

TU Ilmenau | Universitätsbibliothek | ilmedia, 2020
http://www.tu-ilmenau.de/ilmedia

Glombiewski, Nikolaus; Götze, Philipp; Körber, Michael; Morgen, Andreas;
Seeger, Bernhard:

Designing an event store for a modern three-layer storage hierarchy

Original published in: Datenbank-Spektrum. - Berlin : Springer. - 20 (2020), 3, p. 211-222.

Original published: 2020-10-16

ISSN: 1610-1995
DOI: 10.1007/s13222-020-00356-6
[Visited: 2020-11-09]

This work is licensed under a Creative Commons Attribution 4.0
International license. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0/

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1007/s13222-020-00356-6
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-020-00356-6
Datenbank Spektrum (2020) 20:211–222

Designing an Event Store for a Modern Three-layer Storage Hierarchy

Nikolaus Glombiewski1 · Philipp Götze2 · Michael Körber1 · Andreas Morgen1 · Bernhard Seeger1

Received: 7 June 2020 / Accepted: 5 September 2020 / Published online: 16 October 2020
© The Author(s) 2020

Abstract
Event stores face the difficult challenge of continuously ingesting massive temporal data streams while satisfying demanding
query and recovery requirements. Many of today’s systems deal with multiple hardware-based trade-offs. For instance,
long-term storage solutions balance keeping data in cheap secondary media (SSDs, HDDs) and performance-oriented
main-memory caches. As an alternative, in-memory systems focus on performance, while sacrificing monetary costs, and,
to some degree, recovery guarantees. The advent of persistent memory (PMem) led to a multitude of novel research
proposals aiming to alleviate those trade-offs in various fields. So far, however, there is no proposal for a PMem-powered
specialized event store.
Based on ChronicleDB, we will present several complementary approaches for a three-layer architecture featuring main
memory, PMem, and secondary storage. We enhance some of ChronicleDB’s components with PMem for better insertion
and query performance as well as better recovery guarantees. At the same time, the three-layer architecture aims to keep the
overall dollar cost of a system low. The limitations and opportunities of a PMem-enhanced event store serve as important
groundwork for comprehensive system design exploiting a modern storage hierarchy.

Keywords Persistent memory · Non-volatile memory · Event stores · Data management · Databases

1 Introduction andMotivation

Data stream applications are at the forefront of many of
today’s challenging processing use cases. In a broad sense,
every source that continuously produces data is handled by
streaming technology. Thus, use cases range from tradi-
tional scenarios such as infrastructure monitoring and log
analysis to cutting edge technology like autonomous cars
and the Internet of Things (IoT). An important sub-class of

� Nikolaus Glombiewski
glombien@informatik.uni-marburg.de

� Philipp Götze
philipp.goetze@tu-ilmenau.de

Michael Körber
koerberm@informatik.uni-marburg.de

Andreas Morgen
morgen@informatik.uni-marburg.de

Bernhard Seeger
seeger@informatik.uni-marburg.de

1 University of Marburg, Marburg, Germany

2 Technische Universität Ilmenau, Ilmenau, Germany

data streams that covers all four of those use cases is known
as event streams.

In contrast to generic data items, an event represents
an occurrence at a specific point in time, such as a mea-
surement by a temperature sensor. Low latency analysis of
event streams can be achieved through a plethora of power-
ful stream processing systems such as Apache Flink1. Be-
sides, long-term storage for ad-hoc queries and compute-
intensive analysis requires an efficient event store. Even
though many modern key-value-based NoSQL systems can
be used to meet the ever-increasing data ingestion demands,
time series databases and specialized event stores can store
and replay millions of temporal records per second with
lower hardware requirements. However, as the amount of
data is expected to grow continuously2, pure event inges-
tion and queries on ever-expanding data sets will remain an
important challenge for years to come. Thus, it is crucial to
not only look at novel software solutions but consider those
solutions in the presence of current and future hardware
advancements that will help to alleviate some challenges.

1 https://flink.apache.org/.
2 https://www.seagate.com/our-story/data-age-2025/.

K

https://doi.org/10.1007/s13222-020-00356-6
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-020-00356-6&domain=pdf
https://orcid.org/0000-0003-2876-3918
https://orcid.org/0000-0002-5076-5007
https://orcid.org/0000-0003-2079-6264
https://orcid.org/0000-0003-3368-6726
https://orcid.org/0000-0002-9362-153X
https://flink.apache.org/
https://www.seagate.com/our-story/data-age-2025/

212 Datenbank Spektrum (2020) 20:211–222

Fig. 1 Various costs depending
on the data placement

In recent years, one of the most pioneering hardware
advancements is the introduction of persistent memory
(PMem). Unlike traditional secondary storage (SSDs,
HDDs), PMem is byte-addressable and exhibits faster
access times. Similar to the fairly modern approach of an
in-memory database system – focusing on performance
while sacrificing monetary and recovery costs – a straight
forward solution to incorporate PMem into a current event
store would be to use it as a direct replacement for SSDs
or even DRAM. However, given the massive amount of
continuously incoming data, these strategies are not univer-
sally advised and cost-effective. As an example, consider
the use case and corresponding costs of several placement
strategies in Fig. 1. It is based on an actual ratio taken
from ChronicleDB consisting of 1 TB primary data and
100 GB reconstructable secondary data. The processing
and recovery costs are estimates, while the monetary costs
base on [9]. Given the capacity limits of our system (see Ta-
ble 1), the before mentioned options (2–4) are excluded
either way. The placement in our current system (1) is
the most efficient option in monetary terms. Assuming
that the following generations of PMem will become more
affordable – as the history of flash and DRAM prices indi-
cates [9] – a pure persistent system comprising PMem and
flash (5) could become the most economical and ecological
solution. Using the same argument, a three-layer system

Table 1 Experimental setup

PROCESSOR 2 Intel® Xeon® Gold 5215, 10 cores / 20 threads
each, max. 3.4 GHz

CACHES 32 KB L1d/L1i, 1024 KB L2, 13.75 MB LLC

MEMORY 2 � 6�32 GB DDR4 (2666 MT/s),

2 � 6�128 GB Intel® Optane™ DCPMM

STORAGE 1 TB Intel® SSD DC P4501 Series

OS & COM-
PILER

CentOS 7.8, Linux 5.6.11 kernel, OpenJDK 14.0.1

(6) is however the most promising solution providing the
best balance across all metrics.

Hence, instead of a direct replacement of traditional
storage or main memory, we will examine PMem as a third
layer in the storage hierarchy of an event store. The discus-
sion will be framed as a case study for ChronicleDB [33,
34], a special-purpose database system for event streams.
Even though we use ChronicleDB as an example, the
lessons learned can be applied to both, more specialized
(e.g., temporal indexing/storage design) as well as less
specialized systems (e.g., ingestion/recovery). Our contri-
butions are as follows:

� From the literature (§3), we identify those solutions that
already utilize multiple storage layers and adapt existing
insights for an event store.

� We will introduce PMem as a third layer into Chroni-
cleDB’s layout. We show various opportunities and lim-
itations for using PMem in the respective components of
an event store – such as ingestion, storage design, recov-
ery, and index maintenance (§4).

� With the help of micro-benchmarks, we substantiate that
our approaches can improve the general query perfor-
mance, the recovery speed and guarantees, as well as flat-
ten fluctuations in ingestion speed (§5).

� We summarize our findings and formulate future research
directions (§6).

2 Background

In this section, we briefly describe our used memory and
storage technologies focusing on PMem and which con-
clusions can already be drawn from their properties. After-
wards, we discuss design aspects of ChronicleDB, needed
to follow the subsequent sections.

K

Datenbank Spektrum (2020) 20:211–222 213

2.1 Persistent Memory

In the context of this paper, PMem stands primarily for In-
tel’s Optane DC Persistent Memory Modules (DCPMM).
The basic properties are byte-addressability, near-DRAM
latency, and persistence. In particular with DCPMMs, some
additional constraints must be taken into account to make
the most efficient use of PMem (cf. [38]). First of all, the
transfer size from the CPU to PMem, and also DRAM,
is 64 bytes (a cache line). However, internally the hard-
ware operates on 256-byte blocks, where a write-combining
buffer is used to reduce write amplification. Consequently,
data structures (i.e., their nodes/chunks) should be a mul-
tiple of 256 bytes in size and 64-byte aligned. Apart from
the slightly worse latency, the bandwidth of PMem is also
more limited compared to DRAM. Also, the read-write per-
formance is asymmetric. Therefore, accesses to the device
should be reduced – especially writes – to overcome these
limitations. Another observation [8] is that despite the byte-
addressability, there is still a relatively large discrepancy
between sequential and random accesses.

To confirm these properties and to identify peculiar-
ities of our system (see Table 1), we remeasured some
performance indicators using Intel’s Memory Latency
Checker [12] for DRAM and PMem as well as Flexi-
ble I/O Tester [3] for the SSD/flash drive. The results are
presented in Table 2. For the SSD, we worked on a 100 GB
file and report the 99th percentile latency. We have exper-
imented with varying block sizes as well as degrees of
parallelism (i.e., threads and I/O depth) and report the best
throughput. The measurements are largely in accordance
with the specifications and other reports [9, 11, 18, 32, 38].
One anomaly, however, is the sequential write bandwidth
for DRAM, which should be closer to the read speed.
Nevertheless, compared to DRAM, PMem shows about
a 2–4� higher latency and lower peak bandwidth. While
the difference between sequential and random access for
DRAM is hardly noticeable, it has a greater impact on
PMem and even more on SSDs. The read-write asymmetry
for PMem and SSDs is also clearly visible.

Table 2 Measured performance of memory/storage technologies
within our server (see Table 1)

DRAM DCPMM TLC Flash

Idle seq. read latency 81 ns 174 ns 14 �s

Idle rand. read latency 88 ns 325 ns 206 �s

Max. read bandwidth 85 GB=s 32 GB=s 3 GB=s

Max. write bandwidth 46 GB=s 13 GB=s 0.6 GB=s

Random reads 931 M=s 45 M=s 299 K=s

Random writes 703 M=s 30 M=s 61 K=s

2.2 The Event Store ChronicleDB

ChronicleDB is a database system specialized for storing
and querying multi-variate event stream data. Event appli-
cation scenarios usually involve a high amount of continu-
ously arriving data in a short period of time. An example
would be data generated by sensor streams. Historical anal-
ysis in these applications has to consider the huge amount of
raw data in an efficient manner. To support those scenarios,
ChronicleDB is designed around three requirements:

(R1) Ingestion of high input rate streams.
(R2) Fast stream replay and time travel operations.
(R3) Fast processing of point, range, and aggregation

queries on secondary attributes.

While R1 is required to avoid load-shedding in cases of high
volume input streams, R2 and R3 allow excellent query re-
sponse times in a variety of use cases like post-mortem
analysis of event stream queries, continuous batch process-
ing for dashboard applications as well as to some degree
serving traditional OLAP demands. The following will pro-
vide an overview of ChronicleDB’s four core components
and briefly describe their interaction in the system. Subse-
quent chapters will review relevant implementation details
in the context of opportunities and limitations for utilizing
persistent memory within the respective components.

Primary Index. ChronicleDB’s target data model are
multi-variate event streams, i.e., data consisting of multiple
measurements per timestamps, with a fixed schema. Thus,
a single primary index in ChronicleDB stores records called
events of the form e = .a1; :::; an; ts/ where ai is a value
from attribute domain Ai and ts is the event’s timestamp
from a temporal domain T . A potential infinite stream E =
he1; e2; :::i is ingested into the Temporal Aggregated B+-Tree
(TAB+-Tree) index. Note that within E timestamps do not
have to be unique. The overall index layout is presented in
Fig. 2.

At its core, the index is an augmented B+-Tree with T
as its key domain and doubly-linked nodes on every level.
This index design is important to fulfill (R2). To support fast
ingestions (R1), ChronicleDB primarily adopts an append-
only model, where the data log is also the database. This
is reflected in the index design. As the default behavior,
insertions are treated as a continuous bulk loading operation
in a traditional B+-Tree index. Under the assumption that
the event stream E is in temporal order, a new event can
be appended to the leaf node containing the most recent
data. For the remainder of this work, this leaf node and its
parents are referred to as the right flank of the TAB+-Tree.
To speed up ingestion in temporal order, the right flank is
kept in DRAM at all times. Thus, without an additional
log [33], the last leaf can be lost in a crash.

K

214 Datenbank Spektrum (2020) 20:211–222

Fig. 2 Primary Index (TAB+-Tree) Layout

Secondary Index. Besides the primary index, Chroni-
cleDB allows adaptive and ad-hoc creation of two types of
secondary indexes, which are referred to as heavyweight
and lightweight indexes. Heavyweight indexes are tradi-
tional secondary index structures such as LSM [25] or
COLA [4], built for one or more attributes of the stream.
Leaf pages of heavyweight indexes refer to primary index
pages with a record offset. Lightweight indexes are an adap-
tation of small materialized aggregates (SMAs) [24], which
can be arbitrary aggregate functions on the event’s data do-
main. In contrast to [24], those aggregates are stored within
the primary index nodes of the TAB+-Tree. Each child ref-
erence is associated with aggregated information of their
respective nodes. In Fig. 2, an index entry consists of an
overall event count aggregate and the minimum and maxi-
mum values for each attribute. The interleaved aggregates
tremendously boost the query performance (R3) for sim-
ple queries (e.g., filter) and complex queries (e.g., pattern
matching) alike. For instance, by intersecting a query range
on a secondary attribute with its computed min/max range,
large portions of the stream can be excluded from process-
ing. Furthermore, temporal aggregation queries on those
materialized aggregates can be answered in logarithmic
time. Since lightweight index information is stored within
the primary index, it is automatically persisted and does
not require additional random I/O while querying a tempo-
ral region.

Storage Layout. To reduce the storage cost of massive
amounts of data, compression is a necessity. Especially con-
tinuous sensor values, such as temperature and humidity
measurements, feature a lot of similar values that can be
easily compressed to reduce space requirements. Chron-
icleDB compresses each TAB+-node with a configurable
compression algorithm. This naturally results in various
node sizes that cannot be mapped to fixed-size block ad-
dresses. Hence, some sort of address translation layer that
maps logical node IDs to physical storage locations is re-
quired. This information needs to be stored on disk to avoid
a full relation scan during recovery from a system failure.
We refrained from storing the address translation informa-
tion in a separate location but designed a storage layout that
interleaves address translation information with the actual
data, in order to enforce sequential access patterns on sec-

ondary storage3. The layout operates on data blocks of fixed
size, where the size of such a block is a multiple of the un-
compressed size of a TAB+-node. For instance, in our pre-
vious work [34], we used 32 KiB blocks for uncompressed
8 KiB TAB+-nodes. Each of these blocks either contains
compressed TAB+-nodes or the translation information for
a set of TAB+-nodes. Due to our goal of storing transla-
tion information interleaved with the data, the translation
layer is organized as a tree structure, called Address Trans-
lation Tree (ATT). Each ATT leaf covers the same number
of translations for a contiguous range of TAB+-node IDs.
Similarly, inner nodes cover a fixed range of node IDs and
point to the corresponding address translation block in the
next tree level. The most recent translations are kept in
main memory and are written to secondary storage once
the block becomes full (analogous to the right flank of the
TAB+-tree). Hence, this in-memory fraction needs to be
recovered in case of a system failure.

Out-Of-Order Data. By itself, the TAB+-Tree degener-
ates to the performance of a traditional B+-Tree when data
does not arrive in a temporal order. This type of data is
referred to as out-of-order (OOO) data. Even though the
system allows to switch the time domain from application
time to system time in extreme cases of OOO data, most
streaming data sets feature at least somewhat of a tem-
poral order within data. For those scenarios, ChronicleDB
indexes data on application time while deploying a three-
step strategy as depicted in Fig. 3 to offset performance
degradation.

First, OOO data is put into a dedicated OOO queue.
This preserves the append-only nature. Second, nodes in
the TAB+-Tree can leave spare space to absorb OOO in-
sertions without cascading node splits. For cheap spinning
disks used to store large amounts of data, this has the addi-
tional benefit of preserving a sequential node layout. Third,
whenever the OOO queue reaches a certain size, it is merged

Fig. 3 Original OOO Handling

3 Even though this aspect is less critical on SSDs than on HDDs, the
performance of sequential access is still superior compared to random
access [35].

K

Datenbank Spektrum (2020) 20:211–222 215

into the primary index. This stabilizes query performance
by adjusting lightweight indexes to more accurate values
and merging logical temporal regions into close physical
regions.

3 RelatedWork

Several of the concepts presented in this paper base on
the insights of previous work. Particularly for event stores
or time series databases – such as Tidalrace [14], Data-
Garage [23], tsdb [5], Gorilla [29], InfluxDB [10], etc. –
there are, to our knowledge, no considerations for PMem
yet. Therefore, here we elaborate on two existing directions
for data management using multiple memory and storage
technologies including PMem. The first direction comprises
individual data structures that make use of at least two mem-
ory layers. The second part deals with more complex sys-
tems or storage engines that try to exploit the entire memory
hierarchy.

3.1 Multi-Level Data Structures

The focus of most previous work for PMem-based data
structures was on the B+-Tree. Among these, however, only
the FPTree [28] adopts a DRAM/PMem hybrid approach.
They propose a persistent linked list of leaf nodes while
keeping the inner nodes in DRAM, which are rebuilt upon
recovery. Evaluations on real hardware have already shown
that this division is definitely practical for hiding PMem’s
higher latency and achieving DRAM-like performance [18].
With the LB+-Tree [22] the authors refine the concept for
Intel’s DCPMMs by utilizing multi-256-byte nodes and lim-
iting the number of PMem line writes. In [13] it is shown
that the selective persistence concept of the FPTree is simi-
larly applicable to other data structures. The use case here is
a persistent trie-like structure enhanced with various DRAM
caching strategies. Instead of splitting up a single data struc-
ture, the authors ofHiKV [37] opt for the use of two separate
structures. Here, a partitioned hash index is kept in PMem
for efficient single key-value operations while an additional
volatile B+-Tree enables faster scans. What is further pro-
posed are multi-tier general-purpose buffer pools, which are
supposed to exploit the respective properties of the diverse
memory and storage technologies [2, 19, 26, 30, 31].

3.2 PMem-aware Storage Engines

Besides the individual data structures, there have been more
extensive redesigns of storage engines including PMem.
One of the first proposals considering a modern OLTP en-
gine on future hardware was FOEDUS [16]. PMem is used
here to store log entries and immutable snapshots. Another

relatively early hybrid storage engine is SOFORT [27], de-
signed to support both transactional and analytical work-
loads. It is organized column-wise. All primary data is di-
rectly stored and processed on PMem. Only secondary data
such as indexes (e.g., dictionaries) are stored in DRAM
to ensure near-instantaneous recovery. The authors of [7]
also target analytical workloads but use a multi-dimensional
clustering approach instead of secondary indexes to re-
duce writes to PMem. They distinguish between hot blocks
which are placed in PMem and cold blocks moved to flash.
Since the primary index can also be volatile, this results in
a three-layer storage engine. The SAP HANA database has
also been extended to support PMem [1]. Similar to SO-
FORT, the recent data resides in write-optimized deltas in
DRAM which are periodically merged into the read-opti-
mized main store in PMem.

Another representative from the industry is Facebook,
who propose the key-value store MyNVM [6] to reduce the
DRAM footprint and consequently the total cost of owner-
ship. In this work, PMem is used as a second-level block
cache whereas the database and logs stay on flash. Also
based on RocksDB, in NVMRocks [21] the LSM-Tree place-
ment is revised. The authors propose two possible adap-
tions. At first, they simply replace flash with PMem and re-
move unnecessary components. The second approach also
considers moving MemTables to PMem to avoid logging.
This is further enhanced with a multi-tier read cache. Nov-
eLSM [15] is another approach extending the LSM-Tree
design. Instead of moving all MemTables from DRAM to
PMem, the authors propose to have a larger additional per-
sistent replication. As soon as the volatile part is full and
compaction to an SSTable starts, the PMem replication is
used for concurrent queries. A recent proposal for a mod-
ern key-value store is RStore [20]. It can be summarized as
log-structured storage plus index. The actual data resides in
PMem as append-only blocks whereas the index is volatile
and rebuilt during recovery. Furthermore, they use a small
recovery log per partition and some other auxiliary struc-
tures in PMem.

With few exceptions, hardly any approach exploits all
three layers (DRAM, PMem, and flash). Furthermore, to our
knowledge, PMem has never been considered in the context
of event stores and streaming. These are the challenges we
address with this paper.

4 Concepts and Approaches

In the following, we discuss the opportunities and limita-
tions of using persistent memory in ChronicleDB. We will
focus on three components of the system: (i) the TAB+-
Tree, (ii) the physical storage layout, and (iii) handling of
out-of-order data.

K

216 Datenbank Spektrum (2020) 20:211–222

Fig. 4 Overview of approaches applied to ChronicleDB

4.1 TAB+-Tree

ChronicleDB’s main goal is to efficiently store and index
high volume event streams. It is designed for a two-layer
storage architecture consisting of main memory and sec-
ondary storage (SSDs/HDDs). Hence, the architecture of
the primary index is a result of seeking a balance between
durability and insert/query performance under this setting
(Fig. 4 A.a). By introducing PMem as a connection be-
tween main memory and secondary storage, the primary
index design needs to be reconsidered to take advantage
of byte-addressable persistent storage. In the following, we
present three approaches for introducing PMem into Chron-
icleDB’s primary index. First, we move the right flank from
DRAM to PMem which fully eliminates the need for recov-
ering the flank after a system failure (Fig. 4 A.b). Then, we
separate lightweight index information from the inner in-
dex nodes by storing the computed aggregates on PMem
(Fig. 4 A.c). Finally, we move all index nodes from flash
to persistent memory (Fig. 4 A.d).

Right Flank. Keeping the right flank of the TAB+-Tree
in DRAM is a crucial aspect of ChronicleDB’s insert per-
formance. However, if the most recent data is lost in case of
a system failure, the flank needs to be recovered. By man-
aging the right flank on PMem, we can avoid data loss and
improve recovery time, since the most recent state of the
flank is available at any time – in particular after a restart
of the system. In the following, we discuss the changes
required to manage the right flank on persistent memory.

The in-memory layout of pages is byte-oriented so that
they can be written to external storage without further se-
rialization. Every incoming event is directly converted into
the corresponding binary representation and attached to the
current leaf page. If there is insufficient space, the current
leaf is written to secondary storage, a new empty leaf page
is allocated and the event is appended to that new page. The
same mechanisms are applied to index nodes. Hence, the

major challenge when moving the right flank to PMem is to
ensure that the binary representation of the corresponding
pages is in a consistent state at any time – especially after
a system failure. We ensure this by forcing a write-back of
modified memory regions periodically as follows.

Each page consists of a header and a data region. The
header holds the sibling link information and the number
of stored events, while the data region contains event data.
When reusing a page after it was written to secondary stor-
age it is sufficient to reset and flush only the header re-
gion to PMem since the event count determines the valid
data region. However, to guarantee that a newly appended
event is persisted, both the header and the affected area of
the data region need to be flushed to PMem. Since events
are small in general, this leads to performance degradation
when executed after every append operation due to write
amplification and CPU cache misses. To tackle this prob-
lem, we introduce batch flushing which persists appended
events in configurable batches (i.e., trades durability for per-
formance). We discuss the performance/durability trade-off
in Sect. 5.2.

Aggregates. As detailed in Sect. 2.2, every index (in-
ner) node of the TAB+-Tree holds for each child-reference
a configurable set of aggregates. Those aggregates summa-
rize the data stored in the corresponding sub-tree and are
utilized to boost the performance filter and temporal ag-
gregation queries. However, the more aggregates are stored
the smaller the fan-out of index nodes. For instance, with
a page size of 8 KiB the fan-out decreases from 459 to 43
when lightweight indexing (via aggregates sum, min, max)
is applied to six 64-bit floating-point values. To alleviate
this drawback of lightweight indexing, we moved the index
information (i.e., the aggregates) to persistent memory.

Aggregates are computed in a bottom-up fashion during
the insertion of events. Whenever a leaf node becomes full
and is written to secondary storage, the aggregates for all
events within this leaf are computed in batch and propa-

K

Datenbank Spektrum (2020) 20:211–222 217

gated to the parent level. The parent node attaches this in-
formation to the regular index entry (key, child-pointer). For
an index node, the handling is similar: If it becomes full, the
aggregates of its index entries are merged and propagated
up the tree. Note that this requires aggregate functions to
be decomposable as in [36]. By keeping aggregates within
the index nodes, storing and accessing them incurs only
very little cost. To be competitive, the overhead of man-
aging the aggregates on PMem must be kept as small as
possible. Thus, we modeled the aggregate store on persis-
tent memory as a flat array. Each slot of the array holds the
aggregated values of one node of the primary index. Be-
cause the TAB+-Tree assigns consecutive node IDs starting
at 0, accessing the aggregates of a page with ID i translates
to a lookup of slot i in the PMem array.

The increased fan-out of inner nodes reduces the tree
height and, thus, is beneficial for queries on the time-
domain of events. However, compared to standard Chron-
icleDB, query processing now incurs access to secondary
storage (index nodes) and persistent memory (aggregates).
We will discuss this performance trade-off in detail in
Sect. 5.

Index Nodes. To tackle the double-access problem in-
troduced by outsourcing aggregates to persistent memory,
our next approach stores only leaf nodes on secondary stor-
age and manages the index nodes of the tree on persistent
memory. As a result, all index navigation and aggregate ac-
cess are handled without accessing secondary storage. This
approach requires only minimal modification of Chroni-
cleDB’s insert mechanisms. Similar to aggregates, the re-
quired persistent memory space is managed as a flat array.
The capacity of one array slot matches the configured page
size (typically 4 KiB or 8 KiB), and each slot contains one
index node. Due to two independent storage locations, we
also require two ID sequences. One for leaf nodes and one
for index nodes. Hence, to uniquely identify a page an ad-
ditional bit of information is required to determine whether
the given ID refers to a leaf or an index page. The benefit
of using two independent ID sequences is that we achieve
a sequential write pattern for both, secondary storage and
persistent memory, which in both cases improves write-
throughput (cf. Sect. 2.1).

Compared to the aggregate-only solution, this approach
requires additional space on PMem (20 bytes page header,
16 bytes for key and child ID per entry). However, it fully
excludes secondary storage when accessing inner nodes,
and thus achieves better query performance compared to
the aggregate-only solution.

4.2 Storage Layout

Utilizing interleaved tree-based address translation in
ChronicleDB’s storage layer leads to a good balance be-

tween insert, query, and recovery performance. However,
for access to TAB+-Nodes whose translation does not reside
in main memory, the performance of address lookups is far
from optimal. Consider an ATT of height three with 32 KiB
block sizes. Assuming the root to be in main memory still
two random reads with 32 KiB each are required to resolve
the node’s address.

By moving the address translation to byte-addressable
persistent memory, updating address translations does not
interfere with data-writes anymore. Thus, we switch from
the tree-based approach to a flat lookup-table that is up-
dated synchronously as pages are written. Similar to man-
aging the aggregates of the TAB+-Tree on persistent mem-
ory, we manage the translation as a flat array such that slot
i of the array contains translation information for the node
with ID i (Fig. 4 C.b). Moreover, by flushing the data after
each update, recovery could be fully avoided. However, the
size of translation information for a single node is only 8
bytes. Hence, forcing each update immediately would lead
to performance degradation due to write amplification. To
resolve this issue, we batch updates to match the 256-byte
write granularity before forcing them to be persisted. Since
at most 32 translations need to be restored, the recovery
time is reduced drastically compared to our tree-based ap-
proach. Besides recovery and lookup performance, inserts
also benefit from an address translation on persistent mem-
ory. While the majority of inserts resulted in writing 8 bytes
to main memory, some inserts suffered from writing trans-
lation blocks to secondary storage. For a tree of height h,
an insert can trigger h writes of 32 KiB to secondary stor-
age in the worst case. With persistent memory, worst-case
insert performance improves due to continuous flushes of
small batches.

4.3 Out-of-Order Data

The current OOO strategy tries to keep a balance between
query performance, recovery guarantees, and insertion per-
formance. However, there is an inherent trade-off for all
three factors. For good query performance, the queue is
kept in main memory such that any query has fast access
to data. To avoid data loss, large queues spanning multiple
page sizes, are backed by a traditional secondary storage
medium. Full pages are written out to the storage medium
in an efficient append-only manner. This solution favors
query performance, but the dual maintenance of the queue
drains main memory resources. At the same time, a full
page of data can still be lost. Recovery alternatives, such
as writing each record individually, would incur the same
insert problem the queue is designed to resolve. The follow-
ing will explore how an additional PMem layer can improve
upon these deficiencies.

K

218 Datenbank Spektrum (2020) 20:211–222

Persistent Memory Queues. The tension between query
and recovery requirements can be attributed to the lack of
persistence in main memory and inadequate access gran-
ularity in secondary storage. PMem characteristics inher-
ently address both issues. At its core, our new approach
redirects each incoming OOO event to a persistent memory
queue. The queue is stored in system-time order, i.e., events
are inserted in a fast append-only manner. For a batch of
OOO events, this also utilizes faster sequential writes (cf.
Table 2). Since OOO events are expected to be rare, each
insertion is followed by a force command. Thus, the queue
is fully persisted and no data is lost in case of a crash. This
improves upon the original recovery guarantees, and conse-
quently, there is no additional layer on secondary storage.

Indexing. Standard ChronicleDB keeps a main mem-
ory copy of the OOO queue for two reasons. First, it al-
lows direct access to single elements of the queue. Without
the main-memory copy, accessing events on inherently un-
ordered data would fetch a page from secondary storage
for each event in the worst case. Second, the main memory
copy is ordered by application time. This enables efficient
processing of queries on the time domain as well as fast bulk
merging into the primary index. PMem is byte-addressable
and, compared to flash storage, offers excellent random ac-
cess performance. This automatically resolves the first rea-
son for a copy. For efficient application time access, we
replace the full queue copy with a lightweight in-memory
application time index (see Fig. 4 B.c). The index refers
to the byte-offset within persistent memory. This reduces
the main memory footprint. Furthermore, random access
for fetching events in application time order is expected to
be less of a problem on PMem than on flash storage. In
the future, this strategy can be expanded for more elaborate
merge solutions, such as merging only certain ranges.

5 Micro-Benchmarks

In our experiments, we focus on micro-benchmarks on the
approaches presented in the previous section. All of them
are integrated into ChronicleDB and evaluated on a server
equipped with real PMem hardware. Our aim is not to
compare with other event stores, but to show opportuni-
ties in such a three-layer system. Thus, we reveal which
approaches prove to be useful in practice and where fine-
tuning is still necessary.

5.1 Experimental Setup

The used machine is a dual-socket Intel Xeon Gold 5215
server as outlined in Table 1. Six DCPMMs are grouped
into a single region and namespace per socket. They are
accessed via an ext4 file system and mounted with the

DAX option. The operating mode of the modules is set to
App Direct.

ChronicleDB is entirely written in Java. We used the JDK
14 extensions4 for accessing persistent memory via Java’s
ByteBuffer interface. We configured a tree-node size of
8 KiB and used the LZ4 algorithm to compress the nodes.
Furthermore, each node maintains a spare space of 10% for
absorbing OOO events. The block-size of the storage layer
was set to 32 KiB.

To avoid performance degradation due to loading the in-
put data from disk, we generated events in main-memory
and fed them to ChronicleDB within the same Java process.
In particular, we used two synthetically generated event
streams. The first stream (Stock) was taken from [39].
It simulates a stock ticker with four attributes: sequence
number, symbol, price, and volume. Including the times-
tamp, events are 28 bytes in size. If not stated otherwise,
this stream was used in the experiments. The second stream
(Sine) comprises events with six 64-bit floating-point at-
tributes. Thus, the size of an event is 56 bytes including the
8-byte timestamp value. For the i th event, the correspond-
ing attribute values are generated as sin. i mod 1M

1M
�2�/. This

allows us to control the selectivity of filter conditions on
secondary attributes. By default, both data sources use in-
creasing timestamps (i.e., ei :t = i) and consist of 100M
events.

5.2 TAB+-Tree

Right flank. To showcase the impact of storing the right
flank in PMem, we measured the wall-clock time for in-
serting Stock. The results are depicted in Fig. 5 for in-
creasing flush batch sizes. When flushing every event, the
insertion rate drops to approx. 50% of the DRAM implemen-
tation while still allowing for a respectable 2.1M insertions

Fig. 5 Insert performance when managing TAB+-Tree’s right flank on
PMem compared to main memory as a function of the flush batch size

4 https://openjdk.java.net/jeps/352.

K

https://openjdk.java.net/jeps/352

Datenbank Spektrum (2020) 20:211–222 219

per second. However, with a batch size of 25 events, we
achieve 95% of DRAM performance and reduce data loss by
at least 91% (losing less than 25 instead of 291 events). Ad-
ditionally, PMem reduced the recovery time after a system
failure from 40 ms to below 1 ms for a tree of height 3.

Aggregates/Index nodes. Next, we discuss the impact
of storing lightweight index information (i.e., aggregates)
and inner index nodes on persistent memory. For aggre-
gates on PMem, we implemented two variants. The first
variant stores aggregates densely, while the second variant
aligns them on 64-byte boundaries for cache efficiency. We
inserted the events of Sine into the TAB+-Tree and com-
pare the insertion wall-clock time as well as the average
response time for a variety of queries. The results are sum-
marized in Fig. 6 with the original ChronicleDB serving as
a baseline. Insert performance is barely affected by any of
the approaches. This is expected since writing leaf nodes is
the dominant cost factor of insertion. Furthermore, aligning
aggregates on cache-line boundaries had no visible effect on
query performance. This could be explained by the fact that
not all the PMem bandwidth is utilized in this setup. For
application time point queries, the higher fan-out achieved
when storing aggregates on PMem reduces execution time
by approx. 15%. However, for temporal aggregation queries
covering a variety of time ranges the double access (in-
dex node + aggregate) introduces a performance penalty of
10% to 25%. Finally, when using lightweight indexing for
filter-queries on a secondary attribute with a selectivity of
0.1%, the benefit of a higher fan-out is partly eliminated
by the extra access to PMem to read aggregates (approx.
15% improvement). In contrast, storing entire index nodes
on PMem results in a reasonable performance boost for
all query types (35%–40%), because index navigation and
aggregate access do not incur reads on secondary storage.

Fig. 6 Comparison of insert and query performance for TAB+-Tree ag-
gregates/index nodes managed on flash storage and persistent memory

Fig. 7 Comparison of update,
lookup, and recovery perfor-
mance for address translation
managed in DRAM, on PMem,
and flash

5.3 Address Translation

For our address translation benchmark, we measured the
component in isolation and implemented a pure in-mem-
ory version (DRAM) used in our comparison. Fig. 7 shows
the average time of a sequential update, a random lookup,
and the total recovery time. Each of those measurements
is based on the wall-clock time of 10M operations. Even
though DRAM exhibits excellent update and lookup perfor-
mance, it requires a full file scan upon recovery making it
infeasible for production use cases. Compared to Flash,
the PMem solution offers superior lookup and recovery time.
However, sequential updates on Flash are 5x faster com-
pared to PMem. The reason for this is that the flash-based
ATT maintains its right-flank in main memory. In sum-
mary, even though the very small update/lookup times are
hardly noticeable outside of isolated benchmarks, PMem can
bridge the gap between significant Flash recovery times
and DRAM access times while simplifying the implementa-
tion complexity due to its flat-array structure.

5.4 Out-of-Order Handling

For the OOO benchmarks, we compare a DRAM red-black
application time tree with persistent solutions (PMem,
Flash with 8-KiB pages). For the latter, we differentiate
between a pure solution and one with an additional in-
memory application time index (Indexed). The following
set of experiments is based on a queue size of 100 MiB
(approx. 3.5M events).

First, Fig. 8 illustrates results for the OOO component
in isolation while comparing implementations w.r.t. write,
recovery, and query performance in milliseconds. Compar-
ing write performance, both PMem solutions cannot com-
pete with DRAM, because every event is flushed directly.
However, they outperform both flash variants by 3� (pure)
and 2� (Indexed), respectively. During recovery, only the
persistent Indexed variants have to perform work besides
opening the log. In this case, PMem and Flash exhibit
similar performance, because the recovery time is domi-
nated by re-building the index while the cost of scanning
data is negligible. For query performance, we executed ap-
plication time point queries and measure the average query

K

220 Datenbank Spektrum (2020) 20:211–222

Fig. 8 Comparison of insert,
recovery, and query perfor-
mance of various OOO queue
approaches

Fig. 9 Inserting 100M events
with occasional OOO occur-
rences, and merges of OOO
events into the primary index

time while distinguishing between HIT (query has a result)
and MISS (query has no result) queries. For MISS-queries,
all Indexed variants exhibit the same performance, since
only the index has to be considered. However, for HIT-
queries, Flash Indexed suffers from reading a full page
from the log for each query. In contrast, PMem Indexed
can directly access the corresponding event, and thus is as
quick as DRAM.

Second, we discuss the overall impact of the queue
implementations within ChronicleDB. For this purpose,
we generate various degrees of OOO data for the Stock
data source. In particular, for an OOO fraction of x%,
.100 − x/% of events are inserted in application time or-
der. From the remaining x% events, 10% are randomly
uniformly distributed over the application time span. The
other 90% are equally distributed over 10,000 equi-distant
temporally close batches. This workload represents occa-
sional OOO data coupled with short bursts. Fig. 9 shows
the total processing time in seconds for inserting data
sets with 1%, 5%, and 10% OOO fractions into Chron-
icleDB. Due to the limited capacity of 100 MiB, queue
merges impact the write performance. As a result of un-
sorted data, non-indexed variants cannot take advantage of
bulk-merging. Flash Indexed performs worst for 5%
and 10% because reading data in application-time order
from the log incurs random access to pages. As expected,
PMem Indexed does not suffer from this drawback, and
thus achieves the best of both worlds.

6 Summary & Research Directions

To store massive amounts of continuous temporal data,
event stores have to provide fast ingestion speeds with ade-
quate query performance. Most proposed generic storage
systems that can also be used for events utilize single-
or two-layer approaches, featuring a combination of main
memory, secondary storage media, and, since recently, per-
sistent memory. Using ChronicleDB as an example, we pro-
posed several solutions for the first PMem-enhanced event
storage system that utilizes all three layers for an over-
all cheap yet efficient system. We summarize the lessons
learned from adapting ChronicleDB components to PMem
as follows.

Even though PMem can be used to improve the
number of events recoverable upon a system crash,
it is important to keep the characteristics of the
component in mind. For frequent updates, as ex-
hibited by the right flank, batching needs to be
applied to meet insertion performance. A similar
lesson can be applied to LSM stores. However, for
infrequent updates, such as the OOO queue, there
are more relaxed requirements and also opportu-
nities to flatten performance fluctuations. This
practically solves the primary challenge of OOO
management. These insights can also be transferred
to other buffering or index maintenance techniques.
Access patterns still matter. As seen with our
lightweight indexing proposal, sacrificing spatial
locality for storing lightweight index information
on a faster medium is not beneficial in all cases.
Thus, correlated index structures for event streams
need to be considered even for byte-addressable
PMem.
Although components like the address translation
layer have little impact on the overall performance,
the simplified design leads to lower code complex-
ity. Additionally, there are great recovery benefits
even for seemingly non-performance critical com-
ponents.

Based on those lessons, there are a plethora of research
directions to explore besides applying those insights to
more specialized or more generic systems.

As a direct continuation of this work, more so-
phisticated out-of-order merge strategies can be
examined to further speed up event ingestion. One
example would be merging only certain OOO re-
gions and utilizing PMem for efficient pinpoint free
space management.

K

Datenbank Spektrum (2020) 20:211–222 221

In a similar vein, data streams that provide frequent
updates instead of inserts such as spatio-temporal
moving objects, can be an interesting direction to
explore update characteristics of PMem.
Following LL1 and LL2, there are several other
ways to make even finer use of PMem, such as
optimizing the node size, the alignment, as well as
the internal node organization and the associated
access patterns (cf. [8]).
Finally, while this work focused on the storage sys-
tem itself, query processing mechanisms such as
efficient event replay remain an ongoing challenge.
In that regard, a three-layer caching mechanism as
an extension of the LeanStore [17], as well as adap-
tive bi-temporal index building on PMem is yet to
be explored.

Acknowledgements This work was partially funded by the German
Research Foundation (DFG) in the context of the projects “Transac-
tional Stream Processing on Non-Volatile Memory” (SA 782/28) and
“High-performance event processing on modern hardware: bridging
the gap between low-latency and high throughput” (SE553/9) as part
of the priority program “Scalable Data Management for Future Hard-
ware” (SPP 2037). This work has been co-funded by the LOEWE ini-
tiative (Hesse, Germany) within the emergenCITY centre.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Andrei M, Lemke C, Radestock G, Schulze R, Thiel C, Blanco
R, Meghlan A, Sharique M, Seifert S, Vishnoi S, Booss D, Peh
T, Schreter I, Thesing W, Wagle M, Willhalm T (2017) SAP
HANA Adoption of Non-Volatile Memory. Proc Vldb Endow
10(12):1754–1765

2. Arulraj J, Pavlo A, Malladi KT (2019) Multi-Tier Buffer Manage-
ment and Storage System Design for Non-Volatile Memory. CoRR
abs/1901.10938. http://arxiv.org/abs/1901.10938. Accessed 25 Sep
2020

3. Axboe J (2020) Flexible I/O Tester. https://github.com/axboe/fio,
version 3.7. Accessed 25 Sep 2020

4. Bender MA, Farach-Colton M, Fineman JT, Fogel YR, Kusz-
maul BC, Nelson J (2007) Cache-Oblivious Streaming B-trees. In:
SPAA 2007: Proceedings of the 19th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, San Diego, Cali-

fornia, USA, June 9–11, 2007, pp 81–92, https://doi.org/10.1145/
1248377.1248393

5. Deri L, Mainardi S, Fusco F (2012) tsdb: A Compressed Database
for Time Series. In: Traffic Monitoring and Analysis—4th In-
ternational Workshop, TMA 2012, Vienna, Austria, March 12,
2012. Proceedings, pp 143–156, https://doi.org/10.1007/978-3-
642-28534-9_16

6. Eisenman A, Gardner D, AbdelRahman I, Axboe J, Dong S, Hazel-
wood KM, Petersen C, Cidon A, Katti S (2018) Reducing DRAM
Footprint with NVM in Facebook. In: Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23–26,
2018, pp 42:1–42:13, https://doi.org/10.1145/3190508.3190524

7. Götze P, Baumann S, Sattler K (2018) An NVM-Aware Storage
Layout for Analytical Workloads. In: 34th IEEE International Con-
ference on Data Engineering Workshops, ICDE Workshops 2018,
Paris, France, April 16–20, 2018, pp 110–115, https://doi.org/10.
1109/ICDEW.2018.00025

8. Götze P, Tharanatha AK, Sattler KU (2020) Data Structure Primi-
tives on Persistent Memory: An Evaluation. In: International Work-
shop on Data Management on New Hardware (DAMON’20), June
15, 2020, Portland, OR, USA, https://doi.org/10.1145/3399666.
3399900

9. Haas G, Haubenschild M, Leis V (2020) Exploiting Directly-At-
tached NVMe Arrays in DBMS. In: CIDR 2020, 10th Conference
on Innovative Data Systems Research, Amsterdam, The Nether-
lands, January 12-15, 2020, Online Proceedings, http://cidrdb.org/
cidr2020/papers/p16-haas-cidr20.pdf. Accessed 25 Sep 2020

10. InfluxData Inc (2020) InfluxDB: Purpose-Built Open Source Time
Series Database | InfluxData. https://www.influxdata.com/. Ac-
cessed 25 Sep 2020

11. Intel Corporation (2019) Intel® 64 and IA-32 Architectures Op-
timization Reference Manual. https://software.intel.com/sites/
default/files/managed/9e/bc/64-ia-32-architectures-optimization-
manual.pdf, chapter 11 – Intel® Optane™ DC Persistent Memory.
Accessed 25 Sep 2020

12. Intel Corporation (2020) Intel® Memory Latency Checker v3.8.
https://software.intel.com/en-us/articles/intelr-memory-latency-
checker. Accessed 25 Sep 2020

13. Jibril MA, Götze P, Broneske D, Sattler K (2020) Selective
Caching: A Persistent Memory Approach for Multi-Dimensional
Index Structures. In: 2020 IEEE 36th International Conference on
Data Engineering Workshops (ICDEW), pp 115–120, https://doi.
org/10.1109/ICDEW49219.2020.00010

14. Johnson T, Shkapenyuk V (2015) Data Stream Warehousing In
Tidalrace. In: CIDR 2015, Seventh Biennial Conference on In-
novative Data Systems Research, Asilomar, CA, USA, January
4–7, 2015, Online Proceedings, http://cidrdb.org/cidr2015/Papers/
CIDR15_Paper4.pdf. Accessed 25 Sep 2020

15. Kannan S, Bhat N, Gavrilovska A, Arpaci-Dusseau AC, Arpaci-
Dusseau RH (2018) Redesigning LSMs for Nonvolatile Mem-
ory with NoveLSM. In: 2018 USENIX Annual Technical Con-
ference, USENIX ATC 2018, Boston, MA, USA, July 11–13,
2018, pp 993–1005, https://www.usenix.org/conference/atc18/
presentation/kannan. Accessed 25 Sep 2020

16. Kimura H (2015) FOEDUS: OLTP Engine for a Thousand Cores
and NVRAM. In: Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, Melbourne, Victoria,
Australia, May 31–June 4, 2015, pp 691–706, https://doi.org/10.
1145/2723372.2746480

17. Leis V, Haubenschild M, Kemper A, Neumann T (2018) LeanStore:
In-Memory Data Management beyond Main Memory. In: 34th
IEEE International Conference on Data Engineering, ICDE 2018,
Paris, France, April 16–19, 2018, IEEE Computer Society,
pp 185–196, https://doi.org/10.1109/ICDE.2018.00026

18. Lersch L, Hao X, Oukid I, Wang T, Willhalm T (2019) Evaluating
persistent memory range indexes. Proc Vldb Endow 13(4):574–587

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1901.10938
https://github.com/axboe/fio
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1007/978-3-642-28534-9_16
https://doi.org/10.1007/978-3-642-28534-9_16
https://doi.org/10.1145/3190508.3190524
https://doi.org/10.1109/ICDEW.2018.00025
https://doi.org/10.1109/ICDEW.2018.00025
https://doi.org/10.1145/3399666.3399900
https://doi.org/10.1145/3399666.3399900
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://www.influxdata.com/
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://doi.org/10.1109/ICDEW49219.2020.00010
https://doi.org/10.1109/ICDEW49219.2020.00010
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper4.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper4.pdf
https://www.usenix.org/conference/atc18/presentation/kannan
https://www.usenix.org/conference/atc18/presentation/kannan
https://doi.org/10.1145/2723372.2746480
https://doi.org/10.1145/2723372.2746480
https://doi.org/10.1109/ICDE.2018.00026

222 Datenbank Spektrum (2020) 20:211–222

19. Lersch L, Lehner W, Oukid I (2019) Persistent Buffer Management
with Optimistic Consistency. In: Proceedings of the 15th Interna-
tional Workshop on Data Management on New Hardware, DaMoN
2019, Amsterdam, The Netherlands, 1 July 2019, pp 14:1–14:3,
https://doi.org/10.1145/3329785.3329931

20. Lersch L, Schreter I, Oukid I, Lehner W (2020) Enabling Low
Tail Latency on Multicore Key-Value Stores. Proc Vldb Endow
13(7):1091–1104

21. Li J, Pavlo A, Dong S (2017) NVMRocks: RocksDB on Non-
Volatile Memory Systems. https://web.archive.org/web/20200217
045318/istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-vola
tile-memory-systems/. Accessed 25 Sep 2020

22. Liu J, Chen S, Wang L (2020) LB+-Trees: Optimizing Persis-
tent Index Performance on 3DXPoint Memory. Proc Vldb Endow
13(7):1078–1090

23. Loboz C, Smyl S, Nath S (2010) DataGarage: Warehousing Mas-
sive Performance Data on Commodity Servers. Proc Vldb Endow
3(2):1447–1458

24. Moerkotte G (1998) Small Materialized Aggregates: A Light
Weight Index Structure for Data Warehousing. In: VLDB’98,
Proceedings of 24rd International Conference on Very Large Data
Bases, August 24–27, 1998, New York City, New York, USA,
pp 476–487, http://www.vldb.org/conf/1998/p476.pdf. Accessed
25 Sep 2020

25. O’Neil PE, Cheng E, Gawlick D, O’Neil EJ (1996) The Log-Struc-
tured Merge-Tree (LSM-Tree). Acta Inf 33(4):351–385

26. Ou Y, Chen L, Xu J, Härder T (2014) Wear-Aware Algorithms
for PCM-Based Database Buffer Pools. In: Web-Age Information
Management – WAIM 2014 International Workshops: BigEM,
HardBD, DaNoS, HRSUNE, BIDASYS, Macau, China, June
16–18, 2014 Revised Selected Papers, pp 165–176, https://doi.
org/10.1007/978-3-319-11538-2_16

27. Oukid I, Booss D, Lehner W, Bumbulis P, Willhalm T (2014) SO-
FORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Re-
covery. In: Tenth International Workshop on Data Management on
New Hardware, DaMoN 2014, Snowbird, UT, USA, June 23, 2014,
pp 8:1–8:7, https://doi.org/10.1145/2619228.2619236

28. Oukid I, Lasperas J, Nica A, Willhalm T, Lehner W (2016) FPTree:
A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Stor-
age Class Memory. In: Proceedings of the 2016 International Con-
ference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26–July 01, 2016, pp 371–386, https://
doi.org/10.1145/2882903.2915251

29. Pelkonen T, Franklin S, Cavallaro P, Huang Q, Meza J, Teller J,
Veeraraghavan K (2015) Gorilla: A Fast, Scalable, In-Memory
Time Series Database. Proc Vldb Endow 8(12):1816–1827

30. Pelley S, Wenisch TF, Gold BT, Bridge B (2013) Storage Manage-
ment in the NVRAM Era. Proc Vldb Endow 7(2):121–132

31. van Renen A, Leis V, Kemper A, Neumann T, Hashida T, Oe K,
Doi Y, Harada L, Sato M (2018) Managing Non-Volatile Mem-
ory in Database Systems. In: Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10–15, 2018, pp 1541–1555, https://doi.
org/10.1145/3183713.3196897

32. van Renen A, Vogel L, Leis V, Neumann T, Kemper A (2019) Per-
sistent Memory I/O Primitives. In: Proceedings of the 15th Interna-
tional Workshop on Data Management on New Hardware, DaMoN
2019, Amsterdam, The Netherlands, 1 July 2019, pp 12:1–12:7,
https://doi.org/10.1145/3329785.3329930

33. SeidemannM, Seeger B (2017) ChronicleDB: A High-Performance
Event Store. In: Proceedings of the 20th International Conference
on Extending Database Technology, EDBT 2017, Venice, Italy,
March 21–24, 2017, pp 144–155, https://doi.org/10.5441/002/edbt.
2017.14

34. Seidemann M, Glombiewski N, Körber M, Seeger B (2019) Chron-
icleDB: A High-Performance Event Store. ACM Trans Database
Syst 44(4):13:1–13:45, https://doi.org/10.1145/3342357

35. Stoica R, Athanassoulis M, Johnson R, Ailamaki A (2009) Eval-
uating and Repairing Write Performance on Flash Devices. In:
Proceedings of the Fifth International Workshop on Data Manage-
ment on New Hardware, Association for Computing Machinery,
New York, NY, USA, DaMoN ’09, p 9–14, https://doi.org/10.1145/
1565694.1565697

36. Tangwongsan K, Hirzel M, Schneider S, Wu KL (2015) Gen-
eral incremental sliding-window aggregation. Proc Vldb Endow
8(7):702–713

37. Xia F, Jiang D, Xiong J, Sun N (2017) HiKV: A Hybrid Index Key-
Value Store for DRAM-NVMMemory Systems. In: 2017 USENIX
Annual Technical Conference, USENIX ATC 2017, Santa Clara,
CA, USA, July 12–14, 2017, pp 349–362, https://www.usenix.org/
conference/atc17/technical-sessions/presentation/xia. Accessed 25
Sep 2020

38. Yang J, Kim J, Hoseinzadeh M, Izraelevitz J, Swanson S (2020)
An Empirical Guide to the Behavior and Use of Scalable Per-
sistent Memory. In: 18th USENIX Conference on File and Stor-
age Technologies, FAST 2020, Santa Clara, CA, USA, February
24–27, 2020, pp 169–182, https://www.usenix.org/conference/
fast20/presentation/yang. Accessed 25 Sep 2020

39. Zhang H, Diao Y, Immerman N (2014) On complexity and opti-
mization of expensive queries in complex event processing. In: Pro-
ceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, Association for Computing Machinery, New
York, NY, USA, SIGMOD ’14, p 217–228, https://doi.org/10.1145/
2588555.2593671

K

https://doi.org/10.1145/3329785.3329931
https://web.archive.org/web/20200217045318/istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
https://web.archive.org/web/20200217045318/istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
https://web.archive.org/web/20200217045318/istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
http://www.vldb.org/conf/1998/p476.pdf
https://doi.org/10.1007/978-3-319-11538-2_16
https://doi.org/10.1007/978-3-319-11538-2_16
https://doi.org/10.1145/2619228.2619236
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3329785.3329930
https://doi.org/10.5441/002/edbt.2017.14
https://doi.org/10.5441/002/edbt.2017.14
https://doi.org/10.1145/3342357
https://doi.org/10.1145/1565694.1565697
https://doi.org/10.1145/1565694.1565697
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/2588555.2593671

	Designing an Event Store for a Modern Three-layer Storage Hierarchy
	Abstract
	Introduction and Motivation
	Background
	Persistent Memory
	The Event Store ChronicleDB

	Related Work
	Multi-Level Data Structures
	PMem-aware Storage Engines

	Concepts and Approaches
	TAB + -Tree
	Storage Layout
	Out-of-Order Data

	Micro-Benchmarks
	Experimental Setup
	TAB + -Tree
	Address Translation
	Out-of-Order Handling

	Summary & Research Directions
	References

