

𝑑𝑑1𝑀𝑀 𝑑𝑑1𝑀𝑀′ 𝑑𝑑2𝑀𝑀 𝑑𝑑2𝑀𝑀′ 𝑑𝑑3𝑀𝑀 𝑑𝑑3𝑀𝑀′ 𝑑𝑑4𝑀𝑀 𝑑𝑑4𝑀𝑀′ 𝑑𝑑5𝑀𝑀 𝑑𝑑5𝑀𝑀′ 𝑑𝑑6𝑀𝑀 𝑑𝑑6𝑀𝑀′ 𝑑𝑑7𝑀𝑀 𝑑𝑑7𝑀𝑀′ 𝑑𝑑8𝑀𝑀 𝑑𝑑8𝑀𝑀′ 𝑑𝑑9𝑀𝑀 𝑑𝑑9𝑀𝑀′ 𝑑𝑑10𝑀𝑀 𝑑𝑑10𝑀𝑀′ 𝑑𝑑11𝑀𝑀 𝑑𝑑11𝑀𝑀′ 𝑑𝑑12𝑀𝑀 𝑑𝑑12𝑀𝑀′

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

FIGURE 10.6: Comparing distributed axioms: taxonomic distributed axioms
dstax, non-taxonomic distributed axioms dsnon_tax, and unconnected taxonomic

distributed axioms dsun.

that applying refinement in 76 out of 120 cases (see Tables 10.6 and 10.7) leads
to considerable improvements in class coverage, structure preservation, oneness,
unconnected classes, and acyclicity, whereas in 40 cases, the same results are
achieved. For example, if no refinement is applied, 8 classes became unconnected
in d1, or 24 properties with multiple domains and ranges in d6 are generated, or 13
cycles exist in d12, or 71 unpreserved structures happen in d10.

• Analyzing using perfect (V1-V3) versus imperfect mappings (V4-V6): As the results
in Tables 10.6 and 10.7 show, we observe that out of 12 datasets, a perfect
mapping causes 7 fewer cases of unconnected entities (e.g., in d1 and d6); 3 fewer
cases of cycles (e.g., in d12); 7 fewer cases of properties oneness (e.g., in d12); 6
cases preserving better structure (e.g., in d5, d10 and d12); 3 fewer cases of local
refinements (e.g., in d6); 9 fewer cases of global refinements (e.g., in d1, d6, and d12).

10.2. Experimental Results 153

On the other hand, using imperfect mapping causes 1 fewer case of unconnected
entities in d12; 6 fewer cases of cycles (e.g., in d1 and d6); 4 fewer cases of local
refinements (e.g., in d1); and 2 fewer cases of global refinements.

• Analyzing applying local refinements (V1/V4) versus no local refinements (V2/V5):
In regards to the results of Tables 10.6 and 10.7, the effect of applying local
refinements V1/V4 rather than no local refinements V2/V5 cannot be observed in the
view of the mentioned criteria. However, applying refinement actions in the local
or global level have different computational complexity, since the respective search
spaces substantially differ. For instance, finding or repairing a cycle in a small set
of classes (local sub-ontologies) is far less expensive than among all classes of the
merged ontology.

• Analyzing translated axioms with respect to the corresponding entities: As the
result in Figure 10.4 shows, using perfect or imperfect mappings with different
numbers of corresponding entities has a direct effect on the number of translating
|tr| axioms.

• Analyzing the number of blocks k: As the results in Figure 10.5 shows, the value of
k affects the number of distributed axioms. Thus, we also report the percentage of
the distributed is-a axioms on the total axioms ds%. Determining k in our method
mostly depends on the amount of overlap ov% between the source ontologies’
classes and the cardinality Card value on corresponding classes. The overlap is
calculated by the ratio of the number of corresponding classes on the total classes.
For each dataset, we show the maximum cardinality between the corresponding
entities. Considering ov% and Card, the values of k in our datasets is reasonable
(1 ≤ k ≤ 5), which shows the feasibility of our approach.

• Analyzing distributed axioms: As the results in Figure 10.6 shows, in all datasets,
the percentage of the taxonomic distributed axioms dstax is less than 1%. These
axioms are mostly related to the objectUnionOf axioms, where the union classes are
distributed over the blocks. For instance, A subClassOf (C or D); which C ∈ L1,
and D ∈ L2. The distributed axioms, which are a type of non-taxonomic relations
(dsnon_tax) are mostly high. The reason is the ontologies have many non_taxonomic
relations, such as equivalent or disjoint axioms, which their entities based on the
taxonomic relations are distributed between the blocks. We observed that, in each
dataset, there are some taxonomic-based axioms which do not belong to any blocks
(showing by dsun). For instance, A subClassOf B, but none of the A or B do not
already assign to any blocks. Thus, this axiom is marked as dsun. Because the
superclass of these types of axiom (here A) does not connect to any other classes,
and indeed, it is only connected to the root. The datasets d7, d8, d10M′ , d11M′ , and
d12 have one block and do not have any distributed axioms.

10.2.2 Answering Competency Questions

Competency Questions (CQs) are a list of questions used in the ontology development
life cycle, which an ontology should answer. By using CQs tests, we aim to observe
which created OM can provide superior answers to the CQs. To this end, we used a set

154 Chapter 10. Experimental Tests on the N-ary Merge Method

TABLE 10.4: Answering CQs on the different versions of merged ontologies.

Semi% Total
id Complete%

-Complete
Partial% Wrong% Unknown% Null%

Correct%

d1V1, V2

20

6.7 3.3

3.3

66.7 0

30d1V3

10 0
63.3 3.4

d1V4, V5 66.7 0
d1V6 63.3 3.4

d2V1-V6 13.3 6.7 13.3 0 66.7 0 33.3
d3V1, V2 36.7 26.7 6.7

0

26.7

3.2 70
d3V3 33.3 30

3.3

6.7
66.7

d3V4, V5 40

23.3
3.3

3.4
d3V6 36.7 6.7 63.3

d3V7, V8 40 3.4 66.7
d3V9 36.7 6.7 63.3

d3V10, V11 26.7
13.3 0 10

23.3 40
d3V12 23.3 26.7 36.7
d4V1-V3 33.3 20 10 0 36.7

0 63.3
d4V4-V6 36.7

13.3 13.3 3.3
33.4d4V7-V9 33.3 3.4 60

d4V10-V12 23.3 10 3.3 10 20 36.7
d5V1-V3

23.3
13.4

23.3
0

40
0

60
d5V4-V9 16.7

36.7
63.3

d5V10-V12 13.3 16.7 10 53.3
d6V1-V3 40 23.3

10
0

26.7 0 73.3
d6V4-V9 6.7

23.3
6.7 70

d6V10-V12 33.3 6.7 0 6.7 30 40

of CQs (see Appendix A) in the conference domain and ran them for the datasets in the
conference domain.

10.2.2.1 Evaluation criteria

We compare the CQ-results for each dataset with all possible answers from theOM with
respect to itsOS on that dataset. We achieved five different answers, as explained below:

• The complete answer of OM indicates a full correct answer similar to the OS ’s
answer.

• Among all answers of the OS , if the number of found answers in OM is higher or
equal than the number of not found, we marked it as a semi-complete answer.

• Among all answers of theOS , if the number of found answers inOM is lower than
the number of not found, we marked it as a partial answer.

• An answer is marked as wrong if the result of the CQ from the merged ontology is
not the same as the answers from the source ontologies. For example, the wrong
answer might happen, when all source ontologies return, for instance, true for a
true or false query, but the merged ontology returns false. Alternatively, in the
questions related to the is-a hierarchy, the merged ontology shows a different
hierarchy than the hierarchy of the source ontologies.

10.2. Experimental Results 155

• If CQ’s entities exist in the ontology, but no further knowledge exists about them,
we mark them by a null answer.

• If the ontology does not have any knowledge about the CQ, we indicate this by an
unknown answer.

10.2.2.2 Results

The results of running our CQs on the conference datasets are presented in Table 10.4.
Each CQ has been converted manually to a SPARQL query and run against the OS and
the different versions of the OM . We show the values based on the percentage of the
total number of CQs. Values in boldface show the best result in each dataset: highest
values in complete, semi-complete, partial, and total-complete answers; lowest values in
wrong, unknown, and null answers. The last column shows a sum value on the complete,
semi-complete, and partial answers given by the total correct.

10.2.2.3 Analyzing

From this test, we can observe the following points.

• Analyzing applying local or global refinements: in some cases can provide more
complete answers (cf. d3V1, V2, d3V4V5), more partial answers (cf. d1V1, V2,d3V1, V2),
and less null answers (cf. in d1V1, V2, d1V4, V5, d3V1, V2).

• Analyzing using perfect mappings: it causes more semi-complete answers in d3 and
d4, more partial answers in d1 and d3, less wrong answers in d3 and d4, and less null
answers in d3 and d6.

• Analyzing using imperfect mappings: it causes more complete answers in d3 and
d4, more semi-complete answers in d5, more partial answers in d4, less unknown
answers in d4-d6, less null answers in d4, and less unknown answers in d6. One
of the reasons why the perfect mappings in some cases are worse than imperfect
mapping is, the entities inside the ontology in OAEI mapping correspond to each
other. This self-mapping causes the structure of theOM to be mixed up and makes
it unable to provide correct CQs’ answering.

• Comparing the n-ary (V4-V6) and binary (V7-V12) strategies: it reveals that the n-ary
merge can achieve the same quality result as binary methods, and even better
results in d4 in terms of achieving more complete answers and less null answers
rather than binary approaches.

• Comparing binary-balanced (V7-V9) and binary-ladder (V10-V12): The difference
between two versions of the binary merges is mostly related to the order of
selecting and merging them, which affects the final merged output. This test
also reveals that binary-balanced (V7-V9) and binary-ladder (V10-V12) in all cases
have different outputs and results, i.e., the final merged output is different.
Consequently, the answers to the CQs are different.

156 Chapter 10. Experimental Tests on the N-ary Merge Method

TABLE 10.5: Comparing n-ary (N), balanced (B), and ladder (L) merge strategies
with the number of corresponding entities |Cor|, translated axioms |tr|, global

refinements |RG|, merge processes |Mer.|.

d4 d6 d10 d11 d12

N B L N B L N B L N B L N B L
|Cor| 47 65 64 82 127 128 266 369 351 267 388 386 1139 2186 2159
|tr| 790 1270 1339 1310 2791 3462 6949 15816 31420 6960 16060 35480 30035 66344 154002
|RG| 21 27 23 41 48 51 143 166 191 143 177 196 977 1533 1560
|Mer.| 1 3 1 6 1 16 1 18 1 54

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12
n 2 2 3 4 4 7 2 2 5 17 22 56
OS aAxiom 726 534 1061 1970 1391 3037 41407 49433 5432 51461 56893 158567

0.
57

4

0.
46

1

0.
74

4

1.
31

0.
93

8

1.
83

9 24
.2

82

43
.7

90

2.
91

4

61
.7

61

62
.3

40

15
0.

74
4

2.
27 3.
48

7

2.
47

4

6.
97

3

9.
13

4

25
2.

53
7

23
0.

27
8 80

6.
26

5

2.
30

1

4.
49

8

4.
05

2

8.
32

1

9.
92

3

50
6.

95
8

59
2.

17
4

47
35

.8
18

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Holistic Binary_balanced Binary_ladder
Time

(second)

N-ary

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑑𝑑7 𝑑𝑑8 𝑑𝑑9 𝑑𝑑10 𝑑𝑑11 𝑑𝑑12
55

FIGURE 10.7: Runtime performance: numbers of source ontologies and axioms
versus the required time for the merge process in second. Binary merges run on

datasets with n > 2.

This test also reveals how datasets are robust. For instance, different versions of d2 are
mostly identical and are not different. On the other hand, some datasets such as d3 have
quiet different output on each created version of the merged ontology.

Summing up, the ontologies in the conference domain are small in size and lack complete
knowledge modeling. Because of this, 100% complete answers are hard to achieve.
However, our created merged ontologies can provide up to 73.3% totally correct answers
for the given CQs in this domain. This shows the applicability of our method.

10.2.3 Binary versus N-ary

While the CQ test shows that the quality of the result of the n-ary approach can compete
with the binary approaches, in the third test, we compare performance metrics. We
conduct an experimental test by a series of binary merges on the eight datasets that
have more than two source ontologies. Note that, in the previous test, we compared the
quality of the output. However, in this test, we examine:

1. The required operations

2. The runtime performance

10.2.3.1 Evaluation criteria

We evaluate the criteria for:

10.2. Experimental Results 157

• The operation complexity: We compare the number of required refinement actions
|RG| in Table 10.5. We also present the number of merge processes by |Mer.| in the
table.

• The runtime performance: We demonstrate the method’s scalability by illustrating
the performance test results. Here, the runtime performance is evaluated based
on the number of ontologies versus the required time for the merge process in
N-ary(V5), Balanced (V8), and Ladder (V11).

10.2.3.2 Results

Table 10.8, Table 10.9, and Table 10.10 compare the n-ary, balanced, and ladder merge
strategies for different versions of the test setting. Table 10.8 shows the results when
both local and global refinements are applied. Table 10.9 shows the results when only
global refinements are applied. Table 10.10 shows the results when no refinement is
applied. In all tables, we show the results for those datasets which have more than two
source ontologies. Table 10.5 shows a summary of Table 10.9 to emphasize on analyzing
the result.

Figure 10.7 shows the total runtime in seconds for the merge processes in n-ary (V5),
binary-balanced (V8), and binary-ladder (V11). We ran each test ten times and presented
the average values. The processing time of the binary merge does not include the time
for creating the respective mappings.

10.2.3.3 Analyzing the results

From the test, we derive the following points:

• Analyzing corresponding entities |Cor| and translated axioms: The number of
total corresponding entities |Cor| during the whole process of the merge is quite
different. In each test of a binary merge, only the correspondences between
two entities can be integrated into a new entity. However, in the n-ary merge,
the corresponding entities from multiple source ontologies can be integrated
simultaneously into the new entity. For this reason, the number of corresponding
entities in the binary merge in 7 out of 8 datasets is much higher than the n-ary
approach. Consequently, the required amount of combining them into new entities
and translating their axioms |tr| is high in all tested datasets. For instance, in
d6, the number of translated axioms in the n-ary method is 1310, while in the
binary-ladder strategy, it is 3462. Therefore, the n-ary approach has great speed-up.

• Analyzing global refinements: In 7 out of 8 datasets, the n-ary approach requires
fewer refinement actions compared to binary merges. For instance, in d12, the n-ary
method runs 977 actions, while in the binary-balanced is 1533.

• Analyzing local refinements: The same conclusion can be derived from comparing
the required local refinements.

• Analyzing the number of merges: We also present the number of merge processes
by |Mer.| in the table. While the n-ary approach only uses one iteration for all tests,

158 Chapter 10. Experimental Tests on the N-ary Merge Method

ladder and balanced methods require n− 1 merge process, e.g., in d12, 54 times the
whole process of the merge should be run.

• Analyzing the scalability: In Figure 10.7, we present the number of source
ontologies OS and their axioms, to emphasize that there is a linear dependency
on the number and size of OS w.r.t. merge processing time. The result quantifies
that the n-ary merge is on average 4 (9) times faster than the balanced (ladder)
binary merge, respectively. This concludes that using n-ary rather than binary
methods is more valuable and effective when the number of ontologies gets higher.
For example, in d3 with 3 source ontologies, n-ary is 3 times faster than binary
strategies, in d6 with n = 7, n-ary is 4 times faster than both binary approaches, and
in d12 with n = 56, it is 31 times faster than the binary ladder. Binary approaches
limit when merging multiple ontologies, while the n-ary method has significantly
better performance. This emphasizes the effectiveness of our approach in merging
multiple ontologies.

Overall our results show that the n-ary strategy achieves comparable results in terms of
quality but outperforms binary approaches in terms of runtime and complexity.

10.3 Summary

In this chapter, we have conducted a set of experimental tests to analyze the effectiveness
of our proposed method described in Chapter 4. We used a set of datasets and compared
our approach with a series of binary merge strategies (ladder and balanced). For each
dataset, we created twelve different merged ontologies by using the perfect mapping
versus an imperfect mapping and applying the refinement process on only the local
level, only the global level, and on both levels. We applied a subset of GMRs on merged
ontologies and reported the absolute number of occurrences that a GMR did not fulfill
in merged ontologies. Moreover, we evaluated them by integrity criteria (compactness,
coverage, and redundancy [DB10]).

By analyzing the characteristics of merged ontologies, we observed that:

• Applying refinements in most cases leads to considerable improvements in
the class coverage, structure preservation, oneness, unconnected classes, and
acyclicity.

• In most cases, the perfect mappings cause better results in terms of structural
measures. However, in some datasets, the result achieved by using imperfect
mappings is impressive.

• The number of corresponding entities in the perfect or imperfect mappings leads
to a different number of translated axioms.

• The number of blocks affects the number of distributed axioms. It gets effect by the
amount of overlap between the source ontologies classes and the cardinality of the
corresponding classes.

By analyzing merged ontologies with a set of Competency Questions (CQs), we observed
that:

10.3. Summary 159

• Ontologies built by utilizing a set of refinements could provide better answers to
the CQs.

• In some datasets, ontologies built by perfect mappings provide better answers,
while in some others, the ontologies built by the imperfect mapping have superior
answers.

• Ontologies built via the n-ary merge method achieve the same quality result as
those by the binary methods, and even better results in some cases.

By comparing binary merges and the n-ary strategy in terms of operational complexity
and runtime performance, we observed that:

• The number of translating axioms in binary merges is much more than in the
n-ary technique. Because in the n-ary merge, not only a pair but a group of
corresponding entities can be integrated into one step.

• Merged ontologies achieved by the n-ary method requires fewer refinement actions
compare to the binary merge methods.

• The n-ary approach only uses one iteration for all tests. In ladder and balanced
methods, n− 1 merge process is required (n is the number of source ontologies).

• In terms of time performance on tested datasets, the n-ary merge is on average 4
and 9 times faster than the balanced and ladder binary merge, respectively.

160 Chapter 10. Experimental Tests on the N-ary Merge Method

TABLE 10.6: Characteristics of the n-ary merged result- OAEI dataset.

Integrity Model Pr. Merge Pr.
Compactness Coverageid
C P I C P I str

|on| |Cu| |cyc| |RL| |RG|

d1V1 77 120 0 1 1 - 0 0 0 0 14 8
d1V2 77 120 0 1 1 - 0 0 0 0 - 12
d1V3 76 120 0 0.97 1 - 0 4 6 1 - 0
d1V4 82 121 0 1 1 - 0 0 0 0 8 12
d1V5 82 121 0 1 1 - 0 0 0 0 - 13
d1V6 81 121 0 0.98 1 - 0 4 8 0 - 0
d2V1 112 61 0 1 1 - 0 0 0 0 17 1
d2V2 112 61 0 1 1 - 0 0 0 0 - 1
d2V3 112 61 0 1 1 - 0 0 1 0 - 0
d2V4 115 60 0 1 1 - 0 0 0 0 18 3
d2V5 115 60 0 1 1 - 0 0 0 0 - 4
d2V6 115 60 0 1 1 - 0 2 2 0 - 0
d3V1 98 147 0 0.98 1 - 0 0 0 0 21 11
d3V2 98 147 0 0.98 1 - 0 0 0 0 - 16
d3V3 97 147 0 0.97 1 - 0 6 7 1 - 0
d3V4 109 154 0 0.98 1 - 0 0 0 0 14 15
d3V5 109 154 0 0.98 1 - 0 0 0 0 - 17
d3V6 108 154 0 0.97 1 - 0 6 9 0 - 0
d4V1 202 167 114 0.99 1 1 0 0 0 0 30 12
d4V2 201 167 114 0.99 1 1 0 0 0 0 - 18
d4V3 199 167 114 0.98 1 1 0 6 8 1 - 0
d4V4 226 165 114 0.99 0.99 1 0 0 0 0 26 18
d4V5 226 165 114 0.99 0.99 1 0 0 0 0 - 21
d4V6 224 165 114 0.98 0.99 1 0 9 9 0 - 0
d5V1 248 156 4 0.99 1 1 0 0 0 0 61 7
d5V2 247 156 4 0.99 1 1 0 0 0 0 - 9
d5V3 246 156 4 0.98 1 1 0 3 5 0 - 0
d5V4 253 155 4 0.99 1.01 1 0 0 0 0 64 13
d5V5 253 154 4 0.99 1 1 0 0 0 0 - 17
d5V6 251 153 4 0.98 1 1 1 9 5 0 - 0
d6V1 338 274 118 0.99 1.05 1 0 0 0 0 71 21
d6V2 336 274 118 0.98 1.05 1 0 0 0 0 - 29
d6V3 334 274 118 0.98 1.05 1 0 14 8 4 - 0
d6V4 390 283 118 0.99 1.03 1 0 0 0 0 96 34
d6V5 390 281 118 0.99 1.02 1 0 0 0 0 - 41
d6V6 386 280 118 0.98 1.01 1 1 24 11 0 - 0
d7V1 4526 4 0 1 1 - 0 0 0 0 - 9
d7V2 4526 4 0 1 1 - 0 0 0 0 - 9
d7V3 4526 4 0 1 1 - 0 0 7 2 - 0
d7V4 4873 2 0 1 1 - 0 0 0 0 - 7
d7V5 4873 2 0 1 1 - 0 0 0 0 - 7
d7V6 4873 2 0 1 1 - 0 0 7 0 - 0
d8V1 7290 87 0 1 1 - 0 0 0 0 - 1949
d8V2 7290 87 0 1 1 - 0 0 0 0 - 1949
d8V3 7285 87 0 1 1 - 4 0 1916 29 - 0
d8V4 7721 87 0 1 1 - 0 0 0 0 - 1925
d8V5 7721 87 0 1 1 - 0 0 0 0 - 1925
d8V6 7712 87 0 1 1 - 9 0 1916 0 - 0

10.3. Summary 161

TABLE 10.7: Characteristics of the n-ary merged result- BioPortal dataset.

Integrity Model Pr. Merge Pr.
Compactness Coverageid
C P I C P I str

|on| |Cu| |cyc| |RL| |RG|

d9V1 1145 101 31 1 0.72 1 0 0 0 0 8 17
d9V2 1145 101 31 1 0.72 1 0 0 0 0 - 17
d9V3 1144 101 31 1 0.72 1 0 14 2 0 - 0
d9V4 1146 101 31 1 0.72 1 0 0 0 0 0 17
d9V5 1146 101 31 1 0.72 1 0 0 0 0 - 17
d9V6 1145 101 31 1 0.72 1 0 14 2 0 - 0
d10V1 5042 2197 843 0.99 0.9 0.93 0 0 0 0 41 106
d10V2 5042 2197 843 0.99 0.9 0.93 0 0 0 0 - 116
d10V3 5018 2197 843 0.99 0.9 0.93 71 21 5 2 - 0
d10V4 4957 2394 882 1 1.01 0.98 0 0 0 0 - 143
d10V5 4957 2394 882 1 1.01 0.98 0 0 0 0 - 143
d10V6 4928 2378 882 0.99 1 0.98 87 22 7 3 - 0
d11V1 5564 2245 870 0.99 0.89 0.94 0 0 0 0 40 110
d11V2 5564 2245 870 0.99 0.89 0.94 0 0 0 0 - 120
d11V3 5539 2245 870 0.99 0.89 0.94 75 21 5 2 - 0
d11V4 5490 2469 909 1 1.01 0.98 0 0 0 0 - 143
d11V5 5490 2469 909 1 1.01 0.98 0 0 0 0 - 143
d11V6 5461 2453 909 0.99 1 0.98 87 22 7 3 - 0
d12V1 15822 3818 1262 0.98 0.95 0.96 0 0 0 0 - 524
d12V2 15822 3818 1262 0.98 0.95 0.96 0 0 0 0 - 524
d12V3 15729 3818 1262 0.98 0.95 0.96 176 44 252 4 - 0
d12V4 15080 3589 1262 0.99 1.03 0.96 0 0 0 0 - 977
d12V5 15080 3589 1262 0.99 1.03 0.96 0 0 0 0 - 977
d12V6 14944 3540 1262 0.98 1.01 0.96 579 85 229 13 - 0

162 Chapter 10. Experimental Tests on the N-ary Merge Method

TABLE 10.8: Comparing n-ary (V4), balanced (V7), and ladder(V10) merge
strategies.

id Method |C| |P | |I| |Cor| |tr| |RL| |RG| |Mer.|
N-ary 109 154 0 19 374 14 15 1

Balanced 110 154 0 22 566 37 16 2d3

Ladder 110 154 0 22 566 38 16 2
N-ary 226 165 114 47 790 26 18 1

Balanced 226 166 114 65 1270 26 27 3d4

Ladder 226 167 114 64 1339 122 21 3
N-ary 253 155 4 37 527 64 13 1

Balanced 254 156 4 47 863 162 16 3d5

Ladder 255 156 4 47 997 214 15 3
N-ary 390 283 118 82 1310 96 34 1

Balanced 395 285 118 127 2785 398 37 6d6

Ladder 396 285 118 128 3406 521 42 6
N-ary 1146 101 31 6 278 0 17 1

Balanced 1146 101 31 6 360 2 17 6d9

Ladder 1146 139 31 6 483 0 17 6
N-ary 4957 2394 882 266 6949 - 143 1

Balanced 4984 2194 843 368 15790 272 147 16d10

Ladder 5003 2195 843 351 31415 949 173 16
N-ary 5490 2469 909 267 6960 - 143 1

Balanced 5142 2248 870 730 19024 102 155 18d11

Ladder 5510 2266 870 387 35489 951 178 18
N-ary 15080 3589 1262 1139 30035 - 977 1

Balanced 15285 3227 1175 4136 82041 2095 1517 54d12

Ladder 15384 3398 1175 2156 153871 3831 1541 54

10.3. Summary 163

TABLE 10.9: Comparing n-ary(V5), balanced (V8), and ladder (V11) merge
strategies.

id Method |C| |P | |I| |Cor| |tr| |RG| |Mer.|
N-ary 109 154 0 19 374 17 1

Balanced 110 154 0 22 566 18 2d3

Ladder 110 154 0 22 566 18 2
N-ary 226 165 114 47 790 21 1

Balanced 226 166 114 65 1270 27 3d4

Ladder 226 167 114 64 1339 23 3
N-ary 253 154 4 37 527 17 1

Balanced 254 154 4 47 865 19 3d5

Ladder 254 154 4 47 994 19 3
N-ary 390 281 118 82 1310 41 1

Balanced 394 284 118 127 2791 48 6d6

Ladder 394 283 118 128 3462 51 6
N-ary 1146 101 31 6 278 17 1

Balanced 1146 101 31 6 360 17 6d9

Ladder 1146 139 31 6 483 17 6
N-ary 4957 2394 882 266 6949 143 1

Balanced 4982 2193 843 369 15816 166 16d10

Ladder 5003 2193 843 351 31420 191 16
N-ary 5490 2469 909 267 6960 143 1

Balanced 5507 2246 870 388 16060 177 18d11

Ladder 5511 2265 870 386 35480 196 18
N-ary 15080 3589 1262 1139 30035 977 1

Balanced 15450 3282 1175 2186 66344 1533 54d12

Ladder 15384 3395 1175 2159 154002 1560 54

164 Chapter 10. Experimental Tests on the N-ary Merge Method

TABLE 10.10: Comparing n-ary(V6), balanced (V9), and ladder (V12) merge
strategies.

id Method |C| |P | |I| |Cor| |tr| |Mer.|
N-ary 108 154 0 19 374 1

Balanced 109 154 0 22 567 2d3

Ladder 109 154 0 22 567 2
N-ary 224 165 114 47 790 1

Balanced 224 166 114 65 1268 3d4

Ladder 224 167 114 64 1339 3
N-ary 251 153 4 37 527 1

Balanced 252 153 4 47 868 3d5

Ladder 252 153 4 47 1001 3
N-ary 386 280 118 82 1310 1

Balanced 389 283 118 127 2786 6d6

Ladder 390 282 118 128 3440 6
N-ary 1145 101 31 6 278 1

Balanced 1145 101 31 6 372 6d9

Ladder 1146 139 31 6 513 6
N-ary 4928 2378 882 266 6949 1

Balanced 4951 2177 843 365 15866 16d10

Ladder 4970 2176 843 350 31733 16
N-ary 5461 2453 909 267 6960 1

Balanced 5475 2231 870 386 15801 18d11

Ladder 5474 2246 870 385 35742 18
N-ary 14944 3540 1262 1139 30035 1

Balanced 14868 3225 1171 3617 80151 54d12

Ladder 15111 3346 1175 2135 156293 54

165

11
Experimental Tests on GMRs

This chapter presents the empirical analysis of the Generic Merge Requirements
introduced in Chapter 5. We have implemented the GMRs within the CoMerger.
The detail of the implementation is discussed in Appendix B. We conduct two use
case studies on (i) compatibility of user-selected GMRs in Section 11.1, (ii) conflict
resolution in Section 11.2. For the ranking of suggested sets, w1, w2, and w3 have been
empirically adjusted to 0.8, 0.1, and 0.1, respectively, where w1 is the weight on the
user-selected GMRs,w2 is the weight of user-selected aspects, andw3 is the weight on the
compatibility degree of the GMRs. We present a summary of this chapter in Section 11.3.

The list of used notations, symbols, and nomenclatures in this chapter has been shown
in Table 11.1. The results described in this chapter have been partially published
in [BGKR20c; BKR19b; GBKR20].

166 Chapter 11. Experimental Tests on GMRs

TABLE 11.1: The used notations, symbols, and nomenclature in Chapter 11.

Notation Description
OS a set of source ontologies
OM a merged ontology
ci a class in an ontology
pi a property of an ontology
Ii an individual of an ontology
v subClassOf relation between two classes
GMR Generic Merge Requirements
R1-R20 individual GMRs
U a set of user-selected GMRs
K number of vertices in the clique
KC-Clique compatible clique with K vertices
KC-max-Clique compatible clique with maximum K vertices
RS a set of compatible sets with U
rs a compatible set with U
CQ Competency Question

11.1. Use Case Study on Compatibility Checker 167

11.1 Use Case Study on Compatibility Checker

In this section, our goal is to show given a set of user-selected GMRs, there is a superset
of compatible GMRs that can be fulfilled simultaneously. For this purpose, we use two
given merged ontologies OM1 and OM2 from Chapter 5. We analyze three user-selected
GMRs and then discuss the extent to which they can be fulfilled simultaneously.

11.1.1 First Use Case

Let us consider that the user selects four GMRs as U = {R2, R3, R8, R16}. In OM2 , R3
and R8 are fulfilled. However, properties p15, p24, and p25 are missing, so, R2 did not
fulfill. Moreover, there is a cycle in c5c13 v c16 v c17 v c18 v c6c19 v c5c13, which
indicates that R16 also did not fulfill in OM2 . R2 and R16 are incompatible, because R2
adds the missing properties and wants to keep all properties. R16, on the other hand,
deletes is-a properties to be free of cycles. Applying R2 in OM2 adds properties p15, p24,
and p25. Therefore, all properties can be preserved in the merged ontology. However, by
applying R16, property p28 will be deleted to be free of cycles. This makes the R2 fails. In
this case, if R2 wants to add p28, a cycle will be generated. So, R2 can not completely be
fulfilled in the merged ontology. It can add three missing properties, but one property
(p28) cannot be preserved.

Therefore, our system suggests as the best possible compatible set rs1 = {R1, R3, R8, R9,
R10, R11, R13, R14, R16, R17, R18} and rs2 = {R3, R8, R9, R10, R11, R13, R14, R15, R16,
R17, R18}, in which R2 is not considered. Based on our proposed method, these two sets
have the same scores of 1.0. Thus, given the user-selected GMRs, there is a superset of
compatible GMRs that can be fulfilled simultaneously. The next possible compatible set
is a case where R16 is not considered, but R2 is kept. So, the system suggests rs3 = {R2,
R3, R5, R7, R8, R10, R12, R13, R14, R19, R20}with a score of 0.986.

For the given U , the 3C-Cliques are {R3, R8, R16}, {R2, R8, R16}, and {R2, R3, R8},
and a 2C-Clique is {R3, R8}. Table 11.2 shows all KC-max-Cliques, which are all
possible maximal compatible sets for the user-selected GMRs. rs1-rs6, rs8, and rs9

are 11C-max-Cliques, while rs7, rs10-rs16 are 10C-max-Cliques, and rs17 and rs18 are
8C-max-Clique and 7C-max-Clique, respectively.

11.1.2 Second Use Case

Let us consider that the user selects three GMRs as U = {R3, R6, R13}. In OM1 , R3 is
fulfilled. R13 applies one type restriction. So, in OM1 , only one of the types for property
p6p16 : has_id should be preserved. However, applying R13 prevents R6 from being met,
because all values of property p6p16 are preserved. Therefore, R6 and R13 have a conflict
with each other and cannot be fulfilled simultaneously in OM1 . Given the user-selected
GMRs, our method suggests the best set as {R2, R3, R5, R7, R8, R10, R12, R13, R14, R19,
R20} in which R6 does not include.

For the given U , there are two 2C-Cliques as {R3, R13}, and {R3, R6}. Table 11.3 shows
all possible maximum compatible sets (KC-max-Clique) for U .

168 Chapter 11. Experimental Tests on GMRs

TABLE 11.2: All possible compatible maximum sets for user-selected GMRs
U = {R2, R3, R8, R16}. Green (no-line): user-selected compatible GMRs; Red
(double-underline): user-selected incompatible GMRs; Orange (underline): extra

compatible GMRs.

RS K Compatible Incompatible Score
rs1 11 {R1, R3, R8, R9, R10, R11, R13, R14, R16, R17, R18} {R2} 1.0
rs2 11 {R3, R8, R9, R10, R11, R13, R14, R15, R16, R17, R18} {R2} 1.0
rs3 11 {R2, R3, R5, R7, R8, R10, R12, R13, R14, R19, R20} {R16} 0.986
rs4 11 {R2, R3, R5, R7, R8, R9, R10, R11, R12, R13, R14} {R16} 0.975
rs5 11 {R1, R2, R3, R5, R7, R8, R10, R13, R14, R19, R20} {R16} 0.973
rs6 11 {R2, R3, R5, R7, R8, R10, R13, R14, R15, R19, R20} {R16} 0.973
rs7 10 {R3, R6, R8, R9, R10, R11, R15, R16, R17, R18} {R2} 0.97
rs8 11 {R1, R2, R3, R5, R7, R8, R9, R10, R11, R13, R14} {R16} 0.963
rs9 11 {R2, R3, R5, R7, R8, R9, R10, R11, R13, R14, R15} {R16} 0.963
rs10 10 {R1, R3, R6, R8, R9, R10, R11, R16, R17, R18} {R2} 0.957
rs11 10 {R2, R3, R5, R6, R7, R8, R10, R15, R19, R20} {R16} 0.944
rs12 10 {R2, R3, R5, R6, R7, R8, R10, R12, R19, R20} {R16} 0.943
rs13 10 {R2, R3, R5, R6, R7, R8, R9, R10, R11, R15} {R16} 0.934
rs14 10 {R2, R3, R5, R6, R7, R8, R9, R10, R11, R12} {R16} 0.933
rs15 10 {R1, R2, R3, R5, R6, R7, R8, R10, R19, R20} {R16} 0.931
rs16 10 {R1, R2, R3, R5, R6, R7, R8, R9, R10, R11} {R16} 0.921
rs17 8 {R3, R4, R8, R9, R10, R11, R13, R14} {R2, R16} 0.719
rs18 7 {R3, R4, R6, R8, R9, R10, R11} {R2, R16} 0.676

11.1.3 Third Use Case

Let us consider that the user selects six GMRs as U = {R1, R2, R3, R8, R10, R19}.

In OM1 , classes c3, c13-c15 are missing. Applying R1 adds these classes in the OM1 .
Moreover, properties p11, p13, p18-p22, p24, and p25 are missing. So, applying R2 adds
these properties in the OM1 . Moreover, R3 adds the missing instance I2 in the OM1 . R8,
R10, and R19 are fulfilled in OM1 .

In OM2 class c15 and properties p15, p24, and p25 are missing. Applying R1 and R2 adds
the missing classes and properties inOM2 . R3, R8, and R10 are fulfilled inOM2 . However,
in the origin OM2 , the class c14 was unconnected. But, R1 and R2 actions cause that now
c14 be connected. So, R19 is fulfilled.

A 6C-Clique is {R1, R2, R3, R8, R10, R19}, 5C-Cliques are {R2, R3, R8, R10, R19}
and {R1, R2, R3, R8, R10}, 4C-Cliques are {R2, R3, R8, R10, R19} and
{R2, R3, R8, R10, R19}, and a 3C-Clique is {R3, R8, R10}. So, the user-selected
GMRs in this case study are compatible with each other, however, our system suggests
all possible supersets of other compatible GMRs with U , as shown in Table 11.4.

11.2. Use Case Study on Conflict Resolution 169

TABLE 11.3: All possible compatible maximum sets for user-selected GMRs
U = {R3, R6, R13}. Green (no-line): user-selected compatible GMRs; Red
(double-underline): user-selected incompatible GMRs; Orange (underline): extra

compatible GMRs.

RS K Compatible Incompatible Score
rs1 11 {R2, R3, R5, R7, R8, R10, R12, R13, R14, R19, R20} {R6} 1.0
rs2 11 {R2, R3, R5, R7, R8, R9, R10, R11, R12, R13, R14} {R6} 0.989
rs3 11 {R1, R2, R3, R5, R7, R8, R10, R13, R14, R19, R20} {R6} 0.987
rs4 11 {R2, R3, R5, R7, R8, R10, R13, R14, R15, R19, R20} {R6} 0.987
rs5 11 {R1, R3, R8, R9, R10, R11, R13, R14, R16, R17, R18} {R6} 0.987
rs6 11 {R3, R8, R9, R10, R11, R13, R14, R15, R16, R17, R18} {R6} 0.986
rs7 11 {R1, R2, R3, R5, R7, R8, R9, R10, R11, R13, R14} {R6} 0.976
rs8 11 {R2, R3, R5, R7, R8, R9, R10, R11, R13, R14, R15} {R6} 0.976
rs9 10 {R2, R3, R5, R6, R7, R8, R10, R15, R19, R20} {R13} 0.956
rs10 10 {R3, R6, R8, R9, R10, R11, R15, R16, R17, R18} {R13} 0.956
rs11 10 {R2, R3, R5, R6, R7, R8, R9, R10, R11, R15} {R13} 0.946
rs12 10 {R2, R3, R5, R6, R7, R8, R10, R12, R19, R20} {R13} 0.913
rs13 10 {R2, R3, R5, R6, R7, R8, R9, R10, R11, R12} {R13} 0.902
rs14 10 {R1, R2, R3, R5, R6, R7, R8, R10, R19, R20} {R13} 0.9
rs15 10 {R1, R3, R6, R8, R9, R10, R11, R16, R17, R18} {R13} 0.9
rs16 8 {R3, R4, R8, R9, R10, R11, R13, R14} {R6} 0.89
rs17 10 {R1, R2, R3, R5, R6, R7, R8, R9, R10, R11} {R13} 0.89
rs18 7 {R3, R4, R6, R8, R9, R10, R11} {R13} 0.804

11.2 Use Case Study on Conflict Resolution

We have conducted a preliminary analysis of the conflict resolution of owl restrictions
on three pairs of ontologies adapted from the conference domain of the OAEI
benchmark1 provided by the OntoFarm project [ZS17]. Table 11.5 shows the number
of maxCardinality, minCardinality, exactCardinality, AllValuesFrom,
someValuesFrom, and hasValue of the merged ontologies. The last two columns
show the number of primitive and complex conflicts in each merged ontology.

We observed how easily the small ontologies could cause conflicts when being merged,
as they are augmented with various constraints. We applied the proposed methods
given in Section 5.6 of Chapter 5 to solve existing conflicts. We then compared the
conflicting merged ontology with the revised one with a set of Competency Questions
suitable for the tested ontologies (see Appendix A). The results are presented in
Table 11.6. The merged ontology that was revised by our approach could achieve
homogenous answers, whereas the conflicting one returns contradicting answers. This
test demonstrates that applying our method on the conflicting merged ontology can
provide homogenous answers and shows the applicability of our method in practice.

1http://oaei.ontologymatching.org/2019/conference/index.html

http://oaei.ontologymatching.org/2019/conference/index.html

170 Chapter 11. Experimental Tests on GMRs

TABLE 11.4: All possible compatible maximum sets for user-selected GMRs U =
{R1, R2, R3, R8, R10, R19}. Green (no-line): user-selected compatible GMRs; Red
(double-underline): user-selected incompatible GMRs; Orange (underline): extra

compatible GMRs.

RS K Compatible Incompatible Score
rs1 11 {R1, R2, R3, R5, R7, R8, R10, R13, R14, R19, R20} - 1.0
rs2 10 {R1, R2, R3, R5, R6, R7, R8, R10, R19, R20} - 0.963
rs3 11 {R2, R3, R5, R7, R8, R10, R12, R13, R14, R19, R20} {R1} 0.918
rs4 11 {R2, R3, R5, R7, R8, R10, R13, R14, R15, R19, R20} {R1} 0.907
rs5 10 {R2, R3, R5, R6, R7, R8, R10, R15, R19, R20} {R1} 0.882
rs6 10 {R2, R3, R5, R6, R7, R8, R10, R12, R19, R20} {R1} 0.881
rs7 11 {R1, R2, R3, R5, R7, R8, R9, R10, R11, R13, R14} {R19} 0.875
rs8 10 {R1, R2, R3, R5, R6, R7, R8, R9, R10, R11} {R19} 0.838
rs9 11 {R2, R3, R5, R7, R8, R9, R10, R11, R12, R13, R14} {R1, R19} 0.793
rs10 11 {R1, R3, R8, R9, R10, R11, R13, R14, R16, R17, R18} {R2, R19} 0.791
rs11 11 {R2, R3, R5, R7, R8, R9, R10, R11, R13, R14, R15} {R1, R19} 0.782
rs12 10 {R2, R3, R5, R6, R7, R8, R9, R10, R11, R15} {R1, R19} 0.757
rs13 10 {R2, R3, R5, R6, R7, R8, R9, R10, R11, R12} {R1, R19} 0.756
rs14 10 {R1, R3, R6, R8, R9, R10, R11, R16, R17, R18} {R2, R19} 0.754
rs15 11 {R3, R8, R9, R10, R11, R13, R14, R15, R16, R17, R18} {R1, R2, R19} 0.698
rs16 10 {R3, R6, R8, R9, R10, R11, R15, R16, R17, R18} {R1, R2, R19} 0.672
rs17 8 {R3, R4, R8, R9, R10, R11, R13, R14} {R1, R2, R19} 0.618
rs18 7 {R3, R4, R6, R8, R9, R10, R11} {R1, R2, R19} 0.582

TABLE 11.5: Three sample merged ontologies. Number of OWL restrictions and
primitive and complex conflicts are shown.

Owl Restriction Conflict
Merged

max min exact allV alues someV alues hasid
Ontology

Cardinality Cardinality Cardinality From From V alue
Primitive Complex

cmt
3 5 5 1 12 0 0 3OM1 conference

cmtOM2 confOf
2 8 14 10 7 0 1 1

conference
1 6 10 19 8 0 0 1OM1 confOf

11.3 Summary

This chapter analyses the compatibilities between the Generic Merge Requirements
(GMRs) introduced in Chapter 5 through use case studies. For the given user-selected
GMRs, we show possible supersets of compatible GMRs that can be fulfilled
simultaneously. For each superset, we indicate the length of the clique and the
incompatible GMRs, if available. Moreover, the suggested supersets are ranked based on
our proposed criteria, and their achieved scores are presented. Investigating the extent to
which the users agree with the ranked list of compatible GMRs is on our future agenda.

To analyze our proposed method for conflict resolution of owl restrictions, we have

11.3. Summary 171

TABLE 11.6: CQs answers on the conflicted and revised merged ontology OM

given in Table 11.5.

conflicted revised conflicted revised conflicted revised
CQs OM1 OM1 OM2 OM2 OM3 OM3

CQ1 YES YES YES YES YES YES
CQ2 Person Person Person Person Person Person
CQ3 exCard 1, minCard 1 exCard 1 exCard 1, minCard 1 exCard 1 minCard 1 minCard 1
CQ4 YES YES YES YES YES YES
CQ5 Conference Conference Conference Conference Conference Conference
CQ6 exCard 1, maxCard 2 exCard 1 exCard 1 exCard 1 maxCard 2 maxCard 2
CQ7 NO YES NO NO YES YES
CQ8 Reviewer, Meta-Reviewer Reviewer YES YES YES YES
CQ9 Paper Paper Contribution Contribution Contribution Contribution
CQ10 int int string, int string/int int int

conducted a preliminary test on a set of merged ontologies. For each merged ontology,
we present the number of their owl restrictions along with the number of primitive and
complex conflicts. Through a set of Competency Questions (CQs), we compared the
conflicting merged ontology with the revised one obtained by our approach. The revised
merged ontologies provide homogenous answers to the given CQs.

173

12
Experimental Tests on Inconsistency Handling of Merged

Ontologies

This chapter is devoted to present a set of experimental tests on the proposed
inconsistency handling method, introduced in Chapter 6. To show the applicability
of our method, we conducted three tests. In Section 12.1, we show the characteristics
of the inconsistencies of the merged ontology, if applicable. We also present the effect
of restricting the process to the root unsatisfiable concepts in the justification sets. In
Sections 12.2, we investigate the quality of the result by a Competency Questions test
on two versions of consistent merged ontologies. In Section 12.3, we examine the time
performance of our proposed method. Finally, in Section 12.4, a summary of this chapter
is presented.

In our experimental tests, we have used the Pellet reasoner1 [SPG+07] alongside with
OWL-API explanation2. The maximum explanation for the reasoner has been adjusted
to 5. Moreover, α and β parameters have been set to 1 and 0.5, respectively. These
parameters determined empirically, but we make no claim that these are optimal values.
The parameters can be determined by the users in our tool. The experimental tests in
this chapter have already been carried out in other datasets in [BKR19a]. While in this
chapter, we carry out the tests on the introduced datasets in Chapter 8, in which their
merged ontologies have been built in Chapter 10. Moreover, a list of used notations,
symbols, and nomenclature is presented in Table 12.1.

1Pellet-owlapiv3 version 2.3.2
2http://owl.cs.manchester.ac.uk/research/explanation/

http://owl.cs.manchester.ac.uk/research/explanation/

174 Chapter 12. Experimental Tests on Inconsistency Handling of Merged Ontologies

TABLE 12.1: The used notations, symbols, and nomenclature in Chapter 12.

Notation Description
OS a set of source ontologies
OM a consistent merged ontology
O′M an inconsistent merged ontology
M a mapping set between the source ontologies
X a set of axioms
Cun a set of unsatisfiable concept in O′M
RootCun a set of root concepts
J a set of justifications
d1-d12 twelve tested datasets
CQ Competency Question
TP True Positive
FP False Positive
FN False Negative
TN True Negative

12.1. Characteristics of Inconsistent Ontologies 175

12.1 Characteristics of Inconsistent Ontologies

In this section, we aim to examine the characteristics of the inconsistency on different
versions of merged ontologies, build in Chapter 10, for our datasets from Chapter 8. The
results of this test are presented in Table 12.2, as:

• The first column shows the versions of the merged ontologies that have been
tested.

• If the merged ontology is consistent and does not have any unsatisfiable concepts,
we show it by 3symbol. Otherwise, it failed (7) under one of the following cases3:

– 7CaseI : the merged ontology is inconsistent (there is no model of ontology),
but it is coherent (it does not have any unsatisfiable concepts). So, in this case,
the reasoner cannot extract a model of the ontology.

– 7CaseII : the merged ontology is consistent, but it is incoherent and contains
unsatisfiable concepts.

• We present the number of unsatisfiable concepts Cun, the size of the justification
set J , and the total number of conflicting axioms |X|, if available.

• We show the statistic values if we restrict the experiments only to the root
unsatisfiable concepts RootCun (columns 3-5) or consider all unsatisfiable concepts
Cun (columns 6-8).

• In the last column, we show the total number of axioms in the tested ontologies.
To make the table concise, for rows containing several ontologies, we show the
average value of their axioms. For instance, in the second row, the merged
ontologies d1V 1 and d1V2 have 721 axioms, and d1V3 has 717 axioms. We show
their average value, i.e., 720 in the second row.

Note that, the number of total conflicting axioms can be more than the total number
of axioms in the ontology, as the conflicting axioms might be duplicated in different
justification sets, cf. the example of Section 6.2.1 in Chapter 6 where justification
sets contain duplicated axioms.

3The other cases from Section 6.2 of Chapter 6 did not occur on our datasets. Thus, we do not report
them in this test.

176 Chapter 12. Experimental Tests on Inconsistency Handling of Merged Ontologies

TABLE 12.2: The characterization of the consistency test: consistent without
unsatisfiable concepts (3); inconsistent without unsatisfiable concepts (7CaseI);
consistent with unsatisfiable concepts (7CaseII), including the number of root
(RootCun) or all unsatisfiable concepts (Cun), number of justification set J , and
number of all axioms (X) belonging to the justification sets. The average number
of axioms for each group of ontologies are shown in the last column. The symbol
? shows that the reasoner could not return the answer within a predetermined

maximum time.

root only all
id Test |RootCun | |J | |X| |Cun| |J | |X| |axiom|

d1V1-V3 3 - - - - - - 720
d1V4, V5 7CaseII 1 2 12 1 2 12 721
d1V6 7CaseII 1 4 22 1 4 22 715

d2V1-V3 3 - - - - - - 535
d2V4, V5 7CaseII 1 1 7 6 12 105 533
d2V6 7CaseII 1 2 13 6 19 154 532

d3V1-V3 3 - - - - - - 1027
d3V4, V5, V7, V8, V10, V11 7CaseII 2 3 18 2 3 18 1043

d3V6, V9, V12 7CaseII 2 6 33 2 6 33 1038
d4V1, V2 7CaseII 5 18 60 12 50 226 2045
d4V3 7CaseII 5 19 64 12 54 247 2041

d4V4, V5 7CaseII 3 10 69 68 335 2355 2059
d4V7, V8 7CaseII 4 15 123 11 50 458 2084
d4V10, V11 7CaseII 5 20 146 65 320 2260 2066
d4V6, V9, V12 7CaseII 15 56 392 68 336 2388 2063
d5V1-V4 3 - - - - - - 1401

d5V5, V7, V8, V10, V11 7CaseII 20 58 402 69 341 2420 1413
d5V6, V9, V12 7CaseII 32 94 632 83 415 2984 1408
d6V1V2 7CaseII 42 156 1092 175 862 6122 3013
d6V3 7CaseII 42 162 1210 175 895 6124 3020

d6V4-V12 7CaseII 53 196 1545 192 1015 6195 3120
d7V1-V3 3 - - - - - - 42386
d7V4, V5 7CaseII 3 5 31 520 2548 17839 42013
d7V6 7CaseII 3 5 31 520 2550 17852 42006

d8V1, V2 7CaseII 119 331 3846 1021 ? ? 51856
d8V3 7CaseII 119 335 3872 1021 ? ? 49961

d8V4-V6 7CaseI - - - - - - 51508
d9V1-V12 3 - - - - - - 5352
d10V1-V12 7CaseI - - - - - - 48911
d11V1-V12 7CaseI - - - - - - 50982
d12V1-V3 ? ? ? ? ? ? ? 155073
d12V4-V12 7CaseI - - - - - - 146814

12.1. Characteristics of Inconsistent Ontologies 177

In all tests, only one iteration of all process was required to make the inconsistent merged
ontologies into the consistent ones. From the results in Table 12.2, we draw the following
points:

• Analyzing restrictions on the root or all unsatisfiable concepts: In d2, d4-d12, the
number of root unsatisfiable concepts is less than the number of all unsatisfiable
concepts. For example, in d4V4, V5, there are only 3 unsatisfiable root concepts,
but 68 total unsatisfiable concepts. Consequently, the number of justifications
and conflicting axioms is less when we restrict the experiments only to the root
unsatisfiable concepts. This causes low computational complexity. In d1 and d3,
these values are the same.

• Effect of using perfect or imperfect mapping on the consistency of the result: In
d1-d3, and d7, the merged ontology built by the perfect mappings is consistent,
whereas, the merged ontologies created by the imperfect mappings in these
datasets are inconsistent. Moreover, in d4, the merged ontologies using perfect or
imperfect mappings in both cases are consistent. However, the merged ontology
built by the perfect mappings has less number of conflicting axioms. This can
demonstrate the power of using perfect mappings on the result, if available. In d5,
the merged ontology used the perfect mapping is a consistent one. Surprisingly,
we observe that the merged ontology, built by the imperfect mapping that applied
local and refinements (V4), is also consistent. Whereas, V5 (with only global
refinements) and V6 (with no refinements) are inconsistent ones. Applying
local and global refinement in this test could help that the merged ontology be
consistent.

• Comparing applying refinements or no refinements on the result: Besides the
effect of the consistency of the result in d5 that described before, we observe that
the merged ontologies built by applying local or global refinements have less
number of (root or all) unsatisfiable concepts in d4 and d5 and less number of
conflicting axioms in d2, d3, d6, and d7. This observation demonstrates the strength
of refinements in the result.

• Comparing the merged ontologies built via the n-ary approach (V1-V3) or
binary methods (V7-V12) with imperfect mappings: There is no difference in the
consistency or inconsistency of the result, because it depends on the type of
mappings used by the merged ontologies.

• Observing the ability of the reasoner in the large scale ontologies: We set a
maximum time as 43000 seconds (an empirical threshold) and observe whether
the reasoner can return the answer within this time. If no, we mark this case by
? symbol in Table 12.2. In tests with all unsatisfiable concepts in d8, the reasoner
failed to return the justification sets for 1021 concepts in the maximum limited time.
Moreover, in d12, the reasoner could not return any answer about the consistency
or inconsistency of the merged ontology. This is computationally an expensive
task for a complex knowledge base. For instance, d12 has more than one hundred
fifty thousand axioms. We have tested these ontologies with another reasoner,
but the same outcome is achieved. Our goal was to contribute to the ranking of
the conflicting axioms that cause inconsistencies, not on improving the reasoner’s

178 Chapter 12. Experimental Tests on Inconsistency Handling of Merged Ontologies

ability. Thus, we consider these cases as the limitation of the reasoner, not our
method. Moreover, comparing the behavior of different reasoners is out of the
scope of this research. For this, we refer to the existing survey, such as [KP17].

12.2 Answering Competency Questions

Competency Question (CQ)s are a list of questions used in the ontology development life
cycle, which the ontology should answer. To this end, we have provided a list of CQs (see
Appendix A) in the conference domain and run them on the conference datasets (d1-d6).
We run this test on those ontologies that could not successfully pass the consistency test.
For them, we create two different consistent and coherent merged ontologies, as:

• OM1 : The consistent and coherent merged ontology, which used our ranking
method and applied our proposed plan.

• OM2 : The consistent and coherent merged ontology, which was achieved by human
intervention.

For the CQs test, we aim to retrieve precision and recall of answering the given CQs by
the merged ontologies. Thus, we determine positive and negative CQs along with TP
(True Positive), FP (False Positive), and FN (False Negative) responses, as follows:

• Positive CQ: The answer to the CQ must be in the source ontologies.

• Negative CQ: The answer to the CQ must not be in the source ontologies.

• TP : If the merged ontology correctly answers a positive CQ, we mark the answer
to this CQ by TP .

• FN : If the merged ontology incorrectly answers a positive CQ, we mark the
answer to this CQ by FN .

• FP : If the merged ontology provides a correct answer to a negative CQ, we mark
the answer to this CQ by FP .

• TN : If the merged ontology incorrectly answers a negative CQ, we mark the
answer to this query by TN .

Note that we use the same test for evaluating the functional dimension in Chapter 13.

Figure 12.1 shows the result. The precision is achieved uniquely 1 for all tested
ontologies. Thus, we only show the values of the recall in the figure. We observe that
different versions of the merged ontologies achieved the same result. Thus, in the figure,
we show one entry for the group of ontologies that have the same result.

By analyzing the result, we observe that out of 48 tests on the merged ontologies, in
6 cases, OM1 , the consistent merged ontology created by our method, achieved the
same result with the human-created one (OM2). Moreover, OM1 achieved better recall
in 9 cases. In 33 cases, the human-created one (OM2) was better than OM1 (up to 0.07
percentage). The results achieved from this test show the feasibility and reliability of our
method.

12.2. Answering Competency Questions 179

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

d1v4v5v6 d2v4v5v6 d3v4-v12 d4v1-v5,v7,v8,v10,v11 d4v6,v9,v12 d5v4-v12 d6v1-v3 d6v4-v12

recall-our recall-human

𝑑𝑑1𝑉𝑉4 − 𝑉𝑉6 𝑑𝑑2𝑉𝑉4 − 𝑉𝑉6 𝑑𝑑3𝑉𝑉4 − 𝑉𝑉12 𝑑𝑑4𝑉𝑉1 − 𝑉𝑉5
𝑉𝑉7,𝑉𝑉8,𝑉𝑉10,𝑉𝑉11

𝑑𝑑4𝑉𝑉6,𝑉𝑉9,𝑉𝑉12 𝑑𝑑6𝑉𝑉1 − 𝑉𝑉3𝑑𝑑5𝑉𝑉4 − 𝑉𝑉12 𝑑𝑑6𝑉𝑉4 − 𝑉𝑉12

Recall of 𝒪𝒪𝑀𝑀1 Recall of 𝒪𝒪𝑀𝑀2

FIGURE 12.1: Competency Question-based experimental tests: The values of the
recall for the consistent merged ontology achieved by our method OM1 and the

human-created OM2
are presented.

30
88

23
81

63
29

17
98

23
99

35
35 15

10
1

10
85

8

93
97

6

24
48

5

13
34

46

71
13

2 10
22

56

15
87

63

23
65

48

24
43

78

26
45

21

48
31

3

54
04

6

20
7

30 4 8 25 52 59
6

64
7

49
0

17
52

17
38

39
58

72
31

10
54

6

21
45

7

21
65

2

24
10

1

41
37

40
35

Reasoner Ranker

𝑑𝑑3𝑉𝑉4𝑉𝑉5𝑉𝑉7
𝑉𝑉8𝑉𝑉10𝑉𝑉11

𝑑𝑑3𝑉𝑉6
𝑉𝑉9𝑉𝑉12

𝑑𝑑4𝑉𝑉1𝑉𝑉2 𝑑𝑑4𝑉𝑉3 𝑑𝑑6𝑉𝑉1𝑉𝑉2𝑑𝑑4𝑉𝑉4𝑉𝑉5 𝑑𝑑4𝑉𝑉7𝑉𝑉8 𝑑𝑑4𝑉𝑉10𝑉𝑉11 𝑑𝑑4𝑉𝑉6
𝑉𝑉9𝑉𝑉12

𝑑𝑑5𝑉𝑉5𝑉𝑉7
𝑉𝑉8𝑉𝑉10𝑉𝑉11

𝑑𝑑5𝑉𝑉6
𝑉𝑉9𝑉𝑉12

𝑑𝑑6𝑉𝑉3 𝑑𝑑6𝑉𝑉4
− 𝑉𝑉12

𝑑𝑑7𝑉𝑉6𝑑𝑑1𝑉𝑉4𝑉𝑉5 𝑑𝑑1𝑉𝑉6 𝑑𝑑2𝑉𝑉4𝑉𝑉5 𝑑𝑑2𝑉𝑉6 𝑑𝑑7𝑉𝑉4𝑉𝑉5

FIGURE 12.2: The scalability test: Time performance in milliseconds of processing
the unsustainable root concepts by the reasoner and ranker.

24
33

15
51

48
52

50
37

27
60

33
79

26
09

3

18
81

8

90
29

1

34
43

0

95
24

1

82
26

4

10
53

26

13
62

34

35
62

17

36
14

78

40
12

49

75
23

65
1

75
65

41
2

30
8

38 33
5

51
1

26 58 44
85

49
91

43
56

41

18
34

1

40
34

12

43
75

98 52
86

32

75
23

64 89
24

51

90
10

14

98
12

45 13
45

81
2

13
62

65
1Reasoner Ranker

𝑑𝑑3𝑉𝑉4𝑉𝑉5𝑉𝑉7
𝑉𝑉8𝑉𝑉10𝑉𝑉11

𝑑𝑑3𝑉𝑉6
𝑉𝑉9𝑉𝑉12

𝑑𝑑4𝑉𝑉1𝑉𝑉2 𝑑𝑑4𝑉𝑉3 𝑑𝑑6𝑉𝑉1𝑉𝑉2𝑑𝑑4𝑉𝑉4𝑉𝑉5 𝑑𝑑4𝑉𝑉7𝑉𝑉8 𝑑𝑑4𝑉𝑉10𝑉𝑉11 𝑑𝑑4𝑉𝑉6
𝑉𝑉9𝑉𝑉12

𝑑𝑑5𝑉𝑉5𝑉𝑉7
𝑉𝑉8𝑉𝑉10𝑉𝑉11

𝑑𝑑5𝑉𝑉6
𝑉𝑉9𝑉𝑉12

𝑑𝑑6𝑉𝑉3 𝑑𝑑6𝑉𝑉4
− 𝑉𝑉12

𝑑𝑑7𝑉𝑉6𝑑𝑑1𝑉𝑉4𝑉𝑉5 𝑑𝑑1𝑉𝑉6 𝑑𝑑2𝑉𝑉4𝑉𝑉5 𝑑𝑑2𝑉𝑉6 𝑑𝑑7𝑉𝑉4𝑉𝑉5

FIGURE 12.3: The scalability test: Time performance in milliseconds of processing
all unsatisfiable concepts by the reasoner and ranker.

180 Chapter 12. Experimental Tests on Inconsistency Handling of Merged Ontologies

12.3 Scalability

To evaluate the run time performance of our proposed approach, we observed three
processing time of:

• testing the consistency of the ontology by the reasoner and extracting the
unsatisfiable concepts Cun alongside with their justification sets J ,

• ranking the axioms belonging to justification sets by our proposed method, and

• generating the resolution plan.

We present the results in Figure 12.2 and Figure 12.3 in milliseconds. We observed that
time for generating plan in all merged ontology were less than 50 milliseconds. Thus,
we do not report them in the figures to keep the presentation of the results concise and
straightforward. Figure 12.2 shows the result of running the test by considering only
the root unsatisfiable concepts, whereas Figure 12.3 presents the runtime performance
of processing all unsatisfiable concepts. In both, we show the average time for different
versions of each dataset, as has been categorized in Table 12.2.

From the results, we can draw the following points:

• Comparing the runtime performance of processing root or all unsatisfiable
concepts: We observed that in d7, there is a large difference between processing the
root or all unsatisfiable concepts. Because there are only 3 roots, and the reasoner
and ranker have to process only 3 unsatisfiable concepts with 31 conflicting axioms.
But if we consider all unsatisfiable concepts, the reasoner and ranker should
process 17839 axioms for 520 unsatisfiable concepts. In such cases, restricting the
process to the root concepts can improve the time considerably. Nevertheless, this
argument can not be straightforwardly generalized for all tests. In all cases, the
number of root unsustainable concepts alongside with the conflicting axioms is
less than when we process all unsatisfiable concepts. So, it is expected to have
less time processing. However, this is not the case. Because in the test using
the root concepts, the reasoner should extract the potential root concepts among
all unsatisfiable concepts. This is, however, a time-consuming process. For this
reason, the processing time of the reasoner in some cases (cf. d4V10V11) is less when
we do not extract the root concepts. As a whole, out of 19 group tests, 12 times the
reasoner could be faster when we restrict the test to the root concepts, and 7 times
processing all unsatisfiable concepts was faster. Moreover, we observed that the
ranking process is faster in all cases if we restrict the process to the root concepts
as it depends on the number of conflicting axioms that must be processed.

• Analyzing the time performance of the reasoner on the large scale ontologies: In all
tests except d8 and d12, the reasoner could provide the answer within the maximum
limited time (43000 seconds). In d8V1 testing with root unsatisfiable concepts, the
time for reasoner and ranker were 17710713 and 72435 milliseconds, respectively.
However, in processing all unsatisfiable concepts, the reasoner could not extract
the justification sets in the maximum limited time as it needs to find justification
sets for 1021 unsatisfiable concepts. Indeed, the reasoner got stuck to retrieving
justification sets because the given ontology is big and complex. In d12V1-V3, the

12.4. Summary 181

reasoner failed to return any answer for the consistency test within the limited
processing time.

• Comparing the processing time of the reasoner and ranker: The processing time
of the ranker mainly depends on the number of conflicting axioms that must be
processed as well as the number of source ontologies alongside the number of
merged ontologies’ axioms. In the tests restricted to the root unsatisfiable concepts,
the processing time of the reasoner is more than the ranker. However, in the test
with considering all unsatisfiable concepts, when the number of processing axioms
is increased, the time for ranking is more than the reasoner time. As the test
demonstrated, mostly, the time is increased by the number of conflicting axioms
set. Given a complex, time-consuming task overall, the processing time by the
ranker seems acceptable.

12.4 Summary

In this chapter, we present a set of experimental tests on the proposed method of
inconsistency handling. In particular,

• We present the characteristics of the inconsistent merged ontologies and show the
effect of restricting the process to the root unsatisfiable concepts in justification
sets. In most datasets, the number of root unsatisfiable concepts is less than the
number of all unsatisfiable concepts. Therefore, narrowing the repair process
to root concepts can cause low computational complexity. However, this is not
straightforward because finding the root concepts is a time-consuming process.

• Generating the merged ontologies by using the perfect mappings rather than
imperfect mappings in some cases causes the result to be consistent, and in
other cases, causes that the inconsistent merged ontologies have less number
of conflicting axioms. This shows the benefit of utilizing perfect mappings, if
available.

• The inconsistent ontologies that used a set of refinements during the merge process
have less number of conflicting axioms compared to the ontologies built without
any refinements.

• In dealing with large scale merged ontologies, the reasoner failed to return the
justification sets or an answer about (in-)consistency of merged ontologies.

• We investigate the quality of the result by a set of Competency Questions on two
versions of consistent merged ontologies: the consistent merged ontology which
used our method and the one which is achieved by human intervention. The test
indicates that consistent merged ontologies created by our method are rival with
the human-created one.

• We examine the time performance on finding justification sets, ranking the axioms,
and generating the resolution plan. The processing time is increased by the number
of conflicting axioms that caused inconsistencies.

183

13
Experimental Tests on the Quality Assessment of the

Merged Ontology

To demonstrate the applicability of our evaluation framework, we conducted a series
of experiments utilizing the datasets from Chapter 8. We assess how our introduced
quality framework can be applied for the ontology merging domain in practice. The
experiments are carried on structural, functional, and usability quality dimensions on
the merged ontologies that are built by our presented approach from Chapter 4. We
measure the quality of the merged ontology in three dimensions. Analyzing the result:

• In structural quality assessment, it shows how well the merged ontology is
structured, concerning the syntax and topological properties of the merged
ontology.

• In functional quality assessment, it shows how well the intended use and semantics
of the merged ontologies are satisfied.

• In usability quality assessment, it shows how well the merged ontology is profiled
to address the communication context of the merged ontology.

We evaluate the structural quality indicators along with GMRs in Section 13.1, followed
by evaluating the functional and usability quality indicators in Sections 13.2 and 13.3,
respectively. We present the time performance of the evaluation process and the overall
result demonstration in Section 13.4 and Section 13.5, respectively. We illustrate a total
analysis of tested datasets in Section 13.6. We analyze to which extent the evaluation
standard has been achieved in Section 13.7, and finally, in Section 13.8, we present a
summary of this chapter.

In this chapter, we test the merged ontologies that are built without any refinements to
observe different possible anomalies in the tested ontologies. Comparing the effect of
different mappings has been done in Chapter 10. Thus, in this chapter, we only consider
the perfect mappings for the given source ontologies. In a nutshell, the evaluated
ontologies in this chapter are version three (V3) of the merged ontologies in Chapter 10.

184 Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology

The results described in this chapter have been partially published on another dataset
in [BGKR20b]. Moreover, a list of used notations, symbols, and nomenclature is shown
in Table 13.1.

Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology 185

TABLE 13.1: The used notations, symbols, and nomenclature in Chapter 13.

Notation Description
OS a set of source ontologies
OM a merged ontology
n number of source ontologies
TP True Positive
FP False Positive
FN False Negative
TN True Negative
P Precision
R Recall
Σ R total number of unsatisfied GMRs
Σ e total number of anomalous entities
A, B, C classes
I ′ an individual
v subclass relations between two classes
d1-d12 twelve tested datasets
P1-P22 principles of the evaluation standards
CQ Competency Question
GMR General Merge Requirement
R1-R20 individual GMRs

186 Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology

TABLE 13.2: Occurrence of unsatisfied GMRs. Σ R shows the number of
unsatisfied GMRs, and Σ e shows the total number of anomalous entities.

id R1 R2 R3 R7 R12 R14 R15 R16 R18 R19 Σ R Σ e

d1 1 0 0 0 0 0 4 1 0 6 4 12
d2 0 0 0 0 0 3 0 0 0 1 2 4
d3 1 0 0 0 0 0 6 1 1 7 5 16
d4 2 0 0 0 1 2 6 1 1 8 7 21
d5 1 0 0 0 0 20 3 0 0 5 4 29
d6 2 0 0 0 - 20 14 4 1 8 6 49
d7 0 0 0 0 0 2 0 2 0 7 3 11
d8 0 0 0 4 533 25 0 29 0 1916 5 2507
d9 1 44 0 0 0 4 14 0 0 2 5 65
d10 3 286 41 71 - 26 21 2 2 5 9 457
d11 3 313 41 75 - 26 21 2 2 5 9 488
d12 0 27 0 176 - 187 44 4 5 252 7 695

13.1 Quality Evaluation of the Structural Dimension

In this test, we observe the quality of the merged ontologies for our datasets with
the structural indicators. The measurement procedures for the evaluation function
of each indicator are presented in Appendix B. The entailment test based on [BPS11]
includes subsumption, equivalence, and satisfiability tests. We report the numbers of
subsumption and equivalence entailment tests from the source ontologies which are not
entailed by the merged ontology. For the satisfiability test, we refer to the consistency
test in Chapter 12.

The evaluation functions of the indicators in this dimension return the absolute numbers.
Thus, in Table 13.2, we show the absolute number for each indicator of GMRs in our
datasets. The GMRs with zero values for all datasets are not presented in the table.
Moreover, we show the total numbers of GMRs that are not satisfied in each dataset,
given by Σ R. It indicates how many GMRs out of 20 are not satisfied for that dataset.
Additionally, we present the total numbers of entities that have anomalies among the
represented GMRs, given by Σ e.

Note that the statistical numbers of structural quality for all datasets are presented in
a table view (see Table 13.2). However, the user will receive the result through a GUI.
Figure 13.1 shows the result in such a GUI for the merged ontology in dataset d3. The
GUI shows the practical output that a user can see. For each indicator, the output in GUI
presents:

• Evaluation dimension’s name

• Indicator’s name

• Indicator’s description

13.2. Quality Evaluation of the Functional Dimension 187

• Fulfilled indicator; completely satisfied indicator for the tested ontology

• Failed indicator; not satisfied indicator at least for one entity of the tested ontology

• Frequency; the number of affected entities for the failed indicator

• Ontology entities affected; list of anomalous entities for the failed indicator

• Repair option; possible repair solution for detected anomalies (see Appendix B)

From the results in Table 13.2, we can observe:

• The merged ontologies in each dataset differ in the quality assessment employing
GMRs.

• The total number of unsatisfied GMRs (given by Σ R) can demonstrate how
well the merged ontology is structured. For example, the merged ontologies
in second and seventh datasets (d2 and d7) only in 2 out of 20 GMRs have
anomalies, indicating that they are well-structured than others. Several other
merged ontologies, such as in d4 and d11, have anomalies in many GMRs and
are poorly structured compared to others. We also show the number of entities
affected by the failed indicators (given by Σ e). From these total numbers (Σ R and
Σ e), the user can observe the weaknesses of the merged ontology and drive further
improvements before using the merged ontology in the desired application. Note
that, if the merged ontology is inconsistent, the entailment test by the reasoner for
R12 cannot be performed. For this reason, there is no value for R12 in d7, d10-d12.

• Part of the results focuses on how well the merge process is performed. For
instance, R1 indicates how many classes from the source ontologies are not
preserved in the merged ontology. It is occurred during the merge process by the
underlying merge method.

• Another group of indicators indicates that the respective source ontologies itself
have some anomalies. For example, in the merged ontology of dataset d8, many
classes do not have any connections in the is-a hierarchy. As a result, merging
them carries with it this flaw.

• Overall, all datasets have anomalies in at least one GMR. This indicates the need
for refinements, where we discussed the effect of applying refinements in detail in
Chapter 10.

13.2 Quality Evaluation of the Functional Dimension

We have provided two different tests to evaluate the intended use and semantics of the
merged ontology:

13.2.1 Quality Assessment of Intended Use with Competency Questions
Testing

In this test, we evaluate the functional measure by analyzing user-provided Competency
Questions (CQ)s in order to assess the intended use of the merged ontologies. Indeed,

188 Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology

Frequency

Indicator‘s
Description

Ontology Entities
Affected

Evaluation Dimension

Repair Option

Indicator‘s Name

Fulfilled Indicator

Failed Indicator

FIGURE 13.1: The GUI for structural quality evaluation of the merged ontology in
dataset d3.

CQs are domain-specific and provided by the user. Thus, for the conference domain,
we have provided a list of CQs (see Appendix A) and applied them on the conference
datasets (d1-d6). We aim to observe how the modeling of the merged ontology is aligned
with its intended use.

To quantify the precision and recall for the matching between the merged ontology and
its intended use in CQs tests, we determine positive and negative CQs along with TP
(True Positive), FP (False Positive), and FN (False Negative) responses, as follows:

• Positive CQ: It is the CQ that at least one of the source ontologies can answer. Note
that for this CQ, the merged ontology is able to answer this CQ, and even the
answer of merged ontology can be more comprehensive than the source ontologies
because the merge process aims to achieve more comprehensive knowledge.

• Negative CQ: It is the CQ that can not be answered by any source ontologies.

• TP : If the merged ontology correctly answers a positive CQ, we mark the answer
to this CQ by TP .

• FN : If the merged ontology incorrectly answers a positive CQ, we mark the
answer to this CQ by FN .

13.2. Quality Evaluation of the Functional Dimension 189

TABLE 13.3: True or false positive and negative responses.

Positive CQ (Intended Answer) negative CQ (Non-Intended Answer)
Correct Answer True Positives TP False Positives FP
Wrong Answer False Negatives FN True Negatives TN

• FP : If the merged ontology provides a correct answer to a negative CQ, we mark
the answer to this CQ by FP .

• TN : If the merged ontology incorrectly answers a negative CQ, we mark the
answer to this query by TN 1.

Table 13.3 shows this. These values are adapted in this way that positive and negative
queries are defined based on the source ontologies and TP , FP , and FN are calculated
on the merged ontologies upon them. Thus, the results achieved by merged ontology is
compared with the knowledge provided by the source ontologies.

The results are shown in Figure 13.2, where precision P and recall R are calculated
based on TP , FP , and FN for each dataset. All merged ontologies evaluated in this
test achieved precision 1 because the FP of all of them is zero. Indeed, if none of the
source ontologies cannot answer the negative CQ (the CQs that must not be answered
by the source ontologies), the merged ontology could not answer it. Because during the
merge process, no further information than source ontologies is added to the merged
ontology. If a merged ontology is built by human intervention, that might bring some
new knowledge than source ontologies knowledge. In this case, non-zero values would
be possible for FP . Moreover, FN is sometimes non-zero because the answers from the
merged ontology are wrong in comparing the answer of source ontologies. Same as the
assumption in Chapter 10, the wrong answer might happen, when all source ontologies
return, for instance, true for a true or false query, but the merged ontology returns false.
Alternatively, in the questions related to the is-a hierarchy, the merged ontology shows
a different hierarchy than the hierarchy of the source ontologies.

As a whole, the recall of all tested ontologies varied between 0.93 and 1, whereas, the
precision achieved uniquely 1. If we interpret high and max values with values above
0.5 (our empirical threshold), the merged ontologies are achieved GOOD labels in all
tested datasets.

13.2.2 Quality Assessment of Intended Semantics with Query Testing

In this test, we aim to evaluate the intended semantics of the ontology with respect to the
source ontologies. To this end, we created two types of queries similar to [HVHTT05] on
individuals and is-a relations:

• In the is-a-based queries, for each subclass-of relation like ‘A v B’, we make a true
query ‘A v B?’, and a false query like ‘A v C ?’, which ‘B 6= C’ and ‘A 6v C’.

1To calculate precision and recall equations, we do not need TN .

190 Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology

0.88

0.9

0.92

0.94

0.96

0.98

1

d1 d2 d3 d4 d5 d6

Precision Recall

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6

FIGURE 13.2: Functional quality’s evaluation for the intended use via Competency
Questions. All tests achieved GOOD labels.

• In the individual-based queries, for each individual I’ of concept A, we create a
positive individual query like “is I’ a A?”, and a negative individual query like “is
I’ a B?”, where “B 6= C” and B is another concept selected randomly.

To quantify the precision and recall for the matching between the merged ontology
and its intended semantics in the query tests, we determine intended and non-intended
answers along with TP , FP , and FN , as follows:

• Intended answer: We expect that the answer from the merged ontology for the true
query is true, and for the false query is false. If so, we mark them as intended
answers.

• Non-intended answer: If the answer from merged ontology for the true query is false
and for the false query is true, we mark them as non-intended answers.

• TP : If the answer of the merged ontology is correct compared to the intended
answer, we mark the answer to this query by TP .

• FN : If the answer of the merged ontology is incorrect compared to the intended
answer, we mark the answer to this query by FN .

• FP : If the answer of the merged ontology is equal to the non-intended answer, we
mark the answer to this query by FP .

• TN : If the answer of the merged ontology is equal to the non-intended answer, we
mark the answer to this query by TN .

Table 13.3 shows this. Our adaption is made explicitly in the context of the ontology
merging process. Note that true and false queries are defined based on the knowledge
provided by the source ontologies. Thus, this definition considers the knowledge
of source ontologies and compares the knowledge of the merged ontology with the
respective source ontologies to obtain TP , FN , and FP .

The presented results in Figure 13.3 shows the precision and recall of running a total of
268 queries on our tested datasets. The number of running queries for each dataset is

13.3. Quality Evaluation of the Usability Dimension 191

0.79
0.91

0.82 0.8
0.91

0.81

1 1 1 1 1 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

d1 d2 d3 d4 d5 d6

Precision Recall

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6
|𝐶𝐶𝐶𝐶| 24 22 34 55 45 88

FIGURE 13.3: Functional measure’s evaluation for intended semantics via queries.
All tests achieved GOOD labels.

shown under each dataset. Remarkably, all merged ontologies could provide a correct
answer for some negative queries. Thus, the precision of all tested ontologies varied
between 0.79 and 0.91, whereas, the recall achieved uniquely 1. Interpreting high and
max values with values above 0.5 shows GOOD labels for all tested datasets. The test
demonstrates that the intended semantics concerning the source ontologies is high.

13.3 Quality Evaluation of the Usability Dimension

In this test, we aim to observe the usability quality of the merged ontologies. The
evaluation functions for the quality indicators in this dimension return a boolean data
type to show whether the associated indicators are satisfied or not. Table 13.4 shows the
evaluation of usability indicators of the merged ontologies in all datasets. The GUI for
this dimension has been shown at the bottom of Figure 13.1.

From the results presented in Table 13.4, we can observe that all merged ontologies
contain the correct URI and namespace with unique labels and decelerated entities,
whereas none of them include ontology deceleration. The merged ontologies in the
conference (d1-d6) and anatomy (d7) datasets do not follow unified naming conventions.
Moreover, all datasets failed to declare the owl:Ontology tag where the ontology metadata
should provide it. Our datasets do not include any license. Thus they are not reported
in the table. Analyzing conflicts between licenses is left open for future work.

Overall, for all tested datasets, 53 out of 72 cases in Table 13.4 are satisfied, which
illustrates well-profiles for ontologies with a proper communication context.

13.4 Time Performance

Figure 13.4 shows the required time for evaluating the merged ontologies of structural
and usability dimensions together. We ran each test ten times and presented the average
values.

192 Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology

TABLE 13.4: Evaluating the usability quality of the merged ontologies.

Annotation of ontology itself Annotation of ontology’s entities
Ontology Name Ontology Label Entity Unifyid

URI Space Declaration Unique Declaration Naming

d1-d7 3 3 7 3 3 7

d8-d12 3 3 7 3 3 3

23
7

55 13
7

11
7

40
6

16
5

84
11

16
02

8

13
2 26

90

31
02

16
78

6

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Evaluation Time

Time
(second)

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑑𝑑7 𝑑𝑑8 𝑑𝑑9 𝑑𝑑10 𝑑𝑑11 𝑑𝑑12

55
𝑛𝑛 2 2 3 4 4 7 2 2 5 17 22 55

𝒪𝒪𝑆𝑆Axioms 726 534 1061 1940 1391 3037 41407 49433 5432 51461 56893 158567

𝒪𝒪𝑀𝑀Axioms 717 534 1026 2041 1395 3020 42384 49961 5321 47488 49952 154749

FIGURE 13.4: Runtime performance: numbers (n) and axioms’ size of source
ontologies OS with the axioms’ size of merged ontologies OM versus the required

time for evaluation of the structural and usability dimensions in second.

Completeness Minimality Deduction Constraint Acyclicity Connectivity Usability

completely
covered

completely
covered

mostly
covered

mostly
covered

partially
covered

not
covered

rarely
covered

FIGURE 13.5: Overall result’s view of aspects for the structural and usability
dimensions of a sample merged ontology.

In this figure, we present the number of source ontologies OS and their axioms along
with the number of axioms of the merged ontologies, to emphasize that there is a linear
dependency on the size of input data with respect to the processing time of evaluation.
Overall, considering the size of input data for quality evaluation, the time of processing
is reasonable.

13.5. Overall Result Demonstrations 193

13.5 Overall Result Demonstrations

To help the user to give an overall glance of all aspects, we provide an interface for whole
indicators in five intervals:

• Completely-Covered: When all indicators of the aspect are fulfilled.

• Not-Covered: When none of the indicators of the aspect are fulfilled.

• Mostly-Covered: When the number of fulfilled indicators in the aspect is higher than
the number of failed indicators.

• Rarely-Covered: When the number of fulfilled indicators in the aspect is lower than
the number of failed indicators.

• Partially-Covered: When the number of fulfilled indicators in the aspect is equal to
the number of failed indicators.

Aspects with one indicator (e.g., deduction) use interval Completely-Covered or
Not-Covered only. Figure 13.5 shows this demonstration for a sample merged ontology.

13.6 Total analyzing

By looking at all results obtained for the tested datasets, we can observe their strengths
and weaknesses. For instance, the merged ontology in dataset d1 failed in 4 out of 20
structural quality indicators and in 2 out of 6 usability quality indicators, showing its
weakness. From another point of view, the merged ontology in d1 succeeded in 16 out
of 20 structural quality indicators and in 4 out of 6 usability quality indicators, showing
its strength. The merged ontology has achieved a GOOD label in the evaluation of the
intended use via the CQs test and the evaluation of intended semantics via query test.
Such an analysis can be obtained for other merged ontologies. All the results obtained
for structural, functional, and usability dimensions are shown in Figure 13.6.

194 Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑑𝑑7 𝑑𝑑8 𝑑𝑑9 𝑑𝑑10 𝑑𝑑11 𝑑𝑑12

Structural quality

0

1

2

3

4

5

6

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑑𝑑7 𝑑𝑑8 𝑑𝑑9 𝑑𝑑10 𝑑𝑑11 𝑑𝑑12

Usability quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d1 d2 d3 d4 d5 d6

CQ-Precision CQ-Recall Query-Precision Query-Recall

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6

FIGURE 13.6: Total Analyzing: Top: functional quality evaluation in CQ and
query tests in GOOD, LESS-GOOD, BAD, and WORSE intervals; Middle: number
of fulfilled indicators in the structural quality evaluation among 20 indicators;
Down: number of fulfilled indicators in the usability quality evaluation among

6 indicators.

13.6. Total analyzing 195

FIGURE 13.7: Query endpoint GUI with the separate results for the merged and
source ontologies.

As stated in Section 7.2.2 of Chapter 7, we aimed not to assign a global score to ontologies
but to identify their strengths and weaknesses. This is why we have not concluded
the experiments saying which ontology is the best in the tested domain; instead, the
main features of each merged ontology have been described. The merged ontologies
that have been evaluated through structural, functional, and usability dimensions have
an acceptable quality, and the decision has to be made by the users or developers based
on their needs. They can be improved in several directions in order to increase their
quality.

The experimental tests in this chapter show that our evaluation method can detect the
main strengths and weaknesses of the evaluated ontologies. Besides, our evaluation
framework can compare the merged ontology against the respective source ontologies.
The users can investigate the knowledge of the merged ontologies via the SPARQL
endpoint in our platform to compare the result against the knowledge of the source
ontologies. Figure 13.7 shows the output of running sampled queries on the merged and
source ontologies simultaneously. The evaluation of structural and usability dimensions
can also be carried by our user-friendly GUI, as shown in Figure 9.5 in Chapter 9.

196 Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology

13.7 Analyzing the Fulfilment of the Principles of Evaluation
Standards

This section analyzes the extent to which the principles of evaluation standards are
fulfilled in our framework.

• Usefulness principle:

P1. Detecting the involved and affected variables (fulfilled): We detected and took into
account the analysis of the source ontologies (in all three quality evaluation
dimensions) and the application in which a merged ontology is to be used (in
the functional dimension).

P2. Transparency of the impact of influenced variables (unfulfilled): Since we did not
obtain an overall quality rating (see Section 7.2.2), the importance of the
source ontologies and the application that wants to use the merged ontology
did not consider.

P3. Clarification of evaluation purposes (fulfilled): The purpose of each evaluation
aspect is clarified and defined for the user.

P4. Competence and credibility of the underlying system (unfulfilled): Analyzing the
evaluation framework within a use case application or with user study is on
our future work.

P5. Selection and scope of indicators (fulfilled): Users are able to adjust the scope
of the evaluation. They can adjust desired quality indicators based on the
purpose of the given task.

P6. Supported scope and automation (fulfilled): Evaluation is an automatic process
for structural and usability dimensions. The functional dimension requires a
set of user-provided queries or CQs.

P7. Completeness of the output (fulfilled): All evaluation framework provides a set
of essential quality aspects by covering different quality indicators. It does
not rely on only one single aspect. Thus, it is comprehensive.

P8. Clarity of the result (fulfilled): The result is understandable with our GUI,
showing detailed easy understand analysis to the user.

P9. Use and benefits of evaluation (fulfilled): We emphasized on the weakness and
those elements that need to be repaired individually for the user. Thus, users
can get benefit from the results and draw further improvements.

• Feasibility principle:

P10. Appropriate methods (fulfilled): The efforts for analyzing source ontologies
(those involved one) and the application that wants to use the merged
ontology (those affected) are in balance with the desired evaluation output.

P11. Efficiency of evaluation (fulfilled): In our experimental tests, we have shown
that applying all framework is feasible in practice. The complexity of our

13.8. Summary 197

evaluation function is liner since they use counting procedures. Thus, the
output is achieved in a reasonable time and complexity.

• Fairness principle:

P12. Formal disposal of indicators (fulfilled): In our evaluation framework, each
indicator has an exact and systematic definition, certified goal, and precise
implementation of the process in practice. They are available for users.

P13. Disclosure of results (fulfilled): The outputs of evaluation are available for users
through a GUI or as a text file.

P14. Comprehensive and fair examination (fulfilled): The evaluation of the quality of
the merged ontology shows both strengths and weaknesses to the user. The
evaluation is comprehensive by covering various quality aspects.

P15. Impartial implementation and output (fulfilled): The merge evaluation techniques
can work well independently of the underlying merge method.

• Accuracy principle:

P16. Description of the object to be evaluated (fulfilled): The theoretical aspects of the
merged ontology, such as entities’ size, are accessible through our tool.

P17. Description of purposes and procedures (fulfilled): The evaluation functions are
documented well.

P18. Context analysis (fulfilled): The functionality indicators can evaluate the
merged ontology based on the given context.

P19. Declaration of indicators (fulfilled): The formulation of each indicator is defined
well.

P20. Valid and reliable indicators (fulfilled): The quality indicators are built upon
well-known literature studies.

P21. Justified assessments and conclusions (unfulfilled): The evaluation criteria can
provide an analytic view on how well the created merged ontology reflects
the given source ontologies. But we did not make a final conclusion.

P22. Meta-evaluation (unfulfilled): A meta-evaluation on the output of the
evaluation framework is on our future agenda.

13.8 Summary

In this chapter, we conduct a set of experimental tests on structural, functional, and
usability dimensions of the proposed evaluation framework. In particular,

• In the evaluation of the structural dimension, we show the topological properties
of merged ontologies by analyzing the extent to which the GMRs are satisfied.
Various merged ontologies differ in the quality assessment employing GMRs.

198 Chapter 13. Experimental Tests on the Quality Assessment of the Merged Ontology

• We evaluate merged ontologies in the functional dimension by using intended use
and semantics. Our tested ontologies achieve high intended use and semantics
concerning the source ontologies for the given Competency Questions and queries.

• In the evaluation of the usability dimension, we show the communication context
of merged ontologies. The most tested ontologies are well-profiled.

• The processing time of evaluation in our dataset is reasonable concerning the
number of their axioms.

• We provide an interface to ease the interpretation of the results for users.
The interface presents each aspect of evaluation in five intervals from
completely-covered to not-covered.

• Most principles of evaluation standards in our evaluation framework are fulfilled.

199

Part IV

Conclusion

201

14
Summary

This chapter briefly reiterates our assumptions, the solution we provided, and the results
of the evaluation. Thereafter, we bring the dissertation to a close by reviewing its
achievements and the extent to which the research hypothesis is satisfied.

In this thesis, we explained, and with the aid of a deep literature review, demonstrated
that four key aspects of the ontology merging filed deserve attention, since:

• the binary merge approaches are not scalable enough,

• the merge approaches need to adjust user merge requirements,

• the merged ontology should be free of inconsistencies, and

• the quality of the merged ontology should be evaluated systematically.

We contribute to the issues stated above in Chapters 4-7. In particular:

• We have proposed a partitioning-based method to merge multiple ontologies with
an n-ary strategy. The approach seeks to partition the n source ontologies into
k blocks (k << n), then merges and refines the individual blocks, and finally
combines and globally refines blocks to generate the merged ontology.

– The partitioning process follows a structural similarity strategy with low
computational complexity. The approach utilizes a set of pivot classes to
accelerates the partitioning process and assigns the classes in the blocks
based on their structural similarity, which no similarity membership function
is required. Indeed, the adjacent classes (on the hierarchy level of the
source ontologies) with their corresponding classes are located in the same
blocks. This increases the intra-block similarity of blocks and decreases the
inter-block similarity. In this way, the n source ontologies are partitioned
into the k blocks, which leads to having smaller and more tractable merging
subtasks (concerning H2).

202 Chapter 14. Summary

– As we have shown in Section 4.6, the blocks have been combined via intra-
and inter-combining processes. Local and global refinements have been
carried to fulfill the user-selected requirements (satisfying hypothesis H4).

– We used the ontologies from OAEI benchmark and BioPortal. We have
merged multiple ontologies up to 56 source ontologies, including different
axioms’ size (134 ≤ |Sig(OS)| ≤ 30364). We have tested the method
by generating six different merged ontologies of applying local or global
refinements and considering perfect or imperfect mappings and analyzed the
effect of such variables.

– We conducted a series of experiments on the binary and n-ary merge
strategies intended to demonstrate that same or better quality result in
terms of merged characteristics and answering Competency Questions
(Section 10.2.1 and Section 10.2.2) and scalability in terms of operational
complexity and time performance (Section 10.2.3) of the n-ary method. This
proof-of-concept satisfied the thesis’ hypothesis (H1) that the n-ary merge
method is prior to the binary merge strategies.

• We have identified and provided a comprehensive list of Generic Merge
Requirements (GMRs) by analyzing three fields in the literature: ontology merging
approaches, ontology merging benchmark, and ontology engineering. We adapted
them in the context of the ontology merging domain. In addition, we classified
them into integrity, model, and logic properties dimensions.

– Users can select a set of GMRs during the merge process. Since all GMRs are
not compatible together, users can ask our system to suggest a set of possible
GMRs according to their choices. We utilized a graph-based framework
to determine the compatibilities between the user-selected GMRs. We also
established a method to rank the suggested compatible sets and sort them.

– With a use case study in Section 11.1, we have shown that given a set of
user-selected GMRs, there is a superset of compatible GMRs that can be
fulfilled simultaneously (satisfying hypothesis H3).

– We also had an insight into the conflict arising by one type restriction and
property values’ constraint. We proposed a method to build a subsumption
hierarchy on data types and performing substitution or instantiation on them
to tackle one type conflict. We used the least upper and greatest lower bound
method to reconcile the cardinality restriction and utilized the semantic
relatedness to deal with value restriction conflicts.

• Concerning hypothesis H5, we tackled the inconsistencies of the merged ontology
with respect to the knowledge of the source ontologies in Chapter 6.

– We utilized the Subjective Logic theory to find the trustworthy of the
axioms that arise inconsistencies. Subjective Logic can captures opinions
(trustworthy) about the world (in our context, the conflicting axioms) in belief
models and provides a set of operations for combining opinions (of the source
ontologies).

Chapter 14. Summary 203

– When there is a dependency between the conflicting axioms of several
justification sets, we used the adapted version of the conditional operation
in Subjective Logic.

– The proposed method is implemented in the CoMerger, which it can
automatically rank the conflicting axioms and suggest a set of axioms to the
users to be revised. The suggested plan can be applied automatically, or a
user can revise them before applying.

– We have shown in Section 12.2, the inconsistent merged ontologies which
became to a consistent one by our approach are competitive with the
one which became consistent by the human intervention (in several cases
achieved a same or better result in the Competency Questions tests), which
demonstrated the reliability of our method.

• In Chapter 7, we proposed a comprehensive framework to assess the quality of the
merged ontology by structural, functional, and usability dimensions (satisfying
hypothesis H6).

– We defined each dimension with a set of aspects and quality indicators
summarized in Table 7.3. We formulated the structural measures via
consistency test and General Merge Requirement (GMR)s. We defined
the systematic formulation to evaluate the functional measures against the
intended use and semantics of the merged ontology and provided criteria for
the usability dimension.

– We have shown an empirical analysis on each dimension in Section 13.1,
Sections 13.2, and Section 13.3.

– Our framework has been adapted by the prior works [GCCL05;
DRFBSAG+11] in the context of evaluating the merged ontology, in which the
quality of the merged ontology is evaluated by concerning the knowledge of
the source ontologies.

– The proposed criteria have been implemented in CoMerger, which can be
evaluated independently of the merge process.

• We have developed CoMerger (Chapter 9), a web-based application which
comprised all methods stated above. CoMerger is an open-source tool and can
be installed locally, too.

Our proposed approaches have their limitations. The GMRs compatibility checker
framework is conservative and finds potential conflicts independent of given ontologies.
Moreover, all GMRs that we have implemented in the CoMerger are not fully automatic
and require the user intervention, such as R16 or R20 (see Appendix B). Furthermore,
although we have proposed the conflict solution strategies for between some GMRs, the
full resolution for all is hard to be achieved. For example, the conflict between the R2
(property preservation) and R16 (class acyclicity), any possible solution to compromise
them synonymously cannot fully resolve their conflict. Another limitation of our
approach is the time performance of the inconsistency handling when the ontologies
are large. Besides, the evaluation of the functional dimension is narrowed to converting

204 Chapter 14. Summary

the given Competency Questions to the SPARQL queries manually. Overcoming this
limitation is out of the defined scope of the thesis hypothesis.

205

15
Future Work

In this chapter, we examine a set of important directives for future work. The goal of this
thesis was to develop an efficient, n-ary ontology merge method that scales for multiple
ontologies. The merge method can be customized for user requirements. Moreover, we
took a step towards checking the inconsistency and quality of the merged result. We built
CoMerger that implements all our proposed methods. In this thesis, we focused on the
core elements of each aspect (concerning our hypothesis) and evaluated the feasibility of
our proposed methods. We expect that the contributions of this thesis can be extended
and improved in several directions. In the rest of this chapter, we briefly identify possible
future directions.

Merging Multiple Ontologies with an N-ary Strategy: We provided a parameterizable
merge platform allowing users to influence the merge result interactively through the
Generic Merge Requirements (GMRs). A future research agenda in this direction is
finding strategies for such user interaction in the context of an application or a use-case.
Moreover, adapting our approach to merging data on the schema-level of Linked
Open Data (LOD) scenarios is another future research direction. Furthermore, taking
advantage of the parallelization potential of the approach could represent an interesting
topic of research.

Utilizing User-Driven Generic Merge Requirements: The Generic Merge Requirements
(GMRs) within our systems can be easily adapted for new GMRs, in which their
compatibilities can be detected through our framework. Not all potential GMRs conflicts
will materialize in each concrete merged ontology. Investigation of how the approach
can be extended to take this into account is left for future work. A further future plan
is a study about the extent to which the users agree with the ranked suggested sets. In
addition, the study of crucial GMRs in a specific domain could be a potential future
direction.

Inconsistency Handling of the Merged Ontology: The future work of this aspect
could be on studying the exploitation of domain knowledge. We believe using more

206 Chapter 15. Future Work

trustable background knowledge such as MeSH1 [Lip00] and SNOMED-CT2 [Don06]
(as domain-specific knowledge resources in the biomedical domain) or WordNet [Mil98]
(as a generic knowledge resource) might significantly improve the opinion’s probability
expectation value.

Assessing the Quality of the Merged Ontology: Evaluating the merged ontology in the
functional dimension has been carried out by a set of user-given Competency Questions,
where human intervention is required to convert them to the SPARQL queries. The
possibility of evaluating this dimension automatically would help many use-case
scenarios. This precedes to integrating an automatic conversion from natural language
to the SPARQL-queries, such as the works in [NNBU+13; DDS+16]. Furthermore,
evaluating the source ontologies before the merge process might give useful insights
to the users. Moreover, analyzing conflicts between licenses in our framework is left
open for future work. Despite efforts in other domains [HSP+19; GLR+14; Gor11], to
the best of our knowledge, there is no study on the license compatibility checker of the
ontologies. Thus, it would open the door for the compatibility checker of the source
ontologies in the ontology merging scenarios.

CoMerger tool: The tool could be extended with respect to several dimensions. First,
other existing ontology matchers can be embedded in our open-source tool so that users
can choose their desired way of generating the mapping between the source ontologies.
Second, providing an integration plug-in with popular ontology editor tools such as
Protégé [NSD+01] might be useful in practice. The further future plan can be the
evaluation of the ease-of-use through a user study.

1Medical Subject Headings
2Systematised Nomenclature of Medicine, Clinical Terms

207

Part V

Appendix

209

A
Competency Questions on Conference domain

Table A.1 shows a set of Competency Questions (CQs) for the conference domain of the
OAEI benchmark used for our experimental tests. We drive these CQs based on the
information provided by cmt, conference, confOf, edas, ekaw, iasted, sigkdd ontologies from
the conference domain.

Table A.2 shows a set of Competency Questions (CQs) used in the experimental test of
conflict resolution.

210 Appendix A. Competency Questions on Conference domain

TABLE A.1: The Competency Questions (CQs) for the conference domain of the
OAEI benchmark. CQ1-CQ30 are positive CQs, while CQ31-CQ35 are negative

CQs.

No. Competency Questions
Positive CQs

CQ1 Which type of documents can include in the conference document?
CQ2 Who can participate in the conference?
CQ3 Can “Reviewer” be the type of person in the conference domain?
CQ4 What is the role of the conference participant at the conference?
CQ5 Can a publisher be related to the conference domain?
CQ6 Who issues the conference proceeding?
CQ7 Who assigns the external reviewer?
CQ8 Can the conference proceeding have an ISBN?
CQ9 Can an author be a conference member?
CQ10 Which type of contribution exists in the conference domain?
CQ11 Which type of fee exists?
CQ12 Which events can exist at the conference?
CQ13 Which social events can a conference have?
CQ14 Which organization can be at the conference?
CQ15 Who assigns the reviewer?
CQ16 Can a poster be part of the contribution to the conference?
CQ17 Which type of paper can exist in the conference document?
CQ18 Can the tutorial be part of the conference?
CQ19 Which countries can participate?
CQ20 What can be the decision for a submitted paper to the conference?
CQ21 Who can be a conference member?
CQ22 Which type of conference committee exists?
CQ23 Can information for the participant be part of the conference document?
CQ24 Can a workshop be part of the conference?
CQ25 Can a short paper be a contribution to the conference?
CQ26 Which type of session exists in the conference?
CQ27 Does the conference has a demo session?
CQ28 Which audiovisual_equipment conference has?
CQ29 Which type of deadline exists in the conference?
CQ30 Which type of award can be given at the conference?

Negative CQs
CQ31 How should discussions on the poster held?
CQ32 Is there any information regarding the past venue of the conference?
CQ33 Is there any relation between an author and a company
CQ34 Do authors have a CV and accessible during the conference presentation?
CQ35 Is there any visa information available for the participant?

Appendix A. Competency Questions on Conference domain 211

TABLE A.2: The Competency Questions (CQs) used in conflict resolution test.

No. Competency Questions
CQ1 Does a person have an email?
CQ2 Who can have an email?
CQ3 How many emails can a person have?
CQ4 Does a conference have a name?
CQ5 Who can have a name?
CQ6 How many names can a conference have?
CQ7 Has a review only a reviewer as an author?
CQ8 By whom is a review written by?
CQ9 What can have a title?
CQ10 Which range does the title have?

213

B
GMR Implementation

In this appendix, we show the prototype implemented in each GMR. In particular, we
explain:

• how we determine that a GMR is not fulfilled in merged ontologies, and

• how the unfulfilled GMR can be repaired.

We assume an ontology O contains a set of entities E including classes C, properties
P , and instances I . The full list of used notations of this appendix has been shown in
Table B.1.

TABLE B.1: The used notations and symbols in Appendix B.

Notation Description
OS source ontologies
OM merged ontology
cj a class
cTj a parent of a class
cDj a child of a class
pj a property
cpj a respective class (domain/range) of a property
Ij an instance
cIj the respective class of an instance
ej an entity
E all entities
X all axioms
α an axiom

214 Appendix B. GMR Implementation

𝑹𝑹𝑹𝑹. Class preservation

∀ 𝑐𝑐𝑗𝑗 ∈ 𝒪𝒪𝑠𝑠 &
𝑐𝑐𝑗𝑗 ∉ 𝒪𝒪𝑀𝑀

𝑐𝑐𝑗𝑗𝑇𝑇 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑗𝑗 𝑖𝑖𝑖𝑖 𝒪𝒪𝑠𝑠

𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎:
𝑐𝑐𝑗𝑗 ⊆ 𝑐𝑐𝑗𝑗𝑇𝑇

𝑐𝑐𝑗𝑗𝑇𝑇 ≠ ∅ & 𝑐𝑐𝑗𝑗𝑇𝑇 ∈ 𝒪𝒪𝑀𝑀
yes

𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎: 𝑐𝑐𝑗𝑗𝐷𝐷 ⊆ 𝑐𝑐𝑗𝑗

no

𝑐𝑐𝑗𝑗𝐷𝐷 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑗𝑗 𝑖𝑖𝑖𝑖 𝒪𝒪𝑠𝑠
𝑐𝑐𝑗𝑗𝑇𝑇 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑗𝑗𝐷𝐷 𝑖𝑖𝑖𝑖 𝒪𝒪𝑠𝑠

𝑐𝑐𝑗𝑗𝑇𝑇 ≠ ∅ & 𝑐𝑐𝑗𝑗𝑇𝑇 ∈ 𝒪𝒪𝑀𝑀

𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎: 𝑐𝑐𝑗𝑗 ⊆ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

noyes

FIGURE B.1: R1- Repair solution.

R1. Class preservation:

• Detecting R1: We check whether all classes (or their mapped classes) from the
source ontologies exist in the merged ontology. If no, we mark them as missing
classes.

• Repairing R1: Any missed class (cj) from source ontologies, i.e., cj ∈ OS but cj /∈
OM , should be added to the merged ontology. To perform this process:

1. One parent (cTj) of this class in OS should be found.

2. If there exists a parent for it (cTj 6= ∅) and if this parent already exists in the
merged ontology (cTj ∈ OM), this class is added as a child of its detected
parent.

3. If there is no parent for it (cTj = ∅), or the parent cTj does not exist in OM , then
repeat this process by considering the child of cj , i.e., one child of the missing
class (cDj) should be found. If it exists in OM , cDj is added as a parent of cj .

4. Otherwise, it should be added to the root.

Figure B.1 shows the repair process of R1.

R2. Property preservation:

• Detecting R2: We check whether all properties (or their mapped properties) from
the source ontologies exist in the merged ontology. If no, we mark them as missing
properties.

• Repairing R2: Any missed property (pj) from source ontologies, i.e., pj ∈ OS but
pj /∈ OM , should be added to the merged ontology. To perform this process:

1. The respective class (cpj) for the missing property from OS should be found.
It can be a domain or range of that property. Note that, domains or ranges of
the properties are the type of class.

2. If cpj exists in the merged ontology, we add in OM : cPj hasProperty pj .

3. If cpj does not exist in the merged ontology, the property pj cannot be added
to the merged ontology. This situation will be warned to the user.

Appendix B. GMR Implementation 215

𝑹𝑹𝑹𝑹. Property preservation

∀ 𝑝𝑝𝑗𝑗 ∈ 𝒪𝒪𝑆𝑆 &
𝑝𝑝𝑗𝑗 ∉ 𝒪𝒪𝑀𝑀

𝑐𝑐𝑗𝑗
𝑝𝑝 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝𝑗𝑗)

𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎:
𝑐𝑐𝑗𝑗𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑗𝑗

𝑐𝑐𝑗𝑗
𝑝𝑝 ≠ ∅ & 𝑐𝑐𝑗𝑗

𝑝𝑝 ∈ 𝒪𝒪𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢yes no

FIGURE B.2: R2- Repair solution.

𝑹𝑹𝑹𝑹. Instance preservation

∀ 𝐼𝐼𝑗𝑗 ∈ 𝒪𝒪𝑆𝑆 &
𝐼𝐼𝑗𝑗 ∉ 𝒪𝒪𝑀𝑀

𝑐𝑐𝑗𝑗𝐼𝐼 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐼𝐼𝑗𝑗)

𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎: 𝑐𝑐𝑗𝑗𝐼𝐼 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝑗𝑗 𝑐𝑐𝑗𝑗𝐼𝐼 ∈ 𝒪𝒪𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢yes no

FIGURE B.3: R3- Repair solution.

Figure B.2 shows the repair process of R2. This process carries for all types of
properties such as objects and data properties.

R3. Instance preservation:

• Detecting R3: We check whether all instances from the source ontologies exist in
the merged ontology. If no, we mark them as missing instances.

• Repairing R3: Any missed instance (Ij) from the source ontologies, i.e., Ij ∈ OS

but Ij /∈ OM , should be added to the merged ontology. To perform this process:

1. The respective class cIj of the missing instance Ij should be found.

2. If cIj exists in the merged ontology, the instance (Ij) is added to its detected
class (cIj).

3. If cIj does not exist, we warn to the user that this instance could not be added
to the merged ontology.

Figure B.3 shows the repair process of R3.

R4. Correspondence preservation:

• Detecting R4: We check whether all corresponding entities are integrated into one
entity in the merged ontology or not. If no, we mark them.

• Repairing R4: For those entities which have some correspondences, but they did
not merge into one entity, we combine them in an integrated entity. We add this

216 Appendix B. GMR Implementation

𝑹𝑹𝑹𝑹. Correspondnce preservation

∀ (𝑐𝑐𝑗𝑗≡ 𝑐𝑐𝑡𝑡) ∈ 𝒪𝒪𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:
(𝑐𝑐𝑗𝑗≡ 𝑐𝑐𝑡𝑡) ≡ 𝑐𝑐𝑛𝑛 ∈ 𝒪𝒪𝑀𝑀

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑗𝑗 ≡ 𝑐𝑐𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑛𝑛no

𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑛𝑛 𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀𝑛𝑛

FIGURE B.4: R4- Repair solution.

𝑹𝑹𝟓𝟓. Correspondnces‘ property preservation preservation

𝑐𝑐𝑛𝑛 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑜𝑜𝑜𝑜𝑐𝑐𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡

no

𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎: 𝑐𝑐𝑛𝑛 hasProperty P

𝑃𝑃 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑐𝑐𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑡𝑡)
∀ (𝑐𝑐𝑗𝑗≡ 𝑐𝑐𝑡𝑡) ∈ 𝒪𝒪𝑆𝑆 &

(𝑐𝑐𝑗𝑗≡ 𝑐𝑐𝑡𝑡) ≡ 𝑐𝑐𝑛𝑛 ∈ 𝒪𝒪𝑀𝑀

FIGURE B.5: R5- Repair solution.

new entity to the merged ontology, then delete those entities from the merged
ontology. Figure B.4 shows the repair process of R4.

R5. Correspondence’s property preservation:

• Detecting R5: For all corresponding classes that they merged into an integrated
entity in OM , we check whether this integrated entity has all properties of its
corresponding entities. If no, we mark them.

• Repairing R5: For those marked entities, we add the properties of the
corresponding entities to the integrated entity in OM . Figure B.5 shows the repair
process of R5.

R6. Value preservation:

• Detecting R6: For all corresponding entities with two different values, we check
whether their integrated entity has both values. Moreover, if both values have a
conflict, we mark them.

• Repairing R6: If an integrated entity does not have both values of its
corresponding entities, we set both values for the integrated one. However, if
their values have a conflict with each other, we need user interaction to solve it.
Figure B.6 shows the repair process of R6.

R7. Structure preservation:

• Detecting R7: In the merged ontology, we check whether each class has the same
ancestor as the source ontologies. If no, we mark them.

Appendix B. GMR Implementation 217

𝑹𝑹𝑹𝑹. Value preservation

ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑐𝑐𝑗𝑗)
& 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑐𝑐𝑗𝑗)&
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑡𝑡 𝑡𝑡𝑡𝑡
𝑐𝑐𝑛𝑛 ∈ 𝒪𝒪𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

∀ (𝑐𝑐𝑗𝑗≡ 𝑐𝑐𝑡𝑡) ∈ 𝒪𝒪𝑆𝑆 &
(𝑐𝑐𝑗𝑗≡ 𝑐𝑐𝑡𝑡) ≡ 𝑐𝑐𝑛𝑛 ∈ 𝒪𝒪𝑀𝑀

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑐𝑐𝑗𝑗) ≠ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑡𝑡

no

no

FIGURE B.6: R6- Repair solution.

𝑹𝑹𝑹𝑹. Structure preservation

∀ 𝑐𝑐𝑗𝑗 ∈ 𝒪𝒪𝑆𝑆
𝑐𝑐𝑗𝑗𝑇𝑇 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑐𝑐𝑗𝑗 ∈ 𝒪𝒪𝑆𝑆)
𝑐𝑐𝑛𝑛𝑇𝑇 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑐𝑐𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀)

𝑐𝑐𝑗𝑗𝑇𝑇 = 𝑐𝑐𝑛𝑛𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑗𝑗 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑗𝑗𝑇𝑇 𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀
no

FIGURE B.7: R7- Repair solution.

𝑹𝑹𝑹𝑹. Class redundancy prohibition

∀ 𝑐𝑐𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀
𝑐𝑐𝑗𝑗 > 1

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜yes

FIGURE B.8: R8- Repair solution.

• Repairing R7: For any marked class cj , we add a new is-a relationship from class
cj to its respective parent (belong to OS). This process is carried, only if the parent
of cj exists in OM . Figure B.7 shows the repair process of R7.

R8. Class redundancy prohibition:

• Detecting R8: If there is any class cj , which is redundant (duplicated) in the
merged ontology, we mark it.

• Repairing R8: For any marked class cj , we keep one of them and delete the
repeated one. Figure B.8 shows the repair process of R8.

R9. Property redundancy prohibition:

• Detecting R9: If there is any property pj , which is redundant (duplicated) in the
merged ontology, we mark it.

• Repairing R9: For any marked property pj , we keep one of them and delete the
repeated one. Figure B.9 shows the repair process of R9.

218 Appendix B. GMR Implementation

𝑹𝑹𝑹𝑹. Property redundancy prohibition

∀ 𝑝𝑝𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀
𝑝𝑝𝑗𝑗 > 1

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜
yes

FIGURE B.9: R9- Repair solution.

𝑹𝑹𝑹𝑹𝑹𝑹. Instance redundancy prohibition

∀ 𝐼𝐼𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀
𝐼𝐼𝑗𝑗 > 1

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑜𝑜𝑜𝑜𝑜𝑜 𝐼𝐼𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜yes

FIGURE B.10: R10- Repair solution.

𝑹𝑹𝑹𝑹𝑹𝑹. Extraneous entity prohibition

∀ 𝑒𝑒𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀 & 𝑒𝑒𝑗𝑗 ∉ 𝒪𝒪𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑗𝑗 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝒪𝒪𝑀𝑀
yes

FIGURE B.11: R11- Repair solution.

R10. Instance redundancy prohibition:

• Detecting R10: If there is any instance Ij , which is redundant (duplicated) in the
merged ontology, we mark it.

• Repairing R10: For any marked instance Ij , we keep one of them and delete the
repeated one. Figure B.10 shows the repair process of R10.

R11. Extraneous entities prohibition:

• Detecting R11: For all entities belong to OM , we check whether they exist in OS .
If no, we mark them.

• Repairing R11: Any extra marked entity is deleted from OM . Figure B.11 shows
the repair process of R11.

R12. Entailments deduction satisfaction:

• Detecting R12: This is related to subsumption and equivalence entailments. For
both, we follow the same process. First, we get subclass and equivalence axioms
from the source ontologies. Then, we ask a reasoner to check whether the merged
ontology can entail those axioms. If no, we mark them.

Appendix B. GMR Implementation 219

𝑹𝑹𝑹𝑹𝑹𝑹. Entailments deduction satisfaction

∀ 𝛼𝛼 ∈ 𝑋𝑋,
𝒪𝒪𝑀𝑀 ⊨ 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀no𝑋𝑋 ⇐ 𝑖𝑖𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝒪𝒪𝑆𝑆)

FIGURE B.12: R12- Repair solution.

𝑹𝑹𝑹𝑹𝑹𝑹. One type restriction

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑗𝑗)
≠ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

∀ ((𝑝𝑝𝑗𝑗≡ 𝑝𝑝𝑡𝑡)
∈ 𝒪𝒪𝑆𝑆) ≡ 𝑝𝑝𝑛𝑛 ∈ 𝒪𝒪𝑀𝑀

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑡𝑡𝑡𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑜𝑜𝑜𝑜 𝑝𝑝𝑛𝑛 ∈ 𝒪𝒪𝑀𝑀

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑗𝑗 ,
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑡𝑡)

no yes

no

FIGURE B.13: R13- Repair solution.

• Repairing R12: We add those not-entailed axioms in OM . Figure B.12 shows the
repair process of R12.

R13. One type restriction:

• Detecting R13: We check for each integrated data type property in the merged
ontology (((pj ≡ pt) ∈ OS) ≡ pn ∈ OM), whether they have the same datatype
properties. If in the source ontologies, they have different values (dataType(pj) 6=
dataType(pt)), the new integrated one pn, cannot have both types at the same time.
So, we mark it.

• Repairing R13: For any marked property, we check if both types are homogenous
together, we only keep the substitute one. e.g., CHAR and STRING are
homogenous together and we keep only the more general type, i.e., type STRING
for pn. If no, we ask the user. Figure B.13 shows the repair process of R13.

R14. Property value’s constraint:

• Detecting R14: We check all following constraint types:

ObjectMaxCardinality, ObjectMinCardinality, ObjectExactCardinality,
DataMaxCardinality, DataMinCardinality, DataExactCardinality,
ObjectSomeValuesFrom, ObjectAllValuesFrom.

For all entities belonging to source ontologies, we check the value of property of
each constraint type, then we check the value of its mapped entity in the merged
ontology. If they have different values, we mark them.

• Repairing R14: For any marked entity ej , we keep the substitute value in OM .
Figure B.14 shows the repair process of R14.

220 Appendix B. GMR Implementation

𝐑𝐑𝐑𝐑𝐑𝐑.𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑛𝑛 ∈ 𝒪𝒪𝑀𝑀

yes∀ 𝑒𝑒𝑗𝑗 ∈ 𝒪𝒪𝑆𝑆 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
& 𝑒𝑒𝑗𝑗 ≡ 𝑒𝑒𝑛𝑛 ∈ 𝒪𝒪𝑀𝑀

𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑒𝑒𝑗𝑗)
≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒𝑛𝑛)

FIGURE B.14: R14- Repair solution.

𝑹𝑹𝑹𝑹𝑹𝑹. Property's domain and range oneness

∀ 𝑝𝑝𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀
|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑗𝑗)| > 1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑗𝑗′ ⇐ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑝𝑝𝑗𝑗)

𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑗𝑗′ 𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑝𝑝𝑗𝑗
yes

∀ 𝑝𝑝𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀
|𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑗𝑗)| > 1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑗𝑗′ ⇐ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑗𝑗)

𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑗𝑗′ 𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑗𝑗
yes

FIGURE B.15: R15- Repair solution.

R15. Property’s domain and range oneness:

• Detecting R15: If a property pj in the merged ontology has multiple domains or
ranges (|domainRange(pj)| > 1), we mark it.

• Repairing R15: For any marked property pj , we create a new class as the union of
all its domains or ranges. We then add this new class as domain/range of property
pj . Figure B.15 shows the repair process of R15.

R16. Acyclicity in the class hierarchy:

• Detecting R16: There are two types of cycles:

– Self-cycle: To detect the self-cycle, we check for any class cj , this class should
not appear to the list of its parents. If so, we mark it.

– Recursive-cycle: During the visiting of all parents of a class, if we visit more
than one time a parent, we mark it as a cycle.

• Repairing R16: We delete the respective axiom that caused a self-cycle in
the merged ontology. To repair the recursive-cycle, we need user interaction.
Figure B.16 shows the repair process of R16.

R17. Acyclicity in the property hierarchy:

• Detecting R17: There are two types of cycles in the property hierarchy:

Appendix B. GMR Implementation 221

𝑹𝑹𝟏𝟏𝟔𝟔. Acyclicity in the class hierarchy

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑗𝑗 ⊑ 𝑐𝑐𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑐𝑐𝑗𝑗 ⊑ 𝑐𝑐𝑗𝑗∀ 𝑐𝑐𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑗𝑗 ℎ𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

yes

yes

FIGURE B.16: R16- Repair solution.

𝑹𝑹𝟏𝟏𝟕𝟕. Acyclicity in the property hierarchy

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑗𝑗 ⊑ 𝑝𝑝𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑝𝑝𝑗𝑗 ⊑ 𝑝𝑝𝑗𝑗∀ 𝑝𝑝𝑗𝑗 ∈ 𝒪𝒪𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑗𝑗 ℎ𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

yes

yes

FIGURE B.17: R17- Repair solution.

– Self-cycle: To detect this type of cycle, we check for any property pj , this
property should not appear as its subPropertyOf. If so, we mark it.

– Recursive-cycle: During the visiting subPropertyOf hierarchy for property pj ,
if we visit more than one time a property, we mark it as a cycle.

• Repairing R17: We delete the respective axiom that caused a self-cycle on the
property hierarchy in the merged ontology. To repair the recursive-cycle, we need
user interaction. Figure B.17 shows the repair process of R17.

R18. Prohibition of properties being inverses of themselves:

• Detecting R18: We check whether in the merged ontology, there is a property that
is inverse of itself. If so, we mark it.

• Repairing R18: We delete the related inverseOf axiom of the marked property in
the merged ontology. Figure B.18 shows the repair process of R18.

R19. Unconnected class prohibition:

• Detecting R19: If there is any class (cj) which does not have any connections to
the other classes in the is-a hierarchy, i.e. SubClass(cj)&SuperClass(cj) = ∅, we
mark it.

• Repairing R19: The repair process includes:

1. One of sub or superclass of cj from OS , called cTj should be found.

222 Appendix B. GMR Implementation

𝑹𝑹𝑹𝑹𝑹𝑹. Prohibition of properties being inverses of themselves

∀ 𝑝𝑝𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑗𝑗
∈ 𝒪𝒪𝑀𝑀

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑗𝑗 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑗𝑗 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝒪𝒪𝑀𝑀
yes

FIGURE B.18: R18- Repair solution.

𝑹𝑹𝑹𝑹𝑹𝑹. Unconnected class prohibition

∀ 𝑐𝑐𝑗𝑗∈ 𝒪𝒪𝑀𝑀
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑗𝑗) &

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑗𝑗 = ∅

𝑐𝑐𝑗𝑗𝑇𝑇 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑗𝑗 ∈ 𝒪𝒪𝑆𝑆

𝑐𝑐𝑗𝑗𝑇𝑇 ≠ ∅ &
𝑐𝑐𝑗𝑗𝑇𝑇 ∈ 𝒪𝒪𝑀𝑀

𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎: 𝑐𝑐𝑗𝑗 ⊆ 𝑐𝑐𝑗𝑗𝑇𝑇𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎: 𝑐𝑐𝑗𝑗 ⊆ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

yes

yesno

FIGURE B.19: R19- Repair solution.

2. If cTj is not null and exists in the merged ontology, we add cj to cTj with an is-a
relationship.

3. Otherwise, we add cj to the root of the merged ontology.

Figure B.19 shows the repair process of R19.

R20. Unconnected property prohibition:

• Detecting R20: If there is any property pj which does not have any connections to
the other properties in the subPropertyOf hierarchy, we mark it.

• Repairing R20: The repair process includes:

1. One of sub or super property of pj from OS , called pTj should be found.

2. If pTj exists in the merged ontology, we add pj to pTj with a subPropertyOf
relationship.

3. Otherwise, ask the user.

Figure B.20 shows the repair process of R20.

Appendix B. GMR Implementation 223

𝑹𝑹𝑹𝑹𝑹𝑹. Unconnected property prohibition

∀ 𝑝𝑝𝑗𝑗∈ 𝒪𝒪𝑀𝑀
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝𝑗𝑗) = ∅

𝑝𝑝𝑗𝑗𝑇𝑇 ⇐ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑗𝑗 ∈ 𝒪𝒪𝑆𝑆

𝑝𝑝𝑗𝑗𝑇𝑇 ≠ ∅ &
𝑝𝑝𝑗𝑗𝑇𝑇 ∈ 𝒪𝒪𝑀𝑀

𝑖𝑖𝑖𝑖 𝒪𝒪𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎: 𝑝𝑝𝑗𝑗 ⊆ 𝑝𝑝𝑗𝑗𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

yes
yesno

FIGURE B.20: R20- Repair solution.

225

C
User Help

In this appendix, we give a practical guideline about the user interaction with the
CoMerger tool. In particular, we present:

1. a guideline to merging ontologies in Section C.1,

2. an instruction to assess the quality of the merged ontology in Section C.2),

3. required steps to verifying the consistency of the merged result in Section C.3),

4. necessary processes of checking the compatibility of the selected Generic Merge
Requirements (GMR)s in Section C.4),

5. an instruction of comparing ontologies through the SPARQL endpoint in
Section C.5).

226 Appendix C. User Help

C.1 Merging Ontologies

Figure C.1 shows the GUI of the ontology merging process in CoMerger tool. First, the
MERGER tab should be selected. After that, the required input parameters should be
adjusted. To this end, a set of source ontologies and their mappings should be uploaded.
If no mapping is available for them, the system can generate them automatically.
However, the user should determine the type of matcher and the format of the output.
Moreover, the user can adjust a set of refinements and evaluation criteria to be applied
to the merged ontology. Note that, there is a possibility to perform them after the merge
process as well. Finally, with pressing the MERGE button, the merged ontology will be
generated.

Enter the source
ontologies

Set the type of
the matcher, if
you do not enter
the mapping file

Set the
refinements
before pressing
the merge button

Set the
evaluation
criteria, if you
need

Enter the
mapping files
between the
source ontologies

Determine the
type of created
merged ontology

Select the
MERGER tab

Press the MERGE button to
merge your ontologies

FIGURE C.1: Merger GUI.

C.1. Merging Ontologies 227

After performing the merge process, the system guides the user to the result page, as
shown in Figure C.2. In this page, the merged ontology, the created sub-ontologies, the
log information on each step of refinements, and the evaluation result can be download.

Moreover, at this stage, the user is able to apply the refinement or evaluation, if they did
not perform already. Besides, the user can run the consistency test, or the query test on
the respective merged ontology.

Apply a set of
refinements on
the merged
result

Evaluate the merged ontology

Check the
consistency of the
merged result

Run SPARQL queries

Download the result

FIGURE C.2: Merging Result GUI.

228 Appendix C. User Help

C.2 Quality Assessment

Figure C.3 shows the setting for the evaluation criteria. The user can select or deselect
all criteria once or (de-)select them individually.

Click here to span the
detail of the criteria

Select or deselect
each metric separately

Select or deselect all
criteria together

FIGURE C.3: Setting of the evaluation criteria.

C.2. Quality Assessment 229

Figure C.4 presents the evaluation results. It includes the overall result representation
of the selected evaluation aspects. Moreover, the detailed analysis of the selected aspect
will be shown to the user.

The overall result of all
selected aspects

Aspect‘s name Frequency

Correctness

Metric‘s name

It should be
selected, if the
detected errors
want to be
repaid

Press Repair Errors button to
repair the selected options

FIGURE C.4: Evaluation results.

230 Appendix C. User Help

Users are able to evaluate the quality of any given merged ontology directly. It does
not require to run the merge process beforehand. To this end, through the Evaluator
tab, the quality of a merged ontology can directly be assessed, as shown in Figure C.5.
The merged ontology and respective source ontologies, along with their mapping (if
available) should be uploaded. The user can evaluate the merged result by adjusting the
set of criteria, run a consistency test directly, or perform a query test.

Enter the source
ontologies

Enter the merged
ontology that
needs to be
evaluated

Set the
evaluation
criteria

Set the
parameters of
the consistency
test

Press the Test
Consisency
button, to run
the consistency
checker

Evaluate the merged result
based on the selected criteria

Run one single query on the
source and merged ontologies

Run several queries separately on
the source or merged ontologies

Enter the
mapping files

FIGURE C.5: Evaluator GUI.

C.3. Consistency Checker 231

C.3 Consistency Checker

Figure C.6 shows the parameter setting in order to perform the consistency test.
Figure C.7 presents the result of the consistency test.

Set the required
parameters

Press TEST CONSISTENCY
to run the test

FIGURE C.6: Parameter setting of consistency test.

Suggested
revised
axioms for
an
unsatisfiable
class

Result of consistency test Details of the result

Apply the repair plan and test again
whether the ontology will be consistent

Click on
each row to
see more
information

Suggested
repair plan

FIGURE C.7: Consistency test result.

232 Appendix C. User Help

C.4 Compatibility Checker

Figure C.8 shows the compatibility checker test, and Figure C.9 shows a sample result of
this test.

Select the
desired
requirements

Click here to span
the test

Press the button
to check the
compatibility of
the selected
requirements

Set the number
of system
suggestions

FIGURE C.8: Compatibility checker GUI.

Suggested
requirement sets

Guideline of color assumption

FIGURE C.9: Result of compatibility checker.

C.4. Compatibility Checker 233

More information about GMRs can be achieved via the Requirement page. This is
accessible under the USER HELP submenu (see Figure C.10)

More information about GMRs

Select the submenu

FIGURE C.10: Generic Merge Requirements (GMR)s information page

234 Appendix C. User Help

C.5 SPARQL Query Endpoint

Figure C.11 shows the detail of running a single SPARQL query both on the source and
merged ontologies. Users can use ready templates or write their queries.

Result of
the source
ontology

Click here to run the query

Result of
the merged
ontology

Use the template queries or write your own

Write your query here

FIGURE C.11: Running a single query on the source and merged ontologies,
simultaneously.

C.5. SPARQL Query Endpoint 235

Figure C.12 shows the possibility of running different queries on the source or merged
ontologies.

Result of
the source
ontology

Click here to run the query on
the selected source ontology

Result of
the merged
ontology

Use the
template
queries or write
your own

Write your
query here

Write the same or different queries and run them separately

Click here to run
the query on the
merged ontology

Write your
query here

Use the template
queries or write
your own

FIGURE C.12: Running different queries on the source or merged ontologies,
separately.

237

Bibliography

[ABKD15] A. Algergawy, S. Babalou, M. J. Kargar, and S. H. Davarpanah,
“SeeCOnt: A new seeding-based clustering approach for ontology
matching,” in Advances in Databases and Information Systems, 2015,
ch. 17, ISBN: 9783319231341. DOI: http://dx.doi.org/10.1007/
978-3-319-23135-8_17.

[ADMR05] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm, “Schema and
ontology matching with COMA++,” in Proceedings of the 2005 ACM
SIGMOD international conference on Management of data - SIGMOD ’05,
2005, pp. 906–908, ISBN: 1595930604. DOI: http://dx.doi.org/
10.1145/1066157.1066283.

[AFF+19] A. Algergawy, D. Faria, A. Ferrara, I. Fundulaki, I. Harrow, S. Hertling,
E. Jimenez-Ruiz, N. Karam, A. Khiat, P. Lambrix, et al., “Results of
the ontology alignment evaluation initiative 2019,” in CEUR Workshop
Proceedings, vol. 2536, 2019, pp. 46–85.

[AGL12] P. Archer, S Goedertier, and N Loutas, “Study on persistent uris, with
identification of best practices and recommendations on the topic for
the mss and the ec,” ISA Programme, 2012.

[ALL10] F. F. de Araujo, F. L. R. Lopes, and B. F. Lóscio, “MeMO: A
clustering-based approach for merging multiple ontologies,” in
Workshops on Database and Expert Systems Applications, IEEE, 2010,
pp. 176–180, ISBN: 9781424480494. DOI: http://dx.doi.org/10.
1109/DEXA.2010.50.

[BALKR17] S. Babalou, A. Algergawy, B. Lantow, and B. König-Ries, “Why
the mapping process in ontology integration deserves attention,” in
Proceedings of the 19th International Conference on Information Integration
and Web-based Applications & Services - iiWAS ’17, ACM, 2017,
pp. 451–456, ISBN: 9781450352994. DOI: http://dx.doi.org/10.
1145/3151759.3151834.

https://doi.org/http://dx.doi.org/10.1007/978-3-319-23135-8_17
https://doi.org/http://dx.doi.org/10.1007/978-3-319-23135-8_17
https://doi.org/http://dx.doi.org/10.1145/1066157.1066283
https://doi.org/http://dx.doi.org/10.1145/1066157.1066283
https://doi.org/http://dx.doi.org/10.1109/DEXA.2010.50
https://doi.org/http://dx.doi.org/10.1109/DEXA.2010.50
https://doi.org/http://dx.doi.org/10.1145/3151759.3151834
https://doi.org/http://dx.doi.org/10.1145/3151759.3151834

238 Bibliography

[Bas92] V. R. Basili, “Software modeling and measurement: The
goal/question/metric paradigm,” Technical report, University of
Maryland at College Park, College Park, MD, USA, Tech. Rep., 1992.

[BBL76] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of the 2nd international conference on
Software engineering, IEEE Computer Society Press, 1976, pp. 592–605.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and
D. Nardi, The description logic handbook: Theory, implementation and
applications. Cambridge university press, 2003, ISBN: 9780511711787.
DOI: http://dx.doi.org/10.1017/CBO9780511711787.

[BDK92] P. Buneman, S. Davidson, and A. Kosky, “Theoretical aspects of
schema merging,” in International Conference on Extending Database
Technology, Springer, 1992, ch. 11, pp. 152–167, ISBN: 3540552707. DOI:
http://dx.doi.org/10.1007/BFb0032429.

[BGKR20a] S. Babalou, E. Grygorova, and B. König-Ries, “CoMerger: A
customizable online tool for building a consistent quality-assured
merged ontology,” in In 17th Extended Semantic Web Conference
(ESWC’20), Poster and Demo Track, 2020.

[BGKR20b] ——, “How good is this merged ontology?” In In European Semantic
Web Conference, Poster and Demo Track, Springer, 2020, pp. 13–18. DOI:
http://dx.doi.org/10.1007/978-3-030-62327-2_3.

[BGKR20c] ——, “What to do when the users of an ontology merging system want
the impossible? towards determining compatibility of generic merge
requirements,” in International Conference on Knowledge Engineering and
Knowledge Management, Springer, 2020, pp. 20–36. DOI: http://dx.
doi.org/10.1007/978-3-030-61244-3_2.

[BGM05] J. Brank, M. Grobelnik, and D. Mladenic, “A survey of ontology
evaluation techniques,” in Proceedings of the conference on data mining
and data warehouses (SiKDD 2005), Citeseer Ljubljana, Slovenia, 2005,
pp. 166–170.

[BKR19a] S. Babalou and B. König-Ries, “A subjective logic based approach to
handling inconsistencies in ontology merging,” in OTM Confederated
International Conferences" On the Move to Meaningful Internet Systems",
Springer, 2019, pp. 588–606. DOI: http://dx.doi.org/10.1007/
978-3-030-33246-4_37.

[BKR19b] ——, “GMRs: Reconciliation of generic merge requirements in
ontology integration,” In SEMANTICS Poster and Demo Track, 2019.

[BKR19c] ——, “On using subjective logic to build consistent merged
ontologies,” In SEMANTICS Poster and Demo Track, 2019.

[BKR20a] ——, “Towards building knowledge by merging multiple ontologies
with comerger: A partitioning-based approach,” arXiv preprint
arXiv:2005.02659, 2020.

[BKR20b] ——, “Towards multiple ontology merging with CoMerger,” in In
International Semantic Web Conference (ISWC’20), Posters, Demos, and
Industry Tracks, 2020.

https://doi.org/http://dx.doi.org/10.1017/CBO9780511711787
https://doi.org/http://dx.doi.org/10.1007/BFb0032429
https://doi.org/http://dx.doi.org/10.1007/978-3-030-62327-2_3
https://doi.org/http://dx.doi.org/10.1007/978-3-030-61244-3_2
https://doi.org/http://dx.doi.org/10.1007/978-3-030-61244-3_2
https://doi.org/http://dx.doi.org/10.1007/978-3-030-33246-4_37
https://doi.org/http://dx.doi.org/10.1007/978-3-030-33246-4_37

Bibliography 239

[BLKJ14] J. J. Budovec, C. A. Lam, and C. E. Kahn Jr, “Informatics in radiology:
Radiology gamuts ontology: Differential diagnosis for the semantic
web,” Radiographics, vol. 34, no. 1, pp. 254–264, 2014, ISSN: 02715333.
DOI: http://dx.doi.org/10.1148/rg.341135036.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe, “A comparative analysis
of methodologies for database schema integration,” ACM Computing
Surveys (CSUR), vol. 18, no. 4, pp. 323–364, 1986, ISSN: 03600300. DOI:
http://dx.doi.org/10.1145/27633.27634.

[Bod04] O. Bodenreider, “The unified medical language system (umls):
Integrating biomedical terminology,” Nucleic acids research, vol. 32,
no. suppl 1, pp. D267–D270, 2004, ISSN: 13624962. DOI: http://dx.
doi.org/10.1093/nar/gkh061.

[BPS11] S. Bail, B. Parsia, and U. Sattler, “Extracting finite sets of entailments
from owl ontologies,” in Proceedings of the 24th international workshop
on Description Logic, Barcelona, Spain, Citeseer, 2011.

[BS05] J. Bailey and P. J. Stuckey, “Discovery of minimal unsatisfiable subsets
of constraints using hitting set dualization,” in International Workshop
on Practical Aspects of Declarative Languages, Springer, 2005, ch. 14,
pp. 174–186, ISBN: 9783540243625. DOI: http://dx.doi.org/10.
1007/978-3-540-30557-6_14.

[CKP08] L. Chiticariu, P. G. Kolaitis, and L. Popa, “Interactive generation
of integrated schemas,” in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data - SIGMOD ’08, 2008,
pp. 833–846, ISBN: 9781605581026. DOI: http://dx.doi.org/10.
1145/1376616.1376700.

[CNF12] D. Ceolin, A. Nottamkandath, and W. Fokkink, “Automated
evaluation of annotators for museum collections using subjective
logic,” in IFIP International Conference on Trust Management, 2012,
ch. 18, ISBN: 9783642298516. DOI: http://dx.doi.org/10.1007/
978-3-642-29852-3_18.

[CR16] E. G. Caldarola and A. M. Rinaldi, “An approach to ontology
integration for ontology reuse,” in IEEE 17th International Conference
on Information Reuse and Integration (IRI), 2016, pp. 384–393, ISBN:
9781509032075. DOI: http://dx.doi.org/10.1109/IRI.2016.
58.

[CVHF10] D. Ceolin, W. R. Van Hage, and W. Fokkink, “A trust model to estimate
the quality of annotations using the web,” WebSci, 2010.

[DA07] S Deelers and S Auwatanamongkol, “Enhancing k-means algorithm
with initial cluster centers derived from data partitioning along the
data axis with the highest variance,” International Journal of Computer
Science, vol. 2, no. 4, pp. 247–252, 2007.

[DB10] F. Duchateau and Z. Bellahsene, “Measuring the quality of an
integrated schema.,” in Conceptual Modeling – ER, 2010, ch. 19,
pp. 261–273, ISBN: 9783642163722. DOI: http://dx.doi.org/10.
1007/978-3-642-16373-9_19.

https://doi.org/http://dx.doi.org/10.1148/rg.341135036
https://doi.org/http://dx.doi.org/10.1145/27633.27634
https://doi.org/http://dx.doi.org/10.1093/nar/gkh061
https://doi.org/http://dx.doi.org/10.1093/nar/gkh061
https://doi.org/http://dx.doi.org/10.1007/978-3-540-30557-6_14
https://doi.org/http://dx.doi.org/10.1007/978-3-540-30557-6_14
https://doi.org/http://dx.doi.org/10.1145/1376616.1376700
https://doi.org/http://dx.doi.org/10.1145/1376616.1376700
https://doi.org/http://dx.doi.org/10.1007/978-3-642-29852-3_18
https://doi.org/http://dx.doi.org/10.1007/978-3-642-29852-3_18
https://doi.org/http://dx.doi.org/10.1109/IRI.2016.58
https://doi.org/http://dx.doi.org/10.1109/IRI.2016.58
https://doi.org/http://dx.doi.org/10.1007/978-3-642-16373-9_19
https://doi.org/http://dx.doi.org/10.1007/978-3-642-16373-9_19

240 Bibliography

[DDF+90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, pp. 391–407, 1990,
ISSN: 00028231. DOI: http://dx.doi.org/10.1002/(SICI)
1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9.

[DDS+16] M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and J. Lehmann,
“Asknow: A framework for natural language query formalization in
sparql,” in European Semantic Web Conference, Springer, 2016, ch. 19,
pp. 300–316, ISBN: 9783319341286. DOI: http://dx.doi.org/10.
1007/978-3-319-34129-3_19.

[DGFE16] E. Degeval-Gesellschaft Für Evaluation, “Standards für evaluation,”
Die Deutsche Bibliothek – CIP, Einheitsaufnahme DeGEval – Gesellschaft
für Evaluation e.V. Standards für Evaluation- Erste Revision 2016, Mainz,
2017, 2016, ISSN: 978-3-941569-06-5.

[Don06] K. Donnelly, “Snomed-ct: The advanced terminology and coding
system for ehealth,” Studies in health technology and informatics, vol. 121,
p. 279, 2006.

[Doo+18] D. M. Dooley et al., “FoodOn: A harmonized food ontology to increase
global food traceability, quality control and data integration,” npj
Science of Food, vol. 2, 1 2018, ISSN: 23968370. DOI: http://dx.doi.
org/10.1038/s41538-018-0032-6.

[DRFBSAG+11] A. Duque-Ramos, J. T. Fernández-Breis, R. Stevens, N.
Aussenac-Gilles, et al., “OQuaRE: A SQuaRE-based approach for
evaluating the quality of ontologies,” Journal of Research and Practice in
Information Technology, vol. 43, no. 2, p. 159, 2011.

[dSSS07] M. d’Aquin, A. Schlicht, H. Stuckenschmidt, and M. Sabou,
“Ontology modularization for knowledge selection: Experiments and
evaluations,” in International Conference on Database and Expert Systems
Applications, Springer, 2007, ch. 85, pp. 874–883, ISBN: 9783540744672.
DOI: http://dx.doi.org/10.1007/978-3-540-74469-6_85.

[DTI07] P. Doran, V. Tamma, and L. Iannone, “Ontology module extraction for
ontology reuse: An ontology engineering perspective,” in Proceedings
of the sixteenth ACM conference on Conference on information and
knowledge management, ACM, 2007, ch. 9781595938039, pp. 61–70. DOI:
http://dx.doi.org/10.1145/1321440.1321451.

[EGED09] N. M. El-Gohary and T. E. El-Diraby, “Merging architectural,
engineering, and construction ontologies,” Journal of Computing in Civil
Engineering, vol. 25, no. 2, pp. 109–128, 2009, ISSN: 08873801. DOI:
http://dx.doi.org/10.1061/(ASCE)CP.1943- 5487.
0000048.

[Fah17] M. Fahad, “Merging of axiomatic definitions of concepts in the
complex owl ontologies,” Artificial Intelligence Review, vol. 47, no. 2,
pp. 181–215, 2017, ISSN: 02692821. DOI: http://dx.doi.org/10.
1007/s10462-016-9479-5.

[FFKJ19] M. T. Finke, R. W. Filice, and C. E. Kahn Jr, “Integrating ontologies
of human diseases, phenotypes, and radiological diagnosis,” Journal of

https://doi.org/http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
https://doi.org/http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
https://doi.org/http://dx.doi.org/10.1007/978-3-319-34129-3_19
https://doi.org/http://dx.doi.org/10.1007/978-3-319-34129-3_19
https://doi.org/http://dx.doi.org/10.1038/s41538-018-0032-6
https://doi.org/http://dx.doi.org/10.1038/s41538-018-0032-6
https://doi.org/http://dx.doi.org/10.1007/978-3-540-74469-6_85
https://doi.org/http://dx.doi.org/10.1145/1321440.1321451
https://doi.org/http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000048
https://doi.org/http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000048
https://doi.org/http://dx.doi.org/10.1007/s10462-016-9479-5
https://doi.org/http://dx.doi.org/10.1007/s10462-016-9479-5

Bibliography 241

the American Medical Informatics Association, vol. 26, no. 2, pp. 149–154,
2019. DOI: https://doi.org/10.1093/jamia/ocy161.

[FHP+06] G. Flouris, Z. Huang, J. Z. Pan, D. Plexousakis, and H. Wache,
“Inconsistencies, negations and changes in ontologies,” in AAAI,
vol. 21, 2006, pp. 1295–1300.

[FMB12] M. Fahad, N. Moalla, and A. Bouras, “Detection and resolution of
semantic inconsistency and redundancy in an automatic ontology
merging system,” Journal of Intelligent Information Systems, vol. 39,
no. 2, pp. 535–557, 2012, ISSN: 09259902. DOI: http://dx.doi.org/
10.1007/s10844-012-0202-y.

[FRP14] D. H. Fudholi, W. Rahayu, and E. Pardede, “Code (common
ontology development): A knowledge integration approach from
multiple ontologies,” in IEEE 28th International Conference on Advanced
Information Networking and Applications, 2014, pp. 751–758, ISBN:
9781479936304. DOI: http://dx.doi.org/10.1109/AINA.2014.
92.

[GAC10] A. Guzmán-Arenas and A.-D. Cuevas, “Knowledge accumulation
through automatic merging of ontologies,” Expert Systems with
Applications, vol. 37, no. 3, pp. 1991–2005, 2010, ISSN: 09574174. DOI:
http://dx.doi.org/10.1016/j.eswa.2009.06.078.

[GBKR20] E. Grygorova, S. Babalou, and B. König-Ries, “Toward owl restriction
reconciliation in merging knowledge,” in In 17th Extended Semantic
Web Conference (ESWC’20), Poster and Demo Track, 2020.

[GCCL05] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann,
“Ontology evaluation and validation: An integrated
formal model for the quality diagnostic task,” On-line:
http://www.loa-cnr.it/Files/OntoEval4OntoDev_Final. pdf, 2005.

[GLR+14] G. Governatori, H.-P. Lam, A. Rotolo, S. Villata, G. A. Atemezing, and
F. L. Gandon, “Checking licenses compatibility between vocabularies
and data.,” COLD, vol. 1264, 2014.

[Gor11] T. F. Gordon, “Analyzing open source license compatibility issues
with carneades,” in Proceedings of the 13th International Conference on
Artificial Intelligence and Law, 2011, pp. 51–55, ISBN: 9781450307550.
DOI: http://dx.doi.org/10.1145/2018358.2018364.

[Gru+93] T. R. Gruber et al., “A translation approach to portable ontology
specifications,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1993,
ISSN: 10428143. DOI: http://dx.doi.org/10.1006/knac.1993.
1008.

[GW12] B. Ganter and R. Wille, Formal concept analysis: mathematical foundations.
Springer Science & Business Media, 2012.

[HB11] M. Horridge and S. Bechhofer, “The owl api: A java api for owl
ontologies,” Semantic Web, vol. 2, no. 1, pp. 11–21, 2011, ISSN: 15700844.
DOI: http://dx.doi.org/10.3233/SW-2011-0025.

[HCZQ11] W. Hu, J. Chen, H. Zhang, and Y. Qu, “How matchable are four
thousand ontologies on the semantic web,” The Semantic Web: Research

https://doi.org/https://doi.org/10.1093/jamia/ocy161
https://doi.org/http://dx.doi.org/10.1007/s10844-012-0202-y
https://doi.org/http://dx.doi.org/10.1007/s10844-012-0202-y
https://doi.org/http://dx.doi.org/10.1109/AINA.2014.92
https://doi.org/http://dx.doi.org/10.1109/AINA.2014.92
https://doi.org/http://dx.doi.org/10.1016/j.eswa.2009.06.078
https://doi.org/http://dx.doi.org/10.1145/2018358.2018364
https://doi.org/http://dx.doi.org/10.1006/knac.1993.1008
https://doi.org/http://dx.doi.org/10.1006/knac.1993.1008
https://doi.org/http://dx.doi.org/10.3233/SW-2011-0025

242 Bibliography

and Applications, pp. 290–304, 2011, ISSN: 9783642210334. DOI: http:
//dx.doi.org/10.1007/978-3-642-21034-1_20.

[HHP+10] A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres, “Weaving
the pedantic web.,” LDOW, vol. 628, 2010.

[HPS09] M. Horridge, B. Parsia, and U. Sattler, “Explaining inconsistencies
in owl ontologies,” in Scalable Uncertainty Management, 2009, ch. 11,
pp. 124–137, ISBN: 9783642043871. DOI: http://dx.doi.org/10.
1007/978-3-642-04388-8_11.

[HQC08] W. Hu, Y. Qu, and G. Cheng, “Matching large ontologies: A
divide-and-conquer approach,” Data & Knowledge Engineering, vol. 67,
no. 1, pp. 140–160, 2008, ISSN: 0169023X. DOI: http://dx.doi.org/
10.1016/j.datak.2008.06.003.

[HS08] D. Hooijmaijers and M. Stumptner, “Improving integration with
subjective combining of ontology mappings,” in International
Symposium on Methodologies for Intelligent Systems, 2008, ch. 60,
pp. 552–562, ISBN: 9783540681229. DOI: http://dx.doi.org/10.
1007/978-3-540-68123-6_60.

[HS14] H. Hlomani and D. Stacey, “Approaches, methods, metrics, measures,
and subjectivity in ontology evaluation: A survey,” Semantic Web
Journal, vol. 1, no. 5, pp. 1–11, 2014.

[HSP+19] G. Havur, S. Steyskal, O. Panasiuk, A. Fensel, V. Mireles, T.
Pellegrini, T. Thurner, A. Polleres, and S. Kirrane, “Automatic license
compatibility checking.,” in SEMANTICS Posters and Demos, 2019.

[HTR06] M. Horridge, D. Tsarkov, and T. Redmond, “Supporting early
adoption of owl 1.1 with protege-owl and fact++.,” in Proceedings of the
Second OWL Experiences and Directions Workshop (OWLED-06), 2006.

[HVHH+05] P. Haase, F. Van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure,
“A framework for handling inconsistency in changing ontologies,” in
International semantic web conference, Springer, 2005, ch. 27, pp. 353–367,
ISBN: 9783540297543. DOI: http : / / dx . doi . org / 10 . 1007 /
11574620_27.

[HVHTT05] Z. Huang, F. Van Harmelen, and A. Ten Teije, “Reasoning with
inconsistent ontologies.,” in Proceedings of the 19th international joint
conference on Artificial intelligence, vol. 5, 2005, pp. 454–459.

[IEC05] I. IEC, “Iso/iec 25000–software engineering–software product quality
requirements and evaluation (square)–guide to square,” Systems
Engineering, vol. 41, 2005.

[Jac01] P. Jaccard, “Étude comparative de la distribution florale dans une
portion des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37,
pp. 547–579, 1901.

[JERS+11] S. P. Ju, H. E. Esquivel, A. M. Rebollar, M. C. Su, et al., “CreaDO–a
methodology to create domain ontologies using parameter-based
ontology merging techniques,” in 10th Mexican International Conference
on Artificial Intelligence, IEEE, 2011, pp. 23–28.

https://doi.org/http://dx.doi.org/10.1007/978-3-642-21034-1_20
https://doi.org/http://dx.doi.org/10.1007/978-3-642-21034-1_20
https://doi.org/http://dx.doi.org/10.1007/978-3-642-04388-8_11
https://doi.org/http://dx.doi.org/10.1007/978-3-642-04388-8_11
https://doi.org/http://dx.doi.org/10.1016/j.datak.2008.06.003
https://doi.org/http://dx.doi.org/10.1016/j.datak.2008.06.003
https://doi.org/http://dx.doi.org/10.1007/978-3-540-68123-6_60
https://doi.org/http://dx.doi.org/10.1007/978-3-540-68123-6_60
https://doi.org/http://dx.doi.org/10.1007/11574620_27
https://doi.org/http://dx.doi.org/10.1007/11574620_27

Bibliography 243

[JHQ+09] Q. Ji, P. Haase, G. Qi, P. Hitzler, and S. Stadtmüller, “Radon—repair
and diagnosis in ontology networks,” in European Semantic Web
Conference, Springer, 2009, pp. 863–867.

[Jøs16] A. Jøsang, Subjective logic. Springer, 2016.
[JRASC18] E. Jiménez-Ruiz, A. Agibetov, M. Samwald, and V. Cross, “We divide,

you conquer: From large-scale ontology alignment to manageable
subtasks with a lexical index and neural embeddings,” in CEUR
Workshop Proceedings, vol. 2288, 2018, pp. 13–24.

[JRGH12] E. Jiménez-Ruiz, B. C. Grau, and I. Horrocks, “On the feasibility of
using owl 2 dl reasoners for ontology matching problems.,” in ORE,
2012.

[JRGHB09] E. Jiménez-Ruiz, B. C. Grau, I. Horrocks, and R. Berlanga, “Ontology
integration using mappings: Towards getting the right logical
consequences,” in ESWC, Springer, 2009, ch. 16, pp. 173–187, ISBN:
9783642021206. DOI: http://dx.doi.org/10.1007/978-3-
642-02121-3_16.

[Jus04] K. Juszczyszyn, “A subjective logic-based framework for aligning
multiple ontologies,” in International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems, Springer, 2004, ch. 159,
pp. 1194–1200, ISBN: 9783540232063. DOI: http://dx.doi.org/
10.1007/978-3-540-30133-2_159.

[KF01] M. Klein and D. Fensel, “Ontology versioning on the semantic web,”
in SWWS, 2001, pp. 75–91.

[KJH+05] J. Kim, M. Jang, Y.-G. Ha, J.-C. Sohn, and S. J. Lee, “MoA: Owl ontology
merging and alignment tool for the semantic web,” in International
Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, Springer, 2005, ch. 100, pp. 722–731. DOI: http:
//dx.doi.org/10.1007/11504894_100.

[KP17] A. Khamparia and B. Pandey, “Comprehensive analysis of semantic
web reasoners and tools: A survey,” Education and Information
Technologies, vol. 22, no. 6, pp. 3121–3145, 2017, ISSN: 13602357. DOI:
http://dx.doi.org/10.1007/s10639-017-9574-5.

[KPSCG06] A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau, “Repairing
unsatisfiable concepts in owl ontologies,” in European Semantic Web
Conference, 2006, ch. 15, pp. 170–184, ISBN: 9783540345442. DOI: http:
//dx.doi.org/10.1007/11762256_15.

[KPSH05] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler, “Debugging
unsatisfiable classes in owl ontologies,” Journal of Web Semantics, vol. 3,
no. 4, pp. 268–293, 2005, ISSN: 15708268. DOI: http://dx.doi.org/
10.1016/j.websem.2005.09.005.

[KS03] Y. Kalfoglou and M. Schorlemmer, “Ontology mapping: The state
of the art,” The Knowledge Engineering Review, vol. 18, pp. 1–31, 1
2003, ISSN: 02698889. DOI: http : / / dx . doi . org / 10 . 1017 /
S0269888903000651.

[KVS06] K. Kotis, G. A. Vouros, and K. Stergiou, “Towards automatic merging
of domain ontologies: The hcone-merge approach,” Journal of Web

https://doi.org/http://dx.doi.org/10.1007/978-3-642-02121-3_16
https://doi.org/http://dx.doi.org/10.1007/978-3-642-02121-3_16
https://doi.org/http://dx.doi.org/10.1007/978-3-540-30133-2_159
https://doi.org/http://dx.doi.org/10.1007/978-3-540-30133-2_159
https://doi.org/http://dx.doi.org/10.1007/11504894_100
https://doi.org/http://dx.doi.org/10.1007/11504894_100
https://doi.org/http://dx.doi.org/10.1007/s10639-017-9574-5
https://doi.org/http://dx.doi.org/10.1007/11762256_15
https://doi.org/http://dx.doi.org/10.1007/11762256_15
https://doi.org/http://dx.doi.org/10.1016/j.websem.2005.09.005
https://doi.org/http://dx.doi.org/10.1016/j.websem.2005.09.005
https://doi.org/http://dx.doi.org/10.1017/S0269888903000651
https://doi.org/http://dx.doi.org/10.1017/S0269888903000651

244 Bibliography

Semantics, vol. 4, no. 1, pp. 60–79, 2006, ISSN: 15708268. DOI: http:
//dx.doi.org/10.1016/j.websem.2005.09.004.

[LBBH15] K. M. Livingston, M. Bada, W. A. Baumgartner, and L. E.
Hunter, “KaBOB: Ontology-based semantic integration of biomedical
databases,” BMC bioinformatics, vol. 16, no. 1, p. 1, 2015, ISSN: 14712105.
DOI: http://dx.doi.org/10.1186/s12859-015-0559-3.

[Lip00] C. E. Lipscomb, “Medical subject headings (mesh),” Bulletin of the
Medical Library Association, vol. 88, no. 3, p. 265, 2000.

[LPSV06] J Lam, J. Z. Pan, D. Sleeman, and W. Vasconcelos, “Ontology
inconsistency handling: Ranking and rewriting axioms,” Technical
report aucs/tr0603, University of Aberdeen, 2006.

[LT06] P. Lambrix and H. Tan, “SAMBO- a system for aligning and merging
biomedical ontologies,” Journal of Web Semantics, vol. 4, no. 3,
pp. 196–206, 2006, ISSN: 15708268. DOI: http://dx.doi.org/10.
1016/j.websem.2006.05.003.

[Mac+67] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, Oakland, CA, USA, vol. 1,
1967, pp. 281–297.

[MFBB10] N. Maiz, M. Fahad, O. Boussaid, and F. Bentayeb, “Automatic
ontology merging by hierarchical clustering and inference
mechanisms,” in Proceedings of I-KNOW, 2010, pp. 1–3.

[MFH16] M. Mahfoudh, G. Forestier, and M. Hassenforder, “A benchmark
for ontologies merging assessment,” in Knowledge Science, Engineering
and Management, 2016, ch. 44, pp. 555–566, ISBN: 9783319476490. DOI:
http://dx.doi.org/10.1007/978-3-319-47650-6_44.

[MFRW00] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder, “An environment
for merging and testing large ontologies,” in KR, 2000, pp. 483–493.

[MG18a] A. Makwana and A. Ganatra, “A better approach to ontology
integration using clustering through global similarity measure.,”
Journal of Computer Science, vol. 14, no. 6, pp. 854–867, 2018, ISSN:
15493636. DOI: http://dx.doi.org/10.3844/jcssp.2018.
854.867.

[MG18b] ——, “A known in advance, what ontologies to integrate? for effective
ontology merging using k-means clustering,” International Journal of
Intelligent Engineering and Systems, vol. 11, p. 72, 4 2018, ISSN: 21853118.
DOI: http://dx.doi.org/10.22266/ijies2018.0831.08.

[Mil98] G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.
[MRB03] S. Melnik, E. Rahm, and P. A. Bernstein, “Rondo: A programming

platform for generic model management,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, ACM,
2003, pp. 193–204, ISBN: 158113634X. DOI: http://dx.doi.org/
10.1145/872757.872782.

[MTFH14] M. Mahfoudh, L. Thiry, G. Forestier, and M. Hassenforder, “Algebraic
graph transformations for merging ontologies,” in Model and Data

https://doi.org/http://dx.doi.org/10.1016/j.websem.2005.09.004
https://doi.org/http://dx.doi.org/10.1016/j.websem.2005.09.004
https://doi.org/http://dx.doi.org/10.1186/s12859-015-0559-3
https://doi.org/http://dx.doi.org/10.1016/j.websem.2006.05.003
https://doi.org/http://dx.doi.org/10.1016/j.websem.2006.05.003
https://doi.org/http://dx.doi.org/10.1007/978-3-319-47650-6_44
https://doi.org/http://dx.doi.org/10.3844/jcssp.2018.854.867
https://doi.org/http://dx.doi.org/10.3844/jcssp.2018.854.867
https://doi.org/http://dx.doi.org/10.22266/ijies2018.0831.08
https://doi.org/http://dx.doi.org/10.1145/872757.872782
https://doi.org/http://dx.doi.org/10.1145/872757.872782

Bibliography 245

Engineering, Springer, 2014, ch. 16, pp. 154–168, ISBN: 9783319115863.
DOI: http://dx.doi.org/10.1007/978-3-319-11587-0_16.

[MVH+04] D. L. McGuinness, F. Van Harmelen, et al., “Owl web ontology
language overview,” W3C recommendation, vol. 10, no. 10, p. 2004,
2004.

[Nie74] J. Nieminen, “On the centrality in a graph,” Scandinavian journal of
psychology, vol. 15, no. 1, pp. 332–336, 1974, ISSN: 00365564. DOI: http:
//dx.doi.org/10.1111/j.1467-9450.1974.tb00598.x.

[NM+01] N. F. Noy, D. L. McGuinness, et al., Ontology development 101: A guide
to creating your first ontology, 2001.

[NM03] N. F. Noy and M. A. Musen, “The prompt suite: Interactive
tools for ontology merging and mapping,” International Journal of
Human-Computer Studies, vol. 59, no. 6, pp. 983–1024, 2003, ISSN:
10715819. DOI: http://dx.doi.org/10.1016/j.ijhcs.2003.
08.002.

[NNBU+13] A.-C. Ngonga Ngomo, L. Bühmann, C. Unger, J. Lehmann, and D.
Gerber, “Sorry, i don’t speak sparql: Translating sparql queries into
natural language,” in Proceedings of the 22nd international conference on
World Wide Web, 2013, pp. 977–988, ISBN: 9781450320351. DOI: http:
//dx.doi.org/10.1145/2488388.2488473.

[NSD+01] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, and
M. A. Musen, “Creating semantic web contents with protege-2000,”
IEEE intelligent systems, vol. 16, no. 2, pp. 60–71, 2001, ISSN: 15411672.
DOI: http://dx.doi.org/10.1109/5254.920601.

[PB03] R. A. Pottinger and P. A. Bernstein, “Merging models based on given
correspondences,” in Proceedings 2003 VLDB Conference, Elsevier, 2003,
pp. 862–873, ISBN: 9780127224428. DOI: http://dx.doi.org/10.
1016/B978-012722442-8/50081-1.

[PC19] M Priya and A. K. Cherukuri, “A novel method for merging academic
social network ontologies using formal concept analysis and hybrid
semantic similarity measure,” Library Hi Tech, vol. 38, p. 399, 2 2019,
ISSN: 07378831. DOI: http://dx.doi.org/10.1108/LHT-02-
2019-0035.

[PDT06] P. Plessers and O. De Troyer, “Resolving inconsistencies in evolving
ontologies,” in European Semantic Web Conference, Springer, 2006,
ch. 17, pp. 200–214, ISBN: 9783540345442. DOI: http://dx.doi.
org/10.1007/11762256_17.

[PHZY17] M. Paixao, M. Harman, Y. Zhang, and Y. Yu, “An empirical study of
cohesion and coupling: Balancing optimization and disruption,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 3, pp. 394–414,
2017, ISSN: 1089778X. DOI: http://dx.doi.org/10.1109/TEVC.
2017.2691281.

[PK12] G. Pitsilis and S. J. Knapskog, “Social trust as a solution to address
sparsity-inherent problems of recommender systems,” arXiv preprint
arXiv:1208.1004, 2012.

https://doi.org/http://dx.doi.org/10.1007/978-3-319-11587-0_16
https://doi.org/http://dx.doi.org/10.1111/j.1467-9450.1974.tb00598.x
https://doi.org/http://dx.doi.org/10.1111/j.1467-9450.1974.tb00598.x
https://doi.org/http://dx.doi.org/10.1016/j.ijhcs.2003.08.002
https://doi.org/http://dx.doi.org/10.1016/j.ijhcs.2003.08.002
https://doi.org/http://dx.doi.org/10.1145/2488388.2488473
https://doi.org/http://dx.doi.org/10.1145/2488388.2488473
https://doi.org/http://dx.doi.org/10.1109/5254.920601
https://doi.org/http://dx.doi.org/10.1016/B978-012722442-8/50081-1
https://doi.org/http://dx.doi.org/10.1016/B978-012722442-8/50081-1
https://doi.org/http://dx.doi.org/10.1108/LHT-02-2019-0035
https://doi.org/http://dx.doi.org/10.1108/LHT-02-2019-0035
https://doi.org/http://dx.doi.org/10.1007/11762256_17
https://doi.org/http://dx.doi.org/10.1007/11762256_17
https://doi.org/http://dx.doi.org/10.1109/TEVC.2017.2691281
https://doi.org/http://dx.doi.org/10.1109/TEVC.2017.2691281

246 Bibliography

[PK19] M Priya and C. A. Kumar, “An approach to merge domain ontologies
using granular computing,” Granular Computing, pp. 1–26, 2019, ISSN:
23644966. DOI: http://dx.doi.org/10.1007/s41066-019-
00193-3.

[PSK05] B. Parsia, E. Sirin, and A. Kalyanpur, “Debugging owl ontologies,” in
Proceedings of the 14th international conference on World Wide Web, ACM,
2005, pp. 633–640, ISBN: 1595930469. DOI: http://dx.doi.org/
10.1145/1060745.1060837.

[PTP+18] D. Porello, N. Troquard, R. Penaloza, R. Confalonieri, P. Galliani, and
O. Kutz, “Two approaches to ontology aggregation based on axiom
weakening.,” in Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, 2018, ISBN: 9780999241127. DOI:
http://dx.doi.org/10.24963/ijcai.2018/268.

[PVGPSF14] M. Poveda-Villalón, A. Gómez-Pérez, and M. C. Suárez-Figueroa,
“Oops! (ontology pitfall scanner!): An on-line tool for ontology
evaluation,” International Journal on Semantic Web and Information
Systems, vol. 10, no. 2, pp. 7–34, 2014, ISSN: 15526283. DOI: http :
//dx.doi.org/10.4018/ijswis.2014040102.

[PVSFGP10] M. Poveda Villalon, M. C. Suárez-Figueroa, and A. Gómez-Pérez, “A
double classification of common pitfalls in ontologies,” Workshop on
Ontology Quality (OntoQual 2010), Co-located with EKAW, 2010.

[PVSFGP12] M. Poveda-Villalón, M. C. Suárez-Figueroa, and A. Gómez-Pérez,
“Validating ontologies with oops!” In Knowledge Engineering and
Knowledge Management, 2012, ch. 24, pp. 267–281, ISBN: 9783642338755.
DOI: http://dx.doi.org/10.1007/978-3-642-33876-2_24.

[QKL07] C. Quix, D. Kensche, and X. Li, “Generic schema merging,” in
International Conference on Advanced Information Systems Engineering,
Springer, 2007, ch. 10, pp. 127–141, ISBN: 9783319981765. DOI: http:
//dx.doi.org/10.1007/978-3-540-72988-4_10.

[Rah16] E. Rahm, “The case for holistic data integration,” in Advances in
Databases and Information Systems, 2016, ch. 2, pp. 11–27, ISBN:
9783319440385. DOI: http://dx.doi.org/10.1007/978-3-
319-44039-2_2.

[RB01] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” The VLDB Journal, vol. 10, no. 4, pp. 334–350,
2001, ISSN: 10668888. DOI: http : / / dx . doi . org / 10 . 1007 /
s007780100057.

[RC15] J. Raad and C. Cruz, “A survey on ontology evaluation methods,”
in Proceedings of the 7th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, 2015,
ISBN: 9789897581588. DOI: http : / / dx . doi . org / 10 . 5220 /
0005591001790186.

[RCC92] D. A. Randell, Z. Cui, and A. G. Cohn, “A spatial logic based on
regions and connection.,” KR, vol. 92, pp. 165–176, 1992.

[RDH+04] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R.
Stevens, H. Wang, and C. Wroe, “Owl pizzas: Practical experience of

https://doi.org/http://dx.doi.org/10.1007/s41066-019-00193-3
https://doi.org/http://dx.doi.org/10.1007/s41066-019-00193-3
https://doi.org/http://dx.doi.org/10.1145/1060745.1060837
https://doi.org/http://dx.doi.org/10.1145/1060745.1060837
https://doi.org/http://dx.doi.org/10.24963/ijcai.2018/268
https://doi.org/http://dx.doi.org/10.4018/ijswis.2014040102
https://doi.org/http://dx.doi.org/10.4018/ijswis.2014040102
https://doi.org/http://dx.doi.org/10.1007/978-3-642-33876-2_24
https://doi.org/http://dx.doi.org/10.1007/978-3-540-72988-4_10
https://doi.org/http://dx.doi.org/10.1007/978-3-540-72988-4_10
https://doi.org/http://dx.doi.org/10.1007/978-3-319-44039-2_2
https://doi.org/http://dx.doi.org/10.1007/978-3-319-44039-2_2
https://doi.org/http://dx.doi.org/10.1007/s007780100057
https://doi.org/http://dx.doi.org/10.1007/s007780100057
https://doi.org/http://dx.doi.org/10.5220/0005591001790186
https://doi.org/http://dx.doi.org/10.5220/0005591001790186

Bibliography 247

teaching owl-dl: Common errors & common patterns,” in International
Conference on Knowledge Engineering and Knowledge Management,
Springer, 2004, ch. 5, pp. 63–81, ISBN: 9783540233404. DOI: http://
dx.doi.org/10.1007/978-3-540-30202-5_5.

[RKB+08] P. N. Robinson, S. Köhler, S. Bauer, D. Seelow, D. Horn, and S.
Mundlos, “The human phenotype ontology: A tool for annotating and
analyzing human hereditary disease,” The American Journal of Human
Genetics, vol. 83, no. 5, pp. 610–615, 2008, ISSN: 00029297. DOI: http:
//dx.doi.org/10.1016/j.ajhg.2008.09.017.

[RPSY09] A. Radwan, L. Popa, I. R. Stanoi, and A. Younis, “Top-k
generation of integrated schemas based on directed and weighted
correspondences,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data, ACM, 2009, pp. 641–654,
ISBN: 9781605585512. DOI: http : / / dx . doi . org / 10 . 1145 /
1559845.1559913.

[RR12] S. Raunich and E. Rahm, “Towards a benchmark for ontology
merging.,” in OTM Confederated International Conferences" On the Move
to Meaningful Internet Systems", vol. 7567, 2012, ch. 20, pp. 124–133,
ISBN: 9783642336171. DOI: http://dx.doi.org/10.1007/978-
3-642-33618-8_20.

[RR14] ——, “Target-driven merging of taxonomies with ATOM,” Information
Systems, vol. 42, pp. 1–14, 2014, ISSN: 03064379. DOI: http://dx.
doi.org/10.1016/j.is.2013.11.001.

[SAN+11] L. M. Schriml, C. Arze, S. Nadendla, Y.-W. W. Chang, M. Mazaitis, V.
Felix, G. Feng, and W. A. Kibbe, “Disease ontology: A backbone for
disease semantic integration,” Nucleic acids research, vol. 40, no. D1,
pp. D940–D946, 2011, ISSN: 03051048. DOI: http://dx.doi.org/
10.1093/nar/gkr972.

[SBH08] K. Saleem, Z. Bellahsene, and E. Hunt, “Porsche: Performance oriented
schema mediation,” Information Systems, vol. 33, no. 7, pp. 637–657,
2008, ISSN: 03064379. DOI: http://dx.doi.org/10.1016/j.is.
2008.01.010.

[SC+03] S. Schlobach, R. Cornet, et al., “Non-standard reasoning services for
the debugging of description logic terminologies,” in Ijcai, vol. 3, 2003,
pp. 355–362.

[SJRG14] A. Solimando, E. Jiménez-Ruiz, and G. Guerrini, “Detecting and
correcting conservativity principle violations in ontology-to-ontology
mappings,” in International Semantic Web Conference, Springer, 2014,
ch. 1, pp. 1–16, ISBN: 9783319119144. DOI: http://dx.doi.org/
10.1007/978-3-319-11915-1_1.

[SM01] G. Stumme and A. Maedche, “FCA-Merge: Bottom-up merging of
ontologies,” in IJCAI, vol. 1, 2001, pp. 225–230.

[SPF+12] M. Sensoy, J. Z. Pan, A. Fokoue, M. Srivatsa, and F. Meneguzzi,
“Using subjective logic to handle uncertainty and conflicts,” in IEEE
11th International Conference on Trust, Security and Privacy in Computing

https://doi.org/http://dx.doi.org/10.1007/978-3-540-30202-5_5
https://doi.org/http://dx.doi.org/10.1007/978-3-540-30202-5_5
https://doi.org/http://dx.doi.org/10.1016/j.ajhg.2008.09.017
https://doi.org/http://dx.doi.org/10.1016/j.ajhg.2008.09.017
https://doi.org/http://dx.doi.org/10.1145/1559845.1559913
https://doi.org/http://dx.doi.org/10.1145/1559845.1559913
https://doi.org/http://dx.doi.org/10.1007/978-3-642-33618-8_20
https://doi.org/http://dx.doi.org/10.1007/978-3-642-33618-8_20
https://doi.org/http://dx.doi.org/10.1016/j.is.2013.11.001
https://doi.org/http://dx.doi.org/10.1016/j.is.2013.11.001
https://doi.org/http://dx.doi.org/10.1093/nar/gkr972
https://doi.org/http://dx.doi.org/10.1093/nar/gkr972
https://doi.org/http://dx.doi.org/10.1016/j.is.2008.01.010
https://doi.org/http://dx.doi.org/10.1016/j.is.2008.01.010
https://doi.org/http://dx.doi.org/10.1007/978-3-319-11915-1_1
https://doi.org/http://dx.doi.org/10.1007/978-3-319-11915-1_1

248

and Communications, 2012, pp. 1323–1326, ISBN: 9781467321723. DOI:
http://dx.doi.org/10.1109/TrustCom.2012.294.

[SPG+07] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical owl-dl reasoner,” Journal of Web Semantics, vol. 5, pp. 51–53,
2 2007, ISSN: 15708268. DOI: http://dx.doi.org/10.1016/j.
websem.2007.03.004.

[TBL08] D. Thau, S. Bowers, and B. Ludäscher, “Merging taxonomies under
rcc-5 algebraic articulations,” in Proceedings of the 2nd international
workshop on Ontologies and information systems for the semantic web,
ACM, 2008, pp. 47–54, ISBN: 9781605582559. DOI: http://dx.doi.
org/10.1145/1458484.1458492.

[TTT06] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theoretical Computer Science, vol. 363, pp. 28–42, 1 2006,
ISSN: 03043975. DOI: http://dx.doi.org/10.1016/j.tcs.
2006.06.015.

[UA10] O. Unal and H. Afsarmanesh, “Semi-automated schema integration
with SASMINT,” Knowledge and information systems, vol. 23, no. 1,
pp. 99–128, 2010, ISSN: 02191377. DOI: http://dx.doi.org/10.
1007/s10115-009-0217-z.

[UKMZ98] M. Uschold, M. King, S. Moralee, and Y. Zorgios, “The enterprise
ontology,” The knowledge engineering review, vol. 13, no. 01, pp. 31–89,
1998, ISSN: 02698889. DOI: http : / / dx . doi . org / 10 . 1017 /
S0269888998001088.

[Usc96] M. Uschold, “Building ontologies: Towards a unified methodology,”
in Proceedings of 16th Annual Conference of the British Computer Society
Specialists Group on Expert Systems, Citeseer, 1996.

[Wil09] R. Wille, “Restructuring lattice theory: An approach based on
hierarchies of concepts,” in International Conference on Formal Concept
Analysis, Springer, 2009, ch. 23, pp. 314–339, ISBN: 9783642018145. DOI:
http://dx.doi.org/10.1007/978-3-642-01815-2_23.

[ZPVOS18] O. P. Zalamea Patino, J. Van Orshoven, and T. Steenberghen, “Merging
and expanding existing ontologies to cover the built cultural heritage
domain,” Journal of Cultural Heritage Management and Sustainable
Development, vol. 8, no. 2, pp. 162–178, 2 2018, ISSN: 20441266. DOI:
http://dx.doi.org/10.1108/JCHMSD-05-2017-0028.

[ZRL17] L.-Y. Zhang, J.-D. Ren, and X.-W. Li, “OIM-SM: A method for ontology
integration based on semantic mapping,” Journal of Intelligent & Fuzzy
Systems, vol. 32, no. 3, pp. 1983–1995, 2017, ISSN: 10641246. DOI: http:
//dx.doi.org/10.3233/JIFS-161553.

[ZS17] O. Zamazal and V. Svátek, “The ten-year ontofarm and its fertilization
within the onto-sphere,” Journal of Web Semantics, vol. 43, pp. 46–53,
2017, ISSN: 15708268. DOI: http://dx.doi.org/10.1016/j.
websem.2017.01.001.

https://doi.org/http://dx.doi.org/10.1109/TrustCom.2012.294
https://doi.org/http://dx.doi.org/10.1016/j.websem.2007.03.004
https://doi.org/http://dx.doi.org/10.1016/j.websem.2007.03.004
https://doi.org/http://dx.doi.org/10.1145/1458484.1458492
https://doi.org/http://dx.doi.org/10.1145/1458484.1458492
https://doi.org/http://dx.doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/http://dx.doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/http://dx.doi.org/10.1007/s10115-009-0217-z
https://doi.org/http://dx.doi.org/10.1007/s10115-009-0217-z
https://doi.org/http://dx.doi.org/10.1017/S0269888998001088
https://doi.org/http://dx.doi.org/10.1017/S0269888998001088
https://doi.org/http://dx.doi.org/10.1007/978-3-642-01815-2_23
https://doi.org/http://dx.doi.org/10.1108/JCHMSD-05-2017-0028
https://doi.org/http://dx.doi.org/10.3233/JIFS-161553
https://doi.org/http://dx.doi.org/10.3233/JIFS-161553
https://doi.org/http://dx.doi.org/10.1016/j.websem.2017.01.001
https://doi.org/http://dx.doi.org/10.1016/j.websem.2017.01.001

	I Problem Definition
	Introduction
	Motivation & Problem Statements
	Research Solution
	Research Hypothesis
	Research Contributions
	Outline of the Thesis

	Literature Review
	Existing Ontology Merging Approaches
	Overview of Existing Data Model Merging
	Classification of the Ontology Merge Approaches
	Binary vs. N-ary Merge
	One-level vs. Two-levels Merge
	Symmetric vs. Asymmetric Merge

	Survey on Generic Merge Requirements
	Literature on Ontology Inconsistency Handling
	Ontology Inconsistency Handling in the Single Development Environment
	Inconsistency Handling in the Ontology Merging Domain

	Survey on the Ontology Quality Assessment
	Ontology Quality Assessment in the Single Deployment Scenario
	Quality Assessment in the Ontology Merging Context

	Summary

	II Approach
	Solution Overview
	Multiple Ontology Merging Method
	Introduction
	Preliminaries
	The Workflow of N-Ary Merge Method in CoMerger
	Initialization Phase
	Partitioning Phase
	Partitioner Goals
	Finding Pivot Classes P
	Partitioner: a Structure Driven Strategy
	Partitioning Phase Characteristics - Summary

	Combining Phase
	Intra-combination: Independent Merge
	Inter-combination: Dependent Merge
	Combining Phase Characteristics- Summary

	N-ary Merge Algorithm
	Example
	Summary

	Generic Merge Requirements
	Introduction
	GMRs Classification
	GMR Overview
	Proposed Approach for Checking GMR Compatibility
	Building GMRs Interactions Graph G
	Clique Finder

	Ranking the Compatible Sets
	Conflict Resolution
	Conflicts Occurring by One type Restriction
	Conflicts Occurring by Property Value's Constraint

	Summary

	Handling Inconsistencies
	Introduction
	Preliminaries
	Example: an Inconsistent Ontology
	Subjective Logic Theory

	Proposed Method for Inconsistency Handling by Subjective Logic
	Negative Observation
	Positive Observation
	Atomicity
	Combining Opinions
	Applying Conditional Opinions to Reflect the Dependencies

	Inconsistency Handling Workflow
	Algorithm
	Repair plan
	Example: Applying Our Method on an Inconsistent Ontology
	Summary

	Quality Assessment for the Merged Ontology
	Introduction
	Preliminaries & Background
	Ontology Ranking vs. Ontology Quality Evaluation
	Insufficiency of Global Scoring
	Evaluation Domains
	A Customizable Evaluation

	Evaluation Standards
	Proposed Quality Indicators for the Evaluation of Merged Ontology
	Extending Ontology Evaluation Frameworks
	Quality Evaluation Function
	Associated Quality Indicators of Evaluation Dimensions

	Ontology Merging Quality Assessment Workflow
	Summary

	III Evaluation
	Experimental Evaluation
	Datasets
	Implementation
	Overview of Experimental Tests

	CoMerger: Proposed Tool
	CoMerger Overview
	CoMerger Architecture
	CoMerger Component
	GMRs Compatibility Checker
	Multiple Ontologies Merger
	Merged Ontology Evaluator
	Consistency Checker

	CoMerger GUI
	Summary

	Experimental Tests on the N-ary Merge Method
	Test Setting
	Adjusting Parameters
	Adjusting Binary Methods
	Building Different Versions of Merge
	Adjusting Refinements

	Experimental Results
	Characteristics of the N-Ary Merged Result
	Answering Competency Questions
	Binary versus N-ary

	Summary

	Experimental Tests on GMRs
	Use Case Study on Compatibility Checker
	First Use Case
	Second Use Case
	Third Use Case

	Use Case Study on Conflict Resolution
	Summary

	Experimental Tests on Inconsistency Handling of Merged Ontologies
	Characteristics of Inconsistent Ontologies
	Answering Competency Questions
	Scalability
	Summary

	Experimental Tests on the Quality Assessment of the Merged Ontology
	Quality Evaluation of the Structural Dimension
	Quality Evaluation of the Functional Dimension
	Quality Assessment of Intended Use with Competency Questions Testing
	Quality Assessment of Intended Semantics with Query Testing

	Quality Evaluation of the Usability Dimension
	Time Performance
	Overall Result Demonstrations
	Total analyzing
	Analyzing the Fulfilment of the Principles of Evaluation Standards
	Summary

	IV Conclusion
	Summary
	Future Work

	V Appendix
	Competency Questions on Conference domain
	GMR Implementation
	User Help
	Merging Ontologies
	Quality Assessment
	Consistency Checker
	Compatibility Checker
	SPARQL Query Endpoint

	Bibliography

