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Zusammenfassung

Ein berühmtes Thema der Stochastik ist die sogenannte zufällige Irrfahrt (random walk),

bei der mehrere zufällige Bewegungen um bestimmte Distanzen zu einem Pfad aneinan-

der gereiht werden. Die einfachste Form ist dabei die einfache, symmetrische Irrfahrt,

bei der der Pfad auf einer eindimensionalen Zahlenebene in jedem Schritt mit je 50%

Wahrscheinlichkeit um 1 in positive oder negative Richtung geht. Viele Probleme wurden

dafür bereits untersucht, zum Beispiel die erste Rückkehr in die 0. Die zufällige Irrfahrt

konvergiert, wenn die Zeit und ihre Schrittlänge geeignet skaliert werden, auch gegen die

Brownsche Bewegung, ein stetiger stochastischer Prozess, der auf der Normalverteilung

basiert.

In dieser Arbeit wird jedoch eine modi�zierte Irrfahrt behandelt, der 1-2-random walk,

dessen Pfade im negativen Bereich Schrittlänge 2 haben statt 1. Dadurch kann die 0

übersprungen werden, wenn der Pfad bei −1 ist, wo Schrittlänge 2 angewendet wird,

sodass er danach bei 1 landet. Einige Problemstellungen müssen damit etwas angepasst

werden.

Im ersten Kapitel werden die Grundlagen für die einfache zufällige Irrfahrt abge-

handelt, darunter auch die Konvergenz gegen die Brownsche Bewegung, die mit dem

Donsker-Theorem gezeigt wird.

Im zweiten Kapitel wird zuerst der 1-3-random walk (Schrittlänge 3 im negativen Bere-

ich) behandelt, mit der Fragestellung, wie wahrscheinlich er im nichtnegativen Bereich

landet. Danach wird dieselbe Frage für den 1-2-random walk gestellt. Zur Beantwor-

tung wird eine Bijektion zwischen diesen Pfaden und 3 × n-Rechtecken aufgestellt, die

in Quadrate mit Seitenlänge 1 und 2 zerlegt werden.

Kapitel 3 behandelt eine Konvergenz, die auch in die Richtung der Brownschen Be-

wegung geht. Dazu ist diesmal etwas mehr Vorarbeit nötig, bevor die Schritte wie

beim Donsker-Theorem angewendet werden können. Einige weitere Bijektionen und

stochastische Di�erentialgleichungen werden dafür verwendet.

Zum Schluss kommen noch ein Zusatz zu der Bijektion mit den Rechtecken aus Kapi-

tel 2, und ein paar o�ene Fragen, die sich um Verallgemeinerungen der behandelten

Probleme drehen.
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1 Random Walks

1 Random Walks

Some basic de�nitions will be made �rst. Let (Ω,F , P ) a probability space. Then a

sequence of σ-algebras (Fn)n∈N0
with {∅; Ω} = F0 ⊆ F1 ⊆ F2 ⊆ . . . and Fn ⊆ F is

called �ltration, and
(
Ω,F , (Fn)n∈N0

, P
)
is called �ltered probability space.

A sequence of random variables (Xi)i∈N0
is called a stochastic process adapted to this

�ltration when Xi is measurable by Fi for all i ∈ N0. It is called martingale when

E|Xi| <∞ and E (Xi+1|Fi) = Xi are true for all i ∈ N.
A random variable τ : Ω → N0 ∪ {∞} is called stopping time with respect to the

�ltration (Fi)i∈N0
, if {τ = i} ∈ Fi is true for all i ∈ N0.

A discrete-time one-dimensional random walk is a stochastic process where Xi =
i∑

k=1

Zk for some independent identically distributed random variables Z1, Z2, . . . , which

mark the increments. In the simple random walk, we have P (Zk = 1) = P (Zk = −1) =
1
2
. In this case, for any time point n and k ∈ Z where n − k is even and |k| ≤ n, we

have P (Xn = k) = 1
2n

(
n
n−k
2

)
. The numerator consists of the choice of n−k

2
negative out

of n total steps, the denominator has the total number of di�erent paths until step n,

because for every time point there are the two possibilities of going up or down.

Figure 1: An example path of a discrete-time random walk, n ≤ 9

This stochastic process is obviously a Martingale because of E (Xi+1|Fi) = E (Xi|Fi)+

E (Zi+1|Fi) = Xi + E (Zi+1) = Xi. The random variable Zi+1 is independent to Fi, so
the conditional expectation of Zi+1 with respect to Fi is just its expected value.

1.1 The return to the origin

One considered problem in a one-dimensional random walk is the question if and when

the path returns to where it started. That means, to �nd a time point n where Xn = 0.
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1 Random Walks

Obviously n can't be odd because the path must have as many positive as negative steps.

So we can write n = 2m with m ∈ N and search for time points where X2m = 0. It's also

clear that in that case, this probability will be P (X2m = 0) =
(2m
m )

22m
. A more interesting

question is: When is the �rst time where the path returns to 0? For this purpose, a

stopping time τ can be established. Let τ := min {i > 0 : Xi = 0}. For example, in

image (1) above, we would have τ (ω) = 6. What is the probability P (τ = 2m) for any

m = 0? The �rst step for this is our �rst Proposition.

Proposition 1.1 (one-sided paths with �xed end). Let a, b ∈ N0, a > b and a + b = n.

Then P (X1 > 0, . . . , Xn−1 > 0, Xn = a− b) = a−b
n·2n
(
n
a

)
.

Proof. At �rst, the searched probability will be transformed into a subtraction.

P (X1 > 0, . . . , Xn−1 > 0, Xn = a− b)

=P (X1 = 1, Xn = a− b)− P (X1 = 1, Xn = a− b,∃l ∈ N : Xl = 0)

The subtrahend is like that because every path that reaches a − b after n steps and

isn't completely in positive range has to cross 0 at some time. Furthermore, the last

mentioned paths can be re�ected up to the time it �rst reaches 0.

Figure 2: Re�ection of the �rst part until reaching 0

Every path with X1 = 1 that ends in a− b and passes 0 at least once can be mapped

to a path that begins with −1 instead. Because a − b > 0, a path beginning with −1

always crosses 0 before it can reach a− b anyway, so the remapping is also unique. This
implies that there is a bijection between the paths with X1 = 1, Xn = a−b while passing
0 at least once, and the paths with simply X1 = −1, Xn = a − b. These probabilities

can easily be calculated to conclude the proof.
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1 Random Walks

P (X1 > 0, . . . , Xn−1 > 0, Xn = a− b)

=P (X1 = 1, Xn = a− b)− P (X1 = 1, Xn = a− b,∃l ∈ N : Sl = 0)

=P (X1 = 1, Xn = a− b)− P (X1 = −1, Xn = a− b)

=
1

2n

((
n− 1

n−1+a−b−1
2

)
−
(

n− 1
n−1+a−b+1

2

))
=

1

2n

((
n− 1

a− 1

)
−
(
n− 1

a

))
=

1

2n
· (n− 1)!

(a− 1)! (n− a− 1)!

(
1

n− a
− 1

a

)
=

1

2n
· (n− 1)!

(a− 1)! (b− 1)!
· a− b
ab

=
1

2n
· n!

a!b!
· a− b

n
=

1

2n
·
(
n

a

)
· a− b

n

As a side result, we get that the number of those paths in the �rst n steps is a−b
n

(
n
a

)
.

Before �nding the probability of where a random path is 0, a limit is needed.

Lemma 1.2 (odd/even fraction products and a binomial limit). Let n ∈ N. Then
2n∏

i=n+1

2i−1
2i
≤ 3

4
and lim

n→∞

(2n
n )
4n

= 0.

Proof. We �rst prove the inequality.

Induction base: For n = 1 we have
2∏
i=2

2i−1
2i

= 3
4
.

Induction step: Let the inequality be true for n = m. To show it for n = m + 1, the

product is rearranged into a shape where the induction hypothesis can be used:

2(m+1)∏
i=m+2

2i− 1

2i
=

(4m+ 1) (4m+ 3)

(4m+ 2) (4m+ 4)
· 2m+ 2

2m+ 1

2m∏
i=m+1

2i− 1

2i

I.H.

≤ (4m+ 1) (4m+ 3)

(4m+ 2) (4m+ 2)
· 3

4
=

3

4
· (4m+ 2)2 − 12

(4m+ 2)2
<

3

4
.

The third binomial formula is used for the last equality sign. This is already the end of

the induction step. With it, the induction is complete for N.
With this inequality, we get

(
2n
n

)
4n

=
(2n)!

4n · (n!)2
=

n∏
i=1

2i− 1

2i
≤

log2(n)∏
j=1

2j∏
k=2j−1+1

2k − 1

2k
≤

log2(n)∏
j=1

3

4
=

(
3

4

)log2(n)

,

which leads to 0 ≤ lim
n→∞

(2n
n )
4n

= lim
n→∞

(
3
4

)log2(n) ≤ 0 to conclude the proof.

3



1 Random Walks

Proposition 1.3 (probability of returning to 0). We have P (∀k ∈ N : Xk 6= 0) = 0 and

P (X1 6= 0, . . . , X2m−1 6= 0, X2m = 0) = 1
m·22m−1

(
2m−2
m−1

)
for any m ∈ N.

Proof. The Xi with 1 ≤ i < n are either all positive or all negative. Because both of

these have same probability (the paths can just be completely re�ected), it's su�cient

to consider the positive case, where the path has to be at 1 after 2m− 1 steps. By using

a = m and b = m − 1 in the formula of Proposition 1.1 and multiplying 1
2
for the last

step from 1 to 0, we obtain

P (X1 6= 0, . . . , X2m−1 6= 0, X2m = 0)

=P (X1 > 0, . . . , X2m−1 > 0, X2m = 0) + P (X1 < 0, . . . , X2m−1 < 0, X2m = 0)

=2 · P (X1 > 0, . . . , X2m−2 > 0, X2m−1 = 1, X2m = 0)

=2 · 1

2
· P (X1 > 0, . . . , X2m−2 > 0, X2m−1 = 1)

=
1

(2m− 1) 22m−1 ·
(

2m− 1

m

)
=

2m− 1

m (2m− 1) 22m−1 ·
(

2m− 2

m− 1

)
=

1

m · 22m−1

(
2m− 2

m− 1

)
.

This is already the end of the proof for the second statement. The analog side result to

the formula above is that the number of paths with length 2m while returning to 0 for

the �rst time there is 2
m

(
2m−2
m−1

)
.

For the �rst statement, the following equation is useful.

P (X2m−2 = 0)− P (X2m = 0) =

(
2m−2
m−1

)
4m−1

−
(
2m
m

)
4m

=

(
2m−2
m−1

)
4m−1

(
1− 2m (2m− 1)

4m2

)
=

(
2m− 2

m− 1

)
4m−1 · 1

2m
=

(
2m− 2

m− 1

)
m · 22m−1 = P (X1 6= 0, . . . , X2m−1 6= 0, X2m = 0)

The next equation looks into if the path crosses 0 at any time. Due to telescope sums,

it quickly simpli�es to what we want. Lemma 1.2 is used to �nally calculate the limit.

P (∀k ∈ N : Xk 6= 0) = 1− lim
j→∞

j∑
i=1

P (X1 6= 0, . . . , X2i−1 6= 0, X2i = 0)

=1− lim
j→∞

(P (X0 = 0)− P (X2j = 0)) = 1− 1 + lim
j→∞

(
2m
m

)
4m

= 0

This concludes the proof, and shows that almost every path returns to 0. Therefore,

also almost every path returns to 0 in�nitely often.

Another closely related problem is to consider only paths of length 2m that end in 0
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1 Random Walks

and don't ever go into negative range, while 0 can be passed this time. However, this

is not hard anymore. Imagine going one step up before and one step down after such a

path, and the resulting path is bigger than 0 everywhere except for the start (obviously)

and the end time 2m+ 2, where it is at 0.

Figure 3: Converting paths between these two problems

The probability for that was just calculated, it just has to be multiplied with 1
2
because

those paths could also be in negative range, and with 4 because the two extra steps with
1
2
each aren't taken.

P (X1 ≥ 0, . . . , X2m−1 ≥ 0, X2m = 0) = 4 · P (X1 > 0, . . . , X2m+1 > 0, X2m+2 = 0)

=4 · 1

2
· 1

m · 22m+1

(
2m

m

)
=

1

(m+ 1) · 22m

(
2m

m

)
The number of paths with this property is therefore 1

m+1

(
2m
m

)
=: Cm. The C stands for

Catalan numbers, that's how this sequence starting with 1, 1, 2, 5, 14, 42, 132, 429, 1430 . . .

is called.

Using these random walk paths helps to prove another formula for the Catalan Num-

bers.

Lemma 1.4 (Segner's recurrence relation). Let m ∈ N0. Then Cm+1 =
m∑
l=0

ClCm−l.

Proof. There are Cm+1 random paths with length 2m+ 2 where X2m+2 = 0 and Xk ≥ 0

for 0 ≤ k ≤ 2m+ 2. In such a path, let 2l + 2 be the �rst time where 0 is reached after

starting, 0 ≤ l ≤ m. Then the path consists of two subpaths. The �rst one has length

2l + 2, ends with 0 and is positive everywhere in-between, there are 1
l+1

(
2l
l

)
possibilities

to create such a subpath. The reason for that is again to ignore the �rst and the last

step and use the formula on the rest. The second one has length 2m− 2l (which may or

5



1 Random Walks

may not be 0), also ends with 0 and is non-negative everywhere, and there are clearly
1

m−l+1

(
2(m−l)
m−l

)
possible paths for this part.

Figure 4: Re�ection of the �rst part until reaching 0

The number of all possible paths is therefore the sum of the product of those numbers

of possibilities for every possible l.

Cm+1 =
m∑
l=0

1

l + 1

(
2l

l

)
· 1

m− l + 1

(
2 (m− l)
m− l

)
=

m∑
l=0

ClCm−l

This is the end of the proof.

1.2 Limit of random walk

In probability theory, there are some theorems for what happens when the mean of many

random variables is constructed. The Gaussian distribution plays a very special role

there. A real-valued random variable X has a standard Gaussian (or normal) distribu-

tion, X ∼ N (0, 1) when its probability density is f (x) = 1√
2π
· exp

(
−x2

2

)
for x ∈ R.

The values 0 and 1 in the brackets are for the mean value 0 and the variance 1. They

can also be modi�ed with X ∼ N (µ, σ2) if X has mean value µ and variance σ2. Then

the density has to be modi�ed to f (x) = 1
σ
√
2π
· exp

(
−1

2

(
x−µ
σ

)2)
.

This is a fundamental distribution for the central limit theorem: Given that there

are identically independent distributed (iid) random variables Z1, Z2, . . . with �nite ex-

pected value µ and variance σ2. Let Sn be the sum of the �rst n of those, Sn =
n∑
i=1

Zi.

The central limit theorem implies that Sn adjusted to mean 0 and variance 1 converges

in distribution to a normally distributed random variable, Sn−nµ√
nσ

d→ X ∼ N (0, 1). The

denominator is
√
n because it is squared for the variance and balances the n random

variables in the sum.

With this theorem, we can set Zi like in the random walk with P (Zi = 1) = 1
2

=

6



1 Random Walks

P (Zi = −1). In that case, using Xn =
n∑
i=1

Zi gives
Sn√
n

d→ X ∼ N (0, 1) because of µ = 0

and σ2 = 1. Therefore, the normalized random walk converges in distribution to the

normal distribution.

If we want to have a limit for the whole random walk, the concepts have to be gen-

eralized. A sequence of σ-algebras (Ft)t≥0 with {∅; Ω} = F0, j ≤ k ⇒ Fj ⊆ Fk and

Ft ⊆ F is a �ltration, indexed by real numbers this time instead of integers. Again we

have
(
Ω,F , (Ft)t≥0 , P

)
its �ltered probability space and a sequence of random variables

(Xt)t≥0 is a continuous-time stochastic process when for all t ≥ 0 the random variable Xt

measurable by Ft, analog to the discrete-time processes we had before. Martingales can

be de�ned in a similar way, stopping times also have their continuous-time de�nitions.

The reason for this is the construction of a stochastic process that is a generalization

for the normal distribution. A continuous-time stochastic process (Bt)t≥0 with B0 = 0

is called Brownian motion (or Wiener process) when the following conditions are met:

• Bt is continuous almost surely,

• ∀m ∈ N, t1, t2, . . . , tm ∈ R : 0 ≤ t1 < t2 < · · · < tm ⇒ Bt2−Bt1 , Bt3−Bt2 , . . . , Btm−
Btk−1

are independent,

• ∀t1, t2 ≥ 0 : t1 ≤ t2 ⇒ Bt2 −Bt1 ∼ N (0, t2 − t1).

The t stands for the time that has passed. For every ω ∈ Ω, a path can be constructed

as function of t ≥ 0 with f (t) = Bt (ω).

Figure 5: A Brownian motion sample path
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1 Random Walks

For the random walks, we now de�ne certain continuous-time stochastic processes

from the original discrete-time stochastic processes. Let Bt,n :=
bntc∑
i=1

Zi√
n
for t, n ∈ R+

0 .

For any n, the process (Bt,n)t≥0 has non-continuous jumps at times
k
n
with k ∈ N.

Let's look what happens for large n. Let Bt be a Brownian motion. Let t > 0, then

Bn,t converges in distribution to a N (0, t) distributed random variable with. However,

Bt is also N (0, t) distributed, so a random walk might actually converge to the Brownian

motion. Setting t = 0 also implies Bn,0 = 0 = B0, so the limit is also always 0. For the

other conditions, a stopping time will be used.

For all n ∈ N let τ0 := 0 and τn := min
{
x : x > τn−1, Bx /∈]Bτn−1 − 1;Bτn−1 + 1[

}
. So

for a Brownian motion path, we always look for the �rst time when the path has changed

by 1. Because for t→∞ the values close to 0 tend to never be chosen, we have τ1 <∞
almost surely, and therefore also τ2, τ3, . . . are �nite almost surely. This implies that we

can create a simple random walk with Xi := Bτi . Obviously all τi−τi−1 are iid. A similar

idea can actually be executed for every other Zi with i ∈ N and EZi = 0, V ar (Zi) = 1

and all Zi are iid, but a few more steps would be needed before that we don't need with

the simple case of P (Zi = 1) = 1
2

= P (Zi = −1). The stopping times themselves can

be very close to each other or also very far away, depending on the path itself.

Figure 6: stopping times in a Brownian motion path, t ≤ 7

As seen, for example τ1 and τ2 are only like 0.3 apart, while τ4 and τ5 almost have

di�erence 1.5. The mean value for these stopping times can be calculated with help of

8



1 Random Walks

the following Proposition.

Proposition 1.5 (Brownian motion stopping times �rst and second moments). For

a < 0 < b, let τa,b := min {x : Bx /∈]a, b[}, then 1− P
(
Bτa,b = b

)
= P

(
Bτa,b = a

)
= b

b−a

and the mean value of the stopping time is Eτa,b = −ab. If −a = b, the mean of the

second moment is Eτ 2a,b = 5a4

3
.

Using Proposition 1.5, we get E (τi − τi−1) = Eτ1 = Eτ−1,1 = − (−1 · 1) = 1 for any i ∈
N. So the fact that in this path the stopping times went up to τ9 before t = 6 shows that

they are much more dense than usual, but then τ10 doesn't show up before t = 7, that

makes it up a bit. For the probabilities, we have P
(
Bτi −Bτi−1

= 1
)

= P (Bτ1 = 1) = 1
2

and the same if 1 is replaced with −1. The stochastic process (Bτi)i∈N0
has values going

1 up or down with every step with probability 1
2
each, and the stopping times increase

by approximately 1. Because of the independence of each step, this actually is a random

walk embedded in the Brownian motion.

The next step uses the already mentioned generalized random variables Zi that only

have same mean and variance as the random walk steps.

Proposition 1.6 (Central limit theorem). For any Zi, i ∈ N that are iid with mean 0

and variance 1 and Xn =
n∑
i=1

Zi, the process Xn√
n
converges in distribution to a N (0, 1)

distributed random variable.

Proof. Let τi with i ∈ N0 be the stopping times that embed Xi in the Brownian motion.

For any s > 0 and t ≥ 0, we have Bst√
s
∼ N

(
0, st√

s
2

)
. The variance simpli�es to t, so Bst√

s

and Bt have the same distribution. In this case, Xn√
n
has the same distribution as Bτn√

n
for

any n ∈ N. Due to the weak law of large numbers, we also have τn
n
→ 1 in probability.

Now let ε > 0. Choose δ such that P (|Bt −B1| > ε, t ∈]1− δ, 1 + δ[) < ε
2
and N large

enough to have ∀n ≥ N : P
(
τn
n
− 1 ≥ δ

)
< ε

2
. This is possible because of the already

existing convergences. Combining both of these implies

P

(∣∣∣∣Bτn −Bn√
n

∣∣∣∣ ≥ ε

)
< ε.

For ε→ 0 and n→∞, we now get Bτn−Bn√
n
→ 0 in probability, and with that, Xn√

n
− Bn√

n
→

0 in probability. With Bn√
n
∼ N (0, 1), the proof is completed.

This is what we need to prove the convergence.

9
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Theorem 1.7 (Donsker's theorem). Let Zi, i ∈ N be iid with EZ1 = 0, V ar (Z1) = 1 and

Xn =
n∑
i=1

Zi. Then
(
Xnt√
n

)
t≥0

converges to the Brownian motion (Bt)t≥0 in distribution

as n→∞.

Proof. Let Zn,m be a triangular array of random variables for 1 ≤ m ≤ n and Xn,m =
m∑
i=1

Zn,i. Set τ
n
m such that Xn,m = Bτnm . For every u /∈ Z with 0 < u < n, let Xn,u be the

linear continuation from the rest. So for m − 1 < u < m and q = u −m + 1, we have

Xn,u := qXn,m + (1− q)Xn,m−1.

The Brownian motion is continuous, that means that for all ε > 0 there is a δ > 0

such that 1
δ
is an integer with

P (|Bt −Bs| < ε, 0 ≤ s ≤ 1, |t− s| < 2δ) > 1− ε.

If τnbnsc converges to s in probability for any 0 ≤ s ≤ 1, an N ∈ N can be chosen such

that P
(∣∣∣τnbnkδc − kδ∣∣∣ < δ, k ∈ N0, k ≤ 1

δ

)
> 1− ε for any n > N . For s ∈] (k − 1) δ, kδ[,

the inequality τnbn(k−1)δc − kδ ≤ τnbnsc − s ≤ τnbnkδc − (k − 1) δ, is obviously true because

τnm is monotone increasing when increasing m. For n ≥ N we now have

P
(
sup

({∣∣τnbnsc − s∣∣ : 0 ≤ s ≤ 1
})

< 2δ
)
≥ 1− ε.

Meanwhile
∣∣Xn,m −Bm

n

∣∣ < ε is true for any n > N and m ≤ n. For u and q like above

and nt = u, we have

|Xn,u −Bt| ≤ (1− q)
∣∣Xn,m −Bm

n

∣∣+ q
∣∣∣Xn,m+1 −Bm+1

n

∣∣∣
+ (1− q)

∣∣Bm
n
−Bt
∣∣+ q

∣∣∣Bm+1
n
−Bt

∣∣∣ .
The probability of the last two summands combined being greater than ε is at worst

still smaller than ε for each summand, and the �rst two are combined not greater than

ε. So |Xn,u −Bt| is smaller than 2ε with probability greater than 1 − 2ε. Because ε is

arbitrary, that means that in this case |Xn,nt −Bt| converges to 0 in probability, and all

that was needed are the stopping times τnbnsc that converge to s for any s in probability.

This is a lot more generalized than we need it. Now set Zn,m = Zm√
n
, therefore Xn,m =

Xm√
n
for m ∈ Z and its linear continuations at the other places. Then τn1 , . . . , τ

n
n are

de�ned to let Xn,m and Bτnm have the same distribution. The stopping times τi were

already created above for the central limit theorem. Then it's implied that τnm and
τm
n

also have the same distribution, which is what we want. It follows that
∣∣∣Xnt√n −Bt

∣∣∣
10



1 Random Walks

converges in distribution to 0 for any 0 ≤ t ≤ 1.

Finally, let f : R → R be bounded and continuous and ε2 > 0. For any δ2 >

0, let Gδ2 := {w ∈ R : ∀w′ ∈ R : |w − w′| < δ2 ⇒ |f (w)− f (w′)| < ε2}. Because f is

continuous, we have limδ2→0Gδ2 = R. Then for t ∈ [0, 1] we get∣∣∣∣Ef (Xnt√
n

)
− Ef (Bt)

∣∣∣∣ ≤ ε+ (2 sup |f (x)|)
(
P (Bt /∈ Gδ2) + P

(∣∣∣∣Xnt√
n
−Bt

∣∣∣∣ ≤ δ2

))
.

The second summand tends to 0 for δ2 → 0 because both summands in the brackets do

so. It follows that
∣∣∣Ef (Xnt√n )− Ef (Bt)

∣∣∣→ 0 for n→∞, as ε2 is arbitrary.

That's the weak convergence for t ≤ 1. As for bigger values for t, the proof can

be extended from [0, 1] to [0,M ] for any M > 0 by appropriately shifting the Zn,m to

include higher values for m like m ≤ M · n, and the rest follows analog to what we did

for M = 1. Then, it naturally follows for t ∈ [0,∞[, which completes the proof.

11



2 Modi�cations

2 Modi�cations

2.1 The 1-3-random walk

In a 1-3-random walk, we choose to triple the increments of the classic random walk

when we are in the negative. Let Z1, Z2, . . . be random variables that are iid with

P (Zi = 1) = P (Zi = −1) = 1
2
, X0 = 0, and for any k ∈ N let

Xk =

Xk−1 + Zk Xk−1 ≥ 0

Xk−1 + 3Zk otherwise.

The considered task shall be: What is the probability of such a path to be non-negative?

It seems to have the limit 1
2
in the classic random walk, at least for odd n there are always

half of the paths in positive or negative range each. Is there a limit in this modi�cation?

Proposition 2.1 (non-negative 1-3-paths). We have lim
n→∞

P (Xn ≥ 0) = 3
4
.

Proof. A combinatorial approach will be used to calculate the number of non-negative

1-3-random walk paths directly. For any n ∈ Z and n ≥ 0, let Dn be the number of

paths that are positive at time n and D (n, k) be the number of paths with length n

that end in k. We have D (0, 0) = 1, D (0, k) = 0 for k 6= 0 and for n > 0.

D (n, k) =



D (n− 1, 1) k = 0

D (n− 1,−1) +D (n− 1, 1) +D (n− 1, 3) k = 2

D (n− 1,−4) +D (n− 1, 0) k = −1

D (n− 1, k − 3) +D (n− 1, k + 3) k < −1

D (n− 1, k − 1) +D (n− 1, k + 1) otherwise.

Figure 7: Coe�cients for the 1-3 paths

12



2 Modi�cations

Note that P (Xn ≥ 0) = Dn
2n

and Dn =
∞∑
i=0

D (n, i).

We will use other coe�cients now, to create some kind of modi�ed Pascal triangle.

Let C (n, l) for l ∈ {0, . . . , n} be in the speci�c spots like in the Pascal triangle, only

with the coe�cients from the D (n, k). All other spots shall be �lled with zeroes.

C (n, l) =

D (n, 2− 3n+ 6l) l < n
2

D (n, n− 2l) otherwise

The reason we do this is to make the recursive de�nition a lot easier.

C (n, l) =


C
(
n− 1, n

2

)
l = n

2

C
(
n− 1, n

2
− 1
)

+ C
(
n− 1, n

2

)
+ C

(
n− 1, n

2
+ 1
)

l = n
2

+ 1

C (n− 1, l − 1) + C (n− 1, l) otherwise

It's much less cases here, and the last line almost makes it look like Pascal's triangle.

Figure 8: Modi�ed coe�cients for 1-3 paths with their values

Now it will be worked out what each of the single values are going to be. We have

C (0, 0) = C (1, 0) = C (1, 1) = 1. For the rest, there are some more cases. For all

n ≥ 1, 0 ≤ l ≤ n, complete induction allows us to show the following:

C (n, l) =


(
n−1
l

)
l ≤ n

2(
n
l

)
l = n+1

2(
n
l

)
+
(
n−1
l−1

)
otherwise

The �rst case gives a Pascal triangle, shifted by one to the lower left. For l = n+1
2
, if

n is odd because this case only exists there, the coe�cient is the exact same as in the

Pascal triangle. And the right half is a Pascal triangle added to a lower-right shifted

Pascal triangle.

13



2 Modi�cations

Figure 9: Illustration for the exact coe�cients

Induction base: Let n = 1: C (1, 0) = 1 =
(
0
0

)
and C (1, 1) = 1 =

(
1
1

)
.

Induction step: If the formula is true for n = m, we can show it for n = m+ 1. There

are a few di�erent cases for l.

• If l < m+1
2
, then C (m+ 1, l) = C (m, l − 1) + C (m, l) =

(
m−1
l−1

)
+
(
m−1
l

)
=
(
m
l

)
.

• For l > m+3
2

we have C (m+ 1, l) = C (m, l − 1)+C (m, l) =
(
m
l−1

)
+
(
m−1
l−2

)
+
(
m
l

)
+(

m−1
l−1

)
=
(
m+1
l

)
+
(
m
l−1

)
.

• If l = m+1
2
, then k = 0. So we have C

(
m+ 1, m+1

2

)
= C

(
m, m+1

2

)
=
(
m
m+1

2

)
.

• For l = m
2

+ 1 the new value is
(
n−1
l−1

)
=
(
n−1
l−2

)
. This implies C

(
m+ 1, m

2
+ 1
)

=

C
(
m, m

2

)
+ C

(
m, m

2
+ 1
)

=
(
m−1
m
2

)
+
(

m
m
2
+1

)
+
(
m−1
m
2

)
=
(
m
m
2

)
+
(

m
m
2
+1

)
=
(
m+1
m
2
+1

)
.

• The last case is l = m+3
2

with C
(
m+ 1, m+3

2

)
= C

(
m, m−1

2

)
+ C

(
m, m+1

2

)
+

C
(
m, m+3

2

)
=
(
m−1
m−1

2

)
+
(
m
m+1

2

)
+
(
m
m+3

2

)
+
(
m−1
m+1

2

)
=
(
m+1
m+3

2

)
+
(
m
m+1

2

)
.

So for all cases, the formula is still correct for n = m+1, which completes this induction

for this formula.

For n ≥ 2, we can now use this formula to get the desired probability.

P (Xn ≥ 0) =
Dn

2n
=

∑
i≥n

2

C (n, i)

2n

We �rst consider even n.

P (Xn ≥ 0) =

(
n−1
n
2

)
+

n∑
i=n

2
+1

((
n
i

)
+
(
n−1
i−1

))
2n

=

(
n−1
n
2

)
+

n∑
i=n

2
+1

((
n−1
i−1

)
+
(
n−1
i

)
+
(
n−1
i−1

))
2n

=

3
n−1∑
i=n

2

(
n−1
i

)
2n

=
3 · 2n−1−1

2n
=

3

4

14



2 Modi�cations

The last sum had the value 2n−2 because it's half of the sum of all Binomial Coe�cients

in row n− 1. For even n the probability already is 3
4
.

For odd n, this result can already be used. Let n = 2z + 1 with z ∈ N. Every value

in one row gives itself twice to a value in the next row. All values in the non-negative

range are represented twice in this range of the next row like that, except for Xn−1 = 0,

which only lands there once. This is also the reason why we set n > 1, even if n = 1

would work here, too.

P (Xn ≥ 0) =

n∑
i=n+1

2

(C (n− 1, i− 1) + C (n− 1, i))

2n

=

2
n−1∑
i=n+1

2

C (n− 1, i− 1)− C
(
n− 1, n−1

2

)
2n

=
3

4
−

(
n−2
n−1
2

)
2n

Note that
(
n−2
n−1
2

)
=
(
n−2
n−3
2

)
, which implies 2

(
n−2
n−1
2

)
=
(
n−2
n−1
2

)
+
(
n−2
n−3
2

)
=
(
n−1
n−1
2

)
.

P (Xn ≥ 0) =
3

4
−

(
n−1
n−1
2

)
2n+1

=
3

4
− 1

4

(
n−1
n−1
2

)
2n−1

=
3

4
− 1

4

(
2z
z

)
22z

The subtrahend tends to 0 using Lemma 1.2. Then we get lim
z→∞

P (X2z+1 ≥ 0) =

lim
z→∞

(
3
4
− (2z

z )
4z+1

)
= 3

4
, and with P (X2z ≥ 0) = 3

4
, we have lim

n→∞
P (Xn ≥ 0) = 3

4
. This

completes the proof.

Considering this problem for the classic random walk, we have a similar situation:

For odd n, the probability is P (X2z+1 ≤ 0) = 1
2
obviously for every z ∈ N0, because

every path ending in negative range can be re�ected in 0 to get a path in positive range

and vice versa, and a path with odd length cannot end in 0. And if n is even, we get

P (X2z ≤ 0) = 1
2
− (2z

z )
22z+1 , which tends to 1

2
using Lemma 1.2.

2.2 The 1-2-random walk

As before, the 1-2-random walk shall have a di�erent increment value when the path is

in negative range. Let X0 and Z1, Z2, . . . be de�ned as before, and for k ∈ N let

Xk =

Xk−1 + Zk Xk−1 ≥ 0

Xk−1 + 2Zk otherwise.
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2 Modi�cations

We again try to get reasonable values for P (Xn ≥ 0). The �rst idea could be to, again,

have a modi�ed Pascal triangle as in the 1-3 case and do it with the combinatorial

approach, with maybe the result 2
3
, matching 3

4
. Then we quickly come to the point

that this will be very much harder. The di�erence is the following: In the 1-3-random

walk, Xn is always even when n is even, and odd otherwise. That changed in every

step, because the value always changed by either 1 or 3. In the 1-2-random walk, this is

obviously not the case, as there can be steps with width 2. That makes it impossible to

directly �nd a modi�ed Pascal triangle, because there are way more possible values that

can be attained. For the 1-3 random walk, there were some spots that were skipped,

which cannot be done now. For n = 2, there are already four di�erent possibilities, as

−3, 0, 1 and 2 can be reached.

Instead, we take another approach here, that, in �rst glance, might not have to do

anything with random walks.

2.2.1 A bijection between non-negative 1-2-random walks and 1-2-squared

rectangles of width 3

There are again 2n di�erent 1-2-random walk paths until time point n. But we are

interested in Jn (because the sequence of these is called Jacobsthal sequence), the number

of those paths that end in the non-negative range, Xn ≥ 0. Because all 2n paths have

the same probability 1
2n
, Jn can also be displayed as Jn = 2n · P (Xn ≥ 0).

The other considered part are decompositions of n × 3−rectangles into squares with

length 1 or 2. Let n be the number of columns. There are three possibilities for every

of those n columns:

1. There are three squares with length 1. Let this be called a column with normal

squares.

2. It has a square with length 1 at the top and a square with length 2 below. Let it be

called a column with a lower 2-square. In this case, exactly one of the neighboured

columns must also have this lower 2-square.

3. Just as in case two, only that the square of length 2 is above of the square with

length 1. It will furthermore be called column with an upper 2-square. Again, it

also a�ects either the column to the left or the one to the right.

The number of possible decompositions shall be denoted as Tn, the T stands for �tiling�,

the rectangle is tiled into squares.
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2 Modi�cations

Lemma 2.2 (number of possible tilings). Let n ∈ N0. Then we have Tn = 2n+1+(−1)n
3

.

Proof. We will use complete induction.

Induction base: For n = 0, we have a 0 × 3−rectangle that can't be tiled at all. So

there is exactly one possible decomposition, which �ts 20+1+(−1)0
3

= 2+1
3

= 1. For n = 1

we have a 1× 3−rectangle, which has one column and is too small to have any 2-square.

Therefore, there is also ony one possible decomposition, and 21+1+(−1)1
3

= 4−1
3

= 1.

Induction step: Let the assumption be true for n = m− 1 and n = m. Now consider

an (m+ 1)× 3−rectangle. The last column can have normal squares, in this case there

are Tm possible tilings for the other m columns. Or it can have any 2-square, in which

case the second-to-last column must have the same (upper or lower) 2-square, and it

gives Tm−1 tilings for both cases. So the exact number of possible decompositions is

Tm+1 = Tm + 2Tm+1 =
2m+1 + (−1)m + 2 · 2m + (−1)m−1

3

=
2m+1 + 2m+1 + (−1)m (1− 2)

3
=

2m+2 + (−1)m+1

3
,

which is exactly the number displayed in the assumption.

To connect the 1-2-random walks that don't end in the negative range with the con-

sidered tilings of n× 3−rectangles, a bijection between those will be made.

Proposition 2.3 (non-negative 1-2-random walk paths). Let n ∈ N0. Then Jn = Tn.

Proof. Just to showcase what is about to be done, at �rst look at n ≤ 4.

Case n ≤ 1.

For n = 0, there is only one path because only X0 is important, which is always 0.

This can be connected with the 0× 3−rectangle. If n = 1, there are two paths, the one

with X1 = 1 and the one with X1 = −1. The second one isn't considered because it

ends in the negative range, so only the �rst one is left, and as discussed above, there is

only one possible tiling into squares with length 1 or 2. So the bijection is obvious.

Figure 10: Bijection for n = 0 and n = 1
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For n > 1, the general idea should be some kind of composition of the single parts.

Case n = 2.

There are three rectangle tilings existing. The �rst one is the one consisting of only

squares with length 1. At n = 1, we took one step up when we had the column with

normal squares. Here we have this column twice, so it's obvious to go two steps up,

which means that the path is X1 = 1, X2 = 2.

Now there are two decompositions left, the �rst one having one upper 2-square and the

second one having one lower 2-square. There are also two of the considered 1-2-random

walks left, one of them being X1 = 1, X2 = 0 and the other one is −X1 = X2 = 1. Since

we have free choice of assignment for these, we can just assign them in mentioned order.

Figure 11: Bijection for n = 2

Case n = 3.

As in n = 2, the tiling with only squares with length 1 shall be mapped onto the path

that has Xk = k. This can also be an idea for any n ∈ N. Even more, if the last column

has normal squares, then a general strat can be to execute the path that resonates to

the (n− 1)× 3−rectangle before the last column (let it be Y0, Y1, . . . , Yn−1) and then at

last, make one step up. That means Xk = Yk for k < n and Xn = Xn−1 +1. Such a path

always ends in positive range because Yn−1 ≥ 0 and Xn > Yn−1. Furthermore, if the

mapping from the (n− 1)×3−rectangles to the 1-2-random walk paths with length n−1

is injective, then with this method, all constructed paths with length n from rectangles

with the last column of normal squares are di�erent. Going back to n = 3, there are two

more paths we immediately get with this strat, belonging to the rectangles that start

with an upper or lower 2-square.

The two remaining rectangles are the ones that stop with a 2-square. Before, we

mapped the single upper 2-square to the path that goes 1 up �rst and then goes 1 down.

In fact, the outcome is the same as before these two steps, so we basically made a useless

turn. Composing this with the 1-step up from the �rst column with normal squares, we

geth the path X1 = 1, X2 = 2, X3 = 1 for the rectangle that starts with normal squares
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2 Modi�cations

and then has an upper square. So, the rectangle stopping with a lower square only has

the path X1 = −1, X2 = 1, X3 = 0 left.

Figure 12: Bijection for n = 3

Case n = 4.

The rectangles with normal squares in the last column can be taken over from n = 3

with the last step being +1, as mentioned before. The same idea can be transferred to

the case that the last two columns have an upper square. Just execute the path with

length n − 2 before and then do a useless turn, the second-to-last step is +1, the last

step is −1 in that case. So Xk = Yk for k < n−1 and Xn−1−1 = Xn = Yn−2. Again, all

the paths generated with this method are di�erent if the mapping for n− 2 is injective,

they all end in non-negative range because Xn = Yn−2 ≥ 0, and lastly, they are even

di�erent to the paths generated from the rectangles with normal squares in the last

column, because the last step is de�nitely di�erent (down for the upper 2-squares, up

for the normal squares). For n = 4, until now, the bijection stands for all rectangles that

don't have a lower square at the last two columns. And because it might be extended
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to the general case, the normal squares and the upper 2-squares are now very easy to

handle. But the general case will not be written down before all the other cases are

covered too.

Figure 13: Bijection for n = 4, part 1/2

Image 13 shows the bijection as far as it already goes, using the ideas for normal and

upper squares. And only three rectangles are left, all of them with a lower 2-square at

the last position. We have to think about which of them gets which left path. Since one

of the rectangles starts with two columns with normal squares and we have one path

left that starts with X1 = 1 and X2 = 2 (it ends with X3 = 1 and X4 = 0), they can

be connected. The next rectangle consists of an upper and a lower square in this order.

The perfect path it can be mapped onto would be X1 = 1, X2 = 0, X3 = −1, X4 = 1,

because it executes both 2-squares as if each of them was the only one. Then the only

rectangle left for the path X1 = −1, X2 = −3, X3 = −1, X4 = 1 is the one with two
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lower 2-squares.

There are now four di�erent cases at the last two turns for a lower square at the last

possible position of the rectangle we had for n ≤ 4 (which is relatively small), so this

has to be handled, too. Until now, we just gave these cases to the paths that �were left�.

Figure 14: Bijection for n = 4, part 2/2

But based on what was done until now, we can now attempt to form a bijection

covering all n ∈ N by trying a recursive approach. Given a tiling, we pretty much try

to execute all of its parts one after another. Let Y1, Y2, . . . , Yi, i < n be the path that

is produced from the whole tiling without the last column, and if it doesn't has normal

squares, also without the second-to-last column (i < n − 1). In most cases it can just

be taken over to the real path, Xk = Yk. For a column of normal squares, we go 1 up,

Xn = Xn−1 + 1. For an upper 2-square, we do a useless turn, Xn = Xn−1 − 1 = Xn−2.

Figure 15: Recursive continuation for normal squares and upper 2-square

But we still don't really know what to do for a lower 2-square. Let's look at its cases

one by one. One of the paths was X1 = 1, X2 = 2, X3 = 1, X4 = 0. In this case, the
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lower square represents two steps down, each with length 1. Taking a closer look, we

never covered this with the other parts, because the only paths that end with one step

down have a second-to-last step up, for an upper square. So, what needs to be done

�rst, is to try to do two steps down, Xn = Xn−1 − 1 = Xn−2 − 2. This works when

Yn−2 ≥ 2. For Yn−2 = 1 and Yn−2 = 0, we need to �nd something di�erent.

An example path for Yn−2 = 0 is in n = 2 the one for the rectangle only consisting of

a lower square. It was X1 = −1, X2 = 1. This can be transferred to the general case:

Xn−1 = −1 and Xn = 1. Another case we never covered, because the last step always

started in the non-negative range.

Figure 16: Recursive continuation for lower 2-square, part 1/3

The only case left is Yn−2 = 1. So far, we've seen two example paths for this case,

X(1) and X(2), with X
(1)
1 = −1, X

(1)
2 = 1, X

(1)
3 = 0 and X

(2)
1 = −1, X

(2)
2 = −3, X

(2)
3 =

−1, X
(2)
4 = 1. Note that both of them have di�erent length, n(1) = 3 and n(2) = 4. At

both of them, the lower square stands for di�erent steps, and the starting points are

di�erent, too: We have Yn(1)−2 = 1 = Yn(2)−2, but we have X
(1)

n(1)−2 = −1 6= −3 = X
(2)

n(2)−2.

So even before this, the executed paths with length n − 2 must be modi�ed somehow.

We need to �nd a modi�cation that leads an original path that ends in 1 to −1 in certain

cases and to −3 in other cases.

For this purpose, another component is de�ned. Let p (Y ) be the last time before n−2

where the path was not positive, p (Y ) := max {k ∈ {0, 1, . . . , n− 3} : Yk ≤ 0}. Note

that p (Y ) ≥ 0 because Y0 = 0. The modi�cation looks like the following: It reverses the

executed path (Y0, Y1, . . . , Yn−2) after p (Y ) and takes over everything before, Xk = Yk

for k ≤ p (Y ). That means, after time p (Y ), it goes down when the Y path goes up

and vice versa. It always starts with a step down after p (Y ), because in the original

path, we must have gone up to get from the non-positive to the positive, and it de�nitely

holds true that Yp(Y )+1 = 1. In both X(1) and X(2), exactly one step is reversed, the

�rst one in X(1) and the second one in X(2). Now, if a path switches from non-positive
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to positive, it can do so in two di�erent ways.

The �rst possibility is Yp(Y ) = 0, as in the �rst example path. Then the modi�cation

leads toXk = 1−2Yk for n−2 ≥ k > p (Y ), so it begins withXp(Y )+1 = 1−2Yp(Y )+1 = −1

and ends with Xn−2 = 1 − 2Yn−2 = −1. Of course, the modi�ed path mostly goes 2

up and down instead of 1. To conclude the path, set Xn−1 = 1 and Xn = 0, as in the

example path.

Figure 17: Recursive continuation for lower 2-square, part 2/3

The second possibility is Yp(Y ) = −1, as in the second example path. Then the

modi�cation leads to Xk = −2Yk − 1 for n− 2 ≥ k > p (Y ), so it begins with Xp(Y )+1 =

−2Yp(Y )+1 − 1 = −3 and ends with Xn−2 = −2Yn−2 − 1 = −3. This time, there is even

only one entirely possible ending for this path: Xn−1 = −1 and Xn = 1.

Figure 18: Recursive continuation for lower 2-square, part 3/3

Both of those were never covered by other cases because Xn−2 could only be negative
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if the last row has normal squares, and in that case, in the last step we neither go down

as we would do if Yp(Y ) = 0 nor do we go 2 up as in Yp(Y ) = −1.

So in result, we get a pretty easy mapping of the tilings onto the 1-2-paths, even if it is

recursive. We showed that it is injective for n if it is injective for n−1 and n−2. Because

a bijection for n = 0 and n = 1 already exists, this mapping is de�nitely injective for all

n ∈ N via induction.

To summarize, the complete mapping will be written down next. Given is an n ×
3−rectangle tiled into squares of length 1 and 2. Set X0 = 0. Let Y0, Y1, . . . , Yj be the

path that would be obtained if executed from the rectangle that misses the last column

if it has normal squares (in this case j = n − 1) or that misses the last two columns

otherwise (j = n − 2). Let further p (Y ) be the last time before n − 2 where the path

was not positive, p (Y ) := max {i ∈ {0, 1, . . . , n− 3} : Yi ≤ 0}. At �rst, the new path

before j has to be created. Let k ∈ {0, 1, . . . , j}.

Xk =


1− 2Yk rectangle ends with lower 2-square, k > p (Y ) , Yn−2 = 1, Yp(Y ) = 0

−2Yk − 1 rectangle ends with lower 2-square, k > p (Y ) , Yn−2 = 1, Yp(Y ) = −1

Yk otherwise

Then the path has to be �nished.

Xn−1 =



Xn−2 + 1 rectangle ends with upper 2-square

Yn−1 rectangle ends with normal squares (already set)

Xn−2 − 1 rectangle ends with lower 2-square, Yn−2 > 1

1 rectangle ends with lower 2-square, Yn−2 = 1, Yp(Y ) = 0

−1 otherwise

Xn =



Xn−2 rectangle ends with upper 2-square

Xn−1 + 1 rectangle ends with normal squares

Xn−2 − 2 rectangle ends with lower 2-square, Yn−2 > 1

0 rectangle ends with lower 2-square, Yn−2 = 1, Yp(Y ) = 0

1 otherwise

So the proof for Jn ≥ Tn is complete. For the other direction, we have a 1-2-path

X0, X1, . . . , Xn with Xn ≥ 0, and try to �nd a tiling that would be mapped onto this

path. But given what we did until now, this isn't hard anymore, as we can try to reverse
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the steps and build the rectangle from the right.

It ends with...


...normal squares Xn = Xn−1 + 1.

...an upper 2-square Xn = Xn−2 = Xn−1 − 1.

...a lower 2-square otherwise.

The rest will be constructed from the rest of the path. Of course, the modi�cation that

was possibly done in the mapping also has to be reversed. Let Y0, Y1, . . . , Yj be the path

that will constructed for the rest of the rectangle. So j = n−1 if Xn = Xn−1+1 and j =

n−2 otherwise. But we will have to de�ne z(X) := max {k ∈ {0, 1, . . . , n− 3} : Xk = 0}
and o (X) := max {i ∈ {0, 1, . . . , n− 3} : Xi = −1}, the last time points where the path
passed 0 and −1, respectively. Also, o(X) is bigger than −∞ when needed.

Yk =


−Xk−1

2
Xn = 1, Xn−1 = −1, Xn−2 = −3, k > o (X)

1−Xk
2

Xn = 0, Xn−1 = 1, Xn−2 = −1, k > z (X)

Xk otherwise

When n = 0 is reached, the inverse mapping is done. We have to take a look if we

really covered every case, which is done if the mapping of the inverse mapping is equal

to the identical function. The cases are

• Xn = Xn−1 + 1, covered with the last column of normal squares.

• Xn = Xn−1 + 2, only possible with Xn = 1, this can lead to

� Xn−2 = −3, done with the last lower square and the re-reversing of everything

after the last −1.

� Xn−2 = 0, what we have with the last lower square and not further changing

the path.

• Xn = Xn−1 − 1, with possible sub-cases

� Xn−2 = Xn−1 + 1, also done with the last lower square and leaving the rest

of the path as it is.

� Xn−2 = Xn−1 − 1, the only case where the upper square is last.

� Xn−2 = Xn−1 − 2, that implies Xn = 0, Xn−1 = 1, Xn−2 = −1, and the lower

square comes last and the path is re-reversed after the last 0.
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That makes indeed all cases.

The last thing to do is to show that two di�erent paths really give two di�erent tilings.

Assume that this is false, so there are two paths that give the same tiling with this

method. Now assume that these paths are as short as possible and have length m. If

the tilings end with normal or upper squares, these can just be left out and we made

the paths that disproves the original assumption shorter, which is a contradiction to the

shortness of the paths.

So the tilings end with a lower square. After eventually modifying the rest of the

paths, they have to be equal, because it would again be a contradiction to the shortness

of the paths otherwise. If Xm = Xm−1 − 1 = Xm−2 − 2, then Ym−2 > 2. If Xm =

1, Xm−1 = −1 and Xm−2 = 0, then obviously Ym−2 = 0. In the two other cases, the

modi�cation always gives Ym−2 = 1. So the only case where two of the next paths can

be the same is if one path has Xm = 0, Xm−1 = 1, Xm−2 = −1 and the other one has

Xm = 1, Xm−1 = −1, Xm−2 = −3, so that the modi�cations are the exact same. But the

modi�cation of the �rst one has a 0 as last non-positive point and the modi�cation of

the second one a −1, so that's impossible. So the fake assumption must be wrong and

this proves that two di�erent paths give two di�erent tilings.

That also makes the inverse mapping injective for every n ∈ N, and therefore, the

mapping is surjective. We have shown Jn ≤ Tn, it follows Jn = Tn, and we have the

bijection between the tilings and the 1-2-paths.

Having that, there are only few steps to get a limit like in the 1-3-random walks.

lim
n→∞

P (Xn ≥ 0) = lim
n→∞

Tn
2n

= lim
n→∞

2n+1 + (−1)n

3 · 2n
=

2

3
+ lim

n→∞

(−1)n

3 · 2n
=

2

3

2.2.2 Skipping 0 in 1-2-random walks

One pretty important thing that happens is when a random 1-2 path goes from −1 up

to 1. At the beginning, before the path reaches negative range, Xn is even when n is

even, and odd when n is odd. After jumping from −1 to 1, it changes to being the other

way around. That is, until it happens again that the path goes 2 up from −1, however.

In negative range, the path always has odd numbers at any time point. But when does

a path go from −1 to 1? The thing is that not every time point where something like

that can happen is equivalent to all the others.

Case 1: The path skips 0 for the �rst time.

In this case, the time n where Xn−1 = −1 and Xn = 1 is even, n = 2m with m ∈ N.
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There is one important time point before, the one where the path moves from 0 to −1.

Let l ∈ N0 with X2l = 0 and X2l+1 = −1, it might be as small as 0 or as big as m− 1.

After time 2l + 1, the path cannot go higher than −1 before time 2m, because in that

case, 2m would not be the �rst time 0 is skipped.

How many paths can be constructed that way? Before time 2l, the path does not

move below 0. The number of subpaths with this property and length 2l is already

known, as we have 1
l+1
·
(
2l
l

)
= Cl. After that, the path goes down one step with length

1. The next part that is not �xed are the steps 2l + 1 to 2m − 1. The only thing that

is known there is that this subpath doesn't go above −1, but it starts and ends at this

point. But such a path can also be achieved by modifying a path of length 2m− 2l− 2

starting and ending with 0 and never being in negative range. To do that, this path has

to be re�ected (reversing the steps), shifted by −1, and of course stretched by factor 2

due to moving in negative range. The number of subpaths there is Cm−l−1.

Figure 19: First crossing 0 time

The total number of paths is therefore the product of both of these numbers of sub-

paths, added for all possible numbers of l. With Lemma 1.4, said number simpli�es to
m−1∑
l=0

ClCm−l−1 = Cm. This is the number of paths with length 2m, starting and ending

at 0 and not going into negative range. Could there also be a direct bijection instead of

constructing the paths like that?

Let Y0, Y1, . . . , Y2m be such a classic random path, with l ∈ N0 such that Y2l = 0 and

Yk > 0 for any 2l < k < 2m, so 2l is the last time point where the path touches 0 before

2m. We will construct a 1-2 random path with the properties we want, X0, X1, . . . , X2m.

Set Xi = Yi for i ≤ 2l and Xk = 1 − 2Yk for 2l < k ≤ 2m. Then the new path is at
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−1 after steps 2l + 1 and 2m − 1 and at 1 after the last step. Basically, the method

is the same as the one used for the tiling bijection when there is an upper 2-square at

the last two columns: The path is the same until the last time 0 is reached before the

end, and after that, every step is just reversed. And it also is a bijection because this

mapping can also go in the other direction with Yk = Xk−1
2

for 2l < k ≤ 2m. It was

the same reasoning in the upper 2-square case for the tilings, if two paths were di�erent

before the mapping, they also are after the mapping. Which concludes the bijection and

con�rms that the number of 1− 2 paths where 2m is the �rst time with a step from −1

to 1 being exactly Cm.

Figure 20: Converting random paths

Case 2: The path did have a step from −1 to 1 at least once before.

Let k be a time point where 0 was just crossed. That means that Xk = 1. The next

time where that happens shall be k+ o, so Xk+o−1 = −1 and Xk+o = 1 in that case, and

∀i ∈ N, i < o : Xk+i−1 = −1⇒ Xk+i = −1, to make sure k + o is the �rst time where 0

is crossed once more. Then o already has to be odd: An odd number of steps is needed

to get from 1 to 0 the �rst time again, and from there, only an even number of steps

gets us to skip 0 that way again. So we will investigate the number of paths for o being

2m+ 1 with m ∈ N now. Also, o > 2 is obvious as there is de�nitely one step needed to

get from 1 to 0 and one from 0 to −1, additional to the one from −1 to 1 at time k+ o.

To build the paths, the strategy is again to use the classic Random paths ending with

0 and being non-negative everywhere. Above, one step from 1 to 0 is mentioned. The

�rst one shall be at time k+ 2l+ 1, that means Xn > 0 for n ≤ k+ 2l and Xk+2l+1 = 0.

Then, everything from Xk to Xk+2l is a classic Random path ending with 0, just shifted

by 1. That means, there are Cl possibilities so far. Then, after step k + 2l + 1, we can
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just continue at Case 1. The resulting second part has length 2m−2l, thus having Cm−l

possibilities for this subpath. Again, these numbers have to be multiplicated, and the

products have to be added for every possible l for the chosen m.

What is the di�erence to Case 1? Well, this time, m = l is forbidden because the

second part cannot be a result from the above bijection of the empty path, as there are

two necessary steps from 0 to −1 and from −1 to 1 here. That means that it has to be

l < m. The sum over all possible l is a bit di�erent, but with Lemma 1.4 it is still easy

to solve,
m−1∑
l=0

ClCm−l =
m∑
l=0

ClCm−l − CmC0 = Cm+1 − Cm.

Figure 21: Crossing 0 after the �rst time doing so

Again, this can be mapped onto the non-negative classic Random paths with length

2m ending with 0. The question is if there are exactly Cm of such paths with certain

common features that can be ignored for this mapping, to get a bijection again. And

there is. As already known, there are 2Cm paths with length 2m where 0 is �rst reached

again after exactly 2m steps (m > 0 is important here), that means Cm of them are in

non-negative range. Throwing them out of the other pool of paths, there are exactly the

paths left that reach 0 at least once before time 2m. The subpaths of the 1-2 random

walk with exactly 2m+ 1 steps between two times crossing 0 have therefore a bijection

to the classic Random paths with 2m steps, Y0, . . . , Y2m, ful�lling Y2m = 0, Yi > 0 for

0 ≤ i ≤ 2m and ∃l ∈ N, l < m : Y2l = 0. If the smallest possible l is chosen, we

have Xk+i = Yi + 1 for i ≤ l and Xk+2l+1, . . . , Xk+2m+1 is constructed from the subpath

Y2l, . . . , Y2m exactly as in case 1. The �rst and last time where the classic path reaches

0 between time 0 and 2m are important, and both of them can actually be the same

when the 1-2 path immediately goes down to −1 after reaching 0.
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3 Convergence of the 1-2-random walk

In the classic random walk, there was the Brownian motion as a limit. It would be nice

to have a similar result for the 1-2-random walk. An intuitive idea would be for example

to have a Brownian motion above 0 and something like a Brownian motion with twofold

rise or fall below 0. The main result for the classic random walk was Donsker's Theorem.

This time, there are some more preparations needed.

3.1 Basics for stochastic integration

Let
(
Ω,F , (Ft)t≥0 , P

)
be a �ltered probability space. Let (Bi)t≥0 be an adapted Brown-

ian motion. In this case, we will set (Ft)t≥0 as the augmented Brownian �ltration, which

is kind of the �ltration generated by the Brownian motion and the P -nullsets to prevent

problems regarding random variables that are equal with probability 1. Every equality

is also in the sense that there might be inequalities, but only as a nullset.

The thing that we need is a stochastic integral. In this case, with respect to a Brownian

motion. The easy case is a stochastic process (Xi) with 0 = t0 < t1 < · · · < tn and

random variables A1, . . . , An where Ai is Fti-measurable. The mentioned Process is

then de�ned by Xt =
∑n−1

k=0 Ai1[ti,ti+1[ (t) and is called Elementary Process. And the

mentioned integral is then de�ned by It (X) =
∑n−1

k=0 Ai
(
Bt∧tk+1

−Bt∧tk
)
. The integral

process is denoted as I (X) = (It (X))t≥0 It can be imagined like calculating the gain

from an amount Ai of shares which is as much worth as the values of a Brownian motion

until time t.

We also need another form of measurablility. A stochastic process (Xi)i≥0 is progres-

sively measurable with respect to (Ft)t≥0 when it holds true that ∀t ≥ 0 : f : [0, t]×Ω→
Rd, f (s, ω) = Xs (ω) is B ([0, t])×Ft-measurable, in this case with d = 1, and L2 (B) is

the set of progressively measurable processes that also ful�ll E
∫∞
0
X2
t dt <∞.

An adapted stochastic process (Xi)i≥0 is called (Ft)-local martingale when there exists

a sequence of stopping times (τn)n∈N that ful�lls the following two conditions:

• The sequence τn is non-decreasing and limn→∞τn =∞ almost surely.

• The stopped process Xτn is a Martingale.

In that case, (τn) is called its localizing sequence.

We only consider a subset of the local martingales. Let L2
loc (B) be the set of all

(Ft)t≥0-progressively measurable stochastic processes (Xi)i≥0 which have a localizing

sequence (τn)n∈N that ful�lls ∀n ∈ N : E
∫ τn
0
X2
sds <∞. Obviously, L2 (B) ⊆ L2

loc (B).
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After that, let's continue with the stochastic integral. The discrete-like case with an

elementary process was already considered. With non-elementary processes, it would

be like that we want to decide really fast and often if it's better to buy or sell some of

the shares. Let X ∈ L2 (B). You can prove that there is a sequence (X1) , (X2) , . . .

of elementary processes that ful�lls limn→∞E
∫∞
0

(Xn
s −Xs)

2 = 0. This also implies

limm,n→∞E
∫∞
0

(Xn
s −Xm

s )2 = 0. Because the stochastic integral is linear for elementary

processes, the sequence transforms into a Cauchy sequence in that sense. That means

there has to exist a limit limn→∞I (Xn) =: I (X), which is also well-de�ned, hence it is

the same for every such sequence. This can even be further generalized to X ∈ L2
loc (B).

A stochastic integral is denoted by
∫ t
0
XsdBs.

The stochastic integrals can, apart from the Brownian motion, also be applied for

every other stochastic process. But the Brownian motion has some neat properties

we want to use. For example the Ito formula: For any real-valued function f that is

di�erentiable twice on R, it holds true that

f (Bt) = f(0) +

∫ t

0

f ′ (Bs) dBs +
1

2

∫ t

0

f ′′ (Bs) ds.

But the Ito Formula can also be used for even more general processes. An Ito process

is a stochastic process (Xi)i≥0 that has the form Xt = X0 +
∫ t
0
asds +

∫ t
0
bsdBs, where

X0 ∈ R and a, b are progressively measurable processes that ful�ll
∫ t
0
|as| + b2sds < ∞

for any t ≥ 0 almost surely, where a is called drift rate and b the di�usion rate. Finally,

the solvability of a stochastical di�erential equation

dXt = µ (t,Xt) dt+ ν (t,Xt) dBt (1)

can be examined. The �rst random variable is constant, X0 ∈ R.

3.2 Convergence to a modi�ed Brownian motion

How can all of this help us to �nd a limit for the 1-2-random walk? We want to have a

factor 2 in the negative part of the Brownian motion. Setting up dMt = µ (t,Mt) dt +

ν (t,Mt) dBt, we now have to set M0, µ and ν in appropriate ways. For example, µ = 0

and ν = 1 results in Mt = Bt when M0 = 0, so that is just the standard Brownian
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motion. The factor 2 can just be implemented by setting µ = 0 and

ν (m) := ν (t,m) =

1 m ≥ 0

2 otherwise.

Observe that the coe�cients don't depend on the time t anymore. From an intuitive

point this is also obvious, because in the 1-2-random walk the step length also just de-

pends on the position and not on the time. In such a case, the existence of a weak solution

(other solutions have the same distribution) can be shown under certain conditions.

Proposition 3.1 (existence of a weak solution). The Stochastic Di�erential Equation

(1) has a unique weak solution if the Engelbert-Schmidt-conditions are ful�lled: For any

x ∈ R, it holds true that ν (x) 6= 0, and 1
ν2

is locally integrable.

The Engelbert-Schmidt-conditions are ful�lled here, as ν is nowhere 0, and 1
ν2
≤ 1

which when integrated over a �nite interval gives back the length of this interval. And

all of that even works with any M0 ∈ R. It will be important later that the choice is

not limited to 0 here.

But how to prove a convergence? The result for the classic random walk was Theorem

1.7. It would be nice to have something similar here, too. And that's where we run into

a big problem right at the beginning: The convergence could only happen when the

expected value and variance of the step sizes were the same as the one of the Brownian

motion, E (Zi) = 0 and V ar (Zi) = 1. Even worse, these steps are not even iid anymore.

But we can still try to do everything from back then step by step. For t, n ≥ 0, let

Mt,n :=

bntc∑
i=1

Zi√
n
.

The next step was the stopping time. In this case, a bit more complicated than before.

Let τ0 := 0. For any n ∈ N, set the next stopping time as the following:

τn =

min
{
x : x > τn−1,Mx /∈]Mτn−1 − 1;Mτn−1 − 1[

}
Mτn−1 ≥ 0

min
{
x : x > τn−1,Mx /∈]Mτn−1 − 2;Mτn−1 + 2[

}
otherwise.

Like in Proposition 1.7, the idea is to embed a 1-2-path by setting Xi := Mτi . This

time however, not even the τi − τi−1 are iid. The main idea is to calculate the expected

value for such a stopping time, but it depends on where it starts. To do this, assume

�rst that Mm
0 = m ∈ R and take the modi�ed Brownian motion from there as (Mm

t )t≥0.
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For this purpose it is needed that there is a unique weak solution for this case too. Set

m1,m2 ∈ R with m1 < m < m2 and τm,m1,m2 := min {x,Mm
x /∈]m1;m2[}.

The expected value can be calculated with help of qm (x) :=
∫ x
m

∫ y
m

2
µ2(z)

dzdy. It can

be shown with the Ito formula that qm (Mm
t ) − t is a local martingale, which then can

be used to calculate Eτm,m1,m2 .

Proposition 3.2 (expected stopping time). The mean value of this stopping time is

Eτm,m1,m2 = Eqm
(
Mτm,m1,m2

)
.

That implies τm,m1,m2 <∞ almost surely. With EMτm,m1,m2
= m, we immediately get

P
(
Mτm,m1,m2

= m1

)
= 1 − P

(
Mτm,m1,m2

)
= m2−m

m2−m1
. The expected stopping time then

can be transformed to

Eτm,m1,m2 =
m2 −m
m2 −m1

qm (m1) +
m−m1

m2 −m1

qm (m2) .

In the modi�ed Brownian motion, that means that the 1-2-random walk can actually be

established by those stopping times.

Figure 22: stopping times in a path of the modi�ed Brownian motion

The parts below 0 indeed fall and rise much faster than the normal Brownian motion.

Because of the factor 2, the path will in average only spend half of the time in negative
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range of the time it will be in non-negative range. For τ2, not the value 0 will be taken

at t ≈ 0.4, but instead the 1 at 1.5 later. After τ4, it could be like the Brownian motion

because 0 isn't reached anymore, at least until t = 7.

For calculating the expected values for τm,m1,m2 here, we de�nitely have m ∈ Z here

withm1+ν (m) = m = m2−ν (m). Becausem has the same di�erence tom1 andm2, the

two probabilities both simplify to 1
2
, and it is easy to calculate that Eτm,m−ν(m),m+ν(m) =

1
2

(qm (m− ν (m)) + qm (m+ ν (m))). There are four cases for m.

Case 1: m > 0. Then m,m− ν (m) ,m+ ν (m) ≥ 0, so the range covered completely

has ν = 1. We obtain

Eτm,m−1,m+1 =
1

2
(qm (m− 1) + qm (m+ 1)) =

1

2

(∫ m−1

m

∫ y

m

2

1
dzdy +

∫ m+1

m

∫ y

m

2

1
dzdy

)
=

1

2

(∫ 1

0

∫ 1

y

2dzdy +

∫ 1

0

∫ y

0

2dzdy

)
=

1

2

(
2 ·
∫ 1

0

2ydy

)
= 1.

Because the �rst double integral has switched borders both times, the factor −1 also is

multiplied twice when switching them to the correct order. And it also makes sense that

the average time here is the same as for a normal Brownian motion.

Case 2: m < −1. Then m,m− ν (m) ,m + ν (m) ≤ 0, that means ν will be 2. Then

the stopping time in average is

Eτm,m−2,m+2 =
1

2
(qm (m− 2) + qm (m+ 2)) =

1

2

(∫ m−2

m

∫ y

m

2

4
dzdy +

∫ m+2

m

∫ y

m

2

4
dzdy

)
=

1

2

(∫ 2

0

∫ 2

y

1

2
dzdy +

∫ 2

0

∫ y

1
2

2dzdy

)
=

1

2

(
2 ·
∫ 2

0

y

2
dy

)
= 1.

The factor 2 was chosen for ranges below 0, because the average time is still 1.

Case 3: m = 0. Then ν is 2 at the range below m and 1 above. The two double

integrals are not equal anymore. The double integrals can partly be taken from the �rst

two cases, and the result is

Eτ0,−1,1 =
1

2
(q0 (−1) + q0 (1)) =

1

2

(∫ −1
0

∫ y

0

2

4
dzdy +

∫ 1

0

∫ y

0

2

1
dzdy

)
=

1

2

(∫ 0

−1

y

2
dy + 1

)
=

1

2

(
1

4
+ 1

)
=

5

8
.

That is no average of 1 anymore. Which wasn't really realizable anyway, but the 3
8

missing might cause trouble. The worst case, however, will follow now.

34



3 Convergence of the 1-2-random walk

Case 4: m = −1. Then ν takes the value 2 below 0, so the range from 0 to 1 requires

ν = 1. One of the ranges is split up, which leads to splitting up integrals twice,

Eτ−1,−3,1 =
1

2
(q−1 (−3) + q−1 (1)) =

1

2

(∫ −3
−1

∫ y

−1

2

4
dzdy +

∫ 1

−1

∫ y

−1

2

ν (z)2
dzdy

)
=

1

2

(
1 +

∫ 0

−1

∫ y

−1

2

4
dzdy +

∫ 1

0

(∫ 0

−1

2

4
dz +

∫ y

0

2

1
dz

)
dy

)
=

1

2

(
1 +

1

4
+

∫ 1

0

1

2
+ 2ydy

)
=

1

2

(
5

4
+

3

2

)
=

11

8
.

The missing 3
8
from the third case are too much here. To conclude the four cases, only

m = 0 and m = −1 can really mess things up, the other ones give an average time of 1.

But even those two cases together at least have the right mean value of 1.

The turning points of the 1-2-random walk are always the values 0 and −1 anyway:

Once in negative range, it can't be exited without going into positive range at least once

because the step from −1 to 0 is impossible unlike its counterpart. It would be nice to

have some kind of regularity for them. What is the number of paths ending in those

numbers with certain numbers of steps? To �nd out, a Pascal-like triangle for 1-2 paths

can be created.

Figure 23: 1-2 triangle (left), Pascal triangle (right)

Looking closer into the triangle, the values 0 and −1 always seem to be apart by only

1. But more important, the sum of two numbers on top of each other in the 0 and −1

columns seems to be equal to the middle values in the Pascal triangle, marked by the

domino pieces and the di�erent colors.

Proposition 3.3 (1-2-paths ending on 0). For any l ∈ N0, there are as many classic

random walk paths with length 2l that end in 0 as 1-2-paths with length 2l or 2l+ 1 that

end in 0.
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3 Convergence of the 1-2-random walk

Proof. We start by describing a mapping from the set of classic random walk paths with

length 2l that end in 0 to the set of 1-2-paths with length 2l or 2l + 1 that end in 0

and then prove that it is a bijection. Let at �rst be Y0, Y1, . . . , Y2l be a path of the

classic random walk with Y2l = 0. The plan is to get a 1-2-path X0, X1, . . . , X2l+a with

X2l+a = 0 and a ∈ {0, 1}. A recursive approach will be used. Indeed, for l = 0, the

bijection is obvious, because there are only the paths Y0 = 0 and X0 = 0.

Now assume l > 0, and all cases with smaller l already can be bijected in a suitable

way. Set m (Y ) ∈ N0 so that m (Y ) < l and 2m (Y ) is the last time where the classic

random walk had the value 0, that means Y2m(Y ) = 0 and Yk 6= 0 for 2m (Y ) < k < 2l.

In fact, m (Y ) = max {i : Y2i = 0, i < l}, and that value is always bounded because of

l > 0 and Y0 = 0. Any subpath Yk1 , Yk1+1, . . . , Yk2 with Yk1 = Yk2 = 0 and Yk 6= 0 for

any k1 < k < k2 shall be called segment. The last segment of Y begins at time 2m (Y )

and ends at time 2l.

Now consider the bijection from the same path, just without the last segment. Let

X ′0, X
′
1, . . . , X

′
2m(Y )+a′ be the 1-2-path that is mapped from Y0, Y1, . . . , Y2m(Y ), which

can be done because of the recursive assumption. In this case, a′ ∈ {0, 1} is also

set. In some cases, we need the second-to-last time where the path was 0, m(2) (Y ) =

max {l : Y2l = 0, l < m (Y )}, and the �rst time after 2m(2) (Y ) + 1 where 1 is crossed,

m(1) (Y ) = min
{
i : Y2i+1 = 1, i > m(2) (Y )

}
. These last two values might be −∞ or ∞,

but this shall not matter for now. If Y2m(2)(Y )+1 = 1, note that the time 2m(1) (Y ) + 1 is

the second time after 2m(2) (Y ) where 1 is reached.

The length of the new path only depends on a. For reasons of applicability, set Yk = 0

for k < 0 for the calculation of a.

a =

a′ Y2l−1 = 1 or
(
a′ = 1, Y2m(Y )−1 = −1

)
a′ + (−1)a

′
otherwise

(2)

Now, the path itself will be constructed. For the most part, the old path should be

taken over and be changed as little as possible, but there are cases where things have to

be mixed up. Those will be explained later in the proof. We have k ∈ N and k ≤ 2l+ a.

The case k < 2m (Y ) + a is considered �rst.

Xk =


X ′k a′ = 0 or a = 1 or k ≤ 2m(2) (Y ) + 1

3− 2Yk a′ = 1,a = 0, 2m(2) (Y ) + 1 < k ≤ 2m(1) (Y )

Yk otherwise

(3)
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3 Convergence of the 1-2-random walk

For the last segment in k ≥ 2m (Y ) + a, use this equation:

Xk =



0 k = 2l + a

Yk−a Yk−a ≥ 0

1 + 2Yk a = 1, Yk ≤ 0, a′ = 0

1 + 2Yk+1 a = 0, Yk < 0,m(1) (Y ) =∞

1− Yk−a+1 otherwise

(4)

We will break down when every case will be used next. The general strategy is, as

already said, to execute the mapping until the last time before 2l where the classic path

is 0. Obviously X0 = X2l+a = 0, because the 1-2-path has to end with 0, see the �rst

case of equation (4). The last segment of this path is the subpath from time 2m (Y ) to

2l.

Case 1: The path has only one segment.

In this case, m (Y ) = 0 and a′ = 0. The path can be completely in positive or negative

range.

Case 1.1: The path is in positive range, Y1 = 1.

Then a = a′ = 0 in the �rst case of equation (2). By the second case in equation (4)

we have Xk = Yk for 0 ≤ k < 2l.

Figure 24: Bijection for case 1.1

Figure 24 shows that the 1-2-path is the same as the classic path in this case.

Case 1.2: The path is in negative range, Y1 = −1.

Then a = a′ + 1 = 1. Because of the third case in equation (4), for 0 < k ≤ 2l we

have Xk = 1 + 2Yk.

Figure 25 shows that the 1-2-path still has the same step directions, but all of the

steps have factor 2 now except for the �rst one. After 2l steps, the 1-2-path is at 1, and

step 2l + 1 is from 1 to 0.
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3 Convergence of the 1-2-random walk

Figure 25: Bijection for case 1.2

Case 2: The path consists of multiple segments.

When m (Y ) > 0, the idea of splitting up the last segment and taking the previous

mapped 1-2-path and adding the last segment really comes into play. At �rst, consider

the cases where the previous path can just be taken over.

Case 2.1: The last segment is in positive range, Y2l−1 = 1.

Then a = a′, and the cases depending on the time are

Xk =

X ′k 1 ≤ k < 2m (Y ) + a

Yk−a 2m (Y ) + a ≤ k < 2l + a.

After executing the previous path in the �rst case of equation (3), the last segment is

handled like in case 1.1 and just added to the rest of the path, which shows in the second

case of equation (4).

Case 2.2: The last segment is in negative range, Y2l−1 = −1.

The last segment would use case 1.2 if it would just be added to the rest of the path.

However, it produces an extra step. This is a problem when already a′ = 1.

Case 2.2.1: a′ = 0.

Then the extra step forces the second case in equation (2), therefore a = 1. The whole

path is

Xk =

X ′k 1 ≤ k ≤ 2m (Y )

1 + 2Yk 2m (Y ) < k ≤ 2l.
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3 Convergence of the 1-2-random walk

This time, the last segment uses the third case of equation (4).

Case 2.2.2: a′ = 1.

When the last segment can't be just added to the rest of the path because it would

result in too many steps, it is important if the second-to-last segment is in positive or

negative range. We already have X ′2m(Y ) = 1 because of X ′2m(Y )+1 = 0.

Case 2.2.2.1: The second-to-last segment is in negative range, Y2m(Y )−1 = −1.

The �rst case of equation (2) is used again, a = 1. The rest is

Xk =

X ′k 1 ≤ k ≤ 2m (Y )

1− Yk 2m (Y ) < k ≤ 2l.

Figure 26: Handling the last segment in case 2.2.2.1

The previous path is taken over except for the last step, then the steps of the last

segment are reversed as shown in �gure 26. This is represented by the last case of equa-

tion (4). Instead of being mapped and added directly, the last segment was integrated

into the last part of the 1-2-path. Notice that this is still a 1-2-path in the last segment

because of X2m(Y ) = X ′2m(Y ) = 1 = 1 − Y2l = X2l and X2m(Y )+1 = 2, so the transitions

actually work and the rest consists of steps with length 1 in positive range.

Case 2.2.2.2: The second-to-last segment is in positive range, Y2m(Y )−1 = 1.

This is the only time where a is smaller than a′, because a = 0 with the second case in

equation (2). Compared to just mapping and adding the last segment, we have two less

steps. Those are deleted with the �rst and the last step of the second-to-last segment,

and the rest of this segment is re�ected and put together with the last segment.
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Figure 27: First step in case 2.2.2.2

In �gure 27, the second-to-last segment is shortened by two steps and reversed. This

new subpath will then be mapped into a 1-2-path by using the cases 1.2 and 2.2.2.1 and

then be added to the previous 1-2-path, which is the mapping of Y except for its last

two segments. The last case distinction is if the second-to-last segment only consists of

two steps from 0 to 1 and back to 0, because in that case, nothing is re�ected. For that

reason, we consider if the path reaches 1 twice after 2m(2) (Y ) and before 2m (Y ), which

is shown by m(1) (Y ) being bounded in this case because of Y2m(2)(Y )+1 = 1.

Case 2.2.2.2.1: m(1) (Y ) =∞.

Because Y2m(2)(Y )+2 = 0 has to be true when the classic path doesn't cross 1 anymore

after time 2m(2) (Y ) + 1, this directly implies m (Y ) = m(2) (Y ) + 1. Then

Xk =

X ′k 1 ≤ k < 2m (Y )

1 + 2Yk+1 2m (Y ) ≤ k < 2l.

After the previously mapped path, there is only a single negative segment left to the

mapping, which happens as in case 1.2. The fourth case of equation (4) is used there.

Case 2.2.2.2.2: m(1) (Y ) <∞.

The cases for the 1-2-path are

Xk =



X ′k 1 ≤ k ≤ 2m(2) (Y ) + 1

3− 2Yk 2m(2) (Y ) + 2 ≤ k ≤ 2m(1) (Y )

Yk 2m(1) (Y ) < k < 2m (Y )

1− Yk+1 2m (Y ) ≤ k ≤ 2l.

At �rst, the three cases of equation (3) are used in this order (although there is the case
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of m(1) (Y ) = m (Y )− 1 where the third case isn't used anywhere), and then the path is

concluded by the last case of equation (4) again, like in case 2.2.2.1.

We have X2m(2)(Y )+1 = X ′
2m(2)(Y )+1

= 0. Because of m(1) (Y ) < ∞, the classic path

continues with Y2m(2)(Y )+2 = 2 and therefore X2m(2)(Y )+2 = 3 − 2 · 2 = −1. Also,

Y2m(1)(Y ) = 1 implies X2m(1)(Y ) = 3 − 2 · 1 = 1, and X2m(Y )−1 = Y2m(Y )−1 = 1 is the

assumption of case 2.2.2.2 already. All transitions are correct again, making the new

path indeed a 1-2-path.

The next step is to show that the mapping is indeed a bijection.

Assume that this mapping is not injective for an l ∈ N. We can assume l >

0 because there is only one classic path with length 0. Choose l with this prop-

erty to be as small as possible. Then there are two classic paths Y (1) and Y (2) with

length 2l that are mapped onto the same 1-2-path X with length 2l + a for an a ∈
{0, 1}. Let z (X) be an indicator for the last time where X is equal to 0, z (X) :=

max {k ∈ {0, 1, . . . , l − 1} : ∃d ∈ {0, 1} : X2k+d = 0, }, and a′ ∈ {0, 1} with X2z(X)+a′ =

0. Note that X2z(X) 6= X2z(X)+1, so a
′ is unique. Let p (X) be an indicator for the last

time before 2l where X wasn't positive, p (X) = max {t ∈ {0, 1, . . . , l − 1} : X2t+a ≤ 0}.
Then X0 = 0 implies p (X) ≥ 0 and z (X) ≥ 0. For 2p (X) + a < k < 2l + a, we have

Xk > 0, and either X2p(X)+a = 0 or X2p(X)+a = −1.

Case X2p(X)+a = 0.

The subpath X2p(X)+a, X2p(X)+a+1, . . . , X2l starts and ends with 0 (especially p (X) =

z (X)), and is positive everywhere else, which is only possible if the last segment in the

original path was the exact same, Y
(1)
k = Xk+a = Y

(2)
k for 2p (X) +a ≤ k ≤ 2l+a. Then

Y (1) and Y (2) were also di�erent until time 2p (X), but these shorter classic paths were

also mapped onto the same 1-2-path X0, X1, . . . , X2p(X)+a. This is a contradiction to l

being as small as possible.

Case X2p(X)+a = −1.

The subpath X2z(X)+a′ , X2z(X)+a′+1, . . . , X2l+a starts and ends with 0, is negative from

time 2z (X)+a+(−1)a+1 to time 2p (X)+a and positive at any other place. Its length

has to be odd, a′ = a+ (−1)a. A side step will be taken: Let Y ′ be a classic path from

time 2z (X) + a′ to 2l + a and

Y ′k =


0 k ∈ {2z (X) + a′, 2l + a}
Xk−1

2
2z (X) + a′ < k ≤ 2p (Y ) + a

1−Xk 2p (Y ) + a < k < 2l + a.
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Note that Y ′ has length 2l− 2z (X)− 2a′. It has only negative segments and is mapped

onto X2z(X)+a′ , . . . , X2l+a using cases 1.2 and 2.2.2.1, because for k ≤ 2p (Y ) +a we have

Xk = 1 + 2Y ′k , and Xk = 1 − Y ′k applies everywhere else, as other cases don't exist.

Let Y ′′ be another path on the same interval. If Y ′′ has any positive segments, it isn't

mapped onto the same path as Y ′, as the mapped path of Y ′′ either starts with 1, or

it is equal to 0 at least once (because case 2.2.2.2 has to be hit later). However, if Y ′′

only has negative segments and is di�erent from Y ′ at a time k′, Y ′ and Y ′′ are also

mapped onto di�erent paths because 1 + 2Y ′k′ and 1− Y ′k′ aren't equal to both 1 + 2Y ′′k′

and 1− Y ′′k′ , as for every of those four possibilities, either Y ′k′ = Y ′′k′ applies or one of Y
′
k′

and Y ′′k′ is positive which contradicts the negative segments.

This implies that Y ′ is the only path that can be mapped onto X2z(X)+a′ , . . . , X2l+a.

However, Y ′ can only be taken over directly for a = 1. And because we need a subpath

with length 2l− 2z (X) to conclude the path, Y
(1)
k = Y

(2)
k = Y ′k for 2z (X) + a+ (−1)a ≤

k ≤ 2l is the only possibility in that case.

For a = 0 however, Y ′ has length 2l − 2z (X) − 2, which is 2 steps short to what is

needed. So we had to be in case 2.2.2.2 for the original mapping, the only place where

two steps were deleted. That's why Y ′ is just a side step here: Every segment of Y ′

except for the last one had to be in positive range originally. If k is a time in said last

segment, then Y
(1)
k = Y

(2)
k = Y ′k−1, as this segment has to be shifted by 1 towards 2l to

work. For k being any other time greater than 2z (X), it has to be Y
(1)
k = Y

(2)
k = 1−Y ′k−1.

So for every possible a, the two classic subpaths starting at time 2z (X) are �xed

again, and the previous paths also have to be the same, or else the minimality of l would

be violated. But Y (1) = Y (2) is also a contradiction.

Every case of assuming that the mapping is not injective leads to a contradiction. This

implies that the mapping is injective, and therefore reversible. The inverse mapping will

follow next, also in a recursive approach. We will not show that it actually is the

inversion, because that would be much more than needed.

If l = 0, then X is the empty path. Obviously, Y also has to be the empty path.

If all 1-2-paths with length smaller than 2l can be appropriately mapped onto classic

paths, let X0, . . . , X2l+a be a 1-2-path with X0 = X2l+a = 0 and a ∈ {0, 1}. The

variables p (X) , z (X) and a′ are already de�ned, but we also need an indicator for

the second-to-last time where 1 is crossed in the last subpath (if that happens at all),

o (X) := max {k ∈ {z (X) , z (X) + 1, . . . , l − 2} : X2k+a+1 = 1}. If X2l+a−1 = 1 then

2o (X)+a is the second-to-last time where Y has the value 1. Also, o (X) might be −∞.

Because only a fully non-negative sequence starting and ending with 0 has even length,
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we have a = a′ exactly when X2p(X)+a = 0.

For the path X0, X1, . . . , X2z(X)+a′ , there is a classic path Y0, Y1, . . . , Y2z(X)where the

bijection works, Y2z(X) = 0. This classic path can directly be taken over without needing

to be modi�ed, and only Y2z(X)+1, . . . , Y2l need to be calculated.

Yk =



Xk+a a = a′

1−Xk a = 1, a′ = 0, Xk > 0

Xk−1
2

a = 1, a′ = 0, Xk < 0

Xk−1−1
2

a = 0, a′ = 1, o (X) = −∞, k > 2z (X) + 2

1 +Xk−1 a = 0, a′ = 1, o (X) = −∞, k ≤ 2z (X) + 2

−1−Xk+1 a = 0, a′ = 1, o (X) > −∞, Xk+1 > 0, k > 2o (X)

Xk a = 0, a′ = 1, Xk+1 > 0, 2p (X) < k ≤ 2o (X)

−Xk+3
2

otherwise

(5)

If the section from the last 0 onward is nowhere negative, then the said part is the

exact same, maybe shifted by 1 depending on a, in the �rst case. If a = 1 and a = 0, then

an additional step is inserted and the whole last part is non-positive. This is covered by

the third and fourth cases, based on if the part would be reversed into positive or not.

The hard part is again a = 0, a′ = 1. This time, we have to get two more steps into

the classic path. The last part of the 1-2-path either consists of a subpath in almost

full negative range except for the last two steps which go from −1 to 1 to 0, then the

fourth case is used for that part, except for the additional �rst two steps in the classic

path from 0 to 1 to 0 in the �fth case. Or the last part is in positive range from the

second-to-last 1 to the 1 at time 2l − 1. For that part, the sixth case is used, and in

the part before, the two additional steps from 0 to 1 and from 1 to 0 are inserted at

beginning and end, where the rest of the classic path is in positive range. Depending on

where the 1-2-path is, one of the two last cases is used.

The last step is the proof that the inversion is also injective. Assume that the inversion

isn't injective for an l ∈ N. Choose l as small as possible. Then there are two 1-2-paths

X(1) and X(2) with length 2l or 2l + 1 of which the inverse mapping is the same classic

path Y with length 2l. All of those paths end with 0.

Case Y2l−1 = 1.

Set k = 2l − 1. The second and third case of equation (5) only give non-positive

values for Y , but Y2l−1 > 0. The �fth case can't be used for this k, and the last two
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cases can't be used either. The fourth case would imply X2l−2 = 3, which doesn't work

with a = 0 and X2l+a = 0. The sixth case also implies X2l = 2 which can't be true.

So the �rst case is used, where the last segment from X is just taken over from Y .

Removing this segment from X(1) and X(2) makes these paths shorter, but they already

are inverse-mapped onto the same path, which contradicts that l is minimal.

Case Y2l−1 = −1.

The general idea that will not be shown in detail is the following. Take out all

consecutive negative segments at the end of Y . The new path is either empty or ends

with a positive segment, which is then taken out as well (just to be sure that the last

�ve cases in equation (5) don't mess things up). Then X(1) and X(2) have to be di�erent

in the time span that was taken out, because l was chosen as small as possible, and they

were equal before this time span. This can be used to consider the cases for a and a′ for

both paths, and also their z and p values. The possible cases in equation (5) will show

that the paths have to be equal in this time span too, which is a contradiction.

Therefore, the mapping and its inversion are injective, which implies that the mapping

is indeed a bijection. That proves that indeed there are as many classic paths with length

2l ending with 0 as 1-2-paths with length 2l or 2l + 1 ending with 0.

A few examples will follow for illustration. The case l = 0 was already mentioned.

Case l = 1: There are two paths in the classic random walk with Y2 = 0. With

Y0 = 0 always set, only Y1 has to be considered. We also have m (Y ) = 0, so for now,

only equation (4) will be used. The previous bijection X ′ is the empty path, a′ = 0.

For Y1 = 1, we have a = 0 using equation (2), as the last segment is is in positive

range. That means that X1 = Y1 = 1 as in the second case in equation (4), and X2 = 0.

For Y1 = −1, the value for a changes from 0 to 1. That means for X1 and X2, that

the third case will be applied, X1 = 1 + 2Y1 = −1 and X2 = 1 + 2Y2 = 1. The 1-2-path

is concluded with X3 = 0.

Figure 28: Bijection between classic and 1-2-paths, l = 1

Case l = 2: There are
(
4
2

)
= 6 possibilities to reach 0 with single steps. Two of them
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don't return to 0 before the �nal step, hence m (Y ) = 0 and a′ = 0. Like before, only

equation (4) is needed there, and even for that one only the �rst 3 cases.

The start and end are Y0 = Y4 = 0. For Y1 = Y3 = 1, Y2 = 2 the 1-2-path stays the

same, X1 = X3 = 1, X2 = 2 because of a = a′ = 0. And Y1 = Y3 = −1, Y2 = −2 gives

a = 1. The values are X1 = 1 + 2Y1 = −1 = 1 + 2Y3 = X3, X2 = 1 + 2Y2 = −3 and

X4 = 1 + 2Y4 = 1 before the last step, and X5 = 0 for the end.

The other paths where the strategy to just repeat the steps in the classic path works

by only using the �rst three cases of equation (4) start with Y1 = 1 and Y2 = 0. This

time we have X ′1 = 1, X ′2 = 0 and m (Y ) = 1. Note that X1 = X ′1 = 1 because of

a′ = 0, regardless of the ending of the path, with the �rst case in the equation (3). For

Y3 = 1, the value for a is still 0, implying X2 = Y2 = 0, X3 = Y3 = 1 and X4 = 0, with

analog reasoning to the corresponding case in l = 1. We again have a = 1 and therefore

X3 = 1 + 2Y3 = −1, X4 = 1 + 2Y4 = 1 and X5 = 0.

Figure 29: Bijection between classic and 1-2-paths, l = 2, part 1/2

For Y1 = −1 and Y2 = 0, we have a′ = 1, and still m (Y ) = 1, while the �rst path part
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is X ′1 = −1, X ′2 = 1, X ′3 = 0. If Y3 = 1, we have a = a′ = 1 and, X1 = X ′1 = −1, X2 =

X ′2 = 1. In this case, the steps can still be repeated, because the second case of equation

(4) is still used: X3 = Y2 = 0, X4 = Y3 = 1 and �nally X5 = 0. However, for Y3 = −1,

things are a bit di�erent. We still have a = a′ = 1, as the �rst case in equation (2)

still triggers with Y1 = −1, which means that X1 and X2 stay at their values from the

X ′ path again. But the natural continuation X4 = −1, X5 = 1, X6 = 0, is impossible,

because we only have 5 steps instead of 6. Instead, the special last case in the equation

(4) says X3 = 1 − Y3 = 2, X4 = 1 − Y4 = 1 and the conclusion X5 = 0. This is the

�rst time where steps of a classic path are reversed in the 1-2-path, as there are multiple

segments of the path next to each other are in negative range in the classic path. The

�rst segment is taken as it is, the other one is reversed and �nally a last step to 0 is

needed. This is what happens in the third and the last cases of equation (4) respectively.

Figure 30: Bijection between classic and 1-2-paths, l = 2, part 2/2

Case l = 3: The ideas stay the same, so the
(
6
3

)
= 20 bijections will not be shown.

Split the classic path into its segments and try to execute them one after another. If

more than one segment is below 0, reverse all of those except for the �rst and go to 0

afterwards. That works for every path. Except for one.

Figure 31: Problem path for l = 3
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In the classic path Y2 = Y4 = Y6 = 0, Y1 = −Y3 = Y5 = −1, there aren't two segments

in negative range next to each other, but just doing them in order also doesn't work,

because that would result in a path with length 8. But we have to get to X1 = X4 =

−1, X2 = X5 = 1, X3 = X6 = 0, the path that couldn't be taken for l = 2, because

the 19 other 1-2-paths are used elsewhere. Actually, the only thing that's di�erent from

executing all parts is that there would be another trip to 1 and back to 0 in the middle.

These two steps have to be taken out somehow. It will always be the problem when going

into negative range twice, that there are two additional steps that have to be reduced.

That's where the use for a comes in, it changes from a′ = 1 back to a = 0 in exactly

this case where the last segment is in negative range, but cannot be connected with the

segment directly before that is is in positive range. Also, the steps done in image 27

come into play.

Using the equation (3) for the �rst three steps gives out X1 = X ′1 = −1, X2 = X ′2 =

1, X3 = X ′3 = 0. Then X ′4 = 1 and X ′5 = 0 doesn't help here. Additional values are

m (Y ) = 2 andm(2) (Y ) = 1 the last two times where 0 is crossed after the double amount

of steps in the classic path. Note that m(1) (Y ) = ∞, because the path doesn't pass 1

twice after time 2m(2) (Y ) anymore. That means that for the rest, only the fourth case of

equation (4) is used aside from X6 = 0, and we get X4 = 1+2Y5 = −1, X5 = 1+2Y6 = 1.

Case l = 4: To conclude the small examples, a few paths for l = 4 will be considered.

Consider the paths Y 1 and Y 2 with −Y1 = Y3 = Y5 = −Y7 = 1, Y0 = Y2 = Y6 = Y8 = 0

and Y 1
j = Y 2

j = Yj for j ∈ N \ {4}. What makes the di�erence in Y 1
4 = 2 compared to

Y 2
4 = 0?

Figure 32: Y 1 to X1 above, Y 2 to X2 below, l = 4

Note that a′ = 1 and a = 0 both times. For Y 1, we havem (Y 1) = 3 andm(2) (Y 1) = 1.

This time 1 is passed twice after 2m(2) (Y 1), which means that m(1) is �nite this time
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with m(1) = 2. The only values taken over from X1′ are X1
1 = −1, X1

2 = 1, X1
3 = 0. Next

is X1
4 = 3− 2Y 1

4 = −1, X1
5 = 3− 2Y 1

5 = 1, and after that, equation (4) is used already.

Again, the �rst and the last step from 0 to 1 and back from 1 to 0 in the middle part

are removed and the rest is reversed. That's where the second case in equation (3) is

used. Then the path is concluded with X1
6 = 1 − Y 1

7 = 2, X1
7 = 1 − Y 1

8 = 1, X8
1 = 0.

For X6 and X7, the last case reverses the steps of the classic path again, that has to be

done because the negative part was already covered before.

In Y 2, we also have m (Y 2) = 3, but m(2) (Y 2) = 2. That means that this time, two

more values for X2′ are taken over: X2
1 = −1, X2

2 = 1, X2
3 = 0, X2

4 = 1, X2
5 = 0. From

the third segment Y 2
4 to Y 2

6 , the �rst and the last step shall be taken out and the rest

is reversed, but the rest is an empty path, so there is nothing to reverse. Note that

m(1) (Y 2) =∞. It was the same in the path above in l = 3. The rest of the path is just

the fourth case of equation (4), so we have X2
6 = 1 + 2Y 2

7 = −1, X2
7 = 1 + 2Y 2

8 = 1 and

�nally X2
8 = 0.

That shows the importance of the last positive segment next to a negative segment

that forces two steps to be eliminated. But one more thing is important. We more or

less put all segments together that are next to each other in negative range. However,

there are exceptions to that plan. For example, in Y0 = Y2 = Y4 = Y6 = Y8 = 0, Y1 =

−Y3 = Y5 = Y7 = −1, the last segment is independent from the others and gives

X7 = 1 + 2Y7 = −1, X8 = 1 + 2Y8 = 1, X9 = 0. Because a′ = 0 and a = 1, the third case

of equation (4) is used again. That means that the very last segment has to be treated

as individual (like if it would be the only segment) whenever possible, means, exactly

when a′ = 0. In that case, the previous segment can't be changed anymore, no matter

what comes after.

Figure 33: Special bijection for l = 4

This shall be a practical illustration for the bijection between classic paths and 1-2-

paths ending on 0. But one more number was important. The triangle also had special

numbers in the column representing the ending −1. Those will be done next, and the

results of Proposition 3.3 and also methods of Proposition 2.3 can already be used.

Proposition 3.4 (1-2-paths ending on −1). For l ∈ N0, there are as many classic
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random walk paths with length 2l that end in 0 as 1-2-paths with length 2l or 2l+ 1 that

end in −1.

Proof. The idea with a bijection can be executed again. This time, the bijection is

between 1-2-paths of length 2l and 2l + 1. One side are the paths that end with 0, the

other side the ones ending on −1.

Consider the paths 1-2-paths that end on 0. If a path Y0, . . . , Y2l+a with a ∈ {0, 1}
ends on 0, then the last step had to be from 1 to 0, implying Y2l = 1 if Y2l+1 = 0. So

the considered paths are exactly the ones with Y2l ∈ {0, 1}.
Case 1: Y2l = 0.

The obvious idea is to set Xk = Yk for k ∈ {0, . . . , 2l} and X2l+1 = −1. That already

covers all 1-2-paths with X2l+1 = −1 and X2l = 0.

Figure 34: Bijection for case 1

Case 2: Y2l = −1.

We have to get to paths that either have X2l = −1 already, or X2l+1 = −1 with

X2l+1 = −3. The idea is to do a re�ection again. The last part of a path can be

re�ected into negative range and maybe we land on −1 at time 2l or 2l + 1. It works

similar to what has already been done with the rectangles. Let p (Y ) be the last time

where Y was not positive, p (Y ) = max {k ∈ {0, . . . , 2l} : Yk ≤ 0}. Because of Y0 = 0, we

have p (Y ) ≥ 0. Beginning at time p (Y ) every step will be turned around, and Xk = Yk

is set for k ≤ p (Y ).

Case 2.1: Yp(Y ) = 0.

After time p (Y ), the old path has only steps with length 1, while the steps of the new

path have length 2 there, except for the very �rst one from 0 to −1. Then Xk = 1− 2Yk

for k > p (Y ). That means that Xk will be −1 where Yk is 1. Because of Y2l = 1, we

already have X2l = −1 and nothing more has to be done. Also, all paths with X2l = −1

will be reached, as this re�ection can be reversed again: X2l−1 = 0 is no problem as

there will be a single step down after that, and X2l−1 = −3 has just an extension from

Xp(Y )+1 = −1, which is in positive range at path Y . The exact formula is Yk = 1−Xk
2

,

derived from the other equation.
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Figure 35: Bijection for case 2.1

Case 2.2: Yp(Y ) = 0.

The last part of the old path this time begins with a step from −1 to 1 and the other

steps have length 1, while in the new path, all last steps have length 2. That means we

have Xk = −1 − 2Yk for k > p (Y ). Then for Y2l = 1, we have X2l = −3. But that is

okay, because we can just set X2l+1 = −1. Which also works with Y2l+1 = 0. The rest of

the paths with X2l+1 = −1 will be reached, and exactly the other ones with X2l = −3

that aren't already covered. To �nd the origin of a mapped path, set Yk = −1−Xk
2

.

Figure 36: Bijection for case 2.2
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This is the complete mapping. Let k ≤ 2l + 1, then this is the equation to get a

−1-ending 1-2-path from a 0-ending one.

Xk =



Yk k ≤ p (Y )

−1 k = 2l + 1, Y2l = 0

1− 2Yk p (Y ) < k ≤ 2l, Yp(Y ) = 0

−1− 2Yk p (Y ) < k, Yp(Y ) = −1

unde�ned otherwise

And this is the other direction. Let z(X) := max {i ∈ {0, 1, . . . , 2l − 1} : Xi = 0} and
o (X) := max {i ∈ {0, 1, . . . , 2l − 1} : Xi = −1} be the last time points where the path
passed 0 and −1, respectively. When o(X) is needed, it is not −∞.

Yk =



0 k = 2l + 1, X2l = −1

unde�ned k = 2l + 1, X2l = 0

1−Xk
2

z (Y ) < k ≤ 2l, X2l = −1

−1−Xk
2

o (Y ) < k,X2l = −3

Xk otherwise

This completes the bijection, which means that for any n ∈ N there are as many

1-2-path with length 2l or 2l + 1 ending with −1 as with 0, and therefore as many as

there are classic paths ending with 0 with length 2l.

In order to continue with the modi�ed Brownian motion, we need one last bijection.

Proposition 3.5 (1-2-paths in 0 or −1 probabilities). For l ∈ N0, let X0, X1, . . . be the

1-2-random walk. Then P (Xn = 0) = (−1)n
2n

+ P (Xn = −1) for n ∈ N0.

Proof. Induction base: Because of P (X0 = 0)− 1
20

= P (X0 = −1) = 0 = P (X1 = 0) =

P (X1 = −1)− 1
21
, the equation is ful�lled for n = 0 and n = 1.

Induction step: Assume that the equation is proven for n = m. Next thing to show is

that the equation also works for n = m+ 2.

If Xm+2 = 0, then Xm+1 = 1, and therefore Xm ∈ {−1, 0, 2}. Because from each of

those three values there is only one way to get to 0 in two steps, we have P (Xm+2 = 0) =
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1
4
P (Xm ∈ {−1, 0, 2}). On the other hand, for Xm+2 = −1 we have Xm+1 ∈ {−3, 0} and

then Xm ∈ {−5,−1, 1}, which leads to P (Xm+2 = −1) = 1
4
P (Xm ∈ {−5,−1, 1}). The

equation that has to be shown can be transformed, also using said equation for n = m,

which is already known to be true, and the result is

P (Xm+2 = 0) =
(−1)m+2

2m+2
+ P (Xm+2 = −1)

⇔ 1

4
(P (Xm = −1) + P (Xm = 0) + P (Xm = 2))

=
1

4

(
(−1)m

2m
+ P (Xm = −5) + P (Xm = −1) + P (Xm = 1)

)
I.H.⇔ P (Xm = −1) + P (Xm = 2) = P (Xm = −5) + P (Xm = 1) .

Therefore, it is su�cient to show that there are as many paths with length m that

end with 2 or −1 as there are paths of the same length ending with 1 or −5. Let

w.l.o.g. Xm ∈ {−1, 2}. The goal is to create a bijection onto a path Y0, Y1, . . . , Ym with

Ym ∈ {−5, 1}. For this purpose, let p (X) = max {k ∈ N : Xk ∈ {−1; 0}} be the last

time before m where X is −1 or 0.

Case 1: Xm = 2 and Xp(X) = −1.

The steps after p (X) can be re�ected, and due to the factor 2 in negative range, this

implies Ym = −5. This can also be reversed, from any path with Ym = −5 the steps

after p (Y ) can be re�ected to get a path with Xm = 2 and Xp(X) = −1.

Figure 37: Bijection between �rst part of 1-2-paths ending on 0 and −1, case 1
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Case 2: Xm = 2 and Xp(X) = 0.

Everything after p (X) can be re�ected again until some certain part. After the point

where it doesn't pass 1 anymore before n, at a time o (X), the new path does the

same steps as the old path again, and is always 1 below the other path, which leads to

Ym = Xm − 1 = 1. The reverse steps from a path with Ym = 1 and Yp(Y ) = −1 would

be to reverse everything after a time z (Y ) where 0 was crossed the last time before m

until p (Y ), where the steps are the same again. The distinction with o (X) and z (Y ) is

necessary, but in this case, these values are indeed not −∞.

Figure 38: Bijection between �rst part of 1-2-paths ending on 0 and −1, case 2

Case 3: Xm = −1.

The only paths left are the ones with Ym = 1 with Yp(Y ) = 0. This can work with

re�ecting every step after z (X). Also note that z (X) = p (Y ). The steps after z (X)

have length 2 again, but it will be Ym = 1. And the other way around, we also have

Xm = 1 when re�ecting every step after p (Y ).

Figure 39: Bijection between �rst part of 1-2-paths ending on 0 and −1, case 3
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That's all cases for both paths covered. To sum it up, here is the case distinction for

k ∈ {0, 1, . . . ,m}. Let Xm ∈ {−1; 2} with p (X) = max {i ∈ {0, 1, . . . ,m− 1} : Xi ≤ 0},
and for Y respectively. The same thing for z(X) := max {i ∈ {0, 1, . . . ,m− 1} : Xi = 0}
and o (X) := max {i ∈ {0, 1, . . . ,m− 1} : Xi = 1}. It will o (X) > ∞ in the cases it is

needed, which is exactly when Xm = 2. The cases here are in the same order as

considered in the mapping, except for the last line where the �rst part of the path is

covered that is just taken over as it is.

Yk =



−1− 2Xk Xm = 2, Xp(X) = −1, k > p (X)

Xk − 1 Xm = 2, Xp(X) = 0, k > o (X)

1− 2Xk Xm = 2, Xp(X) = 0, p (X) < k ≤ o (X)

1−Xk
2

Xm = −1, k > z (X)

Xk otherwise

And this is the other direction, where Y0, Y1, . . . , Ym is given with Xm ∈ {−5; 1} and
X0, X1, . . . , Xm shall be calculated, again in the same order as in the mapping from X

to Y .

Xk =



−1−Yk
2

Ym = −5, k > p (Y )

Yk + 1 Ym = 1, Yp(Y ) = −1, k > p (Y )

1−Yk
2

Ym = 1, Yp(Y ) = −1, z (Y ) < k ≤ p (Y )

1− 2Yk Ym = 1, Yp(Y ) = 0, k > p (Y )

Yk otherwise

Both equations use the �rst line in case 1, the fourth line in case 3 and the second and

third lines in case 2 for the parts in the two paths that are di�erent from each other.

The last line is in all three cases for the part that isn't re�ected.

Because these mappings inverse each other, we indeed have a bijection. This implies

there are as many 1-2-paths ending on −5 or 1 as 1-2-paths ending on −1 or 2 for a �xed

length. In conclusion, the equation we want to show is true for n = m+ 2. Because the

induction began with n = 0 and n = 1, the equation can be followed for all n ∈ N0.

We can �nally continue with the modi�ed Brownian motion (Mt)t≥0. The point before

these three bijections was that the expected value of the stopping times is sometimes 3
8

o� of 1. But what we want is that τn
n
→ 1 in probability. The plan there is to show that
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the expected value converges to 1 and the variance converges to 0.

At �rst let's compute E τn
n
. For every path and time point, we have to look at which

number it is and then add the expected value of the speci�c stopping time at that

number. Because every path has the same probability, the formula for the expected

value of every single stopping time can just be taken over using Proposition 3.5.

E
τn
n

= E
n∑
i=1

τi − τi−1
n

=
1

n

n∑
i=1

EτXi−1,Xi−1−ν(Xi−1),Xi−1+ν(Xi−1)

=
1

n

n−1∑
i=0

(
P (Xi /∈ {−1, 0}) +

5

8
P (Xi = 0) +

11

8
P (Xi = −1)

)

=
1

n

n−1∑
i=0

(
1 +

3

8
P (Xi = −1)− 3

8
P (Xi = 0)

)
=
n

n
+

1

n

n−1∑
i=0

3

8
· − (−1)i

2i

= 1− 3

8n

n−1∑
i=0

(
−1

2

)i
= 1− 3

8n
·

1−
(−1

2

)n
1− −1

2

= 1− 3

8n
· 2

3
·
(

1−
(
−1

2

)n)
= 1− 1

4n
·
(

1−
(
−1

2

)n)
The expected value tends to 1 for n→∞: Both of the fractions tend to 0, so the value

in the brackets tends to 1 and therefore the whole subtrahend tends to 0.

RecallXi = Mτi for any i ∈ N. De�ne f (xi−1, xi) := E (τi − τi−1|Xi−1 = xi−1, Xi = xi)

and σ2 (xi−1, xi) := E
(
(τi − τi−1 − f (xi−1, xi))

2 |Xi−1 = xi−1, Xi = xi
)
for any xi−1, xi

with P (Xi−1 = xi−1, Xi = xi) > 0. Then f (xi−1, xi) is the expected time that (Mt)t≥0
needs to go from xi−1 to xi under the condition that these speci�c two values are hit at

time i−1 and i, and σ2 (xi−1, xi) the corresponding variance. However, they just depend

on the values of xi−1 and xi, and not on i itself, because (Mt)t≥0 is also time-independent.

For xi−1 /∈ {−1, 0} we have f (xi−1, xi) = Eτxi−1,xi−1−ν(xi−1),xi−1+ν(xi−1) = 1, because

every path starting at xi−1 and ending at xi−1 − ν (xi−1) or xi−1 + ν (xi−1) can just

be re�ected to hit the other of those two values. For xi−1 > 0 Proposition 1.5 implies

σ2 (xi−1, xi) = E
(
(τi − τi−1)2 |Xi−1 = xi−1, Xi = xi

)
− f (xi−1, xi)

2 = 5·14
3
− 12 = 2

3
, the

variance there is �nite. The same argument can be used for xi−1 < −1, and the variance

is also �nite, σ2 (xi−1, xi) <∞. For xi−1 = 0 however, a distinction for the possible xi is

necessary, as we have 1
2

(f (0, 1) + f (0,−1)) = 5
8
, but they don't need to be equal. The

variances σ2 (0,−1) and σ2
0,−1 can also be di�erent from each other, but they are �nite,

because the variance of τ0,−1,1 is not greater than σ2 (1, 2) + σ2 (−3,−5) and therefore

bounded. Finally, if xi−1 = −1, then f (−1,−3) and f (−1, 1) must have the same
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di�erence to 11
8
. And the variances σ2 (−1, 1) and σ2 (−1,−3) are also bounded, as the

variance of τ−1,−3,1 is bounded:

V ar (τ−1,−3,1) = V ar (τ−1,−3,0) +
2

3
V ar (τ0,−3,1)

= V ar (τ−1,−3,0) +
2

3

(
V ar (τ0,−1,1) +

1

2
V ar (τ−1,−3,1)

)
⇔ V ar (τ−1,−3,1) =

3

2
V ar (τ−1,−3,0) + V ar (τ0,−1,1) ≤

3

2
σ2
−2 + V ar (τ0,−1,1) <∞.

The 2
3
and 1

2
are the probabilities to reach 0 before −3 from −1 and to reach −1 before

1 from 0, respectively. All the variances of these speci�c stopping times are �nite.

Set σ2
max := max {σ2 (1, 2) , σ2 (−3,−5) , σ2 (0, 1) , σ2 (0,−1) , σ2 (−1, 1) , σ2 (−1,−3)}

and T (n) := E (τn|X0, X1, . . . , Xn). Because of τ0 = 0 and the independent increments

of those stopping times, we have T (n) =
n∑
i=1

f (Xi−1, Xi) for any n ∈ N0. This is

a discrete random variable, and its number of di�erent values is at most the number

1-2-paths with length n, which is 2n, and every path has the same probability 1
2n
.

Lemma 3.6 (stopping time tending to their expected values). Let n → ∞. Then
τn−T (n)

n
→ 0 in probability.

Proof. De�ne D (n) := (τn − T (n))2. Use telescope sums and τ0 = T (0) = 0 to get

E (D (n)) = E

(
τn −

n∑
i=1

f (Xi−1, Xi)

)2

= E

(
n∑
i=1

(τi − τi−1 − f (Xi−1, Xi))

)2

=
n∑
i=1

E (τi − τi−1 − f (Xi−1, Xi))
2 ≤

n∑
i=1

σ2
max = nσ2

max.

All τk−τk−1−f (Xk−1, Xk) have expected value 0 (hence the expectation of their squares

is equal to their variances), and they are uncorrelated to each other. Because of that, it

doesn't matter if all of those summands are added or squared �rst.

Now it's just a short step to

E
(
τn − T (n)

n

)2

= E
(
D (n)

n

)2

≤ nσ2
max

n2
=
σ2
max

n
,

which tends to 0 for n→∞, implying τn−T (n)
n
→ 0 in probability.

Proposition 3.7 (limit expected value of stopping times). For n → ∞, the random

variables T (n)
n

converge in probability to 1.
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Proof. A rough estimation is the following:

E
∣∣∣∣1− T (n)

n

∣∣∣∣ =

E
∣∣∣∣n− n∑

i=1

F (i)

∣∣∣∣
n

≤
E

n∑
i=1

|1− F (i)|

n

=

n∑
i=1

i−1∑
j=−2i+2

P (Xi−1 = j) · 1
2

(|1− f (j, j − ν (j))|+ |1− f (j, j + ν (j))|)

n

The second sum has to start at −2i+ 2 instead of −2i+ 3 because for i = 1 we have to

start with 0 and not with 1. All summands outside j ∈ {−1, 0} can be ignored because

either the expected value of the stopping time with speci�c outcome is 1, which also

reduces to 0 in the absolute, or the probability of attaining a negative even value is 0.

Let a0 := |1− f (0, 1)| + |1− f (0,−1)| and a−1 := |1− f (−1, 1)| + |1− f (−1,−3)|.
Then

E
∣∣∣∣1− T (n)

n

∣∣∣∣ =

n∑
i=1

(a0 · P (Xi−1 = 0) + a−1 · P (Xi−1 = −1))

2n
.

If n is odd, the sum is greater than the sum for n−1 and smaller than the sum for n+1.

So we can just assume that n is even, n = 2m. The reason is that we can combine the

amount of paths with length 2k and 2k+ 1 for any k ∈ N0 that end on 0 or −1, of which

the number is already known because of Propositions 3.3 and 3.4. We have

E
∣∣∣∣1− T (n)

n

∣∣∣∣ ≤
2m∑
i=1

P (Xi−1 = 0) a0 + P (Xi−1 = −1) a−1

4m

=a0

m∑
i=1

(P (X2i−2 = 0) + P (X2i−1 = 0))

4m

+ a−1

m∑
i=1

(P (X2i−2 = −1) + P (X2i−1 = −1))

4m

For any k ∈ N0, Proposition 3.3 says that the number of 1-2-paths with length 2k or

2k + 1 ending on 0 is equal to the number of classic paths with length 2k ending on 0.

Proposition 3.4 yields the same, only that the 1-2-paths end on −1 instead. Therefore,

22kP (X2k = 0) + 22k+1P (X2k+1 = 0) =
(
2k
k

)
= 22kP (X2k = −1) + 22k−1P (X2k+1 = −1)
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3 Convergence of the 1-2-random walk

is always true. This leads us to

E
∣∣∣∣1− T (n)

n

∣∣∣∣ ≤a0
m∑
i=1

(P (X2i−2 = 0) + 2P (X2i−1 = 0))

4m

+ a−1

m∑
i=1

(P (X2i−2 = −1) + 2P (X2i−1 = −1))

4m

=a0

m∑
i=1

(
2i−2
i−1

)
4m · 4i−1

+ a−1

m∑
i=1

(
2i−2
i−1

)
4m · 4i−1

=
a0 + a−1

4m

m−1∑
i=0

(
2i
i

)
4i
.

The main point is to estimate
k∑
i=0

(2i
i )
4i

for any k ∈ N0. Let l ≥ 2. Lemma 1.2 implies

2l∏
i=l+1

2i−1
2i
≤ 3

4
, and we get

(
4l−2
2l−1

)
42l−1 +

(
4l
2l

)
42l

=

(
1 +

2l

2l − 1

) (4l
2l

)
42l

=

(
2 +

1

2l − 1

)
·
(
2l
l

)
4l
·

2l∏
i=l+1

2i · (2i− 1)

4i2

=

(
2 +

1

2l − 1

)
·
(
2l
l

)
4l
·

2l∏
i=l+1

2i− 1

2i
≤
(

2 +
1

2l − 1

)
· 3

4
·
(
2l
l

)
4l

≤ 7

3
· 3

4
·
(
2l
l

)
4l

=
7

4
·
(
2l
l

)
4l
.

Let V (k) :=
2k∑

i=2k−1+1

(2i
i )
4i

for any k ∈ N. Then V (1) = 3
8
and

V (k + 1) =
2k+1∑
i=2k+1

(
2i
i

)
4i

=
2k∑

i=2k−1+1

((
4i−2
2i−1

)
42i−1 +

(
4i
2i

)
42i

)
≤ 7

4
·

2k∑
i=2k−1+1

(
2l
l

)
4l

=
7

4
V (k) .

Writing this in an explicit way implies V (k) ≤ 3
8
·
(
7
4

)k−1
. Then the geometric formula

can be used.

m−1∑
i=0

(
2i
i

)
4i
≤
(
0
0

)
1

+

(
2
1

)
4

+

dlog2me∑
k=1

V (k) ≤ 1 +
1

2
+

3

8

dlog2me∑
k=1

(
7

4

)k−1
=

3

2
+

3

8
·
(
7
4

)dlog2me−1 − 1
7
4
− 1

≤ 3

2
+

(
7
4

)log2m
2
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Finally, we get

E
∣∣∣∣1− T (2m)

2m

∣∣∣∣ ≤ a0 + a−1
4m

·

(
3

2
+

(
7
4

)log2m
2

)

=
a0 + a−1

8
·

(
3

m
+

(
7
4

)log2m
2log2m

)
=
a0 + a−1

8
·

(
3

m
+

(
7

8

)log2m)
.

Therefore, lim
m→∞

E
∣∣∣1− T (2m)

2m

∣∣∣ = 0, as both summands in the bracket tend to 0. This is

it for even n, but for odd n, there is only one more summand in the sum of the binomial

coe�cients that also tends to 0 when divided by n.

Lemma 3.6 and Proposition 3.7 now yield that τn−T (n)
n
→ 0 in probability and T (n)

n
→

1, also in probability. That implies τn
n
→ 1 in probability.

After that, the rest works just like the proof of Donsker's Theorem. It is proven in an

analog way that Xn√
n
converges in distribution to a random variable that is distributed

like M1. This is the reason why ν is de�ned the way it is, being equal on the whole

positive and the whole negative range: ∀u1, u2 > 0 : ν (u1) = ν (u2) , ν (−u1) = ν (−u2).
In any other case, it wouldn't be true that Mst√

s
has the same distribution as Mt for any

s, t > 0. And ν (1) = 1 and ν (−1) = 2 follows from the fact that the stopping time

di�erences must have a mean value of 1, or else the normed stopping times wouldn't

converge to 1 in probability. And the rest can be directly taken over from the proof of

Donsker's Theorem, only with Mt instead of Bt at every place with a Brownian motion.

This shows that (Mt)t≥0 is indeed the limit of the 1-2-random walk.

The �nal result is the following theorem.

Theorem 3.8 (limit of the 1-2-random walk). Let Zi, i ∈ N be iid with P (Zi = 1) =
1
2

= P (Zi = −1). Let X0 = 0 and Xk = Xk−1 +Zi when Xk−1 ≥ 0 and Xk = Xk−1 +2Zi

when Xk−1 < 0 for k ∈ N. Then
(
Xnt√
n

)
t≥0

converges in distribution to (Mt)t≥0 for large

n, where (Mt)t≥0 is a weak solution of the Stochastic Di�erential Equation

dYt = ν (Yt) dBt,

Y0 = 0,

ν (m) =

1 m ≥ 0

2 otherwise.
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4 Miscellaneous

This isn't everything that was found out during the process of the creation. Another

bijection with the n× 3-rectangles can be made with the paths that weren't considered

before, this will be looked into �rst. Also, some follow-up questions can be raised that

will follow in the very last part.

4.1 Negative 1-2-random walk

Now that the non-negative paths were considered, the ones that end in negative range

are left over.

Proposition 4.1 (number of negative 1-2 random walks). For n ∈ N, there exists a

bijection between the 1-2-random walks of length n that end in negative range, and the

tilings of the (n− 1)× 3−rectangles.

Proof. The total number of paths of length n is 2n, obviously, as in each step, you can

go up or down. Therefore, the number of paths ending in the negative, is

J−n = 2n − Jn = 2n − 2n+1 + (−1)n

3
=

3 · 2n − (2 · 2n + (−1)n)

3

=
2n − (−1)n

3
=

2n + (−1)n−1

3
= Jn−1.

The number is equal to the number of 1-2-random walk paths ending in non-negative

range with length n − 1. But Jn−1 = Tn−1. That means that the number of negative

paths with length n is equal to the number of tilings of (n− 1)× 3−rectangles, so there
must exist a bijection between those.

To �nd such a bijection, we can do a similar recursive approach to the one used before.

Even the methods can mostly be transferred. The beginning is n = 1. The only tiling

with length 0 is the empty rectangle, and the only negative path with length 1 is the

one with X1 = 1. So, there isn't much of a choice.

Figure 40: Bijection for n = 1 and negative paths
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Having this as a base, we can again look what could be done when adding columns

of squares. At �rst, the normal squares can be considered once more. Last time, the

previous path was executed and the last step was 1 up. That can be done this time too,

but the last step must be downwards, obviously, and it goes 2 down instead of 1 due to

operating in negative range. Note that because of this, the only values that can actually

be reached, are the odd numbers.

The upper 2-square made a useless turn of going 1 up and 1 down as last two steps

in the non-negative case. This time, the useless turn is to go down �rst, and then going

up as last step. Again, these two steps change the value by 2 instead of 1.

Figure 41: Recursive continuation for normal squares/upper 2-squares in negative paths

The lower 2-squares have multiple cases again, but we will see that it will be a bit

easier this time, as there are only few cases crossing the 0. The �rst case for the non-

negative paths was to go two steps down after executing the path before, if possible.

That means that this time, we try to go two steps up at the very end. Because that

means the path ascends by 4 at the end, that only works for Yn−2 < −4.

Figure 42: Recursive continuation for lower 2-squares in negative paths part 1/3

Which cases are left? Every Xn = Xn−1 − 2 is covered with normal squares, and
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Xn = Xn−1 + 2 is also completely done with upper or lower 2-squares, depending on

Xn−2 = Xn or Xn−2 = Xn − 4, respectively. That means, the only possibility for the

last step is, to have only 1 length, so it has to be Xn = −1 and Xn−1 = 0, because the

path has to end below 0. But for Xn−1 to be 0, Xn−2 has to be 1, which already �xes

the last part of the path: the last two executed steps have to be two steps down from

1. Obviously, 1 cannot be reached by a path of length n− 2, so the path before has to

be modi�ed again. We try to do the same re�ections used in the non-negative case, just

the other way around.

Looking at the previously executed paths with length n− 2 again. Because all paths

with Yn−2 < −4 were covered and Yn−2 is odd, it has to be Yn−2 ∈ {−1;−3}. To modify
such a path so that the new path ends at 1, another component will be de�ned, an

equivalent to p (Y ) for the non-negative case, but a bit more complicated. The reversion

cannot happen at a certain point crossed, so the new variable has to be directly depen-

dent on Y , or more accurately, on Yn−2 itself. Let r (Y ) be the last time point where the

path was at a bigger value than at its end, r (Y ) := max {k ∈ {0, 1, . . . , n− 3} : Yk Yn−2}.
Note that r (Y ) ≥ 0, because Yn−2 is always negative and Y0 = 0 > Yn−2, so it can always

be used due to not being −∞. Now, the path will be re�ected from Yr(Y ) to Yn−2 again,

the modi�ed path goes up when the original path goes down and vice versa.

For Yn−2 = −1, the path is re�ected at the last time point where a 0 was crossed. At

r (Y ), we do a step from 0 to 1, and every step after that goes only 1 up or down. It is

not a real re�ection because the original path is stretched by a factor of 2, but we still

have the exact opposite steps.

Figure 43: Recursive continuation for lower 2-squares in negative paths part 2/3

For Yn−2 = −3, the re�ection happens at the last time −1 is reached. One step before

r (Y ) has to be from 0 to −1, at r (Y ), we go from −1 to 1 and after that, there are
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again steps with height 1 instead of 2.

Figure 44: Recursive continuation for lower 2-squares in negative paths part 3/3

That ends the projection, as every case for the end of the previous path is covered,

along with every last column possibility of the rectangle. The injectivity will be proven

later this time. At �rst, the bijection will be shown again.

Again, we have an n×3−rectangle tiled into squares of length 1 and 2 and X0 = 0. For

Y0, Y1, . . . , Yj being the path obtained by the same rectangle without the last column if it

has normal squares (j = n−1) or without the last two columns otherwise (j = n−2). Let

further r (Y ) be the last time point where this previous path was at a bigger value than

at time j, r (Y ) := max {k ∈ {0, 1, . . . , j − 1} : Yk Yj}. For the new path X0, . . . , Xj, let

k ∈ {0, 1, . . . , j}.

Xk =


1−Yk

2
rectangle ends with lower 2-square, k > r (Y ) , Yn−2 = −1

−1−Yk
2

rectangle ends with lower 2-square, k > r (Y ) , Yn−2 = −3

Yk otherwise

Now it's down to the last step(s).

Xn−1 =



Xn−2 − 2 rectangle ends with upper 2-square

Yn−1 rectangle ends with normal squares (already set)

Xn−2 + 2 rectangle ends with lower 2-square, Yn−2 < −3

0 otherwise
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Xn =



Xn−2 rectangle ends with upper 2-square

Xn−1 − 2 rectangle ends with normal squares

Xn−2 + 4 rectangle ends with lower 2-square, Yn−2 < −3

−1 otherwise

To prove that this is actually a bijection, we will try to reverse this projection. Let

X0, . . . , Xn be a 1-2-path with Xn < 0. For n = 1, we have the empty rectangle.

For n > 1, the rectangle ends with...


...normal squares Xn = Xn−1 − 2.

...an upper 2-square Xn = Xn−2 = Xn−1 + 2.

...a lower 2-square otherwise.

Then, the rest of the path might have to be reversed again. Let Y0, Y1, . . . , Yj be the

path that will constructed for the rest of the rectangle, j = n− 1 if Xn = Xn−1 − 2 and

j = n− 2 otherwise. Let k ∈ {1, . . . , n} and p (X) as in the non-negative case.

Yk =


1− 2Xk Xn = −1, Xn−1 = 0, Xn−2 = 1, p (X) = 0, k > p (X)

−1− 2Xk Xn = −1, Xn−1 = 0, Xn−2 = 1, p (X) = −1, k > p (X)

Xk otherwise

For two di�erent paths, if two of them get the same end for the rectangle, the previous

paths are still di�erent. The only case where this can go wrong is if Xn = −1, Xn−1 = 0

and Xn−2 = 1. But it doesn't, because the reversed paths are then di�erent too, or they

were di�erent before p (X).

With that, the bijection is complete, because we already know that the number of

negative 1-2-paths with length n is equal to the number of 3 × (n− 1) tilings, and the

remapping is injective. That is all we need to have a bijection.

Using the tilings, we now also have a bijection between positive 1-2-paths of length n

and negative 1-2-paths of length n+ 1 for all n ≥ 0.

4.2 Open questions

From the known results, there are some following questions that can be raised.

Is there a reasonable limit of the n× 3-rectangles?

That might or might not be the case. The thing is that only paths ending in non-
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Figure 45: 1-2 random walks double bijection

negative range are considered (or paths that actually end in negative range, depending

on which case is taken). To �nd a limit of one of these cases alone can be very hard,

although they can be also taken together, because a bijection between the 1-2-paths of

length n and k × 3-rectangles with k ∈ {n− 1} exists. But the bijections considered

here also can be di�erent from the ones that are needed to answer such a question.

Are there other bijections between special random walks and rectangles of

a similar form?

There are some cases that even look hard right from the beginning. For example, for

the 1-3-random walk, a bijection is needed that covers exactly 3 ·2n−2 paths for even and
positive n and a few less for the odd cases. This is already a case where such a bijection

could be impossible. It's very unclear if it's none, some or all other random walks that

can be covered like that.

Does another 1-u-random walk also have a limit? If so, which one?

Let u ∈ N, u > 1, Xk =
k∑
i=1

Zi and P (Zk = 1) = P (Zk = −1) = 1
2
for Xk−1 ≥ 0 and

P (Zk = u) = P (Zk = −u) = 1
2
elsewhere. The approach would be the same as with

the 1-2-random walk. The obvious idea is again a solution to a stochastic di�erential

equation, with X0 = µ = 0 and ν (x) = 1 for x ≥ 0 and ν (x) = u for x < 0. stopping

times τn for n ∈ N0 would be de�ned to embed the possible paths again, and the only

conditioned mean stopping time di�erences without direct mean value 1 are those that

start at value 0 or −1. The calculation of the mean values give

Eτ0,−1,1 =
1

2

(∫ −1
0

∫ y

0

2

u2
dzdy +

∫ 1

0

∫ y

0

2

1
dzdy

)
=

1

2

(∫ 0

−1

2y

u2
dy + 1

)
=

1

2
+

1

2u2
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and

Eτ−1,−u−1,u−1 =
1

2

(∫ −u−1
−1

∫ y

−1

2

u2
dzdy +

∫ u−1

−1

∫ y

−1

2

ν (z)2
dzdy

)
=

1

2

(
1 +

∫ 0

−1

∫ y

−1

2

u2
dzdy +

∫ u−1

0

(∫ 0

−1

2

u2
dz +

∫ y

0

2

1
dz

)
dy

)
=

1

2

(
1 +

1

u2
+

∫ u−1

0

2

u2
+ 2ydy

)
=

1

2

(
1 +

1

u2
+

2u− 2

u2
+ (u− 1)2

)
=

1

2

(
1 +

2u− 1

u2
+ u2 − 2u+ 1

)
= 1 +

u4 − 2u3 + 2u− 1

2t2
.

It would've been good to get 3
2
− 1

2u2
to have at least mean value 1 between these

two conditioned stopping times. In this case, the mean value is 1 + u3−2u2−u+2
4u

= 1 +
(u−2)(u−1)(u+1)

4u
, which is only 1 when u = 2. This was exactly the case for the 1-2-

random walk. The next question is if it matters, since the stopping times themselves

only have their speci�c probability. But looking at u = 3 already, we notice that

P (X2n = 0) = P (X2n+1 = −1) =
(2n
n )

2n+1 for n ∈ N, which would've perfectly worked if

u3 − 2u2 − u+ 2 = 0. This does not work to prove E τn
n
→ 1 in probability.

But that doesn't need to be the end. It might P (Xn ∈ {−1, 0}) ∈ O
(

(2n
n )
4n

)
be true,

and then we can take similar steps as already done before. The probabilities for values

close to 0 in general have to be small enough to make a geometric approach possible.

And the variances for the speci�c stopping times have to be �nite. Then the odds of the

convergence of the random walk to a weak solution of the stochastic di�erential equation

are at the very least existing.

This can be driven even further. What if u > 0, but u does not have to be an

integer? Then the same stochastic di�erential equation maybe can be used again. For

the solution of that, P (−u < Xi < 1) has to be considered for the stopping times. A

good side result would again be P (−u < Xn < 1) ∈ O
(

1
4n

(
2n
n

))
for the stopping times,

which again should have �nite variance. The case of an u-v-random walk, u, v > 0, with

P (Zk = u) = P (Zk = −u) = 1
2
for Xk ≥ 0 and P (Zk = v) = P (Zk = −v) = 1

2
for

Xk < 0 could then just be transferred from the 1- v
u
-random walk.

A very far-fetched version could be this one: Let f : R → R+ be any real-valued

function with positive values. Let (Xi)i∈N0
be a random walk with independent (Zk)k∈N

with Xk = Xk−1 + Zk and P (Zk = f (Xk−1)) = P (Zk = −f (Xk−1)) = 1
2
. That is also

the reason why f has positive values, because negative values wouldn't change anything

at these probabilities and can therefore be ignored, and 0 as a value could lead to the
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random walk standing still forever. What could be a convergence stochastic process

of this random walk? It might be the case that P (a < Xn < b) ∈ O
(

1
4n

(
2n
n

))
for any

0 < a < b, and all stopping times that are possible have �nite variance. And that might

lead to a convergence of
(
Xnt√
n

)
t≥0

to a weak solution (Mt)t≥0 of the following stochastic

di�erential equation:

dYt = µ (t, Yt) dt+ ν (t, Yt) dBt,

µ = Y0 = 0,

ν (t, x) =


lim
y→∞

f (y) x > 0

lim
y→−∞

f (y) x < 0

f (0) x = 0

Of course, those two limits must exist and be �nite, if that's not the case, the limit

might not exist. If one of those limits is 0, the Engelbert-Schmidt-Conditions in Propo-

sition 3.1 are not ful�lled. Also, for every x ∈ R and x1, x2, . . . with lim
n→∞

xn = x,

the partial limit of the function values lim
n→∞

f (xn) must not be 0 to avoid a conver-

gence to a certain value. Although, if the random walk itself converges to a �nite value,

P
(

lim
n→∞

Xn ∈ {c1, c2, . . . , cm}
)
form ∈ N and some c1, . . . , cm ∈ R, then the limit always

converges to 0, so this case can be considered too. But for now, it should just be set

that f : R → [a, b] for some a, b > 0 with a ≤ b to be safe. Another decision here was

made to let ν (0) 6= 0 to assure that the stochastic process can actually exit 0.

This is just a speculative analysis. If it is even true, the proof of this might need the

work of the best mathematicians of the century.
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