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“It seems to me that the poet has only to perceive that which others do
not perceive, to look deeper than others look. And the mathematician
must do the same thing.”

Sofia Kovalevskaya!

“Entropy is a figure of speech, then, a metaphor. It connects the world
of thermodynamics to the world of information flow. The machine uses
both. The Demon makes the metaphor not only verbally graceful, but
also objectively true.”

Thomas Pynchon?

“Todd, trust math. As in Matics, Math E. First-order predicate logic.
Never fail you. Quantities and their relation. Rates of change. The vital
statistics of God or equivalent. When all else fails. When the boulder’s
slid all the way back to the bottom. When the headless are blaming.
When you do not know your way about. You can fall back and regroup
around math. Whose truth is deductive truth. Independent of sense or
emotionality. The syllogism. The identity. Modus Tollens. Transitivity.
Heaven’s theme song. The night light on life’s dark wall, late at night.
Heaven’s recipe book. The hydrogen spiral. The methane, ammonia,
H20. Nucleic acids. A and G, T and C. The creeping inevibatility. Caius
is mortal. Math is not mortal. What it is is: listen: it’s true.”

David Foster Wallace?

1S6nya Kovalévsky. Her Recollections of Childhood, translated from the Russian by Isabel. F.
Hapgood. The Century Co, New York, 1895.

2Thomas Pynchon. The Crying of Lot 49. J. B. Lippincott, Philadelphia, 1966.

3David Foster Wallace. Infinite Jest. Little, Brown and Company, New York, 1996.
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ZUSAMMENFASSUNG IN DEUTSCHER
SPRACHE

Gegenstand der vorliegenden Arbeit ist die Konstruktion einer nichtkommutati-
ven Transportmetrik, die es erlaubt, spursymmetrische vollstandig Markovsche
Halbgruppen als Gradientenfluss der Entropie aufzufassen.

Eine vollstiandig Markovsche Halbgruppe ist eine Halbgruppe von Operato-
ren P; auf einer von Neumann algebra ./, die gewisse Stetigkeitseigenschaften
haben, die Identitit von .4 auf sich selbst abbilden und fiir die die Operatoren

P;oid: 4 ®M,(C)— 4 ®M,(C)

fiir alle n € N positive Elemente auf positive Elemente abbilden. Solche Halbgrup-
pen treten under anderem in der Beschreibung von offenen Quantensystemen auf,
zu ihnen gehoren aber auch klassische Beispiele wie die Halbgruppe, die der dis-
krete Laplaceoperator auf einem Graph oder der Laplace-Beltrami-Operator auf
einer Riemannschen Mannigfaltigkeit erzeugt.

Ein Gradientenfluss eines Funktionals auf einem metrischen Raum ist eine
Kurve, die zu jedem Zeitpunkt stets in die Richtung des steilsten Abstieges flief3t.
Es ist in einer Reihe von Fillen bekannt, dass man die Gradientenfliisse der
Boltzmann-Entropie

Ent(p) :fplogpdm

oder ihres nichtkommutativen Analogons, der von Neumann-Entropie, beziiglich
geeigneter Transportmetriken als Losungen von Differentialgleichungen der Form

Py =—Lp;

charakterisieren kann, so zum Beispiel wenn £ der (positive) Laplace-Beltrami-
Operator auf einer Riemannschen Mannigfaltigkeit, der Laplace-Operator auf ei-
nem endlichen Graphen oder ein Lindblad-Generator auf einer Matrixalgebra ist.

111



iv ZUSAMMENFASSUNG IN DEUTSCHER SPRACHE

Ziel dieser Arbeit ist es zu zeigen, dass das gemeinsame zugrundeliegende
Prinzip in all diesen Fillen die Markoveigenschaft der von &£ erzeugten Halb-
gruppe ist. Dazu wird fiir eine gegebene spursymmetrische vollstandig Markov-
sche Halbgruppe eine Transportmetrik auf dem Raum der Dichteoperatoren kon-
struiert, die die Metriken in den oben genannten Fillen verallgemeinert. Es wird
bewiesen, dass unter geeigneten Voraussetzungen die gegebene Halbgruppe der
eindeutige Gradientenfluss der von-Neumann-Entropie ist. Als Konsequenzen wer-
den Semikonvexitit der Entropie entlang von Geoddten und Funktionalunglei-
chungen fiir die Halbgruppe diskutiert.



INTRODUCTION

In this thesis, a noncommutative analog of the Wasserstein distance is constructed
that allows to view tracially symmetric quantum Markov semigroups as gradient
flows of the entropy.

A quantum Markov semigroup (QMS) is a semigroup of operators P; on a von
Neumann algebra .# that have certain continuity properties, map the identity of
A onto itself and for which the operators

P;®id: 4 o M, (C)— 4 ® M,(C)

map positive elements onto positive elements for all n € N. These semigroups oc-
cur for example in quantum statistical mechanics in the study of open quantum
systems. In this context, the second law of thermodynamics asserts that the en-
tropy decreases (or increases, depending on the sign convention) in time along the
QMS. One natural question is whether one can in some way quantify the rate of
entropy dissipation/production.

A gradient flow of the function S: M — R on a Riemannian manifold is a semi-
group of maps ®;: M — M such that

%(Dt =-VSo CDt,
®p =id.

In other words, the trajectories (®;(x));>0 are curves of steepest descent for S. We
will show that one can endow the space of density operators of an open quantum
system with a (formal) Riemannian structure such that the time evolution of the
system follows gradient flow curves of the entropy. In this sense the entropy not
only decreases in time, but does so at the highest possible rate, giving a quanti-
tative version of the second law of thermodynamics for Markovian open quantum
systems.
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The notion of gradient flows has long since been generalized to convex func-
tionals on Hilbert spaces and been used in the theory of partial differential equa-
tions. For example, it is well known that the semigroup generated by a positive
self-adjoint operator is the gradient flow of the associated quadratic form.

In contrast, the study of gradient flows in metric spaces that are not normed is
relatively recent. In the classical (non-quantum) case, the idea of viewing evolu-
tion equations as gradient flows of entropy functionals in a suitable metric space
goes back to the celebrated article of Jordan, Kinderlehrer and Otto [JKO98].
They showed that solutions of the heat equation

fe = Apig

on R? can be obtained as limits of a generalized minimizing movement scheme
(now known as JKO scheme) in the space of probability measures with finite sec-
ond moment endowed with the L2-Wasserstein metric

1/2
Walu,v) = (inf{f lx -y du(x,y) (prsm = w, (pro)ym = v}) .
R4 xR

This is an instance of an optimal transport problem (see the textbooks [Vil03,
Vil09] by Villani for an introduction into this theory) and is often called Monge—
Kantorovich formulation of the Wasserstein metric after the founders of this re-
search field.

Shortly after the JKO result, Benamou and Brenier [BBOO] gave a dynamic
characterization of the Wasserstein distance now known as Benamou—Brenier for-
mula, namely

1 1/2
Wz(,U,V)Zinf{fO (fRdthdut) dt| it + V- (o) = 0, po = o =v}.

This lead Otto [Ott01] to the interpretation of the Wasserstein space as a (formal)
Riemannian manifold and the heat flow as gradient flow of the entropy in the
sense explained above.

The JKO result spawned a lot of subsequent activity, extending the gradi-
ent flow characterization to various other geometric settings (see for example
[AGS14a, AS18, Erb10, GKO13, Juil4, OS09]) as well as to other evolution equa-
tions (see e.g. [Erb16]).

Not the least, the characterization of the heat flow as gradient flow of the en-
tropy played a crucial role in the work of Ambrosio, Gigli and Savaré [AGS14a,
AGS14b, AGS15] and Erbar, Kuwada and Sturm [EKS15] that provided an un-
derstanding of the connection between synthetic lower bounded Ricci curvature
bounds in the sense of Lott—Sturm—Villani [LV09, Stu06a, Stu06b] and Bakry—
Emery [BES5].



vii

In contrast, for discrete spaces the Monge—Kantorovich formulation of trans-
port distances has turned out not to be useful in this direction: While one can de-
fine the Wasserstein distance for probability measures on arbitrary metric spaces,
absolutely continuous curves in the Wasserstein space are constant when the met-
ric is discrete. Hence there are simply no non-trivial gradient flows. Similarly, the
Wasserstein distance has not lent itself to gradient flow characterizations of evo-
lution equations with non-local generators such a fractional Laplacians.

However, Maas [Maall], Mielke [Miell], and Chow, Huang, Li and Zhou
[CHLZ12] independently defined a discrete transport metric # on the set of prob-
ability densities over a finite graph such that the heat flow for the graph Lapla-
cian coincides with the gradient flow of the entropy with respect to #'. Instead of
the Monge—Kantorovich optimal transport problem, their approach is based on a
discrete version of the Benamou—Brenier formula.

Vector fields on a graph are usually identified with functions on the (oriented)
edges so that unlike for manifolds, there is not a canonical way to multiply a
function on the graph with a vector field to obtain a new vector field. For example,
one could define

(wd(x,y) :=ux)(x,y)
or
(wé)(x,y) := u(y)é(x,y).

The key insight in the articles cited above was that one has to take an average of
these two products. More precisely, in the simplest case of an unweighted graph,
the metric # is defined as follows:

11 1
71/(#0,/11)2=inf{§f0 Z ﬂt(X,y)'ft(X,y)Zdt‘ﬂt(x):5 Z :at(x’y)ét(x’y)}'

(,): x~y yiy~x

Here, f1,(x,y) denotes the logarithmic mean of p;(x) and p(y), that is,

1
,(x,y) = fo 1) () da.

In fact, one can use means other than the logarithmic one to obtain a whole family
of discrete transport metrics. But it is only the logarithmic mean that yields the
entropic gradient flow structure of the discrete heat equation.

This new metric has already proven to be very fertile. On the one hand, the
gradient flow characterization has been generalized to the heat equation for gen-
erators of jump processes [Erb14] as well as a variety of other evolution equa-
tions on graphs [CLZ19, EM14, EFLS16, LM13]. On the other hand, (variants of)
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the metric # has been used (among other things) to define lower Ricci curvature
bounds for graphs [EM12] and to study a new discrete version of the nonlinear
Schrodinger equation [CLZ18].

Moreover, recent years have seen new activity in the study of matrix-valued
optimal transport with several groups studying a version of the metric #  for ma-
trix algebras (see [CM14, CM17a, CGGT17, CGT18, MM17]); and, independently,
Brenier [Brel7, Brel8] discovered a surprising connection between matrix-valued
optimal transport and fluid dynamics. Notably, Carlen and Maas [CM14, CM17a]
showed that the metric # allows to view certain quantum Markov semigroups on
finite-dimensional algebras as gradient flow of the von Neumann entropy.

Both in the case of graphs and matrix algebras, all work so far has been limited
to a finite-dimensional setting and the question of extending it to the infinite-
dimensional case has been raised in several of the mentioned articles.

The goal of this thesis is to work out Markovianity as crucial structural prop-
erty shared by all the examples mentioned above and to present an extension of
the theory to the infinite-dimensional setting on this basis. More precisely, we give
a definition of # and a characterization of tracially symmetric quantum Markov
semigroups — a setting that generalizes many of the ones above — as gradient flows
of the entropy, based on the first-order differential calculus developed by Cipriani
and Sauvageot [CS03]. Despite the attributes “quantum” and “noncommutative”,
this framework includes the classical (non-quantum or commutative) setting.

In particular, this thesis gives the first unified approach to the results in the
local case (for example the heat equation on Euclidean space, manifolds, infinitesi-
mally Riemannian metric measure spaces) on the one hand and non-local case (e.g.
heat equation on graphs, for fractional powers of the Laplacian) on the other hand,
which could only be treated by analogy until now. Let us stress that such a unified
treatment of the local and non-local case is not possible in the finite-dimensional
case, since locality is a purely infinite-dimensional phenomenon (incidentally, it
did not appear in the seminal work of Beurling—Deny [BD58] on Dirichlet forms,
as they only treated the finite-dimensional case).

On the noncommutative side, this setting does not only cover infinite-dimen-
sional quantum systems, but also some classical examples of noncommutative
geometry such as the noncommutative heat semigroup on the noncommutative
torus. This could open the door to a theory of Ricci curvature for noncommutative
spaces, a concept that has been notoriously elusive in noncommutative geometry
until now.

Let us shortly comment on the differences to prior work. In contrast to the
case of metric measure spaces, many powerful tools coming from the Monge—
Kantorovich theory of optimal transport are not available here. Furthermore,
in the Benamou—Brenier formulation, the continuity equation depends linearly
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on the measure density in the local case, while in our setting, it is in general a
nonlinear equation in the density.

These problems have already been tackled successfully in the non-local case
of graphs and jump processes, however, the necessary analysis of monotonicity
and convexity properties turns out more difficult in the noncommutative setting
as operator monotonicity and operator convexity are decidedly more rigid notions
than their commutative counterparts.

Compared to previous work on matrix-valued optimal transport, we deal not
only with operators on an infinite-dimensional space (as opposed to matrices),
but mostly with unbounded ones. This requires a careful adaptation of classical
tools for operator monotonicity and convexity, which are usually only developed
for bounded operators. Furthermore, it is only in the infinite-dimensional case
that the full power of the theory of gradient flows in metric spaces is needed.

Among other possible applications, we hope to lay the ground for a system-
atic study of geodesic convexity of the entropy for infinite-dimensional quantum
systems, a topic which has already proven useful for convergence results in the
finite-dimensional case [CM17a, CM18].

Moreover, the theory developed here could provide a framework for approxima-
tion results of smooth spaces or infinite-dimensional systems by discrete spaces or
finite-dimensional systems, which so far have only been treated in some particular
cases [GM13, Garl7, GKM18].

Outline and summary of results

In Chapter 1 we recall some basic facts about quantum Dirichlet forms, including
the first-order differential calculus of Cipriani and Sauvageot.

Let us first illustrate it with an example. The prototype of a (commutative)
Dirichlet form is the Dirichlet energy on R”, that is,

E(u) = —quudx.
By partial integration, & can equivalently be expressed as

&)= f|Vu|2dx,
and V is a derivation in the sense that it satisfies the product rule V(uv) =uVv +
vVu.

Now, if & is a quantum Dirichlet form, the first-order differential calculus of
Cipriani and Sauvageot (Theorem 1.20) asserts that it can be represented in a
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similar way. To be more precise, there exists a Hilbert bimodule # and an opera-
tor 0 with values in /# such that

&(a) = l0all’,

and 0 satisfies the product rule d(ad) = adb + (0a)b. One crucial difference of the
general case from the Dirichlet energy on R” is that the left and right multiplica-
tion on # may be different. For commutative Dirichlet forms, this phenomenon
is connected to the nonlocality of the form.

In general, the left and right multiplication L(a) and R(a) on / are only de-
fined for bounded elements a in the domain of &. In the last part of Chapter 1 we
examine when they can be extended to all of .. It turns out that this question is
closely related to the carré du champ (or square field operator)

I'(a)(x) = (x0a,0a) z.

As the main new result of the chapter we characterize when the carré du champ is
o-weakly continuous for all @ € D(&). In the commutative case, this simply means
that the energy measure is absolutely continuous with respect to the reference
measure. In Theorem 1.32 we show that this property holds if and only if the left
and right multiplication have a o-weakly continuous extension to all of .#. In this
case we say that the trace 7 is energy dominant. (in the commutative case, this
holds if and only if the energy measure is absolutely continuous with respect to
the reference measure) For the rest of the thesis we will work under the standing
assumption that this property holds.

In Chapter 2 we study a class of means 6. Just as in the discrete case discussed
above, the left and right multiplication L and R on the tangent bimodule # do
not coincide in general, and one can take averages of them: If 8: [0,00)? — [0, 00)
is continuous, we define p = 8(L(p),R(p)) via the spectral theorem for density op-
erators p and denote the associated quadratic form by ||-|I%.

Furthermore, we define <7 as the space of all bounded elements a in the do-
main of & for which IIOaII% is bounded independently of the density operator p.
Later on, <7 will play the role of a space of test “functions”.

While these definitions make sense for arbitrary continuous functions 6, one
needs more structure to obtain interesting results. For this reason we then narrow
our focus to functions 6 that can be represented by operator means in the sense
of Kubo—Ando (Definition 2.17). These functions are closely related to operator
monotone functions and admit an integral representation

o t)—fls—td )
SUZ | Asta-neH
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for a Borel probability measure u. Of special interest for us are the arithmetic
mean AM(s,?) = %(s +t) and the logarithmic mean

LM(s, )= — > * .
logs —logt
For 6 that can be represented by a symmetric operator mean we show that .«
is a x-algebra (Proposition 2.22) and the map p — IIGaII% is concave and upper
semicontinuous for all a € /Ay (Theorem 2.14). The second result will be crucial
for semicontinuity properties of the metric # discussed next.

In Chapter 3 we construct the noncommutative transport metric # and ana-
lyze some of its basic properties. We first introduce a class of curves in the space
of density operators, called admissible curves (Definition 3.4). These are curves
(p¢) for which the noncommutative continuity equation

py=0"(pCr)

has a solution ({;) in a suitable weak sense. In the weak formulation of this equa-
tion, the algebra <y introduced in the previous chapter comes into play. If it exists,
the solution () is unique and will be denoted by (D p;).

The metric # is then defined (Definition 3.12) as the length metric associated
with the action functional

(o)~ [IDpil2, dt

on the space of admissible curves. By the Benamou—Brenier formula, this metric
coincides with the L2-Wasserstein distance if & is the standard Dirichlet energy on
Euclidean space, while it agrees with the nonlocal transport distance constructed
in [CHLZ12, Maall, Miel1] for finite graphs and with the noncommutative trans-
port distance from [CM17a] for tracially symmetric QMS on matrix algebras.

In general, it cannot be ruled out that # is degenerate or takes the value
infinity. While the latter already occurs for the Wasserstein distance on Euclidean
space, we will show that # is non-degenerate under fairly weak assumptions
(Proposition 3.20). Furthermore we establish some basic properties such as the
convexity of # (Lemma 3.24) and use the semicontinuity result from the previous
chapter to deduce lower semicontinuity of the action functional with respect to
pointwise weak convergence in L! (Theorem 3.30).

Chapter 4 deals with the von Neumann entropy

Ent(p) = 1(plogp)
and the Fisher information

F(p)=&(p,logp).
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While the entropy functional is well understood also for infinite-dimensional quan-
tum systems and we mainly rehearse some known facts, less seems to be known
about this variant of the Fisher information. In fact, already the expression given
above suffers from several regularity issues (not all density operators are in the
domain of &, the logarithm is not a Lipschitz function), and we spend much of this
section giving a rigorous definition via approximation and showing that several
different approximations yield the same result. We then go on the show that or-
bits of the QMS (P;) are admissible curves (Proposition 4.24, Corollary 4.26) with
action bounded by the integrated Fisher information and that the entropy dissipa-
tion rate along these curves is given by the Fisher information (Proposition 4.25).
In Chapter 5 we introduce the gradient estimate

IoP.all? < e **0al?,,, (GE(K,00))

which is a variant of the Bakry-Emery gradient estimate. In fact, if (P;) is the heat
semigroup on a complete Riemannian manifold (M, g), then the gradient estimate
reduces to the Bakry-Emery estimate

T(P;u) < e 2X1P,T(u)

with T'(f) = |Vf|?, which is equivalent to Ricy > K.

Among other things, this gradient estimate ensures that the QMS (P;) has a
smoothing effect (Proposition 5.7), namely that it maps L2(#,7) N .4 into <.
Moreover, it implies the following contraction estimate (Theorem 5.13):

W(Pp,Pio) < e Ky (p,0).

To give some examples for which the gradient estimate holds, we adapt a tech-
nique developed by Carlen and Maas in the finite-dimensional case [CM17a] to
deduce the gradient estimate from an intertwining relation (Proposition 5.18).

Chapter 6 is devoted to the announced characterization of tracially symmetric
QMS as gradient flows of the entropy. We show (Theorem 6.15) that if 7 is a
normal faithful tracial state on the separable von Neumann algebra .# and (P;)
is a tracially symmetric QMS on .#, satisfying the gradient estimate GE(K,oco) for
the logarithmic mean and a technical condition, such that 7 is energy dominant,
then the evolution variational inequality

1d K

——W(Pip,0)? + =W (P:p,0)? + Ent(P;p) < Ent(o)

2dt 2

holds for all density operators p,o with finite entropy and finite distance and a.e.
t = 0. The technical condition is satisfied for example if the gradient estimate also

holds for the arithmetic mean (not necessarily for the same K).
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As the proof is quite technical, we first prove this result in the special case
when (P;) is ultracontractive (Theorem 6.6) to make the outline of the proof more
transparent. The QMS (P,) is called ultracontractive if it maps LY(#,7) into 4
for all ¢t > 0. This has not only the advantage that one can deal with bounded
operators, but also guarantees that the trajectories ¢ — P;a are smooth for ¢ > 0
(Proposition 6.4).

To prove the general case, some more effort is needed to compensate for the
lack of these two properties. As a key technical step, we show that admissible
curves between density operators with finite entropy can be approximated by reg-
ular ones while at the same time controlling the entropy, Fisher information and
action of these curves (Lemma 6.12, Proposition 6.13, Corollary 6.14).

In Chapter 7 we study consequences of the gradient flow characterization. On
the one hand, the gradient estimate GE(K,oo) for K > 0 implies a variety of func-
tional inequalities such as the modified Sobolev inequality (Proposition 7.10)

1
Ent(p) < ﬁf(p),

which is equivalent to the exponential entropy decay bound (Proposition 7.12)
Ent(P;p) < e 2X*Ent(p)

and implies the Talagrand inequality (Proposition 7.13)
W(p,1)% < EEnt(p)
7 7K
as well as the Poincaré inequality (Proposition 7.14)
la—1(@)} < K&(a).

On the other hand, the gradient flow characterization can be used to prove
semi-convexity of the von Neumann entropy along # -geodesics. The study of con-
vexity properties along geodesics (also called displacement convexity) of function-
als on Wasserstein space was initiated by McCann [McC94] and later played a
crucial role in the Lott—Villani—Sturm theory of synthetic Ricci curvature for met-
ric measure spaces [LV09, Stu06a, Stu06b].

A priori, it is not even clear if arbitrary density operators with finite distance
are joined by a geodesic. However, if the evolution variational inequality holds,
then the distance between density operators with finite entropy can be realized
as infimum over curves with uniformly bounded entropy (Proposition 7.2). To-
gether with a compactness argument this yields that density operators with finite
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entropy and finite distance are joined by a # -geodesic (Theorem 7.15). It fol-
lows from an abstract result on gradient flows that the entropy is geodesically
K-convex, that is,

K
Ent(p;) < (1-¢t)Ent(pg) + tEnt(p1) — Et(l - (po, p1)?

for every geodesic (p;) in the space of density operators endowed with the metric
.

The relations between the gradient estimate GE(K,oc0), the evolution varia-
tional inequality and geodesic K-convexity of the entropy are summarized in The-
orem 7.22.

In Chapter 8 a sample of open problems is compiled. Appendices A and B
contain some background information on noncommutative LP spaces for semi-
finite von Neumann algebras and the various operator topologies used throughout
this thesis.

With a few exceptions, the material presented in this thesis is based on a
preprint by the author [Wirl8].
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CHAPTER 1 m—m—

QUANTUM MARKOV SEMIGROUPS
AND QUANTUM DIRICHLET FORMS

In this chapter two of the main objects of this thesis are introduced, quantum
Dirichlet forms and the corresponding symmetric quantum Markov semigroups
on noncommutative L2 spaces.

Quantum Markov semigroups were introduced by Lindblad [Lin76] and Gori-
ni, Kossakowski and Sudarshan [GKS76] in the study of irreversible open quan-
tum systems. Their key insight, motivated by physical considerations, was that
the correct assumption on maps constituting the semigroup is not positivity, but
complete positivity (both concepts coincide in the commutative case). More re-
cently, quantum Markov semigroups have received growing interest in the context
quantum information theory (see for example [KT13, Kin14, RD19])

The counterparts of tracially symmetric quantum Markov semigroups, quan-
tum Dirichlet forms, were first defined by Gross [Gro75] and Albeverio—Hgegh-
Krohn [AH77] in the tracial case and later extended to the not necessarily tracial
case by Goldstein—Lindsay [GL93] and Cipriani [Cip97].

The first two section of this chapter are expository. In Section 1.1 we collect
the definitions along with some basic facts, including the correspondence between
quantum Dirichlet forms and symmetric quantum Markov semigroups. We also
give some examples, which will be taken up later on. In Section 1.2 we review the
first-order differential calculus developed by Cipriani—Sauvageot [CS03]. This
calculus plays a primal role throughout this thesis.

The results of Section 1.3 are new. We study a noncommutative analog of
energy dominant measures. The measure m is called energy dominant for the
Dirichlet form & if the energy measure I'(f) is absolutely continuous with respect

1
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to m for all f in the domain of &. In Theorem 1.32 we give a characterization of
a noncommutative version of this property in terms of the first-order differential
calculus associated with &. This result will also justify the assumption of energy
dominance in the following chapters.

Throughout this chapter let (.#,1) be a tracial von Neumann algebra. For
necessary background material on traces on von Neumann algebras and noncom-
mutative L? spaces we refer the reader to Appendix A.

1.1 Definitions and basic facts

In this section we introduce quantum Dirichlet forms and quantum Markov semi-
groups along with some basic properties. In the commutative case, a closed dense-
ly defined quadratic form & on L2(X,m) is a Dirichlet form if £(&) < &(u) for all
real-valued u € L2(X,m), where @ denotes the pointwise maximum of u and 1.

To extend this definition to the noncommutative case, one has to make sense
ofa forae L%(./% ,T). One possibility is to define @ via functional calculus, another
to define it as the projection onto the cone of self-adjoint elements less or equal 1.
in the next lemma we show that both possibilities give the same result.

Recall that for a nonempty, closed, convex subset C of a Hilbert space H and
x € H there is a unique element y € C with ||[x—y| = inf,ccllx—2z|. The map P¢: x —
y is called (metric) projection onto C. The element Pc(x) can alternatively be
characterized as the unique y € C such that

Re{(x—y,z—y)=<0

forall zeC.

We write a A f = min{a, 8} and a Vv = max{a, B} for a, B € R. If x is a self-adjoint
operator, x A a stands for the application of the function min{-,a} to x, which is
the infimum of x and a1 in the (commutative) unital C*-algebra generated by x.

Lemma 1.1. The closure C of {x € L%(./%,T)ﬂ./% | x <1} in L2(4,71) is convex and
the projection Pc onto C is given by Pc(a)=a Al forall a € Li(%,r).

Proof. 1t is easy to see that C is convex. For a € Li(./%,‘[) let a, =(@nl)v(—n).
Then a, EL%(./%,T)O./%, a,<1land a, —anlin L2(#,7), hence anleC. If
be.#NL2(M,7) with b <1, then

a—ar)b-anrl)=1(a-DY2b-arl)a-1Y?)
<7(a-1)Y2(1-arl)a-1V?)

=17((@a-1)4(a—1)-)
=0.
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For arbitrary b € C, the inequality above follows by continuity. Thus Pc(a) =
anl. O

For the next definition recall that a quadratic form on a Hilbert space H is a
map @ : H — [0,00] such that

e Q(Au)=|1?Q(u) for AeC, u € H, and
e Qlu+v)+Qu—-v)=2Qw)+2Q ) for u,ve H.

The domain of @ is
D(Q)={ueH|Q(u) <o}

The quadratic form @ is called closed if it is lower semicontinuous. The form @ is
closed if and only if D(®) endowed with the norm

Illg = (117 +11-1g)"
is complete.
For every quadratic form @ on H there exists an associated sesquilinear form
q defined as
13 .k .k
q: D@)xD@Q) — C, qu,v)= 1 Y i*Qu +i"v).
k=0

We will use these two points of view interchangeably and write @ for both of these
maps.
The generator £ of a densely defined closed form @ is given by

D(&)={ueDQ)|weHVweDQ): Q(u,w)={v,w)s},
ZLu=v.

The generator is a positive self-adjoint operator on H that uniquely determines
the form. Conversely, for every positive self-adjoint operator £ on H there exists
a densely defined closed form that is generated by Z.

Definition 1.2 (Markovian form). A quadratic form &: L2(.#,1) — [0,00] is called
real if &(a*) = &(a) for all a € L2(#, 1) and Markovian if &a A 1) < &(a) for all
a€ L3 (M,7).

Lemma 1.1 shows that the cut-off a A 1 can be understood either as an appli-
cation of functional calculus or as projection in L2(.#,7). By the next lemma (see
[DL92, Proposition 2.12] and [CS03, Theorem 10.2]), Markovian forms automat-
ically satisfy a stronger contraction property with respect to Lipschitz functional
calculus.
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Lemma 1.3. A closed densely defined real quadratic form &: L*(4, 1) — [0,00]
is Markovian if and only if £(f(a)) < &(a) for all a € L%(./%,T) and all 1-Lipschitz
functions f: R — R with £(0)=0.

For n € N denote by tr,, the normalized trace on M, (C) and let 7, = T ® tr,, on
(M & My(C))y =M, (M), that is,

1 n
Tn: Mn(./%)+ —_— [O,OO], Tn((aij)) = ; Z T(aii)-
i=1
Definition 1.4 (Completely Markovian form). For quadratic form & on L2(.,1),
the amplification &, on L2(M,(.4),t,) is defined by

n
En: LA(My (M), T,) — [0,00], Enl(aij)) = Y. E(ai).
i,j=1
The form & is called completely Markovian if &, is Markovian for all n e N.

A closed, densely defined, real, completely Markovian quadratic form & on
L2(#,7) is called completely Dirichlet form on (L, 7).

Now we turn to quantum Markov semigroups. Recall that an (operator) semi-
group on a locally convex space E is a family (T%);>o of continuous linear maps
from E to E such that

e To= id,
o T.T:=Tsy for s,t=0.

The semigroup (7%) is called strongly continuous if Tyu —u ast—0forallu e E.
The generator of the strongly continuous semigroup (7%) is the operator £ given
by

1
D(ZL) = {u cE ) lim ~(u ~ o) exists},
1
ZLw)=lim—(u—T:u).
t—0 t

If E is a Hilbert space and T; is symmetric and contractive for all ¢ = 0, then
the generator of (T) is a positive self-adjoint operator. Conversely, for every posi-
tive self-adjoint operator £ there is a unique strongly continuous semigroup with
generator £. See [ENO0O] for more details on semigroups on Banach spaces and
[Yos80] for more information on semigroups on locally convex spaces.

For p € [1,00) we endow LP (.4 ,7) with the norm topology. In the case p = co
however, strong continuity in the norm topology is too restrictive. For this reason
we will always consider the o-weak topology when talking about semigroups on
M.
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Definition 1.5 (Completely sub-Markovian semigroup). Let p € [1,00]. A semi-
group (P¢);=0 on LP(#,7) is called positive if P; maps L% (.#,7) into L% (., 1) for
all £ > 0. The semigroup (P;) is called completely positive if the extension (P}') to
L2(M (M), T,) given by

P} LP(M (M), Ty) — LP(My,T7), PP ((aif) = (Pra;j)

is positive for all n € N.

A strongly continuous semigroup (P;) on L?(#,7) is called sub-Markovian if it
is positive and P;a <1 for a € LZ(./% ,7) with a <1, and completely sub-Markovian
if (P}) is sub-Markovian for all n € N.

Let g be the dual exponent of p. A semigroup (P;) on LP(.#,7) is called 7-
symmetric if

7(bP;a) = 1(aPsb)
for all a,b € LP( M ,T)NLI( 4 ,7) and ¢t = 0.

Although originally only defined on a single L? space, every t-symmetric sub-
Markovian semigroup induces a coherent family of sub-Markovian semigroups on
the whole scale of L? spaces.

Proposition 1.6. Let p € [1,00] and let (P;) be a t-symmetric sub-Markovian semi-
group on LP(,t). For all q € [1,00] there exists a unique semigroup (P;q)) on

LA ,7) such that (P;) and (P;q)) coincide on LP (. ,t)NLY(,T). Moreover,
(1) (P;q)) is a sub-Markovian semigroup for all q € [1,00],
(i) 1P <2 forall t=0, q €[1,00],

(i) PPy =P\" for all t =0 and q,q' € [1,00] with /g +1/q' = 1.

Proof. For p =2 these assertions are proven in [DL92, Propositions 2.2 and 2.14],
but the proofs easily extend to p € [1,00). For p = oo, everything but the strong
continuity of (qu)) works analogously.

Let a € LY, 1) N4 and b e LY (M ,1) N M, where 1/q +1/q’ = 1. Since (P;) is
strongly continuous on .4 with respect to the o-weak topology, we have

1(bP?a) = 1(bPsa) — 1(ba).

Since (P;q)a)tzo is uniformly bounded in L9(_#,1) by (ii), this convergence extends
toall a e LY(4,7) and b € LY (u ,7). Thus (Piq)) is strongly continuous with re-
spect to the weak topology on LY(#,t). It follows from the general theory of
operator semigroups (see [EN0O, Theorem 1.5.8]) that (P;q)) is indeed strongly
continuous with respect to the norm topology on LY(./, 7). O
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When there is no danger of confusion, we may drop the superscript and simply
write (P;) for all the semigroups acting on the different L? spaces.

Remark 1.7. Let (P;) be a t-symmetric sub-Markovian semigroup on L?(.4,T)
with generator Z. For a € D(Z) the curve (P:a);>¢ is the unique classical solution
of the initial value problem

xt:—ffxt fort>0
(MME)
Xo=a

in LP(,7).

For p =2 it follows from the spectral theorem that ¢ — P; has an analytic con-
tinuation the the right half-plane {Rez > 0}, and by the noncommutative version of
Stein’s interpolation (see [Gro72, Proposition 3]) this result extends to p € (1,00).
In particular, P; maps LP(.4,7) into D(%¥) for all ¢ > 0 and therefore (P;a):>q
solves the initial value problem (MME).

The situation is quite different in the edge cases p =1 or p = co. Indeed, P;
may fail to map L1(.#, 1) into D(Z) for some ¢ > 0 as is witnessed by the Ornstein—
Uhlenbeck semigroup on LR, exp(—x2/2)dx) — see [Dav90, Theorem 4.3.5]. The
analyticity of (P;) will be taken up again in Section 6.2.

Definition 1.8 (Quantum Markov semigroup). A completely sub-Markovian semi-
group (P;) on ./ is called conservative or quantum Markov semigroup if P;1 =1
for all £ = 0. A 7-symmetric completely sub-Markovian (P;) on L?(.#,7) is called
completely Markovian if (P;OO)) is conservative.

Remark 1.9. By duality, a 7-symmetric completely sub-Markovian semigroup (P;)
on LP (.4 ,71) is completely Markovian if and only if the semigroup (Pf‘l)) on LYN.4,1)
is trace-preserving, that is,

(PMa) = 1(a)

for a € LY(.,7). Since we study dynamics on density operators in the later chap-
ters, having a trace-preserving semigroup is a natural assumption.

Just as in the commutative case, there is a bijective correspondence between
(completely) Dirichlet forms and 7-symmetric (completely) sub-Markovian semi-
groups. The following result is due to Albeverio—Hgegh-Krohn [AH77, Theorems
2.7, 2.8] in finite case and Davies—Lindsay [DL92, Theorems 2.13, 3.3] in the semi-
finite case.

Proposition 1.10. Let £ be a positive self-adjoint operator on L*(,t). The
quadratic form generated by £ is (completely) Markovian if and only if the semi-
group generated by £ is (completey) sub-Markovian.
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If the form & and the semigroup (P;) have the same generator, we also say that
(P;) is the semigroup associated with & and vice versa. In the light of Proposition
1.6, the bijective correspondence from the previous proposition extends to L?. In
this sense we also talk about the associated semigroup on L”.

Since conservativeness of the semigroup will be a standing assumption, we
reserve a special name for the associated Dirichlet forms (motivated by the term
quantum Markov semigroup for the corresponding semigroup on .4).

Definition 1.11 (Quantum Dirichlet form). A completely Dirichlet form is called
quantum Dirichlet form if the associated semigroup is conservative.

Example 1.12. Let (X,%8,m) be alocalizable measure space (see Example A.2). Ev-
ery Markovian form on L?(X,m) is completely Markovian so that Dirichlet forms
on L2%(X,m) in the sense of Beurling—Deny [BD58, BD59] can be identified with
completely Dirichlet forms on L2(L>®(X,m),T,,). Analogously, the notions of sub-
Markovianity and complete sub-Markovianity coincide in this case.

Example 1.13. With the notation from Example A.3 let Ay be the noncommutative
torus and 7 the unique tracial state on Ay. The map

2 2
Ay — Ay, Y ApuUmV" = Y e im0 U™V

m,n m,n

extends to a bounded linear operator P; on L?(Ag,7), and the family (P,) is a
completely Markovian semigroup, called the noncommutative heat semigroup on
the noncommutative torus.

The associated quantum Dirichlet form is the closure of

Ay —1[0,00), Y. apmpU™V" = Y (m* +n?)|am, .
m,n m,n
Example 1.14. With the notation from Example A.4 let C/(H) be the fermionic

Clifford algebra and 7 the unique tracial state on C/(H). The number operator N
on &%_(H) is defined by

DWN)={(yr) € F_(H)| Y k> lyrl%, ,; < oo},
k=0

N(yp) = (kyp).

The operator ® ! N® generates a quantum Dirichlet form on L?(C¢(H),), some-
times referred to as Gross’s fermionic Dirichlet form (see [Gro72, Gro75]).
The associated quantum Markov semigroup (P;) acts on </ by

L | = -tk . .. .
Py ' Z Qg€ | T Z € A€ Che
J1<<Jk J1<<Jp



8 CHAPTER 1. QMS

1.2 First-order differential calculus

In this section we review the first-order differential calculus introduced by Ci-
priani—Sauvageot [CS03]. As a motivating example let (M, g) be a complete Rie-
mannian manifold and & the Dirichlet energy on M given by

é": Wl’z(M) —_— [0,00), g(u) = ”du”%?(M,T*M)

Of course the exterior derivative d satisfies the Leibniz rule
d(uv)=udv +vdu.

The insight of Cipriani and Sauvageot was that every completely Dirichlet
form admits such a representation by a derivation if one allow for different left
and right multiplication on the right-hand side of the Leibniz rule.

Let us first introduce the relevant objects. The material is taken from [CS03]
with some slight changes in notation. We start with an abstract replacement of
the 1-forms in the introductory example.

Definition 1.15 (Symmetric Hilbert bimodule). Let A be a C*-algebra. The op-
posite algebra A° is the C*-algebra with same underlying vector space, involution
and norm, but with multiplication given by aob = ba for a,b € A.

A symmetric Hilbert bimodule over A is a quadruple (#,L,R,<J) consisting of
a Hilbert space /#, commuting non-degenerate *-representations L of A and R of
A° on A, and an anti-linear isometric involution «/ : # — # such that

JL(a)=R(a™)J
forallae A.

The operations L(a) and R(b) are viewed as left and right multiplication of A
on / and accordingly we write aé and ¢éb for L(a)l and R(b)é. Since L and R
commute, expressions of the form a{b make sense without brackets.

Next we introduce the abstract version of the exterior derivative in the moti-
vating example.

Definition 1.16 (Symmetric derivation). Let (.#,7) be a tracial von Neumann al-
gebra, A c ./ a C*-algebra and (#,L,R,J) a symmetric Hilbert bimodule over
A€. A derivation with values in # is a closed densely defined operator 0 on
L2(#,7) such that

e D(O)NnA isdensein A,
* d(ab)=L(a)db+ R(b)da for all a,b e D(O)NA.
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The derivation 0 is called real if D(0) is self-adjoint and
Joa =0(a™)
for all a € D(0).

For the ease of notation, we merge the two preceding concepts in the following
definition.

Definition 1.17 (First-order differential calculus). Let (#,7) be a tracial von
Neumann algebra and A c .# a C*-algebra. A first-order differential calculus
over A is a quintuple (0, #,L,R,J) such that (#,L,R,.J) is a symmetric Hilbert
bimodule over A and 0 a symmetric derivation on A with values in /.

An important consequence of the Leibniz rule is a (two-variable) chain rule.

Definition 1.18 (Quantum derivative). The quantum derivative of f € C1(I) is the
function

f(S)—f(t) lfS ;é t,

FiIxI—R,f ={ st
f X 7f(3,t) {f’(S) ifs=t.

With this notation, the chain rule reads as follows ([CS03, Lemma 7.2]).

Lemma 1.19 (Chain rule). Let (0, #,L,R,J) be a first-order differential calculus.
If f € CL(R) has bounded derivative and f(0) =0, then f(a)€ D(d) and

df (a) = f(L(a),R(a))da.
for all a € D(0)y,.

If the left and right action coincide, one recovers the usual chain rule 6f(a) =
f'(a)da.

The following representation theorem for completely Dirichlet forms by Cipri-
ani and Sauvageot (see [CS03, Theorems 4.7, 8.2, 8.3]) is central to our investiga-
tions. It shows the intimate relation between first-order differential calculi and
completely Dirichlet forms.

Theorem 1.20. Let (. ,7) be a tracial von Neumann algebra.

(a) If A c M is a o-weakly dense C*-algebra and (0, #,L,R,J) a first-order
differential calculus, then the quadratic form & defined by

D(&)=D(9), &) = 0al?,

is a completely Dirichlet form.
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(b) If & is a quantum Dirichlet form on L*(,1), then € = D(E)N M is a *-
algebra and there exist a first-order differential calculus (0, #¢,L,R,<J) over
€ such that D(0)=D(&) and

10all?, = &(a)

for all a € D(0).

Moreover, if (0, 7,L,R,J) is another first-order differential calculus with the
same properties, then there exists a unitary map U : /€ — S such that

e« Ud=0,
e UL=L, UR=R,
e UJ=JU.

In the sense of this theorem, we can speak of the first-order differential calcu-
lus associated with &.

Remark 1.21. Since we require the left and right action in the definition of Hilbert
bimodules to be non-degenerate, not every completely Dirichlet form can be repre-
sented by a first-order differential calculus in the sense of the previous theorem.
However, every completely Dirichlet form can be represented as

1
&)= l0all%, + EK(aa* +a"a),

where 0 is a symmetric derivation and K is a weight, the so-called killing weight
(see [CS03, Theorem 8.1]).

Remark 1.22. In [CS03], an additional condition called regularity is imposed. This
property depends not only on the form &, but also on the choice of some C*-
subalgebra of .#. Every completely Dirichlet form & is regular with respect to
the norm closure of D(&)N ..

In the last part of this section we discuss some examples. Let us start with the
example from the beginning of the section.

Example 1.23 (Riemannian manifolds). Let (M, g) be a complete Riemannian man-

ifold and & the Dirichlet energy given by

D(&) = WMD), E@) = 1dulFzgy. e pry:

The first-order differential calculus associated with & is given by A4 = L2(M;T*M),
() (x) = (Cu)(x) = u(x)s(x), 0 =d and J¢ =¢.
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Example 1.24 (Metric measure spaces). A metric measure space is a triple (X,d,m)
consisting of a complete separable metric space (X,d) and a Borel measure m on
X such that there exists a Lipschitz map V: X — [0,00) with

f e_V2 dm<1.
X

Let Lip(X,d) denote the space of Lipschitz functions on X and Lip(f) the local
Lipschitz constant of f € Lip(X,d). The Cheeger energy Ch is the lower semicon-
tinuous relaxation of the convex functional

%fx Lip(f)?dm if f € Lip(X,d),

00 otherwise.

Cho: L*(X,m) — [0,00], Cho(f) = {

If Ch is a quadratic form, then (X,d,m) is called infinitesimally Hilbertian. In
this case the first-order differential calculus associated with 2Ch coincides with
first-order differential calculus developed in [Gigl4]. For more information on
analysis on metric measure spaces see also [AGS14a, AGS14b, AGS15].

Example 1.25 (Weighted graphs). Let X be a countable set, m: X — (0,00) and
b: X xX —[0,00) such that

* b(x,x)=0forall xe X,
* b(x,y)=0b(y,x)forall x,ye X,
* >,b(x,y)<ocoforall xeX.

The triple (X, b,m) is called a weighted graph (compare [KL10, KLL12]). Often one
allows for an additional killing weight ¢: X — [0,00), but the associated Dirichlet
form will never be conservative if ¢ # 0, so we drop it from the beginning.

The associated Dirichlet form with Neumann boundary conditions is

EMN: 12X, m)— 10,001, &M (w) = %Zb(x,y)lu(x)— u(y)l?.
X,y

The associated Dirichlet form with Dirichlet boundary conditions &P’ is the clo-
sure of the restriction of &2 to C.(X).
The first-order differential calculus associated with &% is given by

o #=03XxX,1b),
* (u-¢)x,y)=ulx)(x,y), (& -v)x,y)=E{(x, y)v(y),

* Ju(x,y)=u(x)—u(y), and
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* (JOx,y)=—E(y,x).

The first-order differential calculus associated with &2 is obtained by suitable
restriction.

Notice that the crucial difference between Example 1.25 on the one hand and
Examples 1.23, 1.24 on the other hand is that left and right multiplication on
€ coincide for the Dirichlet forms on Riemannian manifolds and metric measure
spaces while they differ for graphs. More generally, left and right multiplication
coincide in the commutative setting whenever & is a strongly local regular Dirich-
let form (see [IRT12, Theorem 2.7]).

Finally we give some noncommutative examples.

Example 1.26 (Noncommutative torus). Let & be the quantum Dirichlet form on
the noncommutative torus from Example 1.13. With the notation from Example
A.3, the maps

01: el — L*(A9,7), Y. @muU™V" = Y imam , U™V",
m,n m,n

0g: oy — L*(A9,7), Y amnU™V" = Y inam,U™V",

are closable in L2(Ag, 7).

Let 0 = 01 ® 09, let # be the closed linear hull of {(a¢01b,ad2d) | a,b € o}
in L2(Ay,7)® L?(Ag,7) and define the maps L, R and J by L(a)(x,y) = (ax,ay),
R(b)(x,y) = (xb,yb) and J(x,y) = —(x*, y*).

Then (0, #,L,R,J) is the first-order differential calculus associated with &.

Example 1.27 (Fermionic Clifford algebra). Let & be Gross’s fermionic Dirichlet
form from Example 1.14.
Let a; be the annihilation operator on &_(H) characterized by

1 & _
ai(ejl /\---/\ejk): _k Z(—l)l(ei,ejl>ej1 N--Nej, N---Nej,
=1
and y: L®°(C4(H),7) — L*°(C¢(H), ) the grading operator.
The first-order differential calculus for &y is given by # =Y ,-0L2(C¢(H), 1),
L(x)(&;) = (x&3), R(x)(E7) = (y(x)E;), J(E;) = —(F) and 0 = B0 P a; .

1.3 Carré du champ

We saw in the previous section that a quantum Dirichlet form & induce a first-
order differential calculus. However, the left and right action on the Hilbert bi-
module are only defined for elements from the uniform closure of D(&)N.4. In
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this section we characterize when these actions can be extended to the entire von
Neumann algebra .#. This is necessary to formulate the continuity equation in
Chapter 3.

It turns out that this question is closely related to the so-called carré du champ
operator defined below. More precisely we show in Theorem 1.32 that the carré du
champ I'(a) has a density with respect to 7 if and only if the left and right action
of D(&)N .4 have normal extensions to .. This provides a characterization of the
noncommutative analogue of energy dominant measures.

Throughout the section let (.4, 1) be a tracial von Neumann algebra, & a quan-
tum Dirichlet form on L?(#,1), € = D(&) N4, and (3, #,L,R,J) the associated
first-order differential calculus.

Definition 1.28 (Carré du champ). The carré du champ operators I 0 and T are
defined as

Lye: H0x 6 — €7, T(S,m(x) = (x{,m) 7
and I'(a,b) =T #(0a,0b) for a,b € D(&).

We write T (&) for T 4(,¢) and I'(a) for I'(a,a). It follows from the proper-
ties of the first-order differential calculus that I'  and I' are sesquilinear and
IT 7, Ml < ISl linllz for all §,n € A.

Remark 1.29. In terms of &, the carré du champ can be expressed as
1
I'(a)(x)= E(é"(a,ax*) +&(ax,a)—E@ a,x™))

for