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Abstract 
This study presents an investigation regarding the applicability of neural networks for temperature measurements using 
thermochromic liquid crystals (TLCs) and discusses advantages as well as disadvantages of common calibration approaches. 
For the characterization of the measurement technique, the dependency of the color of the TLCs on the temperature as well 
as on the observation angle and, therefore, on the position within the field of view of a color camera is analyzed in detail. 
In order to consider the influence of the position within the field of view on the color, neural networks are applied for the 
calibration of the temperature measurements. In particular, the focus of this study is on analysis of the error of temperature 
measurement for different network configurations as well as training methods, yielding a mean absolute deviation and a mean 
standard deviation in the range of 0.1 K for instantaneous measurements. On the basis of a comparison of this standard devia‑
tion to that of two further calibration approaches, it is shown that neural networks are suited for temperature measurements 
via the color of TLCs. Finally, the applicability of this measurement technique is illustrated at an exemplary temperature 
measurement in a horizontal plane of a Rayleigh–Bénard cell with large aspect ratio, which clearly shows the emergence of 
convective flow patterns by means of the temperature field.
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1 Introduction

For the detailed analysis of many natural and technical 
systems, the simultaneous determination of several physi‑
cal quantities is necessary. In many cases, simultaneous 
measurements of the velocity and temperature are of inter‑
est, as these quantities allow for investigations of the trans‑
port of momentum and heat, e.g., in natural convection 
(Schmeling et al. 2014; Tummers and Steunebrink 2019), 
process engineering (Massing et al. 2018) and general heat 
transfer problems (Cafiero et al. 2014; Irwansyah et al. 
2016). For this purpose, many different measurement tech‑
niques with each having its own specific advantages and 
disadvantages have proven to be successful, enabling the 
choice of an appropriate measurement technique based on 
the application. Among those techniques for simultane‑
ous measurements of the velocity and temperature field, 
the use of TLCs is distinguished by offering the possi‑
bility to measure temperatures in macroscopic (Fujisawa 
et al. 2004; Moller et al. 2019) and microscopic (Basson 
and Pottebaum 2012; Segura et  al. 2013) applications 
over a relatively small temperature range very precisely. 
Therefore, TLCs are predestinated for applications, which 
require only a small temperature measuring range. On the 
contrary, the well‑established temperature measurement 
technique laser‑induced fluorescence (LIF) is frequently 
used to determine temperature fields covering a larger tem‑
perature range (Sakakibara and Adrian 1999; Banks et al. 
2019), however, at the expense of an increased uncertainty 
of temperature measurement.

In most cases, TLCs are illuminated with white light for 
the temperature measurements and only reflect a certain 
range of the incident wavelength spectrum of illumina‑
tion in dependency of the temperature, thereby showing 
different colors which can be used for optical tempera‑
ture measurements (Hiller and Kowalewski 1987; Sta‑
siek 1997; Dabiri 2008). In particular, using a so‑called 
supercontinuum laser for the illumination, which emits a 
broad spectrum of wavelengths within the visible range, 
holds a lot of promise, since the possibility of generating 
a thin white light sheet opens up new options for measure‑
ments with a high spatial resolution (König et al. 2019). 
However, the color signal of TLCs does not only depend 
on their temperature, but also on the angle between illu‑
mination and observation, which affects the temperature 
measuring range as well as the uncertainty of temperature 
measurement, shown by Nasarek (2010) and quantified by 
Moller et al. (2019). As this angle, denoted by observation 
angle from now on, also varies within the field of view 
of the recording device, which might be a color camera 
for instance, its effect must be taken into account in the 
calibration of the temperature measurements. Within the 

scope of this study it is investigated, to which extent the 
dependency of the color of TLCs on the position within a 
camera’s field of view can be corrected using neural net‑
works for the calibration of the temperature measurements.

The development of neural networks, which are able to 
learn the relations of a system in analogy to the human brain 
based on a set of training data (Aggarwal 2018), goes back 
to the mid of the twentieth century. Already from that time 
on, many different fields of application opened up, which 
was reviewed comprehensively by Widrow et al. (1994). 
However, due to the enormous rise in computing power in 
the last decades, neural networks can nowadays be applied 
to a much wider variety of problems and, therefore, have 
gained an increasing importance. In this context, numerous 
algorithms for the training of neural networks were devel‑
oped, improved and implemented in software, in order to 
enhance the learning ability of neural networks (Burney 
et al. 2007). Furthermore, besides the simple feedforward 
neural network many types of neural networks with different 
interaction possibilities between the single neurons and vari‑
ous mathematical operations within their layers have been 
created, e.g., recurrent neural networks and convolutional 
neural networks (Haykin 2008). Hence, depending on the 
problem the most appropriate type of neural network and 
training algorithm can be chosen for the optimization of the 
results, such that neural networks are used in a wide field of 
applications. For example, neural networks are very popular 
for pattern classification, clustering, function approximation, 
forecasting, optimization and control engineering (Jain et al. 
1996). Unfortunately, in the field of neural networks neither 
a precise notation nor a fundamental rigorous mathematical 
understanding about how the networks are working is avail‑
able (Bronstein et al. 2017; Genzel and Kutyniok 2019). 
However, these questions are currently addressed by math‑
ematicians as well as computer scientists and go beyond the 
scope of this work.

In the present study, a neural network is used for function 
approximation, meaning to find a relation between the color 
and temperature of TLCs, based on a set of training data 
which contains many images of the TLCs with known tem‑
peratures. Grewal et al. (2006) were to the authors’ knowl‑
edge the first to apply neural networks for the calibration of 
temperature measurements using TLCs and obtained a mean 
absolute error of about 0.1 K, averaged over a temperature 
range of 8 K. However, they investigated the color appear‑
ance of a thin sheet of TLCs with respect to surface tempera‑
ture measurements, where the observation angle was set to 
15◦ . Here, the investigations are performed with regard to 
simultaneous measurements of the velocity and temperature 
field inside an extended fluid volume, which is accompanied 
by several restrictions, e.g., the observation angle and the 
exposure time of the camera for the recording of the TLC 
images. Therefore, especially the uncertainty of temperature 
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measurements has to be analyzed for this kind of applica‑
tion when using neural networks for the calibration, which 
is compared to those obtained by two further established 
calibration approaches. The aim of this study is to evalu‑
ate whether neural networks can be applied for temperature 
measurements via the color appearance of TLCs without 
writing complex program codes that have to be adapted to 
the specific problem of interest. For this reason, the Deep 
Learning Toolbox of MATLAB R2019a (Beale et al. 2019) 
is used, since it allows to easily adjust the structure of neu‑
ral networks in terms of the number of neurons and layers 
as well as the algorithm for training the neural network. In 
order to demonstrate the applicability of this method, a neu‑
ral network designed with this Deep Learning Toolbox is 
exemplarily used for determining the temperature field in 
a large aspect ratio Rayleigh–Bénard cell, which is directly 
opposed to the results obtained by another established cali‑
bration method for discussion.

2  The experimental setup

In the present case, TLCs are applied to determine the tem‑
perature field in Rayleigh–Bénard convection. This type of 
flow, induced by density gradients in an enclosed fluid vol‑
ume which is heated from below and cooled from above, is 
suited for the characterization of a temperature measurement 
technique, as the temperature range of the medium inside the 
Rayleigh–Bénard cell can be adapted with the temperature 
of the heating plate at the bottom and cooling plate at the 
top, according to the temperature range of the color play of 
the TLCs. For this study water is used as the working fluid 
in the Rayleigh–Bénard cell. The Rayleigh–Bénard cell has 
dimensions of l × b × h = 700mm × 700mm × 28mm and 

accordingly an aspect ratio of Γ = l∕h = 25 . In such large 
aspect ratio cells, the so‑called turbulent superstructures 
(Pandey et al. 2018) can be observed clearly and their spa‑
tial and temporal scaling can be analyzed in detail, which 
was the main motivation for building up the experimental 
setup. In order to study the turbulent superstructures, optical 
measurement techniques for the determination of the veloc‑
ity and temperature field are applied, such as liquid crystal 
thermography for the present study. However, besides the 
transparency of the sidewalls the investigation of the turbu‑
lent superstructures especially requires optical access to the 
horizontal cross section of the Rayleigh–Bénard cell. In the 
case of large aspect ratio cells, this must be realized by either 
a transparent heating plate (Kästner et al. 2018) or cooling 
plate. Here, the sidewalls and the whole cooling plate made 
of glass are transparent, which is why a large field of view 
can be analyzed when investigating the TLCs in horizontal 
planes of the cell. However, due to the widely varying obser‑
vation angle within the large camera’s field of view, which 
causes a considerable change in the temperature dependency 
of the color of TLCs for different positions, special care has 
to be taken for the calibration (Moller et al. 2019).

The cooling plate at the top of the Rayleigh–Bénard cell 
is cooled by water flowing above it in a separate cooling 
circuit. As illustrated in Fig. 1, this circuit is covered by a 
second glass plate at the top, so that the optical accessibil‑
ity is not impeded. The temperature of the heating plate at 
the bottom is controlled by water flowing through mean‑
der channels in the heating plate within a second external 
temperature‑controlled water circuit. The heating plate is 
made of aluminum, which compensates for temperature 
gradients on its surface due to a high thermal conductivity. 
Furthermore, the cell is equipped with several small tem‑
perature sensors at the heating and cooling plate as well as 

color camera

white light source
(LED Array)

cooling plate

Rayleigh-Bénard cell

heating plate

700mm
700mm

cooling
water

color camera

white light source

cooling water

glass plate

glass plate

Rayleigh-Bénard cell

heating plate

l

h

xy

z

ϕ

Fig. 1  Sketch of the experiment (left) and a photograph of the real 
experimental setup (right) for simultaneous velocity and temperature 
field measurements in horizontal planes of the Rayleigh–Bénard (RB) 

cell. The photograph shows the Rayleigh–Bénard cell with aspect 
ratio Γ = 25 . It should be noted that the coordinate system in the left 
corner of the sketch is valid for all of the following investigations
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at the sidewall, in order to measure the temperature during 
operation. As an option, punctual temperature measure‑
ments inside the Rayleigh–Bénard cell can be performed 
with a temperature measuring lance.

For measuring the temperature field in a horizontal 
plane of the Rayleigh–Bénard cell, microencapsulated 
TLCs of type R20C20W (LCR Hallcrest) with an average 
diameter of about 10 μ m based on a Gaussian distribu‑
tion are used in this case. The TLCs have a density in the 
range from 1.00 g/cm3 to 1.02 g/cm3 , which nearly matches 
that of water in the given temperature range. Therefore, 
the TLCs are nearly neutral with respect to buoyancy and 
their velocity of sedimentation is several orders of mag‑
nitude lower than the typical velocities occurring in the 
presented Rayleigh–Bénard experiment. According to the 
manufacturer’s data, these TLCs start to get red at a tem‑
perature of T = 20 ◦C and the color passes the visible spec‑
trum with increasing temperature until they appear blue 
at T = 40 ◦C . However, these specifications only apply to 
the case that illumination and observation are done from 
the same direction, which is not possible when observing 
the TLCs within a light sheet. If the camera is not orien‑
tated parallel to the light sheet and, therefore, the observa‑
tion angle according to Fig. 1 deviates from � = 0◦ , the 
temperature range with a low uncertainty of temperature 
measurement decreases with increasing observation angle 
up to � = 90◦ . For this reason, the camera is not arranged 
perpendicularly, but at a nominal angle of � = 70◦ to the 
measurement plane covered by the light sheet. However, 
considering the image angle of the camera’s objective and 
the refraction of the light at the cooling plate, the observa‑
tion angle varies from about � = 70◦ up to � = 80◦ within 
the field of view, as indicated in Fig. 1. This arrangement 
represents a suitable compromise to perform temperature 
measurements with a low uncertainty of measurement 
over a certain temperature range as well as with a high 
spatial resolution over an extended field of view, which is 
investigated in the following section. Details regarding the 
uncertainty of temperature measurement in dependency of 
the observation angle can be found in Moller et al. (2019).

For the temperature measurements in horizontal planes of 
the Rayleigh–Bénard cell via the color signal of TLCs, those 
are recorded with a color camera (sCMOS pco edge 5.5), 
which is equipped with a Bayer filter for color recording and 
a wide‑angle lens (Zeiss Otus 1.4/28), in order to observe 
a large field of view. Furthermore, the lens is connected to 
the color camera via a tilt adapter, so that the whole meas‑
urement plane can be projected onto the camera’s sensor as 
sharply as possible according to the Scheimpflug condition.

In order to provide the white light, which is necessary for 
the illumination of TLCs, in form of a white light sheet for 
two‑dimensional measurements within horizontal planes, 90 
white high‑power LEDs (Platinum Dragon, Osram GmbH) 
are arranged along a line at the height of the measurement 
plane. For the generation of a white light sheet out of the 
light emitted by the LEDs, which is strongly divergent, a 
special light sheet optic was designed, see Fig. 2 (Schmeling 
et al. 2014). This enables to shape a light sheet with adjust‑
able thickness over the Rayleigh–Bénard cell’s whole cross‑
sectional area of 700mm × 700mm . For the measurements 
of this study, the thickness of the light sheet was adapted 
to about tls = 3mm in its focus in the center of the cell and 
increases to about tls = 4mm toward the sidewalls. On the 
left side of Fig. 3, the light sheet at the back sidewall is 
shown at mid‑height of the Rayleigh–Bénard cell for better 
visibility. However, for the measurements presented in this 
study the light sheet reaches from z = 23 mm to z = 27 mm 
at the sidewalls, when measured from the surface of the heat‑
ing plate at z = 0 mm. Therefore, the light sheet illuminates 
the area close to the cooling plate of the cell with its height 
of h = 28 mm. Accordingly, the benefit of using TLCs for 
temperature measurements can be illustrated clearly, as the 
most distinctive flow structures, which can be retraced by 
the color of the TLCs due to different temperatures, occur 
in close vicinity to the isothermal plates.

For inducing thermal convection inside the cell, the 
temperature of the heating and cooling plate was adjusted 
to Th = 21.5 ◦C and Tc = 18.2 ◦C , respectively, yielding a 
Rayleigh number Ra = � gΔT h3∕(� �) of about Ra = 106 
with the thermal expansion coefficient � , acceleration due 

Fig. 2  Sketch of the light sheet 
optics (left) and a photograph 
showing the interior of the light 
source for the generation of a 
white light sheet (right)

Fresnel lensslit apertureLEDs with
clip-on lenses
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to gravity g, kinematic viscosity � , thermal diffusivity � and 
the temperature difference between heating and cooling plate 
ΔT  . Thus, the temperatures inside the Rayleigh–Bénard cell 
are in the range T ∈ [Tc, Th] . The temperature range is cho‑
sen in accordance to the characteristic of the TLCs, which 
should show a strong color variation with temperature for 
accurate temperature measurements (Moller et al. 2019). 
The typical convective timescale in terms of the free‑fall 
time tf =

√
h ∕ (� gΔT) amounts to about tf = 2.1 s in this 

case and is therefore much larger than the thermal response 
time of the TLCs, which is in the order of milliseconds. 
Hence, the TLCs are well suited to determine the tempera‑
ture field for this type of flow.

For the temperature measurements, the color of the TLCs 
must be related to their temperature, which is why a cali‑
bration measurement had to be performed initially. During 
the calibration measurements, 100 images of the TLCs in 
the measurement plane were recorded with the color cam‑
era at a frequency of f = 5 Hz and an exposure time of 
texp = 100 ms for 19 different temperature levels in the range 
from T = 17.9 ◦ C up to T = 22.3 ◦ C in the cell. Therefore, all 
of the temperatures occurring in the cell during the convec‑
tion measurement with Th = 21.5 ◦C and Tc = 18.2 ◦C are 
covered in the calibration measurement. While recording 
the images, the TLCs in the whole cell were exposed to 
isothermal conditions by matching the temperatures of the 
heating and cooling plate, respectively. In order to ensure the 
uniform temperature distribution in the whole cell for each 
recording of the calibration, at least 30 min was waited after 
adjusting each temperature of the isothermal plates. Further‑
more, the uniformity of temperature was strongly abetted 
by forced convection, which was induced by a handpump 
connected to a small hole in one of the sidewalls over a 
tube that is used for filling the water into the cell, too. The 
pressure applied to the handpump was equalized through a 
second hole in another sidewall, thereby enabling to mix the 
water in the cell. For each temperature step of the calibra‑
tion, the temperature was measured with the temperature 
lance inside the Rayleigh–Bénard cell and compared to the 
temperatures measured with the sensors on the heating and 
cooling plate as well as on the inside of cell’s sidewall. In 

each case the deviations were less than 0.1 K considering all 
of the sensors, which confirms the uniform temperature dis‑
tribution of the water inside the Rayleigh–Bénard cell during 
the calibration measurements. But if a temperature differ‑
ence is adjusted to induce Rayleigh–Bénard convection and 
thus a heat flux from the heating to the cooling plate, it is a 
much greater challenge to keep the temperature of the plates 
constant. However, due to the large flow rate through the 
heating and cooling plate of about V̇h = V̇c = 30 l/min it was 
possible to limit the temperature variation of the heating and 
cooling water between the inlet and outlet of each plate to 
about 0.2 K. Since those temperature variations are further 
reduced by heat conduction across the plates, the isothermal 
boundary conditions can be considered as fulfilled in good 
approximation. Moreover, as indicated on the right side of 
Fig. 3, the measurements were not performed over the whole 
cross‑sectional area, but over a central section of the cell, 
where the temperature distribution is most uniform due to 
the vanishing effect of the sidewalls. The central section for 
the measurements in this study is slightly trapezoidal due 
to the observation angle and the correction according to the 
Scheimpflug condition. Furthermore, the investigated sec‑
tion covers dimensions of about lx × ly = 350mm × 300 mm, 
which corresponds to about lx × ly = 12.5 h × 10.7 h , yield‑
ing a suitable spatial resolution of about 0.13 mm/pixel for 
the study of the flow structures evolving in the experiment 
presented in Sect. 3.4.

3  Evaluation and results

3.1  Characterization of the color signal of TLCs

In order to perform the temperature calibration, the color 
signal of the TLCs in dependency of the temperature was 
investigated in detail. Based on this, it has been found that 
the color of TLCs is also considerably affected by the obser‑
vation angle and accordingly by the position of the TLCs 
within the camera’s field of view. This can be seen in Fig. 4, 
which shows the TLCs over the whole field of view for three 
different temperatures. Besides the color change of the TLCs 

Fig. 3  Photograph of the setup showing the light sheet, which was positioned in a horizontal plane close to the center of the Rayleigh–Bénard 
cell for better visibility (left) and the field of view for the measurements of this study indicated in a view from the top (right)
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with temperature, a distinctive color trend from the left to 
the right end within each of the images can be seen despite 
the isothermal states, which has to be taken into account 
in the calibration of the temperature measurements. Here, 
the local color characteristic of the TLCs in dependency of 
the temperature is considered by splitting the whole field of 
view into different interrogation windows with each window 
having its own calibration curve. The single interrogation 
windows have dimensions of 32 × 32 pixel for all investiga‑
tions in this study and are overlapped by 50%, resulting in 
172 × 150 interrogation windows and as many calibration 
curves over the whole field of view. In order to demonstrate 
their differences, three exemplary interrogation windows, 
which are marked in Fig. 4, will be investigated with regard 
to their correlation between color and temperature of the 
TLCs, respectively.

For the characterization of the color of the TLCs in the 
single interrogation windows, the red (R), green (G) and blue 
(B) intensities of the pixels are used. In this case, each inten‑
sity is given for all pixels by an internal algorithm of the 
color camera with a Bayer filter. In order to remove reflec‑
tions from the heating plate in the background, the minimum 
intensity of each pixel over the 100 recorded images at each 
temperature step is subtracted, respectively. Furthermore, 
intensity thresholds were used to exclude pixels which rep‑
resent the dark background or agglomerated, very large and 
brightly scattering particles. The remaining intensities are 
averaged over the whole interrogation window, respectively. 
In the next step the mean values of the red, green and blue 
intensities are used to characterize the color of the TLCs in 
each interrogation window by means of the HSV‑colorspace 
(Loesdau et al. 2014). In this colorspace the color shade of 
the TLCs is represented by the value of hue (H) in terms of 
an angle H ∈ [0◦, 360◦] , which is normalized here, so that 
H ∈ [0, 1] . While H = 0 stands for a red color shade, the 

color shade varies continuously over green ( H = 1∕3 ) and 
blue ( H = 2∕3 ) back to red again, which is also represented 
by H = 1 , resulting in a closed circuit (Schmeling et al. 
2014). Therefore, hue values close to H = 0 are obtained 
at the red start temperature of the TLCs, while the value 
of hue H increases to about H = 2∕3 toward the upper end 
of the active temperature range, where the TLCs are blue. 
However, it shall be noted again that the red start as well as 
the size of the active temperature range strongly depends on 
the position within the field of view as will be shown in the 
following. Furthermore, the saturation (S) indicates, if the 
color is rather pure ( S = 1 ) or has a high content of white 
light ( S = 0 ), while the value V quantifies the brightness of 
the signal by V ∈ [0, 1].

The HSV‑colorspace and other similar models for the 
characterization of color, e.g., the HSI‑colorspace (hue–satu‑
ration–intensity) and HSL‑colorspace (hue–saturation–light‑
ness), are well‑established for liquid crystal thermography 
(Hiller et al. 1993; Dabiri 2008; Schmeling et al. 2014). 
Applying those colorspaces is of advantage, as the temper‑
ature of the TLCs can be determined by a single scalar in 
terms of hue H ∈ [0, 1] . Since the value of hue does neither 
depend on the seeding concentration of the TLCs nor on the 
intensity of their illumination, only hue is considered for 
the temperature calibration at first, yielding a very robust 
calibration method. However, if the intensity of illumina‑
tion and the seeding concentration do not vary during the 
measurements, also S and V could be taken into account 
to increase the measurement range beyond the region with 
unambiguous correlation between hue and temperature. 
Even though also other combinations of the red, green and 
blue intensities could be considered to further improve the 
results, the authors mainly stick to the calibration using only 
the value of hue, due to its robustness, but also show some 
advanced calibration approaches in Sect. 3.3. For all of the 
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interrogation windows and each temperature step adjusted in 
the calibration, the values of hue are averaged over the 100 
recorded images in time t, resulting in a calibration curve 
⟨H⟩t(T) for each interrogation window.

The exemplary calibration curves for the interrogation 
windows marked in Fig. 4 can be seen in Fig. 5. From these 
calibration curves it is obvious that the range of hue reaches 
from nearly H = 0 for lower temperatures up to about 
H = 0.6 for higher temperatures, corresponding to a color 
change from red to blue across the visible wavelength spec‑
trum. However, the main color change of the TLCs from 
red to blue passes within a considerably smaller tempera‑
ture range at the left side of the field of view compared to 
the right side. Therefore, larger angles between light sheet 
and the direction of observation by the camera according to 
Fig. 1 come along with a faster change of color with temper‑
ature. Furthermore, the red marked minimums of the curves, 
which represent the red start temperature of the TLCs, are 
shifted to higher temperatures when approaching the right 
side of the field of view, where the TLCs are recorded from 
smaller observation angles. In order to ensure an unambigu‑
ous correlation between the color and temperature of the 
TLCs, the red start temperature also determines the lower 
limit of the measurable temperature range for each inter‑
rogation window separately. Accordingly, the temperature 
measurements over the whole field of view are limited by 
the right end of the field of view in this case, where only 
temperatures T > 18.8 ◦ C can be measured due to unambigu‑
ity. Hence, the temperature of the heating and cooling plate 
in the Rayleigh–Bénard experiment presented in Sect. 3.4 
was iteratively adapted such that the temperatures occurring 
within the measurement plane of the Rayleigh–Bénard cell 
start from about T = 18.8 ◦C . The color of the TLCs at the 
right side of the field of view served as an indicator for that, 
since those become nearly invisible due to the drastically 

decreasing intensity of the light reflected by the TLCs when 
the temperature is lower than the local red start temperature. 
Moreover, as already addressed in the previous section, the 
observation angle was adjusted such that the TLCs show a 
sufficient color play over the whole temperature range of 
interest in the main part of the field of view, which is neces‑
sary for a low uncertainty of the temperature measurements. 
Although the color of the TLCs at the left side of the field of 
view changes very fast with temperature from red to blue, 
the local calibration curves within this area are still suitable 
for the temperature measurements presented in Sect. 3.4, 
since the temperatures mainly range from about T = 18.8 ◦C 
up to T = 20.8 ◦C . In Sect. 3.2.2 it will be shown that the 
temperatures can be measured with a low uncertainty of 
measurement within this temperature range.

3.2  Calibration of temperature measurements

3.2.1  Calibration methods

For the determination of the temperature of the TLCs via 
their color signal and their position within the field of view, 
three methods, which are schematically depicted in Fig. 6, 
are considered in the following. These methods have in com‑
mon that the temperatures are calculated on the basis of the 
time‑averaged calibration curves of the corresponding inter‑
rogation window, as exemplarily shown in Fig. 5 for three 
different interrogation windows, enabling a direct compari‑
son of the results.

The first method shown in Fig. 6a is based on a neural 
network, which enables to determine the temperature T(x, y) 
via the hue value H of the TLCs and the position � = (x, y) 
of the center of the corresponding interrogation window 
within the field of view given in pixels. Therefore, this neu‑
ral network transforms three input parameters, namely x, y 
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Fig. 5  Color appearance of the TLCs R20C20W in terms of the hue 
value H in dependency of the temperature for three interrogation win‑
dows in the field of view, which are marked in Fig.  4. For a better 
illustration, the colorbar on the right side shows the change of color 

appearance with hue. The red markers at the minimum of each curve 
indicate the onset of the investigated temperature range with unam‑
biguous correlation to the color appearance of the TLCs, respectively
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and H into one output parameter, which is the temperature 
T. In general, neural networks incorporate different neurons 
arranged in so‑called hidden layers, which transform the 
input parameters of the input layer to the output parameters 
of the output layer. In this case, the transformations are per‑
formed via the Hyperbolic tangent sigmoid transfer function, 
as this allows the network to learn nonlinear relationships 
between the input and output of each neuron. However, a 
pure linear transfer function is used for the output layer 
itself, as commonly for function approximation applications 
such as in the present case (Beale et al. 2019). The structure 
depicted in Fig. 6a consisting of 10 neurons in six hidden 
layers, respectively, enables accurate temperature meas‑
urements, while keeping the computation time still within 
reasonable limits, shown in the following section. There‑
fore, this structure was used for the following exemplary 
temperature measurements in Rayleigh–Bénard convection. 
However, several neural networks with different structures 
regarding the number of neurons and hidden layers have 
been designed and trained using the Deep Learning Toolbox 
of MATLAB R2019a. In this context the network structures 
and also various training algorithms were tested with respect 
to the resulting uncertainty of temperature measurement and 
the computation time, which will be presented in this study. 
For each combination of the network structures and training 

algorithms five training runs were performed. In each of the 
runs, 80% of the input data were used for training, while the 
remaining 20% were used for testing the trained neural net‑
work with respect to the target values, which are the known 
temperatures of the calibration measurements. In order to 
prevent the effect of overfitting, which will be discussed in 
Sect. 3.2.3, the data for the training and testing were chosen 
randomly by the algorithm, respectively.

Another method which can be used for the cali‑
bration of temperature measurements is shown in 
Fig.  6b. When applying this method, a separate vector 
� (�) = (1,CH ,CH2 ,CH3 ,CH4) for each interrogation win‑
dow is determined to transform a given system matrix based 
on the measured hue values to the known temperatures of 
the calibration as accurately as possible. The system matrix 
includes the hue values from the first up to the forth order 
and an offset, so that the shape of the calibration curves can 
be described mathematically with a low remaining deviation.

Furthermore, a third and last calibration method accord‑
ing to Fig. 6c is investigated in the scope of this study. This 
method uses the local calibration curves, i.e., one calibration 
curve for each interrogation window, in order to calculate 
the respective temperature on the basis of the measured hue 
value within the corresponding interrogation window by 
means of linear interpolation.
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neural network (a), a system matrix (b) and linear interpolation of hue in the local calibration curves (c)
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3.2.2  Quantitative assessment

In order to assess these methods with respect to the error of 
temperature measurement, each method is applied to calcu‑
late the temperatures of the calibration measurements for all 
interrogation windows of the 100 images recorded during 
calibration for the different temperature levels. However, the 
following investigations are all restricted to the temperature 
range from T = 18.8 ◦C upward due to unambiguity of the 
temperature measurements, as outlined in Sect. 3.1. Since 
the temperature is a known input parameter in the calibra‑
tion, the deviation of the calculated temperatures Tcalc to the 
set values can be estimated to determine the mean absolute 
deviation (MAD), which is ⟨�Tcalc − T�⟩�Ti , while the random 
error can be characterized by the standard deviation �Tcalc |Ti . 
In order to compare the MAD and �Tcalc for different network 
structures only one training algorithm was used to ensure the 
comparability. For this, the Levenberg–Marquardt algorithm 
(Levenberg 1944; Marquardt 1963) was chosen, since this 
is one of the most frequently used algorithms for numerical 
optimizations, which holds a lot of promise to provide good 
results due to its stable convergence (Yu and Wilamowski 
2011). The MAD and �Tcalc as a function of the tempera‑
ture level were calculated for all of the five training runs 
for each network structure, respectively. For the comparison 
of the results obtained by using the neural networks with 
the results of the other two calibration approaches shown 
in Fig. 6, the best of the five training runs with regard to 
the mean absolute deviation over all temperature levels of 
the calibration ( MAD ) was chosen for each of the network 
structures, respectively. The type of the structure is denoted 
as a listing of ni in the following, with n representing the 
number of neurons in the corresponding hidden layer with 
index i. Thus, for example a structure with three hidden 
layers containing 10 neurons, respectively, is specified as 
“ n1 − 10, n2 − 10, n3 − 10 .” However, the simple case of 
one single hidden layer for a varying number of neurons 
n1 was tested at first. The resulting values for the MAD and 
�Tcalc

 for six different numbers of neurons can be seen in 
Fig. 7a, b. When using only one neuron, these values reach 
up to about 0.5 K in maximum, which does not allow for 
accurate temperature measurements. But when increasing 
the number of neurons to n1 ≥ 5 , the MAD and �Tcalc decrease 
considerably. In particular for the lower part of the shown 
temperature range of T ≤ 20 ◦ C the mean absolute deviation 
is in the range of about 0.1 K or even less, while the standard 
deviation does not exceed �Tcalc = 0.2K with exception from 
the lowest temperature of T = 18.8 ◦C . However, for larger 
temperatures the measurements are in general more errone‑
ous again, as the mean absolute deviation and the standard 
deviation reach up to about MAD = 0.2K and �Tcalc = 0.3K . 
This fall‑off in quality of the temperature measurements is 
a result of the color characteristic of the TLCs according to 

Fig. 5, which shows that the change of color decreases with 
increasing temperature for each position within the field of 
view. Therefore, the temperatures cannot be measured as 
precisely anymore when approaching the upper end of the 
active temperature range, also shown by Moller et al. (2019).

For estimating the effect of the number of hidden layers, 
the case of n1 = 10 was considered and a second, third as 
well as a fourth, fifth and sixth hidden layer with 10 neu‑
rons was added successively. The results for the MAD and 
�Tcalc

 in Fig. 7c, d show that adding further layers leads to 
better results in each case, especially for the lowest tem‑
peratures. However, Fig. 7a–d shows that with increasing 
number of neurons or hidden layers the improvements 
become progressively smaller. Locally even worsening 
can be found, for example when comparing the results for 
n1 − 10, n2 − 10 and n1 − 10, n2 − 10, n3 − 10 . Furthermore, 
the structure of the neural networks with three and four hid-
den layers was also modified by increasing the number of 
neurons in single layers, thereby testing many different 
combinations, like for example n1 − 30, n2 − 20, n3 − 10 or 
n1 − 40, n2 − 30, n3 − 20, n4 − 10 . For the sake of clarity, the 
results for those additional variations of the network struc‑
ture are not depicted, as considerable improvements could 
not be achieved anymore. In summary, the network structure 
with 6 hidden layers containing 10 neurons, respectively, 
provides the best results of all the investigated network 
structures for using the Levenberg–Marquardt algorithm. 
Hence, this network structure was chosen for the comparison 
of the results for all the different training algorithms, which 
are available in the Deep Learning Toolbox of MATLAB 
R2019a.

However, in order to maintain the overview of those 
results, the MAD and �Tcalc cannot be discussed in depend‑
ency of the temperature level of the calibration measure‑
ments for each training algorithm. Therefore, the average 
of the mean absolute deviation ( MAD ) and standard devia‑
tion ( �Tcalc  ) over the whole temperature range are given in 
Table 1 for the best training run, respectively. At this point 
it should be noted that the differences between the results 
of the five training runs for each combination of training 
algorithm and network structure are negligible, so that the 
listed results represent all the five training runs in good 
approximation. Furthermore, the computation time summed 
up over all of the five training runs can be seen in the last 
column of Table 1. From this table it is obvious that the 
results for most of the training algorithms are comparable 
to those obtained with the Levenberg–Marquardt algorithm, 
if the same network structure is used with 10 neurons in 6 
hidden layers, respectively. For these network structures, the 
computation time over all five training runs ranges between 
20min <

∑
tcomp < 01 h 30min . Three training algorithms, 

namely Gradient Descent, Gradient Descent with Momen-
tum and Variable Learning Rate Gradient Descent show an 
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outstandingly short computation time of only a few minutes 
or even seconds for this network structure, however, at the 
cost of considerably higher values for the mean absolute 
deviation and standard deviation. Furthermore, the results 
for the Levenberg–Marquardt algorithm applied to different 
network structures are also listed in Table 1. Based on the 
results shown in Fig. 7, it could already be expected that the 
values for MAD and �Tcalc  tend to decrease, if the number 
of neurons and hidden layers is increased, which is proven 
in the table. However, the fact that the computation time for 
the depicted net configurations ranges from a few seconds 
up to several hours shows that the number of neurons and 
hidden layers should in general not be enhanced arbitrary, 

but it should be taken into account, if there is a considerable 
effect on the error of temperature measurement justifying a 
large rise in computation time. Concluding it can be stated 
that similar results can be achieved when using different 
combinations of training algorithms and network structures, 
but the network with 6 hidden layers containing 10 neurons, 
respectively, trained with the Levenberg–Marquardt algo-
rithm yields the best results. Therefore, it was chosen for all 
the following investigations.

Moreover, the results for the other two calibration meth‑
ods according to Fig. 6 are also listed in the table. It can be 
seen that using the linear interpolation of the hue values in 
local calibration curves results in similar values for MAD 
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and �Tcalc  compared to the chosen, best performing neural 
network. If the system matrix is applied, the MAD and �Tcalc  
are larger, showing that this calibration method is not as 
suitable as the other two methods. However, when using 
the system matrix approach, the time interval required to 
compute the correlation between the hue values and tem‑
perature for different positions within the field of view is 
about 0.1 s, which is very small compared to the compu‑
tation time for the training of the chosen neural network 
approach. In the case of applying linear interpolation of 
the hue values, this correlation does not even have to be 
computed, as the calibration curves are given by the meas‑
urement a priori.

For a better imagination of the results shown in Fig. 7 
and Table 1, exemplary instantaneous temperature fields 
of the calibration for T = 19.0 ◦ C and T = 19.6 ◦ C, which 
were calculated by using the neural network with the cho‑
sen structure, are depicted in Fig. 8a, b. With regard to a 
reliable calibration of the temperature measurements, the 
calculated temperatures should be as narrowly distributed 
around the corresponding temperature level of the calibra‑
tion as possible, respectively. In Fig. 8a it can be seen that 
the isothermal state with a temperature of T = 19.0 ◦ C can 
be reproduced reliably with except from a few distinc‑
tive outliers at the left end of the field of view. These 
outliers arise due to the fact that the corresponding local 

calibration curves do not show a sufficient slope at this 
temperature anymore, which leads to a significant increase 
of the uncertainty of temperature measurement. Hence, 
also the temperature level of T = 19.6 ◦ C was checked, 
since the calibration curves at the left end of the field of 
view are almost very flat at this temperature level, compare 
Fig. 5. Even though the number of outliers increases for 
T = 19.6 ◦ C in Fig. 8b, the performance of the calibration 
is still good in the main part of the field of view, as nearly 
all of the distinctive outliers are located at its very left end. 
However, those outliers downgrade the quality of the tem‑
perature measurements regarding the whole field of view 
in terms of the MAD and �Tcalc delusively. Therefore, these 
outliers were removed from each temperature field of the 
calibration by applying a global outlier filter. The global 
outlier filter eliminates the values that do not comply with 
the following condition (1)

where T̃x,y,t represents the median temperature of each tem‑
perature step of the calibration over x, y as well as the 100 
steps in time t, while the standard deviation of the tempera‑
ture at the corresponding temperature step is denoted by �Tx,y,t
.

(1)T̃x,y,t − 2 ⋅ 𝜎Tx,y,t < Tx,y,t < T̃x,y,t + 2 ⋅ 𝜎Tx,y,t ,

Table 1  Mean absolute deviation ( MAD ) and standard deviation 
( �

Tcalc
 ) of the calculated temperatures over the whole temperature 

range from T = 18.8 ◦C to T = 22.3 ◦ C for the best training run apply‑
ing different training algorithms and network structures for the neural 
network. The notation of the network structure in the second column 

specifies the number of neurons in each of the hidden layers start‑
ing from the first one. The entire computation time for the training 
summarized over all the five runs is also registered in the right col‑
umn, respectively. In addition, the results for the other two calibration 
approaches are listed as well for comparison

Training algorithm of neural network Network structure MAD σTcalc

∑
tcomp

Bayesian Regularization 10 - 10 - 10 - 10 - 10 - 10 0.104K 0.152K 00 h 33min 21 s
BFGS Quasi - Newton 10 - 10 - 10 - 10 - 10 - 10 0.107K 0.154K 00 h 38min 50 s
Conjugate Gradient with Powell/Beale Restarts 10 - 10 - 10 - 10 - 10 - 10 0.112K 0.159K 01 h 14min 45 s
Fletcher –Powell Conjugate Gradient 10 - 10 - 10 - 10 - 10 - 10 0.114K 0.170K 01 h 28min 41 s
Gradient Descent 10 - 10 - 10 - 10 - 10 - 10 0.247K 0.269K 00 h 10min 21 s
Gradient Descent with Momentum 10 - 10 - 10 - 10 - 10 - 10 0.901K 0.099K 00 h 00min 17 s
Levenberg –Marquardt 10 0.128K 0.195K 00 h 01min 04 s
Levenberg –Marquardt 10 - 10 0.111K 0.158K 00 h 03min 07 s
Levenberg –Marquardt 10 - 10 - 10 0.108K 0.157K 00 h 06min 28 s
Levenberg –Marquardt 30 - 20 - 10 0.107K 0.151K 00 h 54min 02 s
Levenberg –Marquardt 40 - 30 - 20 - 10 0.102K 0.179K 07 h 04min 57 s
Levenberg –Marquardt 10 - 10 - 10 - 10 - 10 - 10 0.104K 0.150K 00 h 37min 58 s
One Step Secant 10 - 10 - 10 - 10 - 10 - 10 0.120K 0.174K 01 h 14min 34 s
Polak–Ribiére Conjugate Gradient 10 - 10 - 10 - 10 - 10 - 10 0.113K 0.169K 01 h 19min 10 s
Resilient Backpropagation 10 - 10 - 10 - 10 - 10 - 10 0.113K 0.170K 00 h 22min 08 s
Scaled Conjugate Gradient 10 - 10 - 10 - 10 - 10 - 10 0.113K 0.169K 00 h 29min 06 s
Variable Learning Rate Gradient Descent 10 - 10 - 10 - 10 - 10 - 10 0.273K 0.309K 00 h 02min 52 s

system matrix 0.202K 0.448K ≈ 0.1 s (one run)

linear interpolation of hue values in local calibration curves 0.110K 0.154K –
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Here, the most distinctive outliers can be detected by this 
kind of filter reliably and, therefore, no other approaches 
such as universal outlier detection (Westerweel and Scarano 
2005) are necessary. Applying the global outlier filter to 
the exemplary calculated temperature field of the calibra‑
tion for T = 19.0 ◦ C and T = 19.6 ◦C in Fig. 8a, b results 
in the temperature fields shown in Fig. 8c, d, in which the 
outliers are replaced by linearly interpolated temperatures 
of the adjacent interrogation windows. In order to compare 
the results of the three calibration methods outlined above, 

the respective distributions of the mean absolute deviation 
are depicted in Fig. 9 in dependency of the x‑coordinate 
and the temperature level. In order to distinguish this local 
mean absolute deviation from MAD, which incorporates 
each absolute deviation over the coordinates x, y and time 
t for the averaging, it is denoted as MADx . For the deter‑
mination of MADx the averaging of the absolute devia‑
tions was only performed in y‑direction of the calculated 
outlier‑cleaned temperature fields and over the 100 record‑
ings in time for each temperature level, since this enables to 
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Fig. 8  Raw temperature field of the calibration measurement for T = 19.0 ◦ C and T = 19.6 ◦ C (a, b) when using the neural network according to 
Fig. 6a and the corresponding temperature fields after outlier removal (c, d)
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evaluate the local variation of the mean absolute deviation, 
which mainly occurs in x‑direction due to the varying angle 
between illumination and observation. It can be seen that 
using the neural network or the linear interpolation of the 
hue values in the local calibration curves results in similar 
distributions of the mean absolute deviation MADx . Based 
on Fig. 8 it could already be expected that the deviations 
are the largest for higher temperatures in the left part of 
the field of view due to the diminishing color change of 
the TLCs, which is proven in Fig. 9. However, in the tem‑
perature range 18.8 ◦ C ≤ T ≤ 20.8 ◦C , which is of interest 
for the temperature measurements presented in this study, 
the local mean absolute deviation does never considerably 
exceed MADx = 0.2K when the neural network or the linear 
interpolation approach is applied, thereby confirming the 
suitability of the measuring technique for temperature meas‑
urements over the whole field of view. From Fig. 9 it is also 
obvious that the isothermal states of the calibration meas‑
urements cannot be reproduced as accurately by the system 
matrix in most cases. When applying the system matrix, 
larger deviations already occur in the lower temperature 
range, which is why the other two calibration methods are 
better suited for this application.

The results for the absolute deviations averaged over the 
whole field of view and over all time steps of the record‑
ings based on the data including outlier removal and the 
standard deviations are depicted in Fig. 10 in dependency 
of the temperature levels of the calibration for the three cali‑
bration methods. Furthermore, the results based on the raw 
data of the neural network are also plotted for comparison. 
Therefore, the effect of the outlier filter can be evaluated 

for the whole temperature range. As it is already obvious 
from Fig. 9, it also becomes apparent in Fig. 10 that the best 
results can mostly be achieved when using the neural net‑
work or the method based on linear interpolation. In particu‑
lar for the interval 18.8 ◦C ≤ T ≤ 20.8 ◦C , in which the tem‑
peratures of the measurements presented in Sect. 3.4 mainly 
range, the MAD and �Tcalc do never exceed 0.17 K when the 
neural network or linear interpolation of the hue values is 
used for the calculation of the temperature field. Even if the 
outliers are not removed, both the MAD and �Tcalc do never 
considerably exceed 0.2 K within this temperature interval, 
which also confirms the suitability of both of these meth‑
ods for precise temperature measurements via the color of 
TLCs. The advantage of using those two methods is proven 
when comparing the average of the mean absolute devia‑
tion MAD and of the standard deviation �Tcalc  , respectively. 
In consideration of the outliers at T = 18.8 ◦C , those values 
amount to about MAD|sm = 0.166K and �Tcalc |sm = 0.234K 
for the system matrix, while the use of the neural network 
results in MAD|nn = 0.086K and �Tcalc |nn = 0.110K, which 
are very close to MAD|li = 0.090K and �Tcalc |li = 0.110K 
for the linear interpolation of the hue values.

3.2.3  Discussion of the calibration methods

As the quantitative assessment of the calibration methods 
has shown, there are some differences regarding the result‑
ing error of the temperature measurement. It should be noted 
that those results concerning the mean absolute deviation 
and the standard deviation originate from the specific appli‑
cation presented in this study and, therefore, cannot be 

Fig. 9  The local mean absolute deviation MAD
x
 of the temperature measurements in dependency of the x‑coordinate and of the temperature 

level for the threee different calibration methods according to Fig. 6
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transferred one‑to‑one to any other application. However, 
the methods themselves are universal, such that some gen‑
eral conclusions about their applicability for temperature 
measurements with TLCs can be drawn.

The previous investigations have shown that using the 
system matrix leads to the largest error of temperature 
measurement in this case. This is due to the fact that the 
functional correlation between hue and temperature is not 
known a priori, but it must be defined somehow to determine 
the coefficients for the calculation of the temperature based 
on the hue values in the system matrix. If an inappropriate 
type of function is chosen, the coefficients cannot be deter‑
mined such that the temperatures are calculated correctly 
over the whole temperature range. Here, some polynomial 
functions with different orders were tested and the fourth‑
order polynomial has proven to be the most suitable one in 
this case. However, in general a compromise must be found 
to prevent overfitting caused by too high polynomial orders, 
while the order must still be high enough to represent com‑
plex functions. A big advantage of using the system matrix 
is that also other functional approaches could be checked 
as well as additional variables like for example the satura‑
tion S and the value V could be implemented easily, which 
might improve the results considerably (Segura et al. 2015). 
For the current application hue was chosen to be the only 
temperature‑dependent variable in the system matrix to cir‑
cumvent problems caused by a varying particle image den‑
sity during the measurements. Furthermore, when observing 
an extended field of view with a large range of observation 
angles, different functional approaches should be used to 
cope with the variety of the correlation between hue and 
temperature, which complicates the calibration using a sys‑
tem matrix. However, if only a small field of view must be 

investigated and only one functional approach is necessary, 
different types of functions aiming for a minimum error of 
temperature measurement can be tested effortlessly, so that 
this calibration method can also be applied successfully.

The investigations in Sect. 3.2.2 have already shown 
that the other two calibration methods are well suited for 
temperature measurements via the color of TLCs over a 
large field of view. Even though the method based on lin‑
ear interpolation of hue in local calibration curves is very 
straightforward, it is a very robust and reliable one, as no 
deviations are caused by numerical optimization or curve 
fitting. However, a sufficient number of sampling points for 
each calibration curve is necessary to ensure that a linear 
approximation between two neighboring points is justified 
and the temperatures are determined correctly. Moreover, 
using this method it must be taken care of local outliers 
within the calibration curves very accurately, as these outli‑
ers directly result in large measurement errors for the cor‑
responding interrogation window. In comparison, the other 
methods can handle local outliers to a certain degree, since 
their effect is reduced by the curve fitting.

Concerning the central method of investigation, which 
is the neural network, it can be stated that it holds a lot of 
promise, as this method provides good results regarding the 
MAD and �Tcalc without the necessity to specify functional 
correlations between hue and temperature, contrary to the 
system matrix. But precisely for this reason, this method car‑
ries the risk of overfitting, meaning that too many variables 
are internally defined to adapt the calculation model to the 
set of the training data, which might make the model prone 
to errors for the real measurements. In general, this problem 
of overfitting is more likely to appear if only a low amount 
of training data is available and there are strong outliers 
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in that set of data. One way to detect overfitting is to train 
several nets based on the training data and to compare the 
MAD and standard deviation when applied to another set 
of test data. If the different nets result in considerably vary‑
ing values for the MAD and standard deviation, there might 
be the problem of overfitting. Therefore, a common way to 
circumvent overfitting is to apply a method called “dropout” 
(Srivastava et al. 2014). Using this method, some randomly 
chosen neurons are ignored in each iteration of the training, 
thereby preventing any neuron from relying excessively on 
the output of any other neuron (Baldi and Sadowski 2014) 
and making the neural network more robust. In addition, 
also the effect of applying different methods of training on 
the result can be evaluated. Even though there are further 
methods to improve the results obtained by neural networks, 
no specific methods were used here, in order to demonstrate 
that neural networks can easily be applied to achieve reliable 
results. However, several network structures were trained 
with different training algorithms over five training runs, 
yielding similar results in each case, which confirms that 
overfitting is not present in this case. Therefore, based on the 
previous investigations the neural network and the method 
that uses linear interpolation of hue in the local calibration 
curves have been proven to work robustly for temperature 
measurements over a large field of view.

In addition to the computation time for the training of the 
calibration methods given in Table 1, it is finally referred to 
the rapid computation of the temperature fields when apply‑
ing those methods. Averaged over a set of 100 exemplary 
temperature fields with each having 172 × 150 interrogation 
windows, for the computation of one single temperature field 
on the basis of the given hue field the linear interpolation of 
the hue values takes 0.015 s, while the neural network takes 
0.041 s and the system matrix is the fastest approach with 
only about 350 μs , which further confirms the applicability 
of those methods.

3.3  Advanced calibration with neural networks

The previous results obtained with the neural networks 
are all based on a network training, which incorporates the 
location of the interrogation windows and the hue values as 
input parameters, while the corresponding known tempera‑
ture levels of the calibration measurements are the target 
values. As already outlined above, solely the hue value was 
chosen as information about the color appearance of the 
TLCs so far, since this parameter shows the most distinc‑
tive and robust dependency of the temperature. However, 
the saturation S and value V of the HSV‑colorspace also vary 
with temperature and, therefore, can be used for the tempera‑
ture measurements. The dependency of hue, saturation and 
value of the temperature is depicted in Fig. 11a–c for the 
three interrogations windows, which were already chosen 

for the investigations in Sect. 3.1 and are marked in Fig. 4. 
In order to calculate H, S and V based on the red, green and 
blue values of the RGB‑colorspace (Loesdau et al. 2014), 
those values were normalized by the maximum occurring 
intensity max (R,G,B) of the recordings of the calibration 
measurement, such that R,G,B ∈ [0, 1] . The normalized 
temperature‑dependent red, green and blue values can be 
seen in Fig. 11d–f for comparison.

From Fig. 11b, c it is obvious that the saturation and value 
do not show a clear unambiguous trend contrary to hue, but 
also hold some valuable information about the temperature. 
For example, the variation of the value V on the left side 
of the field of view in the temperature range from about 
19.2 ◦C ≤ T ≤ 21.4 ◦ C, where hue does only vary to a small 
extent, results in an improvement of the temperature meas‑
urements. This can be seen in Fig. 12a, which shows the 
differences of the mean absolute deviation when considering 
H, S and V for the training in comparison with the refer‑
ence case represented by the outlier‑cleaned results of the 
neural network, which is only trained with the hue value. 
In particular for temperatures T > 20 ◦ C the mean absolute 
deviation decreases up to nearly 0.05 K corresponding to a 
reduction of about 30%. Moreover, a neural network train‑
ing was performed with H and S besides the locations of 
the interrogation windows as input data, which also led to 
an improvement compared to the calibration only with hue. 
However, as expected the reduction of the mean absolute 
deviation is smaller in this case, due to the excluding of the 
information about the temperature contained in the value V.

Furthermore, using the red, green and blue values for the 
training of the neural networks was tested. While the use 
of the absolute values of R, G and B yields similar results 
compared to H, S and V, a further approach incorporating the 
ratios of R/G and R/B is not as good, but also better than the 
calibration only with hue. Hence, the calibration approaches, 
which directly incorporate the intensity of the light reflected 
by the TLCs, i.e., the red, green and blue values of the RGB‑
colorspace or the value V of the HSV‑colorspace, are most 
successful. Applying those approaches the strength of neural 
networks to make use of all the valuable information of the 
input data takes effect and results in a lower measurement 
error. However, when such a calibration approach is applied, 
it must be taken care that the intensity of the recorded light 
in the application of this measuring technique matches that 
of the calibration measurements. If considerable differences 
regarding the intensity are present, e.g., due to a varying 
seeding concentration, only hue, saturation and ratios of the 
red, green and blue values should be taken into account. 
With regard to the application presented in this study, this 
point is of importance, since the flow structures evolving in 
Rayleigh–Bénard convection have to be investigated over 
time spans of many hours to understand their reorganiza‑
tion in greater detail. Although the TLC particles are nearly 
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Fig. 11  The time‑averaged values of H, S, V (a, b, c) and R, G, B (d, e, f) in dependency of the temperature for the three interrogation windows 
marked in Fig. 4, respectively

Fig. 12  The variation of the mean absolute deviation (MAD) and of 
the local mean absolute deviation averaged over the temperature lev‑
els of the calibration ( MAD

x
 ) when applying the advanced calibra‑

tion methods in comparison to the reference case represented by the 
outlier‑cleaned results of the neural network, which only uses hue for 
the calibration
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neutral with respect to buoyancy, the absolute intensities 
within those extended time spans are affected by sedimenta‑
tion and, therefore, should not be considered in this case.

From the previous investigations the question arises, in 
which part of the field of view the main improvements of 
the temperature measurements are located. In order to clar‑
ify this point, the local mean absolute deviations shown in 
Fig. 9a, which are based on the outlier‑cleaned data obtained 
with the neural network trained only with hue, have to be 
considered. Those deviations have to be averaged over the 
axis of ordinate of Fig. 9a, i.e., over the different temperature 
levels of the calibration, and the resulting average values 
MADx|ref must be subtracted from the analogously deter‑
mined average values MADx for using the advanced cali‑
bration approaches. The results in Fig. 12b indicate that the 
main improvements are located on the left side of the field 
of view, which is reasonable, since the hue value does not 
suffice to precisely measure the highest temperatures of the 
investigated temperature range in this part of the field of 
view.

3.4  Temperature field measurements in Rayleigh–
Bénard convection

The applicability of TLCs for temperature field measure‑
ments is demonstrated by means of an exemplary measure‑
ment in the presented Rayleigh–Bénard cell with a heat‑
ing and cooling plate temperature of Th = 21.5 ◦C and 
Tc = 18.2 ◦C , respectively. An instantaneous image of the 
TLCs in a horizontal plane in close vicinity to the cooling 
plate of the cell, which clearly shows the evolving flow struc‑
tures, is depicted in Fig. 13a. These flow structures organize 
themselves in patterns, which evolve over the whole cross‑
sectional area with different size and shape. The color of the 
TLCs already reveals their emergence without knowing the 
temperature and velocity field, since there is only one rea‑
sonable explanation from the physical point of view, which 
matches those fields and also complies with the principle 
of continuity. Warmer fluid with decreased density streams 
upward in the center of each pattern, flows outward and, 
therefore, parallel to the cooling plate in its close vicinity, 
hits the fluid of an adjacent pattern and flows down again 
with decreased temperature resulting from the heat loss to 
the cooling plate. However, for further investigations on the 
nature of Rayleigh–Bénard convection the temperature field 
must be analyzed quantitatively, especially with regard to 
the local heat flux.

In order to determine the temperature field based on the 
color of the TLCs, the image is initially split into interro‑
gation windows of 32 × 32 pixels corresponding to about 
4 mm × 4 mm in size. For each interrogation window, the 
color is characterized in terms of hue, leading to the hue field 
H(x, y) shown in Fig. 13b. This field clearly demonstrates the 

trend of hue from the left to the right end, which is not only 
caused by temperature differences, but also by the variation 
of the observation angle within the camera’s field of view. 
Thus, the need for a calibration approach taking this effect 
into account is confirmed. As shown above, the neural net‑
works and the method that uses linear interpolation of the hue 
values in the local calibration curves can cope with this effect. 
Hence, both of those methods are applied to determine the 
corresponding temperature field depicted in Fig. 13c, d. In 
order to show that the measuring technique works despite a 
varying seeding concentration, the seeding was increased for 
the convection measurement. Therefore, the intensity of the 
light reflected by the TLCs in terms of the value V could not 
be taken into account for the temperature measurements as 
discussed in the previous section and the network trained with 
the hue value and saturation was chosen for the calculation of 
the temperature field.

In the temperature fields the small‑scale convective flow 
patterns can clearly be retraced again in accordance with the 
image of the TLCs in Fig. 13a and the hue field in Fig. 13b. 
Furthermore, it can be seen that the temperature is in aver‑
age warmer in the left half of the field of view, enabling to 
draw conclusions about larger, superimposed flow structures. 
It can be stated that the left half is rather a source of fluid, 
since the fluid flows up due to higher temperatures, while the 
right half in summary represents a sink of colder, downwelling 
fluid. These larger structures, which are called turbulent super‑
structures, relocate over time and strongly affect the heat flux 
between the heating and cooling plate, which is why they are 
in general of great interest. However, it is referred to Pandey 
et al. (2018) and Fonda et al. (2019) for further details regard‑
ing turbulent superstructures in Rayleigh–Bénard convection 
and to Bodenschatz et al. (2000), du Puits et al. (2007) as well 
as Chillà and Schumacher (2012) for general insights into Ray‑
leigh–Bénard convection, as the present study is focused on the 
temperature measurement technique itself. Moreover, a close 
match can be found from the temperature fields in Fig. 13c, d. 
In particular on the right side of the field of view, differences 
between those two temperature fields can hardly be seen by 
eye. On the left side some differences become apparent, espe‑
cially in the regions with the highest temperatures, at which 
the corresponding local calibration function of the hue value 
is already flat and the highest uncertainty of measurement is 
expected. However, overall the absolute deviations of the tem‑
perature fields are small and amount to about 0.1 K in average, 
confirming the achieved results and the applicability of those 
two calibration techniques for temperature field measurements 
using TLCs.
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4  Conclusion

In this study the use of TLCs for temperature field meas‑
urements was investigated. In this context it was shown 
that the color signal of TLCs used for the determination 
of the temperature strongly depends on the position within 
the field of view of a color camera. Three different cali‑
bration techniques, which take this effect into account, 

were analyzed with respect to the resulting error of tem‑
perature measurement. Here, the focus was on testing 
neural networks. For this purpose, different structures of 
the neural network as well as different training algorithms 
were investigated and the computational time required 
for the training of the networks was compared. A neu‑
ral network consisting of 10 neurons in 6 hidden lay-
ers, respectively, trained with the Levenberg–Marquardt 

200 250 300 350 400 450 500
200

250

300

350

400

450

500

x in mm

y
in

m
m

(a) Instantaneous image of the TLCs

200 250 300 350 400 450 500
200

250

300

350

400

450

500

x in mm

y
in

m
m

H
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) Corresponding hue field H (x,y)

200 250 300 350 400 450 500
200

250

300

350

400

450

500

x in mm

y
in

m
m

Tcalc in ◦C
18.5 19.0 19.5 20.0 20.5 21.0

(c) Corresponding temperature field T (x,y)
calculated with the neural network

200 250 300 350 400 450 500
200

250

300

350

400

450

500

x in mm

y
in

m
m

Tcalc in ◦C
18.5 19.0 19.5 20.0 20.5 21.0

(d) Corresponding temperature field T (x,y)
calculated with linear interpolation of the
hue values in the local calibration curves

Fig. 13  Instantaneous image of the TLCs (a) and the corresponding 
hue field (b) as well as the temperature field calculated with the neu‑
ral network (c) and linear interpolation of the hue values in the local 
calibration curves (d). The image of the TLCs was recorded in close 

vicinity to the cooling plate with a temperature of T
c
= 18.2 ◦C , while 

the temperature of the heating plate was adjusted to T
h
= 21.5 ◦C . 

The position of the field of view within the Rayleigh–Bénard cell can 
be seen in Fig. 3
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algorithm has proven to be most successful in this case. 
Using this structure of the neural network, the mean abso‑
lute deviation as well as the mean standard deviation over 
a temperature range of 3.5K amount to about 0.1K for 
instantaneous measurements with a spatial resolution of 
about 4mm over a large field of view with dimensions 
of about 350mm × 300mm . Thus, the dynamic tempera‑
ture range (DTR) and dynamic spatial range (DSR) are 
DTR = 3.5K∕0.1K = 35 and DSR = 300mm∕4mm = 75 . 
The comparison to the results obtained with the other two 
calibration techniques shows that using neural networks 
holds a lot of promise. The results are comparable to those 
of the method, which is based on linear interpolation of 
the hue values in local calibration curves and has already 
been used successfully for previous measurements (Moller 
et al. 2019).

The present study also shows that larger uncertainties 
appear for all calibration methods in the temperature range 
where the calibration curves get flatter, i.e., for higher tem‑
peratures. If a lower uncertainty is also necessary for higher 
temperatures, the observation angle could be changed, such 
that the color of the TLCs varies to a considerable extent 
over the whole required temperature range. However, if the 
observation angle cannot be changed, using another type of 
TLCs with differing specifications could be considered, too.

Furthermore, the investigations have shown that the com‑
putational time for the training of neural networks varies sig‑
nificantly depending on the structure of the network and its 
training algorithm. Therefore, a suitable trade‑off between 
the measurement error, which is affected by the structure of 
the neural network as well as by its training algorithm, and 
the computational time must be found for each application. 
In the present study it was demonstrated that also a very 
simple neural network, e.g., with 10 neurons in a single hid-
den layer, might be useful, since the mean absolute deviation 
and mean standard deviation of the temperature measure‑
ment are smaller than 0.2 K in this case. The training of this 
simple neural network, which was performed with the Lev-
enberg–Marquardt algorithm, took about 1 min, confirming 
the potential of neural networks to be trained very efficiently. 
Moreover, the application of various training algorithms 
has led to similar results regarding the error of temperature 
measurement, which also confirms the roughness of this 
calibration method. At this point it shall be noted that neu‑
ral networks particularly demonstrate their strengths when 
applied to very complex problems based on a large amount 
of training data. Therefore, neural networks are also well 
suited for problems with many input parameters, whereas 
another simple calculation model may reach its limits. For 
this reason, advanced calibration approaches taking into 
account not only hue, but also the saturation and the value 
or the red, green and blue values were tested. Especially for 
the largest temperatures of the calibration measurement, the 

mean absolute deviations have been reduced by up to 30%, 
proving the strength of neural networks to extract all the 
valuable information of the input data.

For all the investigations concerning neural networks, 
the Deep Learning Toolbox of MATLAB R2019a was used. 
This toolbox allows to adjust the settings for neural net‑
works comfortably, enabling to achieve reliable results by 
checking different combinations of the settings. Therefore, 
without advanced knowledge in the field of neural networks 
those can be designed and applied easily, which indicates an 
increased use of neural networks in the future. In order to 
demonstrate the applicability of neural networks for temper‑
ature measurements via the evaluation of the color of TLCs, 
this technique was finally used for some exemplary measure‑
ments in a horizontal plane of a Rayleigh–Bénard cell. The 
results clearly show that the corresponding temperature field 
can be determined precisely with high spatial resolution by 
means of the color of TLCs within a large field of view when 
applying neural networks. Furthermore, the results are also 
confirmed by opposing the temperature field calculated with 
the proven calibration technique based on linear interpola‑
tion of the hue values in local calibration curves.

5  Outlook

In the near future this measurement technique will be applied 
for simultaneous measurements of the velocity and tempera‑
ture field in the presented Rayleigh–Bénard cell, in order 
to study the turbulent superstructures in dependency of the 
Rayleigh number for different aspect ratios. The velocity field 
will be determined by particle image velocimetry (Wester‑
weel 1997; Raffel et al. 2018), also using the TLCs as tracer 
particles for the evaluation of the velocity field. In order to 
be able to investigate the vertical component of the velocity 
as well, stereoscopic PIV measurements will be performed 
by applying two additional monochrome cameras. Thus, the 
perspective error affecting the estimation of the horizontal 
velocity components in the case of particle motion in the ver‑
tical direction is corrected, too (Kästner et al. 2018; Cierpka 
et al. 2019). Furthermore, due to the versatile applicability 
of neural networks it is planned to use them in combina‑
tion with other measurement techniques, e.g., with two‑color 
laser‑induced fluorescence (Sakakibara and Adrian 2004) and 
luminescent two‑color tracer particles (Massing et al. 2016), 
enabling a comparison of the obtained results.
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