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Simple Summary: Epithelial ovarian cancer treatment is limited by missing predictive markers,
frequent chemotherapy resistance and an incomplete understanding of the biology of tumors. Earlier
work proved that hypermethylation of the gene RUNX3 coding for a transcription factor has prog-
nostic value, and RUNX3 transcript variant overexpression, regulated by this epigenetic mechanism,
influences cisplatin sensitivity and malignant properties of cells contrary. The present data validate
RUNX3 transcript variant-specific effects for high-grade serous ovarian cancer and identify RUNX3-
regulated genes and processes. Specifically, DNA damage repair and angiogenesis are influenced by
RUNX3, and transcript variant 1 mediates stronger carcinogenic properties.

Abstract: The prognosis of late-stage epithelial ovarian cancer (EOC) patients is affected by chemother-
apy response and the malignant potential of the tumor cells. In earlier work, we identified hyper-
methylation of the runt-related transcription factor 3 gene (RUNX3) as a prognostic biomarker and
contrary functions of transcript variants (TV1 and TV2) in A2780 and SKOV3 cells. The aim of the
study was to further validate these results and to increase the knowledge about RUNX3 function
in EOC. New RUNX3 overexpression models of high-grade serous ovarian cancer (HGSOC) were
established and analyzed for phenotypic (IC50 determination, migration, proliferation and angio-
genesis assay, DNA damage analysis) and transcriptomic consequences (NGS) of RUNX3 TV1 and
TV2 overexpression. Platinum sensitivity was affected by a specific transcript variant depending
on BRCA background. RUNX3 TV2 induced an increased sensitivity in BRCA1wt cells (OVCAR3),
whereas TV1 increased the sensitivity and induced a G2/M arrest under treatment in BRCA1mut

cells (A13-2-12). These different phenotypes relate to differences in DNA repair: homologous re-
combination deficient A13-2-12 cells show less γH2AX foci despite higher levels of Pt-DNA adducts.
RNA-Seq analyses prove transcript variant and cell-line-specific RUNX3 effects. Pathway analyses
revealed another clinically important function of RUNX3—regulation of angiogenesis. This was
confirmed by thrombospondin1 analyses, HUVEC spheroid sprouting assays and proteomic profiling.
Importantly, conditioned media (CM) from RUNX3 TV1 overexpressing A13-2-12 cells induced an
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increased HUVEC sprouting. Altogether, the presented data support the hypothesis of different func-
tions of RUNX3 transcript variants related to the clinically relevant processes—platinum resistance
and angiogenesis.

Keywords: epithelial ovarian cancer; RUNX3; transcript variants; platinum resistance; angiogenesis

1. Introduction

Epithelial ovarian cancer (EOC) is still the most lethal cancer of the female reproductive
system, with an average five-year survival rate of 40% [1–4]. Tumor stage, histology and
the (epi-)genetic landscape influence the patient’s outcome. In earlier studies, we showed
that RUNX3 methylation in ovarian carcinoma patients has a prognostic value [5,6] and
that RUNX3 protein isoforms function differently in vitro [7]. The aim of the present study
was to elucidate the different modes of action—validating and explaining the prior seen
contrary functions since very little is known about the difference between the two RUNX3
isoforms. Moreover, analyses should increase the understanding of the relevance of the
RUNX3 isoforms for the prognosis of EOC patients.

RUNX3 is one of three members of the runt-related transcription factor family, which are
involved in various biological processes [8]. By binding to the cofactor, CBFβ/PEBP2β,
it promotes or represses transcription in a tissue-dependent manner [9]. RUNX3 is crucial
for T cell differentiation [10] and necessary for the growth of gastric epithelial cells [11].
Interestingly, the chromosomal region 1p36, including the RUNX3 locus, is a deletion
hotspot in different carcinomas [12,13]. The two transcript variants are tightly controlled
by two independent promoters. The C-terminus and runt-domain are conserved while a
19 amino acid N-terminal difference discriminates between the two isoforms [13]. RUNX3
is a highly potent transcription factor that is associated with various signaling pathways,
including Wnt [8,14], Notch [15,16] and DNA repair [17,18]. By regulating angiogenesis
inhibitor thrompospondin-1 (TSP-1) and other angiogenesis regulators [19–22], RUNX3
influences signaling pathways within a cell and between the cell and its extracellular
matrix. Despite studies analyzing pre-invasive [8,23,24] and invasive carcinomas [25–27],
which were performed in diverse tumor types, the mechanisms by which aberrant RUNX3
expression impacts disease pathogenesis remains poorly understood. Findings in Runx3
null mice [11] propose a crucial role as a carcinogenic modulator, whereas the discussion on
specific roles is highly contradictory. Tumor suppressive [8,27], as well as oncogenic charac-
teristics [28,29], were suggested in different studies performed on different tumor entities.
Additionally, RUNX3 exerts both tumor suppressive and oncogenic functions in pancreatic
cancer depending on mutational background and phenotypic readout [30]. In the ovary,
similar contradicting findings describe RUNX3 as tumor suppressor [31], regulator of
normal physiological development [32] or an oncogene [25,33]. In our recent publica-
tion, we provided the first evidence that the different roles described for RUNX3 may
additionally depend on the specific transcript variant investigated [7]. Whereas RUNX3
TV1 overexpression mediated increased platinum resistance and migration RUNX3 TV2
induced the contrary phenotypes. One limitation was the use of the cell-lines A2780 and
SKOV3 not representative for the most common EOC subtype high-grade serous ovarian
cancer (HGSOC) [34–36]. In this study, we present new data using HGSOC cell-lines,
confirming our hypothesis of different functions. Additionally, we provide novel insight
into the genome-wide regulation of gene expression by RUNX3 variants and their influence
on DNA repair and angiogenesis, two clinically relevant pathways.

2. Methods
2.1. Vector Cloning

For gene transfer, the complementary DNA of RUNX3 transcript variants 1 (NM_001031680)
and 2 (NM_004350) were cloned into pBK-CMV or pCDH by PCR (Supplementary Table S1; [7]).
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2.2. Cell Culture

A13-2-12, A2780 and OVCAR3 ovarian cancer cells were cultured under standard
conditions (37 ◦C, 5% CO2, 90% humidity) in RPMI supplemented with 10% fetal calf
serum and 1% pen/strep. Transfected cells were kept in cell-line-specific selection RPMI
media comprising 0.3 or 0.4 mg/mL of the selection antibiotic G418 for A2780 and A13-2-12,
respectively. Cell lines differed in their genetic properties (Supplementary Table S2) and
were obtained from Ansgar Brüning (A2780), purchased at ATCC (American Type Culture
Collection, LGC Standards, Wesel, Germany) (OVCAR3) or self-established (A13-2-12).
The cell-line A13-2-12 was established from a primary ascites culture after several passages
following published protocols [37]. After 35 passages, the cell culture underwent cellular
crisis resulting in a permanent growing cell-line (in culture up to passage > 100). Cell line
authentication was done by STR profiling and revealed the correct identity depicted by 97%
and 100% percent match for A2780 and OVCAR3 (ICLAC match criteria worksheet [38])
compared to STR reference profiles (ATCC and [35]). Genetic testing on BRCA1 and
RB1 mutation status were done on A13-2-12 and A2780 cells in a PCR product-based
sequencing approach (Supplementary Table S3). The detected BRCA1 mutation in A13-2-
12 was confirmed in the original HGSOC tumor.

2.3. Transfection, Single Cell Clone Generation and Transduction

Ovarian cancer cells were transfected, and A2780 single-cell clones were generated
according to published protocols [7]. Because A2780 cells expressing RUNX3 variant 1
or 2 were established at different time points, two different empty vector controls were
included in the experiments. Additionally, cells were transduced using RUNX3 transcript
variant-specific pCDH-CMV-MCS-EF1-Puro lentiviral vectors [39].

2.4. Functional Analyses In Vitro

Basic functional assays were performed to assess the cell’s ability for colony formation,
migration, cellular vitality and proliferation. Furthermore, effects upon cisplatin exposure
were examined by IC50 determination (MTT assay) and flow cytometry as described
elsewhere [7]. For IC50 determination, a total of 1 × 104 cells were seeded as technical
triplicate in a 96-well plate in a total of 200 µL RPMI medium, cultivated for 24 h and
exposed for 48 h to different cisplatin concentrations (between 100 and 0.1 µM). Afterward,
the cell survival was measured by MTT assay (Promega, Mannheim, Germany) at 570 nm
using a microplate reader (SPECTROstar Omega, BMG Labtech, Freiburg, Germany).
After background subtraction, relative values were calculated and analyzed via GraphPad
5.0 software using non-linear regression analyses. For cell cycle analysis, cells were treated
with 3 µM cisplatin for 48 h, washed twice with PBS, and fixed in 50% ice-cold ethanol
at −20 ◦C for at least 3 h. After washing out the ethanol with double-deionized water,
cells were treated with RNase A and stained with propidium iodide (PI, 50 µg/mL).
Cells were measured using a Canto II (BD Biosciences, San Jose, CA, USA). Data were
analyzed with FlowJo software (FlowJo, Ashland, OR, USA). For cell proliferation assay,
a total of 2500 cells were seeded as technical triplicates in a 96-well plate in a total of 100 µL
RPMI medium and cultured for 2 (baseline), 24, 48, 72 and 96 h. To assess the cell number,
the CellTiter 96® non-radioactive cell proliferation assay (MTT) from Promega was used
similar to the IC50 determination. The ability to form colonies was determined after seeding
500 cells in technical triplicates in 6-well plates and cultured in a 2 mL RMPI medium for
10 days. The established colonies were washed with DPBS +/+ and fixed 20 min at 4 ◦C
with ice-cold 70% EtOH. After washing with double-deionized water, the fixed colonies
were air-dried and stained with crystal violet solution for 5 min at RT. Acetic acid (10%
concentration) was used to extract the crystal violet pigments from the stained colonies,
and the amount of crystal violet was then measured at a wavelength of 630 nm. A migration-
scratch assay was used to measure cell migration. A total of 2.5 × 106 cells were seeded in
a 6-well plate and grown to 80–90% confluence. Three scratches were introduced into the
cell monolayer and washed with DPBS to remove cell debris. To measure just the migratory



Cancers 2021, 13, 476 4 of 22

ability, the cells were further cultivated in a serum-free medium. Images were taken at
three predefined areas of the scratches at the time points 0, 6, 12 and 24 h. The analysis was
then conducted using the open-source software T-Scratch. The mean wound closure at the
three predefined areas represented the result for each independent experiment.

2.5. Expression Analyses

Gene and protein expression analyses (real-time RT–PCR, immunocytochemistry,
Western blot) were conducted using established techniques [5,7]. Gene-specific primers
were used (Supplementary Table S4). For Western blot detection, additional antibodies anti-
TSP-1 (A6.1 Thermo Scientific, Dreieich, Germany), HRP-conjugated anti-rabbit (Cell signal
technology, USA) and an imaging system with a CCD camera (G:BOX Chemi XX6-Syngene,
Frederick, MD, USA) were used.

2.6. Fluorescence Microscopy-Based Analysis

DNA double-strand break induction following cisplatin treatment was assessed using
indirect immunofluorescence and a γH2AX antibody [40]. Platinum-DNA-adduct (Pt-
(GpG)) detection was conducted according to a published protocol [41]. Axio Imager
Z.2 + Apotome (Zeiss, Jena, Germany) was used for documentation and ImageJ for the
image analysis.

2.7. Chromosome Instability Assessments

Chromosome instability (CIN) assays were performed as detailed elsewhere [42,43].
Briefly, chromosome enumeration probes (CEPs) recognizing the pericentric regions of
chromosomes 8, 11 and 17 were hybridized to asynchronous samples (and controls) accord-
ing to the manufacturer (Vysis). Low resolution (20×) images were collected as detailed
previously [42,43], using an Axio Imager Z2 (Zeiss) microscope equipped with a Plan-
Neofluor 20× objective and an Axiocam HR CCD camera. Images were imported into
Imaris v7.7.2 (Bitplane), where nuclear areas were quantified. In general, changes in nuclear
areas are typically associated with large-scale changes in DNA content (i.e., ploidy) [44]
and, therefore, are used as a surrogate marker of CIN [45,46]. Cells were analyzed for
changes in CIN score (CS) values [42,43], which are metrics devised to describe both gains
and losses of specific chromosomes (i.e., CEP foci). Briefly, individual CS values for each
CEP evaluated (CS8, CS11 and CS17) are calculated by subtracting the observed value from
the expected value for each individual CEP (2 foci) within a given nucleus, while the CSC
(CIN score combined) is determined by summing the absolute values of each individual CS.
All nuclear area and CS values were imported into Prism v7 (GraphPad, San Diego, CA,
USA), where two-sample Kolmogorov–Smirnov [KS] tests and Mann–Whitney tests com-
paring cumulative distribution frequencies and rank orders, respectively, were performed
(p-value < 0.05 is considered statistically significant). Graphs were generated in Prism and
exported to Photoshop CS6 (Adobe, San Jose, CA, USA), where figures were assembled.

2.8. Assessment Angiogenic Potential

Pro- or anti-angiogenic effects were tested by endothelial spheroid sprouting assay.
Twenty-four-hour conditioned media (CM) (RPMI without supplements) from the cells of
interest were used to conduct endothelial sprouting experiments according to a published
protocol [47]. In short spheroids from human umbilical vein endothelial cells (HUVEC,
3000 cells per spheroid) were generated in 96-well round bottom plates in endothelial
cell medium (Medium 199, 17.5% (v/v) fetal calf serum (FCS), 2.5% (v/v) human serum,
7.5 µg/mL endothelial mitogen, 7.5 U/mL heparin, 680 µM glutamine, 100 U/mL penicillin,
100 µg/mL streptomycin, 100 µM ascorbic acid, 1% methylcellulose) for 24 h, embedded
in a fibrin matrix and incubated for 24 h in control medium (RPMI, 2% FCS; ± 10 ng/mL
VEGF) or conditioned medium. Afterward, spheroids were fixed in 4% paraformaldehyde,
washed twice with PBS and photographed. Image analysis quantified the number and
length of spheroid sprouts. Furthermore, the presence of the most common effectors within
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the CM was identified using the Proteome Profiler™ human angiogenesis array kit with
the supplied protocol (R&D Systems, Minneapolis, MN, USA).

2.9. RNA Sequencing and Computational Analysis

Total RNA of RUNX3 transcript variant 1 (TV1) and 2 (TV2) transfected A13-2-12 and
transduced A2780 cells, and native controls were used in biological triplicates to perform
whole transcriptome analysis. Sample concentration was determined using a Qubit 2.0
fluorometer (range: 267–546 ng/µL). The overall quality was assessed via Bioanalyzer
(Agilent, Waldbronn, Germany). Subsequently, an Illumina TruSeq Stranded Total RNA kit
was used to generate two sequencing libraries consisting of 9 samples each. The kit included
rRNA depletion (RiboZero Gold rRNA Removal), cDNA generation, index insertion,
adapter inclusion and overall purification. The quality of the library was checked after
rRNA depletion and after the last purification again using Bioanalyzer. The strand-specific
library was then sequenced on an Illumina NextSeq system (high-output, paired-end,
read length 151 nt; San Diego, CA, USA)). Overall, 18 samples were sequenced, yielding
between 45.3 and 61.9 million paired-end reads per sample.

After demultiplexing, the quality of the resulting FASTQ files was monitored using
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC
v0.9 [48]. Low-quality bases at the 3′ end were removed by Trimmomatic v0.36 [49] using
a sliding-window approach (window size: 5), a minimum quality score of 28, and a
minimum read length of 50 nt. The remaining reads with an rRNA origin were removed
using SortMeRNA v2.1 [50]. Only one replicate of the A13-2-12 condition showed a higher
amount of rRNA reads (8.96%); however, still in an acceptable range. Quality-adjusted and
rRNA-cleaned reads were individually mapped to the human reference primary assembly
GRCh38 using HISAT v2.0.4 [51] with default parameters and SAMtools v1.3 [52] for
sorting and indexing. The annotation of protein- and non-coding human genes were
obtained from Ensembl release 93 [53] and used as an input for featureCounts v1.6.3 [54]
with the parameters -pBC and -s 2 (the later one to count strand-specific). Only uniquely
assigned reads were counted and provided to DESeq2 v1.16.1 [55] for reading count
normalization and pairwise identification of differentially expressed genes. Only genes
passing an adjusted p-value threshold of 0.05 and with a log2-fold change (log2FC) of
at least 1 were considered as significant. The ReportingTools v2.16.0 [56] package was
used to generate interactive gene expression box plots, and the PCAGO web service [57]
was used to investigate the clustering of replicates and conditions. GO term enrichment
and visualization of the most significantly regulated pathways were performed with
the Piano package v1.16.4 [58] and DAVID online tool [59]. In addition, the WebGestalt
online service [60] was used for GSEA and REVIGO [61] for summarizing and visualizing
the enriched categories. The Venn diagrams were generated using the online software
of bioinformatics & evolutionary genomics lab at Ghent University. Protein–protein-
interaction networks were analyzed with String online tool [62]. All raw read data files
were deposited at the European Nucleotide Archive under accession ERP124377. RNA-Seq
results were validated via qRT–PCR using GAPDH and actin-beta as housekeeping genes
and gene-specific primers for selected genes (Supplementary Table S4).

2.10. Statistical Analysis

The mean ± standard deviation is reported unless otherwise indicated. The statistical
analyses were done using Microsoft Excel 2010/365 or GraphPad Prism. The Student’s
t-test was conducted for pairwise comparisons while the one- or two-way ANOVA with
Bonferroni post hoc test was applied comparing multiple groups. Statistical significance
was defined by p < 0.05. A minimum of three biological replicates was done for all
functional experiments.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3. Results
3.1. Cellular Phenotypes Are Differently Affected by RUNX3 Variants in Different EOC Models

Previously, we provided the first RUNX3 transcript variant-specific overexpression
in vitro models in A2780 and SKOV-3 cells and presented data on the difference in cellular
function between both variants [7]. Transfection (A13-2-12) and transduction (OVCAR3
and A2780) were used to generate complementary in vitro cellular models to confirm
our previous observations. A13-2-12 and OVCAR3 cells were purposefully chosen as the
previous models do not accurately represent high-grade serous ovarian carcinoma (HG-
SOC) [34–36]. Both lines are derived from ascites obtained from HGSOC patients and har-
bor p53 mutations (A13-12-12: splice site mutation c.782 + 1G > A; OVCAR3: p.Arg248Gln)
with A13-2-12 showing an additional BRCA1 mutation (p.Ala1752Thr). This mutation is
reportedly pathogenic [63].

Successful RUNX3 overexpression was confirmed at mRNA and protein levels (Figure 1A
and Supplementary Figure S1A,C). In A13-2-12 cells, RUNX3 TV1 overexpression led to a
significant decrease in cisplatin resistance, whereas TV2 did not change cisplatin sensitivity
(IC50control = 15.9 µM, IC50RUNX3 TV1 = 6.38 µM; IC50RUNX3 TV2 = 11.5 µM; Figure 1B).
Cell cycle analysis upon cisplatin exposure confirmed the different phenotype between
TV1 and TV2 expressing cells proving an increased G2/M arrest in TV1 cells (Figure 1C,
Supplementary Figure S2A).

The migration and proliferation rates were reduced by both transgenes, while distinct
differences were observable between variants. Specifically, variant 1 or 2 influenced more
strongly proliferation and migration, respectively (Figure 1D,F, Supplementary Figure S2B).
The ability to form colonies was not affected by RUNX3 overexpression in A13-2-12 cells
(Figure 1E). In BRCA1wt OVCAR3 cells, the expression of RUNX3 transcript variants had
the same effect on the cisplatin resistance as seen in A2780 cells [7]—variant two led to a
significant increase in cisplatin sensitivity (Supplementary Figure S1B).
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Figure 1. Functional characteristics of RUNX3 overexpression model of A13-2-12 cells. (A) Quantification of RUNX3
transgene overexpression in A13-2-12 cells compared to the endogenous expression in native and empty vector control cells,
n = 3. (B) IC50 determination against cisplatin. The difference between the variants was significant (using 2-way ANOVA,
indicated by #), IC50 values: empty vector 15.9 µM (12.3–20.5 µM), RUNX3 TV1 6.38 µM (5.48–7.42 µM), RUNX3 TV2
11.5 µM (9.05–14.6 µM) n = 5. (C) A13-2-12 cells expressing RUNX3 TV1 responded with an increase in the proportion of cells
in G2-M phase after treatment. n = 4. (D) The overexpression of TV1 resulted in a reduced proliferation compared to cells
expressing TV2. (E) RUNX3 overexpression did not affect the ability to form colonies. Respective crystal violet staining of
the colonies is shown below the absolute quantification of the measured optical density (OD) values n = 4. (F) The migration
capacity was significantly reduced by RUNX3 TV1 and TV2 overexpression compared to empty vector. The strongest effect
was present in TV2 expressing A13-2-12 cells compared to the control cells, n ≥ 3. (F) * p < 0.05, ** p < 0.01, *** p < 0.001 in
2-way ANOVA.
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Since A13-2-12 and A2780 cells showed contrary phenotypes depending on the over-
expressed RUNX3 variants when treated with cisplatin (e.g., TV1 led to higher sensitivity
in A13-2-12 cells but higher resistance in A2780 cells)—further analyses were done with
these two cell-lines. Mutation analyses of RB1 reflected the wildtype sequence that was
unchanged after RUNX3 overexpression and identical between A2780 and A-13-2-12. How-
ever, overexpression of both variants was associated with the induction of chromosomal
instability (CIN). More specifically, RUNX3 overexpression in A2780 cells induced a signifi-
cant increase in the cumulative distribution frequencies of nuclear areas relative to empty
vector controls for TV1 (1098 ± 269 µm2; 1500 ± 358 µm2; 1558 ± 386 µm2 nuclear area
mean ± SD for control, TV1 clones B4 and D11, respectively; Figure 2A) and to a lesser
extent for TV2 (844 ± 217 µm2; 898 ± 292 µm2; 945 ± 271 µm2 nuclear area mean ± SD
for control, TV2 clones B9 and F3, respectively; Figure 2A). Both variants led to significant
changes in CSC distributions; however, TV1 induced a stronger deviation from the CSC fre-
quency distribution of empty vector controls (Figure 2B), accounting for the larger increase
of the nuclear area for TV1 overexpressing A2780 cells. Conceptually, changes in nuclear
areas are typically associated with large-scale changes in DNA content (reviewed in [46]),
whereas CSC values (see Section 2.7 Chromosome Instability Assessments) are used to
describe gains or losses of three specific chromosome enumeration probes (CEP8, CEP11
and CEP17) within a given population of cells [42,43]. Importantly, and in agreement with
the heterogeneous nature of CIN, the impact on individual CS values (CS8, CS11 or CS17)
was variable (Supplementary Figure S3A). For example, overexpression of TV1 induced
significant changes in CS8, but not CS11, whereas TV2 induced significant changes in CS8
and CS11, but not CS17. These observations are consistent with recent findings showing
that CIN can be associated with nonrandom changes (i.e., preferential gains or losses)
of specific chromosomes [64,65]. In agreement with the A2780 findings, overexpression
of both variants also induced similar, albeit less pronounced changes in A13-2-12 cells
(1051 ± 337 µm2; 1028 ± 352 µm2; 1125 ± 380 µm2 nuclear area mean ± SD for control,
TV1 and TV2, respectively; Figure 2C). Although only variant 2 overexpression induced
a significant change in CSC values, overexpression of both variants induced significant
changes in CS11 and CS17 values, with variant 2 also exhibiting a significant difference for
CS8 (Figure 2D; Supplementary Figure S3B). Collectively, the above data are consistent with
overexpression of both RUNX3 variants inducing CIN and adversely impacting genome
stability. However, data point to a lower CIN induction by the RUNX3 TV mediating
cisplatin sensitivity in the specific cell-line (A2780: TV2; A13-2-12: TV1).

3.2. RUNX3 TV1 Increases Cisplatin-Induced DNA Damage in EOC Cells with BRCAwt

The different influences on cisplatin sensitivity after RUNX3 TV1 and TV2 overex-
pression may be associated with varying levels of DNA damage. Thus, the DNA damage
induced by cisplatin was assessed by Pt-DNA adduct and γH2AX foci quantification
(Figure 3; Supplementary Figure S4). RUNX3 TV1 overexpression increased detectable
γH2AX foci and the accumulation of DNA adducts in A2780 cells (177% and 264% com-
pared to native A2780 8 h treated, respectively) after cisplatin treatment (5 µM, 24 h). TV2
expressing A2780 cells showed a minor increase of γH2AX foci and DNA adducts by 143%
and 123%, respectively. Thus, A2780 cells expressing RUNX3 TV1 exhibited significantly
more DNA damage than TV2 cells indicating different DNA damage repair (Figure 3A,B).
In A13-2-12 cells, the transfection itself had a small impact on the accumulation of γH2AX
foci (Figure 3C). Transgene expressing cells exhibited increased amounts of γH2AX foci
after 8 h, but the comparable level to the empty vector control after 24 h of treatment (5 µM
cisplatin, Figure 3C). However, DNA adducts increased after 24 h of cisplatin treatment
independent from the specific RUNX3 variant (Figure 3D). In general, the A13-2-12 cells
accumulated more γH2AX foci and fewer DNA adducts than the A2780 cells (mean foci per
nuclei after 8 h treatment—A2780:151.9 SD ± 14.3, A13-2-12: 248.5 SD ± 36.0; mean adduct
level—A2780:0.12 AFU SD ± 0.05, A13-2-12:0.08 AFU SD ± 0.02). This trend increased
over time (Figure 3E,F). On average, this resulted in more γH2AX foci per arbitrary Pt
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adduct amount in A13-2-12 compared to A2780 cells (after 24 h: 696 γH2AX foci/AFU Pt
adduct A2780; 1762 γH2AX foci/AFU Pt adduct A13-2-12).

Figure 2. Overexpression of RUNX3 variants 1 and 2 induces chromosome instability (CIN) in A2780 (A,B) and A13-2-12
(C,D). (A) Cumulative frequency graphs showing statistically significant differences in the nuclear area distributions of
two independent RUNX3 TV1 (left; V1_B4 and V1_D11) or two TV2 (right; V2_B9 and V2_F3) A2780 clones relative to
empty vector controls (KS test; N/A, not applicable; **** p-value < 0.0001; n > 700 nuclei/condition). (B) Scatter plot
showing statistically significant differences in CIN score (CSC) values for TV1 (left) and TV2 (right) clones relative to empty
vector controls (MW test; N/A, not applicable; **** p-value < 0.0001; n > 700 nuclei/condition). The percentage of cell
populations exhibiting specific CSc values are shown within the plots. (C) Cumulative frequency graph showing statistically
significant differences in nuclear area distributions following TV1 and TV2 overexpression relative to empty vector control
in A13-2-12 cells (KS test; N/A, not applicable; ** p-value < 0.01; **** p-value < 0.0001; n > 800 nuclei/condition). (D) Scatter
plot presenting the overall distribution of CSc values relative to control (MW test; N/A, not applicable; NS, not significant
(p-value > 0.05]; **** p-value < 0.0001; n > 800 nuclei/condition). The percentage of cell populations exhibiting specific range
of CSc values (CSc ≤ 2 or > 2) are shown within the plots.
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Figure 3. Measurement of cisplatin-induced DNA damage effects. (A) Relative γH2AX foci signals per cell in A2780 cells.
After 8 h treatment Cis-resistant and RUNX3 transcript variant 1 overexpressing cells harbored an increase in detected
signals compared to parental A2780 or empty vector controls. A significantly higher number of foci were also detected
in TV1- compared to TV2-expressing cells. After 24 h, higher numbers of γH2AX foci was also seen in TV2 expressing
A2780 cells compared to empty vector cells. However, cells expressing TV1 had still higher DNA damage than TV2 cells
at 24 h. n ≥ 2, total analyzed cells ≥ 1600. (B) Relative level of platinum-DNA-adducts in A2780 cells. Enrichment of
the adducts was detected in cells overexpressing RUNX3 transcript variant 1 in a time-dependent manner. The level
of platinum-DNA-adducts differed between cells expressing variant 1 and variant 2, respectively. n = 2 (C) In A13-2-12
cells, the overexpression of RUNX3 led in both cases to a higher amount of γH2AX foci after 8 h of cisplatin treatment
compared to control cells. This difference disappeared after 24 h. n = 2, total analyzed cells ≥ 650. (D) A tendency to enrich
platinum-DNA-adducts upon longer treatment was seen. No changes showed a statistical significance. n = 2. (E) Comparing
native A2780 and native A13-2-12 cells, A13-2-12 cells showed a higher level of absolute γH2AX foci counts, which further
increased over time. (F) On the other hand, A2780 cells experienced a stronger accumulation of platinum-DNA-adducts
upon cisplatin treatment. * p < 0.05, ** p < 0.01, *** p < 0.001 in Student’s t-test.
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Expression analysis of selected genes involved in cell cycle or apoptosis regulation
identified different cellular responses to cisplatin between A2780 and A13-2-12. A decline
in p27, E2F1 and BRCA1 level was seen in exposed A2780 cells, while in A13-2-12 cells, E2F1
and BRCA1 experienced an increase in mRNA level (Supplementary Figure S5A). Survivin
(BIRC5) expression was contrary regulated by RUNX3 variants in both cell-lines under
treatment (Supplementary Figure S5B). Whereas Survivin showed a reduced expression in
RUNX3 TV1 expressing A13-2-12 cells, this effect was seen in TV2 expressing A2780 cells.
The other analyzed genes did not show a different regulation by RUNX3 variants in
both cell-lines under cisplatin exposure (data not shown). However, basal E2F1 levels in
untreated cells were reduced by RUNX3 TV1 in A2780 cells (Supplementary Figure S5C),
which may explain the RUNX3 TV1 effect on DNA repair (see discussion).

3.3. RUNX3 Variants Differentially Regulate the Transcriptome of EOC Cell Lines

To identify regulatory mechanisms, we analyzed the transcriptome of A2780 and
A13-2-12 cells after stable overexpression of RUNX3 isoforms. To minimize the sample
number and possible variations, transduced A2780 were used instead of the previously
used single-cell clones. Through RNA-Seq analyses, 9476 and 9873 significant differentially
expressed genes (DEGs) were identified across all pairwise comparisons in A2780 and
A13-2-12 cells, respectively (Figure 4A; adjusted p < 0.05). Applying a log2foldchange
filter (log2FC > 1) 1406 and 3130 DEGs were identified for A2780 and A13-212 (Figure 4A,
Supplementary Table S5). Both isoforms regulate a similar number of genes in A2780
(1186 and 1116 genes, representing 1406 unique genes), of which most genes (63.7%;
896/1406) were dysregulated in the same direction (hereafter named RUNX3-regulated
genes), and 510 genes were specifically up- or downregulated by one of the isoforms
(hereafter named TV-regulated genes; Figure 4B). However, in A-13–2–12 cells, RUNX3
isoforms influence most of the DEGs in an isoform-specific or opposite manner (73.7%; TV-
regulated genes 2150/2917; Figure 4C). Identical deregulation was detected for 767 genes
(26.3% RUNX3-regulated genes). This difference between the two cell-lines was also
detected by the direct comparison of isoform overexpressing cells. Whereas only 6 genes
were differentially expressed between A2780 cells overexpressing TV1 or TV2, 1494 genes
were detected in A13-2-12 (Figure 4A; Supplementary Figure S6).

The comparison between RUNX3-regulated or TV-regulated genes between both
cell-lines revealed a cell-line-specific regulation for the vast majority of genes. From 2622
TV-regulated genes, only 70 genes were differentially expressed in both cell lines, and 97.3%
of genes (2552 genes) were cell-line-specific. Similarly, 1571/1617 RUNX3-regulated genes
(97.2%) were detected in one cell-line only. From the 46 genes deregulated by RUNX3
in both cell-lines, 30 genes showed an identical change of gene expression, and 16 genes
exhibited an opposite regulation in the cell-lines. These 46 genes may represent the core
of RUNX3-regulated genes in EOC (Supplementary Table S6). This gene set is enlarged
by genes specifically dysregulated by one of the transcript variants (TV1 n = 6; TV2 n = 7)
to define transcript variant-specific gene sets (Supplementary Table S6). Analyses using
these gene sets revealed a significantly enriched protein–protein interaction network for
RUNX3-deregulated genes (Figure 4D) that is differentially enlarged into transcript variant
regulated networks (Figure 4E,F). To identify processes affected by the RUNX3-core or TV-
specific genes, we used Gene-Ontology-based analyses. The low number of genes common
to both cell-lines precluded a significant enrichment (FDR > 0.05) in specific processes but
enabled the identification of Gene-Ontology-based biological processes (GO-BP) containing
more than one dysregulated gene (Table 1). RUNX3-dysregulated genes are present in
processes related to cell migration, adhesion and angiogenesis. The TV-regulated gene
sets add further specific GO-BP, and particularly TV2-regulated genes are detected in
5 additional GO-BP (Table 1). To get a broader picture of the different effects of RUNX3
TV1 and TV2, we run additional GO analyses using all genes with different expressions
between TV1 and TV2 overexpressing cells of A13-2-12 or A2780 (n = 1500; 1070 genes
included in GO analyses using WebGestalt2019). Table 1 shows the 10 GO-BP with the
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lowest FDR, proving a different influence of RUNX3 transcript variants on proliferation,
migration and angiogenesis (GO-BP specific genes listed in Supplementary Table S7).

Figure 4. Genome-wide gene expression analysis after RUNX3 TV1 or TV2 overexpression. (A) Overview of the absolute
numbers of significant differentially expressed genes (DEGs) (adjusted p < 0.05) and the significant DEGs exhibiting a
log2FC > 1. (B,C) Venn-diagram of up- and downregulated DEGs with log2FC > 1 from A2780 (B) and A13-2-12 cells (C)
after RUNX3 TV overexpression. (D–F) String protein interaction networks from genes identically regulated by RUNX3
transcript variants and detected as deregulated in both cell-lines (RUNX3 core genes; (D) or from these genes combined
with genes specifically regulated by TV1 (E) or TV2 (F).
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Table 1. Gene ontology-based analyses of epithelial ovarian cancer (EOC)-related RUNX3 core and transcript variant
(TV)-specific pathways.

Gene
Category a Affected Pathways ngenes % p-Value FDR Genes b

I RUNX3
core

(46 genes)

GO:0001764~neuron
migration 4 9.09 0.0018 >0.05 GATA2, TUBB2B, NAV1,

DDIT4

GO:0030574~collagen
catabolic process 3 6.82 0.0097 >0.05 COL6A2, COL15A1,

COL5A1

GO:0030198~extracellular
matrix organization 4 9.09 0.0105 >0.05 ITGA5, SERPINE1,

COL6A2, COL5A1

GO:0001525~angiogenesis 4 9.09 0.0149 >0.05 NRP2, ITGA5, SERPINE1,
COL15A1

GO:0035313~wound healing 2 4.55 0.0207 >0.05 ITGA5, COL5A1

GO:0007155~cell adhesion 5 11.36 0.0213 >0.05 NRP2, ITGA5, COL6A2,
COL15A1, COL5A1

GO:0031589~cell–substrate
adhesion 2 4.55 0.0388 >0.05 CORO1A, ITGA5

I TV1-
regulated
(core+6
genes)

GO:0007165~signal
transduction 8 16.33 0.0238 >0.05

PSD, ARRB1, TLR1,
PDE5A, SRGAP3,
COL15A1, GDF15,

DAPK1

I TV2-
regulated
(core+7
genes)

GO:0030198~extracellular
matrix organization 5 9.8 0.0018 >0.05

ITGA5, SERPINE1,
COL6A2, CDH1,

COL5A1

GO:0048565~digestive tract
development 3 5.88 0.0039 >0.05 GATA2, FAT4, DCHS1

GO:0007157~heterophilic
cell–cell adhesion 3 5.88 0.0079 >0.05 FAT4, ITGA5, DCHS1

GO:0072137~mesenchymal
cell proliferation 2 3.92 0.0080 >0.05 FAT4, DCHS1

GO:0007156~homophilic cell
adhesion 4 7.84 0.0087 >0.05 DCHS2, FAT4, CDH1,

DCHS1

GO:0043931~ossification in
bone maturation 2 3.92 0.0186 >0.05 FAT4, DCHS1

II TV1/2 DEG
(1070 genes)

GO:0043062~extracellular
structure organization 91 8.50 0 0 CDH1, FN1, PDGFB,

PECAM1, TNXB

GO:0050673~epithelial cell
proliferation 73 6.82 2.22 × 10−15 9.43 × 10−13 CCL2, FGF1, GATA2,

NGFR. WNT5A

GO:0001525~angiogenesis 84 7.85 3.99 × 10−14 1.05 × 10−11 ANGPT1, EGF, GJA5,
THBS2, VEGFC

GO:0002009~morphogenesis
of an epithelium 83 7.76 4.95 × 10−14 1.05 × 10−11 AREG, DLG3, ESRP2,

VDR, WT1

GO:0001667~ameboidal-
type cell

migration
71 6.64 8.37 × 10−14 1.42 × 10−11 ANXA6, DPP4, MEF2C,

TACSTD2, TWIST1

GO:0043588~skin
development 73 6.82 3.53 × 10−13 5.00 × 10−11 BCL2, CDH3, DSC2,

KDF1, KRT

GO:0061564~axon
development 81 7.57 1.21 × 10−12 1.47 × 10−10 APOE,CRABP2, CXCL12,

GDNF, NCAM1

GO:0090130~tissue migration 56 5.23 3.12 × 10−12 3.31 × 10−10 ADAMTS9, CDH13,
SEMA5A, SLIT2, ZEB2

GO:0001655~urogenital
system development 60 5.61 1.27 × 10−11 1.16 × 10−9 ACE, AR, ESR1, FOXB1,

IRX3

GO:0034330~cell junction
organization 55 5.14 1.37 × 10−11 1.16 × 10−9 CADM1, GJA1, JUP,

OCLN, PKP1
a Category I: Genes dysregulated in both cell-lines, RUNX3 core genes are affected by both TV, whereas the TV-specific pathways are
dysregulated by a specific TV, Category II: All differentially expressed genes (DEG) between cells overexpressing RUNX3 TV1 or TV2 in
A2780 or A13-2-12, b Genes specifically regulated by TV1 or TV2 are marked in bold, For category II only 5 genes of each pathway are
named exemplarily (complete lists in Supplementary Table S7).
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The established data point to a great influence of the cell-line-specific background of
common or transcript-specific RUNX3 functions (see above). Focused GO analyses of angio-
genesis, p53 signaling, Wnt signaling, TGF-β signaling, cadherin signaling and NIK/NFκB
signaling pathway using all genes significantly affected by RUNX3 overexpression support
this observation (Supplementary Figure S7). However, RUNX3 overexpression similarly
affects most of the analyzed pathways (e.g., inhibiting TGF-β and NIK/NFκB pathway,
activating cadherin and wnt signaling) by targeting different genes. The analyses of p53
and angiogenesis signaling revealed a more diverse, cell-line-specific response after RUNX3
overexpression (Supplementary Figure S7). Because the angiogenesis pathway contained
the largest number of deregulated genes (Supplementary Figure S7) and was additionally
identified by GO analyses as differently affected by RUNX3 TV1 vs. TV2 overexpression
(Table 1), we focused on further analyses on this pathway.

3.4. RUNX3 Variants Differentially Influence Thrombospondin-1 Expression and
Angiogenic Effectors

The angiogenesis inhibitor thrombospondin-1 (TSP-1, THBS1) is a putative target
gene of RUNX3 [22] that was confirmed by mRNA expression level analysis of TSP-1 in
RUNX3 expressing cells (Figure 5A,C and Supplementary Figure S7). Additionally, RUNX3
TV1 expressing cells of A13-2-12 and A2780 had higher TSP-1 levels than TV2 expressing
cells (Figure 5A,C,D and Supplementary Figure S7). A correlation between RUNX3 and
TSP-1 mRNA level was seen in A2780 cells (Figure 5B). These results and the genome-wide
gene expression analyses indicate a correlation between RUNX3 expression and TSP-1
abundance and possible involvement in tumor angiogenesis.

Figure 5. Thrombospondin-1 expression regulation by RUNX3. (A) TSP-1 mRNA expression in A2780 cells. n ≥ 2,
*** p < 0.001 in Student’s t-test. (B) Correlation between RUNX3 expression and TSP-1 expression in A2780 RUNX3 single-
cell clones. The expression of RUNX3 TV1 significantly correlated with TSP-1 expression. n (clones) ≥ 8 in Pearson’s
correlation. (C) TSP-1 mRNA expression in A13-2-12 cells, n ≥ 2. (D) Detection of TSP-1 in A13-2-12 cells by Western blot
proved a stronger upregulation of TSP-1 protein after RUNX3 TV1 overexpression. Actin-β was used as loading control.

Since the tumor vascularization in vivo is regulated by various factors affecting en-
dothelial cells and our results may indicate RUNX3′s influence on angiogenic modulators,
CM from A2780 and A13-2-12 cells was analyzed. HUVEC spheroid experiments showed
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no difference between the media derived from RUNX3 TV1 or TV2 expressing A2780 cells
(Figure 6A and Supplementary Figure S8). CM from RUNX3 expressing A13-2-12 cells
resulted in different behavior of the HUVEC cells (Figure 6B and Supplementary Figure S8).
RUNX3 TV1 cells increased sprouting in number and length even upon VEGF addition com-
pared to TV2-derived samples (total sprout length 759.2 ± 89.7 vs. 200.2 ± 41.8; Figure 6B).
To clarify why A13-2-12 and A2780 cells show different sprouting phenotypes, despite
similar effects of RUNX3 on TSP-1 mRNA level, CM was characterized using the Proteome
Profiler™ (Figure 6C,D and Supplementary Figure S9). The increased TSP-1 expression
level in RUNX3 TV1 A2780 and A13-2-12 cells compared to TV2 cells was confirmed. How-
ever, several angiogenic activators and a high level of VEGF were detected in CM of A2780,
regardless of the transgene status (Figure 6C and Supplementary Figure S9A). Specifically,
the high basal VEGF expression in A2780 may mask the angiogenic effects of RUNX3, re-
sulting in an unchanged strong positive effect of conditioned media (Figure 6A). Basal CM
of A13-2-12 cells had mild effects on HUVEC sprouting, which can be explained by a high
portion of angiogenic inhibitors (Figure 6D). For example, native A13-2-12 showed higher
levels of TSP-1 than A2780 (Supplementary Figure S9D and Figure 6). The pro-angiogenic
effect of CM from RUNX3 TV1 cells compared to TV2 cells may be caused by the down-
regulation of pro-angiogenic factors (IL-8 and endothelin) and upregulation of angiogenic
inhibitors (SerpinF1 and TIMP-1) by RUNX3 TV2 (Figure 6D).

Figure 6. RUNX3 transcript variant’s effect on the angiogenic effect of EOC cell supernatant. (A) Using conditioned media (CM)
derived from A2780 cells, considerable amounts of HUVEC sprouting was detected. CM of native A2780 alone led to a 14-fold
increase in the amount (Supplementary Figure S5) and a 2-fold increase in sprout length resulting in a 30-fold higher effect compared
to RPMI + 2% FSC control. The overexpression RUNX3 had no effect on the sprouting compared to the native A2780 cells. After the
addition of 10 ng/mL vascular endothelial growth factor (VEGF), the CM effect (3-fold increase) was still visible. nspheroid ≥ 7.
(B) The CM from A13-2-12 cells showed a reduced angiogenic potential similar to the control. The addition of 10 ng/mL VEGF
led to a significant increase in formed sprouts. While induction of human umbilical vein endothelial cells (HUVEC) sprouting was
seen upon incubation with CM from RUNX3 TV1 expressing A13-2-12 cells, the effect was not significant compared to the empty
vector control. The reduction of the sprouting caused by RUNX3 TV2 CM was also not statistically significant, while the difference
between the two variant CM did differ. nspheroid ≥ 8. * p < 0.05, *** p < 0.001, **** p < 0.0001 in 2-way ANOVA. (C,D) Normalized raw
intensity data from the Proteome Profiler™ array. Only proteins with signals above the background are shown. Based on current
publications, the regulators were either defined as an activator (red), inhibitor (blue) or indifferent (gray). Signals were normalized
against the raw intensity of the reference spots on each blot, respectively. Signal quantification of A2780 CM showed more activators
than inhibitors, and specifically, high amounts of VEGF were detected (C). Quantification of signals from A13-2-12 CM showed
higher signal intensities of inhibitory proteins (D).
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4. Discussion

RUNX3 is involved in various cellular functions and is described as both tumor
suppressor and oncogene. These partial contrary functions may relate to the cellular
background [8,27–29], functional readout [30] and the specific protein isoform [7] or a
combination of these factors. For EOC, the RUNX3 function seems to be clinically relevant
as DNA methylation affecting only one of the transcript variants is prognostic for disease
progression [5,6]. The aim of the current study was, therefore, the further analysis of
functional differences of RUNX3 isoforms, potentially enabling the estimation of their
relevance for disease progression. RUNX3 isoforms analyzed in this work originate from
full-length transcripts expressed from promoter P1 or P2. Additional transcript variants
originating from alternative splicing may exist in vivo, but such variants are not analyzed
in this work.

The use of EOC cell-lines not fully representative for HGSOC was one limitation of
our previous study [7]. Therefore, we established new overexpression models using the
HGSOC cell-lines OVCAR3 and A13-2-12. Both models proved to have a different effect
of transcript variants on cisplatin resistance. Whereas OVCAR3, similar to A2780 and
SKOV3 cells, showed an increased sensitivity after RUNX3 TV2 overexpression compared
to TV1 expressing cells, the opposite effect was seen in A13-2-12 cells. To verify these
results, we additionally performed flow cytometry-based cell cycle analyses for A13-2-12
as published for A2780 [7]. In both cell lines, the sensitivity mediating transcript variant
induced a G2/M arrest and a lower level of CIN (A2780 TV2; A13-2-12 TV1). These different
results are possibly related to the BRCA1 mutation in A13-2-12 and its immediate cellular
consequences. To elucidate the underlying cause, additional analyses using another BRCA1
mutated EOC cell line will be necessary. However, further analyses focusing on cisplatin-
associated DNA damage, migration, proliferation and gene expression showed a different
influence of RUNX3 variants on the behavior of A2780 and A13-2-12. Whereas more
resistant A2780 cells expressing RUNX3 TV1 showed increased DNA damage (γH2AX and
Pt adducts; Figure 3A,B), both RUNX3 variants had only a small effect on γH2AX foci level,
but not on Pt adducts in A13-2-12 after 8 h of treatment (Figure 3C,D). Therefore, RUNX3
TV1 may directly affect DNA repair mechanisms in A2780, but RUNX3 variants do not
differ in their ability to influence DNA repair in A13-2-12. As E2F1 is involved in and can
activate double-strand break (DSB) DNA repair [66], the inhibition of E2F1 in A2780 RUNX3
TV1 expressing cells may explain the effect of TV1 (Supplementary Figure S5C). Moreover,
disturbed DSB DNA repair in A13-2-12 cells harboring a BRCA1 mutation may circumvent
the RUNX3 TV1 mediated effect in this cell-line. The DSB DNA repair defect in A13-2-12
may be causative for differences in detected DNA damage levels reflected by Pt adducts and
γH2AX foci. A13-2-12 cells show lower levels of adducts after 24 h of treatment, pointing
to reduced uptake, increased efflux or higher activity of nucleotide excision repair. Despite
the lower adduct levels, the cells acquire a higher level of DSB as marked by γH2AX,
likely because of the BRCA1 mutation and associated DSB repair deficiency. Similarly,
higher DNA damage (γH2AX) was detected in intracranial murine models of BRCAmut vs.
BRCAwt breast cancer cell-lines after carboplatin treatment [67] and after inhibition of the
Fanconi Anemia-BRCA pathway by p21 knockout [68]. Besides differences in DNA repair
mechanisms, the responsibility of RUNX3 TV1 or TV2 in mediating cisplatin sensitivity
in A13-2-12 or A2780, respectively, may relate to the inhibition of Survivin expression by
TV1 or TV2. RUNX3 is known to inhibit the promoter of Survivin [69], and our data point
to a transcript variant-specificity of this effect depending on the cell-line (Supplementary
Figure S5).

Although RUNX3 transcript variants influence cisplatin sensitivity differently depend-
ing on the specific cell-line, additional phenotypic properties were differentially impacted
in a transcript variant dependent but cell-line independent manner. For example, while cell
migration was more strongly inhibited by TV2, proliferation was lower in TV1 expressing
cells (Figure 1 and Heinze et al. 2018). To obtain general insights, we analyzed the genome-
wide gene expression profile of RUNX3 TV1 or TV2 overexpressing A2780 and A13-2-12
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cells. The acquired data point to strong transcript variant- and cell-line-specific regulation
of gene expression (Figure 4); however, Gene Ontology-based analyses revealed regulation
of genes coding for hetero- and hemophilic cell adhesion molecules in TV2 overexpressing
cells (Table 1). This may explain the stronger influence of this variant on cell migration.
Moreover, phosphodiesterase type 5 (PDE5A), described as a mediator of thyroid and
breast cancer cell migration [70,71], is specifically upregulated in TV1-overexpressing cells
and may be responsible for the increased migration. The general effect of RUNX3 on
migration may relate to the presence of genes from migration-associated GO processes
within the RUNX3 core genes (Table 1). In relation to the varying proliferation of TV1
vs. TV2 expressing cells, we could not identify a single candidate gene potentially re-
sponsible for this effect. Thus, it could be that TV1 or TV2 regulates a number of target
genes collectively influencing EOC cell proliferation. Additionally, RUNX3 may affect
the proliferation of both cell-lines by targeting different genes. This is confirmed by GO
analyses of genes differently expressed between TV1 or TV2-expressing cells of A13-2-12
or A2780 (category II, Table 1), identifying the process of “epithelial cell proliferation”.
The largely different gene sets regulated by RUNX3 in both cell-lines (97% of deregulated
genes are cell-line-specific) are likely related to the specific cellular background. A2780
does not reflect HGSOC [36], whereas A13-2-12 originates from HGSOC and harbors p53
and BRCA1 mutations. The TV-specific target gene regulation in A13-2-12 may additionally
explain the known prognostic value of RUNX3 methylation in HGSOC [5]. TV1, discussed
as more oncogenic than TV2, induced the expression of TIMP3, whereas TV2 inhibited the
expression of this gene in A13-2-12, and high TIMP3 mRNA expression is associated with
reduced progression-free and overall survival of EOC [72].

Besides the use of genome-wide expression data to elucidate phenotypic consequences
of RUNX3 overexpression, we aimed to identify processes modified by RUNX3 in EOC
cells. Gene ontology-based analyses point to an influence of RUNX3 on angiogenesis
(Table 1). We could validate TSP-1 as RUNX3 target gene [22] by NGS and qRT–PCR; how-
ever, RUNX3 TV1 exhibited a pronounced effect compared to TV2 (Figure 5). To estimate
the more general effect of both RUNX3 variants on angiogenesis, we conducted HUVEC
spheroid sprouting and proteome profiling assays of conditioned media. CM from A2780
cells did not show an influence of RUNX3 on HUVEC sprouting because of a generally
strong pro-angiogenic effect. Proteome profiling revealed high levels of VEGF and other
pro-angiogenic factors, potentially masking the increased level of TSP-1 after RUNX3-TV1
overexpression (Figure 6). CM from A13-2-12 cells could not induce a similar strong
sprouting effect and contained higher levels of angiogenic inhibitors. Surprisingly, albeit
RUNX3-TV1 induced higher levels of TSP-1, this CM induced an increased HUVEC sprout-
ing pointing to a pro-angiogenic net effect of RUNX3-TV1 compared to TV2. This may
be caused by the downregulation of pro-angiogenic factors (IL-8 and Endothelin) and
upregulation of angiogenic inhibitors (SerpinF1 and TIMP-1) by RUNX3 TV2 (Figure 6D).
Altogether, it was shown that RUNX3 transcript variants do have differential effects on
angiogenesis. To fully explain the effects of both RUNX3 transcript variant on angiogenesis,
an expanded pathway analysis should be conducted.

Limitations of our study are (i) the use of overexpression models only, (ii) the missing
full elucidation of the mechanisms involved in observed phenotypes and (iii) the analysis
of cell culture models only. Therefore, we plan to screen HGSOC cell-lines for their RUNX3
transcript variant expression to identify cell-lines that enable the analysis of knockdown
effects. These additional models will then be used to enlighten specific mechanisms of
RUNX3 regulation. Moreover, the function of RUNX3 targets identified as potentially
involved in phenotype regulation will be validated and can potentially be used to analyze
patient material to interrogate the RUNX3 function in vivo.

5. Conclusions

The presented data confirm the hypothesis that RUNX3 transcript variant 1 and
RUNX3 transcript variant 2 function differently and exert their effects mainly by differen-
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tial regulation of target gene expression. Albeit known from immune cell development,
the different function of transcript variants is rarely considered within other contexts, e.g.,
cancer development [73,74]. The presented data strengthen the possibility that TV1 has
higher oncogenic potential in HGSOC cells, while TV2 presented a more tumor suppressive
phenotype (Figure 7). RUNX3 TV1 induces DNA damage tolerance, angiogenesis and
migration in vitro. Further investigations in vivo, also in different cancer contexts, must be
carried out to fully understand the dichotomy of RUNX3 transcript variants.

Figure 7. Postulated mode of action of RUNX3 transcript variants. Whereas present and published data [7] point to TV1 as
mediating properties linked to aggressive tumor behavior, TV2 induces phenotypic changes compatible with improved
patient survival.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/3/476/s1, Figure S1: Functional characteristics of RUNX3 overexpression model in OVCAR3
cells. A Quantification of RUNX3 overexpression in OVCAR3 cells compared to transduced control
cells. B IC50 value determination for cisplatin. The transcript variant 2 expressing OVCAR3 cells
showed a significantly reduced IC50 value while the overexpression of transcript variant 1 led to
no changes in the cisplatin sensitivity (using 2-way ANOVA, *** p < 0.001), IC50 values: native 3.91
(2.86–5.36), mock 5.35 (3.81–7.51), RUNX3 TV1 3.38 (2.43–4.70), RUNX3 TV2 1.29 (0.82–2.04), n = 3.
C RUNX3 immunocytochemical detection confirmed overexpression on protein level, Figure S2:
Represantative data of FACS analysis (A) and migration assays (B) of A13-2-12 cells. These data
correspond to Figure 1C+F, Figure S3: Overexpression of RUNX3 TV1 and TV2 induces CIN in A2780
(A) and A13-2-12 (B). Scatter plots presenting the gains and losses in CS8 (left), CS11 (middle) and
CS17 (right) for each nucleus analyzed for RUNX3 TV1 (upper panels) and TV2 (lower panels) in
A2780 (A) and A13-2-12 (B). MW tests evaluating signficant differences in rank order of gains and
losses relative to empty vector control (N/A, not applicable; NS, not significant [p-value > 0.05]
* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** p-value < 0.0001; n > 700 nuclei/condition),
Figure S4: Represantative data of γH2AX foci (A) and Pt-addukt analysis (B) after ciplatin tretament.
These data correspond to Figure 3A+B (A2780) and Figure 3C+D (A13-2- 12). Figure S5: Results of
targeted expression analysis upon cisplatin treatment. The cell cylce associated genes p27 and E2F1,
the DNA double-strand break response gene BRCA1 and the apoptosis regulators cIAP2, XIAP and
Survivin were tested. A In native A2780 cells the cisplatin treatment led to a reduction in BRCA1,
p27, E2F1 and Survivin. No changes were seen in the mRNA level of XIAP, while the level of cIAP2
increased. Native A13-2-12 cells only responded with an increase in E2F1 and BRCA1 expression
level. The basal level in p27, BRCA1 (higher in A2780), XIAP and cIAP2 (higher in A13-2-12) differed
in the untreated state between cell lines. The shaded bars respresent the treated samples. B The
cisplatin induced changes of Survivin expression relative to the empty vector control cells differed
between both the RUNX3 transcript variants and the cell lines. Whereas TV2 overexpression mediates
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a reduced Survivin expression in A2780 under treatment a similar effect was detected in A13-2-12
cells after TV1 expression. C RUNX3 TV1 reduced the basal expression of E2F1 in A2780. (n = 2,
* p < 0.05, ** p < 0.01, *** p < 0.001 in student’s t-test.) Figure S6: Descriptive data of RNA-Seq analysis.
A MA expression dot plots based on the shrinkage of log2fold changes in A2780 and A13-2-12 cells
analysis. Significant DEGs were depicted in red. B Comparative tree clustering of the processed read
counts per RNASeq sample. Sample annotation: A2780 = “new”, A13-2-12 = “old”. Figure S7: GO
analysis for selected signaling pathways. The RNA-Seq data was used to generate pathway specific
heatmaps of up- and downregulated genes involved in the respective pathway. Upregulations are
shown in red, downregulations in blue. Numbers correspond to log2 fold changes obtained from
the corresponding pairwise gene expression comparison (columns). Pathway analysis were done
on the A angiogenesis, B p53 signaling, C Wnt signaling, D TGF-β signaling, E Cadherin signaling
and F NIK/NFκB signaling pathway, Figure S8: Detailed data on RUNX3 transcript variant’s effect
on HUVEC sprouting. A+B Absolute count of observed sprouts formed under CM incubation
derived from A2780 cells (A) and A13-2-12 cells (B). C+D Measured mean sprout length formed
after 24 h under CM incubation. No alterations were seen using the different CMs from A2780
cells (C). In A13-2-12 cells (D) the transgene expression resulted in either increase or reduced mean
sprout length. nspheroid ≥ 7. * p < 0.05, ** p < 0.01, *** p < 0.001 in 2-way ANOVA. E+F Exemplary
spheroids incubated with CM from A2780 (E) or controls and A13-2-12 (F). The scale bar represents
400 µm, Figure S9: Immunodetection of known regulators of angiogenesis using the Proteome
Profiler™ Array. The highest signals are indicated respectively. A 72 h CM from A2780 i native,
ii clone C7 RUNX3 variant 1, iii clone B9 RUNX3 variant 2 cells. Numbered spots: 1 ADAMTS-1, 2
Angiogenin (ANG), 3 Angiopoietin-2 (Ang-2), 4 CXCL16, 5 Endostatin, 6 HGF, 7 IGFβP-2, 8 TGFβ1
(LAP), 9 MMP-9, 10 PIGF, 11 Serpin E1, 12 Serpin F1, 13 TIMP-1, 14 Thrompospondin-1 (TSP-1),
15 uPA, 16 VEGF. B 24h CM from A13-2-12 i native, ii RUNX3 variant 1, iii RUNX3 variant 2 cells.
Numbered spots: 1 Ang-2, 2 coagulation factor III, 3 CXCL16, 4 Endothelin-1, 5 HGF, 6 IGFβP-2,
7 IGFβP-3, 8 IL-8, 9 Serpin E1, 10 Serpin F1, 11 TIMP1, 12 TSP-1, 13 uPA, 14 VEGF. C Quantification
of CM derived from native A13-2- 12 cells generated from two different CM aliquots in independent
experiments. No difference in the regulators could be detected. D Comparison of TSP-1 expression
in A2780 and A13-2- 12 cells. * p < 0.05, ** p < 0.01, *** p < 0.001 in student t-test, Table S1: Primer
information for cloning, Table S2: Cell line information, Table S3: Primer information for mutational
analysis of BRCA1, pRb, Table S4: Primer information for qRT-PCR, Table S5: NGS results for
A13-2-12 and A2780, Table S6: RUNX3 core genes and TV-specific genes common to both cell lines,
Table S7: Complete list of genes from the 10 GO-BP processes with the lowest FDR identified from
DEG between RUNX3 TV1 and TV2 overexpressing cells.
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