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Zusammenfassung
Die vorliegende Arbeit behandelt das Phänomen der Ionisierung eines idealisierten
Atoms durch ein umgebendes unendlich ausgedehntes quantisiertes elektromagne-
tisches Feld positiver Temperatur. Nach dem Planck’schen Strahlungsgesetz er-
wartet man in einer solchen Situation Photonen mit beliebig hoher Energie, die
irgendwann die Ionisierungsschwelle des Atoms überwinden. Mathematisch inter-
pretieren lässt sich dies durch die Abwesenheit von zeitlich invarianten Zuständen
in einem geeigneten dynamischen System.

Derartige Probleme können mittels des selbstadjungierten Generators der Zeit-
entwicklung, des Liouvillians L, in eine spektraltheoretische Fragestellung über-
führt werden. Konkret genügt es zu zeigen, dass L keinen Eigenwert Null besitzt.
Eine geläufige Technik für solche Zwecke stellt die Methode der positiven Kommu-
tatoren dar, bei der es darum geht, einen selbstadjungierten Operator A zu finden,
für den

i[L,A] > 0
erfüllt ist. Mit einem geeigneten Virialtheorem lässt sich dann schließen, dass L
keine Eigenwerte besitzen kann.

Das Ziel dieser Dissertation besteht im Beweis von thermischer Ionisierung für
eine Klasse von konkreteren Modellen mit weniger Einschränkungen, als dies in
früheren Arbeiten der Fall war. Es wird ein QED-ähnlicher Kopplungsterm mit
räumlichen Abfall und ein idealisiertes Atom in Form eines Schrödinger-Operators
betrachtet. Dann werden zwei verschiedene Klassen von Modellen unterschieden:
zum einen Potentiale mit unendlich vielen gebundenen Zuständen, bei denen nur
endlich viele in der Kopplung berücksichtigt werden, zum anderen kompakt getra-
gene glatte Potentiale mit endlich vielen gebunden Zuständen, bei denen keine wei-
teren Einschränkungen in der Kopplung notwendig sind. Der Beweis im ersten Fall
erfolgt ähnlich vorheriger Arbeiten mittels positiver Kommutatoren und jeweils
dem Generator der Translation und der Dilatation auf dem Feld bzw. Atom. Im
zweiten Fall werden als neue Methode Dilatationen im Raum der verallgemeinerten
Eigenfunktionen des Schrödinger-Operators verwendet. Über eine approximative
Form von Fermis Goldener Regel erhält man das Resultat in jedem beschränkten
Temperaturbereich für Kopplungskonstanten unabhängig von der Temperatur.

iii





Abstract
This thesis addresses the phenomenon of ionization of an idealized atom by a sur-
rounding infinitely extended quantized electromagnetic field at positive tempera-
ture. According to Planck’s law one expects photons with arbitrary high energy,
which eventually exceed the ionization threshold of the atom. Mathematically,
this can be interpreted as the absence of time-invariant normal states in a suitable
dynamical system. Such problems can be converted into a spectral-theoretical
question by means of the self-adjoint generator of the time evolution – the Liou-
villian L. In this setting it suffices to show that zero is not an eigenvalue of L.
The goal of this thesis is the proof of thermal ionization for more concrete models
with less restrictions than in previous works, including a QED-like coupling term
with a spatial decay and an idealized atom, given as Schrödinger operator. With
respect to the atom it will be differentiated between two cases: first, potentials
with infinitely many bound states, but only finitely many coupled to the field, and
second, compactly supported smooth potentials. For the latter there are, apart
from the spatial decay, no further artificial restrictions required in the coupling.
The proof is based on positive commutators. On the field it uses the generator of
translations, and for the atom the generator of dilations (first case) or the gener-
ator of dilations in the space of scattering functions (second case). By means of
an approximated version of Fermi’s Golden Rule one obtains a uniform result in
every bounded temperature range.
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1. Introduction
This thesis is dealing with a problem within the large field of open quantum sys-
tems, that is, a ‘small’ quantum mechanical system interacting with its environ-
ment, modeled as a large infinitely extended heat reservoir. This is the common
approach for many realistic scenarios, as in practice it is not possible to accomplish
a perfect isolation of a system, and moreover, it is not feasible and also not inter-
esting to describe its complete macroscopic dynamics. Most recently, the concept
of open quantum systems seems to draw more attention due to the growing field
of quantum information theory and quantum computing. There, the unavoidable
perturbation of the very fragile systems leading to decoherence and relaxation is
a major challenge.

We consider the model of an idealized atom being subject to radiation emitted
by the environment, an electromagnetic quantized field. The latter is supposed to
be in thermal equilibrium at a certain positive temperature, thus emitting photons
according to Planck’s probability distribution of black-body radiation. Since
there is a positive probability for arbitrary high energy photons, eventually one
with sufficiently high energy will show up exceeding the ionization threshold of
the atom. This will cause an ionization and the corresponding phenomenon is also
called thermal ionization.

This problem was studied in a rigorous mathematical manner by Fröhlich
and Merkli in [FM04b] and in a subsequent paper [FMS04] by the same authors
together with Sigal. They constructed a W ∗-dynamical system describing the
dynamics of the composite system in the setting of quantum statistical mechanics,
and they showed under certain conditions the absence of time-invariant normal
states, which can be interpreted as the actual ionization of the atom.

The basic strategy is that the time-invariant states can be shown to be in
one-to-one correspondence with the elements of the kernel of the Liouvillian, also
sometimes called Thermal Hamiltonian. The latter denotation already indicates
that this is the operator generating the time evolution in a certain representation.
This is given by the Gelfand–Naimark–Segal construction with respect to the equi-
librium state of the reservoir and an arbitrary reference state of the atom. Thus,
in order to show that thermal ionization occurs, one has to rule out that zero is
an eigenvalue of the Liouvillian.

Therefore, the problem reduces to a spectral-theoretical question, namely prov-
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1. Introduction

ing the absence of eigenvalues embedded in the continuous spectrum of a self-
adjoint operator. There are two common techniques to tackle this problem. One
of them is the method of complex deformations of the operator, which bend down
the continuous spectrum into the imaginary plane and reveal the eigenvalues on
the real line (and the resonances in the complex plane). In the second approach
one uses positive commutators, which originates from Mourre ([Mou81]) and can
be regarded as an infinitesimal version of complex deformations. The basic prin-
ciple works as follows. If L is a self-adjoint operator, E is an eigenvalue of L with
corresponding eigenvector ψ, and A is another self-adjoint operator (the so-called
conjugate operator), a formal calculation neglecting any domain problems yields

⟨ψ, [L,A]ψ⟩ = ⟨Lψ,Aψ⟩ − ⟨Aψ,Lψ⟩ = E ⟨ψ,Aψ⟩ − E ⟨Aψ,ψ⟩ = 0.

This relation is in fact non-trivial for unbounded operators and is also called virial
theorem. On the other hand, if one can show that i[L,A] is strictly positive, this
yields a contradiction. While complex deformations often yield stronger results
and enable the study of resonances, they also require stricter assumptions, in
particular, analyticity of the potentials and coupling functions. In this thesis we
follow [FM04b; FMS04] and use the positive commutator method.

Goal and comparison with previous results
In [FM04b] the atom was represented in an abstract way by a Hamiltonian in
diagonal form with respect to the energy with a single negative eigenvalue. For
the proof certain regularity assumptions on the interaction with respect to the
energy were imposed. However, it was not shown how these assumptions translate
to a more concrete setting, in particular, to Schrödinger operators and typical
coupling functions which appear in quantum electrodynamics. As in [JP96b] they
used the generator of translations with respect to the momentum in the field space
as conjugate operator, and the generator of translations with respect to the energy
on the atomic space. Furthermore, they developed a novel virial theorem for the
positive temperature setting where L is not bounded from below.

The second paper [FMS04] covers the case of a Schrödinger operator admitting
a certain class of potentials including the Coulomb potential which always yield
infinitely many (or no) bound states with an accumulation at zero. However,
the authors admit only finitely many modes to be coupled via the interaction.
Moreover, the coupling is additionally restricted to a compact interval away from
zero on the essential (positive) spectrum of the atom, that is, a cutoff is imposed
for low and high energies. In the proof they utilized the same virial theorem and
the same conjugate operator on the field space as in the preceding paper. However,
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they choose the generator of dilations in combination with a cutoff for high energies
on the atomic space instead, which leads to the constraints with respect to the
admissible class of potentials and the cutoff near zero.

Both results are not uniform in the temperature. More precisely, the maximal
coupling strength, where the proof is still feasible, decays exponentially fast to
zero when the temperature tends to zero. Furthermore, they require a special
class of coupling terms which does not include couplings appearing in quantum
electrodynamics.

The general goal of this thesis is to establish a similar result as in [FM04b;
FMS04] for a specific model with less restrictions. It basically consists of two
parts.

The first one can be regarded as partial extension of the results in [FMS04].
Most importantly, we can lift the restrictions with respect to the essential spec-
trum with a partially new proof for the positivity of the commutator. The basic
approach, namely the choice of the conjugate operators, is essentially the same as
in [FMS04]. However, a refined analysis, an additional auxiliary term on a part
of the vacuum subspace and using the localization of the relevant error terms in
combination with a Birman-Schwinger argument enables us to avoid the cutoff
near zero. Our proof relies on rather elementary operator inequalities and does
not need the Feshbach method as in [FMS04].

The physically less relevant cutoff for high energies (in this non-relativistic
setting) is removed by means of a modification of the cutoff in the conjugate
operator. This requires a review of the tedious verification of the conditions for
the virial theorem. Finally, we get a uniform result for a bounded temperature
range if we assume an approximated version of the Fermi Golden Rule condition.
We also consider some more general (still linear) coupling terms, and we give an
explicit example. There, one has to impose a (non-physical) spatial cutoff which
arises due to the generator of translations on the field.

It should be emphasized that our approach could not remove the restriction
of only finitely many coupled eigenmodes, yet. Thus, the important example of
a hydrogen atom without any restrictions in the coupling remains to be an open
problem. Nevertheless, the verification of the conditions of the virial theorem
as well as the proof for the positivity of the commutator is presented in some
generality and the requirements are stated in form of hypotheses. This could
possibly facilitate further work in this direction.

The second part of this thesis corresponds to [HS20], which was joint work with
David Hasler, and covers the case of potentials with finitely many bound states,
which could not be treated by the former approach. More precisely, up to now
we can control only compactly supported potentials which are sufficiently smooth.
Here one can work with a similar proof as before and the artificial restriction to
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1. Introduction

finitely many eigenmodes in the coupling can be dropped. The proof differs in the
way that the generator of dilations for the atom is replaced by the generator of
dilations in the scattering space, that is, where the positive part of the Hamiltonian
of the atom is diagonal with respect to its generalized eigenfunctions. The difficulty
lies now in the verification of the assumptions for the virial theorem. One has to
compute the transformation of the coupling functions and their commutators in
the scattering space, and has to prove that they are sufficiently bounded. However,
the proof of positivity is similar as before. As a consequence we can present an
explicit model of a toy atom with finitely many bound states and, apart from the
spatial cutoff, no further unnatural restrictions in the coupling, which exhibits the
behavior of thermal ionization.

For the sake of convenience we refer to the first part for potentials with in-
finitely many eigenvalues as the ‘long-range’ (LR) case and the second one with
the compactly supported smooth potentials as the ‘short-range’ (SR) case. Note
that these notions are not completely consistent with their typical use in scatter-
ing theory. Our LR case also comprises potentials decaying as |x|−µ, 1 < µ < 2
at spatial infinity, which are usually called ‘short-range’ in the sense of scattering
theory. On the other hand, our SR case covers only a subset of all ‘short-range’
potentials in the sense of scattering theory.

Related work in the literature
A lot of mathematically rigorous papers about small systems interacting with an
infinitely extended environment appeared in the last 20-30 years. In a large part
of them the behavior of thermal relaxation or return to equilibrium was analyzed.
This can be regarded as analog for thermal ionization in case that the small sys-
tem is a confined particle or a finite-level system without any continuous spectrum.
That is, the system will eventually reach an equilibrium state by permanent ex-
change of heat of the small system with the environment. The difference to our
situation in these cases is the existence of a Gibbs state due to the absence of con-
tinuous spectrum. However, the underlying spectral problem and the appropriate
technical methods are similar. Instead of proving that zero is not an eigenvalue,
one has to show that the degeneracy of the eigenvalue zero is lifted if the system
is coupled to the environment.

An important milestone for concrete systems was set in a series of papers [JP95;
JP96a; JP96b; JP97] by Jakšić and Pillet, who considered a single spin coupled
to a bosonic reservoir. They drew the connection between the dynamical proper-
ties of the system and the spectral properties of the Liouvillian and their proof
established the method of translations in the glued Fock space as a new complex
deformation technique.
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Subsequently, Bach, Fröhlich and Sigal treated similar models in [BFS00]
with fewer restrictions. In particular, they could prove return to equilibrium uni-
formly in the temperature. Their proof relies on complex dilations rather than
translations and uses the renormalization group method of [BFS98b].

Merkli applied in [Mer01] for the first time the concept of Mourre’s positive
commutators in the setting of open quantum systems. Like Jakšić and Pillet
he also used the generator of translations in the glued Fock space. His approach
was particularly inspired by the methods in [Bac+99] for temperature zero. He
could made further progress in a subsequent paper [FM04a], especially a uniform
result for bounded temperatures. Another application of positive commutators in
this context appeared by Dereziński and Jakšić in [DJ03; DJ01], where they
used positive commutators for the reduced Liouvillian orthogonal to the vacuum
and combined it with the Feshbach method.

Furthermore, Merkli studied in [Mer05] a thermal reservoir consisting of a
very dense or very cold Bose gas containing a Bose-Einstein condensate. Here
return to equilibrium could be proven in a rather weak sense, applying positive
commutators as well. Another example, a harmonic and anharmonic oscillator as
small system was considered by Könenberg in [Kön11a; Kön11b].

A similar situation as in the case of thermal ionization occurs if one considers
a small finite-dimensional or confined system coupled to multiple reservoirs at
different temperatures, namely, the non-existence of equilibrium and time-invariant
states of the composite system. This was first investigated by Jakšić and Pillet
for fermionic reservoirs in [JP02] and by Dereziński and Jakšić in [DJ03] for
bosonic reservoirs. An improvement of the latter with a uniform result for low
temperatures and small temperature differences of the reservoirs was given by
Merkli, Mück, and Sigal in [MMS07a]. There appears the same spectral-
theoretical problem as in our case, namely whether zero is an eigenvalue of the
corresponding Liouvillian. Moreover, by studying the resonances of the Liouvillian
(e.g. with complex deformations) it is possible to identify so-called non-equilibrium
stationary states (cf. [MMS07b]), which exhibit a stability condition similar to
‘return to equilibrium’.

Both thermal ionization and return to equilibrium have a zero temperature
counterpart. For the latter this is the return to the ground state under emission
of radiation (cf. [BFS98a; BFS99; Sig11]), where the resonances correspond so-
called metastable states ([Müc04a]). For thermal ionization this is the well-known
photoelectric effect as it was already predicted by Einstein ([Ein05]): An atom
can only be ionized if the energy of the incoming photon exceeds the ionization
threshold. A first mathematically rigorous qualitative and quantitative elaboration
of this phenomenon was given in [BKZ02] by Bach, Klopp and Zenk for a very
simplified model of an atom with one bound state. Their results could be extended

5



1. Introduction

in subsequent work by Zenk ([Zen08]) and by Zenk together with Griesemer
([GZ09]) to more realistic models including the hydrogen atom and couplings which
appear in non-relativistic quantum electrodynamics.

Organization of the thesis
In Chapter 2 the open quantum system is derived in a heuristic way from a zero
temperature model with general coupling terms by means of operator algebras. We
construct the interacting dynamics on a von Neumann algebra of the composite
system and introduce the Liouvillian. The main goal is to establish in our set-
ting the well-known correspondence between time-invariant normal states in that
algebra and zero eigenmodes of the Liouvillian.

The main results Theorem 3.5 and Theorem 3.8 are presented in Chapter 3. The
technical requirements, which have to be imposed on the atom and the coupling,
are stated in the same chapter at the beginning. Furthermore, some models are
described where these requirements are satisfied, the most explicit one for the SR
case in Corollary 3.10. At the end we discuss several open problems and possible
starting points for further work. Subsequently, Chapter 4 provides a formal sketch
of the proof and an orientation where its ingredients can be found. It also recalls
the concept of the gluing transformation with the corresponding notation and the
abstract virial theorem of [FM04b; FMS04].

Then it follows the exact specification of the conjugate operators and the first
part of the proof, the verification of the assumptions of the abstract virial theorem.
It is divided into the LR case in Chapter 5 and the SR case in Chapter 6. The
latter is significantly more extensive due to the estimates of the interaction terms
in the scattering space in Section 6.4.

The second part of the proof, the positivity and error estimates for the com-
mutator together with the auxiliary term, is contained in Chapter 7. The last and
the final part is carried out once more separately for the LR case (Section 7.3) and
the SR case (Section 7.4).

Some preliminaries about Fock spaces and operator algebras and the corre-
sponding notation, which is used throughout this thesis, are stated in Appendix A.
appendix B contains some technical requirements and variations of well-known
techniques like Combes Thomas estimates and Birman-Schwinger bounds, which
are required in this form in some of the proofs. Additionally, basic symbols and
notation which are used throughout this thesis can be found in the nomenclature
at the end.
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2. Description of the Model
This chapter introduces the positive temperature model of an atom represented by
a Schrödinger operator interacting with a quantized bosonic field. The goal is the
construction of an algebraic (W ∗-dynamical) system describing the dynamics and
to find its self-adjoint generator – the Liouvillian, which in particular encodes the
time-invariant states of the system. This is the content of Theorem 2.15, which
provides the motivation for studying the kernel of the Liouvillian in the further
course of this thesis.

The setting can be derived in a heuristic way from a zero temperature model – in
our case the Nelson model (first studied in [Nel64]), one of the simplest models for
describing the interaction of an uncharged non-relativistic particle interacting with
a relativistic spinless bosonic field, e.g. consisting of phonons. Its Hamiltonian

Hp ⊗ Idf + Idp ⊗Hf + λ(a(G) + a∗(G)) (2.1)

is defined on the Hilbert space Hp ⊗F(L2(R3)), where Hp is a self-adjoint operator
on a Hilbert space Hp, typically a Schrödinger operator, Hf := dΓ(ω), ω(k) := |k|
is the field energy, and

G : R3 −→ L(Hp) (2.2)

is a measurable, square-integrable function, which describes the coupling to the
field.

The strategy is as follows. First, we consider the free bosonic field in its alge-
braic form as Weyl C∗-algebra. Then we identify its equilibrium state at a certain
inverse temperature β > 0, which can be characterized by the KMS condition.
The GNS construction with respect to this state yields the so-called Araki-Woods
representation of the Weyl C∗-algebra. This can be combined with the GNS con-
struction with respect to an arbitrary reference state on the full algebra of bounded
operators on the atomic space. Subsequently, we consider the weak closure of the
representation to obtain a von Neumann algebra, which enables us to define the
dynamics of the interacting system using the free dynamics and the interaction
term in (2.1) of the zero temperature model. By means of modular theory for
von Neumann algebras one can then draw the connection between time-invariant
normal states and the kernel of the standard Liouvillian.
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2. Description of the Model

This approach can be found in different variations in the literature, however
mainly for atoms with purely discrete spectrum or N -level atoms, see for instance
[DJP03; JP96b; Kön11a; BFS00; Müc04b; AJP06]. Our version can be regarded
as a mild modification of [FM04b; FMS04] with an extension to general types of
coupling terms. Some of the presented material is also inspired by [Müc04b].

In the following we will use the notation for bosonic Fock spaces and second
quantization as given in Appendix A.1. Further more elementary symbols can be
found in the nomenclature.

2.1. The Algebra of the Free Field
We first describe the Weyl C∗-algebra of the free field, which implements the
canonical commutation relations in exponential form for bosons with arbitrary
many degrees of freedom.
Definition 2.1 (Weyl C∗-algebra)
Let h be a Hilbert space. The universal C∗-algebra (cf. [Bla06, section II.8.3.1]
for the notion of a universal C∗-algebra) generated by elements W (f), f ∈ h,
satisfying the so-called Weyl relations

W (−f) = W (f)∗, W (f)W (g) = e−i Im⟨f,g⟩/2W (f + g), f, g ∈ h,

is called Weyl C∗-algebra W(h).
It is well-known that such an algebra can be constructed explicitly and it can be
also generalized to symplectic spaces (cf. [Mor13, section 14.2.2]). By definition
the Weyl C∗-algebra has the following universal property: If there is another C∗-
algebra W′ with elements W ′(f), f ∈ h, satisfying the Weyl relations, then there
is a unique injective ∗-morphism ϕ : W(h) → W′ such that ϕ(W (f)) = W ′(f) for
all f ∈ h. One can show that W(h) is simple (cf. [Mor13, Theorem 11.26]), that
is, in particular, every non-trivial representation is faithful.

The most prominent representation of the Weyl C∗-algebra is the standard Fock
representation corresponding to systems at zero temperature. For f ∈ h we define

πW(W (f)) := ˆ︂W (f) := exp
(︄

i 1√
2

Φ(f)
)︄

∈ L(F(h)),

where F(h) denotes the bosonic Fock space over h (definition A.1) and Φ the field
operator (A.1). By direct computation one can show that the elements ˆ︂W (f),
f ∈ h, satisfy the Weyl relations (cf. [RS2, Theorem X.41]). Thus, by the universal
property of W(h), it follows that πW is a representation.

8



2.1. The Algebra of the Free Field

We can approximate the Segal field operators and creation and annihilation
operators with elements of the Weyl algebra in an obvious manner. For f ∈ h and
ϵ > 0, we set

ΦW
ϵ (f) :=

√
2W (ϵf) − Id

iϵ ,

(a∗)Wϵ (f) := 1
2(ΦW

ϵ (f) − iΦW
ϵ (f)),

aWϵ (f) := 1
2(ΦW

ϵ (f) + iΦW
ϵ (f)).

Then we have in the strong sense on Ffin(h),

lim
ϵ→0

πW(ΦW
ϵ (f)) = Φ(f),

lim
ϵ→0

πW((a∗)Wϵ (f)) = a∗(f), (2.3)

lim
ϵ→0

πW(aWϵ (f)) = a(f). (2.4)

Remark 2.2
Furthermore, using the functional calculus and the inequality |eix − 1| ≤ C |x|,
x ∈ R, for some fixed C > 0, one realizes that in analogy to Lemma A.3,⃦⃦⃦

πW(ΦW
ϵ (f))ψ

⃦⃦⃦
≤ C ∥Φ(f)ψ∥ , ψ ∈ D(Φ(f)), ϵ > 0.

We state some elementary properties of the Fock representation.
Proposition 2.3 (Fock representation)
The representation πW of W(h) on F(h) is irreducible with cyclic vector Ω, and
for all f ∈ h,

⟨Ω, πW(W (f))Ω⟩ = e−∥f∥/4. (2.5)

Proof. The relation (2.5) follows from a direct computation on Fock space with
the exponential series expansion of the Weyl operator, see for instance [AJP06, eq.
(120)] for the details.

Cyclicity of Ω: Let f1, . . . , fn ∈ h. Then using the strong convergence of
πW(ΦW

ϵi
(fi)) → Φ(fi), i ∈ {1, . . . , n}, as ϵi → 0, we find for all ε > 0 numbers

ϵ1, . . . , ϵn > 0 such that⃦⃦⃦
πW(ΦW

ϵn(fn) . . .ΦW
ϵ1 (f1))Ω − Φ(fn) . . .Φ(f1)Ω

⃦⃦⃦
< ε, (2.6)

cf. [AJP06, Theorem 2.5]. This shows that

{Φ(fn) . . .Φ(f1)Ω : f1, . . . , fn ∈ h} ⊆ {πW(A)Ω: A ∈ W(h)}. (2.7)

9



2. Description of the Model

Hence, {πW(A)Ω : A ∈ W(h)} = F(h), as the left-hand side of (2.7) is dense in
F(h) by Lemma A.2.

Irreducibility: Assume that T ∈ L(F(h)) and TπW(A) = πW(A)T for all A ∈
W(h). By Schur’s Lemma (cf. [BR1, Proposition 2.3.8]) it suffices to show that
T = z Id for some z ∈ C. Let f ∈ h. By assumption,

πW(aWϵ (f))T = TπW(aWϵ (f)), πW((a∗)Wϵ (f))T = TπW((a∗)Wϵ (f)),

hold for all ϵ > 0. Then taking the limit ϵ → 0 yields Tψ ∈ D(a(f)) ∩ D(a∗(f)),
and

a(f)Tψ = Ta(f)ψ, a∗(f)Tψ = Ta∗(f)ψ,
for all ψ ∈ Ffin(h). In particular, we have a(f)TΩ = 0. Thus, there exists z ∈ C
such that TΩ = zΩ. Then, for all f1, . . . , fn ∈ h,

Ta∗(fn) . . . a∗(f1)Ω = a∗(fn) . . . a∗(f1)TΩ = za∗(fn) . . . a∗(f1)Ω.

This implies that T = z Id.

In the following the one-particle space h will be chosen as

L2
0(R3) := L2(R3, (1 + |k|−1)dk),

and we write W := W(L2
0(R3)). As we will see below, the restriction to the space

L2
0(R3) is necessary for the definition of the equilibrium state.

On W, the free time evolution is given by

αW
t (W (f)) := W (eiωtf), t ∈ R, f ∈ L2

0(R3), ω(k) := |k| .

Clearly, (αW
t )t∈R is a group of ∗-automorphisms, that is, αW

s ◦ αW
t = αW

s+t, s, t ∈ R
and αW

t is a ∗-automorphism for all t ∈ R. However, note that the map t ↦→
αt(W (f)) is not continuous in norm, so in particular, (W, (αW

t )t∈R) is not a C∗-
dynamical system. The reason is that ∥W (f) −W (g)∥ = 2 for f ̸= g, cf. [AJP06,
Theorem 2.3].

Now we want to identify the thermal equilibrium state of the free non-interacting
Bose gas on the Weyl algebra at inverse temperature β > 0. The standard notion
of equilibrium states for systems of infinitely many degrees of freedom is the KMS
condition. In this context this condition can be phrased as follows (cf. [Müc04b]).
Definition 2.4 (KMS state)
Let A be a C∗-algebra, and let (αt)t∈R be a group of ∗-isomorphisms. We call a
state ω on A an (αt, β)-KMS state for some β > 0 if for all A,B ∈ A there exists
a complex function FA,B which is analytic on Dβ := {z ∈ C : 0 < Im z < β} and
continuous and bounded on Dβ such that for all t ∈ R, we have

FA,B(t) = ω(Aαt(B)), FA,B(t+ iβ) = ω(αt(B)A).
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2.1. The Algebra of the Free Field

The equilibrium state of the free Bose gas can be obtained as thermodynamic limit
of equilibrium states on boxes Λ with finite volume. In a finite-volume system
equilibrium states are exactly the Gibbs states, which can be characterized as the
unique KMS states or the states minimizing the entropy of such systems. Then
taking Λ → R3 in a suitable sense and assuming a density which is not too high to
avoid the regime of Bose-Einstein condensation, one arrives at (2.9). The details
are omitted at this point and can be found in the literature (cf. [Müc04b], [BR2,
section 5.2.5] and [Mer05]).

Let

ρβ(u) := (eβu − 1)−1, u ∈ R \ {0}, (2.8)

denote Planck’s law and write ρβ(k) := ρβ(|k|) for k ∈ R3 \ {0}. For f ∈ h we
set

ωW
β (W (f)) := exp

(︃
−1

4

∫︂
R3

(1 + 2ρβ(k)) |f(k)|2 d3k
)︃
, f ∈ L2

0(R3). (2.9)

At this point we do not discuss the thermodynamic limit and just show that ωW
β

is a well-defined KMS state, which is the content of the following proposition. Its
GNS representation was first described by Araki and Woods ([AW63]).
Proposition 2.5
The map ωW

β given in (2.9) extends to a well-defined state on W, which satisfies the
(αW

t , β)-KMS condition. Furthermore, its GNS representation πβW on F(L2(R3)) ⊗
F(L2(R3)) is given by

πβW(W (f)) := ˆ︂W (︂√︂
1 + ρβf

)︂
⊗ ˆ︂W (︂√

ρβf
)︂
,

with cyclic vector Ω⊗2 := Ω ⊗ Ω.

Proof. First note that 0 < ρβ(k) ≤ (β |k|)−1 and thus the choice of the space
L2

0(R3) guarantees that √1 + ρβf,
√
ρβf ∈ L2(R3). From the fact that ˆ︂W (·) is a

representation of the Weyl algebra, it follows directly that the operators πβW(W (f)),
f ∈ L2

0(R3), satisfy the Weyl relations as well. Thus, πβW indeed defines a repre-
sentation of W on F(L2(R3)) ⊗ F(L2(R3)).

Now, (2.5) yields for f ∈ L2
0(R3),⟨︂

Ω⊗2, πβW(W (f))Ω⊗2
⟩︂

=
⟨︂
Ω, ˆ︂W (

√︂
1 + ρβf)Ω

⟩︂ ⟨︂
Ω, ˆ︂W (√ρβf)Ω

⟩︂
= e− 1

4 (∥
√

1+ρβf∥2
+∥√

ρβf∥2
)

= ωW
β (W (f)).

11



2. Description of the Model

This shows that ωW
β extends to a well-defined state on W.

Cyclicity of Ω⊗2: By a direct computation,

lim
ϵ→0

πβW
(︂
aWϵ (f)

)︂
ψ =

(︂
a
(︂√︂

1 + ρβf
)︂

⊗ Id + Id ⊗a∗
(︂√

ρβf
)︂)︂
ψ

holds for all ψ ∈ Ffin(L2(R3)) ˆ︁⊗ Ffin(L2(R3)). Let f1, . . . , fn ∈ L2
0(R3) and ε > 0.

Then, as in (2.6), we find ϵ1, . . . , ϵn > 0 such that⃦⃦⃦
πβW

(︂
aWϵn(fn) . . . aWϵ1 (f1)

)︂
Ω⊗2 − Ω ⊗

(︂
a∗(√ρβfn) . . . a∗(√ρβf1)Ω

)︂⃦⃦⃦
< ε.

Because
{√

ρβf : f ∈ L2
0(R3)}

is dense in L2(R3), the set

{a∗(√ρβfn) . . . a∗(√ρβf1)Ω : f1, . . . , fn ∈ L2
0(R3)}

is dense in F(L2(R3)) by Lemma A.2. This shows that

Ω ⊗ F(L2(R3)) ⊆ {πβW(A)Ω⊗2 : A ∈ W}. (2.10)

The right-hand side of (2.10) is invariant under the operators πβW(B), B ∈ W, and
πβW(B)(Ω⊗F(L2(R3))) = ˆ︂W (√1 + ρβf)Ω⊗F(L2(R3)) for B = W (f), f ∈ L2

0(R3).
Thus, it follows

lin{ˆ︂W (
√︂
ρβ + 1f)Ω : f ∈ L2

0(R3)} ⊗ F(L2(R3)) ⊆ {πβW(A)Ω⊗2 : A ∈ W}.

Since (1 + ρβ)−1/2f̃ ∈ L2
0(R3) for f̃ ∈ L2(R3), we find

lin{ˆ︂W (
√︂
ρβ + 1f)Ω : f ∈ L2

0(R3)} = lin{ˆ︂W (f)Ω : f ∈ L2(R3)}.

This set is dense in F(L2(R3)), as Ω is cyclic for the Fock representation. Thus,
we conclude

F(L2(R3)) ⊗ F(L2(R3)) = {πβW(A)Ω⊗2 : A ∈ W}.

KMS condition: For A,B ∈ W, t ∈ R we define

FA,B(t) := ωW
β (Aαt(B)).
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2.1. The Algebra of the Free Field

First, we show the KMS condition for A = W (f), B = W (g), f, g ∈ L2
0(R3). We

have for t ∈ R,

FW (f),W (g)(t) = ωW
β (W (f)W (eitωg))

= e− i
2 Im⟨f,eitωg⟩ ωW

β (W (f + eitωg))

= e− i
2 Im⟨f,eitωg⟩e− 1

4⟨(f+eitωg),(1+2ρβ)(f+eitωg)⟩

= e− 1
4⟨f,eitωg⟩+ 1

4⟨eitωg,f⟩e− 1
4⟨(f+eitωg),(1+2ρβ)(f+eitωg)⟩

= e− 1
2(⟨f,eitωg⟩+⟨f,ρβe

itωg⟩+⟨g,ρβe
−itωf⟩)− 1

4⟨f,(1+2ρβ)f⟩− 1
4⟨g,(1+2ρβ)g⟩

= e− 1
2(⟨f,(1+ρβ)eitωg⟩+⟨g,ρβe

−itωf⟩)ωW
β (W (f))ωW

β (W (g)). (2.11)

Notice that there is a constant C such that
⃓⃓⃓
ρβ(k)e−izω(k)

⃓⃓⃓
≤ C |k|−1 for all k ̸= 0

and z ∈ Dβ, where
Dβ := {z ∈ C : 0 < Im z < β}.

Thus, t ↦→ ⟨f, (1 + ρβ)eitωg⟩ and t ↦→ ⟨g, ρβe−itωf⟩ extend to analytic functions on
Dβ. The same applies to FW (f),W (g), and the analytic extension will be denoted
by the same symbol. Furthermore, using the Weyl relations and (2.11), we find

ωW
β (W (eitωg)W (f))

= e−i Im⟨eitωg,f⟩ωW
β (W (f)W (eitωg))

= e−i Im⟨eitωg,f⟩e− 1
2(⟨eitωg,(1+ρβ)f⟩+⟨e−itωf,ρβg⟩)ωW

β (W (f))ωW
β (W (g)).

This yields

FW (f),W (g)(t+ iβ)

= e− 1
2(⟨f,(1+ρβ)ei(t+iβ)ωg⟩+⟨g,ρβe

−i(t+iβ)ωf⟩)ωW
β (W (f))ωW

β (W (g))

= e− 1
2(⟨f,(1+ρβ)e−βωeitωg⟩+⟨g,ρβe

βωe−itωf⟩)ωW
β (W (f))ωW

β (W (g))

= e− 1
2(⟨f,ρβe

itωg⟩+⟨g,(1+ρβ)e−itωf⟩)ωW
β (W (f))ωW

β (W (g))

= ei Im⟨eitωg,f⟩e− 1
2(⟨eitωg,(1+ρβ)f⟩+⟨e−itωf,ρβg⟩)ωW

β (W (f))ωW
β (W (g))

= ωW
β (W (eitωg)W (f)).

For general A,B ∈ W one can write A = ∑︁∞
n=1 λnW (fn) and B = ∑︁∞

m=1 µmW (gm),
with λn, µm ∈ C, fn, gm ∈ L2

0(R3), n,m ∈ N. Note that

FA,B(t) =
∞∑︂

n,m=1
λnµmFW (fn),W (gm)(t), t ∈ R.
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2. Description of the Model

Hence, FA,B extends to an analytic function on Dβ as well, which follows from
dominated convergence using (2.11) together with the observation that

sup
z∈Dβ

⃓⃓⃓⃓
e− 1

2(⟨f,(1+ρβ)eizωg⟩+⟨g,ρβe
−izωf⟩)

⃓⃓⃓⃓
< ∞.

Therefore, we have for all t ∈ R,

FA,B(t+ iβ) =
∞∑︂

n,m=1
λnµmFW (fn),W (gm)(t+ iβ)

=
∞∑︂

n,m=1
λnµmω

W
β (W (eitωgm)W (fn))

= ω(αt(B)A).

2.2. Full System and Reference State
In this part we introduce the algebra of the atom in the bosonic field. The latter
is represented by the Weyl algebra, which was studied in the previous section. For
the atom we choose the full C∗-algebra

Ap := L(Hp),

where we assume for now that Hp is a separable Hilbert space, which we call
atomic space.

Furthermore, we suppose in the following that Hp is a self-adjoint operator on
Hp – the atomic Hamiltonian. The time evolution on the algebra Ap is given in
the Heisenberg picture,

αp
t (A) := eitHpAe−itHp , A ∈ Ap.

The algebra of the full system is given as the spatial (or minimal) tensor product

A := Ap ⊗ W.

On A we define the free time evolution naturally as

αt,0 := αp
t ⊗ αW

t ,

where the tensor product of ∗-morphisms is to be understood as in Proposition A.8.
The zero indicates that there is no coupling yet.
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2.2. Full System and Reference State

The next step will be the consideration of the dynamics in a GNS representa-
tion with respect to certain reference state. This should be a combination of the
equilibrium state on W with an arbitrary density matrix ρp on Hp. That is, we
assume that ρp ∈ L(Hp), ρp ≥ 0 and tr ρp = 1. By the spectral theorem, one may
write ρp as

ρp =
∑︂
n∈N

µn ⟨ϕn, ·⟩ϕn, (2.12)

with an orthonormal basis (ϕn)n∈N of Hp and eigenvalues µn ≥ 0, n ∈ N. Then we
define the corresponding state ωρp on Ap by

ωρp(A) := tr(ρpA).

The reference state on the algebra A is defined as

ωρp,β := ωρp ⊗ ωW
β ,

where the tensor product is to be understood as in Corollary A.9. We can describe
the trivial GNS representation with respect to ωρp on the space Hp ⊗ Hρp

p , where

Hρp
p := ran ρp = lin{ϕn : µn > 0, n ∈ N}

with ϕn, µn, n ∈ N being the same as in (2.12). It is given by

πp : Ap −→ L(Hp ⊗ Hρp
p ), πp(A) := A⊗ Idp,

with cyclic vector
Ωρp

p :=
∑︂
n∈N

√
µnϕn ⊗ Cpϕn,

where Cp is an antilinear involution on Hp satisfying

CpHpCp = Hp. (2.13)

In the case that Hp is a Schrödinger operator on Hp = L2(R3), one can choose
Cpψ(x) = ψ(x).

Finally, we can combine both representations on the Hilbert space

Hρp := Hp ⊗ Hρp
p ⊗ F(L2(R3)) ⊗ F(L2(R3)),

to

πβ : A −→ L(Hρp), πβ = πp ⊗ πβf ,

and obtain the GNS representation with respect to the reference state ωρp,β with
cyclic vector

Ωρp := Ωρp
p ⊗ Ω⊗2.

This will be summarized in the following proposition.
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2. Description of the Model

Proposition 2.6
The GNS representation of A with respect to ωρp,β on the Hilbert space Hρp is given
by (πβ,Ωρp).

Proof. It is clear that πp is a representation of Ap and by direct computation one
checks that for all A ∈ Ap,

ωρp(A) = tr(ρpA) =
∞∑︂
n=1

µn ⟨ϕn, Aϕn⟩ =
⟨︂
Ωρp

p , πp(A)Ωρp
p

⟩︂
.

Furthermore, Ωρp is a cyclic vector for πp, since for all m,n ∈ N with µn > 0,

ϕm ⊗ Cpϕn ∈ {πp(A)Ωρp
p : A ∈ Ap},

and the elements ϕm ⊗ Cpϕn, m,n ∈ N with µn > 0, form an orthonormal basis of
Hp ⊗ Hρp

p . This proves that (πp,Hp ⊗ Hρp
p ) is the GNS construction corresponding

to ωρp .
As (πp,Hp ⊗ Hρp

p ) and (πβW,Ω⊗2) are the GNS representations for ωρp and
ωW
β , respectively, it follows by Corollary A.9 that πβ = πp ⊗ πβW is the GNS

representation on Hρp corresponding to ωρp,β := ωρp ⊗ ωW
β .

Clearly, the Weyl algebra and the algebra A of the composite system do not
contain the (unbounded) creation and annihilation operators, though they are
necessary to define the interaction. For this reason it is convenient to extend
the representation πβ to those expressions and introduce a ∗-algebra of formal
(unbounded) creation and annihilation operators (similar as in [BFS00]).

Let L2
0(R3,L(Hp)) be the L(Hp)-valued extension of the space L2

0(R3). Then
let P be the polynomial ∗-algebra in the symbolic expressions

{ã(F ), ã∗(G) : F,G ∈ L2
0(R3,L(Hp))},

with the involution (ã(F ))∗ = ã∗(F ), and let I denote the ideal generated by
(anti)linearity in the arguments of the creation and annihilation operators, that
is, the elements

ã(λF + µG) − λã(F ) − µã(G), λ, µ ∈ C, F,G ∈ L2
0(R3,L(Hp)).

We set Ã := P/I.
To show the consistency of the extension of πβ, we introduce also π∞ as the

zero temperature analogue of πβ, that is,

π∞ = IdL(Hp) ⊗πW : A −→ L
(︂
Hp ⊗ F(L2(R3))

)︂
.
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2.3. Von Neumann Algebra and Modular Structure

Now we can extend the representations π∞ and πβ in a canonical way to Ã. For
any A ∈ Ã we define π∞(A) and πβ(A) as (unbounded) operators on Ffin(L(Hp))
and Ffin(L(Hp)) ˆ︁⊗ Ffin(L(Hp)), respectively, such that for all F ∈ L2

0(R3,L(Hp)),

π∞(ã∗(F )) = a∗(F ),
πβW(ã∗(F )) = a∗(

√︂
1 + ρβF ) ⊗ IdF(L2(R3)) + IdF(L2(R3)) ⊗a(√ρβF ∗).

The consistency with the representations of the algebra A appears as follows. By
definition we have in the strong sense on the respective domains,

lim
ϵ→0

π∞
(︂
G⊗ (a∗)Wϵ (f)

)︂
= π∞(ã∗(fG)),

lim
ϵ→0

πβ
(︂
G⊗ (a∗)Wϵ (f)

)︂
= πβ(ã∗(fG)),

for all G ∈ L(Hp) and f ∈ L2
0(R3).

2.3. Von Neumann Algebra and Modular Structure
It turns out that the C∗-formalism is too restrictive for our needs, especially,
since the time evolution t ↦→ αt,0 is not continuous on A. However, it is strongly
continuous under the representation πβ. Therefore, it is natural to consider the
von Neumann algebra generated by πβ, that is,

M
ρp
β := πβ(A)′′ = L(Hp) ⊗ IdHρp

p
⊗πβW(W)′′ ⊆ L(Hρp), (2.14)

where the tensor product denotes the standard tensor product of von Neumann
algebras (cf. [KR97, section 11.2]). Notice that the definition is indeed independent
of ρp in the sense that M

ρp
β ,Mρ′

p
β , operating on Hρp and Hρ′

p , respectively, are ∗-
isomorphic for two density matrices ρp, ρ′

p:

M
ρp
β

∼= M
ρ′

p
β ,

which follows from the explicit form (2.14). As we are only interested in the
existence or absence of invariant states of Mβ, the choice of ρp is not relevant.
Therefore, for reasons of simplicity, we may assume in the following that

ρp > 0,

that is, µn > 0 for all n ∈ N. In this case, Hρp
p = Hp. Furthermore, we set

Mβ := M
ρp
β ⊆ L(Hp) ⊗ IdHp ⊗πβW(W)′′ ⊆ L(˜︂H),
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2. Description of the Model

where

˜︂H := Hp ⊗ Hp ⊗ F(L2(R3)) ⊗ F(L2(R3)). (2.15)

First, we would like to extend the free time evolution (αt)t∈R to Mβ using its
unitary implementation in the representation space. For all t ∈ R, we define σt,0
on πβ(A) by

σt,0(πβ(A)) := πβ(αt,0(A)), A ∈ A.

By direct calculation we have

πp(αp
t (A)) = eitHpAe−itHp ⊗ Idp = eitLpπp(A)e−itLp ,

where Lp is the self-adjoint operator on Hp ⊗ Hp given by

Lp := Hp ⊗ Idp − Idp ⊗Hp.

Furthermore, for all f ∈ L2
0(R3),

πβW(αW
t (W (f)))

= exp
(︄

i√
2

Φ(
√︂

1 + ρβe
itωf

)︄
⊗ exp

(︄
i√
2

Φ(√ρβe−itωf

)︄

= eitHf exp
(︄

i√
2

Φ(
√︂

1 + ρβf

)︄
e−itHf ⊗ e−itHf exp

(︄
i√
2

Φ(√ρβf)
)︄
eitHf

= eit˜︁LfπβW(W (f))e−it˜︁Lf ,

where Hf = dΓ(ω) denotes the field energy, and ˜︁Lf is the self-adjoint operator on
Hf ⊗ Hf given by ˜︁Lf := Hf ⊗ Idf − Idf ⊗Hf .

Thus, we can write

σt,0(πβ(A)) = eit˜︁L0πβ(A)e−it˜︁L0 ,

where ˜︁L0 := Lp ⊗ Idf ⊗ Idf + Idp ⊗ Idp ⊗˜︁Lf .

This shows that (σt,0)t∈R extends to a group of ∗-automorphisms on Mβ and t ↦→
σt,0(A) is in fact continuous in the strong operator topology for all A ∈ A.

These preparations allow us to study a modular structure on Mβ. For the basic
definitions and facts we refer the reader to Appendix A.2.2. The first step is to
find a cyclic and separating vector on Mβ.
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2.3. Von Neumann Algebra and Modular Structure

Proposition 2.7
Ωρp

p and Ω⊗2 are cyclic and separating for πp(Ap)′′ = L(Hp) ⊗ Idp and πβW(W)′′,
respectively. In particular, Ωρp is cyclic and separating for Mβ.

Proof. We have already seen that both vectors emerged as cyclic GNS vectors.
That Ωρp

p is separating for πp(Ap)′′ follows by a short direct computation from the
fact that ρp is strictly positive.

The separating property in the field case follows because it is a KMS state.
To be more precise, consider the unitary implementation of the time evolution
(αW

t )t∈R, that is,

σf
t(π

β
W(A)) := πβW(αW

t (A)) = eit˜︁LfπβW(A)e−it˜︁Lf , t ∈ R, A ∈ W,

as we have seen above. Also in this case (σf
t)t∈R extends to a strongly continuous

group of ∗-automorphisms on πβW(W)′′. Furthermore, one can extend the state ωW
β

to a (normal) state ω̂W
β on πβW(W)′′ via

ω̂M
β (A) =

⟨︂
Ω⊗2, AΩ⊗2

⟩︂
, A ∈ πβW(W)′′.

Then it follows from the KMS property of ωM
β that also ω̂M

β is a (σf
t , β)-KMS state

on πβW(W)′′ (cf. [BR2, Proposition 5.3.7]), which implies that Ω⊗2 is separating
(cf. [BR2, Corollary 5.3.9]). Now it follows from [KR97, section 11.2.36] that the
tensor product Ωρp = Ωρp

p ⊗ Ω⊗2 is also separating for Mβ.

Now, we can discuss the modular structure associated to (Mβ,Ωρp). We define
antiunitary involutions Jp on Hp ⊗ Hp and Jf on Hf ⊗ Hf , respectively, by

Jp(ϕ⊗ ψ) := Cpψ ⊗ Cpϕ, ϕ, ψ ∈ Hp,

Jf(ϕ⊗ ψ) := Cfψ ⊗ Cfϕ, ϕ, ψ ∈ F(L2(R3)),

where

(Cfψ)0 := ψ0,

(Cfψ)n(k1, . . . , kn) := ψn(k1, . . . , kn).

The antiunitary operators Jp and Jf can be combined to an antiunitary operator
on ˜︂H,

J := Jp ⊗ Jf ,

which turns out to be the modular conjugation as we will see in the following
proposition.
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2. Description of the Model

Proposition 2.8
The operator J is the modular conjugation associated to (Mβ,Ωρp).

Proof. It suffices to show that Jp the modular conjugation corresponding to

(πp(Ap)′′,Ωρp
p )

and Jf is the one corresponding to

(πf(W)′′,Ω⊗2).

Then the properties carry over to the tensor product (cf. [KR97, section 11.2.36]).
For the atom we proceed similarly as in [Müc04b, section 1.2.4]. Let

∆p := ρp ⊗ (Cpρ
−1
p Cp)

be defined as a self-adjoint (unbounded) operator acting on the Hilbert space
Hp ⊗ Hp. We have for A ∈ L(Hp),

Jp∆1/2
p (A⊗ Id)Ωρp

p =
∑︂
n∈N

µ1/2
n Jp

(︂
ρ1/2

p Aϕn ⊗ Cpρ
−1/2
p ϕn

)︂
=
∑︂
n∈N

ϕn ⊗ Cpρ
1/2
p Aϕn

=
∑︂

m,n∈N

⟨︂
Cpϕm, Cpρ

1/2
p Aϕn

⟩︂
ϕn ⊗ Cpϕm

=
∑︂

m,n∈N

⟨︂
ϕn, µ

1/2
m A∗ϕm

⟩︂
ϕn ⊗ Cpϕm

=
∑︂
m∈N

µ1/2
m A∗ϕm ⊗ Cpϕm.

Thus, Jp∆1/2
p πp(A)Ωρp

p = πp(A)∗Ωρp
p , which proves that Jp is the corresponding

modular conjugation.
Similarly, for the field component one chooses the operator

∆f := e−βHf ⊗ eβHf

and then one needs to verify the equality

Jf
(︂
e−βHf/2ˆ︂W (

√︂
1 + ρβf)Ω ⊗ eβHf/2ˆ︂W (√ρβf)Ω

)︂
= ˆ︂W (−

√︂
1 + ρβf) ⊗ ˆ︂W (−√

ρβf),

which follows from an exponential series expansion of the Weyl operators, see
[Müc04b, section 1.3.5] for the details.
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2.4. Interacting Dynamics

Notice that J commutes by definition with the unitary group generated by ˜︁L0.
Since

eitHpCp = Cpe
−itHp , eitHf Cf = Cfe

−itHf ,

holds due to (2.13), we accordingly have

eit˜︁L0J = Jeit˜︁L0 (2.16)
for all t ∈ R.

2.4. Interacting Dynamics
The next step is the inclusion of the linear interaction term, which appears in the
zero temperature model (2.1),

W∞ := ã(G) + ã∗(G) ∈ Ã,

where we assume from now on that G ∈ L2
0(R3,Hp).

It is well-known from quantum mechanics that the time evolution with respect
to a perturbed operator H0 + HI can be expressed in the so-called interaction
picture as a Dyson series. This contains only the free time evolution, generated
by H0, of an observable and of the interaction HI . In our case it is given by the
formal expression

αt,λ(A) = αt,0(A)

+
∞∑︂
n=1

(iλ)n
∫︂ t

0
. . .
∫︂ tn−1

0
[αtn,0(W∞), [. . . [αt1,0(W∞), αt,0(A)] . . .]]dt1 . . . dtn,

(2.17)
where A ∈ A, t ∈ R, λ ∈ R. However, two problems cause αt,λ(A) to be ill-defined.
First, W∞ is not an element of the C∗-algebra and πβ(W∞) is unbounded. Second,
we have already seen above that t ↦→ αt(A) is not continuous, so it is not a priori
clear how to make sense of the integral at all.

To circumvent the first problem, we can approximate W∞ by elements in A,
which will be done in Lemma 2.9. For the second one, we define the time evolution
on the von Neumann algebra Mβ in the first place. That is, we formally apply the
representation πβ to the right-hand side of (2.17) and use this as the definition for
the time evolution for πβ(A), see (2.23).
Lemma 2.9
There exists a sequence (W (M)

∞ )M∈N in A satisfying
πβ(W (M)

∞ )ψ → πβ(W∞)ψ, M → ∞, (2.18)
for all ψ ∈ Hp ˆ︁⊗ Hp ˆ︁⊗ Ffin(L2(R3)) ˆ︁⊗ Ffin(L2(R3)).
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2. Description of the Model

Proof. Let (em)m∈N be an orthonormal basis of L2
0(R3) and define ⟨em, G⟩ ∈ L(Hp)

in a natural way by

⟨em, G⟩ :=
∫︂
em(k)G(k)dk,

where the integral is to be understood in the strong operator topology. For M ∈ N
and ϵ > 0, we define an approximation of the creation and annihilation operators
on the algebra A by

a∗
M,ϵ(G) :=

M∑︂
m=1

⟨em, G⟩ ⊗ (a∗)Wϵ (em),

and aM,ϵ(G) := (a∗
M,ϵ(G))∗. The approximating interaction is then defined as

W (M)
∞ := a∗

M,1/M(G) + aM,1/M(G), M ∈ N.

First we show that

lim
M→∞

πβ(a∗
M,1/M(G))ψ = lim

M→∞
TMψ, (2.19)

for all ψ ∈ Hp ˆ︁⊗ Hp ˆ︁⊗ Ffin(L2(R3)) ˆ︁⊗ Ffin(L2(R3)), where

TM :=
M∑︂
m=1

⟨em, G⟩ ⊗ Idp ⊗
(︂
a∗(
√︂

1 + ρβem) ⊗ Id − Id ⊗a(√ρβem)
)︂
.

By (2.3) and (2.4) we have

πβW((a∗)Wϵ (em))ψ → (a∗(
√︂

1 + ρβem) ⊗ Idp − Idp ⊗a(√ρβem))ψ, ϵ → 0, (2.20)

for all ψ ∈ Ffin(L2(R3)) ˆ︁⊗Ffin(L2(R3)) and m ∈ N. By Remark 2.2 in combination
with Lemma A.3, there is a constant C such that⃦⃦⃦

πβW((a∗)Wϵ (em))ψ
⃦⃦⃦

≤ C
(︂⃦⃦⃦√︂

1 + ρβem
⃦⃦⃦

+
⃦⃦⃦
(√ρβem

⃦⃦⃦)︂
×
⃦⃦⃦
(Nf ⊗ Idf + Idf ⊗Nf + Idf ⊗ Idf)1/2ψ

⃦⃦⃦ (2.21)

for all ψ ∈ Ffin(L2(R3)) ˆ︁⊗ Ffin(L2(R3)), ϵ > 0 and m ∈ N. This shows that
πβW((a∗)Wϵ (em))ψ, m ∈ N, is bounded uniformly in m for every fixed ψ. Moreover,
for ϕ ∈ Hp, we have ∑︂

m∈N
∥⟨em, G⟩ϕ∥2

Hp
= ∥Gϕ∥2

L2(R3,Hp) < ∞, (2.22)
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2.4. Interacting Dynamics

which can be seen by an expansion in an orthonormal basis (ζn)n∈N of Hp,

⟨em, G⟩ϕ =
∑︂
n∈N

⟨em ⊗ ζn, Gϕ⟩L2(R3,Hp) ζn.

Then, for ϕp, ψp ∈ Hp and ϕf , ψf ∈ Ffin(L2(R3)),⃦⃦⃦
(πβ(a∗

M,1/M(G)) − TM)ϕp ⊗ ψp ⊗ ϕf ⊗ ψf

⃦⃦⃦2

≤
∞∑︂
m=1

∥⟨em, G⟩ϕp∥2 ∥ψp∥2

×
⃦⃦⃦(︂
πβW((a∗)W1/M(em)) − a∗(

√︂
1 + ρβem) ⊗ Id − Id ⊗a(√ρβem)

)︂
(ψf ⊗ ϕf)

⃦⃦⃦2
,

which converges to zero as M → ∞ by dominated convergence using (2.20), (2.21)
and (2.22). This shows (2.19). Finally, writing

TM =a∗
(︄√︂

1 + ρβ
M∑︂
m=1

⟨em, G⟩ ⊗ Idp em

)︄
⊗ Idf

− Idf ⊗a
(︄

√
ρβ

M∑︂
m=1

⟨em, G∗⟩ ⊗ Idp em

)︄
,

and using that

√︂
1 + ρβ

M∑︂
m=1

⟨em, G⟩ em →
√︂

1 + ρβG, M → ∞,

√
ρβ

M∑︂
m=1

⟨em, G∗⟩ em → √
ρβG

∗, M → ∞,

in norm in L2(R3,L(Hp)), one obtains by Lemma A.3 that

TMψ →
(︂
a∗
(︂√︂

1 + ρβG
)︂

⊗ Id − Id ⊗a
(︂√

ρβG
∗
)︂)︂
ψ, M → ∞,

for all ψ ∈ Ffin(L2(R3)) ˆ︁⊗ Ffin(L2(R3)). Repeating the same procedure for the
annihilation operator yields the desired result.

Now, let (W (M)
∞ )M∈N be a sequence in A satisfying (2.18). We can define an

approximation of the interacting dynamics on Mβ using (W (M)
∞ )M∈N by

σ
(M)
t,λ (A) := σt,0(A) +

∞∑︂
n=1

(iλ)n
∫︂ t

0
. . .
∫︂ tn−1

0
[σtn,0(πβ(W (M)

∞ )),

[. . . [σt1,0(πβ(W (M)
∞ )), σt,0(A)] . . .]]dt1 . . . dtn,

(2.23)
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2. Description of the Model

where A ∈ Mβ, and the integral is to be understood in the strong operator topol-
ogy.

The interacting time evolution can be represented by a unitary group as well.
Let

L
(M)
λ := ˜︁L0 + λI(M), λ ∈ R,M ∈ N,

where
I(M) := πβ(W (M)

∞ ) − Jπβ(W (M)
∞ )J.

The operator L(M)
λ is essentially self-adjoint on any core for ˜︁L0, for example on

˜︁D := C∞
c (R3) ˆ︁⊗ C∞

c (R3) ˆ︁⊗ (F ∩ D(Hf)) ˆ︁⊗ (F ∩ D(Hf)). (2.24)

Remark 2.10
The additional term Jπβ(W (M)

∞ )J in the definition of I(M) is not necessary to ob-
tain a self-adjoint generator of the time evolution. However, it guarantees that
L

(M)
λ anti-commutes with the modular conjugation J , which will be essential in

the characterization of the time-invariant normal states. We call L(M)
λ the approx-

imating Liouvillian in standard form.

Lemma 2.11
For all M ∈ N, t, λ ∈ R and A ∈ Mβ we have

σ
(M)
t,λ (A) = eitL(M)

λ Ae−itL(M)
λ .

Proof. First, we show that the additional term Jπβ(W (M)
∞ )J does not play any

role for the unitary implementation of the Dyson series. As J is the modular
conjugation (Proposition 2.8), the theorem of Tomita-Takesaki (Theorem A.11)
yields

JMβJ = M′
β. (2.25)

Furthermore, notice that due to (2.16), we have

σt,0(Jπβ(A)J) = Jσt,0(πβ(A))J

for all t ∈ R and A ∈ A. Therefore, we can also write

σ
(M)
t,λ (πβ(A)) = σt,0(πβ(A))

+
∞∑︂
n=1

(iλ)n
∫︂ t

0
. . .
∫︂ tn−1

0
[σtn,0(I(M)), [. . . [σt1,0(I(M)), σt,0(πβ(A))] . . .]]dt1 . . . dtn.

(2.26)
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2.4. Interacting Dynamics

By taking the first derivative one obtains that the map defined by

˜︁σ(M)
t,λ (A) := eitL(M)

λ Ae−itL(M)
λ , A ∈ Mβ,

satisfies the integral equation

˜︁σ(M)
t,λ (A) = σt,0(A) + iλ

∫︂ t

0
˜︁σ(M)
t1,λ

(︂
σ−t1,0([σt1,0(I(M)), σt,0(A)])

)︂
dt1.

Then using this recursion formula yields (2.26), cf. [BR2, Corollary 5.4.2].

The final step is to take the limit M → ∞ of the approximating Liouvillian and
the approximating interacting dynamics, and to show that they correspond to each
other. First, we define the standard Liouvillian

˜︁Lλ = ˜︁L0 + λ(πβ(W∞) − Jπβ(W∞)J), (2.27)

on the space ˜︁D, where

πβ(W∞) − Jπβ(W∞)J = Φ(
√︂

1 + ρβG⊗ Idp −√
ρβ Idp ⊗G∗) ⊗ IdF(R3)

+ IdF(R3) ⊗Φ(√ρβG∗ ⊗ Idp −
√︂

1 + ρβ Idp ⊗G)),

and the complex conjugation is to be understood with respect to Cp. In the follow-
ing we assume that ˜︁Lλ is in fact essentially self-adjoint on ˜︁D and we will denote
its self-adjoint extension by the same symbol.
Remark 2.12
The essential self-adjointness will be verified later for the concrete assumptions we
impose on the model, cf. Proposition 5.1 (under Hypotheses A-LR and B-LR) and
Proposition 6.3 (under Hypotheses A-SR and B-SR) together with (4.4).
Furthermore, for all A ∈ A and t, λ ∈ R, let

σt,λ(πβ(A)) := lim
M→∞

σ
(M)
t,λ (πβ(A)),

and denote the (weak) extension to Mβ by the same symbol.
Proposition 2.13
For all λ ∈ R the following holds.

(a) For all t ∈ R the map σt,λ is well-defined on Mβ and independent of the
approximating sequence (W (M)

∞ )M ,

(b) σt,λ(A) = eit˜︁LλAe−it˜︁Lλ for all A ∈ Mβ, t ∈ R,
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2. Description of the Model

(c) (Mβ, σt,λ) is a W ∗-dynamical system,

(d) eit˜︁LλJ = Jeit˜︁Lλ for all t ∈ R.

Proof. Lemma 2.11 yields σ(M)
t,λ (A) = eitL(M)

λ Ae−itL(M)
λ , A ∈ Mβ. By Lemma 2.9 we

know that L(M)
λ → ˜︁Lλ as M → ∞, in the strong sense on ˜︁D. As ˜︁D is a common

core for all L(M)
λ , M ∈ N and ˜︁Lλ, it follows that L(M)

λ → ˜︁Lλ in the strong resolvent
sense (cf. [RS1, Theorem VIII.25]), and thus, eitL(M)

λ → eit˜︁Lλ in the strong sense.
This proves the first three claims.

For the last point notice that by construction of I(M) we have JeitI(M) = eitI(M)
J .

From Jeit˜︁L0 = eit˜︁L0J and the Trotter product formula it then follows that eitL(M)
λ J

= JeitL(M)λ . Taking the limit M → ∞ yields the desired equation.

2.5. Time-Invariant Normal States
Finally, we can prove the connection between time-invariant normal states and the
kernel of the standard Liouvillian. Modular theory yields an one-to-one correspon-
dence between normal states and unit elements of the so-called natural positive
cone P associated to (Mβ,Ωρp), cf. Appendix A.2.2. Recall that P is defined as
the closure of the set

{AJAΩρp : A ∈ Mβ} ⊆ ˜︂H.
The importance of P arises from the fact that the unitary group corresponding to
the standard Liouvillian leaves P invariant, which will be shown in Lemma 2.14.

The proofs in this subsection are mainly inspired by [FM04b], where they were
performed for a more particular form of the coupling terms.
Lemma 2.14
For all t, λ ∈ R, we have

eit˜︁LλP = P .

Proof. It is enough to prove eit˜︁LλP ⊆ P for all t ∈ R, since we can apply the
inverse of the unitary group to this inclusion. Furthermore, it is sufficient to show
eitL(M)

λ P ⊆ P for all M ∈ N, due to the strong resolvent convergence established
in the proof of Proposition 2.13. The Trotter product formula yields

eitL(M)
λ ξ = lim

n→∞
(eit/n˜︁L0eit/nλI(M))nξ
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2.5. Time-Invariant Normal States

for all ξ ∈ ˜︂H. Therefore, it suffices to prove

eitT ξ ∈ P (2.28)

for all ξ ∈ P , T ∈ {˜︁L0, I
(M)}, M ∈ N and t ∈ R. Since P is closed, it is

enough to verify (2.28) for all elements ξ whose linear hull is dense in P , that is,
eitTAJAΩρp ∈ P for all A ∈ Mβ. As BJBP ⊆ P (by (2.25)), and

eitTAJAΩρp = eitTAe−itTJeitTAe−itT eitTΩρp = BJBeitTΩρp ,

with B := eitTAe−itT ∈ Mβ, it is enough to prove

eitTΩρp ∈ P . (2.29)

First, we have

eitL0Ωρp = (eitHp ⊗ e−itHpΩρp
p ) ⊗ Ω⊗2 =

(︂
(eitHp ⊗ Idp)Jp(eitHp ⊗ Idp)Ωρp

p

)︂
⊗ Ω⊗2,

thus, eitL0Ωρp = AJAΩρp ∈ P with A = eitHp ⊗ IdHp⊗F(L2(R3))⊗F(L2(R3)). Second,
since Jπβ(W (M)

∞ )J ∈ M′
β, we obtain

eitI(M) = eitπβ(W (M)
∞ )e−itJπβ(W (M)

∞ )J = eitπβ(W (M)
∞ )Jeitπβ(W (M)

∞ )J,

where the last step follows from the exponential series expansion of e−itJπβ(W (M)
∞ )J .

Hence, eitI(M)Ωρp = AJAΩρp ∈ P with A = eitπβ(W (M)
∞ ) ∈ Mβ. This shows (2.29)

and finishes the proof.

Theorem 2.15 (cf. [FM04b, Theorem 2.2])
The σt,λ-invariant normal states on Mβ are in one-to-one correspondence with the
unit elements of ker ˜︁Lλ ∩ P. In particular, if ker ˜︁Lλ = {0}, there are no σt,λ-
invariant normal states on Mβ.

Proof. By Theorem A.13 the normal states on Mβ are in one-to-one correspon-
dence with the unit elements of P via the map

P ∋ ξ ↦→ wξ, wξ(A) = ⟨ξ, Aξ⟩ .

Therefore, it is sufficient to show that for all unit vectors ξ ∈ P we have wξ ◦σt,λ =
wξ, t ∈ R, if and only if ξ ∈ ker ˜︁Lλ. So assume that for all t ∈ R, A ∈ Mβ,

⟨ξ, Aξ⟩ = ωξ(A) = ωξ(σt,λ(A)) =
⟨︃
e−it˜︁Lλξ, Ae−it˜︁Lλξ

⟩︃
. (2.30)
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2. Description of the Model

Then, by Lemma 2.14 we know that e−it˜︁Lλξ ∈ P , and by the uniqueness property
of the representing cone vectors, ξ = e−it˜︁Lλξ. As t ∈ R was arbitrary, ξ ∈ ker ˜︁Lλ.
On the other hand, if ξ ∈ ker ˜︁Lλ, then ξ = e−it˜︁Lλξ holds for all t ∈ R, which implies
(2.30).

For the proof of the main results we also need the following elementary property
of P .
Proposition 2.16
Let P1, P2 be orthogonal projections in Hp such that P1P2 = 0 and set

Pl := P1 ⊗ P2 ⊗ Idf ⊗ Idf , Pr := P2 ⊗ P1 ⊗ Idf ⊗ Idf .

Then we have
ranPl ∩ P = ranPr ∩ P = {0}.

Proof. By definition of J one sees PlJ = JPr. Let ψ ∈ ranPl ∩ P . Then we have
Jψ = ψ (which holds for all elements of P). Therefore,

Prψ = PrJψ = JPlψ = Jψ = ψ.

This implies ψ ∈ ranPr ∩ ranPl = {0}.
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3. Results
After the motivation for considering the standard Liouvillian ˜︁Lλ was given in the
previous chapter, the main results (Theorem 3.5 and Theorem 3.8) of this thesis
will be presented in this part. While the formulation of them can be made very
concise, there is a certain number of assumptions with respect to the potential of
the atom and the interaction functions G which have to be satisfied. Furthermore,
we discuss some examples of models where those rather abstract assumptions are
fulfilled. In particular, Corollary 3.10 describes a quite explicit model. At the end
there is a short discussion about open problems and possibilities for future work.

3.1. Conditions
The assumptions for the main result will be formulated as hypotheses. Not all
of them are necessary to obtain a well-defined model, but for certain parts of the
results and the proof. In the course of this thesis it will always be explicitly stated
if some or all of them have to be fulfilled.

Essentially, there are to different sets of hypotheses given, one for the long-
range (LR) and one for the short-range (SR) case, and we will typically assume
that one of them is satisfied. There are assumptions with respect to the atom (or
more precisely, with respect to the potential of the Schrödinger operator) and with
respect to the interaction, both for the SR and LR case, respectively. Furthermore,
there is the so-called Fermi Golden rule condition comprising both the atom and
the interaction.

3.1.1. Atom
The terms ‘long-range’ (infinitely many bound states) and ‘short-range’ (finitely
many bound states) refer to the potential of the Schrödinger operator describing
the atom, so there is a hypothesis for each case. Each one admits certain, but not
all potentials with infinitely or finitely many eigenvalues, respectively.

For the Hamiltonian Hp of the atom and the corresponding Hilbert space Hp,
both introduced in Chapter 2, we make the following choice. We assume that Hp
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is a Schrödinger operator on Hp = L2(R3), i.e.,

Hp = −∆ + V,

where −∆ ≥ 0 denotes the standard Laplacian and V the multiplication operator
with a measurable function of the same name, which is subject to the following
hypotheses. Note that x̂ = (x̂1, x̂2, x̂3) denotes the vector of multiplication opera-
tors with the respective components and p̂ = −i∇ = (−i∂1,−i∂2,−i∂3) the vector
of momentum operators.
Hypothesis A-LR (Atom, LR case)

(1) V is an infinitely differentiable, bounded function with V ≤ 0. Furthermore,
the functions

x ↦→ ∇V (x), x ↦→ ⟨x⟩ (x∇)V (x) and x ↦→ (x∇)nV (x)

are bounded for n ∈ {2, 3}.

(2) There exists δ > 0 such that

Pess

(︃
(1 − δ)(−∆) − 1

2 x̂∇V
)︃
Pess ≥ 0,

where Pess denotes the projection to the essential spectrum of Hp.

This hypothesis has the following well-known consequences. In particular, note
that

lim
|x|→∞

V (x) = 0.

Proposition 3.0
Assume that V satisfies Hypothesis A-LR (1). Then

(a) Hp is essentially self-adjoint on C∞
c (R3) with domain D(∆),

(b) Hp has essential spectrum [0,∞),

(c) the discrete spectrum σd(Hp) ⊆ (−∞, 0) can only accumulate at zero.

Proof. For a proof see for example [Tes09, section 10.1].
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Remark 3.1
By including the case δ = 0, condition (2) in Hypothesis A-LR would be an abstract
generalization of the requirements for the potential in [FMS04]. The restriction to
δ > 0 in our setting is necessary in order to be able to treat the coupling of low
energies in the essential spectrum of Hp, which was not considered in [FMS04].

One can see that Hypothesis A-LR (2) is satisfied for smooth attracting poten-
tials in O(|x|−µ) for |x| → ∞, 0 < µ < 2, by writing

Pess

(︃
(1 − δ)(−∆) − 1

2 x̂∇V
)︃
Pess = Pess

(︃
(1 − δ)Hp − (1 − δ)V − 1

2 x̂∇V
)︃
Pess

≥ −Pess

(︃
(1 − δ)V + 1

2 x̂∇V
)︃
Pess.

For instance, potentials given by V (x) = −C ⟨x⟩−µ, C > 0, 0 < µ < 2, where
⟨x⟩ = (x2 + 1)1/2, are admissible, see Corollary 3.13 for details. In particular, all
these potentials yield infinitely many eigenvalues for Hp. As so-called long-range
potentials in the context of scattering theory are included, that is, the case µ ≤ 1,
we call this the ‘long-range’ (LR) case.

Remark 3.2
It seems to be an interesting question whether one could find potentials V such that
Hp has at least one but at most finitely many eigenvalues and Hypothesis A-LR
(2) is still satisfied. For such a proof note that one would need to take advantage
of the projection Pess. More precisely, it is not possible that Hp has at least one
negative eigenvalue and

(1 − δ)(−∆) − 1
2 x̂∇V ≥ 0

for some δ > 0. Indeed, suppose that Hp has a negative eigenvalue with corre-
sponding eigenvector ψ, and let i[Hp, AD] be defined in form-sense (see (4.20)),
where AD := 1

4(p̂x̂ + x̂p̂) is the generator of dilations. Then⟨︃
ψ,
(︃

−∆ − 1
2 x̂∇V

)︃
ψ
⟩︃

= ⟨ψ, i[Hp, AD]ψ⟩ = 0

by a classical virial theorem, see [Cyc+87, Theorem 4.6]. Thus,⟨︃
ψ,
(︃

(1 − δ)(−∆) − 1
2 x̂∇V

)︃
ψ
⟩︃

= −δ ⟨ψ, (−∆)ψ⟩ < 0.

Hypothesis A-SR (Atom, SR case)
(1) V ∈ C∞

c (R3).
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(2) If ψ ∈ L2(R3) satisfies

ψ(x) = − 1
4π

∫︂ |V (x)|1/2 V (y)1/2

|x− y|
ψ(y)dy, for a.e. x ∈ R3, (3.1)

where V 1/2 := |V |1/2sgnV , then ψ = 0.

Again, we state some immediate consequences of this hypothesis.
Proposition 3.2
If Hypothesis A-SR (1) holds, then

(a) Hp is essentially self-adjoint on C∞
c (R3) with domain D(∆),

(b) Hp has essential spectrum [0,∞),

(c) the discrete spectrum of Hp is finite,

(d) Hp has no positive eigenvalues,

(e) Hp has no singular spectrum.

If Hypothesis A-SR (1) and (2) hold, then

(f) zero is not an eigenvalue of Hp.

Proof. (a) and (b) follow as in Proposition 3.0. (c) follows from [RS4, Theo-
rem XIII.6]. (d) follows from the Kato-Agmon-Simon theorem ([RS4, Theorem
XIII.58]). (e) follows from [RS4, Theorem XIII.21]. (f) Suppose ϕ were an eigen-
vector with eigenvalue zero. Then using the integral representation of the re-
solvent of the Laplacian, see for example [RS2, section IX.7], we find ϕ(x) =
−(4π)−1 ∫︁

R3 |x − y|−1V (y)ϕ(y)dy. From this it is straightforward to verify that
ψ = |V |1/2ϕ would be a nonzero solution of (3.1).

Remark 3.3
One can think of Hypothesis A-SR (2) as the absence of bound states and so-called
half-bound states, which are not necessarily in L2, see [New12]. This could also
be rephrased by saying that energy zero is not an exceptional point in the sense
as defined in [New12].

Another characterization of Hypothesis A-SR (2) is that 1 is not an eigenvalue
of the integral operator KV , given by the integral kernel −|V (x)|1/2V 1/2(y)/(4π|x−
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y|). As KV is compact (because it is Hilbert-Schmidt by assumption) and KµV =
µKV for all µ ≥ 0, the set

{µ ∈ R : 1 is an eigenvalue of KµV }

is of Lebesgue measure zero and therefore, potentials, which do not satisfy Hy-
pothesis A-SR (2), are rather rare.

Remark 3.4
For the result and our proof one actually needs just finitely many derivatives of V .
Therefore, one could weaken Hypothesis A-SR (1). However it seems quite tedious
in the proof to keep track to which order exactly derivatives are required.

3.1.2. Interaction
Because of the different techniques for the proof in the LR and SR case, we also
postulate different conditions for the functions

G : R3 −→ L(Hp),

which were already introduced in (2.2). In the SR setting we have to assume a
more specific form of G with a factorization in the different cutoff functions, while
this can be relaxed in the LR setting. However, this rather mild generalization
does not play any role for the intended application.

In the following derivatives of an operator-valued functions are always to be
understood in the strong operator topology.
Hypothesis B-LR
For all

X ∈ {⟨x̂⟩n1 G(·) ⟨x̂⟩n2 : n1 + n2 ≤ 4, n1, n2 ∈ N0}, (3.2)

and all

X ∈ {⟨x̂⟩n1 [G(·), p̂j] ⟨x̂⟩n2 : j ∈ {1, 2, 3}, n1 + n2 ≤ 3, n1, n2 ∈ N0}, (3.3)

where the commutator [G(·), p̂j] is to be understood in the form sense on D(p̂j)
(see also (4.20)), we have X(ωΣ) ∈ L(Hp) for all (ω,Σ) ∈ R+ × S2, and for all
m ∈ {0, . . . , 3}, the partial derivatives (ω,Σ) ↦→ ∂mω X(ωΣ) exist as L(Hp)-valued
functions on R+ × S2 and are bounded on compact subsets. Furthermore, the
following holds.
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(I1) Ultraviolet cutoff: There are constants K,C ∈ (0,∞) and q > 7
2 such that

∥∂nωX(ωΣ)∥ ≤ Cω−q, n ∈ {0, . . . , 3},

for all ω > K and Σ ∈ S2.

(I2) Regularity and infrared behavior: One of the following assumptions hold.

(i) There are constants k, C ∈ (0,∞), p > 2, such that

∥∂nωX(ωΣ)∥ ≤ Cωp−n, n ∈ {0, . . . , 3},

for all ω < k and Σ ∈ S2.

(ii) There exist k > 0, J ∈ N0, N ∈ N, and λi ∈ C, i ∈ {1, . . . , N}, such
that

X(ωΣ) = ω− 1
2 +J

N∑︂
i=1

λiX
(i)
0 (ω,Σ)

for all (ω,Σ), where each X
(i)
0 , i ∈ {1, . . . , N}, is an L(H)-valued func-

tion on [0, k) × S2 such that for n = 0, . . . ,max{0, 3 − J} the partial
derivatives ∂nωX

(i)
0 exist, are uniformly bounded, and satisfy the relation

∂nωX
(i)
0 (ω,Σ)|ω=0 = (−1)n+J+1∂nωX

(i)
0 (ω,Σ)∗|ω=0.

Remark 3.4
Notice that we have to impose a spatial decay on G, up to order 4 in (3.2) and up
to order 3 in (3.3). This has its origin in the virial theorem Theorem 4.8 which
requires the consideration of three-fold commutators with the dilation operator,
and another weak commutator with the harmonic oscillator to verify the GJN
condition. Furthermore, the three derivatives with respect to ω arise from the
virial theorem as well.

Hypothesis B-SR
For (ω,Σ) ∈ R+ × S2, we define a bounded multiplication operator on Hp by

G(ωΣ)(x) = κ(ω)χ(x) ˜︁G(ω,Σ)(x), x ∈ R3, (3.4)

where κ is a function on R+ and χ ∈ S(R3) – the space of Schwartz functions, and
for each (ω,Σ), ˜︁G(ω,Σ) is a function on R3, satisfying the following conditions.
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(1) Spatial cutoff: For all n ∈ {0, 1, 2, 3} and α ∈ N3
0 the partial derivatives

∂αx∂
n
ω
˜︁G exist and are continuous on R+×S2×R3, and there exists a polynomial

P and an M ∈ N0 such that for all (ω,Σ, x) ∈ R+ × S2 × R3,⃓⃓⃓
∂αx∂

n
ω
˜︁G(ω,Σ)(x)

⃓⃓⃓
≤ P (ω)⟨x⟩M , (3.5)

where ⟨x⟩ := (1 + x2)1/2.

(2) UV cutoff: κ decays faster than any polynomial, that is, for all n ∈ N,

sup
ω≥1

ωn |κ(ω)| < ∞.

(3) Regularity and infrared behavior: κ ∈ C3(R+) and one of the following two
properties holds:

(i) there exist k, C ∈ (0,∞), p > 2 such that

|∂nωκ(ω)| ≤ Cωp−n, n ∈ {0, . . . , 3},

for all ω ∈ (0, k),
(ii) there exist J ∈ N0 and κ0 ∈ Cs([0,∞)), with s = max{0, 3 − J}, such

that
κ(ω) = ω− 1

2 +Jκ0(ω), ω > 0,
and there exists an extension G̃0 of G̃ to [0,∞) × S2 ×R3 such that for
all n ∈ {0, . . . , s} and all α ∈ N3

0 the partial derivatives ∂αx∂nω ˜︁G0 exist,
are continuous, satisfy (3.5) for all (ω,Σ, x) ∈ [0,∞) × S2 × R3, and

∂nω(κ0(ω)χG̃0(ω,Σ))(x)|ω=0 = (−1)n+J+1∂nω(κ0(ω)χG̃0(ω,Σ))(x)|ω=0.

3.1.3. Fermi Golden Rule Condition
For the proof of our main result we require another additional assumption. We need
that the instability of the eigenvalues should be visible in second order perturbation
theory with respect to the coupling. The second order term is also called level
shift operator and the corresponding positivity assumption Fermi Golden Rule
condition. In Section 3.3 an example is provided where this is satisfied.

As in [FMS04] we want to allow the restriction of the interaction to a limited
number of modes. Let M be an index set for the discrete modes of Hp, that is, the
discrete eigenvalues of Hp including multiplicity. In other words, to each m ∈ M
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corresponds a unique eigenfunction ϕm such that (ϕm)m∈M is an orthonormal
basis of ranPdisc, where Pdisc := P⊥

ess denotes the spectral projection to the discrete
spectrum of Hp. For m ∈ M let Em be the corresponding eigenvalue.

Now, let Jd ⊆ M and set

PJ := pJd + Pess, (3.6)

where pJd denotes the spectral projection to Jd. We assume that

PJG(k)PJ = G(k) (3.7)

holds for almost all k ∈ R3. Clearly, the trivial case Jd = M (no restriction)
always satisfies this condition.

Form ∈ M let pm be the corresponding spectral projection. For all E ∈ σd(Hp),
for which there is an m ∈ Jd with Em = E, and ε > 0, let γβ(E, ε, Jd) ≥ 0 be the
largest number such that

pJd(E)
(︂
F

(1)
G,β(E, ε) + F

(2)
G,β(E, ε)

)︂
pJd(E) ≥ γβ(E, ε, Jd)pJd(E),

where pJd(E) := ∑︁
m∈Jd:
Em=E

pm, and

F
(1)
G,β(E, ε) :=

∫︂ ∞

0

∫︂
S2

ω2

eβω − 1G(ωΣ) Pess

(Hp − E − ω)2 + ε2G(ωΣ)∗dΣdω,

F
(2)
G,β(E, ε) :=

∫︂ ∞

0

∫︂
S2

ω2

1 − e−βωG(ωΣ)∗ Pess

(Hp − E + ω)2 + ε2G(ωΣ)dΣdω.

Furthermore, we set

γβ(ε, Jd) := inf
m∈Jd

γβ(Em, ε, Jd). (3.8)

We say that the Fermi Golden Rule condition for ε > 0, β > 0 and Jd is satisfied
if and only if

γβ(Em, ε, Jd) > 0 (3.9)

for all m ∈ Jd.
Remark 3.4
Usually the term Fermi Golden Rule condition (e.g as in [FM04b; FMS04]) means
that

lim inf
ε→0

εγβ(ε, Jd) > 0,
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which yields the evaluation of a Dirac function. However, εF (2)
G,β(E, ε) converges

to zero as ε → 0 and does thus not provide any positive contribution when con-
sidering the limit. In this case one can only make use of F (1)

G,β(E, ε), which decays
exponentially to zero as β → ∞, that is, for low temperatures. Then we get a re-
sult which is not uniform in the temperature and the lower bound γβ does depend
on β, cf. Lemma 3.12.

Therefore, we work with an approximated version of the Fermi Golden Rule
condition by just considering a fixed ε > 0. The operator F (2)

G,β(E, ε) does not
converge to zero as β → ∞ and therefore, we get a result uniformly in β for
β ≥ β0 > 0, that is, for low temperatures (cf. Corollary 3.10).

3.2. Main Theorems
The main results of this thesis are presented in the following two theorems, which
address the LR and the SR case, respectively. They yield a characterization of
the time-invariant states and show that thermal ionization happens in the SR
case under the given abstract hypotheses. Some concrete settings where those are
satisfied, will be discussed afterwards in the subsequent section.

Both theorems essentially follow from the application of the virial theorem
and the positivity proof in the subsequent chapters, together with some formal
arguments in the LR case. At this point, we only collect the necessary ingredients
and references in the proofs.

Recall that ˜︁Lλ denotes the self-adjoint extension of the operator given in (2.27).
In the LR case we have to restrict the coupling to finitely many modes of Hp such
that the uncoupled modes naturally appear in the kernel of the Liouvillian and as
time-invariant normal states of the algebra Mβ.
Theorem 3.5 (Long-range)
Assume that Hypotheses A-LR and B-LR are satisfied, and (3.7) holds for a finite
subset Jd ⊆ M. Let β0 > 0 and ε > 0. Then there exists a constant C > 0 such
that for all β ≥ β0 and 0 < |λ| < C min{1, γβ(ε, Jd)2}, we have

ker ˜︁Lλ ∩ ran(PJ ⊗ PJ ⊗ Idf ⊗ Idf) = {0}. (3.10)

In this case, the σt,λ-invariant normal states on Mβ are in one-to-one correspon-
dence with the unit elements of

P ∩ lin{ϕm ⊗ ϕn ⊗ Ω ⊗ Ω : m,n ∈ M \ Jd, Em = En}. (3.11)
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Proof. The first statement (3.10) follows from Theorem 5.5 and Proposition 5.7 in
combination with Theorem 7.10 and Proposition 7.11.

The second statement is then a simple consequence, see also [FMS04, section
5.1]. We have

ker ˜︁Lλ ∩ ran(PJ⊥ ⊗ PJ
⊥ ⊗ Idf ⊗ Idf)

= ker ˜︁L0 ∩ ran(PJ⊥ ⊗ PJ
⊥ ⊗ Idf ⊗ Idf)

= lin{ϕm ⊗ ϕn ⊗ Ω ⊗ Ω : m,n ∈ M \ Jd, Em = En}.

Proposition 2.16 yields

P ∩ ran(PJ ⊗ PJ
⊥ ⊗ Idf ⊗ Idf) = P ∩ ran(PJ⊥ ⊗ PJ ⊗ Idf ⊗ Idf) = {0}.

Therefore, we conclude that ker ˜︁Lλ ∩ P is given by (3.11). Then the statement
results from Theorem 2.15.

Remark 3.6
Theorem 3.5 can be regarded as an extension of [FMS04, Theorem 2.3] with par-
tially weaker assumptions and for more general coupling terms. The philosophy is
that an interaction restricted to finitely many modes Jd, i.e., satisfying (3.7), can
be regarded as an approximation of the real interaction corresponding to Jd = M.
In a formal sense, the set (3.11) also ‘converges’ to {0} if Jd tends to M. This
means that thermal ionization occurs in the ‘limit’ when all modes are coupled.

Remark 3.7
One could rephrase Theorem 3.5 by replacing the requirement that Jd is finite
with the claim that the numbers δ(β)

1 , δ
(β)
2 , δ

(β,ε)
3 in (H1)–(H3) are strictly positive,

see also Remark 7.9.
Next, in the SR case the artificial restriction (3.7) is not needed anymore for
the proof. Consequently, there are also no time-invariant states originating from
uncoupled modes and one can show that thermal ionization actually occurs.
Theorem 3.8 (Short-range)
Assume that Hypotheses A-SR and B-SR are satisfied. Let β0 > 0 and ε > 0.
Then there exists a constant C > 0 such that for all β ≥ β0 and 0 < |λ| <
C min{1, γβ(ε,M)2}, zero is not an eigenvalue of ˜︁Lλ. In particular, there are no
σt,λ-invariant normal states on Mβ.

Proof. This follows from Theorem 6.5 in combination with Theorem 7.14. Then
the absence of time-invariant states is a consequence of Theorem 2.15.
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Remark 3.9
Notice that the Fermi Golden Rule condition (3.9) has to be satisfied in order to
obtain a non-trivial statement in the Theorems 3.5 and 3.8.

3.3. Application
We provide a rather explicit example for the SR case in Corollary 3.10, where
Theorem 3.8 is applicable and thermal ionization can be proven. We consider
a toy atom with a compactly supported smooth potential and a linear coupling
term with spatial cutoff, motivated by QED, where the conditions for the main
theorem are satisfied. In particular, no additional restrictions have to be imposed
on the coupling. In doing so, we present two rather simple methods to verify the
Fermi Golden Rule condition (Lemmas 3.11 and 3.12). At the end, we also give
an example of a potential and a similar coupling term restricted to finitely many
eigenmodes, which satisfies the LR assumptions (Corollary 3.13).
Corollary 3.10
Assume that V satisfies Hypothesis A-SR. Let

G(k)(x) = κ(|k|)eikxχ(x), k, x ∈ R3, (3.12)

where χ ∈ S(R3) is nonzero, and κ is a nonzero function on R+ satisfying Hy-
pothesis B-SR (2) and one of the following two conditions.

(I) Part (i) of Hypothesis B-SR (3) holds.

(II) The function χ is real-valued and there exist positive constants c and C such
that

κ(ω) = Cω− 1
2 e−cω2 (3.13)

for all ω ≥ 0.

Then for any β0 > 0 there exists a λ0 > 0, such that whenever 0 < |λ| < λ0 and
β ≥ β0 the operator ˜︁Lλ, or equivalently Lλ, does not have zero as an eigenvalue.

Proof. Derivatives with respect to ω and x yield only polynomial growth in x and
ω, respectively. Thus, Hypothesis B-SR (1) is satisfied. Hypothesis A-SR (1), (2)
and Hypothesis B-SR (2) are satisfied by the assumptions.

If (I) holds, the same applies to Hypothesis A-SR (3) (i).
Now, assume that (II) holds. In this case, we want to verify Hypothesis B-SR

(3) (ii). Note that G in (3.12) can be multiplied with any phase eiφ, φ ∈ R, which
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just yields unitary equivalent Liouvillians by means of the unitary transformation
Idp ⊗ Idp ⊗Γ(eiφ). Therefore, without loss of generality, we can assume

κ(ω) = iCω− 1
2 e−cω2

instead of (3.13). Hypothesis B-SR (3) (ii) is actually satisfied in this case. One
has to verify

∂jω(ie−cω2
χ(x)eiωΣx)|ω=0 = (−1)j+1∂jωie−cω2χ(x)eiωΣx|ω=0

for all Σ ∈ S2, x ∈ R3 and j = 0, . . . , 3, which is easy to check.
It remains to verify the Fermi Golden Rule condition. This will follow from

Lemma 3.11 below, since σd(Hp) is finite.

Lemma 3.11
Suppose the assumptions of Corollary 3.10 hold, and let E ∈ σd(Hp). Then for
any ε > 0 there exists a γ(E) > 0 (independent of β) such that

pEF
(2)
G,β(E, ε)pE ≥ γ(E)pE.

Proof. Let ϕE denote a normalized eigenvector of −∆+V with eigenvalue E. First
observe that⟨︂

ϕE, F
(2)
G,β(E, ε)ϕE

⟩︂
≥
∫︂ ∞

0

∫︂
S2
ω2
⟨︄
ϕE, G(ωΣ)∗ εPess

(Hp − E + ω)2 + ε2G(ωΣ)ϕE
⟩︄

dΣdω.

The integrand is continuous in (ω,Σ) and non-negative. Thus, it suffices to show
that there exists (ω,Σ) such that⟨︄

G(ωΣ)ϕE,
εPess

(Hp − E + ω)2 + ε2G(ωΣ)ϕE
⟩︄

̸= 0,

which follows if one can show

PessG(ωΣ)ϕE ̸= 0. (3.14)

Suppose there is no (ω,Σ) such that (3.14) holds, that is, G(ωΣ)ϕE ∈ ranPdisc for
all (ω,Σ). By the finite dimensionality of ranPdisc, the space

lin{G(ωΣ)ϕE : (ω,Σ) ∈ R+ × S2} (3.15)
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would be finite-dimensional. But this leads to a contradiction, as we will now
show.

By unique continuation of eigenfunctions ([RS4, Theorem XIII.57]) ϕE(x) ̸= 0
for a.e. x ∈ R3. By assumption κ does not vanish on some nonempty open interval
I ⊂ (0,∞). Then

lin{eiωΣx̂χϕE : (ω,Σ) ∈ I × S2}

is a subspace of (3.15) and has infinite dimension, which can be seen by means of
using Wronskians as follows.

For n ∈ N let ω1, . . . , ωn ∈ I be pairwise distinct and let λ1, . . . , λn ∈ C such
that for all x ∈ R3,

n∑︂
m=1

λme
iωmx1χ(x)ϕE(x) = 0.

Note that x1 denotes the first component of x, which results from choosing Σ =
(1, 0, 0). As χ does not vanish and ϕE(x) ̸= 0 for a.e. x, we conclude that there is
an open set U ⊆ R3 such that for all x ∈ U ,

n∑︂
m=1

λme
iωmx1 = 0.

By taking (n−1)-fold derivatives at any point in U , and using the non-degeneracy
of the Vandermonde matrix corresponding to (ω1, . . . , ωn), we obtain λ1 = · · · =
λn = 0.

It was already indicated in Remark 3.4 that instead of using F
(2)
G,β(E, ε) one can

also verify (3.9) with the first term F
(1)
G,β(E, ε) in the limit ε → 0. This does not

improve the qualitative statement of Corollary 3.10 and has the drawback that
γβ → 0 as β → ∞ as in [FM04b; FMS04]. However, in certain regimes, it still
might be the dominant term. For the proof we use a dipole approximation as in
[GZ09], that is, a power series expansion of the coupling term.

For k ∈ R3 let ϕ(k, ·) denote the scattering state as defined in Section 6.1. In
the next proposition we shall use the following notation

⟨ϕ(k, ·), f⟩ := l.i.m.
∫︂
ϕ(k, x)f(x)dx,

⟨f, ϕ(k, ·)⟩ := ⟨ϕ(k, ·), f⟩,

where f ∈ L2(R3), for the expressions occurring in Theorem 6.1.
Lemma 3.12
Assume that V satisfies Hypothesis A-SR. Let δ > 0 and χ ∈ S(R3) be constant
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and positive in a ball around the origin, and let κ be a continuous and positive
function satisfying Hypothesis B-SR (2) and (3). We consider for all α > 0,

Gα(k)(x) = κ(|k|)eαikxχ(αδx), k, x ∈ R3.

Then we have for all E ∈ σd(Hp),

lim
ε→0

⟨︂
ϕE, επ

−1F
(1)
Gα,β

(E, ε)ϕE
⟩︂

=
∫︂
S2

∫︂
R3

(k2 − E)2

eβ(k2−E) − 1 |κ(k2 − E)|2(k2 − E)2α2|χ(0)|2|⟨ϕE,Σx̂ϕ(k, ·)⟩|2dkdΣ

+O(α3). (3.16)

In particular, if V is rotationally invariant and there are only non-degenerate
eigenvalues, then there exists α0 > 0 such that for all 0 < α < α0,

lim inf
ε→0

εγβ(ε,M) > 0.

Proof. Notice that the operators επ−1F
(1)
Gα,β

(E, ε), ε > 0, form a Dirac sequence in
the limit ε → 0. Then using Theorem 6.1 and the fact that Gα is continuous, we
obtain⟨︂
ϕE, επ

−1F
(1)
Gα,β

(E, ε)ϕE
⟩︂

=
∫︂ ∞

0

ω2

eβω − 1

∫︂
S2

⃦⃦⃦⃦
⃦Vc

ε

π((Hp − E + ω)2 + ε2)1/2G(ωΣ)∗ϕE

⃦⃦⃦⃦
⃦

2

dΣdω

= 1
(2π)3

∫︂ ∞

0

ω2

eβω − 1

∫︂
S2

∫︂
R3

ε

π(k2 − E − ω)2 + ε2 |⟨G(ωΣ)∗ϕE, ϕ(k, ·)⟩|2 dkdΣdω

ε→0→ 1
(2π)3

∫︂
S2

∫︂
R3

(k2 − E)2

eβ(k2−E) − 1
⃓⃓⃓
κ(k2 − E)

⃓⃓⃓2 ⃓⃓⃓
⟨ϕE, eiα(k2−E)Σx̂χ(αδ·)ϕ(k, ·)⟩

⃓⃓⃓2
dkdΣ.

Now we consider an expansion in powers of α. Let C > 0 large enough such that⃓⃓⃓
eis − 1 − is

⃓⃓⃓
≤ C|s|2, s ∈ R.

Then, for all α > 0 and k ∈ R3,⃓⃓⃓⟨︂
ϕE,

(︂
eiα(k2−E)Σx̂χ(αδ·) − χ(αδ·) − iα(k2 − E)Σx̂χ(αδ·)

)︂
ϕ(k, ·)

⟩︂⃓⃓⃓
≤ Cα2∥ϕ(k, ·)∥∞∥χ∥∞

∫︂
|ϕE(x)|

⃓⃓⃓
(k2 − E)Σx

⃓⃓⃓2
dx.

(3.17)
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First, let us estimate the contribution of χ(αδ·). By assumption there exists r > 0
such that χ is constant on Br(0). As the eigenfunctions decay exponentially (cf.
[Shn57]), we may assume there are constants c, C > 0 such that

|ϕE(x)| ≤ Ce−c|x|.

Thus, for n ∈ {0, 1} and j ∈ {1, 2, 3}, there exist constants C,C ′ such that⃓⃓⃓⟨︂
x̂nj ϕE, (χ(αδ·) − χ(0))ϕ(k, ·)

⟩︂⃓⃓⃓
≤ 2∥ϕ(k, ·)∥∞∥χ∥∞

∫︂
αδ|x|>r

|xj|n|ϕE(x)|dx

≤ C∥ϕ(k, ·)∥∞∥χ∥∞

∫︂
αδρ>r

e−cρdρ

≤ C ′∥ϕ(k, ·)∥∞∥χ∥∞e
−crα−δ (3.18)

for all α > 0 and k ∈ R3, where we used that polynomial functions are expo-
nentially bounded. On the other hand, since the scattering functions ϕ(k, ·) are
orthogonal to all eigenfunctions, we find⟨︂

ϕE, χ(αδ·)ϕ(k, ·)
⟩︂

=
⟨︂
ϕE, (χ(αδ·) − χ(0))ϕ(k, ·)

⟩︂
. (3.19)

Combining (3.17), (3.18) and (3.19), we arrive at⃓⃓⃓
⟨ϕE, eiα(k2−E)Σx̂χ(αδ·)ϕ(k, ·)⟩ − ⟨ϕE, iα(k2 − E)Σx̂χ(0)ϕ(k, ·)⟩

⃓⃓⃓
≤ Cα2(k2 + 1)∥ϕ(k, ·)∥∞∥χ∥∞,

where C denotes a constant not depending on α and k. Thus in the limit α → 0
we determined the leading order contribution given in (3.16).

Within the explicit model, one can now verify whether the leading order term
does not vanish. If V is rotationally invariant and Hp has only non-degenerate
eigenvalues E with eigenvector ϕE, then we find ⟨ϕE, x̂jϕE⟩ = 0 by symmetry.
Thus, by the orthogonality relation of the scattering states,

(2π)−3
∫︂

| ⟨ϕE, x̂jϕ(k, ·)⟩ |2dk = ∥x̂jϕE∥2 ̸= 0.

Finally, in the following corollary we give, similar as above, an example of an atom
and coupling terms for the LR case with a restriction to finitely many eigenmodes.
Corollary 3.13
Let V (x) = −C ⟨x⟩−µ for some constants C > 0 and 1 ≤ µ < 2. Further let
Jd ⊆ M be finite and χess ∈ L(Hp) such that

χessPess = χess
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and the operators

⟨x̂⟩±n χess ⟨x̂⟩∓n and [χess, p̂j] (3.20)

are bounded for all n ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}. We set

G(k) = (pJd + χess) ˜︁G(k)(pJd + χess), k ∈ R3, (3.21)

where for each k ∈ R3, ˜︁G(k) is a multiplication operator on Hp with the function

˜︁G(k)(x) := Cκ(|k|)eikxχ(x), x ∈ R3,

with C ∈ R being a constant and

κ(ω) = ωp ⟨ω⟩−q , p > 2, q > 9
2 + p, (3.22)

χ(x) = ⟨x⟩−r , r ≥ 7. (3.23)

Let β0 > 0 and ε > 0. Then there exists a constant C > 0 such that for all
β ≥ β0 and 0 < |λ| < C min{1, γβ(ε, Jd)2}, the σt,λ-invariant normal states on Mβ

are in one-to-one correspondence with the unit elements of

P ∩ lin{ϕm ⊗ ϕn ⊗ Ω ⊗ Ω : m,n ∈ M \ Jd Em = En}.

Proof. The corollary follows from Theorem 3.5 if we verify the given hypotheses.
Note that (3.7) holds by assumption.

Hypothesis A-LR: Condition (1) is obviously satisfied as x ↦→ ⟨x⟩V (x) and
∇V are bounded functions and the application of x̂∇ does not change the decay
behavior in spatial infinity. Condition (2) is satisfied with δ = 1 − µ

2 > 0, since

−1
2(x∇)(− ⟨x⟩−µ) = −µ

2 ⟨x⟩−µ−1 x
x

⟨x⟩
≥ −µ

2 ⟨x⟩−µ

implies −1
2(x∇)V ≥ −µ

2V . Hence,

Pess

(︃
µ

2 (−∆) − 1
2(x̂∇)V

)︃
Pess ≥ µ

2Pess(−∆ + V )Pess ≥ 0.

Hypothesis B-LR: First, we show this hypothesis for ˜︁G. We have for n ∈
{0, 1, 2, 3} and n1, n2 ∈ N0 with n1 + n2 ≤ 4,

∂nω ⟨x⟩n1 ˜︁G(ωΣ)(x) ⟨x⟩n2 =
n∑︂

m=0

(︄
n

m

)︄
∂mω κ(ω)(iΣx)n−m ⟨x⟩n1+n2 χ(x)eiωΣx.
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As n1 + n2 + n ≤ 7, we obtain by (3.23),

sup
x∈R3

⃓⃓⃓
∂nω ⟨x⟩n1 ˜︁G(ωΣ)(x) ⟨x⟩n2

⃓⃓⃓
≤ C

n∑︂
m=0

|∂mω κ(ω)|

for a constant C > 0 independent of (ω,Σ). Finally, note that κ has the decay
behavior which is requested in (I1) and (I2) (i) of Hypothesis B-LR. This proves
Hypothesis B-LR for all elements of the set in (3.2).

The same can be shown for elements of (3.3). The operator [ ˜︁G(ωΣ), p̂j], j ∈
{1, 2, 3}, is given by multiplication with

x ↦→ i∂xj
˜︁G(ωΣ)(x) = iκ(ω)eiωΣx(∂xj

χ(x) + iωΣjχ(x)).

The first summand can be treated as above since derivatives of χ have a faster
decay than χ itself. For the second summand the same is true since by construction,
ω ↦→ ωκ(ω) behaves as ωp, p > 3, for ω → 0 and as ω−p, p > 7

2 , for ω → ∞.
Finally, consider the case when Jd is finite. Then the operators ⟨x̂⟩±n pJd ⟨x̂⟩∓n,

n ∈ N0, and p̂jpJd , pJd p̂j (as ran pJd is finite and ran pJd ⊆ D(p̂j)), are bounded.
Together with the assumptions this implies that the operators

⟨x̂⟩±n (pJd + χess) ⟨x̂⟩∓n , [pJd + χess, p̂j]

are bounded as well for all n ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}. Thus, Hypothesis B-
LR also holds for G = (pJd + χess) ˜︁G(pJd + χess).

Remark 3.14
A generic choice for χess in Corollary 3.13, for which the given conditions are
verifiable with the methods in this thesis, can be made as follows. For some e0 > 0
let ˜︃χess ∈ C10(R) such that

˜︃χess(e) =
⎧⎨⎩1 : e > e0,

0 : e ≤ 0.

Then one can check with χess = ˜︃χess(Hp) that the operators in (3.20) are bounded
by means of Corollary B.9 and Proposition B.11.

On the other hand, in order to get a result for χess = Pess (no decay at zero
energy in the coupling), one needs to verify that the operators

⟨x̂⟩±n Pess ⟨x̂⟩∓n , n ∈ {1, 2, 3, 4},

are bounded.

45



3. Results

Remark 3.15
The simple method in the proof of Lemma 3.11 does not carry over immediately
to the LR setting (where ranPdisc is infinite-dimensional), and an enhancement
would be necessary. However, one can directly use Lemma 3.12 to verify the Fermi
Golden Rule condition if Jd consists only of non-degenerate eigenmodes.

Remark 3.16
The condition (3.22) can be replaced with

κ(ω) = ω− 1
2 ⟨ω⟩−p , p > 4,

or
κ(ω) = ω

1
2 ⟨ω⟩−p , p > 5,

where one has to adapt the proof in an obvious way to verify condition (I2) (ii) of
Hypothesis B-LR.

3.4. Conclusion and Open Problems
In the LR case the restrictions of the coupling with respect to the essential spec-
trum of Hp as in [FMS04] could be removed. This is especially important for low
energies, as the theory is not applicable for very high energies, anyway. However,
the results are still not satisfactory: on the one hand only potentials with in-
finitely many eigenvalues are admissible, on the other hand the proof of positivity
can effectively handle only finitely of them.

It is not clear whether the analysis would also work for certain potentials with
finitely many eigenvalues (cf. Remark 3.1), so an example or a proof of the contrary
would be very welcome. Nevertheless, the physically more interesting and probably
also more difficult challenge is the treatment of a real atom like hydrogen with
infinitely many eigenvalues. It seems to be in the realms of possibility that this
approach can also be used in this direction. Some ideas in this context are collected
in Remark 7.9.

The SR approach resolves the limitation to potentials with infinitely many
eigenvalues. One can find an explicit model of a particle with a smooth compactly
supported potential and a general coupling term with spatial decay but no addi-
tional artificial restrictions, where thermal ionization can be proven. Furthermore,
this result can be achieved also uniformly for bounded temperatures. The ma-
jor problem here remains the non-physical spatial decay in the coupling terms,
which has its origin in the choice of the commutator on the field space. A possible
solution seems to require a completely new strategy in this respect.
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The idea of the diagonalization of the Hamiltonian with scattering functions
could potentially also be applied to the abstract diagonalized representation of
the model in [FM04b]. Therefore, it would be interesting to point out exactly
how their assumptions with respect to the coupling terms translate into a more
concrete setting, using the methods of Section 6.4.

Furthermore, there are some other points for possible improvements or weak-
ening of the assumptions. For example one could treat all potentials which decay
faster than |x|−2−ϵ for |x| → ∞ and some ϵ > 0. It was already mentioned in
Remark 3.4 that the generalization to potentials V with only finitely many deriva-
tives of V would be possible. Probably a bit more difficult is the weakening of the
assumption with respect to the compact support. Among other things one has to
optimize the Klein-Zemach estimate for the remainder terms.

Finally, a physically important but formally rather bureaucratic issue seems to
be the inclusion of a spin variable in the Fock space. This is necessary for treating
photons and therefore real QED models. We expect that this should not change
the fundamental analysis and follows by adjusting the notation.
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4. Concepts of the Proof
This chapter provides an orientation for the proof of the main results Theorem 3.5
and Theorem 3.8. Before we can state the strategy, we recapitulate the so-called
gluing transformation from [JP96a] and some related notation which will be used
throughout the whole proof. At the end we repeat the exact statement of the virial
theorem from [FM04b].

4.1. Gluing Transformation
In order to define the conjugate operator on the field and shorten some calculations
it is convenient to combine the two Fock spaces which appear in the Araki-Woods
representation (cf. Proposition 2.5 and (2.15)) into a single Fock space. This
concept was first introduced by Jakšić and Pillet in [JP96a].

Let S2 be the 2–dimensional sphere. The transformation to spherical coordi-
nates corresponds to a unitary map

U1 : L2(R3) −→ L2(R+ × S2, dω × dΣ), (U1f)(ω,Σ) = ωf(ωΣ).

Then two half-lines can be glued together by the unitary map

U2 : L2(R+ × S2, dω × dΣ) ⊕ L2(R+ × S2, dω × dΣ) −→ L2(R × S2, du× dΣ),

U2(f ⊕ g)(u,Σ) =
⎧⎨⎩f(u,Σ) : u > 0,

−g(−u,Σ) : u < 0.
(4.1)

Remark 4.1
The negative sign in front of g in (4.1) was included to obtain the same Liouvillian
in the glued space as in [FMS04] and [HS20].
In the following we omit the measure du × dΣ in the last space and just write
L2(R × S2) for the space on the right-hand side. By combining U1 and U2 we
obtain a map

U2 ◦ (U1 ⊕ U1) : L2(R3) ⊕ L2(R3) −→ L2(R × S2). (4.2)
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We can now lift (4.2) to the Fock space and combine it with the unitary map
U of Theorem A.6. Then we obtain the gluing isomorphism

Ugl := Γ(U2 ◦ (U1 ⊕ U1))U : F(L2(R3)) ⊗ F(L2(R3)) −→ F(L2(R × S2)).

Note that Ugl extends naturally to the map
ˆ︁Ugl := IdHp⊗Hp ⊗Ugl :

Hp ⊗ Hp ⊗ F(L2(R3)) ⊗ F(L2(R3)) −→ Hp ⊗ Hp ⊗ F(L2(R × S2)).

In the following proposition we apply this transformation to the Liouvillian ˜︁Lλ in
(2.27). To obtain the transformed interaction, we define for a Hilbert space H a
map

τβ : L2
0(R3,L(H)) −→ L2(R × S2,L(H)),

(τβ(F ))(u,Σ) :=
⎧⎨⎩u
√︂

1 + ρβ(u)F (uΣ) : u > 0,
u
√︂
ρβ(−u)F (−uΣ)∗ : u < 0,

(4.3)

where ρβ is defined as in (2.8). Let

D := C∞
c (R3) ˆ︁⊗ C∞

c (R3) ˆ︁⊗ Ffin(C∞
c (R × S2)),

which is a dense subspace of the composite Hilbert space

Hp ⊗ Hp ⊗ F,

where F := F(L2(R× S2)). One can check that D is related to ˜︁D defined in (2.24)
by

D ⊆ ˆ︁Ugl
˜︁D. (4.4)

Let û and ω̂ denote the multiplication operators with the first variables in L2(R×
S2) and L2(R+ × S2), respectively.
Proposition 4.2 (Transformed Liouvillian)
We have on D,

Lλ := ˆ︁Ugl
˜︁Lλ ˆ︁U−1

gl

= (Hp ⊗ Idp − Idp ⊗Hp) ⊗ Idf + Idp ⊗ Idp ⊗dΓ(û) + λΦ(I), (4.5)

where

I(u,Σ) := Il(u,Σ) ⊗ Idp + Idp ⊗Ir(u,Σ), (4.6)
Il(u,Σ) := τβ(G)(u,Σ), Ir(u,Σ) := −e−βu/2τβ(G∗)(u,Σ). (4.7)
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4.1. Gluing Transformation

Proof. Theorem A.6 yields on Ffin(L2(R × S2)),

Ugl(Hf ⊗ Id − Id ⊗Hf)U−1
gl

= Γ(U2)Γ(U1 ⊕ U1)U(Hf ⊗ Id − Id ⊗Hf)U−1Γ(U1 ⊕ U1)−1Γ(U2)−1

= dΓ(U2(ω̂ ⊕ (−ω̂))U−1
2 )

= dΓ(û).

In the following, we use the short-hand notation Gl := G⊗ Idp, Gr := Idp ⊗G and
Φl := Φ ⊗ IdF(L2(R3)), Φr := IdF(L2(R3)) ⊗Φ. For the first part of the interaction we
obtain on D, using the definition of τβ (4.3) with H = Hp ⊗ Hp,

ˆ︁Ugl(Φl(
√︂

1 + ρβGl) + Φr(
√
ρβG

∗
l )) ˆ︁U−1

gl

= IdHp⊗Hp ⊗ (Γ(U2)Γ(U1 ⊕ U1)) Φ
(︂√︂

1 + ρβGl ⊕ √
ρβG

∗
l

)︂
× IdHp⊗Hp ⊗

(︂
Γ(U1 ⊕ U1)−1Γ(U2)−1

)︂
= Φ

(︂ ˆ︁U2( ˆ︁U1(
√︂

1 + ρβGl) ⊕ ˆ︁U1(
√
ρβG

∗
l ))
)︂

= Φ(τβ(Gl)),

where ˆ︁U1 and ˆ︁U2, denote the canonical extensions of U1 and U2, respectively, to
L(Hp ⊗ Hp)-valued L2-functions. Now, the relation

eβωρβ(ω) = ρβ(ω) + 1, ω > 0,

along with the definition (4.3) implies that

e−βu/2τβ(G∗
r )(u,Σ) =

⎧⎨⎩u
√︂
ρβ(u)G∗

r (uΣ) : u > 0,
u
√︂

1 + ρβ(−u)Gr(−uΣ) : u < 0.

Combining this with the previous calculation we obtain

Ugl(Φl(
√
ρβG

∗
r ) + Φr(

√︂
1 + ρβGr))U−1

gl = Φr(e−βû/2τβ(G∗
r )).

Next, we discuss the decay behavior of functions and their derivatives after the
transformation with τβ. This will play a major role in the proof when considering
commutators of the generator of translations in the glued space dΓ(i∂u) with the
interaction terms I given in (4.6). We note that in the following lemma derivatives
of the L(H)-valued functions can be understood in the operator norm, strong
operator, or weak operator topology in L(H), respectively.
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Lemma 4.3
Let H be a Hilbert space, F : R3 → L(H) a measurable function, and m ∈ N.
Assume that for n = 0, . . . ,m the partial derivatives (ω,Σ) ↦→ ∂nωF (ωΣ) exist on
R+ × S2, and that they are bounded on compact subsets. Furthermore assume that
there exist constants ε > 0 and k,K,C1, C2 ∈ (0,∞) such that for all Σ ∈ S2,
n = 0, . . . ,m,

(1) ∥∂nωF (ωΣ)∥ ≤ C1ω
m−1+ε−n, for ω ∈ (0, k),

(2) ∥∂nωF (ωΣ)∥ ≤ C2ω
− 3

2 −ε, for ω ∈ (K,∞).

Then the weak partial derivatives ∂nuτβ(F ) exist and are in L2(R × S2,L(H)) for
n = 0, . . . ,m. In particular, for n = 0, 1, there exists a constant C3 such that for
all β ∈ (0,∞),

∥∂nuτβ(F )∥L2(R×S2,L(H)) ≤ C3(1 + β− 1
2 ). (4.8)

The assertion also holds, if we assume instead of Condition (1):

(1’) There exists a J ∈ N0 and N ∈ N such that

F (ωΣ) = ω− 1
2 +J

N∑︂
i=1

λiF
(i)
0 (ω,Σ), ω ∈ (0, k),

where λi ∈ C and each F
(i)
0 , 1 ≤ i ≤ N , is an L(H)-valued function on

[0, k) × S2 such that for n = 0, . . . ,max{0,m − J} the partial derivatives
∂nωF

(i)
0 exist, are uniformly bounded, and satisfy the relation

∂nωF
(i)
0 (ω,Σ)|ω=0 = (−1)n+J+1∂nωF

(i)
0 (ω,Σ)∗|ω=0.

Proof. We will treat small and large |u| separately. In particular, (4.8) will follow
as a consequence of (4.10) and (4.13), below. Let us start using Leibniz’ formula

∂nuτβ(F )(u,Σ) =
⎧⎨⎩
∑︁n
l=0

(︂
n
l

)︂
∂lu
(︂
u
√︂

1 + ρβ(u)
)︂
∂n−l
u F (uΣ) : u > 0,∑︁n

l=0

(︂
n
l

)︂
∂lu
(︂
u
√︂
ρβ(−u)

)︂
∂n−l
u F (−uΣ)∗ : u < 0.

(4.9)

We first consider |u| at infinity. The first factor in the first line in (4.9) is in
O(u) for u → ∞, and the first factor in the second line decays faster than any
polynomial. This implies with (2) that there exist constants Cn(β), such that, for
all n = 0, . . . ,m and all u with |u| > K,

∥∂nuτβ(F )(u,Σ)∥ ≤ Cn(β) |u|−
1
2 −ε .
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This and the boundedness of F and its partial derivatives on compact subsets of
R+ × S2 imply that

(u,Σ) ↦→ 11R\[−R,R](u)∂nuτβ(F )(u,Σ)

is in L2(R × S2,L(H)) for all R > 0, Σ ∈ S2 and n = 0, . . . ,m. In particular, for
n = 0, 1 we find in view of Lemma B.14 that C0(β) and C1(β) can be bounded by
a constant times 1 + β−1/2. Thus we conclude that

∥11R\[−k,k](u)∂nuτβ(F )∥L2(R×S2,L(H)) ≤ C(1 + β− 1
2 ), n ∈ {0, 1}. (4.10)

Let us now check the decay behavior near zero. First assume that (1) is satisfied.
We extend τβ(F ) to a function on R × S2 by setting τβ(F )(0,Σ) := 0. The first
factors in the sums in (4.9), ∂lu

(︂
u
√︂

1 + ρβ(u)
)︂

and ∂lu
(︂
u
√︂
ρβ(u)

)︂
, are in O(|u|

1
2 −l)

for u → 0. The norms of the second factors are in O(|u|m−1−(n−l)+ε) by Assumption
(1). Hence, there exist constants cn(β), such that, for all 0 < |u| < k and Σ ∈ S2,
we have

∥∂nuτβ(F )(u,Σ)∥ ≤ cn(β) |u|−
1
2 +m−n+ε , n ∈ {0, . . . ,m}. (4.11)

We conclude from (4.11) that for each Σ the function u ↦→ τβ(F )(u,Σ) is m − 1
times continuously differentiable on R with ∂nuτβ(F )(0,Σ) = 0 for n = 1, . . . ,m−1.
Moreover, we see from (4.11) that for each Σ, the function u ↦→ ∂m−1

u τβ(F )(u,Σ)
is weakly differentiable. Furthermore, we infer from (4.11)

(u,Σ) ↦→ 11[−k,k](u)∂nuτβ(F )(u,Σ) (4.12)

is in L2(R × S2,L(H)) for all n = 0, . . . ,m. In particular, for n = 0, 1 we find
in view of Lemma B.14 that we can bound c0(β) and c1(β) by a constant times
1 + β−1/2, and so

∥11[−k,k](u)∂nuτβ(F )∥L2(R×S2,L(H)) ≤ C(1 + β− 1
2 ), n ∈ {0, 1}. (4.13)

Let us now assume the alternative condition (1’) is satisfied and pick any i ∈
{1, . . . , N}. In that case we first observe that for F (i)(ωΣ) := ω− 1

2 +JF
(i)
0 (ω,Σ) we

can write for |u| < k,

τβ(F (i))(u,Σ) =
⎧⎨⎩u

J
√︂
σβ(−u)F (i)

0 (u,Σ) : u > 0,
−(−u)J

√︂
σβ(−u)F (i)

0 (−u,Σ)∗ : u < 0,

where we defined the function

σβ : R −→ R, σβ(x) :=
{︄
xρβ(x) : x ̸= 0,
1
β

: x = 0.
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The function σβ is infinitely differentiable and positive, which for large |x| is ob-
vious and for small |x| ≠ 0 can be seen from the power series expansion

σβ(x) = β−1
(︄

1 +
∞∑︂
n=1

(βx)n
(n+ 1)!

)︄−1

.

It is now straightforward to verify the claimed differentiability and boundedness
property if the assumed conditions are satisfied, by continuously extending the
function at zero and applying the product rule. We infer from boundedness the
L2-integrability of (4.12) for F = F (i). In particular, for n = 0, 1 we again obtain
a bound of the form (4.13) for F = F (i), by noting that σβ(x) = β−1σ1(βx), and
so σ′

β(x) = σ′
1(βx), supy |σ1(y)|⟨y⟩−1 < ∞, and supy |σ′

1(y)| < ∞. Finally, we
conclude that the differentiability, the L2-integrability of (4.12) and the bound
(4.13) follow for F = ∑︁N

i=1 λiF
(i) from the linearity of τβ.

Remark 4.4
Let X : R3 → L(Hp) be an element of the sets (3.2) or (3.3) in Hypothesis B-LR.
Then, we see by Lemma 4.3 that the functions

R × S2 −→ L(Hp), (u,Σ) ↦→ (u2 + 1)∂nuτβ(X)(u,Σ), n ∈ {0, 1, 2, 3},

belong to L2(R × S2,L(Hp)).

4.2. Overview
The basic strategy for the proof relies on global positive commutators with an
additional auxiliary term. More precisely, for some self-adjoint A and self-adjoint
bounded operators A0 and CQ we consider the operator corresponding to the (for-
mal) sum

i[Lλ, A+ A0] + CQ.

By the abstract virial theorem Theorem 4.8 and by choosing an appropriate oper-
ator CQ, it can be shown that zero is an eigenvalue of this operator if zero is also
an eigenvalue of Lλ. The conjugate operator A consists of a sum of two terms, one
acting only on the atomic space Hp, the other one, called Af , on the field space F.

For the latter we make the same choice as established for the first time in
[JP96b] and later also used by Merkli and co-authors in [Mer01; FM04b; FMS04],
namely the second quantization of the generator of translations in the glued space,

Af = dΓ(i∂u).
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4.2. Overview

Let PΩ denote the orthogonal projection onto the subspace generated by the vac-
uum Ω (“vacuum subspace”). Formally, we obtain on F that

i[dΓ(û), Af ] = dΓ(Nf) ≥ PΩ
⊥,

which yields a positive contribution on the space orthogonal to the vacuum. The
composite Hilbert space

H := Hp ⊗ Hp ⊗ F

can be further decomposed by means of the projection

Π := 11L0=0 = 11Lp=0 ⊗ PΩ (4.14)

as
H = ran(Idp ⊗ Idp ⊗P⊥

Ω ) ⊕ ran Π ⊕ ran(11Lp ̸=0 ⊗ PΩ). (4.15)

To obtain a positive operator on ran Π, we consider a self-adjoint operator A0 ∈
L(H), which is chosen in such a way that the Fermi Golden Rule condition (3.9)
implies that

iΠ[Lλ, A0]Π > 0.

This is the same method as in [FM04b; FMS04].
In the case of finitely many eigenvalues (or for finite Jd), this expression (or

its restriction to finitely many modes) is additionally bounded from below by
a positive constant, which is essential for our proof. In case of infinitely many
eigenvalues with an accumulation at zero, this is not necessarily true and would
require further work (cf. Remark 7.9). Notice that we have some error terms
corresponding to the diagonal block of i[Lλ, A0] with respect to the projection Π⊥

and the remaining non-diagonal blocks. All the details can be found in Section 7.1.
Recall that Pdisc denotes the spectral projection to the discrete spectrum of Hp

and Pess = Pdisc
⊥. The third space in (4.15) can decomposed further by use of

11Lp ̸=0 = (Pess ⊗ Pess) ⊕ (Pess ⊗ Pdisc) ⊕ (Pdisc ⊗ Pess) ⊕ 11Lp ̸=0(Pdisc ⊗ Pdisc).
(4.16)

On the space generated by the first projection Pess ⊗Pess two different approaches
are elaborated in this thesis, depending on whether we consider the LR or SR
setting.

The LR case (Hypothesis A-LR) is similar to [FMS04]. Let

AD := 1
4(p̂x̂ + x̂p̂)
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be the generator of dilations. Furthermore, let χ = χ̃(Hp) for a real-valued function
χ̃, such that χ2Hp is bounded and χ̃ is supported on the non-negative (essential)
spectrum of Hp, i.e., χ2Hp > 0. It will be chosen as

χ = (Hp + Cp)−1/2χ1(Hp),

where Cp > − inf σ(Hp) and χ1 is a smooth function supported on the positive
real line. Then we define analogously to [FMS04]

Alr
p := χADχ

and combine this with the conjugate field operator to an operator on H by

Alr := (Alr
p ⊗ Idp − Idp ⊗Alr

p ) ⊗ Idf + Idp ⊗ Idp ⊗Af .

This yields

i[Lλ, Alr] = (χ2Hp ⊗ Idp + Idp ⊗χ2Hp) ⊗ Idf +ˆ︂Nf + λW lr
1 ,

where ˆ︂Nf := Idp ⊗ Idp ⊗Nf and W lr
1 := i[W,Alr]. For λ = 0, this operator is strictly

positive on ran(Pess ⊗Pess) ⊗F and bounded from below by a positive constant on
ran ˆ︂Nf . As Alr is unbounded, it is necessary to use an appropriate virial theorem,
in our case Theorem 4.8. For λ ̸= 0, the commuted interaction term W lr

1 might
contain a negative contribution and it has to be treated together with the other
error terms (see below).

In the SR case, that is, when the potential satisfies Hypothesis A-SR, we choose
a different conjugate operator. We first diagonalize the non-negative part of Hp
with generalized eigenfunctions corresponding to the continuous spectrum, the
scattering functions, which we recall in Section 6.1. This yields a unitary map Vc
between the non-negative eigenspace of Hp and L2(R3), the scattering space. It
has the property that V ∗

c HpVc = k̂
2, where now k̂ = (k̂1, k̂2, k̂3) denotes the vector

of multiplication operators in the scattering space. Then taking the commutator
with

Asr
p := V ∗

c FADF−1Vc = V ∗
c (−AD)Vc,

where F denotes the Fourier transform, has the effect that

i[Hp, A
sr
p ] = V ∗

c k̂
2
Vc = PessHp,

which is strictly positive on ranPess. Once more, we combine Af and Asr
p to an

operator on H by

Asr = (Asr
p ⊗ Idp − Idp ⊗Asr

p ) ⊗ Idf + Idp ⊗ Idp ⊗Af ,
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which yields

i[Lλ, Asr] = (PessHp ⊗ Idp + Idp ⊗PessHp) ⊗ Idf +ˆ︂Nf + λW sr
1 ,

where W sr
1 := i[W,Asr]. For λ = 0 the operator i[Lλ, Asr] is again strictly positive

on ran(Pess ⊗ Pess) ⊗ F and bounded from below by a positive constant on ran ˆ︂Nf .
In order to be able to apply the virial theorem Theorem 4.8, it is necessary that
the first and third commutators are bounded on the atomic space (cf. (4.25) and
(4.26)). In contrast to the LR setting, where we introduced the energy cutoff func-
tion χ, this is not the case for the commutators with Asr, as PessHp is unbounded.
Thus, one has to include a regularization in Asr

p . The exact definition of Asr and
of a regularized version A(ϵ), as well as the verification of the conditions for the
virial theorem, can be found in Section 6.3.

For the space corresponding to the last three projections in (4.16) we choose
an operator Q on Hp ⊗ Hp given as a bounded continuous function of Lp, which
vanishes at the origin. We add a suitable operator T depending on the interaction
and λ to accomplish

⟨ψ, (Q⊗ PΩ + T )ψ⟩ = 0
for all ψ ∈ kerLλ. By construction, Q⊗ PΩ is strictly positive on

ran(11Lp ̸=0 ⊗ PΩ),

and bounded from below by a positive constant in the case of finitely many eigen-
values. The operator T will be viewed as an error term which will be estimated
by ˆ︂Nf .

Finally, we have seen that there arise further error terms from the commuted
interaction W lr

1 or W sr
1 , and from the remaining blocks of i[Lλ, A0]. The general

idea to control them is to estimate them by a sum of ˆ︂Nf and some bounded terms on
Hp ⊗Hp ⊗ranPΩ, respectively. It is for the latter that we need the decompositions
(4.15) and (4.16) as well as the corresponding positive operators mentioned. On
ran(Pess⊗Pess) we need in addition that the error terms are sufficiently localized. In
the LR case we estimate them by ⟨x̂⟩−4 and prove a generalized Birman-Schwinger
bound (Proposition B.13) to show that

(Hp + Cp)−1/2(−∆)(Hp + Cp)−1/2 − λ ⟨x⟩−4 ≥ 0

for λ > 0 sufficiently small. In the SR case we prove that they are bounded by
⟨q̂⟩−2, where q̂ := i∇k in the scattering space, and then use that

k̂
2

− λq̂−2 > 0

for λ > 0 sufficiently small (cf. [RS2, section X.2]).

57



4. Concepts of the Proof

4.3. Abstract Virial Theorem
In this section we recall the abstract virial theorem of [FM04b; FMS04]. It is based
on Nelson’s commutator theorem, which can be used for proving self-adjointness
of operators which are not bounded from below. An important notion will be that
of a GJN triple.
Definition 4.5 (GJN triple)
Let H be a Hilbert space, D ⊆ H a core for a self-adjoint operator Y ≥ Id, and X
a symmetric operator on D. We say the triple (X, Y,D) satisfies the Glimm-Janne-
Nelson (GJN) condition, or that (X, Y,D) is a GJN-triple, if there is a constant
C < ∞, such that for all ψ ∈ D,

∥Xψ∥ ≤ C∥Y ψ∥, (4.17)
±i (⟨Xψ, Y ψ⟩ − ⟨Y ψ,Xψ⟩) ≤ C ⟨ψ, Y ψ⟩ . (4.18)

Theorem 4.6 (GJN commutator theorem, [RS2, Theorem X.37])
If (X, Y,D) satisfies the GJN condition, then X determines a self-adjoint operator
(again denoted by X), such that D(X) ⊇ D(Y ). Moreover, X is essentially self-
adjoint on any core for Y , and (4.17) is valid for all ψ ∈ D(Y ).
A consequence is that the unitary group generated by X leaves the domain of Y
invariant. The concrete formulation is taken from [FM04b].
Theorem 4.7 (Invariance of domain, [Frö77])
Suppose (X, Y,D) satisfies the GJN condition. Then, for all t ∈ R, eitX leaves
D(Y ) invariant, and there is a constant κ ≥ 0 such that⃦⃦⃦

Y eitXψ
⃦⃦⃦

≤ eκ|t| ∥Y ψ∥ , ψ ∈ D(Y ). (4.19)

For operators X, Y, Z defined on a common domain D and D ⊆ D(X∗),D(Y ∗), we
say that Z = [X, Y ] in the form sense if and only if

⟨X∗ϕ, Y ψ⟩ − ⟨Y ∗ϕ,Xψ⟩ = ⟨ϕ, Zψ⟩ (4.20)

holds for all ϕ, ψ ∈ D.
Based on the GJN commutator theorem, we next describe the setting for a

general virial theorem. Suppose one is given a self-adjoint operator Λ ≥ Id with
core D ⊆ H, and operators L,A,N,D,Cn, n ∈ {0, 1, 2, 3}, all symmetric on D,
and satisfying

D = i[L,N ], (4.21)
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4.3. Abstract Virial Theorem

and

C0 = L, (4.22)
Cn+1 = i[Cn, A], n ∈ {0, 1, 2}, (4.23)

in the form sense on D. Furthermore we shall assume:

(V1) (X,Λ,D) satisfies the GJN condition for X = L,N,D,Cn, n ∈ {0, 1, 2, 3}.
Consequently all these operators determine self-adjoint operators, which we
denote by the same letters.

(V2) A is self-adjoint, D ⊆ D(A), and eitA leaves D(Λ) invariant.

Theorem 4.8 (Abstract virial theorem, [FM04b, Theorem 3.2])
Let Λ ≥ Id be a self-adjoint operator in H with core D ⊆ H, and let L,A,N,D,Cn,
n ∈ {0, 1, 2, 3}, be symmetric on D satisfying (4.21)–(4.23). Assume (V1) and
(V2) hold. Furthermore, suppose that N and eitA commute for all t ∈ R in the
strong sense on D, and that there exist 0 ≤ p < ∞ and C < ∞ such that

∥Dψ∥ ≤ C
⃦⃦⃦
N1/2ψ

⃦⃦⃦
, (4.24)

∥C1ψ∥ ≤ C ∥Npψ∥ , (4.25)
∥C3ψ∥ ≤ C

⃦⃦⃦
N1/2ψ

⃦⃦⃦
, (4.26)

for all ψ ∈ D. Then, if ψ ∈ D(L) is an eigenvector of L, there is a sequence of
approximating eigenvectors (ψn)n∈N in D(L) ∩ D(C1) such that limn→∞ ψn = ψ in
H, and

lim
n→∞

⟨ψn, C1ψn⟩ = 0.

59





5. Virial Theorem in the
Long-Range Case

In this chapter we verify the conditions for the abstract virial theorem Theorem 4.8
in the case that Hypotheses A-LR and B-LR hold. For the atomic space we
use the generator of dilations as conjugate operator. However, in the same way
as in [FMS04], we have to include an additional cutoff χ with respect to the
energy because the virial theorem requires that the commutators are bounded
on the atomic space. The application of the abstract virial theorem then yields
the concrete version Theorem 5.5 – the main result of this chapter. Many of the
arguments here are inspired by [FMS04], but had to be adjusted for more general
energy cutoff functions. In particular, we want to admit functions, which are not
compactly supported but still exhibit a sufficiently strong decay behavior for high
energies, such that the commutators are bounded on the atomic space.

Our proof is elaborated for a rather general cutoff function in the first section.
The necessary conditions on χ, which will be used in the proof, are collected in
Hypothesis C. In the second part we make a concrete choice for χ and show that
Hypothesis C is indeed fulfilled. In particular, this will be used for treating atoms
with only finitely many bound states.

5.1. General Cutoff Function
First we state the necessary conditions on the energy cutoff function. Then we
make the choices for the operators L,A,N,D,Cn, n ∈ {0, 1, 2, 3}, in Section 4.3.
Subsequently, we need to verify the GJN conditions for the various operators. The
most tedious part will be the verification for the commutators up to third order
(Proposition 5.4).

The cutoff function is given as operator χ ∈ L(Hp) which will be subject to the
following conditions.
Hypothesis C
For all j ∈ {1, 2, 3} we have that

(χ1) χ = f(Hp) for some continuous function f ,
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5. Virial Theorem in the Long-Range Case

(χ2) χ maps D(p̂2) to D(p̂2), and ranχ ⊆ D(|p̂|),

(χ3) p̂jχ and χp̂j (defined on D(p̂j)) are bounded,

(χ4) χ, p̂jχ, χp̂j map D(|x̂|n) to D(|x̂|n), and the operators

⟨x̂⟩±n p̂sjχp̂tj ⟨x̂⟩∓n , s, t ∈ {0, 1}, s+ t ≤ 1,

are bounded for all n ∈ {1, 2, 3, 4},

(χ5) the following operators on C∞
c (R3) are bounded:

[χ, x̂j], [[χ, x̂j], x̂j], [χ,AD], [[χ,AD], x̂j], [[χ,AD], χADχ],
[χ2Hp, AD], [χ2Hp, x̂j].

Remark 5.0
In particular, (χ4) implies that the operators

⟨x̂⟩−(n+1) χADχ ⟨x̂⟩n , ⟨x̂⟩n χADχ ⟨x̂⟩−(n+1) , n ∈ {1, 2, 3},

are bounded.

We choose the operators from Section 4.3 as follows. On the atomic space Hp
we define the conjugate operator with dense domain C∞

c (R × S2) as

Alr
p := χADχ,

and the bounding operator with the same domain as

Λlr
p := p̂2 + x̂2.

Next, on the field space F we set

Af := dΓ(i∂u),
Λf := dΓ(û2 + 1),

with dense domain Ffin(C∞
c (R3)). Now, we can define on the dense subspace of

the composite space H,

Dlr := C∞
c (R3) ˆ︁⊗ C∞

c (R3) ˆ︁⊗ Ffin(C∞
c (R3)),
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the operators

Λlr := (Λlr
p ⊗ Idp + Idp ⊗Λlr

p ) ⊗ Idf + Idp ⊗ Idp ⊗Λf ,

Alr := (Alr
p ⊗ Idp − Idp ⊗Alr

p ) ⊗ Idf + Idp ⊗ Idp ⊗Af ,

L := Lλ,

N := ˆ︂Nf + 1,
D := i[Lλ, ˆ︂Nf ]. (5.1)

For operators X, Y in a Hilbert space H with a dense domain D ⊆ H we define
multiple commutators as operators ad(n)

Y (X), n ∈ N0 on the domain D as follows.
First, let ad(0)

Y (X) := X. Next, assume that ad(n)
Y (X) for some n ∈ N0 is an

operator on D. If there exists an operator Z on D such that

Z = i[ad(n)
Y (X), Y ]

holds in the form sense on D, that is, in the sense (4.20), it is necessarily unique and
will be denoted by ad(n+1)

Y (X). If ad(n)
Y (X) is bounded or essentially self-adjoint,

the corresponding extension will be denoted by the same symbol. Furthermore,
we write adY (X) := ad(1)

Y (X).
Now we set on Dlr for n ∈ {1, 2, 3},

C lr
n := δn,1ˆ︂Nf + ad(n)

Alr
p
(Hp) ⊗ Idp +(−1)n+1 Idp ⊗ ad(n)

Alr
p
(Hp) + λW lr

n ,

where

W lr
n := ad(n)

Alr(Φ(I)) = Φ(I lr
n ), (5.2)

I lr
n (u,Σ) :=

n∑︂
l=0

(︄
n

l

)︄
(−i∂u)l

(︂
τβ(ad(n−l)

Alr
p

(G))(u,Σ) ⊗ Idp

− (−1)n−l Idp ⊗e−βu/2τβ(ad(n−l)
Alr

p
(G∗))(u,Σ)

)︂
. (5.3)

It is not a priori clear that the multiple commutators appearing in these formulas
are actually well-defined. This will be clarified in the further course of this section.

A standard tool will be the basic operator inequality

A∗B +B∗A ≤ A∗A+B∗B. (5.4)

Furthermore, we will use the following conventions. We say that an operator A is
bounded by B (or B-bounded) on a domain D if there exists a constant C such
that

∥Aψ∥ ≤ C(∥Bψ∥ + ∥ψ∥)
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for all ψ ∈ D. We say that A is form bounded by B on D if there exists a constant
C such that

|⟨ψ,Aψ⟩| ≤ C ⟨ψ,Bψ⟩

for all ψ ∈ D. For two operators A1, A2 we say similarly that the (formal) commu-
tator [A1, A2] (which does not need to exist in the strong sense) is form bounded
by B if there exists a constant C such that

|⟨A∗
1ψ,A2ψ⟩ − ⟨A∗

2ψ,A1ψ⟩| ≤ C ⟨ψ,Bψ⟩

for all ψ ∈ D.
We start by proving the GJN conditions for the easier cases.

Proposition 5.1
The following triples are GJN:

(1) (AD,Λlr
p , C

∞
c (R3)),

(2) (Hp,Λlr
p , C

∞
c (R3)),

(3) (ˆ︂Nf ,Λlr,Dlr),

(4) (Lλ,Λlr,Dlr),

(5) (D,Λlr,Dlr).

In particular, L = Lλ is essentially self-adjoint on Dlr for any λ ∈ R.

Proof. (1) There is a constant C such that for all j and all ψ ∈ C∞
c (R3),

⃦⃦⃦
p̂j x̂jψ

⃦⃦⃦2
=
⟨︂
ψ, x̂j p̂2

j x̂jψ
⟩︂

=
⟨︂
ψ, [x̂j, p̂2

j ]x̂jψ
⟩︂

+
⟨︂
ψ, p̂2

j x̂
2
jψ
⟩︂

≤ C
(︃⃦⃦⃦

p̂2
jψ
⃦⃦⃦2

+
⃦⃦⃦
x̂2
jψ
⃦⃦⃦2
)︃
,

where we used [x̂j, p̂j] = i and Cauchy-Schwarz. As x̂2 and p̂2 are bounded by
Λlr

p = p̂2 + x̂2, we conclude that p̂x̂ is bounded by Λlr
p as well. Thus, the first

GJN condition is satisfied. The second GJN condition follows from ±i[AD,Λlr
p ] =

±(x̂2 − p̂2) ≤ Λlr
p on C∞

c (R3).

(2) As the potential is assumed to be bounded, Hp is bounded by p̂2, thus also by
Λlr

p . For the second GJN condition we compute on C∞
c (R3),

[Hp, p̂2 + x̂2] = [V, p̂2] + [p̂2, x̂2].
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For the first term, we get

±i[V, p̂2] = ±i
∑︂
j

(p̂j[V, p̂j] + [V, p̂j]p̂j) ≤ C(p̂2 + 1)

for some constant C, since derivatives of V are bounded due to Hypothesis A-LR
(1). The second term [p̂2, x̂2] equals −8iAD, which, as already shown in (1), is form
bounded by Λlr

p .

(3) Note that it is sufficient to show that (Nf ,Λf ,Ffin(C∞
c (R3))) is a GJN triple.

We have Nf ≤ dΓ(û2 + 1) on Ffin(C∞
c (R3)), and [Nf , dΓ(û2 + 1)] = 0, which implies

both GJN conditions.

(4) Remember the definition of Lλ on Dlr,

Lλ = L0 + λW, L0 = (Hp ⊗ Idp − Idp ⊗Hp) ⊗ Idf + Idp ⊗ Idp ⊗dΓ(û).

Clearly, Hp is bounded by Λlr
p and dΓ(û) is bounded by Λf , hence L0 is bounded

by Λlr. W is bounded by ˆ︂Nf
1/2 due to the standard estimates for creation and

annihilation operators (Lemma A.3), and thus also bounded by Λ1/2
f . Therefore,

the first GJN condition is satisfied.
For the second GJN condition, note that we have

[L0,Λlr] = ([Hp,Λlr
p ] ⊗ Idp − Idp ⊗[Hp,Λlr

p ]) ⊗ Idf .

Due to (2), [Hp,Λlr
p ] is form bounded by Λlr

p . Thus, [L0,Λlr] is form bounded as
well by Λlr.

It remains to show that the commutator adΛlr(Φ(I)) is form bounded by Λlr.
First note that

ad ˆ︁Λf
(Φ(I)) = i

(︂
a((û2 + 1)I) − a∗((û2 + 1)I)

)︂
holds on Dlr by Lemma A.5. By Hypothesis B-LR we know that (u,Σ) ↦→ (u2 +
1)I(u,Σ) is in L2(R × S2,L(Hp ⊗ Hp)). Hence by Lemma A.3,

± ad ˆ︁Λf
(Φ(I)) ≤ C(ˆ︂Nf + 1) ≤ C ′Λlr

for some constants C,C ′. By Hypothesis B-LR we know that

(u,Σ) ↦→ τβ([G, p̂j])(u,Σ), (u,Σ) ↦→ τβ([G, x̂j])(u,Σ)
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are in L2(R× S2,L(Hp)) for all j. Hence, the same applies to the operator-valued
functions

(u,Σ) ↦→ [Il(u,Σ), p̂j], (u,Σ) ↦→ [Il(u,Σ), x̂j].

Thus, for some constant C,

± adΛlr
p ⊗Idp ⊗ Idf (Φ(Il ⊗ Idp)) ≤ C(ˆ︂Nf + Λlr

p ⊗ Idp ⊗ Idf) ≤ CΛlr.

Analogously, we can show the same for the commutator

± adIdp ⊗Λlr
p ⊗Idf (Φ(Idp ⊗Ir)).

(5) We have

D = iλ(a(I) − a∗(I)). (5.5)

So the proof works analogously to the one of L.

We have seen that the verification of the GJN condition for the generator of dila-
tions AD was quite simple. However, including the cutoff χ makes it much more
difficult due to domain problems.
Lemma 5.2 (cf. [FMS04, Proposition 3.3])
(Alr

p ,Λlr
p , C

∞
c (R3)) is a GJN triple. Furthermore, there exists a constant C such

that
⃦⃦⃦
Alr

pψ
⃦⃦⃦

≤ C ∥⟨x̂⟩ψ∥ for all ψ ∈ D(|x̂|).

Proof. First note that χp̂x̂χ and χx̂p̂χ are well-defined on C∞
c (R3) because of the

assumptions on χ. We have

AD = 1
4(p̂x̂ + x̂p̂) = 1

4(2p̂x̂ + 3i).

Then for any j,

χp̂j x̂jχ = χp̂j x̂jχ ⟨x̂⟩−1 ⟨x̂⟩ ,

where χp̂j x̂jχ ⟨x̂⟩−1 is bounded, so Alr
p is bounded by |x̂| on C∞

c (R3) and therefore
also by Λlr

p , as x̂2 ≤ Λlr
p . Thus, the first GJN condition is satisfied.

In order to check the second one, let ψ ∈ C∞
c (R3). Then⟨︂

Alr
pψ,Λlr

pψ
⟩︂

=
⟨︂
ADχψ,Λlr

pχψ
⟩︂

+ E1,
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with E1 :=
⟨︂
ADχψ, [χ,Λlr

p ]ψ
⟩︂
. Now, as χψ ∈ D(Λlr

p ) and Λlr
p is essentially self-

adjoint on C∞
c (R3), we find a sequence (ϕn) in C∞

c (R3) such that ϕn n→∞→ χψ and
Λlr

pϕn → Λlr
pχψ. Then we get⟨︂

ADχψ,Λlr
pχψ

⟩︂
= lim

n→∞

⟨︂
ADχψ,Λlr

pϕn
⟩︂

= lim
n→∞

⟨︂
Λlr

pχψ,ADϕn
⟩︂

+
⟨︂
χψ, [AD,Λlr

p ]ϕn
⟩︂
.

A short calculation shows that

[AD,Λlr
p ] = 1

4[p̂x̂ + x̂p̂, p̂2 + x̂2] = 1
2[p̂x̂, p̂2 + x̂2] = i(p̂2 − x̂2)

holds on C∞
c (R3). As χψ ∈ D(p̂2) ∩ D(x̂2), we can bring i(p̂2 − x̂2) to the left of

the inner product and perform the limit. This yields⟨︂
ADχψ,Λlr

pχψ
⟩︂

= lim
n→∞

⟨︂
Λlr

pχψ,ADϕn
⟩︂

+ E2,

with E2 :=
⟨︂
χψ, i(p̂2 − x̂2)χψ

⟩︂
. As D(AD) ⊃ D(Λlr

p ), we have limn→∞ ADϕn =
ADχψ and thus,⟨︂

ADχψ,Λlr
pχψ

⟩︂
=
⟨︂
Λlr

pχψ,ADχψ
⟩︂

+ E2 =
⟨︂
Λlr

pψ,A
lr
pψ
⟩︂

− E1 + E2.

Therefore, in order to finish the proof, we have to show that there is a constant C
such that

|E1| , |E2| ≤ C
⟨︂
ψ,Λlr

pψ
⟩︂

for all ψ ∈ C∞
c (R3). The inequality for |E2| follows from the fact that p̂jχ, χp̂j

and [x̂j, χ] are bounded for all j. With regard to E1, using (χ5), we get

[χ,Λlr
p ] = [χ, p̂2] +

∑︂
j

(2[χ, x̂j]x̂j + [x̂j, [χ, x̂j]])

on C∞
c (R3), which is bounded by (Λlr

p )1/2, and

4[AD, χ] = [p̂x̂ + x̂p̂, χ] = 2[p̂x̂, χ] = 2
∑︂
j

(p̂j[x̂j, χ] + [p̂j, χ]x̂j),

which is bounded by (Λlr
p )1/2, as p̂j[x̂j, χ] and [p̂j, χ] are bounded operators. Using

these bounds, and the fact that AD is bounded by (Λlr
p )1/2, we get

|E1| ≤ (∥χADψ∥ + ∥[AD, χ]ψ∥)
⃦⃦⃦
[χ,Λlr

p ]ψ
⃦⃦⃦

≤ C
⃦⃦⃦
(Λlr

p )1/2ψ
⃦⃦⃦2

for some constant C.
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5. Virial Theorem in the Long-Range Case

Next, we show that the interaction terms, which appear in the field operators, are
sufficiently bounded. This will be used in the subsequent proposition, which shows
that the commutators up to third order satisfy the GJN condition.
Lemma 5.3
For all n,m ∈ {0, 1, 2, 3}, n ∈ N0, j ∈ {1, 2, 3}, and for all (u,Σ), the operators

(1) ∂mu τβ

(︃
ad(n)

Alr
p
(G)

)︃
(u,Σ)

(2) adp̂j

(︃
∂mu τβ

(︃
ad(n)

Alr
p
(G)

)︃
(u,Σ)

)︃

(3) adx̂j

(︃
∂mu τβ

(︃
ad(n)

Alr
p
(G)

)︃
(u,Σ)

)︃
are well-defined, and the corresponding functions R×S2 → L(Hp) of (u,Σ) belong
to L2(R × S2,L(Hp)).

Proof. First we treat the expression in (1). We can write ad(n)
Alr

p
(G(ωΣ)) as a linear

combination of terms

(χADχ)n1 ⟨x̂⟩−n1 ⟨x̂⟩n1 G(ωΣ) ⟨x̂⟩n2 ⟨x̂⟩−n2 (χADχ)n2 n1, n2 ∈ {0, 1, 2, 3}.

Now, note that (χADχ)n1 ⟨x̂⟩−n1 and ⟨x̂⟩−n2 (χADχ)n2 are bounded due to (χ4) (see
Remark 5.0). Thus, it suffices to prove that

(u,Σ) ↦→ τβ(⟨x̂⟩n1 G(·) ⟨x̂⟩n2)(u,Σ)

is three times weakly differentiable with respect to u and belongs to L2(R ×
S2, L(Hp)). This follows directly from Lemma 4.3 where we insert F (ω,Σ) :=
⟨x̂⟩n1 X(ωΣ) ⟨x̂⟩n2 and note that the conditions in Lemma 4.3 are satisfied due to
Hypothesis B-LR.

Next, we obtain with the same strategy that

(u,Σ) ↦→ ∂mu τβ

(︃
ad(n)

Alr
p

(adX(G))
)︃

(u,Σ)

belongs to L2(R×S2,L(Hp)) for X ∈ {p̂j, x̂j : j ∈ {1, 2, 3}} and n,m ∈ {0, 1, 2, 3}.
Using (χ4) one sees that

⟨x̂⟩−(n+1) [(Alr
p )n, p̂j + x̂j] ⟨x̂⟩n , n ∈ N0,

is in fact bounded. Thus, we infer that

(u,Σ) ↦→ ∂mu τβ

(︃
adX(ad(n)

Alr
p

(G))
)︃

(u,Σ)
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5.1. General Cutoff Function

belongs to L2(R×S2,L(Hp)) for X ∈ {p̂j, x̂j : j ∈ {1, 2, 3}} and n,m ∈ {0, 1, 2, 3},
and therefore, the same applies to the operators in (2) and (3).

Proposition 5.4
(C lr

n ,Λ,Dlr), n ∈ {1, 2, 3}, is a GJN triple. Furthermore, the estimates (4.25) and
(4.26) are satisfied.

Proof. Step 1: ad(n)
Alr

p
(Hp), n ∈ {1, 2, 3}, is bounded.

We have

i[Hp, AD] = Hp + ˜︁V ,
on C∞

c (R3), where

˜︁V (x) := −1
2x∇V (x) − V (x), x ∈ R3. (5.6)

By Hypothesis A-LR (1) we know that ˜︁V is a bounded function. Then we get that

adAlr
p
(Hp) = χ(Hp + ˜︁V )χ

is bounded. Next, in the strong sense on C∞
c (R3),

ad(2)
Alr

p
(Hp) = i(χ[χ2Hp, AD]χ+ [χ ˜︁V χ,Alr

p ]). (5.7)

(χ5) yields directly that the first term is bounded. The second term in (5.7) is
bounded since ˜︁V ⟨x̂⟩, [ ˜︁V ,AD] and [χ,AD] are bounded, cf. Hypothesis A-LR (1)
and (χ5), respectively. Next, we have

ad(3)
Alr

p
(Hp) = −([χ[Hpχ

2, AD]χ,Alr
p ] + [[χ ˜︁V χ,Alr

p ], Alr
p ]). (5.8)

The second term is bounded since ˜︁V ⟨x̂⟩, ad(2)
AD

( ˜︁V ) (by Hypothesis A-LR (1)) and
ad(2)

AD
(χ) are bounded. The first term of (5.8) can be written as

[Hpχ
2[χ,AD]χ,Alr

p ] + [χ[χHp, AD]χ2, Alr
p ].

Then it is not difficult to see that these terms are bounded as well, using the same
methods as above, in particular (χ5), which yields that ad(2)

AD
(χ) is bounded.

Step 2: The first GJN condition is satisfied for (C lr
n ,Λlr,Dlr), n ∈ {1, 2, 3}.

Due to Lemma 5.3 we know that the expressions in the field operators indeed
belong to L2(R × S2, L(Hp)). Hence, W lr

n , n ∈ {1, 2, 3}, is bounded by N1/2
f , thus

also by Λ1/2
f .
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5. Virial Theorem in the Long-Range Case

Step 3: The commutator adΛlr(W lr
n ), n ∈ {1, 2, 3}, is form bounded by Λlr.

First we have

± ad ˆ︁Λf
(Φ(I lr

n )) = ±i
(︂
a((û2 + 1)I lr

n ) − a∗((û2 + 1)I lr
n )
)︂
,

where we know from Remark 4.4 that (û2 + 1)I lr
n ∈ L2(R× S2,L(Hp ⊗ Hp)). This

is form bounded by ˆ︂Nf + 1.
Furthermore, we have to show that the commutator

ad(Λlr
p ⊗Idp + Idp ⊗Λlr

p )⊗Idf (Φ(I lr
n ))

is form bounded by Λlr. It is sufficient to show that the map

(u,Σ) ↦→ adp̂j+x̂j
(I lr
n,α(u,Σ)), (5.9)

is in L2(R × S2,L(Hp)) for all α ∈ {l, r}, n ∈ {1, 2, 3} and all j. This follows from
Lemma 5.3.

Step 4: The second GJN condition for (C lr
1 ,Λlr,Dlr) holds.

In view of the previous step it remains to show that adΛlr
p
(χ(H + ˜︁V )χ) is form

bounded by Λ. We have

[χ(Hp + ˜︁V )χ,Λlr
p ] = [χ2Hp + χ ˜︁V χ,Hp − V ] + [χ2Hp + χ ˜︁V χ, x̂2]

= −[χ2Hp, V ] + [χ ˜︁V χ, p̂2] + [χ2Hp, x̂2] + [χ ˜︁V χ, x̂2].

Since χ2Hp and V are bounded, [χ2Hp, V ] bounded. The second one is form
bounded by p̂2, since ⃓⃓⃓⟨︂

ψ, [χ ˜︁V χ, p̂2]ψ
⟩︂⃓⃓⃓

≤ 2
⟨︂
|p̂|χ ˜︁V χψ, |p̂|ψ

⟩︂
for ψ ∈ C∞

c (R3), and |p̂|χ ˜︁V χ is bounded. Next, as [χ2Hp, x̂j] is bounded (due to
(χ5)), the operator [χ2Hp, x̂2] is form bounded by x̂2. Finally,⟨︂

ψ, [χ ˜︁V χ, x̂2]ψ
⟩︂

≤ 2
⃓⃓⃓⟨︂
ψ, χ ˜︁V [χ, x̂2]ψ

⟩︂⃓⃓⃓
.

By expanding [χ, x̂2] as above and using that [χ, x̂j] is bounded for all j, we see
that [χ ˜︁V χ, x̂2] is form bounded by Λlr

p .

Step 5: The second GJN condition for (C lr
2 ,Λlr,Dlr) holds.

It remains to show that [ad(2)
Alr

p
(Hp),Λlr

p ] is form bounded by Λlr
p . By equation

(5.7) for ad(2)
Alr

p
(Hp), using (χ5), we obtain that [ad(2)

Alr
p
(Hp), p̂j] is bounded for all
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j. Therefore, we can estimate the commutator with p̂2 in the form sense by p̂2.
Similarly, for the commutator with x̂2, it suffices to show that [ad(2)

Alr
p
(Hp), x̂j] is

bounded. Expanding the commutators in (5.7) this follows since the operators
χ2Hp, [χ2Hp, x̂j], [[χ,AD], x̂j] and [χ, x̂j] are bounded by assumption.

Step 6: The second GJN condition for (C lr
3 ,Λlr,Dlr) holds.

We use i[ad(3)
Alr

p
(Hp), p̂2] = −2 Re[ad(2)

Alr
p
(Hp)Alr

p , p̂
2] and get for all j,

[ad(2)
Alr

p
(Hp)Alr

p , p̂j] = ad(2)
Alr

p
(Hp)[Alr

p , p̂j] + [ad(2)
Alr

p
(Hp), p̂j]χADχ.

It is not difficult to check that [Alr
p , p̂j] ⟨x̂⟩−1 is bounded due to (χ4). Further-

more, we have seen above that ad(2)
Alr

p
(Hp) and [ad(2)

Alr
p
(Hp), p̂j] are bounded. Thus,

[ad(2)
Alr

p
(Hp)Alr

p , p̂j] ⟨x̂⟩−1 is bounded and we get that the commutator with p̂2 is form
bounded by Λlr

p . It remains to estimate the commutator with x̂2. We use the same
trick

i[ad(3)
Alr

p
(Hp), x̂2] = −2 Re[ad(2)

Alr
p
(Hp)Alr

p , x̂
2]

and get for all j,

[ad(2)
Alr

p
(Hp)Alr

p , x̂j] = ad(2)
Alr

p
(Hp)[Alr

p , x̂j] + [ad(2)
Alr

p
(Hp), x̂j]χADχ.

Again, [Alr
p , x̂j] ⟨x̂⟩−1 is bounded because of (χ4). Furthermore, we have seen above

that ad(2)
Alr

p
(Hp) and [ad(2)

Alr
p
(Hp), x̂j] are bounded. Thus, the commutator with x̂2 is

form bounded by Λlr
p .

Finally, since we have shown that ad(n)
Alr

p
(Hp), n ∈ {1, 3} is bounded, and W lr

n ,

n ∈ {1, 3}, is bounded by ˆ︂Nf
1/2, (4.25) and (4.26) are satisfied.

Now, we can apply the abstract virial theorem for our setting and obtain the
following concrete version. To this end let qlr

1 denote the quadratic form corre-
sponding to C lr

1 (which is bounded from below, cf. Proposition 7.8).
Theorem 5.5 (Concrete virial theorem)
Assume Hypothesis C holds for some χ and there exists ψ ∈ D(Lλ) with Lλψ = 0.
Then ψ ∈ D(qlr

1 ) and qlr
1 (ψ) ≤ 0.

Proof. First, we apply the virial theorem Theorem 4.8 with Λ = Λlr, L = Lλ,
N = ˆ︂Nf +1, D as in (5.1), and A = Alr. We have seen in Proposition 5.1 and Propo-
sition 5.4 that (V1) is satisfied. Furthermore, by Lemma 5.2, (Alr

p ,Λlr
p , C

∞
c (R3)) is
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a GJN triple. Hence Theorem 4.6 shows that eitAlr
p , t ∈ R, leaves D(Λlr

p ) invariant.
Furthermore, on Ffin(C∞

c (R3)),

Λfe
itAf = eitAf (Λf + dΓ(2ût+ t2)), t ∈ R.

Thus, for some fixed t there is a constant C such that
⃦⃦⃦
Λfe

itAfψ
⃦⃦⃦

≤ C ∥Λfψ∥ for all
ψ ∈ Ffin(C∞

c (R3)). As Ffin(C∞
c (R3)) is a core for Λf , we find eitAf D(Λf) ⊆ D(Λf).

Hence, we conclude that D(Λ) is invariant under the unitary group associated to
Alr and therefore (V2) holds. Also, by definition of Alr it is clear that ˆ︂Nf and eitAlr ,
t ∈ R, commute in the stronge sense on Dlr. By (5.5), one sees that D is bounded
by N

1/2
f , which implies (4.24). Furthermore, (4.25) and (4.26) have been verified

in Proposition 5.4.
Therefore, Theorem 4.8 yields a sequence (ψn)n∈N in D(C lr

1 ) ∩ D(Lλ) such that
limn→∞ ψn = ψ and limn→∞

⟨︂
ψn, C

lr
1 ψn

⟩︂
= 0. Now, as qlr

1 is closed, and thus
continuous from below, we obtain ψ ∈ D(qlr

1 ) and

qlr
1 (ψ) ≤ lim

n→∞
qlr

1 (ψn) = 0.

5.2. An Explicit Cutoff Function
Now, we want to present an example for a cutoff function χ such that Hypothesis C
is satisfied. This will be used for treating finitely many eigenvalues.

First, we discuss the cutoff for high energies. Let Cp > − inf σ(Hp). Then we
set

χ0 := (Hp + Cp)−1/2. (5.10)

Notice that the choice is accomplished in such a way that χ2Hp is bounded.

Lemma 5.6
The operator χ0 given as in (5.10) satisfies the conditions given in Hypothesis C.

Proof. (χ1), (χ2) and (χ3) are easy to check: We have χ = f(Hp) for f(t) =
(t + Cp)−1/2. Furthermore, ranχ0 ⊆ D(|p̂|), χ0 leaves D(p̂2) = D(Hp) invariant,
and χ0p̂j, p̂jχ0 are bounded for all j. (χ4) follows directly from Proposition B.6.
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To check (χ5) using (B.5), one obtains

[χ0, x̂j] = 1
π

∫︂ ∞

0

1√
t
[Rp(t), x̂j]dt

= 1
π

∫︂ ∞

0

1√
t
Rp(t)[x̂j, p̂2]Rp(t)dt

= 2i
π

∫︂ ∞

0

1√
t
Rp(t)p̂jRp(t)dt,

showing that [χ0, x̂j] and p̂j[χ0, x̂j] are bounded. Using (B.5) again yields that
[[χ0, x̂j], x̂j] is bounded. The same trick applies to

[χ0, AD] = − 1
π

∫︂ ∞

0

1√
t
Rp(t)[Hp, AD]Rp(t)dt

= i
π

∫︂ ∞

0

1√
t
Rp(t)(Hp + ˜︁V )Rp(t)dt, (5.11)

which shows that [χ0, AD] is bounded. Then, expanding [Rp(t)(Hp + ˜︁V )Rp(t), x̂j]
and evaluating

[Rp(t), x̂j] = 2iRp(t)p̂jRp(t), [Hp + ˜︁V , x̂j] = −2ip̂j,

yields that [[χ0, AD], x̂j] is bounded as well. Furthermore, [[χ0, AD], χ0ADχ0] is
bounded because of (5.11) and the fact that the commutators of χ0ADχ0 with
Rp(t), Hp and ˜︁V , respectively, are bounded. For the latter recall that ˜︁V ⟨x̂⟩ is
bounded. Finally,

χ2
0Hp = Idp −CpRp (5.12)

and the preceding results imply that [χ2
0Hp, AD] and ⟨x̂⟩χ2

0Hp ⟨x̂⟩−1 are bounded
as well.

Next, we have add a cutoff for the negative energy to χ0.
Proposition 5.7
Let χ̃1 ∈ C10(R) be a function such that

χ̃1(e) =
⎧⎨⎩0 : e ≤ e1,

1 : e ≥ 0,

where e1 < 0. Then χ = χ0χ1, where χ1 := χ̃1(Hp), satisfies the conditions given
in Hypothesis C.
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Proof. Let χ̃2 := (1−χ̃1)φ ∈ C10
c (R), where φ ∈ C∞

c (R) such that φ|[inf σ(Hp),0) ≡ 1.
We write χ2 := χ̃2(Hp) and note that χ2 = Idp −χ1. By Lemma 5.6 and because
the conditions (χ1), (χ2), (χ3), (χ4) and the first four commutators in (χ5) are
linear in χ, it suffices to verify all conditions except the last two commutators in
(χ5) for χ0χ2.

The conditions (χ1), (χ2) and (χ3) are satisfied by definition and the fact that
χ̃2 is compactly supported. (χ4) follows from Corollary B.9.

It remains to verify (χ5). For all j, [χ2, x̂j] is bounded due to Proposition B.11
with M = 1 and Y = p̂2 + x̂2, therefore also [χ0χ2, x̂j] by Lemma 5.6.

Next, we show that [[χ2, x̂j], x̂j] (and therefore [[χ0χ2, x̂j], x̂j]) is bounded. This
follows by a similar commutator expansion argument. Set χ̃3(s) := (s+Cp)2χ̃2(s)
and χ3 := χ̃3(Hp). Then we have χ̃3 ∈ C10

c (R) as well, so

[χ2, x̂j] = [Rpχ3Rp, x̂j]

can be written as a sum of Rp[χ3, x̂j]Rp and some bounded operators. Now, also
the second commutator with x̂j can be expressed as a sum of bounded operators
plus

Rp[[χ3, x̂j], x̂j]Rp. (5.13)

Using the commutator expansions of Theorem B.10 and Proposition B.11, on easily
checks that (5.13) is bounded as well.

[χ2, AD] is bounded due to Proposition B.11 with M = 1 and Y = p̂2 + x̂2, and
so is [χ0χ2, AD].

We now consider [[χ2, AD], x̂j]. Set χ̃4(s) := (s + Cp)χ̃2(s) and χ4 := χ̃4(Hp).
Then

[χ2, AD] = [Rp, AD]χ4 +Rp[χ4, AD]
= Rp(Hp + ˜︁V )Rpχ4 +Rp[χ4, AD].

The commutator of the first operator with x̂j is bounded, which follows from a
short computation and the previous arguments. For the second operator we use
the commutator expansion

Rp[χ4, AD] = (2π)−1/2
∫︂
χ̃4(s)

∫︂ s

0
e−i(s−s1)HpRp(Hp + ˜︁V )eis1Hpds1ds,

and then realize that the commutator of x̂j with the integrand is bounded.
The same is true if we take the commutator of the integrand with χADχ.
It remains to show that [χ2Hp, AD] and [χ2Hp, x̂j] are bounded. By (5.12),

we have χ2Hp = (Idp −CpRp)χ2
1. Then it follows from the fact that [χ1, AD] and

[χ1, x̂j] are bounded, as we have already seen.
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Remark 5.8 (A sharp cutoff function)
Alternatively to the choice of a smooth function in Proposition 5.7, one could also
consider a sharp cutoff at zero for negative energy. Let

χ = (Idp −pJd)χ0.

Then one can conclude from Lemma 5.6 that χ satisfies Hypothesis C provided
that pJd maps D(|x̂|n) to D(|x̂|n) for all n ∈ N, and the operators

⟨x̂⟩n pJd ⟨x̂⟩−n ,

and

[χ, pJd ], [x̂j, [x̂j, pJd ]], [pJd , Ap], [[pJd , Ap], x̂j], [[pJd , Ap], χApχ],

are bounded. This is obviously the case if pJd is a finite-dimensional projection,
that is, if Jd is finite.
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6. Virial Theorem in the
Short-Range Case

In the same way as in the previous chapter we have to choose the commutators and
verify the assumptions of Theorem 4.8, this time in the SR case. First, we repeat
the definition of scattering states (Section 6.1) and use those for the concrete choice
of the commutators (Section 6.2). The major difficulty in the verification of the
assumptions (Section 6.3) is to check that the commutators with the interaction
terms are bounded. This is much more complicated than in the LR case and
requires several bounds involving the scattering functions (see Section 6.4). Like
in the LR case, the application of the virial theorem then yields the concrete
version Theorem 6.5, which is the main result of this chapter.

6.1. Scattering States
In this part we recall the theory of generalized eigenstates (scattering states) and
the corresponding spectral decomposition.

We assume to have a potential V satisfying Hypothesis A-SR. The scattering
states ϕ(k, ·), k ∈ R3, are defined as generalized eigenvectors of the Schrödinger
operator,

(−∆ + V )ϕ(k, ·) = k2ϕ(k, ·),

or as solutions of the so-called Lippmann-Schwinger equation,

ϕ(k, x) = eikx − 1
4π

∫︂
R3

ei|k||x−y|

|x− y|
V (y)ϕ(k, y)dy. (6.1)

We discuss their properties in the following proposition which is basically a com-
bination of [RS3, Theorem XI.41] with the theory given in [Ike60] and [New12].
The scattering functions can be used for the spectral decomposition of the contin-
uous spectrum of Hp, which in our case coincides with the essential spectrum, see
Proposition 3.2. Denote by ϕn, n = 1, . . . , N , the eigenvectors of Hp and recall
that Pess is the projection to the essential spectrum [0,∞) of Hp.
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6. Virial Theorem in the Short-Range Case

Theorem 6.1 (cf. [RS3, Theorem XI.41] and [Ike60; New12])
Let f ∈ L2(R3).

(a) For all k ∈ R3 there exists a unique solution ϕ(k, ·) of (6.1) which obeys
|V |1/2ϕ(k, ·) ∈ L2(R3). Moreover, for every k ∈ R3 the function x ↦→ ϕ(k, x)
is continuous.

(b) The generalized Fourier transform

(Vcf)(k) := (2π)−3/2l.i.m.
∫︂
ϕ(k, x)f(x)dx,

where l.i.m.
∫︁
g(x)dx := L2-limR→∞

∫︁
|x|<R g(x)dx, exists.

(c) We have ran Vc = L2(R3) and

∥Vcf∥ = ∥Pessf∥ .

In particular, Vc is a partial isometry, Vc|ranPess : ranPess → L2(R3) is a
unitary operator, and VcV

∗
c = Id.

(d) We have the spectral decomposition

(Pessf)(x) = l.i.m.(2π)−3/2
∫︂

(Vcf)(k)ϕ(k, x)dk.

(e) If f ∈ D(Hp), then
(VcHpf)(k) = k2Vcf(k),

in other words, VcHpV
∗

c = k̂
2
.

The basic strategy for the proof of the theorem is to introduce the method of
modified square integrable scattering functions, which can be found in [Ike60;
RS3], originally developed by Rollnik. In particular, one introduces the so-called
modified Lippmann-Schwinger equation

˜︁ϕ(k, x) = |V (x)|1/2 eikx + (L|k|
˜︁ϕ(k, ·))(x), k, x ∈ R3, (6.2)

where
Lκψ(x) := − 1

4π

∫︂ |V (x)|1/2 eiκ|x−y|V (y)1/2

|x− y|
ψ(y)dy, κ ≥ 0, (6.3)

and V (y)1/2 := |V (y)|1/2 sgnV (y). It is elementary to see that Hypothesis A-SR
(1) implies that V is in the Rollnik class (cf. [Sim15, Theorem 1.22]), that is,∫︂

R3×R3

|V (x)V (y)|
|x− y|2

d(x, y) < ∞,
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6.1. Scattering States

and therefore the operator Lκ is a Hilbert-Schmidt operator. If for fixed k ∈
R3 the function ϕ(k, ·) obeys (6.1) and ϕ̃(k, ·) := |V |1/2ϕ(k, ·) is an L2-function,
then ϕ̃(k, ·) obeys (6.2), provided Hypothesis A-SR (1) holds (in fact it holds
for a larger class of potentials, see [RS3, section XI.6]). On the other hand, if
the modified Lippmann-Schwinger equation (6.2) has a unique L2-solution ϕ̃(k, ·),
then, as outlined in [RS3, section XI.6], the original Lippmann-Schwinger equation
(6.1) has a unique solution ϕ(k, ·) satisfying |V |1/2ϕ(k, ·) ∈ L2(R3). It is given by

ϕ(k, x) = eikx − 1
4π

∫︂ ei|k||x−y|

|x− y|
V (y)1/2 ˜︁ϕ(k, y)dy. (6.4)

Proof of Theorem 6.1. By the assumptions on the potential the operator Lκ de-
fined as in (6.3) is a Hilbert-Schmidt operator for all κ ≥ 0. Let

E := {κ ∈ (0,∞) : ∃0 ̸= ϕ̃ ∈ L2(R3) : ϕ̃ = Lκϕ̃}.

We claim that E = ∅. To this end, let κ > 0 and assume ϕ̃ = Lκϕ̃ for some
ϕ̃ ∈ L2(R3). Now consider

ϕ(x) := − 1
4π

∫︂ eiκ|x−y|

|x− y|
V (y)1/2 ˜︁ϕ(y)dy = − 1

4π

∫︂ eiκ|x−y|

|x− y|
V (y)ϕ(y)dy.

It follows that ϕ(x) = o(|x|−1) as |x| → ∞, and that −∆ϕ+V ϕ = κ2ϕ. According
to [Kat59] this implies that ϕ vanishes identically outside a sufficiently large sphere.
Hence by the unique continuation theorem it follows that ϕ = 0 and ϕ̃ = |V |1/2 ϕ =
0. This is a contradiction, and we conclude that the set E is empty for potentials
which we consider. Thus by the Fredholm alternative, whenever k ̸= 0, there is
a unique L2 solution ϕ̃ of the modified Lippmann-Schwinger equation (6.2). As
mentioned above it follows that the original Lippmann-Schwinger equation (6.1)
has a unique solution ϕ satisfying |V |1/2ϕ ∈ L2(R3) given by (6.4). In the case
k = 0 we argue analogously using Hypothesis A-SR (2). This shows the first part
of (a). The continuity follows in view of (6.1) from dominated convergence. (b)–
(e) now result from [RS3, Theorem XI.41], where we have seen in Proposition 3.2
that the essential and the absolutely continuous spectrum of Hp coincide.

Furthermore, we can extend Vc to a unitary operator by including the eigen-
functions into consideration. We define

Vd : L2(R3) −→ ℓ2(N), (Vdψ)n := ⟨ϕn, ψ⟩ .

Obviously Vd|ranPdisc : ranPdisc → ℓ2(N) is a unitary operator and Vd|ranPess = 0.
Thus,

V := Vd ⊕ Vc : L2(R3) −→ ℓ2(N) ⊕ L2(R3) (6.5)
is unitary.
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6. Virial Theorem in the Short-Range Case

6.2. Setup for the Virial Theorem
In the following we will assume that Hypotheses A-SR and B-SR hold.

First, we describe the setting on the atomic space Hp. We consider a dense
subspace given by

Dsr
p := V ∗

c C
∞
c (R3) ⊕ ranPdisc.

Note that Dsr
p is dense since V ∗

c C
∞
c (R3) ⊆ ranPess is dense in ranPess. Now, based

on the definition of the generator of dilations in the Fourier space,

FADF−1 = 1
4(k̂q̂ + q̂k̂) = −AD,

where q̂ := i∇k = (i∂1, i∂2, i∂3), we define on Dsr
p the conjugate operator Asr

p and a
regularized version A(ϵ)

p , ϵ ≥ 0,

Asr
p := V ∗

c (−AD)Vc, A(ϵ)
p := V ∗

c ηϵ(−AD)ηϵVc,

where
ηϵ(k) := e−ϵk2

.

Note that η0 ≡ 1 and Asr
p = A(0)

p . It is clear that both Hp and A(ϵ)
p , ϵ ≥ 0, leave

Dsr
p invariant. Thus we can define ad(n)

A
(ϵ)
p

(Hp) on Dsr
p for all n ∈ N. Furthermore,

the bounding operator is chosen as

Λsr
p := V ∗

c (k̂2 + q̂2)Vc + Idp .

Next, on the field space we set

Af := dΓ(i∂u),
Λf := dΓ(û2 + 1).

Now, we can define on the dense subspace of H,

Dsr = Dsr
p
ˆ︁⊗ Dsr

p
ˆ︁⊗ Ffin(C∞

c (R3)), (6.6)

the operators

Λsr = Λsr
p ⊗ Idp ⊗ Idf + Idp ⊗Λsr

p ⊗ Idf + Idp ⊗ Idp ⊗Λf ,

A(ϵ) = (A(ϵ)
p ⊗ Idp − Idp ⊗A(ϵ)

p ) ⊗ Idf + Idp ⊗ Idp ⊗Af , ϵ ≥ 0,
D = i[Lλ, ˆ︂Nf ], (6.7)
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6.3. Verification of the Assumptions of the Virial Theorem

and write Asr := A(0). Furthermore, we set for n ∈ {1, 2, 3}, ϵ ≥ 0,

C(ϵ)
n := ad(n)

A(ϵ)(Lλ) (6.8)

= δn,1ˆ︂Nf +
(︃

ad(n)
A

(ϵ)
p

(Hp) ⊗ Idp +(−1)n+1 Idp ⊗ ad(n)
A

(ϵ)
p

(Hp)
)︃

⊗ Idf +λW (ϵ)
n ,

C(f)
n := ad(n)

Idp ⊗ Idp ⊗Af
(Lλ)

= δn,1ˆ︂Nf + λW (f)
n , (6.9)

where

W (ϵ)
n := ad(n)

A(ϵ)(Φ(I)) = Φ(I(ϵ)
n (u,Σ)), (6.10)

W (f)
n := ad(n)

Idp ⊗ Idp ⊗Af
(Φ(I)) = Φ(I(f)

n (u,Σ)), (6.11)

with

I(ϵ)
n (u,Σ) :=

n∑︂
k=0

(︄
n

k

)︄(︂
(−i∂u)kτβ(ad(n−k)

A
(ϵ)
p

(G))(u,Σ) ⊗ Idp

− (−1)n−k(−i∂u)ke−βu/2 Idp ⊗τβ(ad(n−k)
A

(ϵ)
p

(G∗))(u,Σ)
)︂
,

I(f)
n (u,Σ) := (−i∂u)nI(u,Σ),

and we use the shorthand notation W sr
n := W (0)

n , Csr
1 := C

(0)
1 .

Note that the above identites follow from a straightforward calculation. We will
see in Proposition 6.2 and Proposition 6.3 that the expressions in the field operators
in (6.10) and (6.11) are well-defined and belong to L2(R×S2,L(Hp)). Furthermore,
it will be proven in Proposition 6.3, that C(ϵ)

n and C(f)
n , n ∈ {1, 2, 3}, are indeed

essentially self-adjoint on Dsr. We will denote their self-adjoint extensions by the
same symbols. Moreover, it will be shown below in (6.20) that Csr

1 and C(ϵ)
n , ϵ > 0,

are actually bounded from below. Thus, we can assign to these operators quadratic
forms qsr

1 and q
(ϵ)
1 , respectively.

6.3. Verification of the Assumptions of the Virial
Theorem

In the given setting just described we can now start to prove the assumptions of
the virial theorem Theorem 4.8. Above all, we have to check the GJN condition
for the different commutators. The most difficult part will be the discussion of
the interaction terms W (f)

n and W (ϵ)
n , n ∈ {1, 2, 3}, ϵ > 0, and W sr

1 . Here, the
expressions in the field operators need to be sufficiently bounded. These bounds
will be collected in the following proposition which is the main result of Section 6.4.
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6. Virial Theorem in the Short-Range Case

Proposition 6.2
Let ∂u denote the weak derivative of a L(Hp)-valued function in the sense of the
strong operator topology. For all m ∈ {0, 1, 2, 3}, n ∈ N0, j ∈ {1, 2, 3}, and for all
(u,Σ), ϵ ≥ 0, the operators

(1) ∂mu ad(n)
A

(ϵ)
p

(τβ(G)(u,Σ)),

(2) ∂mu adV ∗
c k̂jVc

(ad(n)
A

(ϵ)
p

(τβ(G)(u,Σ))),

(3) ∂mu adV ∗
c q̂jVc(ad(n)

A
(ϵ)
p

(τβ(G)(u,Σ))),

(4) ∂mu V
∗

c q̂jVc ad(n)
Asr

p
(τβ(G)(u,Σ)),

are well-defined, and the corresponding functions R×S2 → L(Hp) of (u,Σ) belong
to L2(R × S2,L(Hp)). Moreover, there exists a constant C independent of β such
that for n,m, s ∈ {0, 1},⃦⃦⃦

∂mu (V ∗
c q̂jVc)s ad(n)

Asr
p

(τβ(G))
⃦⃦⃦
L2(R×S2,L(Hp))

≤ C(1 + β− 1
2 ). (6.12)

The result also holds true if we replace G by G∗.
By means of Proposition 6.2 we can now verify the necessary GJN conditions.
Proposition 6.3
The following triples are GJN:

(1) (Asr
p ,Λsr

p ,Dsr
p ),

(2) (A(ϵ)
p ,Λsr

p ,Dsr
p ), ϵ > 0,

(3) (Hp,Λsr
p ,Dsr

p ),

(4) (Lλ,Λsr,Dsr), λ ∈ R,

(5) (ˆ︂Nf ,Λsr,Dsr),

(6) (D,Λsr,Dsr),

(7) (C(ϵ)
i ,Λsr,Dsr), ϵ > 0, i ∈ {1, 2, 3},

(8) (C(f)
i ,Λsr,Dsr), i ∈ {1, 2, 3},

(9) (Csr
1 ,Λsr,Dsr).
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6.3. Verification of the Assumptions of the Virial Theorem

In particular, Lλ is essentially self-adjoint on Dsr for any λ ∈ R due to (4).
Moreover, D,C(ϵ)

1 , C
(ϵ)
3 , ϵ > 0, and C(f)

1 , C
(f)
3 are bounded by ˆ︂Nf

1/2.

Proof. (1) Using that (AD, k̂
2 + q̂2, C∞

c (R3)) is a GJN triple (see Proposition 5.1)
and V ∗

c is an isometry, we have, for ψ ∈ Dsr
p ,⃦⃦⃦

Asr
p ψ
⃦⃦⃦

= ∥V ∗
c ADVcψ∥ = ∥ADVcψ∥ ≤ C

⃦⃦⃦⃦
(k̂2 + q̂2)Vcψ

⃦⃦⃦⃦
≤ C ′ ∥Λpψ∥ ,

and

±i
(︂⟨︂
Asr

p ψ,Λsr
p ψ
⟩︂

−
⟨︂
Λsr

p ψ,A
sr
p ψ
⟩︂)︂

= ±i
(︃⟨︃

−ADVcψ, (k̂
2 + q̂2)Vcψ

⟩︃
−
⟨︃

(k̂2 + q̂2)Vcψ,−ADVcψ
⟩︃)︃

≤ C
⟨︃
Vcψ, (k̂

2 + q̂2)Vcψ
⟩︃

≤ C
⟨︂
ψ,Λsr

p ψ
⟩︂

where C,C ′ denote constants independent of ψ.

(2) On Dsr
p we have

A(ϵ)
p = V ∗

c ηϵ(−AD)ηϵVc = V ∗
c η

2
ϵ (−AD)Vc + V ∗

c ηϵ[−AD, ηϵ]Vc.

The operator V ∗
c η

2
ϵ (−AD)Vc is bounded by V ∗

c (−AD)Vc, and thus also by (k̂2+q̂2)Vc
as we have already seen in the proof of (1). Furthermore, as derivatives of ηϵ are
bounded as well, the operator

[−AD, ηϵ] = 1
2
∑︂
j

[q̂j, ηϵ]k̂j

is bounded by |k̂|, and thus ηϵ[−AD, ηϵ]Vc is also bounded by (k̂2 + q̂2)Vc . This
shows the first GJN condition.

For the second one, we compute

±i
(︂⟨︂

Λsr
p ψ,A

(ϵ)
p ψ

⟩︂
−
⟨︂
A(ϵ)

p ψ,Λsr
p ψ
⟩︂)︂

= ±
⟨︃
Vcψ, i[k̂

2 + q̂2, ηϵ(−AD)ηϵ]Vcψ
⟩︃
.

Thus, it suffices to show ±i[k̂2 + q̂2, ηϵ(−AD)ηϵ] ≤ C(k̂2 + q̂2) for some constant C
on C∞

c (R3). First,

[k̂2
, ηϵ(−AD)ηϵ] = ηϵ[k̂

2
,−AD]ηϵ =

∑︂
j

ηϵk̂j[k̂j, q̂j]k̂jηϵ = −iηϵk̂
2
ηϵ.
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6. Virial Theorem in the Short-Range Case

Second, in order to obtain ±i[q̂2, ηϵ(−AD)ηϵ] ≤ C(k̂2+q̂2), we use the basic operator
inequality (5.4) and it suffices to show that

[q̂j, ηϵ(−AD)ηϵ] = ηϵ[q̂j,−AD]ηϵ + [q̂j, ηϵ](−AD)ηϵ + ηϵ(−AD)[q̂j, ηϵ], (6.13)

is bounded by |q̂|. The first term in (6.13) is clearly bounded as ηϵ[q̂j,−AD]ηϵ =
i
2η

2
ϵ k̂j, and for the two remaining ones it follows by shifting the q̂j operators in

−AD to the right and noting that any derivatives of ηϵ are bounded.

(3) We have with regard to the first GJN condition for all ψ ∈ Dsr
p ,

∥Hpψ∥ =
⃦⃦⃦⃦
V ∗

c k̂
2
Vcψ +HpPdiscψ

⃦⃦⃦⃦
≤ C

⃦⃦⃦⃦
V ∗

c (k̂2 + q̂2)Vcψ
⃦⃦⃦⃦

+ sup
λ∈σd(Hp)

|λ| ∥ψ∥ ,

as k̂
2 is bounded by q̂2 + k̂

2, where C is a constant independent of ψ. Furthermore,⟨︂
Hpψ,Λsr

p ψ
⟩︂

−
⟨︂
Λsr

p ψ,Hpψ
⟩︂

=
⟨︃
V ∗

c k̂
2
Vcψ, V

∗
c (q̂2 + k̂

2)Vcψ
⟩︃

−
⟨︃
V ∗

c (q̂2 + k̂
2)Vcψ, V

∗
c k̂

2
Vcψ

⟩︃
=
⟨︃

k̂
2
Vcψ, q̂2Vcψ

⟩︃
−
⟨︃

q̂2Vcψ, k̂
2
Vcψ

⟩︃
.

Using now that ±i[q̂2, k̂
2] ≤ C(k̂2 + q̂2) for some constant C, we get also the second

GJN condition.

(4) As Hp is bounded by Λsr
p (by the previous argument) and dΓ(û) is bounded by

Λf ,
L0 = (Hp ⊗ Idp − Idp ⊗Hp) ⊗ Idf + Idp ⊗ Idp ⊗dΓ(û)

is bounded by Λsr. Furthermore, by Hypothesis B-SR and Lemma 4.3, we know
that the interaction terms I ∈ L2(R × S2,L(Hp ⊗ Hp)). Hence, W is bounded byˆ︂Nf

1/2 and thus bounded by Idp ⊗ Idp ⊗Λ1/2
f . Therefore, the first GJN condition is

satisfied.

Next, as (Hp,Λsr
p ,Dsr

p ) is a GJN triple and dΓ(u) commutes with Λf , we get a
constant C, such that

±i(⟨L0ψ,Λsrψ⟩ − ⟨Λsrψ,L0ψ⟩) ≤ C ⟨ψ,Λsrψ⟩

for all ψ ∈ Dsr, which yields the second GJN condition for L0.
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Again by Hypothesis B-SR and Lemma 4.3 we know that (u,Σ) ↦→ (u2 +
1)I(u,Σ) is in L2(R × S2,L(Hp ⊗ Hp)). We have

|⟨Φ(I)ψ, Idp ⊗ Idp ⊗Λfψ⟩ − ⟨Idp ⊗ Idp ⊗Λfψ,Φ(I)ψ⟩|
=
⃓⃓⃓⟨︂
ψ,
(︂
a((û2 + 1)I) − a∗((û2 + 1)I)

)︂
ψ
⟩︂⃓⃓⃓

≤ C
⃦⃦⃦
(ˆ︂Nf + 1)1/2ψ

⃦⃦⃦
∥ψ∥

≤ C ′ ⟨ψ,Λsrψ⟩

for some constants C,C ′.
It remains to consider the commutator of W with the Λsr

p terms. One has to
show that the commutators

[Φ(Iα), V ∗
c (q̂2 + k̂

2)Vc ⊗ Idf ], α = l, r,

which have to be understood in the form sense, are form bounded by Λsr
p ⊗

Idf + Idp ⊗Λf . We can write on Dsr
p
ˆ︁⊗ Ffin(C∞

c (R3)), again in the form sense,

[Φ(Iα), X2 ⊗ Idf ] =
∑︂
j

Φ([Iα, X])(X ⊗ Idf) + (X ⊗ Idf)Φ([Iα, X])

for X ∈ {V ∗
c q̂jVc, V

∗
c k̂jVc : j ∈ {1, 2, 3}}, and then use that [Iα, X] ∈ L2(R ×

S2,L(Hp)) by Proposition 6.2.

(5) Clearly, ∥Nfψ∥ = ∥dΓ(Idf)ψ∥ ≤
⃦⃦⃦
dΓ(û2 + 1)ψ

⃦⃦⃦
for any ψ ∈ Ffin(C∞

c (R3)),
which shows that ˆ︂Nf is bounded by Λsr on Dsr. Furthermore, [ˆ︂Nf ,Λ] = 0 on Dsr,
which implies the second GJN condition.

(6) We have
D = iλ(a(I) − a∗(I)).

Thus, one can proceed similarly as in the proof for Lλ.

(7) We first consider the atomic space. One can show by induction that for all
n ∈ N there exists f ∈ S(R3) such that

ad(n)
A

(ϵ)
p

(Hp) = V ∗
c f(k̂)Vc. (6.14)

Clearly, for n = 1,

ad
A

(ϵ)
p

(Hp) = iV ∗
c [k̂2

, ηϵ(−AD)ηϵ]Vc = iV ∗
c ηϵ[k̂

2
,−AD]ηϵVc = V ∗

c ηϵk̂
2
ηϵVc, (6.15)
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which has the form (6.14). Next, as [f(k̂), q̂j] = −i∂jf(k̂),

[V ∗
c f(k̂)Vc, A

sr
p ] = V ∗

c ηϵ[f(k̂),−AD]ηϵVc = 1
2
∑︂
j

V ∗
c ηϵ[f(k̂), q̂j]k̂jηϵVc

yields again the form (6.14).

In particular, (6.14) implies that for each n ∈ N, ad(n)
Asr

p
(Hp) is bounded and

there is a constant C such that

±i[ad(n)
Asr

p
(Hp),Λp] ≤ CΛp

on Dsr
p , since

±i[f(k̂), k̂2 + q̂2] = ±i[f(k̂), q̂2] ≤ C(k̂2 + q̂2),

because [f(k̂), q̂j], j ∈ {1, 2, 3}, is bounded.
This, together with the fact that (dΓ(û),Λf ,Ffin(C∞

c (R3))) is a GJN triple (see
the proof of (4)), implies that (ad(n)

A(ϵ)(L0),Λsr,Dsr), n ∈ {1, 2, 3}, are GJN triples.

It remains to verify the GJN conditions for (W (ϵ)
n ,Λsr,Dsr), n ∈ {1, 2, 3}. Anal-

ogously to the proof (4) for the GJN condition of Lλ we have to show that the
expressions in the field operators and the commutators with V ∗

c k̂jVc and V ∗
c q̂jVc,

j ∈ {1, 2, 3} are integrable. That is, we have to show that the operator-valued
functions

(u,Σ) ↦→ ∂mu τβ(ad(n−m)
A

(ϵ)
p

(G))(u,Σ),

(u,Σ) ↦→ ∂mu [τβ(ad(n−m)
A

(ϵ)
p

(G))(u,Σ), X],

X ∈ {V ∗
c k̂jVc, V

∗
c q̂jVc : j ∈ {1, 2, 3}}, n ∈ {1, 2, 3}, m ∈ {0, . . . , n}, are in L2(R ×

S2,L(Hp)). This follows from Proposition 6.2.

(8) Analogously to the proof of (7) it suffices to show that the operator-valued
functions

(u,Σ) ↦→ ∂nuτβ(G)(u,Σ),
(u,Σ) ↦→ ∂nu [τβ(G)(u,Σ), X],

X ∈ {V ∗
c k̂jVc, V

∗
c q̂jVc : j ∈ {1, 2, 3}}, n ∈ {1, 2, 3}, are in L2(R× S2,L(Hp)). This

follows again from Proposition 6.2.

86



6.3. Verification of the Assumptions of the Virial Theorem

(9) We first consider again the free part. We have on Dsr
p ,

i[Hp, A
sr
p ] = i[V ∗

c k̂
2
Vc, A

sr
p ] = iV ∗

c [k̂2
,−AD]Vc = V ∗

c k̂
2
Vc.

Then we can see as in the proof of (3) that also (adAsr
p (Hp),Λsr

p ,Dsr
p ) is a GJN triple

and so is (adAsr(L0),Λsr,Dsr).
It remains to verify the GJN conditions for (W sr

1 ,Λsr,Dsr). As in (7) and (8)
one has to show that the operator-valued functions

(u,Σ) ↦→ ∂nuτβ(ad(1−n)
Asr

p
(G))(u,Σ),

(u,Σ) ↦→ ∂nu [τβ(ad(1−n)
Asr

p
(G))(u,Σ), X],

X ∈ {V ∗
c k̂jVc, V

∗
c q̂jVc : j ∈ {1, 2, 3}}, n ∈ {0, 1}, are in L2(R × S2,L(Hp)), which

follows again from Proposition 6.2.

The statements of Proposition 6.3 allow the application of the virial theorem The-
orem 4.8 for the regularized conjugate operator A(ϵ), ϵ > 0. In order to remove the
regularization and transfer the result to Csr

1 , one has to consider the limit ϵ → 0 for
the corresponding quadratic forms q(ϵ)

1 of C(ϵ)
1 . This is the content of the following

lemma.
Lemma 6.4
Assume that ψ ∈ D(ˆ︂Nf

1/2) and q
(ϵ)
1 (ψ) ≤ 0 for all ϵ ∈ (0, 1). Then ψ ∈ D(qsr

1 ),
and

qsr
1 (ψ) = lim

ϵ→0
q

(ϵ)
1 (ψ). (6.16)

Proof. Let us recall that by definition

C
(ϵ)
1 = ˆ︂Nf + (ad

A
(ϵ)
p

(Hp) ⊗ Idp + Idp ⊗ ad
A

(ϵ)
p

(Hp)) ⊗ Idf +λW (ϵ)
1 . (6.17)

First, we show that

ψ ∈ D
(︃

(V ∗
c |k̂|Vc ⊗ Idp + Idp ⊗V ∗

c |k̂|Vc) ⊗ Idf +ˆ︂Nf
1/2
)︃

⊆ D(qsr
1 ), (6.18)

which will follow once we have established that⟨︃
ψ, (V ∗

c ηϵk̂
2
ηϵVc ⊗ Idp + Idp ⊗V ∗

c ηϵk̂
2
ηϵVc) ⊗ Idf ψ

⟩︃
≤ C (6.19)
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for a constant C independent of ϵ ∈ (0, 1). To this end, we use that by standard
estimates for creation and annihilation operators, we obtain for any δ > 0,

±iW (ϵ)
1 ≤ 1

δ
ˆ︂Nf + δw

(ϵ)
1 ⊗ Idf (6.20)

in the form sense on D(ˆ︂Nf
1/2), where we introduced the follwoing bounded opera-

tors on Hp ⊗ Hp,

w
(ϵ)
1 :=

∫︂
I

(ϵ)
1 (u,Σ)∗I

(ϵ)
1 (u,Σ)d(u,Σ), ϵ ≥ 0.

To estimate this expression we use that∫︂
ad

A
(ϵ)
p

(τβ(G)(u,Σ))∗ ad
A

(ϵ)
p

(τβ(G)(u,Σ))d(u,Σ) ≤ C(V ∗
c ηϵk̂

2
ηϵVc + Idp),

in the form sense for some constant C independent of ϵ, where we multiplied out the
commutators, used (5.4) and the fact that the functions (u,Σ) ↦→ ∂uτβ(G)(u,Σ)
and (u,Σ) ↦→ V ∗

c q̂jVcτβ(G) belong to L2(R × S2,L(Hp)) due to Proposition 6.2.
This yields

w
(ϵ)
1 ≤ C(V ∗

c ηϵk̂
2
ηϵVc ⊗ Idp + Idp ⊗V ∗

c ηϵk̂
2
ηϵVc + Idp ⊗ Idp). (6.21)

Now using (6.15) and (6.20) to estimate (6.17) we obtain in the form sense on
D(ˆ︂Nf

1/2) for any ϵ > 0,

C
(ϵ)
1 ≥ (1 − C |λ| δ)(V ∗

c ηϵk̂
2
ηϵVc ⊗ Idp + Idp ⊗V ∗

c ηϵk̂
2
ηϵVc + Idp ⊗ Idp) ⊗ Idf

+
(︄

1 − |λ|
δ

)︄ ˆ︂Nf .

Making δ > 0 sufficently small such that C |λ| δ < 1 and using that by assumption
q

(ϵ)
1 (ψ) ≤ 0 and ψ ∈ D(ˆ︂Nf

1/2), we arrive at (6.19).
Now, it remains to prove (6.16). First observe, that by dominated convergence,

we have for all ϕ ∈ D(V ∗
c |k̂|Vc),⃦⃦⃦

|k̂|ηϵVcϕ
⃦⃦⃦

−→
⃦⃦⃦
|k̂|Vcϕ

⃦⃦⃦
, ϵ → 0.

Thus (6.16) will follow once we have shown that⟨︂
ψ,W

(ϵ)
1 ψ

⟩︂
→ ⟨ψ,W1ψ⟩ . (6.22)
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Thus we have to show the convergence of the field operator of a commutator. To
this end, we note that from Proposition 6.2 we know that the operator-valued
functions

(u,Σ) ↦→ V ∗
c q̂jVcH(u,Σ),

for H ∈ {τβ(G), ∂uτβ(G)}, are in L2(R × S2,L(Hp)). Now,
A(ϵ)

p H(u,Σ) = V ∗
c ηϵADηϵVcH(u,Σ)

= V ∗
c ηϵ

1
4(3i + 2k̂q̂)ηϵVcH(u,Σ)

= V ∗
c ηϵ

1
4

⎛⎝3iηϵ + 2
3∑︂
j=1

k̂j(i(∂kj
ηϵ) + ηϵq̂j)

⎞⎠VcH(u,Σ). (6.23)

Observe that ηϵ and ∂kj
ηϵ are bounded uniformly in ϵ ∈ (0, 1). From (6.23) we see

for ϕ ∈ D(Idp ⊗Nf) that⟨︂
ϕ, a∗(A(ϵ)

p H)ϕ
⟩︂

= 3
4
⟨︂
V ∗

c η
2
ϵVc ⊗ Idf ϕ, a

∗(iH)ϕ
⟩︂

+ 1
2

3∑︂
j=1

⟨︂
V ∗

c (∂kj
ηϵ)k̂jηϵVc ⊗ Idf ϕ, a

∗(iH)ϕ
⟩︂

+ 1
2

3∑︂
j=1

⟨︂
V ∗

c ηϵk̂jηϵVc ⊗ Idf ϕ, a
∗(V ∗

c q̂jVcH)ϕ
⟩︂

→ 3
4 ⟨V ∗

c Vc ⊗ Idf ϕ, a
∗(iH)ϕ⟩ + 1

2

3∑︂
j=1

⟨︂
V ∗

c k̂jVc ⊗ Idf ϕ, a
∗(V ∗

c q̂jVcH)ϕ
⟩︂
,

where for the limit we used that ∂kj
ηϵ tends to zero as ϵ ↓ 0, (6.18), and dominated

convergence. Similarly, we find⟨︂
ϕ, a∗(HA(ϵ)

p )ϕ
⟩︂

→ 3
4 ⟨a(iH)ϕ, V ∗

c Vc ⊗ Idf ϕ⟩ + 1
2

3∑︂
j=1

⟨︂
a(HV ∗

c q̂jVc)ϕ, V ∗
c k̂jVc ⊗ Idf ϕ

⟩︂
.

Thus, we infer

i
⟨︃
ϕ, a∗(ad

A
(ϵ)
p

(H))ϕ
⟩︃

→ 3
4 ⟨V ∗

c Vc ⊗ Idf ϕ, a
∗(iH)ϕ⟩ + 1

2

3∑︂
j=1

⟨︂
V ∗

c k̂jVc ⊗ Idf ϕ, a
∗(V ∗

c q̂jVcH)ϕ
⟩︂

− 3
4 ⟨a(iH)ϕ, V ∗

c Vc ⊗ Idf ϕ⟩ − 1
2

3∑︂
j=1

⟨︂
a(HV ∗

c q̂jVc)ϕ, V ∗
c k̂jVc ⊗ Idf ϕ

⟩︂
= i

⟨︂
ϕ, a∗(adAsr

p (H(u,Σ)))ϕ
⟩︂
,
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where the last equality follows by verifying the identiy on the dense space Dsr
p ,

defined in (6.6), using a straightforward calculation, and then extending it to ϕ

using Proposition 6.2. This shows (6.22) in view of the definition of W (ϵ)
1 and W1,

see (5.2).

Now we can prove the main result of this section, the concrete virial theorem
in our setting. Recall that qsr

1 is the quadratic form corresponding to Csr
1 .

Theorem 6.5 (Concrete virial theorem)
Assume there exists ψ ∈ D(Lλ) with Lλψ = 0. Then ψ ∈ D(qsr

1 ) and qsr
1 (ψ) ≤ 0.

Proof. First, we apply the virial theorem Theorem 4.8 with Λ = Λsr, L = Lλ,
N = ˆ︂Nf +1, D as in (6.7), and A = Idp ⊗ Idp ⊗Af . We have seen in Proposition 6.3
that (V1) is satisfied. Furthermore, on Ffin(C∞

c (R3)),
Λfe

itAf = eitAf (Λf + dΓ(2ût+ t2)), t ∈ R.

Thus, for some fixed t there is a constant C such that
⃦⃦⃦
Λfe

itAfψ
⃦⃦⃦

≤ C ∥Λfψ∥ for all
ψ ∈ Ffin(C∞

c (R3)). As Ffin(C∞
c (R3)) is a core for Λf , we find eitAf D(Λf) ⊆ D(Λf).

Hence, we conclude that D(Λ) is invariant under the unitary group associated to
A and hence (V2) holds. Furthermore, (4.24)–(4.26) are satisfied since D, C(f)

1 and
C

(f)
3 are bounded by N1/2

f (by Proposition 6.3).
Therefore, one finds a sequence (ψn) in D(Lλ) ∩ D(C(f)

1 ) such that ψn → ψ and

lim
n→∞

⟨︂
ψn, C

(f)
1 ψn

⟩︂
= 0.

Then, it follows from semi-continuity of closed quadratic forms that ψ is in the
form domain of C(f)

1 . As W (f)
1 is bounded by ˆ︂Nf

1/2 (as shown in the proof of
Proposition 6.3 (8)), ψ ∈ D(N1/2

f ).
Next, we apply the virial theorem Theorem 4.8 once more with Λ, D, L, and

N as before, but A = A(ϵ), ϵ > 0. Again, by Proposition 6.3, (V1) and (4.24)–
(4.26) are satisfied. Furthermore, Proposition 6.3 yields that (A(ϵ)

p ,Λsr
p ,Dsr

p ) is a
GJN triple. Hence Theorem 4.6 shows that eitA(ϵ)

p , t ∈ R, leaves D(Λp) invariant.
This and the invariance for the unitary group corresponding to Af (as already seen
above) again imply (V2).

Therefore, we find a sequence (ψn)n∈N in D(C(ϵ)
1 ) ∩ D(Lλ) such that ψn → ψ,

n → ∞, and limn→∞
⟨︂
ψn, C

(ϵ)
1 ψn

⟩︂
= 0. Now, as q(ϵ)

1 is closed, thus continuous
from below, we obtain ψ ∈ D(q(ϵ)

1 ) and

q
(ϵ)
1 (ψ) ≤ lim

n→∞
q

(ϵ)
1 (ψn) = 0.

Then Lemma 6.4 finishes the proof.
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6.4. Estimates on the Scattering Functions

6.4. Estimates on the Scattering Functions
The aim of this section is to prove that the commutators of the interaction with
the dilation operator in scattering space are sufficiently bounded. To achieve this,
we use the Born series expansion of the scattering functions, that is, we expand
them using the recursion formula of the Lippmann-Schwinger equation (6.1). Then
we get the Born series terms, and a remainder term since we perform only finitely
many recursion steps. The idea is that the remainder term decays fast enough for
the momentum |k| → ∞ for sufficiently many recursion steps.

6.4.1. Born Series Expansion and Technical Preparations
First we show that that the scattering functions as well as their derivatives with
respect to the wave vector k are bounded. For this purpose we use the method
of modified square integrable scattering functions as described in Section 6.1. Re-
member that ϕ(k, ·), k ∈ R3, denote the continuous scattering functions on R3 and
V a potential satisfying Hypothesis A-SR. As V is compactly supported we may
assume that suppV is contained in a ball around the origin of radius R.

Recall that the modified scattering functions were given by ˜︁ϕ(k, x) := |V (x)|1/2

ϕ(k, x). Then ˜︁ϕ(k, ·) ∈ L2(R3) for all k, and the function satisfies the modified
Lippmann-Schwinger equation (6.2). Furthermore, it was discussed in Section 6.1
that we can recover the original scattering function from the modified one by

ϕ(k, x) = eikx − 1
4π

∫︂ ei|k||x−y|

|x− y|
V (y)1/2 ˜︁ϕ(k, y)dy. (6.24)

Now we extend the results of boundedness of the first derivative of the scattering
functions in [New12, Lemma 1.1.3] to derivatives of arbitrary order.
Proposition 6.6
Let D̂k = k̂

|k̂|∇k be the radial derivative and let ∂kj
be the derivative with respect to

the j-th component of k. For all n ∈ N0 and m ∈ {0, 1} there is a polynomial P
such that for all x and k ̸= 0,⃓⃓⃓

∂mkj
D̂
n

kφ(k, x)
⃓⃓⃓
≤ P (|x|).

Proof. We get by the modified Lippmann-Schwinger equation
˜︁ϕ(k, ·) = (Id −L|k|)−1(|V |1/2 ek),

where ek(x) := eikx. First we claim that (Id −L|k|)−1 is uniformly bounded in
k ∈ R3. Note that κ ↦→ Lκ is continuous on [0,∞), which is easy to see, cf.
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[Sim15, Theorem 1.22]. Moreover, limκ→0 ∥Lκ∥ → 0 is proven in [Sim15, Theorem
1.23] by a variant of the Klein-Zemach method. Since Lκ is Hilbert-Schmidt and
hence compact, it follows from the Fredholm alternative that Id −Lκ is invertible,
provided ψ = Lκψ has no non-trivial solutions in L2. But as in the proof of
Theorem 6.1, such non-trivial solutions are ruled out for all κ ≥ 0. Since the
inverse is a continuous map on the space of bounded invertible operators, the
claim about the bounded resolvent now follows.

Observe that D̂k|k| = 1 and D̂k(k/|k|) = 0. Thus, for any n ∈ N0, the operator
D̂
n

k(Id −L|k|)−1 is again uniformly bounded in k ̸= 0, since differentiation with
D̂k yields just higher powers of (Id −L|k|)−1 and radial derivatives of L|k|, which
are again bounded operators since V decays fast enough. Similarly one sees that
∂kj
D̂
n

k(Id −L|k|)−1 is uniformly bounded in k ̸= 0. Note that the expression is not
differentiable at the origin. Furthermore, for any n ∈ N,

sup
k ̸=0

⃦⃦⃦
D̂
n

k(|V |1/2 ek)
⃦⃦⃦

2
< ∞

as V is compactly supported. Thus, we have shown, for all n ∈ N0,

sup
k ̸=0

⃦⃦⃦
D̂
n

k
˜︁ϕ(k, ·)

⃦⃦⃦
2
< ∞.

Now we can differentiate (6.24), estimate the integral with Cauchy-Schwarz, and
use that∫︂ |V (y)|

|x− y|2
dy ≤ ∥V ∥∞

∫︂
BR(x)

dy
y2 ≤ ∥V ∥∞

(︄∫︂
B3R(0)

dy
y2 + |BR(0)|

R2

)︄
< ∞ (6.25)

is bounded uniformly in x, where the second inequality can be seen by considering
the cases |x| < 2R and |x| ≥ 2R.

Next, we perform the Born series expansion. Similar to [Ike60] it is convenient to
introduce a symbol for the integral operator in the Lippmann-Schwinger equation.
We consider a slightly bigger class of operators to cover also derivatives with respect
to k. Let Cb(R3) denote the bounded continuous functions on R3 and Cpoly(R3)
the polynomially bounded continuous functions, that is,

Cpoly(R3) := {ψ ∈ C(R3) : ∃n ∈ N0 : ∃C > 0: ∀x ∈ R3 : |ψ(x)| ≤ C(1 + |x|)n}.

Definition 6.7
For W ∈ C∞

c (R3), κ ≥ 0, ψ ∈ Cpoly(R3) and n ∈ N0, we define

T
(n)
W,κψ(x) :=

∫︂ eiκ|x−y|

|x− y|1−nW (y)ψ(y)dy =
∫︂ eiκ|v|

|v|1−nW (v + x)ψ(v + x)dv.
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Furthermore, we write TW,κ := T
(0)
W,κ. They have the following elementary proper-

ties.

Proposition 6.8
Let W ∈ C∞

c (R3) and assume suppW ⊆ BR′(0) for some R′ ≥ 0.

(a) For all κ ≥ 0, TW,κ, T (−1)
W,κ are bounded operators from Cb(R3) to Cb(R3),

(b) For all κ ≥ 0 and for all n ∈ N0, T (n)
W,κ maps Cpoly(R3) to Cpoly(R3). Further-

more for all n ∈ N0, there exists a polynomial P such that⃓⃓⃓
T

(n)
W,κ(x)

⃓⃓⃓
≤ P (|x|)

⃦⃦⃦
11BR′ (0)ψ

⃦⃦⃦
∞

holds for all κ ≥ 0, ψ ∈ Cpoly(R3) and x ∈ R3.

Proof. (a) It follows that for ψ ∈ Cb(R3), x ∈ R3, κ ≥ 0,

⃓⃓⃓
T−1
W,κψ(x)

⃓⃓⃓
≤ ∥ψ∥∞

∫︂ |W (y)|
|x− y|2

dy ≤ ∥W∥∞ ∥ψ∥∞

∫︂
BR′ (0)

1
|x− y|2

dy,

|TW,κψ(x)| ≤ ∥ψ∥∞

∫︂ |W (y)|
|x− y|

dy ≤ ∥W∥2 ∥ψ∥∞

(︄∫︂
BR′ (0)

1
|x− y|2

dy
)︄1/2

.

The integral is bounded independent of x, see (6.25).

(b) There exists a constant C > 0 such that for all x ∈ R3, n ∈ N0, κ ≥ 0,

⃓⃓⃓
T

(n)
W,κψ(x)

⃓⃓⃓
≤ C

∫︂
BR′ (0)

|W (y)|
|x− y|1−n |ψ(y)| dy

≤ C
⃦⃦⃦
11BR′ (0)ψ

⃦⃦⃦
∞

∥W∥2

(︄∫︂
BR′ (x)

|y|2n−2 dy
)︄1/2

.

The last integral can be estimated by
∫︂ R′+|x|

r=0
r2ndr,

which is bounded by a polynomial in |x|.

Using the previous notation and iterating the Lippmann-Schwinger equation (6.1)
we arrive at the following.
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Proposition 6.9
For all N ∈ N0, k, x ∈ R3, we have

ϕ(k, x) =
N∑︂
n=0

ϕ
(n)
0 (k, x) + ϕ

(N+1)
R (k, x),

where, for n ∈ N0,

ϕ
(n)
0 (k, x) := (−4π)−nT nV,|k|ek(x),
ϕ

(n)
R (k, x) := (−4π)−nT nV,|k|ϕ(k, ·)(x),

and ek(x) := eikx.
As an immediate consequence of an iterated application of the first and second
identity in definition 6.7 we find the following lemma, which we will use.
Lemma 6.10
Let V1, . . . , Vp ∈ C∞

c (R3), n1, . . . , np ∈ N0, and ψ ∈ Cpoly(R3). Then for all
k, x ∈ R3, we have

(T (n1)
V1,|k| · · ·T (np)

Vp,|k|ψ)(x0)

=
∫︂ {︄ p∏︂

l=1

ei|k||xl−1−xl|

|xl−1 − xl|1−nl
Vl(xl)

}︄
ψ(xp)d(x1, . . . , xp), (6.26)

=
∫︂ {︄ p∏︂

l=1

ei|k||ul|

|ul|1−nl
Vl

(︄
x0 +

l∑︂
s=1

us

)︄}︄
ψ

(︄
x0 +

p∑︂
s=1

us

)︄
d(u1, . . . , up), (6.27)

and the special case

(T (n1)
V1,|k| · · ·T (np)

Vp,|k|ek)(x) = eikx
∫︂ {︄ p∏︂

l=1

ei(|k||ul|+kul)

|ul|1−nl
Vl

(︄
x+

l∑︂
s=1

us

)︄}︄
d(u1, . . . , up).

(6.28)

6.4.2. Estimates of the Terms of the Born Series
In this subsection we prove decay estimates for the inner products of an abstract
coupling function χ ∈ S(R3) with (derivatives with respect to k of) the functions
ϕ

(n)
0 (k, ·), k ∈ R3, n ∈ N0, which will be collected in Proposition 6.14 and Propo-

sition 6.15. One can actually show an arbitrary fast decay for any n ∈ N. The
main tool will be a standard stationary phase argument as given in the following
lemma.
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Lemma 6.11 (Stationary phase)
For any n ∈ N there exists a constant C such that for all g ∈ C∞

c (R3) and k ∈ R3,
we have ⃓⃓⃓⃓∫︂

eixkg(x)dx
⃓⃓⃓⃓
≤ C

⟨k⟩n
sup
|α|≤n

∥∂αg∥1 .

Proof. For all k ∈ R3 and j ∈ {1, 2, 3},

ikj
∫︂
eixkg(x)dx =

∫︂
∂je

ixkg(x)dx

= lim
R→∞

∫︂
SR(0)

eixkg(x)dx−
∫︂
eixk∂jg(x)dx.

The first term clearly vanishes. Now we can repeat this procedure n times.

We proceed by computing the derivatives as well as the effect of multiple appli-
cations of the dilation operator in the variable k acting on the terms of the Born
series. The idea is that the application of k̂∇k or ∇k on terms of the form

TV1,|k| · · ·TVp,|k|ek, V1, . . . , Vp ∈ C∞
c (R3), p ∈ N, (6.29)

yields again a linear combination of such terms multiplied with polynomials in x
and k (see Lemma 6.12 and Lemma 6.13). We want to remember that the Born
series terms can be written in the form (6.29). This procedure can be repeated
multiple times and the resulting expressions can then be estimated with the sta-
tionary phase argument.
Lemma 6.12
Assume V1, . . . , Vp ∈ C∞

c (R3). Then we can write for all k ∈ R3,

k∇k

(︂
TV1,|k| · · ·TVp,|k|ek

)︂
as a sum of

i(kx̂)TV1,|k| · · ·TVp,|k|ek, (6.30)

where x̂ denotes the multiplication in x, and terms of the form
p∑︂
l=1

QTW1,|k| · · ·TWl,|k|ek, (6.31)

where Q denotes the multiplication in x with a polynomial of maximal degree one,
and Wl ∈ C∞

c (R3), l = 1, . . . , p.
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Proof. Recall the formula (6.28) in Lemma 6.10,

(TV1,|k| · · ·TVp,|k|ek)(x) = eikx
∫︂ {︄ p∏︂

l=1

ei(|k||ul|+kul)

|ul|
Vl

(︄
x+

l∑︂
s=1

us

)︄}︄
d(u1, . . . , up).

Differentiation with respect to the first factor on the right-hand side yields (6.30).
Under the integral we use

k∇k

p∏︂
l=1

ei(kul+|k||ul|)

|ul|
= i

p∑︂
l′=1

(kul′ + |k| |ul′ |)
p∏︂
l=1

ei(kul+|k||ul|)

|ul|

=
p∑︂

l′=1
(ul′∇ul′

+ 1)
p∏︂
l=1

ei(kul+|k||ul|)

|ul|
. (6.32)

We can now do integration by parts in (6.28) to shift the derivatives to the Vl
terms. Any boundary terms vanish as we consider compactly supported functions.
Thus, we arrive at

k∇k

∫︂ {︄ p∏︂
l=1

ei(|k||ul|+kul)

|ul|
Vl

(︄
x+

l∑︂
s=1

us

)︄}︄
d(u1, . . . , up)

= −
∫︂ {︄ p∏︂

l=1

ei(|k||ul|+kul)

|ul|

}︄ p∑︂
l′=1

(ul′∇ul′
+ 2)

p∏︂
l=1

Vl

(︄
x+

l∑︂
s=1

us

)︄
d(u1, . . . , up)

= −
∫︂ {︄ p∏︂

l=1

ei(|k||ul|+kul)

|ul|

}︄ p∑︂
l′=1

⎧⎪⎪⎨⎪⎪⎩
p∏︂
l=1
l ̸=l′

Vl

(︄
x+

l∑︂
s=1

us

)︄⎫⎪⎪⎬⎪⎪⎭⎛⎝ l′∑︂
s=1

us∇ + 2
⎞⎠Vl′

⎛⎝x+
l′∑︂
s=1

us

⎞⎠ d(u1, . . . , up),

where the last equality follows by calculating the derivatives by means of the
product and chain rule and by reordering the summation. Then we can write,
with Wl′(y) := y∇Vl′(y),⎛⎝ l′∑︂

s=1
us∇

⎞⎠Vl′
⎛⎝x+

l′∑︂
s=1

us

⎞⎠ = Wl′

(︄
x+

l∑︂
s=1

us

)︄
− x∇Vl′

(︄
x+

l∑︂
s=1

us

)︄
.

Since Wl′ and the derivatives of Vl′ are again in C∞
c (R3) for all l′, we obtain

expressions of the form (6.31).
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Lemma 6.13
Let p ∈ N. Assume that V1, . . . , Vp ∈ C∞

c (R3), n1, . . . , np ∈ N0. Then for j ∈
{1, 2, 3}, k ̸= 0,

∂kj

(︂
T

(n1)
V1,|k| · · ·T (np)

Vp,|k|ek
)︂

= iT (n1)
V1,|k| · · ·T (np)

x̂jVp,|k|ek + i kj
|k|

p∑︂
i=1

X
(i)
1 · · ·X(i)

p ek,

D̂k

(︂
T

(n1)
V1,|k| · · ·T (np)

Vp,|k|ek
)︂

= iT (n1)
V1,|k| · · ·T (np)

kx̂
|k|Vp,|k|ek + i

p∑︂
i=1

X
(i)
1 · · ·X(i)

p ek,

and

X
(i)
l :=

⎧⎨⎩T
(nl)
Vl,|k|, i ̸= l,

T
(nl+1)
Vl,|k| , i = l.

Proof. This follows by direct computation of the derivative by means of the product
rule of the expression (6.28).

Finally, we use the previous estimates for the following two propositions. Note
that we generalize the notation of the inner product on L2(R3) by setting ⟨f, g⟩ :=∫︁
R3 f(x)g(x)dx if f and g are measurable functions and fg ∈ L1(R3).

Proposition 6.14
For all s ∈ N0, p,m, n ∈ N, X ∈ {Id,∇k,∇k′}, Y ∈ {k̂∇k + k̂

′
∇′
k, η(k̂)k̂∇k},

where η ∈ S(R3), there are constants n1, n2 ∈ N, C, such that for all k, k′ ̸= 0,
χ ∈ S(R3),

⃓⃓⃓
XY s

⟨︂
ϕ

(p)
0 (k, ·), χϕ(m)

0 (k′, ·)
⟩︂⃓⃓⃓

≤ C

1 + |k − k′|n
sup

|α|≤n1

∥⟨·⟩n2 ∂αxχ∥1 .

Proof. First, let Y = k̂∇k + k̂
′
∇′
k. Using an induction argument in s we obtain

from Lemma 6.12 that we can write

(k̂∇k + k̂
′
∇′
k)s

⟨︂
ϕ

(p)
0 (k, ·), χϕ(m)

0 (k′, ·)
⟩︂

as linear combination of terms of the form

(k − k′)α
⟨︂
TV1,|k| · · ·TVp,|k|ek, PχTW1,|k′| · · ·TWm,|k′|ek′

⟩︂
, (6.33)

for some polynomial P , multi-index α, V1, . . . , Vp, W1, . . . ,Wm ∈ C∞
c (R3). Then

we obtain the desired estimate for X = Id by the stationary phase argument of
Lemma 6.11, which can be seen using (6.28) and observing that χ is a Schwartz
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function and that the potential V has compact support. For X ∈ {∇k,∇k′} we
apply Lemma 6.13 to the expressions in (6.33), with the result that we can write

X(k̂∇k + k̂
′
∇′
k)s

⟨︂
ϕ

(p)
0 (k, ·), χϕ(m)

0 (k′, ·)
⟩︂

for k, k′ ̸= 0 as linear combinations of terms

(k − k′)αf(k, k′)
⟨︂
T

(n1)
V1,|k| · · ·T (np)

Vp,|k|ek, PχT
(n′

1)
W1,|k′| · · ·T (n′

m)
Wm,|k′|ek′

⟩︂
,

with a bounded function f on R3 ×R3 and n1 + . . .+np, n′
1 + . . .+n′

m ∈ {0, 1}. The
desired estimate in this case follows now from the same stationary phase argument
using (6.28) as before. Finally, for Y = η(k̂)k̂∇k one proceeds similarly but now
using only Lemma 6.13.

Proposition 6.15
For all s ∈ N0, p, n ∈ N, there exist constants n1, n2 ∈ N, C, such that for all k,
X ∈ {Id,∇k}, and χ ∈ S(R3) we have

⃓⃓⃓
X(k̂∇k)s

⟨︂
ϕ

(p)
0 (k, ·), χ

⟩︂⃓⃓⃓
≤ C

1 + |k|n
sup

|α|≤n1

∥⟨·⟩n2 ∂αxχ∥1 .

Proof. Analogously to the proof of Proposition 6.14 the inductive application of
Lemma 6.12 yields that

(k̂∇k)s
⟨︂
ϕ

(p)
0 (k, ·), χ

⟩︂
can be written as

kα
⟨︂
TV1,|k| · · ·TVp,|k|ek, Pχ

⟩︂
, (6.34)

for some polynomial P , multi-index α, V1, . . . , Vp ∈ C∞
c (R3). Then after inserting

(6.28) and using Lemma 6.13 with X = ∇k, the stationary phase argument again
yields the desired estimate.

6.4.3. Estimates of the Remainder Terms
Now we prove arbitrarily fast polynomial decay for the remainder terms of suffi-
ciently high order. We obtain results for remainder terms in Proposition 6.18 and
scalar products of Born series terms with remainder terms in Proposition 6.20.
The main tool will be the following lemma, where the basic idea is due to Klein
and Zemach (cf. [ZK58]). It essentially follows from a stationary phase argument
together with a suitable coordinate transformation.
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Lemma 6.16
For W ∈ C∞

c (R3), n1, n2 ∈ N0, such that suppW ⊆ BR(0), there exists a constant
C such that for all κ ≥ 0,

sup
|x|,|x′|≤R

⃓⃓⃓⃓
⃓
∫︂ eiκ|x−y|

|x− y|1−n1
W (y) eiκ|x′−y|

|x′ − y|1−n2
dy
⃓⃓⃓⃓
⃓ ≤ C

1 + κ
. (6.35)

Proof. For the proof we use Prolate Spheroidal coordinates, see [ZK58, appendix]
and [MF53, p. 661]. By continuity it suffices to consider the case x ̸= x′.

Let D = 1
2 |x− x′|. For

ξ ∈ [D,∞), η ∈ [−1, 1], φ ∈ [0, 2π)

we set

Φ(ξ, η, φ) := 1
2(x+ x′) + R

⎛⎜⎜⎝
√︂

(ξ2 −D2)(1 − η2) cosφ√︂
(ξ2 −D2)(1 − η2) sinφ

ξη

⎞⎟⎟⎠ ,
where R is the rotation matrix transforming e3 into x−x′

|x−x′| . A straightforward
computation then shows that

ξ = 1
2 (|x− Φ(ξ, η, φ)| + |x′ − Φ(ξ, η, φ)|) ,

η = 1
2D (|x− Φ(ξ, η, φ)| − |x′ − Φ(ξ, η, φ)|) ,

det Φ(ξ, η, φ) = (ξ +Dη)(ξ −Dη).

Thus, by change of coordinates,∫︂ eiκ|x−y|W (y)eiκ|x′−y|

|x− y|1−n1 |x′ − y|1−n2
dy =

∫︂
e2iκξW (Φ(ξ, η, φ))(ξ +Dη)n1(ξ −Dη)n2d(ξ, η, φ)

=
∫︂ ∞

D
e2iκξh(ξ)dξ,

where h(ξ) :=
∫︁
W (Φ(ξ, η, φ))(ξ + Dη)n1(ξ − Dη)n2d(η, φ). Let E := 1

2 |x+ x′|.
Notice that by direct computation, for ξ ≥ D + E,

|Φ(ξ, η, φ)| ≥ ξ −D − E.

Thus, we get that h(ξ) = 0 for ξ ≥ R +D + E. Then, by integration by parts,∫︂ ∞

D
e2iκξh(ξ)dξ = 1

2iκ

∫︂ R+D+E

D
∂ξ
(︂
e2iκξ

)︂
h(ξ)dξ

= 1
2iκ

(︄
− h(D)e2iκD −

∫︂ R+D+E

D
e2iκξ∂ξh(ξ)dξ

)︄
.

99



6. Virial Theorem in the Short-Range Case

As D,E ≤ R are bounded, so is the first term. For the second one notice that

∂ξh(ξ) =
∫︂

⟨∇W (Φ(ξ, η, φ)), ∂ξΦ(ξ, η, φ)⟩ (ξ +Dη)n1(ξ −Dη)n2d(η, φ) (6.36)

+
∫︂
W (Φ(ξ, η, φ))∂ξ((ξ +Dη)n1(ξ −Dη)n2)d(η, φ). (6.37)

The term (6.37) is clearly bounded by a constant depending only on R. The term
(6.36) is bounded up to a constant by

sup
η,φ

|∂ξΦ(ξ, η, φ)| ≤ C

(︄
1 + ξ√

ξ2 −D2

)︄
,

for some C > 0. This is integrable and the integral is also bounded by a constant
only depending on R:

∫︂ R+D+E

D

ξ√
ξ2 −D2 dξ =

√︂
(R +D + E)2 −D2.

The Klein-Zemach method of Lemma 6.16 shows that compositions of suffi-
ciently many operators T (n)

V,|k|, n ≥ 0, exhibit an arbitrary large decay in k, see the
following lemma. This will be used in Proposition 6.18 to prove the decay in k for
the remainder terms.
Lemma 6.17
Let p ∈ N, V1, . . . , Vp ∈ C∞

c (R3) and n1, . . . , np ∈ N0. Then there exists a constant
C such that for all k, x ∈ R3 and ψ ∈ Cb(R3),

⃓⃓⃓
(T (n1)

V1,|k| · · ·T (np)
Vp,|k|ψ)(x)

⃓⃓⃓
≤ C(1 + ⟨x⟩n1−1) ∥ψ∥∞

1 + |k|⌊
p−1

2 ⌋
.

Proof. First we assume that p = 2p∗ + 1. Then by Lemma 6.10

(T (n1)
V1,|k| · · ·T (np)

Vp,|k|ψ)(x)

=
∫︂ ei|k||x−y1|

|x− y1|1−n1
V1(y1) (6.38)⎧⎨⎩

p∗∏︂
l=1

ei|k||y2l−1−y2l|

|y2l−1 − y2l|1−n2l
V2l(y2l)

ei|k||y2l−y2l+1|

|y2l − y2l+1|1−n2l+1
V2l+1(y2l+1)

⎫⎬⎭ (6.39)

ψ(yp)d(y1, y2, y3, . . . , yp).
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In the following let C denote different constants depending only on Vl and nl,
l = 1, . . . , p. We estimate the terms in (6.39) for l = 1, . . . , p∗ by⃓⃓⃓⃓

⃓
∫︂ ei|k||y2l−1−y2l|

|y2l−1 − y2l|1−n2l
V2l(y2l)

ei|k||y2l−y2l+1|

|y2l − y2l+1|1−n2l+1
dy2l

⃓⃓⃓⃓
⃓ ≤ C

1 + |k|

using Lemma 6.16, the term (6.38) by⃓⃓⃓⃓
⃓
∫︂ ei|k||x−y1|

|x− y1|1−n1
V1(y1)dy1

⃓⃓⃓⃓
⃓ ≤ C(1 + ⟨x⟩n1−1),

and thus we find⃓⃓⃓
(T (n1)

V1,|k| · · ·T (np)
Vp,|k|ψ)(x)

⃓⃓⃓
≤ C(1 + ⟨x⟩n1−1)

(1 + |k|)p∗

∫︂ ⎧⎨⎩
p∗−1∏︂
l=0

|V2l+2(y2l+2)|
⎫⎬⎭ψ(yp)d(y2, y4, . . . , yp)

≤ C(1 + ⟨x⟩n1−1) ∥ψ∥∞
(1 + |k|)p∗ .

In case p is even, we estimate the first p − 1 factors as in the odd case and the
remaining expression we estimate using Proposition 6.8, which implies that there
is a constant C independent of k such that ∥11suppVp−1T

(np)
Vp,|k|ψ∥∞ ≤ C∥ψ∥∞.

Proposition 6.18
Let n ∈ N0, m ∈ {0, 1} and j ∈ {1, 2, 3}.

(a) For all k ̸= 0, the expression

∂mkj
D̂
n

kTV,|k| · · ·TV,|k|ϕ(k, ·)

can be written as linear combination of terms

f(k)T (n1)
V,|k| · · ·T (np)

V,|k|∂
m′

kj
D̂
n′

k ϕ(k, ·), (6.40)

where f is a bounded function on R3 \ {0}, 0 ≤ n′ ≤ n, 0 ≤ m′ ≤ m, and
n1 + · · · + np +m′ + n′ = m+ n.

(b) For any p ∈ N, there exists a constant C such that we have for all k ̸= 0 and
x ∈ R3, ⃓⃓⃓

∂mkj
D̂
n

kϕ
(p)
R (k, x)

⃓⃓⃓
≤ C(1 + ⟨x⟩n+m−1)

1 + |k|⌊
p−1

2 ⌋
.
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Proof. Part (a) follows by the product rule from Lemma 6.10. Part (b) is a result
of (a), Lemma 6.17, Proposition 6.6, and the fact that V has compact support.

When the Born series expansion is applied in products of the interaction with
scattering functions, one faces mixed terms of possibly lower-order Born series
terms with remainder terms of arbitrary high order. In this case one cannot only
use Proposition 6.18. However, one can shift the decay of the higher-order terms
to the lower-order terms by means of integration by parts. This is the idea behind
the following lemma.

Lemma 6.19
"ca Let p,m, r ∈ N with m ≥ 3r + 1, V1, . . . , Vp, W1, . . . ,Wm ∈ C∞

c (R3), and
n1, . . . , np, n′

1, . . . , n
′
m ∈ N0. Suppose that suppVl ⊆ BR(0) and suppWl ⊆ BR(0)

for all l. Then there exists a constant C, n0 ∈ N0, such that for all k, k′, ψ ∈
Cpoly(R3) and χ ∈ S(R3),

⃓⃓⃓⟨︂
T

(n1)
V1,|k| · · ·T (np)

Vp,|k|ek, χT
(n′

1)
W1,|k′| · · ·T (n′

m)
Wm,|k′|ψ

⟩︂⃓⃓⃓
≤
C sup|α|≤r ∥(1 + ⟨·⟩n0)∂αχ∥1

⃦⃦⃦
11BR(0)ψ

⃦⃦⃦
∞

(1 + |k|⌊
p−1

2 ⌋+r)(1 + |k′|⌊
m−1−r

2 ⌋−r)
.

(6.41)

Proof. We will show that for all n ∈ N0 and j ∈ {1, 2, 3},

knj
⟨︂
T

(n1)
V1,|k| · · ·T (np)

Vp,|k|ek, χT
(n′

1)
W1,|k′| · · ·T (n′

m)
Wm,|k′|ψ

⟩︂
(6.42)

can be written as a linear combination of terms

|k′|s
⟨︃
T

(n1)˜︁V1,|k|
· · ·T (np)˜︁Vp,|k|

ek, ∂
αχT

(n′
1)˜︁W1,|k′|

· · ·T (n′
m−n)˜︁Wm−n,|k′|

˜︁ψ⟩︃ , (6.43)

where 0 ≤ s ≤ n, |α| ≤ n, ˜︁V1, . . . , ˜︁Vp, ˜︂W1, . . . , ˜︂Wm ∈ C∞
c (R3) and ˜︁ψ ∈ Cpoly(R3),

which satisfies
⃓⃓⃓ ˜︁ψ(x)

⃓⃓⃓
≤ P (|x|)

⃦⃦⃦
11BR(0)ψ

⃦⃦⃦
∞

, x ∈ R3, for some polynomial P not
depending on k, k′, ψ, χ. Then the desired estimate (6.41) immediately follows
from Lemma 6.17.

Now, we prove that (6.42) can be written as linear combination of terms of the
form (6.43) by induction over n. For n = 0 this is clear, and for the induction step
it suffices to show the claim for n = 1.
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We have

k
⟨︂
T

(n1)
V1,|k| · · ·T (np)

Vp,|k|ek, χT
(n′

1)
W1,|k′| · · ·T (n′

m)
Wm,|k′|ψ

⟩︂
=
∫︂ e−i|k||v1|

|v1|1−n1
V1(v1 + x)e

−i|k||v2|

|v2|1−n2
V2(v2 + v1 + x) . . . e

−i|k||vp|

|vp|1−np
Vp

(︄ p∑︂
l=1

vl + x

)︄

e−ik
∑︁p

l=1 vl(i∇xe
−ikx)χ(x) ei|k′||x−x1|

|x− x1|1−n′
1
W1(x1)

ei|k′||x1−x2|

|x1 − x2|1−n′
2
W2(x2)

. . .
ei|k′||xm−1−xm|

|xm−1 − xm|1−n′
m
Wm(xm)ψ(xm)d(v1, . . . , vp, x, x1, . . . , xm).

We now use integration by parts with respect to x. By the product rule, we have
a linear combination of several different terms. The ones with derivatives of the
potentials V1, . . . , Vp and χ yield terms of the form (6.43) with s = 0, m = 0 and˜︁ψ = ψ. For the last term containing x we have

∇x
ei|k′||x−x1|

|x− x1|1−n′
1

= ∇x1

ei|k′||x−x1|

|x− x1|1−n′
1
.

Then we use again partial integration and get a term involving ∇W1, which can
be written as the former terms involving the derivatives of the V ’s, and

∇x1

ei|k′||x1−x2|

|x1 − x2|1−n′
2
.

Repeating this trick we obtain expressions with derivatives of the W ’s and finally
the term where we take the derivative of the last fraction,

∇xm−1

ei|k′||xm−1−xm|

|xm−1 − xm|1−n′
m

= K(xm−1, xm) xm−1 − xm
|xm−1 − xm|

,

where
K(xm−1, xm) := ei|k′||xm−1−xm|

|xm−1 − xm|1−n′
m

(︄
i |k′| + n′

m − 1
|xm−1 − xm|

)︄
.

The integral operator corresponding to (xm−1, xm) ↦→ K(xm−1, xm)Wm(xm) can be
expressed as

i |k′|TWm,|k′| + (n′
m − 1)T (n′

m−1)
Wm,|k′| .

Accordingly, consider ˜︁ψ1 := TWm,|k′|ψ and ˜︁ψ2 := T
(n′

m−1)
Wm,|k′| ψ. Then for i = 1, 2,˜︁ψi ∈ Cpoly(R3) and there is a polynomial P independent of ψ and k, k′ such that⃓⃓⃓ ˜︁ψi(x)

⃓⃓⃓
≤ P (|x|)

⃦⃦⃦
11BR(0)ψ

⃦⃦⃦
∞

holds for all x ∈ R3 due to Proposition 6.8. This
shows the induction hypothesis for n = 1 and finishes the proof.
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Proposition 6.20
Let s ∈ N0, n ∈ N, η ∈ S(R3), X ∈ {Id,∇k,∇k′}, Y ∈ {k̂∇k + k̂

′
∇′
k, η(k̂)k̂∇k}.

Then there exists a constant m0 ∈ N, such for all m ≥ m0 and p ∈ N, there are
n1, n2 ∈ N, C, such that for all χ ∈ S(R3), k, k′ ̸= 0,

⃓⃓⃓
XY s

⟨︂
ϕ

(p)
0 (k, ·), χϕ(m)

R (k′, ·)
⟩︂⃓⃓⃓

≤
C sup|α|≤n1 ∥⟨·⟩n2 ∂αχ∥1

(1 + |k|n)(1 + |k′|n) .

Proof. By applying Lemma 6.13 and (6.40) for the left and right part of the inner
product, respectively, we can write

XY s
⟨︂
ϕ

(p)
0 (k, ·), χϕ(m)

R (k′, ·)
⟩︂

for all given X, Y and s as a linear combination of expressions

kα(k′)βf(k, k′)
⟨︂
T

(n1)
V1,|k| · · ·T (np)

Vp,|k|ek, χT
(n′

1)
W1,|k′| · · ·T (n′

m)
Wm,|k′|ϕ(k′, ·)

⟩︂
,

where α, β are multi-indices with |α| , |β| ≤ s, f is a bounded function on R3 ×R3,
V1, . . . , Vp, W1, . . . ,Wm ∈ C∞

c (R3), and n1, . . . , np, n′
1, . . . , n

′
m ∈ N0. Now we can

estimate these expressions with Lemma 6.19.

6.4.4. Commutator with the Interaction
This part provides the key for the proof of Proposition 6.2. In the following we
omit for the moment the regularity function κ of the coupling and work with
multiplication operators H(ω,Σ), (ω,Σ) ∈ R+ × S2. Throughout this section we
shall always assume

H(ω,Σ)(x) = χ(x)H̃(ω,Σ)(x) (6.44)

where χ ∈ S(R3) and H̃ is a function on I×S2 ×R3, with I = (0,∞) or I = [0,∞),
such that for some s ∈ N0 the following holds.

(Js) For all n ∈ {0, . . . , s} and α ∈ N3
0 the partial derivatives ∂αx∂nωH̃ exist and

are continuous on I × S2 ×R3, and there exists a polynomial P and M ∈ N0
such that⃓⃓⃓

∂αx∂
n
ωH̃(ω,Σ)(x)

⃓⃓⃓
≤ P (ω)⟨x⟩M , (ω,Σ, x) ∈ I × S2 × R3.
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To show that a commutator [T,A(ϵ)
p ], for a bounded operator T on L2(R3), is

bounded, we shall make of use the following decomposition on ℓ2(N) ⊕ L2(R3),

V [T,A(ϵ)
p ]V∗ =

(︄
0 VdTV

∗
c ηϵ(−AD)ηϵ

−ηϵ(−AD)ηϵVcTV
∗

d [VcTV
∗

c , ηϵ(−AD)ηϵ]

)︄
,

where V is the unitary operator defined in (6.5) and N ∈ N is the number of
linearly independent eigenfunctions of Hp. We treat the off-diagonal terms in
Proposition 6.21 and the term on the diagonal in Lemma 6.24.
Proposition 6.21
Suppose H̃ satisfies (J0). Then for all n ∈ N0, j ∈ {1, 2, 3}, (ω,Σ), the operators

(1) (−AD)nVcH(ω,Σ)Pdisc,

(2) k̂j(−AD)nVcH(ω,Σ)Pdisc,

(3) q̂j(−AD)nVcH(ω,Σ)Pdisc,

are well-defined, their norms can be estimated uniformly in Σ by a polynomial in
ω, and they are continuous in (ω,Σ). Furthermore, if H̃ satisfies (Js), then (1)–
(3) are s times continuously differentiable with respect to ω in the operator norm
topology and

∂sω(−AD)nVcH(ω,Σ)Pdisc = (−AD)nVc∂
s
ωH(ω,Σ)Pdisc,

∂sωk̂j(−AD)nVcH(ω,Σ)Pdisc = k̂j(−AD)nVc∂
s
ωH(ω,Σ)Pdisc,

∂sωq̂j(−AD)nVcH(ω,Σ)Pdisc = q̂j(−AD)nVc∂
s
ωH(ω,Σ)Pdisc.

Proof. Let m ∈ {0, 1} and n ∈ N0. Choose N big enough so that we find by means
of Proposition 6.18 a constant C and an n0 ∈ N0 such that

⃓⃓⃓⃓∫︂
∂mkj
D̂
n

kϕ
(N)
R (k, x)f(x)ψd(x)dx

⃓⃓⃓⃓
≤ C∥⟨·⟩n0f∥ ∥ψd∥

1 + |k|6
(6.45)

for all f ∈ S(R3), ψd ∈ ranPdisc and k ̸= 0. Expanding ϕ(k, x) using Proposi-
tion 6.9 we obtain for ψd ∈ ranPdisc, k ̸= 0,

VcH(ω,Σ)ψd(k) = (2π)−3/2
∫︂
ϕ(k, x)H(ω,Σ)(x)ψd(x)dx (6.46)

= T0(ω,Σ, k) + TR(ω,Σ, k),

105



6. Virial Theorem in the Short-Range Case

where

T0(ω,Σ; k) := (2π)−3/2
N−1∑︂
l=0

∫︂
ϕ

(l)
0 (k, x)H(ω,Σ)(x)ψd(x)dx, (6.47)

TR(ω,Σ; k) := (2π)−3/2
∫︂
ϕ

(N)
R (k, x)H(ω,Σ)(x)ψd(x)dx. (6.48)

The terms which appear if we apply (−AD)n, k̂j, q̂j, n ∈ N0, j ∈ {1, 2, 3} to
(6.47) can be estimated by means of Proposition 6.15 with the result that for some
constant C and n1, n2 ∈ N0,

|(−AD)nT0(ω,Σ; k)|, |k̂j(−AD)nT0(ω,Σ; k)|, |q̂j(−AD)nT0(ω,Σ; k)| (6.49)

≤
C sup|α|≤n1 ∥⟨·⟩n2 ∂αx (H(ω,Σ)ψd)∥1

1 + |k|2

for all (ω,Σ), k ̸= 0, and ψd ∈ ranPdisc. The terms coming from (6.48) can be
estimated using (6.45) such that for some constant C and n1 ∈ N0,

|(−AD)nTR(ω,Σ; k)|, |k̂j(−AD)nTR(ω,Σ; k)|, |q̂j(−AD)nTR(ω,Σ; k)| (6.50)

≤ C∥ ⟨·⟩n1 H(ω,Σ)∥ ∥ψd∥
1 + |k|2

for all (ω,Σ), k ̸= 0, and ψd ∈ ranPdisc. Now observe that by elliptic regularity
(cf. [RS2, section IX.6]) we have ψd ∈ C∞(R3) and ∂αψd ∈ L2(R3) for all α ∈ N3

0.
Thus, as H̃ satisfies (J0), it follows that for fixed ψd andH there exists a polynomial
P and n1, n2 ∈ N0 such that for all (ω,Σ),

sup
|α|≤n1

∥⟨·⟩n2 ∂αx (H(ω,Σ)ψd)∥1 , ∥⟨·⟩rH(ω,Σ)∥ ≤ P (ω),

using Cauchy-Schwarz and standard estimates involving Schwartz functions. Col-
lecting esimates and using that the discrete spectrum is finite we see that the
operators (1), (2) and (3) are well-defined and their norms can be estimated by a
polynomial in ω. Continuity in (ω,Σ) with respect to the operator norm topology
now follows from linearity, the bounds (6.49) and (6.50), and the fact that H̃ sat-
isfies (J0) (and again standard estimates involving Schwartz functions). If s = 1,
an analogous argument implies differentiability in ω with the derivative given by
replacing H by ∂ωH. Now the claim for arbitrary s follows by induction.

Lemma 6.22
Suppose H̃ satisfies (J0). For all (ω,Σ) and k, k′ ∈ R3, let

Kω,Σ[H](k, k′) :=
∫︂
ϕ(k, x)H(ω,Σ)(x)ϕ(k′, x)dx. (6.51)
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Then for all Z ∈ {k̂∇k + k̂
′
∇′
k, η1(k̂)k̂∇k + η2(k̂) + η1(k̂

′)k̂′
∇k̂′ + η2(k̂

′)}, where
η1, η2 ∈ S(R3), j ∈ {1, 2, 3}, and s ∈ N0, there exists a polynomial P such that the
absolute values of

(1) ZsKω,Σ[H](k, k′),

(2) ∂kj
ZsKω,Σ[H](k, k′), ∂k′

j
ZsKω,Σ[H](k, k′),

(3) (kj − k′
j)ZsKω,Σ[H](k, k′),

are bounded from above by

P (ω)
(︄

1
(1 + |k|2)(1 + |k′|2)

+ 1
1 + |k − k′|4

)︄
(6.52)

for all (ω,Σ), k, k′ ̸= 0 . Furthermore the following is satisfied.
(a) For fixed k, k′ ̸= 0, the functions R+ ×S2 → C mapping (ω,Σ) to the expres-

sions (1)–(3), are continuous. If H̃ satisfies (Js), these functions are s times
continuously differentiable in ω and the s-th partial derivative with respect to
ω is obtained by replacing H by ∂sωH.

(b) The integral kernels (1)–(3) define bounded operators in L2(R3) whose norms
are uniformly bounded in Σ by a polynomial in ω. With respect to the oper-
ator norm toplogy the following holds. These operators depend continuously
on (ω,Σ). If H̃ satisfies (Js), these operators are s times continuously dif-
ferentiable in ω and the s-th partial derivative with respect to ω is obtained
by replacing H by ∂sωH.

Proof. Let X ∈ {Id, ∂kj
, ∂k′

j
, k̂j − k̂

′
j}. Assume first that

Y ∈ {k̂∇k + k̂
′
∇′
k, η1(k̂)k̂∇k}.

Fix s ∈ N0. Using Proposition 6.9 we write for N ∈ N,

Kω,Σ[H](k, k′) =
∫︂
ϕ(k, x)H(ω,Σ)(x)ϕ(k′, x)dx (6.53)

=
N−1∑︂
l,l′=0

∫︂
ϕ

(l′)
0 (k, x)H(ω,Σ)(x)ϕ(l)

0 (k′, x)dx (6.54)

+
N−1∑︂
l=0

∫︂
ϕ

(N)
R (k, x)H(ω,Σ)(x)ϕ(l)

0 (k′, x)dx (6.55)

+
N−1∑︂
l=0

∫︂
ϕ

(l)
0 (k, x)H(ω,Σ)(x)ϕ(N)

R (k′, x)dx (6.56)

+
∫︂
ϕ

(N)
R (k, x)H(ω,Σ)(x)ϕ(N)

R (k′, x)dx. (6.57)
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By Proposition 6.20 we can choose N large enough such that there exist constants
n1, n2 ∈ N, C, such that for all f ∈ S(R3) and k, k′ ̸= 0, and p = 1, . . . , N ,

⃓⃓⃓
XY s

⟨︂
ϕ

(p)
0 (k, ·), fϕ(N)

R (k′, ·)
⟩︂⃓⃓⃓

≤
C sup|α|≤n1 ∥⟨·⟩n2 ∂αf∥1

(1 + |k|2)(1 + |k′|2)
, (6.58)

which implies that for all (ω,Σ),

|XY s(6.55)|, |XY s(6.56)| ≤
C sup|α|≤n1 ∥⟨·⟩n2 ∂αH(ω,Σ)∥1

(1 + |k|2)(1 + |k′|2) . (6.59)

Moreover, by Proposition 6.14 there are constants n1, n2 ∈ N, C, such that for all
k, k′ ̸= 0,

|XY s(6.54)| ≤
C sup|α|≤n1 ∥⟨·⟩n2 ∂αxH(ω,Σ)∥1

1 + |k − k′|4
. (6.60)

Finally, using Proposition 6.18 we see, by possibly making N larger, that there
exist constants n1 ∈ N and C such that

|XY s(6.57)| ≤ C∥⟨·⟩n1H(ω,Σ)∥1

(1 + |k|2)(1 + |k′|2) . (6.61)

On the other hand since H̃ satisfies (J0) and H = χH̃, there exists for each n1 ∈ N0
and α ∈ N3

0 a polynomial P such that

∥⟨·⟩n1∂αxH(ω,Σ))∥1 ≤ P (ω), (ω,Σ) ∈ R+ × S2. (6.62)

It follows as a consequence of (6.58)–(6.62) that

|XY sKω,Σ[H](k, k′)| ≤ r.h.s. of (6.52) . (6.63)

This shows (1)–(3) in case Z = k̂∇k + k̂
′
∇k′ . We note that Y = η1(k̂)k̂∇k will be

used below.
Let us now assume

Z = η1(k̂)k̂∇k + η2(k̂) + η1(k̂
′)k̂′

∇k′ + η2(k̂
′). (6.64)

To estimate derivatives acting on both sides of (6.53) we use Proposition 6.6, with
the result that for all r, r′ ∈ {0, 1} and s, s′ ∈ N0 there exist n1 ∈ N0 and C such
that for all nonzero k, k′,

|∂rkj
(k̂∇k)s∂r

′

k′
j
(k̂′

∇k′)s′
Kω,Σ[H](k, k′)| ≤ C∥⟨·⟩n1H(ω,Σ)∥1⟨k⟩s⟨k′⟩s′

. (6.65)
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To estimate the norm occurring on the right-hand side we shall use that for H̃
satisfying (J0) and n1 ∈ N0 there exists a polynomial P such that

∥⟨·⟩n1H(ω,Σ)∥1 ≤ P (ω). (6.66)

Let W (k̂) = η1(k̂)k̂∇k + η2(k̂). Then by the binomial theorem

ZnKω,Σ[H](k, k′) =
n∑︂
l=0

(︄
n

l

)︄
W (k)lW (k′)n−lKω,Σ[H](k, k′). (6.67)

We see, after commuting Schwartz functions to the left, that for each l ≥ 1 there
exist functions η(l,s), η̃(l,s) ∈ S(R3), 0 ≤ s ≤ l, such that

W (k̂)l =
l∑︂

s=0
η(l,s)(η(k̂)k̂∇k)s =

l∑︂
s=0

η̃(l,s)(k̂∇k)s. (6.68)

Let us first consider the terms in (6.67) for l = 0 and l = n. Using the first equality
in (6.68) and (6.63) (as well as its adjoint) for Y = η1(k̂)k̂∇k, we find

|XW n(k̂)Kω,Σ[H](k, k′)|, |XW n(k̂′)Kω,Σ[H](k, k′)| ≤ r.h.s. of (6.52) . (6.69)

The terms in (6.67) for l ∈ {1, . . . , n − 1} are estimated using (6.65), the second
equality in (6.68) controlling the growth in k and k′, and finally (6.66). Thus we
find with (6.69)

|XZnKω,Σ[H](k, k′)| ≤ r.h.s. of (6.52) .

This shows (1)–(3) in the case (6.64). It remains to prove (a) and (b).

(a) The continuity property in (ω,Σ) for fixed nonzero k, k′ can be seen from the
integral (6.53), using dominated convergence with the property that H̃ satisfies
(J0). For this purpose we note that the integrand contains a Schwartz function
and that the derivatives of the scattering functions are bounded by polynomials,
as shown in Proposition 6.6. If s = 1, we conclude analogously differentiability in
ω, and furthermore, that the derivative is given by replacing H with ∂ωH. For
arbitrary s the claim then follows by induction.

(b) We first note that operators with integral kernels satisfying the bound (6.52)
are bounded by P (ω). To this end, observe that an integral operator T with
integral kernel

t : (k, k′) ↦→ 1
(1 + |k|2)(1 + |k′|2)
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is Hilbert-Schmidt and its norm can be estimated by ∥T∥ ≤ ∥t∥2, and that an
operator S with integral kernel

(k, k′) ↦→ 1
1 + |k − k′|4

=: s(k − k′)

is bounded by Young’s inequality for convolutions: ∥Sψ∥2 = ∥s ∗ ψ∥2 ≤ ∥s∥1 ∥ψ∥2,
s ∈ L1(R3), ψ ∈ L2(R3). In view of this, continuity in (ω,Σ) with respect to the
operator norm topology now follows from linearity, the bounds (6.59)–(6.61) as
well as (6.66), and the fact that H̃ satisfies (J0) (and a standard estimate involving
Schwartz functions). If s = 1, we analogously conclude differentiability in ω, and
that the derivative is given by replacing H with ∂ωH. For arbitrary s the claim
then follows by induction.

Remark 6.23
We note that for the proof of the main theorem we will only use Part (b) of
Lemma 6.22 and Part (a) will not be needed. We nevertheless included Part (a)
in Lemma 6.22, since in principle we could work with a weaker topology.
In the following lemma we estimate the coupling functions first in scattering space.
Lemma 6.24
Suppose H̃ satisfies (J0). Then for all ϵ ≥ 0, n ∈ N0, j ∈ {1, 2, 3}, (ω,Σ),

(1) ad(n)
ηϵ(−AD)ηϵ

(VcH(ω,Σ)V ∗
c ),

(2) adk̂j

(︂
ad(n)

ηϵ(−AD)ηϵ
(VcH(ω,Σ)V ∗

c )
)︂
,

(3) adq̂j

(︂
ad(n)

ηϵ(−AD)ηϵ
(VcH(ω,Σ)V ∗

c )
)︂
,

(4) q̂j ad(n)
−AD

(VcH(ω,Σ)V ∗
c ),

are well-defined bounded operators in L2(R3) and we can estimate their norms
uniformly in Σ by a polynomial in ω. With respect to the operator norm topology
the following holds. (1)–(4) are continuous L(L2(R3))-valued functions of (ω,Σ).
Moreover if H̃ satisfies (Js), then the functions (1)–(4) are s times continuously
differentiable with respect to ω and the s-th partial derivative of (1)–(4) with respect
to ω is obtained by replacing H by ∂sωH.

Proof. From Theorem 6.1 we see that for all (ω,Σ),

VcH(ω,Σ)V ∗
c ψ(k) = (2π)−3

∫︂
Kω,Σ[H](k, k′)ψ(k′)dk′,
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with Kω,Σ defined in (6.51). Thus the lemma follows directly from Lemma 6.22,
observing that ηϵ(−AD)ηϵ = iη2

ϵ (k̂)
2 k̂∇k + iηϵ(k̂)

4 (2k̂∇kηϵ(k̂) + 3ηϵ(k̂)).

Let us now prove the central proposition of this section, which can be thought
of as a preliminary version of Proposition 6.2 but without the cutoff function κ.
For the proof we need the following auxiliary lemma.
Lemma 6.25
Let H0 and H1 be Hilbert spaces. Let B be a bounded operator in H0 and let
V0 : H0 → H1 be a partial isometry with ran V0 = H1. Let P be the orthogonal pro-
jection onto the kernel of V0. Suppose A is a self-adjoint operator in H1 such that
for all j = 1, . . . , n the set ran V0(V ∗

0 AV0)j−1BP is contained in the domain of A
and the operators ad(j)

A (V0BV
∗

0 ) and (V ∗
0 AV0)jBP are bounded. Then ad(n)

V ∗
0 AV0(B)

is a bounded operator on H0 and

ad(n)
V ∗

0 AV0(B) = V ∗
0 ad(n)

A (V0BV
∗

0 )V0 + (iV ∗
0 AV0)nBP + PB(−iV ∗

0 AV0)n.

Proof. This follows by induction in n and a straightforward calculation.

Proposition 6.26
Suppose H̃ satisfies (Js). Then for all ϵ ≥ 0, n ∈ N0, j ∈ {1, 2, 3}, (ω,Σ) and
r = 0, . . . , s the operators

(1) ∂rω ad(n)
A

(ϵ)
p

(H(ω,Σ)),

(2) ∂rω adV ∗
c k̂jVc

(︃
ad(n)

A
(ϵ)
p

(H(ω,Σ))
)︃

,

(3) ∂rω adV ∗
c q̂jVc

(︃
ad(n)

A
(ϵ)
p

(H(ω,Σ))
)︃

,

(4) ∂rωV
∗

c q̂jVc ad(n)
Asr

p
(H(ω,Σ)) and ∂rω ad(n)

Asr
p

(H(ω,Σ))V ∗
c q̂jVc,

where the derivative ∂ω is understood with respect to the operator norm topology,
are well-defined, bounded, and we can estimate their norms uniformly in Σ by a
polynomial in ω. The operators (1)–(4) depend continuously on (ω,Σ) with respect
to the operator norm topology.

Proof. Follows directly from Proposition 6.21, Lemma 6.24 and an application of
Lemma 6.25, with V0 = Vc, P = Pdisc, A = −AD, and B = H(ω,Σ).

111



6. Virial Theorem in the Short-Range Case

Proof of Proposition 6.2. To show the proposition we will use Proposition 6.26 and
Lemma 4.3. First we consider the case where (i) of Hypothesis B-SR (3) holds.
Let F, F̃ : R3 → L(Hp), where F (ωΣ) = κ(ω)F̃ (ωΣ) and F̃ is one of the functions

ad(n)
A

(ϵ)
p

(χG̃(·)), adV ∗
c k̂jVc

(︃
ad(n)

A
(ϵ)
p

(χG̃(·))
)︃
, adV ∗

c q̂jVc

(︃
ad(n)

A
(ϵ)
p

(χG̃(·))
)︃
,

V ∗
c q̂jVc ad(n)

Asr
p

(χG̃(·)),
(6.70)

for j ∈ {1, 2, 3}. Since Hypothesis B-SR (1) implies that G̃ satisfies (J3) we find
that the L(Hp)-valued functions (6.70) are well-defined by Proposition 6.26 as well
as their first three partial derivatives with respect to ω ∈ R+. From Leibniz’ rule
we find for m ≤ 3,

∂mω F (ωΣ) =
m∑︂
l=0

(︄
m

l

)︄
∂lωκ(ω)∂m−l

ω F̃ (ωΣ). (6.71)

By Proposition 6.26 there exists a polynomial P such that for all l = 0, . . . ,m and
(ω,Σ), ⃦⃦⃦

∂m−l
ω F̃ (ωΣ)

⃦⃦⃦
≤ P (ω). (6.72)

Now Condition (2) of Lemma 4.3 holds for F by (6.72), (6.71) and Hypothesis B-
SR (2). Condition (1) of Lemma 4.3 is seen to hold by (6.72), (6.71) and (i) of
Hypothesis B-SR (3). Thus, by Lemma 4.3, the function (u,Σ) ↦→ ∂mu τβ(F )(u,Σ)
belongs to L2(R×S2,L(Hp)) for all 0 ≤ m ≤ 3, and moreover (6.12) holds. Hence
we have shown Proposition 6.2 in case (i) of Hypothesis B-SR (3) holds.

Let us now assume the case where (ii) of Hypothesis B-SR (3) holds. To this
end, let F0 : R3 −→ L(Hp) and F̃ 0 : [0,∞)×S2 → L(Hp) be measurable functions,
where F0(ωΣ) = κ0(ω)F̃ 0(ω,Σ) and F̃ 0 is one of the functions

ad(n)
A

(ϵ)
p

(χG̃0(·)), adV ∗
c k̂jVc

(︃
ad(n)

A
(ϵ)
p

(χG̃0(·))
)︃
, adV ∗

c q̂jVc

(︃
ad(n)

A
(ϵ)
p

(χG̃0(·))
)︃
,

V ∗
c q̂jVc ad(n)

Asr
p

(χG̃0(·)) + ad(n)
Asr

p
(χG̃0(·))V ∗

c q̂jVc

(6.73)

for j ∈ {1, 2, 3}. The verification of Assumption (2) of Lemma 4.3 for F0 is
analogous to the first case. Now (ii) of Hypothesis B-SR (3) implies that G̃0
satisfies (Js) where s = max{0, 3−J}, and we find that the L(Hp)-valued functions
(6.70) are well-defined and continuous by Proposition 6.26 as well as their first s
partial derivatives with respect to ω ∈ [0,∞). By assumption (ii) of Hypothesis B-
SR (3) it is straightforward to verify that F0 satisfies the Assumption (1’) of
Lemma 4.3, noting that the adjoints are obtained by replacing κ0χG̃0 by κ0χG̃0.

112



6.4. Estimates on the Scattering Functions

Thus Proposition 6.2 now follows from Lemma 4.3, observing that for (4) we use
the identity

V ∗
c q̂jVc ad(n)

Asr
p

(τβ(G))

= 1
2
(︂
V ∗

c q̂jVc ad(n)
Asr

p
(τβ(G)) + ad(n)

Asr
p

(τβ(G))V ∗
c q̂jVc − i adV ∗

c q̂jVc(ad(n)
Asr

p
(τβ(G)))

)︂
.

Finally, note that the proposition still holds true if we replace G by G∗ since
the conditions (1)–(3) in Hypothesis B-SR are obviously invariant under taking
the adjoint of G.
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7. Positivity and Error Estimates
In this chapter the second important ingredient for the proof of the main result
is provided, namely that the sum of C#

1 , together with two supplementary terms
already mentioned in Section 4.2, is in fact positive. In the first two subsections we
treat the LR and SR case parallelly. For the LR case we assume that Hypotheses A-
LR and B-LR hold and that χ is a cutoff function satisfying Hypothesis C, and
in the SR case that Hypotheses A-SR and B-SR hold. All statements containing
the symbol # are to be understood in the sense that they are satisfied for all
# ∈ {lr, sr}.

First, we fix some notation and outline how Theorem 3.5 and Theorem 3.8 will
be proven. In Section 7.1 a self-adjoint A0 ∈ L(H) is introduced with ranA0 ⊆
D(Lλ) such that the commutator [Lλ, A0] is well-defined on D(Lλ). Subsequently,
in Section 7.2 a second self-adjoint operator CQ ∈ L(H) with the property that

⟨ψ,CQψ⟩ = 0, ψ ∈ ker(Lλ),

is constructed. The formal sum

C#
1 + iθ[Lλ, A0] + CQ, θ > 0,

can be rigorously defined as a quadratic form. Recall that q#
1 denotes the quadratic

form corresponding to C#
1 and PJ the restriction of the discrete spectrum to the

set of modes Jd, see (3.6). We set
ˆ︁PJ := PJ ⊗ PJ ⊗ Idf ,

and we have ˆ︁PJ = Id in the SR case. For ψ ∈ D(q#
1 ) ∩ D(Lλ), and some θ > 0,

which will be specified later, we write

q#
tot(ψ) := q#

1 (ψ) + θ ⟨ψ, i[Lλ, A0]ψ⟩ + ⟨ψ,CQψ⟩ . (7.1)

Clearly, if one could show that q#
tot|ran ˆ︁PJ

≥ 0, the virial theorems for C#
1 and

the construction of A0 and CQ will imply that q#
tot vanishes on kerLλ ∩ ran ˆ︁PJ :

Let ψ ∈ kerLλ ∩ ran ˆ︁PJ . From Theorem 5.5 and Theorem 6.5 it follows under the
given hypotheses that ψ ∈ D(q#

1 ), and

q#
1 (ψ) ≤ 0.
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7. Positivity and Error Estimates

Furthermore, ⟨ψ, i[Lλ, A0]ψ⟩ = 0 holds trivially, and ⟨ψ,CQψ⟩ = 0. This implies

0 ≤ q#
tot(ψ) = q#

1 (ψ) ≤ 0,

hence

q#
1 (ψ) = 0. (7.2)

Therefore, in order to complete the proof of the main result we need to show
that q#

tot(ψ) > 0 for all 0 ̸= ψ ∈ kerLλ ∩ ran ˆ︁PJ . This will be done in Section 7.3
for the LR and in Section 7.4 for the SR case.

For the further estimates it is convenient to introduce some notation with re-
spect to the interaction and the commuted interaction. We separate them into
parts which act on the left and right factor of the atomic space tensor product,
respectively,

I#
1 (u,Σ) := I#

1,l(u,Σ) ⊗ Idp + Idp ⊗I#
1,r(u,Σ),

I#
1,l(u,Σ) := (−i∂u)τβ(G)(u,Σ) + τβ(adA#

p
(G))(u,Σ),

I#
1,r(u,Σ) := (−i∂u)e−βu/2τβ(G∗)(u,Σ) − e−βu/2τβ(adA#

p
(G∗))(u,Σ).

Note that W#
1 = Φ(I#

1 ) holds by construction. Further, we introduce integrated
versions

w :=
∫︂
I(u,Σ)∗I(u,Σ)d(u,Σ),

w#
1 :=

∫︂
I#

1 (u,Σ)∗I#
1 (u,Σ)d(u,Σ),

and the left and right parts, for α = l, r,

wα :=
∫︂
Iα(u,Σ)∗Iα(u,Σ)d(u,Σ),

w#
1,α :=

∫︂
I#

1,α(u,Σ)∗I#
1,α(u,Σ)d(u,Σ).

Note that all these interaction terms depend on the inverse temperature β.

7.1. Fermi Golden Rule Term
On the space ran Π we use the Fermi Golden Rule and introduce an appropriate
conjugate operator A0. It yields a positive expression on ran Π as a commutator
with Lλ. The operator A0 was first introduced for zero temperature systems in
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7.1. Fermi Golden Rule Term

[Bac+99] and was later adapted to the positive temperature case in [Mer01]. It is
given as a bounded self-adjoint operator on H by

A0 := iλ(ΠWR2
εΠ⊥ − Π⊥R2

εWΠ), (7.3)
where ε > 0 and R2

ε := (L2
0 + ε2)−1. Recall that W = Φ(I). Hence,
WΠ = a∗(I)11Lp=0 ⊗ PΩ,

which is bounded, so both summands in (7.3) extend from D(ˆ︂Nf) to bounded
operators. Furthermore, as the range of the first summand of (7.3) equals ran Π
and the range of the second one equals D(L2

0) ∩ Ffin, we conclude that ranA0 ⊆
D(Lλ).

The commutator can be computed explicitly as follows. We have
i[Lλ, A0] = −λ[Lλ,ΠWR2

εΠ⊥ − Π⊥R2
εWΠ].

With respect to the different subspaces, a short computation yields
Πi[Lλ, A0]Π = 2λ2ΠWR2

εWΠ, (7.4)
Π⊥i[Lλ, A0]Π⊥ = −λ2(Π⊥WΠWR2

εΠ⊥ + Π⊥R2
εWΠWΠ⊥), (7.5)

Πi[Lλ, A0]Π⊥ = λΠWR2
εΠ⊥LλΠ⊥. (7.6)

First, we show that the Fermi Golden Rule condition implies strict positivity
of the first term (7.4) by generalizing [FMS04, Proposition 3.2] to our type of
coupling term. The proof is completely analogous.
Proposition 7.1
For all ε > 0, ˆ︁PJΠWR2

εWΠ ˆ︁PJ ≥ γβ(ε, Jd)Π ˆ︁PJ .
Proof. First notice that Π = 11Lp=0 ⊗ PΩ = ∑︁

E∈σd(Hp) pE ⊗ pE ⊗ PΩ. Then we
compute

ΠWR2
εWΠ ≥ ΠWR2

ε(Pess ⊗ Pdisc ⊗ Idf)WΠ

= Π
(︂
a(τβ(G⊗ Idp)) − a(e−βû/2τβ(Idp ⊗G∗))

)︂ Pess ⊗ Pdisc ⊗ Idf

L2
0 + ε2

×
(︂
a∗(τβ(G⊗ Idp)) − a∗(e−βû/2τβ(Idp ⊗G∗))

)︂
Π

= Πa(τβ(G⊗ Idp))Pess ⊗ Pdisc ⊗ Idf

L2
0 + ε2 a∗(τβ(G⊗ Idp))Π

=
∑︂

E∈σd(Hp)
Πa(τβ(G⊗ Idp)) Pess ⊗ pE ⊗ Idf

(Hp ⊗ Idp −E + dΓ(û))2 + ε2

× a∗(τβ(G⊗ Idp))Π,
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7. Positivity and Error Estimates

where we used Π(Pess ⊗ Idp) = 0 in the second to last step and the pull through
formula in the last step. Evaluating Π and using the definition of τβ, we arrive at

ΠWR2
εWΠ ≥

(︂
11Lp=0

∑︂
E∈σd(Hp)

∫︂
R

∫︂
S2
τβ(G∗ ⊗ Idp)(u,Σ) Pess

(Hp − E + u)2 + ε2 ⊗ pE

τβ(G⊗ Idp)(u,Σ)dΣdu11Lp=0
)︂

⊗ PΩ

=
∑︂

E∈σd(Hp)
pE(F (1)

G,β(E, ε) + F
(2)
G,β(E, ε))pE ⊗ pE ⊗ PΩ,

with F (1)
G,β(E, ε), F (2)

G,β(E, ε) defined as in Section 3.1.3. Applying the projection ˆ︁PJ
on both sides yields the desired result.

The two other terms (7.5) and (7.6) are possibly negative and estimated in the
following lemma. It contains sharper bounds than [FMS04], which we later use for
a Birman-Schwinger argument.
Lemma 7.2
For all ε > 0 and all λ ∈ R, the following holds.

(a) We have
Π⊥i[Lλ, A0]Π⊥ = 11 ˆ︁Nf=1Π

⊥i[Lλ, A0]Π⊥11 ˆ︁Nf=1.

Moreover, ⃦⃦⃦
Π⊥i[Lλ, A0]Π⊥

⃦⃦⃦
≤ 2λ

2

ε2 ∥I∥2 .

(b) For arbitrary δ1, δ2 > 0,

Π⊥i[Lλ, A0]Π + Πi[Lλ, A0]Π⊥

≤ (δ1 |λ| + δ2λ
2)ΠWR2

εWΠ + |λ|
δ1

ˆ︂PΩ
⊥

+ 2λ
2

δ2

(︄
a∗(I)R2

εa(I)11 ˆ︁Nf=2 + Π⊥
∫︂ I(u,Σ)∗I(u,Σ)

u2 + ε2 d(u,Σ) ⊗ PΩΠ⊥
)︄
.

Proof. (a) Consider the first term in (7.5),

Π⊥WΠWR2
εΠ⊥ = a∗(I)Πa(I)R2

εΠ⊥.

Clearly, this operator vanishes everywhere except on ran 11 ˆ︁Nf=1. By standard
estimates of creation and annihilation operators we obtain

∥a∗(I)Πa(I)∥ ≤ ∥I∥2 ,
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7.1. Fermi Golden Rule Term

thus, ⃦⃦⃦
Π⊥WΠWR2

εΠ⊥
⃦⃦⃦

≤ ∥I∥2

ε2 ,

which proves the claim, as the second term in (7.5) is just the adjoint of the
first one.

(b) Using (7.6), and the operator inequality (5.4) we get

Π⊥i[Lλ, A0]Π + Πi[Lλ, A0]Π⊥

= λ(ΠWR2
εL011 ˆ︁Nf=1 + 11 ˆ︁Nf=1L0R

2
εWΠ)

+ λ2(ΠWR2
ε11 ˆ︁Nf=1WΠ⊥ + Π⊥W11 ˆ︁Nf=1R

2
εWΠ)

≤ |λ| (δ1ΠWR2
εWΠ + δ−1

1 11 ˆ︁Nf=1L0R
2
εL011 ˆ︁Nf=1) (7.7)

+ λ2(δ2ΠWR2
εWΠ + δ−1

2 Π⊥W11 ˆ︁Nf=1R
2
ε11 ˆ︁Nf=1WΠ⊥). (7.8)

We have ⃦⃦⃦
11 ˆ︁Nf=1L0R

2
εL011 ˆ︁Nf=1

⃦⃦⃦
≤ 1,

which yields a bound for the second operator in (7.7). The second one in
(7.8) only operates on the space ran(ˆ︂PΩ + 11 ˆ︁Nf=2). So we can write

Π⊥W11 ˆ︁Nf=1R
2
ε11 ˆ︁Nf=1WΠ⊥

= (ˆ︂PΩ + 11 ˆ︁Nf=2)Π
⊥W11 ˆ︁Nf=1R

2
ε11 ˆ︁Nf=1WΠ⊥(ˆ︂PΩ + 11 ˆ︁Nf=2). (7.9)

Now, we can again use the operator inequality (5.4) and then the pull-
through formula to estimate (7.9) by

2a∗(I)R2
εa(I)11 ˆ︁Nf=2 + 2Π⊥a(I)R2

ε a
∗(I)Π⊥ ˆ︂PΩ

≤ 2
(︄
a∗(I)R2

εa(I)11 ˆ︁Nf=2 + Π⊥
∫︂ I∗(u,Σ)I(u,Σ)

u2 + ε2 d(u,Σ) ⊗ PΩΠ⊥
)︄
.

Proposition 7.3
For all ε > 0 there exist constants c1, c2, c3 > 0 depending on ε such that for
|λ| < 1,

i[Lλ, A0] ≥ (1 − c1 |λ|)2λ2ΠWR2
εWΠ − c2 |λ| (∥I∥2 + 1)ˆ︂PΩ

⊥

− c3λ
2(11Lp ̸=0w11Lp ̸=0) ⊗ PΩ.
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7. Positivity and Error Estimates

Proof. Lemma 7.2 yields for all δ1, δ2 > 0,

i[Lλ, A0] = Πi[Lλ, A0]Π + Π⊥i[Lλ, A0]Π⊥ + Π⊥i[Lλ, A0]Π + Πi[Lλ, A0]Π⊥

≥ (1 − (|λ| δ1 + δ2λ
2))Πi[Lλ, A0]Π − 2λ

2

ε2 ∥I∥2 ˆ︂PΩ
⊥

− |λ|
δ1

ˆ︂PΩ
⊥

− 2λ
2

δ2

(︃
a∗(I)R2

εa(I)11 ˆ︁Nf=2 + 1
ε2 Π⊥w ⊗ PΩΠ⊥

)︃
.

For arriving at the desired estimate note that ∥a∗(I)R2
εa(I)11Nf=2∥ ≤ C ∥I∥2 for

some constant C and Π⊥w ⊗ PΩΠ⊥ = (11Lp ̸=0w11Lp ̸=0) ⊗ PΩ.

7.2. Additional Auxiliary Term
To obtain a strictly positive operator on the remaining space (kerLp)⊥ ⊗ ranPΩ
we introduce the following auxiliary term on H. Let Q ∈ L(Hp ⊗ Hp) such that
ranQ ⊆ D(L−1

p ), and L−1
p Q is bounded and self-adjoint. Note that L−1

p is to be
understood in the sense of functional calculus as an unbounded operator. Then
define a bounded operator CQ on H by

CQ := Q⊗ PΩ + λ

2
(︂
W (L−1

p Q⊗ PΩ) +W (L−1
p Q⊗ PΩ)∗

)︂
.

Lemma 7.4
Let ψ ∈ D(Lλ) with Lλψ = 0. Then

⟨ψ,CQψ⟩ = 0.

Proof. By assumption Lλψ = 0, and thus

0 =
⟨︂
(L−1

p Q⊗ PΩ)Lλψ, ψ
⟩︂

=
⟨︂
ψ,Lλ(L−1

p Q⊗ PΩ)ψ
⟩︂

=
⟨︂
ψ, (Lp ⊗ Idf +λW )(L−1

p Q⊗ PΩ)ψ
⟩︂

=
⟨︂
ψ, (Q⊗ PΩ)ψ + λW (L−1

p Q⊗ PΩ)ψ
⟩︂
. (7.10)

Finally, the claim follows by considering the real part of (7.10).
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7.3. Long-Range

Now, we make the following concrete choice

Q := L2
p11[−1,1](Lp) + 11(−∞,−1)∪(1,∞)(Lp). (7.11)

Indeed, ranQ ⊆ D(L−1
p ), and L−1

p Q is bounded and self-adjoint. Furthermore, the
leading term Q⊗PΩ is positive on (kerLp)⊥ ⊗ ranPΩ. Together with the possibly
negative correction terms we get the following lower bound.
Proposition 7.5
There exists a constant C > 0 such that for all λ ∈ R,

CQ ≥ (1 − C |λ| ∥w∥)Q⊗ PΩ − |λ| ˆ︂PΩ
⊥
.

Proof. We have

W (L−1
p Q⊗ PΩ) = a∗(I)(L−1

p Q⊗ PΩ) = a∗(IL−1
p Q)ˆ︂PΩ.

Thus, Lemma A.4 yields for all δ > 0 on D(ˆ︂Nf),

W (L−1
p Q⊗ PΩ) + (W (L−1

p Q⊗ PΩ))∗

≤ δˆ︂Nf + δ−1
∫︂
L−1

p QI(u,Σ)∗I(u,Σ)L−1
p Qd(u,Σ) ⊗ PΩ.

Using this we conclude

CQ ≥ Q⊗ PΩ − |λ|
2 δˆ︂Nf − |λ|

2 ∥w∥ δ−1(L−1
p Q)2 ⊗ PΩ

≥ (1 − |λ| δ−1 ∥w∥)Q⊗ PΩ − |λ|
2 δˆ︂Nf , (7.12)

where we used that the concrete choice of Q implies

(L−1
p Q)2 = (L2

p11[−1,1](Lp) + L−2
p 11(−∞,−1)∪(1,∞)(Lp)) ≤ 2Q.

7.3. Long-Range
In this part we put everything together in the LR case and prove the positivity
of the form qlr

tot. We proceed similarly as in the proof of the virial theorem: we
summarize the necessary conditions for the proof in (H1)–(H3), and subsequently
show that they are in fact satisfied if Jd is finite. We cannot provide a proof for
the case of infinitely many coupled eigenvalues, yet, but some ideas and problems
are sketched in Remark 7.9.
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7. Positivity and Error Estimates

7.3.1. Positivity for a General Cutoff Function
Recall that we assume that Hypotheses A-LR and B-LR are true and χ is a cutoff
function satisfying Hypothesis C.

First, we prove that the interaction terms are bounded and sufficiently localized.
This will play an important role for the Birman-Schwinger bounds. The following
lemma shows that they decay as |x|−2 in spatial infinity.
Lemma 7.6
For all n,m ∈ {0, 1} there exists a constant C such that⃦⃦⃦⃦

∂mu τβ

(︃
ad(n)

Alr
p
(τβ(G))

)︃
⟨x̂⟩2

⃦⃦⃦⃦
L2(R×S2,L(Hp))

≤ C(1 + β−1/2)

for all β > 0.

Proof. The proof is analogous to Lemma 5.3. Notice that at most one commutator
with Alr

p has to be considered, so the regularity assumptions for

⟨x̂⟩n1 G ⟨x̂⟩n2 , n1, n2 ≤ 2 + 1 = 3,

given in Hypothesis B-LR are sufficient. The β-dependence follows from (4.8).

This can be rephrased for the integrated interaction terms, which were introduced
at the beginning of this chapter, as follows.
Lemma 7.7
For α = l, r, the operators wα and wlr

1,α are well-defined and bounded, and there
exist constants C such that for all β > 0,

(a) ∥Iα∥2
L2(R×S2,L(Hp)) ≤ C(1 + β−1),

(b)
⃦⃦⃦
I lr

1,α

⃦⃦⃦2

L2(R×S2,L(Hp))
≤ C(1 + β−1),

(c) wα ≤ C(1 + β−1)V ∗
c ⟨x̂⟩−4 Vc,

(d) wlr
1,α ≤ C(1 + β−1)V ∗

c ⟨x̂⟩−4 Vc.

Proof. By Lemma 7.6 we have

Iα, I
lr
1,α, IαV

∗
c x̂2

jVc, I
lr
1,αV

∗
c x̂2

jVc ∈ L2(R × S2,L(Hp))
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for all j ∈ {1, 2, 3}, α = l, r, and there is a constant C independent of β such that
we can estimate the norm of these expressions by

C(1 + β−1).

Thus, the same applies to IαV ∗
c ⟨x̂⟩2 Vc, I

lr
1,αV

∗
c ⟨x̂⟩2 Vc ∈ L2(R × S2,L(Hp)). Con-

sequently, we obtain

wα = V ∗
c ⟨x̂⟩−2 Vc

∫︂
(Iα(u,Σ)V ∗

c ⟨x̂⟩2 Vc)∗Iα(u,Σ)V ∗
c ⟨x̂⟩2 Vcd(u,Σ)V ∗

c ⟨x̂⟩−2 Vc

≤ C(1 + β−1)V ∗
c ⟨x̂⟩−4 Vc

for α = l, r and some constant C > 0 not depending on β. The proof for wlr
1,α is

analogous.

Next, we can estimate C lr
1 , the first commutator with Alr, from below. Recall that

it was given on Dlr by

C lr
1 = χ(Hp + ˜︁V )χ⊗ Idp ⊗ Idf + Idp ⊗χ(Hp + ˜︁V )χ⊗ Idf +ˆ︂Nf + λW lr

1 . (7.13)

To ensure a positive expression we assume from now on that χ cuts off the negative
energy of the coupled eigenmodes, that is,

χpJd = 0. (7.14)

Proposition 7.8
There exist constants c1, c2, δ > 0 such that for all β > 0 and all λ ∈ R,

C lr
1 ≥

(︂
Pessχδ(−∆)χPess ⊗ Idp + Idp ⊗Pessχδ(−∆)χPess − c1λ

2wlr
1

)︂
⊗ Idf +c2

ˆ︂PΩ
⊥

(7.15)

holds on D(ˆ︂Nf) ∩ ran ˆ︁PJ . In particular, C lr
1 is bounded from below and the lower

bound (7.15) extends to the corresponding form qlr
1 |ran ˆ︁PJ

.

Proof. As I lr
1 ∈ L2(R×S2,L(Hp)) by Lemma 7.7, Lemma A.4 yields for any δ1 > 0,

±λW lr
1 ≤ δ1

ˆ︂Nf + 1
δ1
λ2wlr

1 ⊗ Idf .

Therefore, (7.13) also holds on D(ˆ︂Nf). By (7.14), we have χPJ = χPess. Then we
find on D(ˆ︂Nf) ∩ ran ˆ︁PJ for any δ1 > 0,

C lr
1 = χPess(Hp + ˜︁V )Pessχ⊗ Idp + Idp ⊗χPess(Hp + ˜︁V )Pessχ⊗ Idf +ˆ︂Nf + λW lr

1

≥ χPess(Hp + ˜︁V )Pessχ⊗ Idp + Idp ⊗χPess(Hp + ˜︁V )Pessχ⊗ Idf +(1 − δ1)ˆ︂Nf

− λ2

δ1
wlr

1 ⊗ Idf .
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Next, we estimate the first two terms. Choose δ > 0 as in Hypothesis A-LR (2).
Then

Pess(Hp + ˜︁V )Pess ≥ δ

2Pess(−∆)Pess.

Combining this with the previous estimate and setting for example δ1 = 1
2 yields

(7.15) on D(ˆ︂Nf) ∩ ran ˆ︁PJ . As D(ˆ︂Nf) is a core for C lr
1 , it is also a form core for qlr

1 .
Notice that the right-hand side of (7.15) consists only of bounded operators, so
the inequality carries over to qlr

1 |ran ˆ︁PJ
by approximation.

Before presenting the final proof, we want to identify the necessary positivity
conditions. For β > 0, ε > 0 and δ ≥ 0 they are as follows.

(H1) Pess(χ(−∆)χ− δ(wl + wlr
1,l))Pess ≥ 0,

(H2) on ran 11Lp ̸=0(PJ ⊗ PJ):

Q− δ
(︂
Pdisc(wl + wlr

1,l)Pdisc ⊗ Pess + Pess ⊗ Pdisc(wr + wlr
1,r)Pdisc

+11Lp ̸=0(Pdiscw
lr
1,lPdisc ⊗ Pdisc + Pdisc ⊗ Pdiscw

lr
1,rPdisc)11Lp ̸=0

)︂
> 0,

(H3) on ran Π ˆ︁PJ :

ΠWR2
εWΠ − δ11Lp=0

(︂
Pdiscw

lr
1,lPdisc ⊗ Pdisc

+Pdisc ⊗ Pdiscw
lr
1,rPdisc

)︂
11Lp=0 ⊗ PΩ > 0.

Let δ(β)
1 , δ

(β)
2 , δ

(β,ε)
3 ∈ [0,∞] be the supremum of all δ such that (H1), (H2) and

(H3) holds true, respectively. Obviously, all three conditions are trivially satisfied
for δ = 0, since the leading terms are strictly positive. However, in order to show
that the total form qlr

tot is strictly positive for non-zero coupling constants, one
needs actually a positive value.
Remark 7.9
(H1)–(H3) can be regarded both as collection of the essential ingredients for the
proof of positivity as well as a possible guide for future work about this problem,
in particular for treating potentials with infinitely many eigenvalues.

Condition (H1) is basically a generalization of a Birman-Schwinger bound,
which in its classical form corresponds to χ = Idp. The interaction terms wα+wlr

1,α
will be estimated by some function decaying at spatial infinity fast enough. In
fact, in case of finitely many eigenvalues χ can be chosen in such a way that
it equals the identity near zero energy and decays appropriately at infinity (cf.
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Proposition 7.11). In this case a Birman-Schwinger bound can be proven, see
Proposition B.13.

For infinitely many eigenvalues χ has to vanish at zero energy. This implies that
one is confronted with an additional decay near zero and the Birman-Schwinger
bound has to be improved in this way. Another idea would be to consider a sharp
cutoff at zero energy. In this case, condition (H1) can be dropped for the price that
certain commutators of the projection pJd with AD and other expressions have to
be bounded, see Remark 5.8.

The crucial point in (H2) is that Q decays to zero if one approaches kerLp.
As the interaction terms are bounded, the negative terms in (H2) become only
problematic if we consider two discrete eigenvalues close to zero or a discrete
eigenvalue and a point in the essential spectrum close to zero. In case of finitely
many eigenvalues this does not occur as the distances of two different eigenvalues
and the distance between the essential and the discrete spectrum are bounded from
below by a positive constant. However, this is no longer true for infinitely many.
For a proof of (H2) one could then use that the eigenfunctions of a Schrödinger
operator are expected to smear out if their energy approaches zero. Based on the
localization of the interaction terms wα + wlr

1,α, one might be able to prove that
their application to a spatially extended eigenfunction is sufficiently small such
that the inequality in (H2) holds true.

Condition (H3) is the counterpart to the Fermi Golden Rule condition and
might pose the biggest challenge for a generalization to infinitely many eigenvalues.
The philosophy is similar as in (H2): The operator ˆ︁PJΠWR2

εWΠ ˆ︁PJ is bounded
from below by a positive constant for a finite set Jd, but it might decay to zero
on the eigenspaces if we consider infinitely many eigenmodes. However, with the
same arguments as in the prior discussion, the hope would be that the negative
terms decay as well if one approaches zero in the discrete spectrum. Here a careful
analysis of the Fermi Golden Rule term and of the interaction terms depending on
the energy would be necessary.

Now, the final result of this section, the positivity of the total form (7.1) will be
the content of the following theorem.

Theorem 7.10
Let β0 > 0 and ε > 0. Then there exists a constant C such that for all β > 0 and

|λ| < C min{1 + β−2, (δ(β)
1 )2/3, (δ(β)

2 )2/3, (δ(β,ε)
3 )2},

we have qlr
tot|ran ˆ︁PJ

> 0 for θ = |λ|−1/2. That is, qlr
tot ≥ 0 and qlr

tot(ψ) = 0 for some
ψ ∈ D(qlr

1 ) ∩ ran ˆ︁PJ implies ψ = 0.
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Proof. By Propositions 7.3, 7.5 and 7.8, and Lemma 7.7 (from which we infer
∥w∥2 ≤ ∥I∥2 ≤ C(1 + β−1) for some constant C), we obtain on D(qlr

1 ) ∩ ran ˆ︁PJ ,

qlr
tot ≥ (Pessχδ(−∆)χPess ⊗ Idp + Idp ⊗Pessχδ(−∆)χPess − c1λ

2wlr
1 ) ⊗ Idf +c2

ˆ︂PΩ
⊥

+ 2θ(1 − c3 |λ|)λ2ΠWR2
εWΠ − c4θ |λ| (1 + β−1)ˆ︂PΩ

⊥

− c5θλ
2(11Lp ̸=0w11Lp ̸=0) ⊗ PΩ + (1 − c6 |λ| (1 + β−1))Q⊗ PΩ − |λ| ˆ︂PΩ

⊥

for some constants ci > 0, i ∈ N. The operator inequality (5.4) yields

w ≤ 2wl ⊗ Idp +2 Idp ⊗wr

≤ 4(PdiscwlPdisc + PesswlPess) ⊗ Idp

+ 4 Idp ⊗(PdiscwrPdisc + PesswrPess),

and analogously for wlr
1 . Using these in the above estimate for qlr

tot, we find on
D(qlr

1 ) ∩ ran ˆ︁PJ ,

qlr
tot ≥ Pess

(︂
δχ(−∆)χ− c1λ

2(θwl + wlr
1,l)
)︂
Pess ⊗ Idp ⊗ Idf (7.16)

+ Idp ⊗Pess
(︂
δχ(−∆)χ− c1λ

2(θwr + wlr
1,r)
)︂
Pess ⊗ Idf (7.17)

+ (c2 − c3(1 + θ(1 + β−1)) |λ|)ˆ︂PΩ
⊥ (7.18)

+
(︂
(1 − c4(1 + β−1) |λ|)Q− c5λ

2[Pdisc(θwl + wlr
1,l)Pdisc ⊗ Pess

+ Pess ⊗ Pdisc(θwr + wlr
1,r)Pdisc

− 11Lp ̸=0((Pdisc(θwl + wlr
1,l)Pdisc ⊗ Pdisc

+ Pdisc ⊗ Pdisc(θwr + wlr
1,r)Pdisc)11Lp ̸=0]

)︂
⊗ PΩ (7.19)

+ 2θλ2(1 − c6 |λ|)ΠWR2
εWΠ

− c7λ
2Π(Pdiscw

lr
1,lPdisc ⊗ Pdisc + Pdisc ⊗ Pdiscw

lr
1,rPdisc)Π (7.20)

for some other constants ci > 0, i ∈ N. Then we can restrict the right-hand side of
the operator inequality above to ran ˆ︁PJ and set θ = |λ|−1/2. Now we make |λ| ≥ 0
small enough so that (H1)–(H3) are applicable.

First, it has to be small enough such that (7.16) and (7.17) are non-negative
operators, which requires λ3/2 < Cδ

(β)
1 for a suitable constant C. Next, it has to be

small enough (|λ|1/2 < C(1+β−1)) such that (7.18) is a strictly positive operator on
ran ˆ︂PΩ

⊥ ˆ︁PJ , (7.19) is a strictly positive operator on ran
(︂
(11Lp ̸=0 ⊗ PΩ) ˆ︁PJ)︂ (|λ|3/2 <

Cδ
(β)
2 ) and (7.20) is a strictly positive operator on ran Π ˆ︁PJ (|λ|1/2 < Cδ

(β,ε)
3 ).

The claim now follows in view of the decomposition (4.15).
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7.3.2. Finitely Many Coupled Bound States
In this part we verify in case of finitely many coupled eigenmodes that the con-
stants δ(β)

1 , δ
(β)
2 , δ

(β,ε)
3 appearing in (H1)–(H3) are actually positive. This shows the

applicability of Theorem 7.10 for the proof of the main theorem. In this situation
we have a gap between the discrete and essential spectrum, that is,

max
m∈Jd

Em < 0,

which turns out to be essential.
Proposition 7.11
Assume that Jd is finite and let χ = χ0χ1(Hp), where χ0 is defined as in (5.10)
and χ1 is a smooth function on R which satisfies

χ1(e) =
⎧⎨⎩0 : e ≤ maxm∈Jd Em,

1 : e ≥ 0.

Assume that Hypotheses A-LR and B-LR hold. Let β0 > 0 and ε > 0. Then there
exist constants δ1, δ2, C > 0 such that for all β ≥ β0, we have δ(β)

1 ≥ δ1, δ(β)
2 ≥ δ2

and δ(β,ε)
3 ≥ Cγβ(ε, Jd), where the latter is defined as in (3.8). If the Fermi Golden

Rule condition (3.9) is satisfied, γβ(ε, Jd) > 0.

Proof. First notice that χ satisfies Hypothesis C due to Proposition 5.7.
(H1) By definition of χ, we have Pessχ = Pessχ0. Therefore, for all δ > 0,

Pess(χ(−∆)χ− δ(wl + wlr
1,l))Pess

= Pess(χ0(−∆)χ0 − δ(wl + wlr
1,l))Pess

≥ Pess(χ0(−∆)χ0 − Cδ(1 + β−1) ⟨x̂⟩−4)Pess

for some constant C > 0 where we used Lemma 7.7. By Proposition B.13
this expression is non-negative if we choose δ > 0 small enough.

(H2) By assumption, PJG(k)PJ = G(k) for a.e. k ∈ R3. We conclude that for
a.e. (u,Σ) ∈ R × S2 we have PJτβ(G)(u,Σ)PJ = τβ(G)(u,Σ), which implies

PdiscTPdisc = pJdTpJd , for T = wl, wr, w
lr
1,l, w

lr
1,r.

By Lemma 7.7, we find a constant C such that for all β > 0,

Pdisc(wl + wlr
1,l)Pdisc ⊗ Pess + Pess ⊗ Pdisc(wr + wlr

1,r)Pdisc (7.21)
+ 11Lp ̸=0(Pdiscw

lr
1,lPdisc ⊗ Pdisc + Pdisc ⊗ Pdiscw

lr
1,rPdisc)11Lp ̸=0

≤ C(1 + β−1)(pJd ⊗ Pess + Pess ⊗ pJd + Pdisc ⊗ Pdisc11Lp ̸=0). (7.22)
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The essential feature of finitely many eigenvalues is that there is no accumu-
lation at zero. The distance between two different eigenvalues as well as the
distance of eigenvalues to the essential spectrum starting at zero is bounded
from below by a positive constant. Hence,

Ξ := inf
λ∈E(Jd),µ∈E(Jd)∪σess(Hp),

λ ̸=µ

(λ− µ)2 > 0,

where E(Jd) := {Em : m ∈ Jd}. We can estimate the projections in (7.22)
by

(PJ ⊗PJ)(pJd ⊗Pess +Pess ⊗ pJd +Pdisc ⊗Pdisc11Lp ̸=0)(PJ ⊗PJ) ≤ 11[Ξ,∞)(L2
p).

Recall that Q = L2
p11[0,1](L2

p) + 11(1,∞)(L2
p). Then, writing Cβ := C(1 + β−1),

we get for δ < min{Ξ,1}
Cβ0

,

Q−δCβ11[Ξ,∞)(L2
p)

= L2
p11[0,Ξ)(L2

p) + (L2
p − δCβ)11[Ξ,1](L2

p) + (1 − δCβ)11(1,∞)(L2
p)

> 0

on ran 11Lp ̸=0.

(H3) Proposition 7.1 yields
ˆ︁PJΠWR2

εWΠ ˆ︁PJ ≥ γβ(ε, Jd)Π ˆ︁PJ .
Again, we can use that the interaction terms are bounded, i.e., there is a
constant C such that for all β > 0,
ˆ︁PJ11Lp=0(Pdiscw

lr
1,lPdisc⊗Pdisc+Pdisc⊗Pdiscw

lr
1,rPdisc)11Lp=0

ˆ︁PJ ≤ C(1+β−1)Π ˆ︁PJ .
This shows δ(β,ε)

3 ≥ γβ(ε,Jd)
C(1+β−1

0 ) > 0.

7.4. Short-Range
In the SR setting we proceed analogously as in the previous section. First we give
some decay estimates for the interaction terms. Then we prove a lower bound for
the first commutator with Asr. Finally, Theorem 7.14 states that the total form
qsr

tot is positive, where the conditions (H1)–(H3) and their verification are effectively
included in the proof.
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Lemma 7.12
There exist constants C independent of β such that, for α = l, r,

(a) ∥Iα∥2
L2(R×S2,L(Hp)) ≤ C(1 + β−1),

(b)
⃦⃦⃦
Isr

1,α

⃦⃦⃦2

L2(R×S2,L(Hp))
≤ C(1 + β−1),

(c) PesswαPess ≤ C(1 + β−1)V ∗
c ⟨q̂⟩−2 Vc,

(d) Pessw
sr
1,αPess ≤ C(1 + β−1)V ∗

c ⟨q̂⟩−2 Vc.

Proof. By Proposition 6.2 we have

Iα, I
sr
1,α, IαV

∗
c q̂jVc, I

sr
1,αV

∗
c q̂jVc ∈ L2(R × S2,L(Hp)),

for all j ∈ {1, 2, 3}, α = l, r, and there is a constant C independent of β such that
we can estimate the norm of these expressions by

C(1 + β−1).

Thus, the same applies to IαV ∗
c ⟨q̂⟩Vc, I

sr
1,αV

∗
c ⟨q̂⟩Vc ∈ L2(R × S2,L(Hp)). Conse-

quently, we obtain for α = l, r and a constant C > 0 not depending on β,

PesswαPess

= V ∗
c ⟨q̂⟩−1 Vc

∫︂
(Iα(u,Σ)V ∗

c ⟨q̂⟩Vc)∗Iα(u,Σ)V ∗
c ⟨q̂⟩Vcd(u,Σ)V ∗

c ⟨q̂⟩−1 Vc

≤ C(1 + β−1)V ∗
c ⟨q̂⟩−2 Vc.

The proof for wsr
1,α is analogous.

Proposition 7.13
There exist constants c1, c2 > 0 such that for all β > 0 and all λ ∈ R,

Csr
1 ≥

[︂
V ∗

c k̂
2
Vc ⊗ Idp + Idp ⊗V ∗

c k̂
2
Vc

− c1(1 + β−1)λ2
(︂
V ∗

c ⟨q̂⟩−2 Vc ⊗ Idp + Idp ⊗V ∗
c ⟨q̂⟩−2 Vc + (Pess ⊗ Pess)⊥

)︂]︂
⊗ Idf +c2

ˆ︂PΩ
⊥ (7.23)

holds on Dsr. In particular, Csr
1 is bounded from below and the lower bound (7.23)

extends to the corresponding form qsr
1 .
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Proof. As Isr
1 ∈ L2(R × S2,L(Hp)) by Lemma 7.12, Lemma A.4 yields for any

δ > 0,

±λW sr
1 ≤ δˆ︂Nf + 1

δ
λ2wsr

1 ⊗ Idf .

Using this and the explicit form of Csr
1 on Dsr, we find

Csr
1 = V ∗

c k̂
2
Vc ⊗ Idp + Idp ⊗V ∗

c k̂
2
Vc ⊗ Idf +ˆ︂Nf + λW sr

1

≥ V ∗
c k̂

2
Vc ⊗ Idp + Idp ⊗V ∗

c k̂
2
Vc ⊗ Idf +(1 − δ1)ˆ︂Nf − λ2

δ1
wsr

1

for any δ1 > 0. By the operator inequality (5.4),
wsr

1 ≤ 2(wsr
1,l ⊗ Idp + Idp ⊗wsr

1,r).
Then, a decomposition into ranPess and ranPdisc, the operator inequality (5.4) and
subsequently Lemma 7.12 yield, for α = l, r and some constant C,

wsr
1,α ≤ 2(Pessw

sr
1,αPess + Pdiscw

sr
1,αPdisc)

≤ C(1 + β−1)(V ∗
c ⟨q̂⟩−2 Vc + Pdisc).

Choosing any 0 < δ1 < 1 shows (7.23) on Dsr. As Dsr is a core for Csr
1 , it is

also a form core for qsr
1 , so the operator inequality can be extended on D(qsr

1 ) to
the corresponding forms.

After the preparations we are now able to put all the estimates of this chapter
together in order to prove positivity.
Theorem 7.14
Let ε > 0 and β0 > 0. Then there exists a constant C such that for all β ≥ β0 and
0 < |λ| < C min{1, γβ(ε,M)2}, we have qsr

tot > 0 for θ = |λ|−1/2. That is, qsr
tot ≥ 0,

and qsr
tot(ψ) = 0 for some ψ ∈ D(qsr

1 ) ∩ D(Lλ) implies ψ = 0.

Proof. By Propositions 7.3, 7.5 and 7.13, and Lemma 7.12, we obtain in the sense
of forms on D(qsr

1 ),

qsr
tot ≥

[︂
V ∗

c k̂
2
Vc ⊗ Idp + Idp ⊗V ∗

c k̂
2
Vc − c1(1 + β−1)λ2

×
(︂
V ∗

c ⟨q̂⟩−2 Vc ⊗ Idp + Idp ⊗V ∗
c ⟨q̂⟩−2 Vc + (Pess ⊗ Pess)⊥

)︂]︂
⊗ Idf +c2

ˆ︂PΩ
⊥

+ (1 − c3 |λ|)2λ2ΠWR2
εWΠ − c4(1 + β−1) |λ| ˆ︂PΩ

⊥

− c5(1 + β−1)λ211Lp ̸=0
(︂
V ∗

c ⟨q̂⟩−2 Vc ⊗ Idp + Idp ⊗V ∗
c ⟨q̂⟩−2 Vc

+ (Pess ⊗ Pess)⊥
)︂
11Lp ̸=0 ⊗ PΩ

+ (1 − c6 |λ| (1 + β−1))Q⊗ PΩ − |λ| ˆ︂PΩ
⊥
,
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for constants ci > 0, i ∈ N, independent of λ and β. Rearranging the terms, we
find

qsr
tot ≥ V ∗

c

(︃
k̂

2
− c1λ

2(1 + θ)(1 + β−1) ⟨q̂⟩−2
)︃
Vc ⊗ Idp ⊗ Idf

+ Idp ⊗V ∗
c

(︃
k̂

2
− c1λ

2(1 + θ)(1 + β−1) ⟨q̂⟩−2
)︃
Vc ⊗ Idf

+
(︂
c2 − c3(1 + θ) |λ| (1 + β−1)

)︂ ˆ︂PΩ
⊥ (7.24)

+ 2θλ2(1 − c4 |λ|)γβ(ε)Π − c5λ
2(1 + β−1)Π (7.25)

+
[︂ (︂

1 − c6 |λ| (1 + β−1)
)︂
Q

− c7λ
2(1 + θ)(1 + β−1)(Pess ⊗ Pess)⊥11Lp ̸=0

]︂
⊗ PΩ,

(7.26)

with other constants ci > 0, i ∈ N, independent of λ and β. Then we set θ = |λ|−1/2

in order to have a positive term in (7.25) of smaller order in |λ|. Next, we make
|λ| > 0 sufficiently small in the following sense: First we make it so small such
that, by the uncertainty principle lemma (cf. [RS2, section X.2])

k̂
2

− max{c1, c2}λ2(1 + |λ|−
1
2 )(1 + β−1

0 ) ⟨q̂⟩−2 > 0.

Furthermore, we can make it small enough such that we get strictly positive oper-
ators in (7.24) and (7.25) on ran ˆ︂PΩ

⊥ and ran Π, respectively. Note that we have
to choose |λ| small enough proportional to γβ(ε,M)2 due to (7.25). For the last
term, we have

(Pess ⊗ Pess)⊥11Lp ̸=0 ≤ 11[Ξ,∞)(L2
p),

where
Ξ := inf

λ∈σdisc(Hp),µ∈σ(Hp)
λ̸=µ

(λ− µ)2 > 0.

Now we can plug in Q = L2
p11[0,1](L2

p) + 11(1,∞)(L2
p), and use that

Q− δ11[Ξ,∞)(L2
p) = L2

p11[0,Ξ)(L2
p) + (L2

p − δ)11[Ξ,1](L2
p) + (1 − δ)11(1,∞)(L2

p)
> 0

on ran 11Lp ̸=0 for δ < min{Ξ, 1}. Thus, we can achieve that (7.26) is strictly positive
on

ran(11Lp ̸=0 ⊗ PΩ)
for |λ| small enough. The claim now follows in view of the decomposition (4.15).
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A. Basic Theory

A.1. Second Quantization
Bosonic Fock spaces

The quantized field will be described by operators on Fock spaces. It is known
from physics that the particles we consider, photons and phonons, are so-called
bosonic particles. This means, they are indistinguishable and able to occupy the
same quantum state. Mathematically this is reflected in the fact that the corre-
sponding many-body wave functions commute in their arguments. Hence, in the
construction we need a symmetrization of tensor products.

Definition A.1 (Bosonic Fock space)
For a Hilbert space h, also called the one-particle space, we set

F(h) := C ⊕
∞⨁︂
n=1

h⊗sn,

where ⊗sn is the n-times symmetric tensor product of Hilbert spaces (cf. [Asa17,
section 2.9] for a detailed explanation), and the direct sum is to be understood as
an infinite direct sum of Hilbert spaces (cf. [Asa17, section 4.1]).

For ψ ∈ F(h), we write ψn for the n-th element in the direct sum and we use
the notation ψ = (ψ0, ψ1, ψ2, . . .). The vacuum vector is defined as

Ω := (1, 0, 0, . . .).

For a subspace d ⊆ h we define the space of finitely many particles in F(h) by

Ffin(d) :={(ψ0, ψ1, ψ2, . . . ) ∈ F(h) : ψn ∈ d⊗̂sn for all n ∈ N0

and there exists N ∈ N0 : ψn = 0 for n ≥ N},

where ⊗̂sn now represents n-times symmetric algebraic tensor product of vector
spaces. If d is dense in h, one can show that Ffin(d) is dense in F(h) as well.
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Second quantization of operators

We can naturally lift unitary and self-adjoint operators from h to F(h) (cf. [RS2,
section X.7]). Let U be a unitary operator on h. We define a unitary operator
Γ(U) on F(h) by

(Γ(U)ψ)n :=

⎧⎪⎨⎪⎩
ψ0 : n = 0,
(U ⊗ · · · ⊗ U⏞ ⏟⏟ ⏞

n times

)ψn : n ≥ 1.

Let A be a self-adjoint operator on h and D(A) a core for A. For ψ ∈ Ffin(D(A))
we define (dΓ(A)ψ)0 := 0 and for n ≥ 1,

(dΓ(A)ψ)n
:= (A⊗ Idh ⊗ · · · ⊗ Idh + Idh ⊗A⊗ · · · ⊗ Idh + . . .+ Idh ⊗ · · · ⊗ Idh ⊗A)ψn.

It is well-known that dΓ(A), the so-called second quantization of A, is essen-
tially self-adjoint on Ffin(D(A)). In the following its self-adjoint extension shall
be denoted by the same symbol dΓ(A). The second quantization of A can also
be obtained as self-adjoint generator of the strongly-continuous unitary group
t ↦→ Γ(eitA) (cf. [Asa17, section 4.11]):

Γ(eitA) = eitdΓ(A), t ∈ R.

A very important example of a second-quantized operator is the number operator

Nf := dΓ(Idh).

Its domain is explicitly given by

D(Nf) = {ψ ∈ F(h) :
∞∑︂
n=1

n2 ∥ψn∥2 < ∞}.

Generalized creation and annihilation operators on L2 spaces

Let (X, µ) be a measure space. We use the abbreviations L2(X) := L2(X, µ), and
write ∫︂

X
f(X)g(X)dX :=

∫︂
X
fgdµ.

for its inner product. In the following we write F := F(L2(X, µ)) and Ffin :=
Ffin(L2(X, µ)). For ψ ∈ F notice that ψn, n ≥ 1, can be understood as an L2

function in n symmetric variables Xi ∈ X, i = 1, . . . , n. The space of all such
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functions will be denoted by L2
s (Xn, µ). Furthermore, we can tensorize the Fock

space with another Hilbert space H usually describing another system interacting
with the field and use the natural identification

H ⊗ F ∼=
∞⨁︂
n=0

H ⊗ L2
s (Xn) ∼=

∞⨁︂
n=0

L2
s (Xn,H),

where L2
s (Xn,H) is the Bochner space of symmetric square-integrable H-valued

functions. That is, we can write any element ψ ∈ H⊗F as sequence (ψ0, ψ1, ψ2, . . .)
where ψn ∈ L2

s (Xn,H) and we define again (H ⊗ F)fin as the space of all such
sequences where all but finitely many entries vanish. Now, on (H ⊗ F)fin we
introduce the (generalized) creation and annihilation operator for a function F ∈
L2(X,L(H)) and ψ ∈ H ˆ︁⊗ Ffin,

(a(F )ψ)n(X1, . . . , Xn) :=
√
n+ 1

∫︂
F (X)∗ψn+1(X,X1, . . . , Xn)dX, n ∈ N0,

(a∗(F )ψ)n(X1, . . . , Xn) := n− 1
2

n∑︂
i=1

F (Xi)ψn−1(X1, . . . , Xi
ˆ , . . . , Xn), n ∈ N,

and set (a∗(F )ψ)0 := 0. The symbol Xi
ˆ represents the omission of the i-th argu-

ment. Note that a(F )Ω = 0, and that both operators leave the space (H ⊗ F)fin
invariant. Moreover, as the notation suggests, both operators are formally adjoint
to each other on that space. By definition, F ↦→ a∗(F ) is linear whereas F ↦→ a(F )
is anti-linear in F .

Next, we define the field operators on (H ⊗ F)fin as

Φ(F ) := a(F ) + a∗(F ), F ∈ L2(X,L(H)). (A.1)

It is easy to see that Φ(F ) is symmetric and in fact also essentially self-adjoint (cf.
[RS2, Theorem X.41] for the classical case Hp = C, which can be transferred to
our cases using the estimates of Lemma A.3). Their self-adjoint extension will be
denoted by the same symbol. Furthermore, we have by definition on (H ⊗ F)fin,

a∗(F ) = 1
2(Φ(F ) − iΦ(iF )),

a(F ) = 1
2(Φ(F ) + iΦ(iF )).

In the classical case Hp = C, Hp ⊗ F ∼= F, the creation and annihilation
operators satisfy the canonical commutation relations (cf. [Asa17, section 5.7.2])

[a(f), a∗(g)] = ⟨f, g⟩ , [a(f), a(g)] = 0, [a∗(f), a∗(g)] = 0,

for all f, g ∈ L2(X). Furthermore, it is important to note that finite products of
creation operators applied to the vacuum span the dense subspace Ffin. The same
is true for the field operators.
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Lemma A.2
For a dense subspace d ⊆ L2(X) the sets

lin{a∗(f1) . . . a∗(fn)Ω : n ∈ N, f1, . . . , fn ∈ d},
lin{Φ(f1) . . .Φ(fn)Ω : n ∈ N, f1, . . . , fn ∈ d},

equal Ffin(d) and therefore are dense in F.

Proof. It is clear for the first set and for the second one it follows by applying the
canonical commutation relations (cf. [Asa17, Proposition 5.14]).

For a function ω : X → R we just write ω for the corresponding multiplication
operator on L2(X). The following classical estimates for creation and annihilation
operators will be often used in the thesis.
Lemma A.3
Let ω : X → R be measurable and ω > 0 almost everywhere. Furthermore assume
that F, F√

ω
∈ L2(X,L(H)), Then for all ψ ∈ H ˆ︁⊗ Ffin,

∥a(F )ψ∥ ≤
⃦⃦⃦⃦
⃦ F√ω

⃦⃦⃦⃦
⃦ ⃦⃦⃦IdH ⊗dΓ(ω)1/2ψ

⃦⃦⃦
,

∥a∗(F )ψ∥ ≤
⃦⃦⃦⃦
⃦ F√ω

⃦⃦⃦⃦
⃦ ⃦⃦⃦(IdH ⊗dΓ(ω) + 1)1/2ψ

⃦⃦⃦
,

so the operators can be uniquely extended to D(Idh ⊗dΓ(ω)1/2) and will be denoted
by the same symbols. In particular, we get for ψ ∈ D(Idh ⊗N1/2

f ),

∥a(F )ψ∥ ≤ ∥F∥
⃦⃦⃦
(IdH ⊗Nf)1/2ψ

⃦⃦⃦
,

∥a∗(F )ψ∥ ≤ ∥F∥
⃦⃦⃦
(IdH ⊗Nf + 1)1/2ψ

⃦⃦⃦
.

Proof. The estimates for the case Hp = C can be found in [Asa17, section 5.8.1]
and one can mimic the proof to cover also the more general case, see for example
[Lan18, Lemma 3.3.12] or [BFS98a].

Lemma A.4
Let F ∈ L2(X,L(H)), and assume we have a T ∈ L(H ⊗F) which leaves D(IdH ⊗
Nf) invariant. Then it holds on D(IdH ⊗Nf) for all δ > 0,

T ∗a(F ) + a∗(F )T ≤ δ IdH ⊗Nf + δ−1T ∗
(︃∫︂

F (X)∗F (X)dX ⊗ IdF

)︃
T.
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Proof. By the definition of a(F ) we have

⟨Tψ, a(F )ψ⟩ =
∞∑︂
n=0

√
n+ 1

∫︂
⟨(Tψ)n(X1, . . . , Xn), F ∗(X)ψn+1(X,X1, . . . , Xn)⟩

d(X,X1, . . . , Xn).

Thus,

|⟨Tψ, a(F )ψ⟩| ≤ 1
2

∞∑︂
n=0

∫︂ (︂
δ ∥F (X)(Tψ)n(X1, . . . , Xn)∥2

+ δ−1(n+ 1) ∥ψn+1(X,X1, . . . , Xn)∥2
)︂
d(X,X1, . . . , Xn)

≤ δ

2

∫︂
⟨ψ, T ∗(F (X)∗F (X) ⊗ IdF)Tψ⟩ dX + δ−1

2 ⟨ψ, IdH ⊗Nfψ⟩ .

Lemma A.5
Let ω : X → R be a measurable function and let F ∈ L2(X,L(H)) such that ωF ∈
L2(X,L(H)). Then we have on (H ⊗ F)fin ∩ D(IdH ⊗dΓ(ω)),

[IdH ⊗dΓ(ω), a∗(F )] = a∗(ωF ),
[a(F ), IdH ⊗dΓ(ω)] = a(ωF ).

Proof. Notice that for ψ ∈ (H ⊗ F)fin ∩ D(IdH ⊗dΓ(ω)),

(Idh ⊗dΓ(ω)ψ)n(X1, . . . , Xn) =
n∑︂
j=1

ω(Xj)ψn(X1, . . . , Xn).

Combining this with the definition of the creation and annihilation operators yields
the given formulas.

Tensor product of Fock spaces

The Fock space over a direct sum of Hilbert spaces can be identified in a natural
way with the tensor product of the two Fock spaces of the respective spaces.
Theorem A.6 (cf. [JP96a] and [Asa17, Theorem 5.38])
Let h1 and h2 be separable Hilbert spaces. There exists a unitary map

U : F(h1) ⊗ F(h2) −→ F(h1 ⊕ h2)

with the following properties:
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(1) U(Ωh1 ⊗ Ωh2) = Ωh1⊕h2.

(2) U(Ffin(h1) ˆ︁⊗Ffin(h1)) = Ffin(h1 ⊕ h2).

(3) For unitary operators u1, u2 on h1, h2, we have

U(Γ(u1) ⊗ Γ(u2))U−1 = Γ(u1 ⊕ u2).

(4) For self-adjoint operators T1, T2 on h1, h2, we have

UdΓ(T1) ⊗ Id + Id ⊗dΓ(T2)U−1 = dΓ(T1 ⊕ T2).

(5) If h1 and h2 are two L2 spaces and f ∈ h1, g ∈ h2, we have

Ua∗(f) ⊗ Id + Id ⊗a∗(g)U−1 = a∗(f ⊕ g),
Ua(f) ⊗ Id + Id ⊗a(g)U−1 = a(f ⊕ g).

A.2. Special Topics of Operator Algebras
A.2.1. Tensor Products
In the thesis we use multiple times tensor products of C∗-algebras as well as states
and morphisms operating on them. As there are different C∗-norms on the alge-
braic tensor product of two C∗-algebras with the multiplicative property

∥A⊗B∥ = ∥A∥ ∥B∥ ,

we want to clarify here that we only consider the minimal (also called spatial)
norm. We recall the definition and some properties we need, especially in Chap-
ter 2. A detailed reference for tensor products can be found in [Ols94], a brief
description also in [Brü99] and [BR2].
Definition A.7 (Spatial tensor product)
Let A1, A2 be C∗-algebras. The spatial tensor product A1 ⊗ A2 is the completion
of the algebraic tensor product A1 ˆ︁⊗A2 with respect to the spatial C∗-norm, that
is, for A ∈ A1 ˆ︁⊗ A2,

∥A∥ := ∥(π1 ⊗ π2)(A)∥L(H1⊗H2) ,

where for i = 1, 2, πi is some faithful representation of Ai on a Hilbert space Hi,
and

(π1 ⊗ π2)
(︄∑︂

i

A
(1)
i ⊗ A

(2)
i

)︄
:=
∑︂
i

π1(A(1)
i ) ⊗ π2(A(2)

i ).
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One can show that the definition is independent of the choice of π1 and π2. A key
property for our application is a natural embedding for the tensor product, that
is,

A1 ⊗ A2 ⊆ L(H1 ⊗ H2).
for C∗-algebras Ai ⊆ L(Hi), and Hilbert spaces Hi, i = 1, 2.

Furthermore, we can extend ∗-morphisms to the tensor product.
Proposition A.8
For i = 1, 2, let Ai, Bi be C∗-algebras and let ϕi : Ai → Bi be ∗-morphisms. Then
there exists a unique ∗-morphism

ϕ1 ⊗ ϕ2 : A1 ⊗ A2 −→ B1 ⊗ B2,

such that

(ϕ1 ⊗ ϕ2)(A1 ⊗ A2) = ϕ1(A1) ⊗ ϕ2(A2), A1 ∈ A1, A2 ∈ A2.

Furthermore, if ϕ1 and ϕ2 are injective, so is ϕ1 ⊗ ϕ2.

Corollary A.9
Let A1, A2 be C∗-algebras.

(a) If πi is a representation of Ai on L(Hi), i = 1, 2, then π1 ⊗ π2 is a represen-
tation of A1 ⊗ A2 on H1 ⊗ H2.

(b) If ωi is a state on Ai, i = 1, 2, then ω1 ⊗ω2 (in the sense of Proposition A.8
as a ∗-morphism to C) is a state on A1 ⊗ A2.

(c) If ωi is a state on Ai, and (πi,Hi,Ωi) the GNS representation with respect
to ωi, i = 1, 2, then (π1 ⊗ π2,H1 ⊗ H2,Ω1 ⊗ Ω2) is the GNS representation
of A1 ⊗ A2 with respect to ω1 ⊗ ω2.

A.2.2. Some Aspects of Modular Theory
In this subsection we collect some results of modular theory for von Neumann
algebras. For more details we refer the reader to [KR97] or [BR2]. Let M be a
von Neumann algebra operating on a Hilbert space H. Let Ω ∈ H be cyclic, i.e.,

{AΩ : A ∈ M} = H,

and separating, i.e., that is, AΩ = 0 for some A ∈ M implies A = 0. We define an
antilinear operator

S0 : D(S0) ⊆ H −→ H, AΩ ↦→ A∗Ω,
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on the dense domain D(S0) := {AΩ : A ∈ M}. One can show that S0 is closable
(cf. [BR1, Proposition 2.5.9]) and its closure shall be denoted by S. By the polar
decomposition of S one obtains a unique positive self-adjoint operator ∆M and a
unique antiunitary operator J such that

S = J
√︂

∆M.

Definition A.10
One calls ∆M the modular operator and J the modular conjugation associated to
(M,Ω).
One of the main results of Tomita-Takesaki theory we will use is that the conju-
gation with J yields all elements which commute with all other elements of the
algebra.
Theorem A.11 (Tomita’s theorem)
We have JΩ = ∆MΩ = Ω, and

JMJ = M′, ∆it
MM∆−it

M = M, t ∈ R.

Another object we want to introduce is the so-called natural cone. It is of great
importance in our setting, because each normal state can be represented uniquely
by a vector in this cone.
Definition A.12 (Positive cone)
The natural positive cone P associated to (M,Ω) is defined as the closure of the
set

{AJAΩ : A ∈ M}.

Theorem A.13 (cf. [BR2, Theorem 2.5.31])
For each normal state ω there exists a unique ξ ∈ P such that for all A ∈ M,

ω(A) = ωξ(A) := ⟨ξ, Aξ⟩ .
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This part contains some variations of different well-known concepts, which could
not be found explicitly in the literature, but whose proofs are rather straightfor-
ward.

In the following we assume that Hp = −∆ + V is a Schrödinger operator
on L2(Rd) in some dimension d ∈ N. V ≤ 0 is a bounded continuous function
with V (x) → 0 as |x| → ∞. Furthermore, we choose a constant Cp > 0 big
enough such that inf Hp + Cp > 0 and ∥(−∆ + Cp)−1V ∥ < 1. For t ≥ 0, we set
Rp(t) := (Hp + Cp + t)−1, Rp := Rp(0) and χ0 := R1/2

p .

B.1. Combes Thomas Estimates
Combes Thomas estimates, tracing back originally to ideas of [CT73], describe an
exponential decay of Green’s functions of Schrödinger operators. A classical result
for Schrödinger operators in Rd can be found in [Sim82] and a result for generalized
Schrödinger operators in Rd with the explicit statement of the constants in [GK03].
In our setting we need a Combes Thomas estimate for the operators

p̂sj(Hp + Cp)−1/2p̂tj, j ∈ {1, . . . , d}, s, t ∈ {0, 1}, s+ t ≤ 1, (B.1)

which does not seem to available explicitly in the literature. In this section we
assume that V is differentiable and its derivative is bounded.

B.1.1. Standard Version
First, we recall a standard version of a Combes Thomas estimate for Schrödinger
operators. This could also be deduced from [GK03]. However, we rather give a
short direct proof, as the techniques here are reused in the second part to discuss
the operators (B.1).

In the following let ⟨x⟩β := (β + x2) 1
2 for β ≥ 0 and recall that ⟨x⟩ = ⟨x⟩1.

Lemma B.1
There exists a δ > 0 such that for all W ∈ C2(Rd), which are bounded from below,
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satisfying supx |∇W (x)| < δ and supx |∆W (x)| < δ, and all t ≥ 0, we have⃦⃦⃦⃦
e−WRp(t)eW

⃓⃓⃓
C∞

c (Rd)

⃦⃦⃦⃦
≤ C

1 + t

for some constant C independent of t.

Proof. We set on D(p̂2),

HW := Hp +DW , (B.2)

where we define on C∞
c (Rd),

DW := e−W [p̂2, eW ] = −∆W − (∇W )2 − 2i∇W p̂, (B.3)

which clearly extends to D(p̂2). By assumption, there is for all ϵ > 0 a δ > 0 such
that for all W ∈ C2(Rd) with supx |∇W (x)| < δ and supx |∆W (x)| < δ,

∥DWψ∥ ≤ ϵ(∥Hpψ∥ + ∥ψ∥), ψ ∈ D(Hp).

We can now choose ϵ > 0 (and therefore accordingly δ > 0) small enough such
that ∥DWRp(t)∥ ≤ 1

2 for all t ≥ 0. Then,

HW + Cp + t = (Hp + Cp + t)(1 +Rp(t)DW )

is invertible. Now, we have on D(∆), on the level of measurable functions (the
single operators do not map L2 functions necessarily into L2 functions),

HW = e−W (−∆ + V )eW .

Notice by the explicit form of DW we do not have eWψ ∈ D(∆) for ψ ∈ D(∆),
but eWψ is still two times weakly differentiable. Thus, for ψ ∈ C∞

c (Rd),⃦⃦⃦
e−WRp(t)eWψ

⃦⃦⃦
=
⃦⃦⃦
(HW + Cp + t)−1(HW + Cp + t)e−WRp(t)pseWψ

⃦⃦⃦
=
⃦⃦⃦
(HW + Cp + t)−1ψ

⃦⃦⃦
=
⃦⃦⃦
(1 +Rp(t)DW )−1Rp(t)ψ

⃦⃦⃦
.

Since DWRp(t) is bounded independently of t ≥ 0 and ∥Rp(t)∥ ≤ C
1+t for some

constant C, this yields the desired statement.

In particular, the exponential decay allows us to conclude that the kernel of the
resolvent decays faster than any polynomial. This is the content of the following
proposition.

142



B.1. Combes Thomas Estimates

Proposition B.2
For all α ∈ R, we have for all t ≥ 0,⃦⃦⃦⃦

⟨x̂⟩−αRp(t) ⟨x̂⟩α
⃓⃓⃓
C∞

c (Rd)

⃦⃦⃦⃦
≤ C

1 + t
(B.4)

for some constant C independent of t. In particular, (B.4) is well-defined for
α < 0, i.e., (Hp + Cp)−1 maps D(|x̂|α) to D(|x̂|α) for all α > 0.

Proof. We first consider the case α ≥ 0. For β > 0 we set W (x) = α ln(β + x2).
A direct calculation yields supx |∇W (x)| ≤ Cβ−1/2 and supx |∆W (x)| ≤ Cβ−1 for
some constants C not depending on β. We make β > 0 big enough and therefore
also the derivatives of W small enough such that Lemma B.1 is applicable. Then
it follows that

⟨x̂⟩−α (Hp + Cp)−1 ⟨x̂⟩α = ⟨x̂⟩−α ⟨x̂⟩αβ ⟨x̂⟩−α
β (Hp + Cp)−1 ⟨x̂⟩αβ ⟨x̂⟩−α

β ⟨x̂⟩α

is bounded on C∞
c (Rd) and extends to D(|x̂|α). This also shows that (Hp +Cp)−1

leaves D(|x̂|α) invariant, and the boundedness of

⟨x̂⟩α p̂sj(Hp + Cp)−1/2p̂tj ⟨x̂⟩−α

follows since it is the adjoint operator.

B.1.2. Square Root of the Resolvent
Now, the operators (B.1) can be discussed. The main idea is to use the relation

(Hp + Cp)−1/2 = 1
π

∫︂ ∞

0

1√
t
Rp(t)dt, (B.5)

and apply the standard Combes Thomas estimate. We start with two technical
preparatory lemmas.
Lemma B.3
Let

ξ : Rd × R+ −→ R, ξ(p, t) :=

⌜⃓⃓⎷p2 + Cp + t

|p| + 1 .

For all t ≥ 0, j = 1, . . . , d, the following operator, defined on C∞
c (Rd),

ξ(p̂, t)(Hp + Cp + t)−1p̂jξ(p̂, t),

is bounded with norm bound independent of t.
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Proof. As ∥(−∆ + Cp)V ∥ < 1, a von Neumann series expansions yields for all
t ≥ 0,

(Hp + Cp + t)−1 = ((p̂2 + Cp + t)(1 + (p̂2 + Cp + t)−1V ))−1

= (1 + (p̂2 + Cp + t)−1V )−1(p̂2 + Cp + t)−1

=
∞∑︂
n=0

(−(p̂2 + Cp + t)−1V )n(p̂2 + Cp + t)−1.

Thus,

ξ(p̂, t)(Hp + Cp + t)−1p̂jξ(p̂, t)

= − ξ(p̂, t)
p̂2 + Cp + t

(︄ ∞∑︂
n=1

(−(p̂2 + Cp + t)−1V )n−1
)︄

p̂jξ(p̂, t)
p̂2 + Cp + t

+ ξ(p̂, t)(p̂2 + Cp + t)−1p̂jξ(p̂, t)

is bounded independent of t.

Lemma B.4
Assume that W satisfy the same assumptions as in Lemma B.1, and let HW and
DW defined as in (B.2) and (B.3), respectively. Then for all j, the operator

∫︂ ∞

0

1√
t
(HW + Cp + t)−1p̂jdt,

where the integral is to be understood in the strong sense on C∞
c (Rd), is bounded.

Proof. Let ξ be given as in Lemma B.3. Notice that

ξ(p̂, t)(Id +(Hp + Cp + t)−1DW )−1ξ(p̂, t)−1

= Id −ξ(p̂, t)(Hp + Cp + t)−1DW

∞∑︂
n=1

(−(Hp + Cp + t)−1DW )nξ(p̂, t)−1

is bounded (independent of t) since ξ(p̂, t)(Hp + Cp + t)−1DW is bounded by def-
inition of ξ. This together with Lemma B.3 yields that the following operator is
also bounded by a constant C independent of t:

ξ(p̂, t)(HW + Cp + t)−1p̂jξ(p̂, t)
= ξ(p̂, t)(1 + (Hp + Cp + t)−1DW )−1ξ(p̂, t)−1ξ(p̂, t)(Hp + Cp + t)−1p̂jξ(p̂, t).
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Therefore, for ψ ∈ C∞
c (Rd),⃦⃦⃦⃦

⃦
∫︂ ∞

0

1√
t
(HW + Cp + t)−1p̂jdtψ

⃦⃦⃦⃦
⃦ ≤ C

∫︂ ∞

0

1√
t

⃦⃦⃦
ξ(p̂, t)−2ψ

⃦⃦⃦
dt.

As the following expression

1
π

∫︂ ∞

0

1√
t
ξ(p, t)−2dt = 1

π

∫︂ ∞

0

1√
t

|p| + 1
p2 + Cp + t

dt = (|p| + 1)(p2 + Cp)−1/2

is bounded in p, this completes the proof.

Now we can state a similar result as in Lemma B.1 for the square root of the
resolvent.
Lemma B.5
There exists a δ > 0 such that for all W ∈ C2(Rd), which are bounded from below,
satisfying supx |∇W (x)| < δ and supx |∆W (x)| < δ, and for all j ∈ {1, . . . , d},
s, t ∈ {0, 1}, s+ t ≤ 1, the operator

e−W p̂sj(Hp + Cp)−1/2p̂tjeW (B.6)

defined on C∞
c (Rd), is bounded.

Proof. For s = 0 and t ∈ {0, 1} we proceed as in the proof of Lemma B.1 and
compute on C∞

c (Rd), using (B.5),

e−W (Hp + Cp)−1/2p̂tjeW

= 1
π

∫︂ ∞

0

1√
t′
e−WRp(t′)p̂tjeWdt′

= 1
π

∫︂ ∞

0

1√
t′

(HW + Cp + t′)−1(HW + Cp + t′)e−WRp(t′)p̂tjeWdt′

= 1
π

∫︂ ∞

0

1√
t′

(HW + Cp + t′)−1e−W p̂tjeWdt′

=
∫︂ ∞

0

1√
t′

(HW + Cp + t′)−1[e−W , p̂tj]eWdt′ +
∫︂ ∞

0

1√
t′

(HW + Cp + t′)−1p̂tjdt′.

The first integral is bounded since ∥(HW + Cp + t′)−1∥ ≤ C
1+t′ , t

′ ≥ 0, for some
constant C and [e−W , p̂j]eW is a bounded operator. The second one is bounded
due to Lemma B.4. This shows the claim for s = 0.
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Finally, with regard to s = 1, t = 0 in (B.6), we compute on C∞
c (Rd),

e−W [p̂j, (Hp + Cp)−1/2]eW

= 1
π

∫︂ ∞

0

1√
t
e−W

[︄
p̂j,

1
Hp + Cp + t

]︄
eWdt

= 1
π

∫︂ ∞

0

1√
t
e−W 1

Hp + Cp + t
(i∂jV ) 1

Hp + Cp + t
eWdt.

Then, we can estimate the integrand in norm using Lemma B.1 by⃦⃦⃦⃦
⃦e−W 1

Hp + Cp + t
(i∂jV ) 1

Hp + Cp + t
eW
⃦⃦⃦⃦
⃦ ≤ C

(1 + t)2 ,

with a constant C indepedent of t, which shows that the integral is bounded.

Proposition B.6
For all α ∈ R, j ∈ {1, . . . , d} and s, t ∈ {0, 1}, s+ t ≤ 1, the operators,

⟨x̂⟩−α p̂sj(Hp + Cp)−1/2p̂tj ⟨x̂⟩α ,
defined on C∞

c (Rd), are bounded. In particular, the operators are well-defined for
α < 0, i.e., the operators p̂sj(Hp + Cp)−1/2p̂tj map D(|x̂|−α) to D(|x̂|−α).

Proof. The statement follows from Lemma B.5 in the same way as in the proof of
Proposition B.2.

Proposition B.7
For all n ∈ N, j ∈ {1, . . . , d} and s, t ∈ {0, 1}, s+ t ≤ 1, the operators

⟨x̂⟩−(n+1) p̂sjχ0ADχ0p̂tj ⟨x̂⟩n , ⟨x̂⟩n p̂sjχ0ADχ0p̂tj ⟨x̂⟩−(n+1) , (B.7)
defined on C∞

c (Rd), are bounded. In particular, the operators are well-defined, i.e.,
the operators p̂sjχ0ADχ0p̂tj map D(|x̂|n+1) to D(|x̂|n).

Proof. It suffices to show that the first operators in (B.7) are bounded. Then
it follows by the standard arguments that the second ones are well-defined and
bounded.

Now, for s = 0 we can write AD = 1
4
∑︁
k(2p̂kx̂k + i) and we obtain that for all k,

⟨x̂⟩−(n+1) χ0p̂kx̂kχ0p̂tj ⟨x̂⟩n = ⟨x̂⟩−(n+1) χ0p̂k ⟨x̂⟩−(n+1) ⟨x̂⟩n+1 x̂k ⟨x̂⟩−n ⟨x̂⟩n χ0p̂tj ⟨x̂⟩n

is bounded by Proposition B.6. Clearly, with the same argument ⟨x̂⟩−(n+1) χ2
0p̂
t
j ⟨x̂⟩n

and therefore ⟨x̂⟩−(n+1) χ0ADχ0p̂tj ⟨x̂⟩n are bounded as well.
In the case s = 1, t = 0 we can write AD = 1

4
∑︁
k(2x̂kp̂k − i) and use the same

argument.
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B.1.3. Combination with the Helffer-Sjöstrand Formula
In this part we want to state a similar result as Proposition B.7 for compactly
supported functions which are sufficiently smooth. We use a result of [GK03],
where the authors combined Combes Thomas estimates with the so-called Helffer-
Sjöstrand formula (cf. [HS89; Dav95]),

χ(H) = − 1
π

∫︂
C

∂ ˆ︁χ
∂z

(H − z)−1dz, (B.8)

which provides an approach for the functional calculus for self-adjoint operators H
with suitable real functions χ. Here, ˆ︁χ is a so-called almost analytic extension of
χ to C. The occurrence of the resolvent in (B.8) indeed motivates the combination
with Combes Thomas estimates.

For any function χ ∈ Cn
c (R), n ∈ N, we define the norm (cf. [Dav95, eq. (1)])

∥χ∥(n)
D :=

n∑︂
r=0

∫︂
R

⃓⃓⃓
χ(r)(x)

⃓⃓⃓
⟨x⟩r−1 dx.

In [GK03, Theorem 2] it is proven that the operator kernel of χ(Hp) for a function
χ ∈ C∞

c (Rd) decays for any n ∈ N polynomially with order n at spatial infinity,
with a multiplicative constant Cn ∥χ∥(2+n)

D where Cn does not depend on χ. To
obtain a bounded operator, one needs, by Young’s inequality for convolutions,
additional decay of d+ 1. Therefore, it is straightforward to deduce the following
proposition.
Proposition B.8 (cf. [GK03, Theorem 2])
For all n ∈ N there is a constant Cn such that for all χ ∈ C∞

c (Rd),⃦⃦⃦
⟨x̂⟩−n χ(Hp) ⟨x̂⟩n

⃦⃦⃦
≤ Cn ∥χ∥(2+n+d+1)

D ,

where the constants Cn do not depend on χ.

Corollary B.9
Let n0 ∈ N and χ ∈ Cn0+d+3

c (R). Then for all 0 ≤ n ≤ n0, the operators

⟨x̂⟩±n p̂sjχ(Hp)p̂tj ⟨x̂⟩∓n , j ∈ {1, . . . , d}, s, t ∈ {0, 1}, s+ t ≤ 1,

are well-defined and bounded.

Proof. Let us first consider the case s = t = 0. Let 0 ≤ n ≤ n0. By convolution
with a suitable smooth Dirac sequence supported in a common compact set, one
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finds a sequence (χk)k∈N of functions in C∞
c (R) such that χk k→∞→ χ in the norm

∥χ∥(n+d+3)
D . This yields χk(Hp) k→∞→ χ(Hp) in norm, so for all ψ ∈ C∞

c (Rd),⃦⃦⃦
⟨x̂⟩−n χ(Hp) ⟨x̂⟩n ψ

⃦⃦⃦
= lim

k→∞

⃦⃦⃦
⟨x̂⟩−n χk(Hp) ⟨x̂⟩n ψ

⃦⃦⃦
≤ Cn ∥χ∥(n+d+3)

D ∥ψ∥ .

Now, for s = 1, we can write ˜︁χ(e) := (e + Cp)χ(e). Then ˜︁χ ∈ Cn0+d+3
c (R) as

well, and we obtain that

⟨x̂⟩−n p̂jχ(Hp) ⟨x̂⟩n = ⟨x̂⟩−n p̂j(Hp + Cp)−1 ⟨x̂⟩n ⟨x̂⟩−n ˜︁χ(Hp) ⟨x̂⟩n

is bounded, where we used Proposition B.6 and the case s = t = 0.
The proof for t = 1 is analogous and by the standard arguments it also follows

that the adjoint operators

⟨x̂⟩−n p̂sjχ(Hp)p̂tj ⟨x̂⟩n

are bounded and well-defined, and for all ψ ∈ C∞
c (Rd),

⟨x̂⟩−n p̂sjχk(Hp)p̂tj ⟨x̂⟩n ψ k→∞−→ ⟨x̂⟩−n p̂sjχ(Hp)p̂tj ⟨x̂⟩n ψ.

Then, by the Helffer-Sjöstrand formula, we obtain

⟨x̂⟩−n p̂sjχk(Hp)p̂tj ⟨x̂⟩n ψ = − 1
π

∫︂
C

∂ ˜︁χk
∂z

⟨x̂⟩−n p̂sj(Hp − z)−1p̂tj ⟨x̂⟩n ψ.

Using that
⃦⃦⃦
⟨x̂⟩−n p̂sj(Hp − z)−1p̂tj ⟨x̂⟩n

⃦⃦⃦
≤ C

|Im z| for some constant C (Proposi-
tion B.6), the last term can estimated by C ∥χk∥D2 for another constant C in-
dependent of k (see [Dav95, Lemma 1]).

This proves that the operators ⟨x̂⟩−n p̂sjχk(Hp)p̂tj ⟨x̂⟩n, j ∈ {1, . . . , d}, s, t ∈
{0, 1}, s + t ≤ 1, are bounded. With the usual argumentation it follows that the
formal adjoint operator is well-defined (i.e., p̂sjχk(Hp)p̂tj ⟨x̂⟩−n maps to D(|x̂|n)) and
bounded.

B.2. Commutator with a Cutoff Function
In this section a modification of an auxiliary result of [FMS04, section A.1] about
the boundedness of commutators with a cutoff function is proven. In contrast to
the original version we would like to treat non-smooth cutoff functions.

For the proof we repeat a theorem about the commutator expansion of un-
bounded operators, sometimes also referred to as Hadamard’s Lemma. It is stated
in this form in [FMS04, section A.1], but originally appeared in [Frö77].
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Theorem B.10 (Commutator expansion, [FMS04, Theorem A.2])
Let Y ≥ Id be self-adjoint and let D be a core for Y . Let M ∈ N and X, Z,
ad(n)

X (Z), n = 1, . . . ,M , be symmetric operators on D satisfying

ad(0)
X (Z) = Z, (B.9)⟨︂

ψ, ad(n)
X (Z)ψ

⟩︂
= i

(︂⟨︂
ad(n−1)

X (Z)ψ,Xψ
⟩︂

−
⟨︂
Xψ, ad(n−1)

X (Z)ψ
⟩︂)︂
, (B.10)

for all ψ ∈ D. Furthermore, assume that (ad(n)
X (Z), Y,D), n = 0, . . . ,M , satisfy

the GJN condition, that X is self-adjoint, D ⊆ D(X), eitX leaves D(Y ) invariant
for all t ∈ R, and (4.19) holds. Then we have on D(Y ) for all t ∈ R,

eitXZe−itX = Z −
M−1∑︂
n=1

tn

n! ad(n)
X (Z) −

∫︂ t

0
. . .
∫︂ tM−1

0
eitMX ad(M)

X (Z)e−itMXdtM . . . dt1.

Now, we can prove our result to treat cutoff functions χ which are only M times
differentiable. As tradeoff one has to impose certain assumptions with respect to
the resolvent of X. The proof uses the same commutator expansion as in [FMS04,
Lemma A.1], and it combines it with the approach in the proof of [FM04b, Lemma
A.1].
Proposition B.11 (cf. [FMS04, Lemma A.2])
Let M ∈ N and χ ∈ CM+2

c (R). Let (X, Y,D) be a GJN triple, Z a symmetric
operator on D. Suppose χ(X) leaves D(Y ) invariant and that (ad(n)

X (Z), Y,D)
satisfies the GJN condition for all n = 0, . . . ,M . In particular, Z extends to
a self-adjoint operator, which will be denoted by the same symbol. Furthermore,
assume there exist constants C such that for all ψ ∈ D(Y ),⃦⃦⃦

ad(n)
X (Z)ψ

⃦⃦⃦
≤ C ∥ψ∥ , n = 1, . . . ,M − 1,⃦⃦⃦

ad(M)
X (Z)ψ

⃦⃦⃦
≤ C(∥Xψ∥ + ∥ψ∥).

Moreover, we assume that for some µ ∈ ρ(X), (X − µ)−1 leaves D(Y ) invariant
and [(X−µ)−1, Z] (defined on D(Y )) is bounded. Then, the commutator [χ(X), Z],
defined on D(Y ), is bounded.

Proof. Let χ1(x) := (x− µ)χ(x). For R ≥ 0 let

χ1,R(X) := (2π)−1/2
∫︂ R

−R
(Fχ1)(s)eisXds,

which exists as Fχ1 is continuous. Furthermore, we have by assumption χ1 ∈
CM+2(R) and therefore, using a standard stationary phase argument (see also
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Lemma 6.11), there exists a constant C such that |(Fχ1)(s)| ≤ C ⟨s⟩−2 holds for
all s ∈ R. We then get χ1,R(X) → χ1(X) as R → ∞, since Fχ1 ∈ L1(R).

By functional calculus, χ(X) = χ1(X)(X − µ)−1 and given that χ1(X) leaves
D(Y ) invariant, we obtain on D(Y ),

[χ(X), Z] = χ1(X)[(X − µ)−1, Z] + [χ1(X), Z](X − µ)−1. (B.11)

The first term on the right-hand side of (B.11) is bounded by assumption. It
remains to consider the second term.

Let ψ ∈ D(Y ). By Theorem 4.7, eisXψ ∈ D(Y ) for all s ∈ R and thus,
χ1,R(X) ∈ D(Y ), as∫︂ R

−R
|(Fχ1)(s)|

⃦⃦⃦
Y eisXψ

⃦⃦⃦
ds ≤

∫︂ R

−R
|(Fχ1)(s)| eκ|s|ds < ∞,

for some κ ≥ 0, where we used (4.19).
Then by Theorem B.10,

Zχ1,R(X)ψ = χ1,R(X)Zψ + (2π)−1/2
∫︂ R

−R
(Fχ1)(s)eisX(e−isXZeisX − Z)ψ

= χ1,R(X)Zψ − (2π)−1/2
∫︂ R

−R
(Fχ1)(s)eisX

(︄
M−1∑︂
n=1

(−s)n
n! ad(n)

X (Z)ψ

+ (−1)M
∫︂ s

0
. . .
∫︂ sM−1

0
e−isMX ad(M)

X (Z)eisMXdsM . . . ds1

)︄
ψds.

(B.12)

Using that ad(n)
X (Z), n = 1, . . . ,M , is bounded, and by assumption,⃦⃦⃦

ad(M)
X (Z)eisMXψ

⃦⃦⃦
≤ C(∥Xψ∥ + ∥ψ∥)

holds for some constant C independent of s and ψ, we can estimate the norm of
the integrand in s in (B.12) by

C ⟨s⟩M (∥Xψ∥ + ∥ψ∥),

with another constant C independent of s and ψ. Since all derivatives χ(n), n =
0, . . . ,M + 2, are compactly supported, the stationary phase argument yields for
n = 0, . . . ,M , ⃓⃓⃓

F(χ(n))(k)
⃓⃓⃓
≤ C ⟨k⟩−2

and thus, ⟨·⟩M Fχ ∈ L1(R). Hence, limR→∞ Zχ1,R(X)ψ exists, and since Z is
closed, χ1(X)ψ ∈ D(Z) and limR→∞ Zχ1,R(X)ψ = Zχ1(X)ψ. Finally, it follows
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from (B.12) and the subsequent considerations that there is a constant C such
that for all ψ ∈ D(Y ),

∥[Z, χ1(X)]ψ∥ ≤ C(∥Xψ∥ + ∥ψ∥),

which shows that the second term in (B.11) is bounded.

B.3. Absence of Negative Spectrum with
Birman-Schwinger

The Birman-Schwinger principle (originating from [Bir61] and [Sch61], see also
[BEG20]) in its classical form states that E is an eigenvalue of a Schrödinger
operator −∆ + V if and only if −1 is an eigenvalue of the so-called Birman-
Schwinger operator

V 1/2(−∆ − E) |V |1/2 .

A common application are upper (so-called Birman-Schwinger) bounds for the
number of (negative) eigenvalues. In particular, one can show that −∆ + V ≥ 0 if
the Birman-Schwinger operator for all E < 0 is sufficiently small.

In this section we want to prove the same if we replace the operator −∆ + V
by

(Hp + Cp)−1/2(−∆)(Hp + Cp)−1/2 + V. (B.13)

First, it will be shown in Lemma B.12 that the corresponding Birman-Schwinger
operator for (B.13) is sufficiently small. This will imply the absence of any negative
spectrum by means of the Birman-Schwinger principle (Proposition B.13).

In the following we assume to be in dimension d = 3.
Lemma B.12
Let U : R3 → R be a measurable and non-negative function, satisfying

U(x) ≤ C ⟨x⟩−α , x ∈ R3,

for some constants C and α > 2. Then for any E < 0 the operator
√
U((Hp + Cp)−1/2(−∆)(Hp + Cp)−1/2 − E)−1

√
U (B.14)

is bounded by a constant independent of E.
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Proof. We can write (B.14) as
√
U(Hp + Cp)1/2(p̂2 − E(Hp + Cp))−1(Hp + Cp)1/2

√
U. (B.15)

Notice that the operator p̂2 − E(Hp + Cp) is self-adjoint on D(∆) and bounded
from below by a positive constant. Therefore,

ran(p̂2 − E(Hp + Cp))−1 ⊆ D(∆) ⊆ D((Hp + Cp)1/2),

so the expression (B.15) is indeed well-defined. Using the operator inequality (5.4)
with

A =
√
U(Hp + Cp)1/211p̂2<1(p̂2 − E(Hp + Cp))−1/2,

B =
√
U(Hp + Cp)1/211p̂2≥1(p̂2 − E(Hp + Cp))−1/2,

we can estimate (B.15) from above by

2
√
U(Hp + Cp)1/211p̂2<1(p̂2 − E(Hp + Cp))−111p̂2<1(Hp + Cp)1/2

√
U (B.16)

+2
√
U(Hp + Cp)1/211p̂2≥1(p̂2 − E(Hp + Cp))−111p̂2≥1(Hp + Cp)1/2

√
U. (B.17)

To prove that (B.17) is bounded uniformly in E, it suffices to show that the
operator

(Hp + Cp)1/2p̂−111p̂2≥1

is bounded. This follows by⃦⃦⃦
(Hp + Cp)1/2p̂−111p̂2≥1

⃦⃦⃦2
= sup

∥ψ∥=1

⟨︂
p̂−111p̂2≥1ψ, (p̂2 + V + Cp)p̂−111p̂2≥1ψ

⟩︂
≤ sup

∥ψ∥=1

⟨︂
p̂−111p̂2≥1ψ, (p̂2 + Cp)p̂−111p̂2≥1ψ

⟩︂
≤ 1 + Cp.

Therefore, the operator p̂−111p̂2≥1(Hp +Cp)1/2, defined on D(∆), is bounded as its
formal adjoint.

It remains to show that (B.16) is uniformly bounded in E. The relation

(Hp + Cp)1/2 = (Hp + Cp) 1
π

∫︂ ∞

0

1√
t
Rp(t)dt,

which follows from (B.5), allows us to write (B.16) up to positive constants as
∫︂ ∞

0

∫︂ ∞

0

√
U√
st
Rp(t)(Hp +Cp)11p̂2<1(p̂2 −E(Hp +Cp))−111p̂2<1(Hp +Cp)Rp(s)

√
Udsdt
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Now, by Proposition B.2, there exist constants C such that
⃦⃦⃦
⟨x̂⟩−α/2 Rp(t) ⟨x̂⟩α/2

⃦⃦⃦
≤

C
1+t and

⃦⃦⃦
⟨x̂⟩α/2 Rp(t) ⟨x̂⟩−α/2

⃦⃦⃦
≤ C

1+s , s, t ≥ 0. Furthermore, ⟨x̂⟩α/2 √
U is bounded

by assumption. Thus, it suffices to show that

⟨x̂⟩−α/2 (Hp + Cp)11p̂2<1(p̂2 − E(Hp + Cp))−111p̂2<1(Hp + Cp) ⟨x̂⟩−α/2 (B.18)

is bounded uniformly in E. We have p̂2 − E(Hp + Cp) ≥ p̂2 − EC, where C :=
Cp + inf(Hp) > 0. Thus, we can estimate (B.18) in the operator sense by

⟨x̂⟩−α/2 (Hp + Cp)11p̂2<1(p̂2 − EC)−111p̂2<1(Hp + Cp) ⟨x̂⟩−α/2 .

Now decomposing Hp +Cp = p̂2 +V +Cp and using again the operator inequality
(5.4) it suffices to consider the diagonal parts. Obviously, ⟨x̂⟩−α/2 p̂211p̂2<1(p̂2 −
EC)−111p̂2<1p̂2 ⟨x̂⟩−α/2 is bounded independent of E. It remains to show that the
operator

⟨x̂⟩−α/2 11p̂2<1(p̂2 − EC)−111p̂2<1 ⟨x̂⟩−α/2 ≤ ⟨x̂⟩−α/2 (p̂2 − EC)−1 ⟨x̂⟩−α/2 (B.19)

is bounded uniformly in E. Using the Green’s function for the Laplace operator,
the right-hand side of (B.19) can be written as integral operator with integral
kernel

K(x, y) = ⟨x⟩−α/2 e
−

√
−EC|x−y|

4π |x− y|
⟨y⟩−α/2 .

Recall that α > 2. As x ↦→ ⟨x⟩−α ∈ L3/2(R3), it follows by [RS4, section X.9] that
x ↦→ ⟨x⟩−α is in the Rollnik class, that is,

∫︂
R3

∫︂
R3

⟨x⟩−α ⟨y⟩−α

|x− y|2
dxdy < ∞,

which shows that K(·, ·) ∈ L2(R3 × R3) and ∥K(·, ·)∥2 can be estimated indepen-
dently of E.

Proposition B.13
Let U : R3 → R be a measurable and non-negative function, satisfying

U(x) ≤ C ⟨x⟩−α , x ∈ R3,

for some constants C and α > 2. Then there exists λ0 > 0 such that for all λ < λ0,

(Hp + Cp)−1/2(−∆)(Hp + Cp)−1/2 − λU ≥ 0. (B.20)
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Proof. Assume w.l.o.g. λ > 0 and let
T := (Hp + Cp)−1/2(−∆)(Hp + Cp)−1/2.

First notice that T is in fact well-defined on D((Hp + Cp)1/2) and non-negative.
Thus, it has a self-adjoint extension, which we denote by the same symbol.

Assume that E < 0 and E ∈ σ(T − λU). Then we find a sequence ( ˜︁ψn) with⃦⃦⃦ ˜︁ψn⃦⃦⃦ = 1 and

lim
n→∞

(T − λU − E) ˜︁ψn = 0.

Using the Birman Schwinger principle we get with ψn =
√
U ˜︁ψn,

lim
n→∞

(︂
λ

√
U(T − E)−1

√
Uψn − ψn

)︂
= 0. (B.21)

On the other hand, the operator
√
U(T−E)−1

√
U is bounded by a constant C > 0

independent of E due to Lemma B.12. So for λ < 1
C

, we obtain⃦⃦⃦
λ

√
U(T − E)−1

√
Uψn − ψn

⃦⃦⃦
≥ (1 − Cλ) ∥ψn∥ . (B.22)

Furthermore, from
∥ψn∥2 =

⟨︂ ˜︁ψn, U ˜︁ψn⟩︂
= 1
λ

(︂⟨︂ ˜︁ψn, (T − E) ˜︁ψn⟩︂−
⟨︂ ˜︁ψn, (T − λU − E) ˜︁ψn⟩︂)︂

≥ 1
λ

(−E) −
⟨︂ ˜︁ψn, (T − λU − E) ˜︁ψn⟩︂

n→∞→ −E
λ

> 0

we conclude lim infn→∞ ∥ψn∥ > 0. This together with (B.22) is in contradiction to
(B.21).

B.4. Decay Behavior of Planck’s Law
Here some elementary decay properties of the derivatives of the functions √

ρβ and√1 + ρβ, which appear in the Araki Woods representation, are collected. Remem-
ber we set for β > 0,

ρβ(u) = 1
eβu − 1 , u ∈ R \ {0}.

We start with some explicit bounds for √
ρβ and √1 + ρβ, and their first deriva-

tives. In particular, we consider the β-dependence of the constants.
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Lemma B.14
There exists constants C such that for all ω ≥ 0, β > 0,

(a)
√︂
ρβ(ω) ≤ 1√

βω
,

(b)
√︂

1 + ρβ(ω) ≤ 1 + 1√
βω

,

(c) ∂ω
√︂
ρβ(ω) ≤ C(ω−1 + β− 1

2ω− 3
2 ),

(d) ∂ω
√︂

1 + ρβ(ω) ≤ C(ω−1 + β− 1
2ω− 3

2 ).

Proof. (a) Since eβω − 1 ≥ βω, we have ρβ(ω) = (eβω − 1)−1 ≤ 1
βω

.

(b) Using (a), we obtain√︂
1 + ρβ(ω) ≤ 1 +

√︂
ρβ(ω) ≤ 1 + 1√

βω
.

(c) Using (a) again, we find⃓⃓⃓⃓
∂ω
√︂
ρβ(ω)

⃓⃓⃓⃓
= 1

2(eβω − 1)−3/2βeβω

= 1
2(eβω − 1)−1/2β

eβω

eβω − 1

≤ 1
2(eβω − 1)−1/2β

(︄
1 + 1

βω

)︄

≤ 1
2(eβω − 1)−1/2β + 1

2(eβω − 1)−1/2 1
ω

≤ 1
2

(︄
β2ω2

2

)︄−1/2

β + 1
2

1√
βω

1
ω

≤ C

(︄
ω−1 + 1√

β
ω−3/2

)︄

for some constant C.

(d) We have⃓⃓⃓⃓
∂ω
√︂

1 + ρβ(ω)
⃓⃓⃓⃓
= 1

2(1 + ρβ(ω))−1/2βeβωρβ(ω)2 ≤ 1
2βe

βωρβ(ω)3/2 =
⃓⃓⃓⃓
∂ω
√︂
ρβ(ω)

⃓⃓⃓⃓
,

and therefore the same bound as in (c).
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Next, we consider higher derivatives. As it is not needed in the applications, we
do not keep track of the β-dependence of the constants.
Lemma B.15

(a) We have for all n ∈ N0,

lim sup
ω↓0

∂nω
√︂

1 + ρβ(ω)
ω− 1

2 −n
< ∞, lim sup

ω↓0

∂nω
√︂
ρβ(ω)

ω− 1
2 −n

< ∞,

(b) and for all n, k ∈ N,

lim
ω→∞

ωk∂nω

√︂
1 + ρβ(ω) = 0, lim

ω→∞
ωk∂nω

√︂
ρβ(ω) = 0.

Proof. Using
√︂

1 + ρβ(ω) = 1√
1−e−βω

we get by induction that for all n ∈ N and
β > 0, there is a finite set A and cα ∈ R, dα ∈ N, α ∈ A, with dα ≤ n, such that

∂nω

√︂
1 + ρβ(ω) =

∑︂
α∈A

cα
(e−βω)dα

(1 − e−βω) 1
2 +dα

, ω ≥ 0.

Then the first claims of (a) and (b) follow, since lim supω↓0
ω

1−e−βω < ∞ and
limω→∞ ωk e−βω

1−e−βω = 0 for all k ∈ N0, respectively.
Next, we can write analogously for all n ∈ N0, with constants cα ∈ R, dα ∈ N,

α ∈ A, with dα ≤ n,

∂nω

√︂
ρβ(ω) =

∑︂
α∈A

cα
(eβω)dα

(eβω − 1) 1
2 +dα

, ω ≥ 0.

Then the second claims of (a) and (b) follow, since lim supω↓0
ω

eβω−1 < ∞ and
limω→∞ ωk 1

(eβω−1)1/2 = 0 for all k ∈ N0, respectively.

Lemma B.16
The function

[0,∞) −→ R, ω ↦→ ωρβ(ω)

is infinitely often differentiable and limω→∞ ∂nω(ωρβ(ω)) = 0 for all n ∈ N0.

Proof. This can be seen explicitly by writing

ωρβ(ω) = 1
β

βω

eβω − 1 = 1
β

(︄ ∞∑︂
n=1

(βω)n−1

n!

)︄−1

.
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Nomenclature
ˆ︁⊗ Algebraic tensor product

∆ Laplace operator with the convention −∆ ≥ 0

11A=a Projection to the eigenspace with eigenvalue a of an operator A

11A ̸=a 11⊥
A=a

11M Indicator function with respect to a set M

σ(H) Spectrum of the operator H

σd(H) Discrete spectrum of the operator H

A Closure of A (as set or operator)

A∗ Adjoint operator

[A,B] Commutator of A and B

A > 0 Strict positivity of the operator A, i.e., A ≥ 0 and kerA = {0}

BR(x) Closed ball of radius R around x

C∞
c Compactly supported smooth functions

Cn(X) n times continuously differentiable functions on X

D(A) Domain of an operator A

F Fourier transform in Rd

Id Identity operator (sometimes with subindex referring to the under-
lying space)

k̂ Multiplication operator in the scattering space

L(H) Bounded linear operators on H
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Nomenclature

linM Linear span of a set M

N Natural numbers (without zero)

N0 Natural numbers (including zero)

p̂ Momentum (derivative) operator −i∇x

P⊥ Orthogonal projection Id −P

q̂ Derivative operator i∇k in the scattering space

ran Range (image) of an operator

R+ Positive real line (0,∞)

Sn n-dimensional sphere

S(Rd) Schwartz functions on Rd

V ⊥ Orthogonal complement of a space V

⟨x⟩ (1 + x2)1/2

x̂ Position (multiplication) operator

158



Bibliography
[AJP06] S. Attal, A. Joye, and C. Pillet. Open Quantum Systems I: The Hamil-

tonian Approach. Lecture notes in mathematics, 1880-1882. Springer,
2006.

[Asa17] A. Asao. Analysis On Fock Spaces And Mathematical Theory Of
Quantum Fields: An Introduction To Mathematical Analysis Of Quan-
tum Fields. World Scientific Publishing Company, 2017.

[AW63] H. Araki and E. J. Woods. „Representations of the Canonical Commu-
tation Relations Describing a Nonrelativistic Infinite Free Bose Gas“.
In: Journal of Mathematical Physics 4.5 (1963), pp. 637–662.

[Bac+99] V. Bach, J. Fröhlich, I. M. Sigal, and A. Soffer. „Positive Commu-
tators and the Spectrum of Pauli–Fierz Hamiltonian of Atoms and
Molecules“. In: Communications in Mathematical Physics 207.3 (Nov.
1999), pp. 557–587.

[BEG20] J. Behrndt, A. ter Elst, and F. Gesztesy. „The Generalized Birman-
Schwinger Principle“. In: arXiv preprint arXiv:2005.01195 (2020).

[BFS00] V. Bach, J. Fröhlich, and I. M. Sigal. „Return to equilibrium“. In:
Journal of Mathematical Physics 41.6 (2000), pp. 3985–4060.

[BFS98a] V. Bach, J. Fröhlich, and I. M. Sigal. „Quantum electrodynamics of
confined nonrelativistic particles“. In: Advances in Mathematics 137.2
(1998), pp. 299–395.

[BFS98b] V. Bach, J. Fröhlich, and I. M. Sigal. „Renormalization group anal-
ysis of spectral problems in quantum field theory“. In: Advances in
Mathematics 137.2 (1998), pp. 205–298.

[BFS99] V. Bach, J. Fröhlich, and I. M. Sigal. „Spectral analysis for systems
of atoms and molecules coupled to the quantized radiation field“. In:
Communications in Mathematical Physics 207.2 (1999), pp. 249–290.

[Bir61] M. S. Birman. „On the spectrum of singular boundary-value prob-
lems“. In: Matematicheskii Sbornik 97.2 (1961), pp. 125–174.

159



Bibliography

[BKZ02] V. Bach, F. Klopp, and H. Zenk. „Mathematical Analysis of the
Photoelectric Effect“. In: Advances in Theoretical and Mathematical
Physics 5 (Nov. 2002), pp. 969–999.

[Bla06] B. Blackadar. Operator Algebras: Theory of C*-Algebras and von Neu-
mann Algebras. Encyclopaedia of Mathematical Sciences. Springer,
2006.

[BR1] O. Bratteli and D. Robinson. Operator Algebras and Quantum Statis-
tical Mechanics 1: C*- and W*-Algebras. Symmetry Groups. Decom-
position of States. Theoretical and Mathematical Physics. Springer,
2013.

[BR2] O. Bratteli and D. Robinson. Operator Algebras and Quantum Sta-
tistical Mechanics: Equilibrium States. Models in Quantum Statistical
Mechanics. Theoretical and Mathematical Physics. Springer, 2003.

[Brü99] F. M. Brückler. „Tensor products of C*-algebras, operator spaces and
Hilbert C*-modules“. In: Mathematical Communications 4.2 (1999),
pp. 257–268.

[CT73] J.-M. Combes and L. Thomas. „Asymptotic behaviour of eigenfunc-
tions for multiparticle Schrödinger operators“. In: Communications in
Mathematical Physics 34.4 (1973), pp. 251–270.

[Cyc+87] H. Cycon, R. Froese, B. Simon, and W. Kirsch. Schrödinger Opera-
tors: With Applications to Quantum Mechanics and Global Geometry.
Springer study edition. Springer, 1987.

[Dav95] E. B. Davies. „The functional calculus“. In: Journal of the London
Mathematical Society 52.1 (1995), pp. 166–176.

[DJ01] J. Dereziński and V. Jakšić. „Spectral Theory of Pauli–Fierz Opera-
tors“. In: Journal of Functional Analysis 180.2 (2001), pp. 243–327.

[DJ03] J. Dereziński and V. Jakšić. „Return to equilibrium for Pauli-Fierz
systems“. In: Annales Henri Poincaré. Vol. 4. 4. Springer. 2003,
pp. 739–793.

[DJP03] J. Dereziński, V. Jakšić, and C.-A. Pillet. „Perturbation theory of W*-
dynamics, Liouvilleans and KMS-states“. In: Reviews in Mathematical
Physics 15.05 (2003), pp. 447–489.

[Ein05] A. Einstein. „Über einen die Erzeugung und Verwandlung des Lichtes
betreffenden heuristischen Gesichtspunkt“. In: Annalen der Physik
322.6 (1905), pp. 132–148.

160



Bibliography

[FM04a] J. Fröhlich and M. Merkli. „Another Return of ’Return to Equilib-
rium’“. In: Communications in Mathematical Physics 251 (Nov. 2004).

[FM04b] J. Fröhlich and M. Merkli. „Thermal Ionization“. In: Mathematical
Physics, Analysis and Geometry 7.3 (Aug. 2004), pp. 239–287.

[FMS04] J. Fröhlich, M. Merkli, and I. M. Sigal. „Ionization of Atoms in a
Thermal Field“. In: Journal of Statistical Physics 116.1 (Aug. 2004),
pp. 311–359.

[Frö77] J. Fröhlich. „Application of commutator theorems to the integration
of representations of Lie algebras and commutation relations“. In:
Communications in Mathematical Physics 54.2 (1977), pp. 135–150.

[GK03] F. Germinet and A. Klein. „Operator kernel estimates for functions of
generalized Schrödinger operators“. In: Proceedings of the American
Mathematical Society 131.3 (2003), pp. 911–920.

[GZ09] M. Griesemer and H. Zenk. „On the Atomic Photoeffect in Non-
relativistic QED“. In: Communications in Mathematical Physics 300.3
(Oct. 2009), pp. 615–639.

[HS20] D. Hasler and O. Siebert. „Thermal Ionization for Short-Range Po-
tentials“. In: arXiv preprint arXiv:2006.10874 (2020).

[HS89] B. Helffer and J. Sjöstrand. „Equation de Schrödinger avec champ
magnétique et équation de Harper“. In: Schrödinger operators. 1989,
pp. 118–197.

[Ike60] T. Ikebe. „Eigenfunction expansions associated with the Schroedinger
operators and their applications to scattering theory“. In: Archive for
Rational Mechanics and Analysis 5.1 (Jan. 1960), p. 1.

[JP02] V. Jakšić and C.-A. Pillet. „Non-Equilibrium Steady States of Finite
Quantum Systems Coupled to Thermal Reservoirs“. In: Communica-
tions in Mathematical Physics 226.1 (2002), pp. 131–162.

[JP95] V. Jakšić and C.-A. Pillet. „On a model for quantum friction. I.
Fermi’s golden rule and dynamics at zero temperature“. In: Annales
de l’IHP Physique théorique. Vol. 62. 1. 1995, pp. 47–68.

[JP96a] V. Jakšić and C.-A. Pillet. „On a model for quantum friction. II.
Fermi’s golden rule and dynamics at positive temperature“. In: Com-
munications in Mathematical Physics 176.3 (Mar. 1996), pp. 619–644.

[JP96b] V. Jakšić and C.-A. Pillet. „On a model for quantum friction. III.
Ergodic properties of the spin-boson system“. In: Communications in
Mathematical Physics 178.3 (1996), pp. 627–651.

161



Bibliography

[JP97] V. Jakšić and C.-A. Pillet. „Spectral theory of thermal relaxation“.
In: Journal of Mathematical Physics 38.4 (1997), pp. 1757–1780.

[Kat59] T. Kato. „Growth properties of solutions of the reduced wave equation
with a variable coefficient“. In: Communications on Pure and Applied
Mathematics 12.3 (1959), pp. 403–425.

[Kön11a] M. Könenberg. „An Infinite Level Atom coupled to a Heat Bath“. In:
Journal der Deutschen Mathematiker-Vereinigung 16 (2011), pp. 177–
208.

[Kön11b] M. Könenberg. „Return to equilibrium for an anharmonic oscillator
coupled to a heat bath“. In: Journal of Mathematical Physics 52.2
(2011), p. 022110.

[KR97] R. Kadison and J. Ringrose. Fundamentals of the Theory of Oper-
ator Algebras. Volume II. Fundamentals of the Theory of Operator
Algebras. American Mathematical Society, 1997.

[Lan18] M. Lange. „Ground states and spectral properties in quantum field
theories“. Dissertation, Friedrich-Schiller-Universität Jena, 2018. PhD
thesis. Jena, 2018.

[Mer01] M. Merkli. „Positive Commutators in Non-Equilibrium Quantum
Statistical Mechanics“. In: Communications in Mathematical Physics
223.2 (Oct. 2001), pp. 327–362.

[Mer05] M. Merkli. „Stability of equilibria with a condensate“. In: Communi-
cations in Mathematical Physics 257.3 (2005), pp. 621–640.

[MF53] P. Morse and H. Feshbach. Methods of Theoretical Physics. Interna-
tional series in pure and applied physics Teil 1. McGraw-Hill, 1953.

[MMS07a] M. Merkli, M. Mück, and I. M. Sigal. „Instability of equilibrium states
for coupled heat reservoirs at different temperatures“. In: Journal of
Functional Analysis 243.1 (2007), pp. 87–120.

[MMS07b] M. Merkli, M. Mück, and I. M. Sigal. „Theory of non-equilibrium sta-
tionary states as a theory of resonances“. In: Annales Henri Poincaré.
Vol. 8. 8. Springer. 2007, pp. 1539–1593.

[Mor13] V. Moretti. Spectral Theory and Quantum Mechanics: With an Intro-
duction to the Algebraic Formulation. UNITEXT. Springer, 2013.

[Mou81] E. Mourre. „Absence of singular continuous spectrum for certain self-
adjoint operators“. In: Communications in Mathematical Physics 78.3
(Jan. 1981), pp. 391–408.

162



Bibliography

[Müc04a] M. Mück. „Construction of metastable states in quantum electrody-
namics“. In: Reviews in Mathematical Physics 16.01 (2004), pp. 1–
28.

[Müc04b] M. Mück. Thermal relaxation for particle systems in interaction with
several bosonic heat reservoirs. Mainz: Univ., 2004.

[Nel64] E. Nelson. „Interaction of nonrelativistic particles with a quan-
tized scalar field“. In: Journal of Mathematical Physics 5.9 (1964),
pp. 1190–1197.

[New12] R. Newton. Inverse Schrödinger Scattering in Three Dimensions. The-
oretical and Mathematical Physics. Springer, 2012.

[Ols94] N. E. W. Olsen. K-theory and C*-algebras: A Friendly Approach. Ox-
ford University Press, 1994.

[RS1] M. Reed and B. Simon. I: Functional Analysis, Revised and Enlarged
Edition. Methods of Modern Mathematical Physics. Academic Press,
1980.

[RS2] M. Reed and B. Simon. II: Fourier Analysis, Self-Adjointness. Meth-
ods of Modern Mathematical Physics. Academic Press, 1975.

[RS3] M. Reed and B. Simon. III: Scattering Theory. Methods of Modern
Mathematical Physics. Academic Press, 1979.

[RS4] M. Reed and B. Simon. IV: Analysis of Operators. Methods of Modern
Mathematical Physics. Academic Press, 1978.

[Sch61] J. Schwinger. „On the bound states of a given potential“. In: Pro-
ceedings of the National Academy of Sciences of the United States of
America 47.1 (1961), p. 122.

[Shn57] È. È. Shnol’. „On the behavior of the eigenfunctions of Schrödinger’s
equation“. In: Matematicheskii Sbornik 84.3 (1957), pp. 273–286.

[Sig11] I. M. Sigal. „Renormalization group and problem of radiation“. In:
arXiv preprint arXiv:1110.3841 (2011).

[Sim15] B. Simon. Quantum Mechanics for Hamiltonians Defined as Quadratic
Forms. Princeton Series in Physics. Princeton University Press, 2015.

[Sim82] B. Simon. „Schrödinger semigroups“. In: Bulletin of the American
Mathematical Society 7.3 (1982), pp. 447–526.

[Tes09] G. Teschl. Mathematical Methods in Quantum Mechanics: With Appli-
cations to Schrödinger Operators. Graduate studies in mathematics.
American Mathematical Society, 2009.

163



Bibliography

[Zen08] H. Zenk. „Ionization by Quantized Electromagnetic Fields: the Photo-
electric Effect“. In: Reviews in Mathematical Physics 20 (May 2008),
pp. 367–406.

[ZK58] C. Zemach and A. Klein. „The born expansion in non-relativistic
quantum theory“. In: Il Nuovo Cimento (1955-1965) 10 (1958),
pp. 1078–1087.

164



Ehrenwörtliche Erklärung

Hiermit erkläre ich,

• dass mir die Promotionsordnung der Fakultät bekannt ist,

• dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder
Ergebnisse eines Dritten oder eigener Prüfungsarbeiten ohne Kennzeichnung
übernommen und alle von mir benutzten Hilfsmittel, persönliche Mitteilun-
gen und Quellen in meiner Arbeit angegeben habe,

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen
habe und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen
von mir für Arbeiten erhalten haben, die in Zusammenhang mit dem Inhalt
der vorgelegten Dissertation stehen,

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche
oder andere wissenschaftliche Prüfung eingereicht habe,

• dass ich weder die gleiche noch eine in wesentlichen Teilen ähnliche bzw. eine
andere Abhandlung bereits bei einer anderen Hochschule als Dissertation
eingereicht habe.

• Bei der Auswahl des Materials sowie der Herstellung des Manuskripts haben
mich durch ihr Mitwirken an Arbeiten, die Teil dieser Dissertation sind,
folgende Personen unterstützt:

– David Hasler.

Jena, den 15. März 2021
Oliver Siebert


	Zusammenfassung
	Abstract
	Acknowledgement
	Introduction
	Description of the Model
	The Algebra of the Free Field
	Full System and Reference State
	Von Neumann Algebra and Modular Structure
	Interacting Dynamics
	Time-Invariant Normal States

	Results
	Conditions
	Atom
	Interaction
	Fermi Golden Rule Condition

	Main Theorems
	Application
	Conclusion and Open Problems

	Concepts of the Proof
	Gluing Transformation
	Overview
	Abstract Virial Theorem

	Virial Theorem in the Long-Range Case
	General Cutoff Function
	An Explicit Cutoff Function

	Virial Theorem in the Short-Range Case
	Scattering States
	Setup for the Virial Theorem
	Verification of the Assumptions of the Virial Theorem
	Estimates on the Scattering Functions
	Born Series Expansion and Technical Preparations
	Estimates of the Terms of the Born Series
	Estimates of the Remainder Terms
	Commutator with the Interaction


	Positivity and Error Estimates
	Fermi Golden Rule Term
	Additional Auxiliary Term
	Long-Range
	Positivity for a General Cutoff Function
	Finitely Many Coupled Bound States

	Short-Range

	Basic Theory
	Second Quantization
	Special Topics of Operator Algebras
	Tensor Products
	Some Aspects of Modular Theory


	Technical Requirements
	Combes Thomas Estimates
	Standard Version
	Square Root of the Resolvent
	Combination with the Helffer-Sjöstrand Formula

	Commutator with a Cutoff Function
	Absence of Negative Spectrum with Birman-Schwinger
	Decay Behavior of Planck's Law

	Nomenclature
	Bibliography

