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Abstract 

Soil erosion by water is a significant environmental issue that affects about 70% of 

South Africa's land surface. On-site effects of soil erosion are the loss of fertile topsoil 

and soil nutrients as well as the reduction of the soil water storage. As a consequence, 

soil erosion is frequently associated with land degradation. Off-site effects of soil 

erosion by water encompass an increased water turbidity in aquatic ecosystems, 

unwanted sedimentation along watercourses, and the silting of reservoirs. Overall costs 

arising from the on-site and off-site effects of soil erosion in South Africa are in excess 

of 360 million U.S. dollars per year. 

Erosion and sediment transport in rivers represent quasi-natural processes, 

whose intensity is governed by rainfall and runoff conditions, relief characteristics, soil 

properties, and vegetation cover, among other natural factors. Human impact, through 

the transformation of natural landscapes into cultivated land and pasture, expansion of 

road networks and settlements, and other forms of land use, has led to accelerated soil 

erosion. Considering the obvious need for soil conservation measures in South Africa, it 

is important to consider the extent to which erosion can be attributed to natural 

environmental conditions – that are largely unavoidable – and the degree to which it is 

intensified by human impact. In this regard, the quantification of contemporary erosion 

rates that would occur under natural or near-natural environmental conditions is an 

important step towards the definition of realistic management goals for a sustainable use 

of soil resources. However, knowledge about contemporary 'natural' erosion rates in 

South Africa is presently very limited. 

In this thesis, mean rates of contemporary erosion and sediment yield are 

presented for river catchments in the near-natural savanna landscape of the southern 

Kruger National Park (KNP). The KNP is an about 19 500 km2 large conservation area 

located within the 'Lowveld' geomorphic province in the northeast of South Africa, in 

between the Great Escarpment to the west and the coastal plains of Mozambique to the 

east. The southern part of the KNP was set aside for wildlife conservation by the turn of 

the 19th to 20th century. Even before that the area was largely spared from colonial 

farming. Archaeological and palynological evidence as well as historic sources suggest, 

moreover, a rather localized and low-intensity pre-colonial land use. Therefore, the 

KNP has been previously identified as a potential study area to establish benchmarks for 

tolerable soil loss in the Lowveld. 
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Between 1930 and 1980, more than 50 reservoirs were constructed within the 

KNP to secure water provision for wildlife during dry periods. Since their 

establishment, these reservoirs impound intermittent surface runoff and trap sediment 

that is delivered from the catchments. A pilot study carried out in 2008 revealed that 

reservoir deposits (i.e., the post-dam facies) can be distinguished from soils and 

sediments that constitute the pre-dam facies based on colour and grain size. Quantifying 

the amount of reservoir deposits stored in the reservoir basins makes is possible to 

assess the mean sediment yield of the reservoir catchments to draw conclusions about 

catchment-wide average rates of erosion by water. 

The overarching goal of this thesis is to establish benchmarks for rates of 

tolerable soil loss in the Lowveld by inferring contemporary rates of erosion by water 

for reservoir catchments in the southern KNP. For this, 15 small (≤350 × 103 m3) 

intermittently dry reservoirs with operational lifetimes of 30 to 65 years were 

investigated. The size of the reservoir catchments varies from <1 km2 to about 100 km2. 

High-resolution surveys were carried out in dry reservoir basins using a differential 

Global Navigation Satellite System (GNSS) and a terrestrial laser scanner (TLS). 

Reservoir deposits were mapped and spatial variations of the sediment thickness 

ascertained based on depth soundings with Pürckhauer-type and gouge augers. Samples 

were taken to ascertain the site-specific mean dry bulk density of the reservoir deposits. 

By combining these data, the mass of reservoir deposits that was accumulated in the 

reservoir basins up to the survey date can be quantified. 

At selected reservoirs (N = 4), samples were collected from the pre- and  

post-dam facies to scrutinize criteria that were used for the discrimination of the facies 

in the field. These samples (N = 250) were analyzed with respect to physical (grain size 

composition, colour) and chemical (content of calcium-lactate leachable phosphorus) 

properties. Statistical discriminant analysis was carried out to identify a 'composite 

fingerprint', i.e., a subset of sediment properties that enables 'optimal' discrimination 

between the facies. For this, two methodological approaches were tested: stepwise 

discriminant function analysis (DFA) and regularized logistic regression (RLR). Based 

on 50% of the samples (i.e., the training set), discriminant functions and regression 

models were fitted. These were subsequently used to classify samples with respect to 

their affiliation to either the pre-dam facies or post-dam facies. The performance of both 

approaches was assessed based on the remaining 50% of the data retained for validation 

and the field-based assignment of the samples to the facies. The analysis was extended 
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by means of Monte Carlo simulations and synthetic datasets to quantify uncertainties 

that might result from a potential non-representative sampling. Both methodological 

approaches lead to low and nearly identical misclassification rates of ≤3%. Even when a 

potential sampling bias is taken into account, misclassification rates amount to only 

about 5%. These results verify the appropriateness of criteria (i.e., colour and texture) 

that were used for the discrimination of the facies in the field. 

Sediment that is delivered to the reservoir inlets is only partly accumulated in the 

reservoir basins. During high-discharge events, water and sediment are released via 

uncontrolled overflow spillways when the water storage capacity of the reservoirs is 

exhausted. The sediment trap efficiency (TE) of a reservoir is defined as the proportion 

of sediment that is eventually deposited in the reservoir basin. Due to absence of records 

on catchment runoff and fluvial sediment transport, the mean TE was estimated by 

means of modelling. Catchment runoff, water fluctuations in the reservoirs, and the 

frequency and magnitude of spillage events were simulated with a daily time step 

rainfall-runoff model. The model was calibrated based on historical water levels in the 

reservoirs derived from field observations and aerial imagery. Different runoff scenarios 

were established to cope with various uncertainties. In addition, scenarios for the 

relationship between water and sediment discharge were created using sediment rating 

curves. The modelling results indicate that a few (N ≤ 6) high-discharge events 

contributed ≥65% to the sediment delivery at all investigated reservoirs. Mean TE 

estimates range from 25% to >90% among the study sites. 

The mean area-specific sediment yield (SSY) for the reservoir catchments can be 

calculated from the mass of the reservoir deposits, the operational lifetime and mean 

trap efficiency of the reservoirs, and the catchment size. In addition, temporary storage 

of sediment in the catchments needs to be taken into account to draw conclusions about 

average rates of erosion by water (E). For this, the sediment delivery ratio (SDR), 

defined as the ratio of SSY and E, was estimated from established empirical equations. 

An analysis of the propagation of uncertainties, consistently expressed at the  

95% confidence level, highlights the estimation of TE and SDR values to be the major 

source of uncertainty in this study. The TE estimation contributes on average 64% to the 

uncertainty of SSY values, while the mean fractional contribution of the SDR estimation 

to uncertainties of E values amounts to 79%. By comparison, the uncertainty 

contribution from field and laboratory measurements is of minor importance amounting 

to <30% and <6% for SSY and E values, respectively. 
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SSY values determined in this study range from 5 to 80 t km-2 yr-1 (N = 15) and 

are in good agreement with the SSY values of 10 to 60 t km-2 yr-1 (N = 5) ascertained in 

the pilot study. The results point to a highly significant correlation between SSY and 

mean annual precipitation (MAP; R = 0.71; p < 0.01) and a weakly significant 

correlation with the mean slope inclination (Slope; R = 0.45; p < 0.10) of the 

catchments. MAP and Slope values are likewise correlated (R = 0.58; p < 0.03). The 

mean (and median) SSY value for all study sites equals 30 ± 10 t km-2 yr-1 

(20 [15, 50] t km-2 yr-1). The mean relative uncertainty of SSY values amounts to ±21% 

and is therefore comparatively low. E values are subject to a higher mean uncertainty of 

±46% due to the uncertain SDR estimation. E values are typically ≤190 t km-2 yr-1 

except for catchments being affected by gully erosion (N = 3) that show E values of up 

to 360 t km-2 yr-1. Whether contemporary gully erosion in the KNP is primarily driven 

by natural factors or due to human impact is an open question that cannot be 

conclusively answered with the available data. Comparing SSY and E values from 

catchments inside and outside the KNP elucidates that even values ascertained for 

gullied catchments are still comparatively low. 

SSY and E values for reservoir catchments located outside conservation estates, 

for example, at the western boundary of the Lowveld, as well as in other regions of 

South Africa are by an order of magnitude higher than within the KNP. This difference 

can be clearly attributed to low erosion rates in the near-natural savanna landscape of 

the southern KNP as compared to other areas where anthropogenic influences such as 

pastoral farming, crop cultivation, and other forms of land use led to accelerated soil 

erosion. There is little data currently available to permit a comparison of SSY and E 

values from the KNP with corresponding values for catchments in other areas in South 

Africa also characterized by near-natural conditions. 

Rates of soil loss under near-natural conditions ascertained on the plot-scale are 

comparable to results from this study, if differing environmental conditions and issues 

of scale (i.e., spatial and temporal) are taken into consideration. At the same time, mean 

and median E values determined in this study are >4 times higher than long-term 

(typically ≥105 years) average denudation rates (DLt) for the same catchments, that were 

ascertained from cosmogenic beryllium-10 concentrations in quartz-bearing river 

sediments. Results from previous studies indicate, moreover, that soil formation rates in 

South Africa are possibly similar to DLt values and probably not higher than E values of 

non-gullied catchments within the southern KNP. Interpreting the E values of these 
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catchments as benchmarks for tolerable rates of soil loss in the Lowveld leads to a soil 

conservation management goal of ≤190 t km-2 yr-1. 
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Kurzfassung 

Bodenerosion durch Wasser ist ein bedeutendes Umweltproblem, von dem etwa 70% 

der Landoberfläche Südafrikas betroffen sind. On-site-Effekte (d.h. vor Ort entstehende 

Auswirkungen) von Bodenerosion umfassen den Verlust von fruchtbarem Oberboden 

und Nährstoffen sowie die Verringerung des Bodenwasser-Speichervermögens. 

Infolgedessen geht Bodenerosion häufig mit Landdegradation einher. Off-site-Effekte 

(d.h. andernorts entstehende Auswirkungen) von Bodenerosion beinhalten eine erhöhte 

Wassertrübung in aquatischen Ökosystemen, unerwünschte Sedimentablagerungen 

entlang Fließgewässern und Sedimentation in Stauseen. Im Durchschnitt übersteigen in 

Südafrika die durch On-site- und Off-site-Effekte von Bodenerosion durch Wasser 

entstehenden Gesamtkosten 360 Millionen US-Dollar pro Jahr. 

Erosion und Sedimenttransport in Flüssen repräsentieren quasinatürliche Prozesse, 

deren Intensität durch Niederschlags- und Abflussverhältnisse, Relief- und 

Bodeneigenschaften, Pflanzenbedeckung sowie andere natürliche Faktoren gesteuert 

wird. Anthropogene Einflüsse wie der Wandel von Naturlandschaften zu Acker- und 

Weideland, die Erweiterung von Straßennetzen und Siedlungsgebieten und andere 

Landnutzungsformen haben weitverbreitet zu beschleunigter Bodenerosion geführt. In 

Anbetracht der offenkundigen Notwendigkeit von Bodenschutzmaßnahmen in 

Südafrika ist es eine wichtige Frage, wie viel Erosion auf natürliche 

Umweltbedingungen zurückzuführen ist und insofern als weitgehend unvermeidbar 

angesehen werden muss, und in welchem Ausmaß Erosion durch menschliche Einflüsse 

verstärkt wird. In dieser Hinsicht ist die Quantifizierung rezenter Erosionsraten, wie sie 

unter naturbelassenen oder naturnahen Umweltbedingungen auftreten würden, ein 

wichtiger Schritt zur Definition realistischer Managementziele zugunsten einer 

nachhaltigen Nutzung von Bodenressourcen. Allerdings liegen bislang nur sehr wenige 

Erkenntnisse zu rezenten „natürlichen“ Erosionsraten vor. 

In dieser Arbeit werden mittlere rezente Erosions- und Sedimentaustragsraten für 

Flusseinzugsgebiete in der naturnahen Savannenlandschaft des südlichen Kruger 

National Park (KNP) präsentiert. Der KNP ist ein etwa 19 500 km2 großes 

Naturschutzgebiet, das im Nordosten Südafrikas in der als „Lowveld“ bezeichneten 

geomorphologischen Region liegt, die sich zwischen der Große Randstufe (engl.: Great 

Escarpment) im Westen und den Küstenebenen Mosambiks im Osten befindet. Der 

südliche Teil des KNP wurde um die Wende vom 19. zum 20. Jhd. als Natur- und 
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Wildpark unter Schutz gestellt. Schon davor blieb das Gebiet von kolonialer 

Landwirtschaft weitgehend unberührt. Archäologische und palynologische Befunde 

sowie historische Quellen deuten zudem auf eine nur lokale und wenig intensive prä-

koloniale Landnutzung hin. Deshalb wurde der KNP bereits in einer vorangegangenen 

Studie als ein potenzielles Untersuchungsgebiet identifiziert, in dem Richtwerte für 

einen tolerierbaren Bodenabtrag im Lowveld ermittelt werden können. 

Zwischen 1930 und 1980 wurden mehr als 50 Stauhaltungen im KNP errichtet, um die 

Wasserversorgung von Wildtieren während Trockenperioden zu gewährleisten. Seit 

ihrem Erbau werden die Stauhaltungen durch intermittierenden Oberflächenabfluss 

gespeist, wobei es in den Staubecken zur Ablagerung von Sedimenten kommt, die aus 

den Einzugsgebieten herantransportiert werden. Im Zuge einer Pilot-Studie, die 2008 

durchgeführt wurde, konnte gezeigt werden, dass Stauseesedimente (die Post-Damm-

Fazies) anhand ihrer Farbe und Korngrößenzusammensetzung von Böden und 

Sedimenten, die der Prä-Damm-Fazies angehören, unterschieden werden können. Durch 

die Quantifizierung der Stauseesedimente ist es möglich, den Sedimentaustrag aus den 

Einzugsgebieten zu bestimmen, um Rückschlüsse auf durchschnittliche Raten des 

Bodenabtrags durch Wasser zu ziehen. 

Das übergeordnete Ziel dieser Arbeit ist es, durch die Bestimmung des rezenten 

durchschnittlichen Bodenabtrags in Stauseeeinzugsgebieten im KNP, Richtwerte für 

tolerierbare Erosionsraten im Lowveld zu ermitteln. Dafür wurden 15 kleine 

(≤350 × 103 m3), episodisch trockenfallende Stauseen mit Bestandszeiten von jeweils 30 

bis 65 Jahren untersucht. Die Größe der Stausee-Einzugsgebiete variiert zwischen 

<1 km2 und etwa 100 km2. Die trockengefallenen Staubecken wurden hochauflösend 

mit einem differentiellen globalen Navigationssatellitensystem (GNSS) und einem 

terrestrischen Laserscanner (TLS) vermessen. Die Stauseesedimente wurden kartiert 

und deren räumlich variable Sedimentmächtigkeit durch Tiefensondierungen mit 

Pürckhauer-Bohrstöcken und Schlitzsonden erfasst. Zusätzlich wurden Proben 

genommen, um die Trockenlagerungsdichte der Stauseesedimente zu bestimmen. Durch 

das Zusammenführen dieser Daten kann die Masse der Stauseesedimente quantifiziert 

werden, die bis zum Tag der Felduntersuchungen abgelagert wurde. 

An ausgewählten Stauhaltungen (N = 4) wurden die Prä- und Post-Damm-Fazies 

beprobt, um Kriterien zu überprüfen, die für die Unterscheidung beider Fazies im Feld 

herangezogen wurden. Dafür wurden die Proben (N = 250) in Bezug auf physikalische 

(Korngrößenzusammensetzung, Farbe) und chemische Eigenschaften (Gehalt an 
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kalziumlaktat-löslichem Phosphor) analysiert. Durch eine statistische 

Diskriminanzanalyse wurde ein „composite fingerprint“ bestimmt, also eine Auswahl 

an Sedimenteigenschaften, die eine bestmögliche Unterscheidung verspricht. Dafür 

wurden zwei methodische Ansätze getestet: die schrittweise Diskriminanz-

funktionsanalyse (DFA) sowie regularized logistic regression (RLR; logistische 

Regression mit Beschränkung der Regressionskoeffizienten). Basierend auf etwa 50% 

der Proben (Trainingsdatensatz) wurden Diskriminanzfunktionen und 

Regressionsmodelle optimiert. Diese wurden nachfolgend genutzt, um Proben 

hinsichtlich ihrer Zugehörigkeit zur Prä- oder Post-Damm-Fazies zu klassifizieren. Die 

Ergebnisse wurden mit einem aus den verbleibenden 50% der Proben bestehenden 

Validierungsdatensatz und der feldbasierten Zuordnung der Proben überprüft. Die 

Analysen wurden anhand von Monte-Carlo-Simulationen und synthetisch erzeugten 

Daten ausgeweitet, u.a. um Unsicherheiten zu quantifizieren, die aus einer 

möglicherweise nicht-repräsentativen Probenahme entstehen. Beide methodischen 

Ansätze führen zu niedrigen und nahezu identischen Fehlklassifikationsraten von ≤3%. 

Selbst unter Berücksichtigung einer möglicherweise nicht-repräsentativen Probenahme 

ergeben sich lediglich 5% Fehlklassifikationen. Diese Ergebnisse belegen die Eignung 

der im Feld verwendeten Kriterien (Farbe und Textur) zur Unterscheidung der  

Fazies. 

Nur ein Teil des in die Stauseen eingetragenen Sediments wird in den Staubecken 

abgelagert. Im Zuge von Starkabflussereignissen wird Wasser und Sediment 

unkontrolliert durch Überläufe abgegeben, wenn die Staukapazität der Stauhaltungen 

erschöpft ist. Das Sedimentrückhaltevermögen (engl.: sediment trap efficiency; TE) 

eines Stausees ist definiert als der Anteil des eingetragenen Sediments, der letztendlich 

im Staubecken verbleibt. Angesichts des Fehlens entsprechender Abfluss- und 

Sedimentfrachtmessungen wurde die TE durch Modellierung abgeschätzt. Abflussraten, 

Wasserspiegelschwankungen in den Stauseen sowie die Häufigkeit und Magnitude von 

Überlaufereignissen wurden mit einem Niederschlags-Abfluss-Modell in täglicher 

Auflösung simuliert. Das Modell wurde anhand von historischen Wasserspiegelständen 

kalibriert, die entweder im Feld beobachtet oder aus Luftbildern abgeleitet wurden. 

Verschiedene Abflussszenarien wurden getestet, um diverse Unsicherheiten zu 

berücksichtigen. Zusätzlich wurden anhand von Eichkurven (engl.: sediment rating 

curves) Szenarien für die Beziehung zwischen Abflussrate und Sedimentfracht 

generiert. 
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Die Modellierungsergebnisse deuten an, dass einige wenige (N ≤ 6) 

Starkabflussereignisse ≥65% zum Sedimenteintrag in allen untersuchten Stauhaltungen 

beigetragen haben. Die mittleren TE-Schätzwerte variieren zwischen 25% und >90% 

zwischen den Untersuchungsstandorten. 

Der mittlere flächenbezogene Sedimentaustrag (engl.: area-specific sediment 

yield; SSY) aus den Stausee-Einzugsgebieten kann aus der Masse der Stauseesedimente, 

der Bestandszeit der Dämme und dem Sedimentrückhaltevermögen (TE) der Stauseen 

sowie der Einzugsgebietsgröße berechnet werden. Um Rückschlüsse auf mittlere Raten 

des Bodenabtrags durch Wasser (E) ziehen zu können, muss zusätzlich die temporäre 

Zwischenspeicherung von Sediment in den Einzugsgebieten berücksichtigt werden. 

Dafür wurden sogenannte sediment delivery ratios (SDR), die als das Verhältnis von 

SSY zu E definiert sind, mit etablierten Schätzbeziehungen ermittelt.  

Eine Analyse zur Fortpflanzung von Unsicherheiten, bezogen auf das 

95%-Konfidenzniveau, zeigt auf, dass die Abschätzung der TE- und SDR-Werte die 

Hauptunsicherheit in dieser Studie darstellt. Die TE-Abschätzung trägt im Mittel 64% 

zur Gesamtunsicherheit der SSY-Werte bei, während der mittlere anteilige Beitrag der 

SDR-Abschätzung zur Unsicherheit von E-Werten 79% beträgt. Im Vergleich dazu sind 

Beiträge von Unsicherheiten, die durch Feld- und Labormessungen entstehen, mit <30% 

bzgl. SSY und <6% bzgl. E von geringer Bedeutung. 

Die in dieser Studie ermittelten SSY-Werte variieren zwischen 5 und 

80 t km-2 a-1 (N = 15) und stehen im Einklang mit SSY-Werten von 10 bis 

60 t km-2 a-1 (N = 5), die in der Pilot-Studie ermittelt wurden. Die SSY-Werte korrelieren 

hochsignifikant mit mittleren Jahresniederschlägen (engl.: mean annual precipitation; 

MAP; R = 0.71; p < 0.01) und schwach signifikant mit der mittleren Hangneigung 

(Slope; R = 0.45; p < 0.10) in den Einzugsgebieten. MAP und Slope sind ebenfalls 

korreliert (R = 0.58; p < 0.03). Der Mittelwert (und Median) aller ermittelten SSY-Werte 

beträgt 30 ± 10 t km-2 a-1 (20 [15, 50] t km-2 a-1). Die mittlere relative Unsicherheit der 

SSY-Werte beläuft sich auf ±21%. E-Werte sind aufgrund der unsicheren SDR-

Abschätzung durch einen höheren mittleren relativen Fehler von 46% gekennzeichnet. 

E-Werte belaufen sich typischerweise auf ≤190 t km-2 a-1, abgesehen von 

Einzugsgebieten, in denen rezent Gully-Erosion stattfindet (N = 3) und die Werte von 

bis zu 360 t km-2 a-1 aufweisen. Inwieweit rezente Gully-Erosion primär auf natürliche 

Faktoren zurückzuführen ist oder eine Folge anthropogener Einflüsse darstellt, ist eine 

offene Frage, die mit derzeit verfügbaren Daten nicht abschließend beantwortet werden 
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kann. Ein Vergleich von SSY-Werten und E-Werten für Einzugsgebiete innerhalb und 

außerhalb des KNP verdeutlicht, dass selbst die für Einzugsgebiete mit Gully-Systemen 

bestimmten Werte als vergleichsweise niedrig anzusehen sind. 

SSY- und E-Werte von Einzugsgebieten, die sich außerhalb von Naturschutzgebieten 

befinden, zum Beispiel im westlichen Teil des Lowveld, aber ebenso in anderen 

Regionen Südafrikas, sind um eine Größenordnung höher als im KNP. Dieser 

Unterschied weist auf vergleichsweise niedrige Erosionsraten in der naturnahen 

Savannenlandschaft des KNP und beschleunigte Bodenerosion in anderen, durch 

menschliche Einflüsse geprägten Gebieten hin. Gegenwärtig sind kaum Daten 

verfügbar, die einen Vergleich von SSY- und E-Werten für Einzugsgebiete im KNP mit 

entsprechenden Werten für andere Areale in Südafrika gestatten würden, die ebenfalls 

durch naturnahe Bedingungen gekennzeichnet sind. 

Erosionsraten, die in anderen Studien auf kleinräumigen Versuchsflächen mit 

naturnaher Vegetationsbedeckung ermittelt wurden, sind vergleichbar mit Ergebnissen 

dieser Studie, wenn abweichende Umweltbedingungen und die Skala der Betrachtung 

(d.h. räumlich und zeitlich) berücksichtigt werden. Zugleich sind Mittelwert und 

Median der in dieser Studie ermittelten E-Werte mehr als viermal höher als 

langzeitliche (typischerweise ≥105 Jahre) Denudationsraten (DLt), die für dieselben 

Einzugsgebiete anhand von Beryllium-10-Gehalten in quarzhaltigen Flusssedimenten 

bestimmt wurden. Ergebnisse früherer Studien deuten zudem darauf hin, dass 

Bodenneubildungsraten möglicherweise ähnlich zu DLt-Werten sind und wahrscheinlich 

nicht höher als E-Werte von Einzugsgebieten im KNP, die nicht von Gully-Erosion 

betroffen sind. Werden die E-Werte dieser Einzugsgebiete als Richtwerte für den 

Bodenschutz im Lowveld herangezogen, so ergibt sich daraus ein tolerierbarer 

Bodenabtrag von ≤190 t km-2 a-1. 
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1 Introduction 

Soil erosion by water is considered a major environmental problem and the most 

important cause of land degradation in South Africa (e.g., Garland et al., 2000; 

Boardman et al., 2012; Manyevere et al., 2016) and some of its neighbouring countries 

(e.g., Whitlow, 1988; O'Keefe et al., 1991; Mushala et al., 1997; Hochschild et al., 

2003). Adverse consequences of soil erosion involve 'on-site' damages that emerge at 

places from which soil material is eroded, as well as 'off-site' effects that are related to 

the transport and deposition of material at distant locations (Morgan, 2005). On-site 

damages resulting from sheet and rill erosion comprise the loss of surface soil, exposure 

of infertile or indurated subsoil, decline of soil moisture storage and thinning or 

complete loss of vegetation cover (Boardman et al., 2017). Concentration of overland 

flow may culminate with the incision of gullies, locally referred to as 'dongas' (King and 

Fair, 1944) or 'sluits' (Rowntree, 2013), that can be observed across much of southern 

Africa (Showers, 1996; Felix-Henningsen et al., 1997; Mararakanye and Le Roux, 

2012). Off-site effects occur when mobilized material enters watercourses, thereby 

increasing turbidity and nutrient levels (Flügel et al., 2003) which affect aquatic habitats 

(Gordon et al., 2015). Sedimentation along watercourses often interferes with the use of 

infrastructure (Braune and Looser, 1989). Water storage capacity loss due to reservoir 

siltation is particularly crucial in South Africa, as the population and economy rely 

heavily on water supply from dams given widespread semi-arid climate conditions (van 

Vuuren, 2012; Le Roux, in press). 

There are considerable environmental and economic costs that arise from on-site 

and off-site effects of soil erosion by water. Due to limited rainfall, soil properties and 

other factors, only 11% of South Africa is suitable for crop cultivation (Johnston et al., 

2013). In some regions, soil erosion is considered a major factor that impairs 

economically profitable crop production (Manyevere et al., 2014). Garland et al. (2000) 

estimated that until the end of the 20th century as much as 70% of South Africa's land 

surface was degraded to a varying extent due to soil erosion by water. Consequently, 

this led to a 25% reduction in the total amount of topsoil material across the country 

(Pretorius, 2006). Based on currency exchange rates using the year 2000 as a reference 

(Worldbank, 2017), average costs for fertilizers that would have been required to fully 

compensate the nation-wide erosive loss of soil nutrients (i.e., nitrogen, phosphorus and 

potassium) might have amounted to about 220 million U.S. dollars per year (Hoffman 
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and Ashwell, 2001, p. 82) (Tab. 1). Mean annual costs for the replacement of water 

storage capacity, lost due to reservoir siltation, were likely in the order of 20 to 

30 million U.S. dollars (Braune and Looser, 1989; DEAT, 2000, p. 24). Taking into 

account additional costs for the remediation of infrastructure that is affected by 

sedimentation along watercourses and expenses for water purification that result from 

elevated water turbidity (DEAT, 2006, p. 99), the mean costs arising from off-site 

effects may be in excess of 140 million U.S. dollars per year (Hoffman and Ashwell, 

2001). In total, mean annual costs of soil erosion by water therefore likely exceed 

360 million U.S. dollars in South Africa, which corresponds to ≥8% of the mean annual 

net value added in the agricultural sector in 2000 (Worldbank, 2017). 

 

Tab. 1 Overview on estimated mean annual costs that arose from on-site and off-site effects of 

soil erosion by water in South Africa in 2000. 

Effect Costs 

[10
6
 ZAR] 

Costs 

[10
6
 USD] 

Source(s) 

Loss of major soil nutrients (i.e., nitrogen, 

phosphorus and potassium 

 

>1500 >220 

 

Hoffmann and Ashwell (2001) 

On-site effects - Total 

 

>1500 >220  

Replacement of water storage capacity 

lost by reservoir siltation 

 

 

150 to 200 

 

20 to 30 

Braune and Looser (1989) 

DEAT (2000) 

Remediation of infrastructure and 

expenses for water purification 

 

 

>850 

 

>120 

 

Hoffman and Ashwell (2001) 

Off-site effects - Total 

 

>1000 >140  

Soil erosion by water –Total >2500 >360  

Costs are given in South African Rand (ZAR) and U.S. dollar (USD) based on the official average currency 

exchange rate for the reference year 2000 (1 USD = 6.94 ZAR; Worldbank, 2017) 

 

Soil erosion is a quasi-natural process (Mortensen, 1955) that is driven by 

prevailing environmental conditions, but has been accelerated globally due to 

anthropogenic activities throughout the Holocene (e.g., Borrelli et al., 2017; 

Vanwalleghem et al., 2017). Major natural factors that influence rates of erosion by 

water include rainfall characteristics, vegetation cover, relief attributes and soil 

properties (Wischmeier and Smith, 1965; Le Roux et al., 2008). Considering these 

factors, large areas within South Africa appear to be predisposed to erosion by water 

(Garland et al., 2000), whereby many of the most susceptible areas are located in the 
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eastern part of the country (Meadows and Hoffman, 2002). Anthropogenic factors that 

led to accelerated soil erosion in South Africa include the transformation of the natural 

vegetation cover to pasture and cultivated land by pre-colonial (Marker and Evers, 

1976; Dean et al., 1995; MacPherson et al., in press) and colonial farmers (e.g., 

Meadows and Asmal, 1996; Compton et al., 2010; Boardman et al., 2012) as well as 

extensive land use that was reinforced through the regulation of land ownership in the 

Apartheid era (e.g., Hoffman and Todd, 2000; Laker, 2000; Watson, 2001). Additional 

factors include the abandonment of cultivated lands (Kakembo and Rowntree, 2003; 

Kakembo et al., 2009), expanding road networks (Beckedahl et al., 2001; Seutloali et 

al., 2016) and settlements (Marker, 1988; Watson, 1996; Gebel et al., 2017) among 

others (DEAT, 2006, p. 98f.). 

Considering the indisputable need for soil and water conservation in South 

Africa, one of the 'big questions' (Boardman et al. 2010, p. 65) is how much soil erosion 

is man-made and, thus, avoidable, and to what extent erosion can be attributed to natural 

environmental conditions (Poesen, 2018). Several authors have argued for a complex 

interplay of natural and anthropogenic factors in governing soil erosion in South Africa 

(e.g., Serfontein, 1930; Meadows and Hoffman, 2003; Rowntree et al., 2004; Sonneveld 

et al., 2005; Boardman et al., 2010). Shedding light on the magnitude of natural erosion 

is therefore an important step towards the definition of realistic management goals 

(Murgatroyd, 1979; Montgomery, 2007). Reviews on soil erosion research in South 

Africa (e.g., Garland et al., 2000; Laker, 2004; Boardman et al., 2012) suggest, 

however, that knowledge about contemporary erosion rates that would occur under 

pristine environmental conditions is limited. 

The Kruger National Park (KNP) in the northeast of South Africa (Fig. 1) has 

been identified as a suitable study area to establish benchmarks for contemporary 

'natural' erosion rates (Baade et al., 2012). The KNP is a 19 500 km
2
 large conservation 

area (Joubert, 1986) located in the summer rainfall zone (SRZ; >66% precipitation 

occurs between October and March; Chase and Meadows, 2007) of South Africa 

(Fig. 1a). The area is characterized by an undulating savanna landscape (Venter et al., 

2003) and belongs to the 'Lowveld' geomorphic province (Partridge et al., 2010) with 

the Great Escarpment to the west and coastal plains of Mozambique to the east 

(Fig. 1b). The southern part of the KNP was set aside for wildlife conservation by the 
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reservoirs (i.e., 30 to 65 years) was assessed based on high-resolution surveys of the 

reservoir basins, and the mapping and characterization of reservoir deposits. 

Granulometric and geochemical analysis were undertaken to confirm the validity of 

criteria that were used to differentiate between the pre- and post-dam facies in the field. 

Rainfall-runoff modelling was conducted to establish scenarios for the frequency and 

magnitude of spillage events from which the sediment trap efficiency of the reservoirs 

was estimated. Taking into account the intermediate storage of sediment in the 

catchments, estimates for catchment-wide rates of erosion by water were established. 

Uncertainties inherent in field, laboratory, and modelled data were quantified, and the 

relative importance of various sources of uncertainty assessed. Finally, sediment yield 

values and rates of erosion by water were compared to previously published data for 

areas inside and outside the KNP. 

The thesis is organized as follows: chapter 2 provides a brief overview on 

previous erosion research that has been carried out across southern Africa. Data on 

contemporary erosion rates in near-natural environments and rates of tolerable soil loss 

that were previously established for South Africa are presented. Information about long-

term denudation rates (>10
4
 years), derived from cosmogenic nuclides, is provided at 

the end of the chapter. 

Chapter 3 is dedicated to the distinction between the pre- and post-dam facies. 

Criteria that were used for the facies discrimination in the field are scrutinized based on 

geochemical and granulometric analysis. The collection of samples and their subsequent 

physico-chemical characterization is described. Regularized logistic regression (RLR) is 

introduced as an innovative statistical tool to identify of a set of sediment properties that 

is particularly useful for the facies discrimination. The performance of RLR is 

compared to the outcome of stepwise discriminant function analysis (DFA) that has 

been applied in previous studies dealing with the discrimination of soils and sediments 

(Miller et al., 2015). The analysis is extended based on Monte Carlo simulations and 

synthetic datasets in order to quantify uncertainties and to enhance the method 

comparison. Merits and drawbacks of RLR and stepwise DFA are discussed. 

In chapter 4, a methodological framework is presented that permits the 

estimation of the mean sediment trap efficiency for reservoirs in the KNP. This 

framework takes into account the prevailing semi-arid climate conditions that lead to 

strong water level fluctuations in the reservoirs and extended periods without spillage. 

The modelling approach for the simulation of catchment runoff, the reconstruction of 
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water level fluctuations and the assessment of the frequency and magnitude of spillage 

events is described. Scenarios for the relationship between water and sediment 

discharge are established based on sediment rating curves. Trap efficiency estimates are 

subsequently derived from all scenarios. The modelling results are compared to trap 

efficiency values that were calculated with equations from Brown (1944) and 

Heinemann (1981). The latter two approaches have been frequently applied all over the 

world but were developed mainly based on data from temperate climate regions. 

Chapter 5 contains detailed information about the surveying, mapping and 

characterization of reservoir deposits and the subsequent processing of field data. Mean 

contemporary sediment yield values are presented and compared to results from Baade 

et al. (2012). Correlations between mean contemporary sediment yield and catchment 

properties are explored. Neglecting and taking into account the reservoir trap efficiency 

and intermediate sediment storage in catchments, minimum and best estimates for 

catchment-wide rates of erosion by water are calculated, respectively. The relative 

contribution of different error sources to the overall uncertainty inherent in sediment 

yield values and erosion rates is quantified. Implications for a reasonable surveying and 

sampling strategy in the field are discussed. 

In chapter 6, the results are contextualized based on previously published 

contemporary sediment yield values and long-term average denudation rates for the 

Lowveld. Furthermore, the results are compared to data that were derived from reservoir 

siltation studies in other regions of South Africa. Finally, conclusions are drawn 

regarding tolerable rates of soil loss for the Lowveld. Open research questions that 

might be addressed in the future are highlighted. 
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2 Soil erosion research in South Africa and previously established 

estimates of tolerable soil loss 

2.1 Previous research on contemporary sediment yield and soil erosion rates in 

southern Africa 

In South Africa, on-site and off-site effects of accelerated soil erosion by water have 

been recognized at least since the late 19th century (e.g., Shaw, 1874; Roe, 1897; cf. 

Rowntree, 2013). Pioneering soil erosion research dates back to the 1920s (e.g., 

Jennings, 1923; Haviland, 1929). Between 1930 and 1950, South Africa became 

internationally known as being frightened by 'a national catastrophe, due to soil erosion' 

(Jacks and Whyte, 1939, p. 264), that was 'more imminent [...] than in any other 

country' (ibid.) of the world. Later, such opinions were partially considered 'neo-

Malthusian narratives' (Stringer and Reed, 2007, p. 99), but the socio-economical 

relevance of soil erosion became generally accepted (e.g., Beinart, 1984). A visit of 

Hugh Bennett, the Chief of the United States Soil Conservation Service, to South Africa 

in 1944 prompted media attention and boosted the public interest in combating soil 

erosion (Dodson, 2005). Thereafter, numerous soil erosion studies ensued (Garland, 

1982; Laker, 2004). 

Aerial images (e.g., Talbot, 1947; Rowntree et al., 1991; Kakembo et al., 2009) 

and satellite data (e.g., Wentzel, 2002; Wessels et al., 2007; Mararakanye and Le Roux, 

2012; Mararakanye and Sumner, 2017) were used to map the extent of erosional 

features in terms of surface area, partly at varying points in time. Measurements of 

contemporary erosion rates were carried out with soil wash traps (Haylett, 1960; Le 

Roux and Roos, 1982; Scott et al., 1998; Dlamini et al., 2011) and erosion pins (Keay-

Bright and Boardman, 2009; Boardman et al., 2015). Fallout isotopes (e.g., 
137

Cs) were 

mainly studied for the purpose of sediment dating or sediment source tracing (e.g., 

Foster et al., 2007), while the quantification of erosion rates from soil inventories (cf. 

Walling et al., 2003) was found to be challenging due to the rather low nuclear fallout 

on the southern hemisphere (Foster et al., 2017). Erosion models were applied to predict 

the soil loss and sediment transport at the scale of catchments (e.g., Breetzke et al., 

2013; Le Roux, in press), regions (e.g., Schulze, 1979; Flügel et al., 2003) and the entire 

South Africa (Schulze et al., 2007; Le Roux et al., 2008). Empirically-based large-scale 

assessments were founded mainly on sediment yield data obtained from reservoir 
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Tab. 1 Average contemporary area-specific sediment yield values for South Africa (except 

Kruger National Park, KNP) derived from reservoir siltation studies. 

Study N TR A SSY 

  [years] [km
2
] [t km

-2
 yr

-1
] 

Midgley (1952)
1)

 15 na na 300 ± na 

Schwartz and Pullen (1966) 17 20 ± 5 2980 200 ± 125 

Rooseboom et al. (1992) 112 30 ± 20 2300 150 ± 30 

All reservoir catchments except KNP 116 30 ± 20 2230 150 ± 30 

Note: number of investigated reservoirs (N), average time span for which reservoir siltation data is 

available (TR; ± 1σ), average catchment size (A), and mean annual area-specific sediment yield 

(SSY; ± Cl95) obtained from all study sites; 1) cited in Garland et al. (2000). 

 

runoff gauge) per unit of time and catchment size (e.g., Labadz et al., 1991). SSY values 

differ from catchment-wide rates of erosion by water due to the storage and 

remobilization of sediment in inter-drainage areas and along watercourses (de Vente et 

al., 2007), but reflect the intensity of off-site effects (Verstraeten et al., 2006). Hence, 

SSY values can be used as 'baseline data' (Trimble and Crosson, 2000, p. 250) to assess 

the magnitude of catchment-wide rates of erosion by water.  

Reservoir siltation studies in southern Africa, particularly the eastern and 

southern part of South Africa (Rooseboom et al., 1992; Foster et al., 2008, 2012; 

Msadala et al., 2012; Baade et al., 2012), Lesotho (Chakela, 1981) and southern 

Zimbabwe (Van den Wall Bake, 1986), revealed SSY values ranging from 

<10 t km
-2

 yr
-1

 to 1800 t km
-2 

yr
-1

 (Fig. 2a) for time intervals (TR) of 8 to 100 years and 

catchments varying in size (A) from <1 to 68 000 km
2
. The distribution of SSY values 

(Fig. 2b) from all study sites (N = 132) is positively skewed which is indicated by a 

comparatively low median of 90 [60, 130] t km
-2

 yr
-1

 and a higher mean value of 

180 ± 50 t km
-2

 yr
-1

 (in the following, uncertainties always correspond to the 

95% confidence level, Cl95, unless stated otherwise; see Chapter 5 for details). Results 

from SSY assessments carried out for reservoir catchments within the Republic of South 

Africa only, revealed average SSY values in the range of 150 to 300 t km
-2

 yr
-1

 (Tab. 1). 

The average SSY is therefore four to ten times lower than the nation-wide average soil 

erosion rate (1260 t km
-2

 yr
-1

) predicted by Le Roux et al. (2008). This points to a 

considerable net accumulation of recently eroded sediment in the reservoir catchments 

(de Vente et al., 2007). Sediment storage is relevant especially in large catchments 

which is indicated by a general trend of decreasing SSY with increasing catchment size 

(Fig. 2c). 
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2.2 Previously established values of contemporary erosion rates under near-natural 

conditions and tolerable soil loss in South Africa 

Empirical data on contemporary erosion rates under near-natural environmental 

conditions is unfortunately rather sparse (Tab. 2). Measurements with soil wash traps 

that were conducted between the 1930s and 1950s on erosion plots next to Pretoria 

revealed an average soil loss of 25 to 50 t km
-2

 yr
-1

 on near-natural veld, i.e., grass and 

scrub (Haylett, 1960). This is in accordance to a soil loss of 50 t km
-2

 yr
-1

 for natural 

veld conditions reported by Mathee (1984, cit. in Hoffman and Ashwell, 2001, p. 85). In  

 

Tab. 2 Overview on contemporary erosion rates measured under near-natural conditions and 

previously published values on tolerable rates of soil loss in South Africa. 

Study Description Soil loss 

[t km
-2

 yr
-1

] 

Contemporary erosion rates under near to natural conditions in South Africa 

Haylett (1960) average soil loss on experimental plots (length: 27 m) close to 

Pretoria with near to natural veld (i.e., grass and scrub) and a slope 

inclination of 4% in the 27yr period from 1931 to 1957 25 

Haylett (1960) average soil loss on experimental plots (length: 27 m) close to 

Pretoria with near to natural veld (i.e., grass and scrub) and a slope 

inclination of 7% in the 22yr period from 1936 to 1957 50 

Mathee (1984)
1)

 average soil loss on experimental plots with near to natural veld 

conditions (i.e., grass and scrub) and a 5% slope inclination; 

location and period unknown 50 

Venter (1988) average soil loss on experimental plots with open Acacia savanna 

(length: 22.13 m; slope inclination: 5 to 11%) in a fenced-off 

section of the Umfolozi Game Reserve (Hluhluwe-iMfolozi Park, 

Kwa-Zulu-Natal) with a normal game population (culling 

operations applied) in a 3 yr monitoring period in the mid-1980s 25 

Venter (1988) average soil loss on experimental plots with open Acacia savanna 

(length: 22.13 m; slope inclination: 5 to 11%) in sections of the 

Umfolozi Game Reserve (Hluhluwe-iMfolozi Park, Kwa-Zulu-Natal) 

with a high game population (no culling operations applied) in a 

3 yr monitoring period in the mid-1980s 75 

Hoffman and 

Ashwell (2001) 

estimate on natural erosion rates on undisturbed veld and in 

conservation areas; established from a comprehensive literature 

review 2 to 75 

 

Estimates on tolerable soil loss in South Africa 

Russell (1983)
2)

 average soil loss tolerance for cultivated land in South Africa 1000 

Pretorius and 

Cooks (1989) 

soil loss tolerance limits depending on soil thickness (i.e., higher 

soil loss tolerance with increasing soil thickness) 400 to 2000 

Le Roux and 

Smith (2014) 

estimated nation-wide average soil formation rate for South Africa 

<500 

1) cited in Hoffman and Ashwell (2001, p. 85); 2) cited in Scott et al. (1998, p. 57) 

                      Chapter 2 

 
21



 

 

the mid-1980s, Venter (1988) investigated plot scale erosion rates in the Umfolozi 

Game Reserve (Hluhluwe-iMfolozi Park, KwaZulu-Natal). Average erosion rates in a 

three years monitoring period amounted to about 25 t km
-2

 yr
-1

 in fenced-off areas 

where the game population was managed by culling operations, and to 75 t km
-2

 yr
-1

 in 

non-culling areas with a diminished vegetation cover (ibid.). Based on a comprehensive 

literature review, Hoffman and Ashwell (2001, p. 85) estimated that erosion rates on 

natural veld and in conservation areas of South Africa might range between 2 and 

75 t km
-2

 yr
-1

. Mean area-specific sediment yield values (40 to 60 years) established by 

Baade et al. (2012) for reservoir catchments (8 to 100 km
2
; N = 5) in the southern 

Kruger National Park vary from 10 to 60 t km
-2

 yr
-1

. 

Published values on tolerable rates of soil loss for South Africa are by an order 

of magnitude higher than empirically derived erosion rates for near-natural conditions 

(Tab. 2). According to Russell (1983, cit. Scott et al., 1998, p. 57), a soil erosion rate of 

1000 t km
-2

 yr
-1

 is tolerable for cultivated land. Pretorius and Cooks (1989) argued that 

soil erosion rates of 400 t km
-2

 yr
-1

 are acceptable for shallow soils, while a soil loss of 

up to 2000 t km
-2

 yr
-1

 can be considered tolerable, if soils were sufficiently thick. More 

recently, Le Roux and Smith (2014) stated that tolerable erosion rates for South Africa 

are likely <500 t km
-2

 yr
-1

.  

 

2.3 Long-term average denudation rates in South Africa inferred from cosmogenic 

nuclides 

Long-term average denudation rates (typically for 10
3
 to 10

7
 years; Darvill, 2013), i.e., 

the lowering of the landscape by physical erosion and chemical weathering, can been 

quantified based on in situ-produced cosmogenic nuclides (e.g., 
10

Be, 
36

Cl, 
21

Ne, 
3
He; 

Lal, 1991). Primary and secondary cosmic ray particles continuously encounter the 

Earth surface and trigger spallation processes and muon reactions that lead to the in situ-

production of cosmogenic nuclides in minerals (cf. von Blanckenburg, 2006). Since 

cosmic ray particles quickly loose energy as they penetrate into solid material, 

production rates are highest on horizontal unshielded surfaces and decrease with 

increasing depth (Lal, 1991). Comsogenic nuclide concentrations of steadily eroding 

surfaces rise with exposure time until an equilibrium is reached in which the production 

and removal of cosmogenic nuclides are balanced (Darvill, 2013). In the absence of 
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bioturbation and other disturbance, stable nuclides (e.g., 
21

Ne, 
3
He) are removed solely 

by denudation (i.e., physical erosion and chemical weathering), while an additional loss 

by radioactive decay is to be taken into account for radionuclides (e.g., 
10

Be, 
36

Cl).  

For surfaces that are steadily lowered by denudation, the surface concentration 

of cosmogenic nuclides behaves inversely proportional to the denudation rate (Lal, 

1991). Assuming steady state erosion, long-term average rates can be established when 

factors influencing the cosmic ray intensity (e.g., sampling location, shielding effects), 

properties of the sampled material (e.g., density, absorption coefficient of the host 

mineral), and characteristics of the investigated nuclides (e.g., decay rate) are taken into 

account (e.g., Heimsath et al., 2001). Spatially averaged long-term denudation rates for 

catchments can be determined from cosmogenic nuclide concentrations in river 

sediment samples (Granger et al., 1996). Here, it must be assumed that sediment mixing 

leads to an adequate representation of spatially variable denudation rates (von 

Blanckenburg, 2006). Denudation rates may be overrated when the river sediments 

contain subsurface material that was mobilized by gully or bank erosion (Glotzbach et 

al., 2016). 

Investigations on cosmogenic nuclide concentrations in South Africa have been 

carried out along the southern Cape coast (Scharf et al., 2013; Bierman et al., 2014), in 

the vicinity of the Great Escarpment (Fleming et al., 1999; Kounov et al., 2007; Decker 

et al., 2011; Keen-Zebert et al., 2016), in the interior of South Africa (Kounov et al., 

2007; Dirks et al., 2010, 2016; Decker et al., 2011, 2013; Keen-Zebert et al., 2016) and 

within the Kruger National Park (Chadwick et al., 2013; Glotzbach et al., 2016). These 

studies reveal generally low long-term average denudation rates on both sides of the 

Great Escarpment (Fig. 3a). Excluding samples from erosion scarps and river valleys, 

the mean value for rock outcrops and topsoils (Fig. 3b) amounts to (7 ± 5) × 10
-6

 m yr
-1

 

(N = 21). Values of up to 60 × 10
-6

 m yr
-1

 (Fleming et al., 1999) and 255 × 10
-6

 m yr
-1

 

(Keen-Zebert et al., 2016) were determined for erosion scarps and river valleys, 

respectively (not shown in Figures 3a and 3b). The mean value of spatially averaged 

long-term denudation rates obtained from river sediments (Fig. 3c) amounts to 

(4.5 ± 0.4) × 10
-6

 m yr
-1

 (N = 61). About 80% of the sampled rock outcrops and topsoils 

(excluding erosion scarps and river valleys), and 97% of the river sediment samples 

reveal a long-term average denudation rate of ≤8 × 10
-6

 m yr
-1

. Assuming a mean rock 

density of about 2.7 g cm
-3

 (e.g., Decker et al., 2011; Glotzbach et al., 2016), this 

corresponds to a long-term average denudation rate of ≤20 t km
-2

 yr
-1

. These low rates 
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Abstract

Purpose Soils and sediments can be distinguished based
on “composite fingerprints”, i.e., sets of physical and
chemical properties that are suitable for discrimination.
At present, statistical stepwise variable selection methods
are frequently applied to identify composite fingerprints,
although they have been seriously criticized. Here, we
test regularized logistic regression (RLR) as an alterna-
tive approach in the context of a reservoir siltation study
where the post-dam facies is to be distinguished from the
pre-dam facies.
Materials and methods The pre- and post-dam facies of four
reservoirs located in the Kruger National Park were examined
with respect to grain size composition, color, and content of
calcium-lactate leachable phosphorus (PCAL). A composite
fingerprint was identified applying RLR to training data.
The fitted regression model was used for the classification of
samples not involved in the training dataset. For comparison,
variable selection was performed with stepwise discriminant

function analysis (DFA) and samples were classified by ap-
plying linear discriminant analysis (LDA). Both approaches
were validated by comparing field interpretation and classifi-
cation results. The analysis was extended based on Monte
Carlo simulations and synthetic datasets to quantify uncer-
tainties and to enhance the method comparison.
Results and discussion RLR and stepwise DFA identify
grain size parameters and PCAL content to be particularly
useful for the facies discrimination. Neglecting and tak-
ing into account a potential sampling bias, both ap-
proaches lead to ≤3 and 5% misclassifications, respec-
tively. RLR outperforms stepwise DFA/LDA in Monte
Carlo simulations, although misclassification rates do
not significantly differ (p = 0.84). RLR uses on average
12% less fingerprint properties. Moreover, RLR-derived
probabilities of group membership represent a more reli-
able measure for classification conclusiveness than prob-
abilities calculated from LDA, which is evident in sig-
nificantly lower (p < 0.001) probability residuals for
misclassified samples. Stepwise DFA/LDA reveals lower
misclassification rates than RLR when data fulfill multi-
variate normality in each group and equal within-group
covariance matrices.
Conclusions RLR is an innovative tool for the discrimination
of sediment facies in reservoirs and, more generally, for stud-
ies requiring the discrimination of soils and sediments.
Although stepwise procedures will in practice often perform
similarly well, we discourage their use for the identification of
composite fingerprints due to the risk of suboptimal variable
selection involving variables with spurious discriminatory
power.

Keywords Facies discrimination .Monte Carlo simulations .
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1 Introduction

Physical and chemical properties have been used for a long
time in combination with multivariate statistical techniques
for the discrimination of soils and sediments (Birks 1987).
The selection of suitable properties is a crucial step and should
involve expert knowledge and rigorous statistical analysis
(Kraushaar et al. 2015). Sediment properties that do not sig-
nificantly differ between investigated soil and sediment types
should be eliminated, since they introduce noise into the
dataset which may affect classification results (Tibshirani
1996). The remaining properties should constitute a “compos-
ite fingerprint” (Collins and Walling 2002), i.e., a subset of
sediment properties that enables optimal discrimination be-
tween the investigated soil and sediment types (Walling and
Woodward 1995). Statistical variable selection methods are
commonly employed to identify composite fingerprints and
to verify their discriminatory power (Collins and Walling
2002).

Among a variety of available variable selection methods
(see Collins et al. 2012), a two-step procedure including a
non-parametric pre-test and stepwise discriminant function
analysis (DFA) is at present most frequently applied in finger-
printing studies (e.g., Miller et al. 2015; Pulley et al. 2015;
Pulley and Rowntree 2016). However, stepwise DFA
(Huberty 1989; Thompson 1989, 1995; Whitaker 1997), and
stepwise variable selection algorithms in general (e.g., Harrell
2001; Whittingham et al. 2006; Flom and Cassell 2007), have
been seriously criticized. Perhaps most importantly, stepwise
methods represent so-called “greedy algorithms” (Cormen
et al. 2001) that iteratively enhance preliminary solutions
based on heuristic principles. Although these algorithms per-
form satisfactorily in many cases, they often fail to produce
“optimal” results as the set of potential solutions in a particular
stage is confined by preliminary solutions of previous steps
(Huberty 1994). Moreover, stepwise DFA based on Wilks’
lambda is founded on the assumption of input data with mul-
tivariate normality in each group and equal within-group co-
variance matrices (Tabachnick and Fidell 2001). Although the
method is reasonably robust against “mild” violations (Hastie
et al. 1995) of this assumption, strong violations can negative-
ly impact variable selection and classification results.
Therefore, several authors have raised the need to explore
alternative statistical approaches (e.g., Collins et al. 2012;
Walling 2013).

Here, we explore the potential of regularized logistic re-
gression (RLR) for the identification of composite fingerprints
in the context of a reservoir siltation study where the post-dam
facies (i.e., reservoir deposits) is to be distinguished from the
pre-dam facies (i.e., fluvial sediments and soils). RLR belongs
to a family of machine learning algorithms referred to as
shrinkage methods (Simpson and Birks 2012) and is specifi-
cally designed for variable selection (Zou and Hastie 2005). A

further advantage is that RLR does not rely on multivariate
normality and equal within-group covariance matrices
(Tabachnick and Fidell 2001).

The aim of this study is twofold: (i) the identification of
sediment properties that are suitable for the discrimination
between the pre- and post-dam facies and (ii) the assessment
of the performance of the RLR approach compared to variable
selection with stepwise DFA and subsequent classification
based on (predictive) linear discriminant analysis (LDA).
Both approaches are applied on an empirical dataset acquired
from four reservoirs in the Kruger National Park (South
Africa). Results are validated by comparing field interpreta-
tion and classification results for samples with unambiguous
group affiliation. Synthetic datasets resembling the structure
of the empirical data are generated and employed within the
framework of Monte Carlo simulations to quantify uncer-
tainties in variable selection and classification results arising
from a potential sampling bias. Additional synthetic datasets
with normally distributed sediment properties in each group
and equal within-group covariance matrices are generated to
enhance the method comparison. Merits and drawbacks of
RLR and stepwise DFA and the potential of the RLR approach
for facies discrimination in reservoirs are discussed.

2 Materials and methods

2.1 Study area and site descriptions

The Kruger National Park (KNP) is located in the northeast of
the Republic of South Africa (Fig. 1a). It belongs to the tec-
tonically stable “Lowveld” geomorphic province (Partridge
et al. 2010) between the Great Escarpment to the west and
the coastal plains of Mozambique to the east. Low erosion
rates (<10−2mmyr−1) in this region were largely compensated
by isostatic uplift throughout the Cenozoic era (Glotzbach
et al. 2016). The KNP is characterized by an undulating relief
with altitudes ranging from 150 to 840 m asl (MacFayden
et al. 2016) and a main drainage direction towards the east.
Mean annual precipitation varies between 400 and 700 mm
with most of the rainfall and resulting runoff occurring be-
tween October and April (Gertenbach 1980). Major geologi-
cal units strike from north to south (Fig. 1b), with intrusive
rocks in the west and volcanic rocks in the east separated by a
narrow stretch of sedimentary rocks (Viljoen 2015). The KNP
hosts various subtypes of savanna vegetation that largely co-
incide with lithological and climatic conditions (Venter et al.
2003), including shrubland, bushveld, grassland, and tree sa-
vanna (Mucina and Rutherford 2010).

More than 50 small reservoirs were established in the KNP
prior to 1975 to ensure water provision for wildlife (Pienaar
1985). In wet years, reservoirs in the KNP are inhabited (e.g.,
hippopotamus, crocodiles) and regularly frequented by other
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animals (e.g., elephants, buffalos, antelopes, birds), partially
inducing eutrophication. The reservoirs impound intermittent
surface runoff and trap sediment that is transported along
thalwegs. The accumulation of reservoir deposits is restricted
to the deepest parts of the reservoir basins (Fig. 2), while
bedload from tributaries is deposited in backwater reaches
close to tributary inlets. A reconnaissance survey (Baade
et al. 2012) demonstrated that the post-dam facies of reser-
voirs in the KNP typically consist of strongly cracked, black-
ish fine-grained sediments that can be distinguished from the
underlying pre-dam facies exhibiting brighter color and coars-
er texture.

This study is based on samples from four small reservoirs,
the Hartbeesfontein, Marheya, Silolweni, and Nhlanganzwani
reservoirs, located in the southern KNP (Fig. 1b). They were
established between 1950 and 1970 in thalwegs of intermittent
channels (Pienaar 1985). Their surface area ranges from 3 to
16 ha and present-day water storage capacity from 30 to
260 × 103 m3 (Table 1). The four study sites provide a repre-
sentative cross section through the main geological units of
the southern KNP (Fig. 1b). Granite, gneiss, and sedimentary
rocks in the Hartbeesfontein, Silolweni, and Marheya reser-
voir catchments (Table 1) are associated with arenosols
(according to FAO 2014); solonetzes are common on
footslopes (Venter et al. 2003; van Zijl and Le Roux 2014).
The upper part of the Hartbeesfontein reservoir catchment is
underlain by gabbro that weathers to vertisols, phaeozems,
and leptosols (Venter 1990; Fey et al. 2010). About half of
the Marheya and Nhlanganzwani reservoir catchments are
characterized by basalt and fine-textured luvisols, nitisols,
and phaeozems (Venter 1990; Mills and Fey 2004). Vertisols
are frequently found at footslopes and valley bottoms.
Weathering-resistant rhyolites and dacites in the eastern part

of the Nhlanganzwani reservoir catchment coincide with
leptosols (Venter 1990; Table 1).

2.2 Field surveys and sampling

Field work was carried out in 2014 and 2015 and involved a
survey of the (dry) reservoir basins, including volumetric
mapping and sampling of reservoir deposits. Sample locations
were surveyed using Leica GS 10 GS 15 GNSS receivers in
real-time kinematic mode (RTK) as described by Baade and
Schmullius (2016). Identification of the pre- and post-dam
facies was based on color, structural fabric, and grain size
(Tucker 2011). Volumetric mapping was based on 30 to 60
depth soundings along multiple transects (N ≥ 9 at each site)
running approximately parallel to the dam crest using
Pürckhauer and gouge augers (length up to 3.4 m).

Post-dam facies samples were acquired along the transects
using 100 cm3 core rings at the surface (0–5 cm depth). A
sample ring kit and a liner sampler (Eijkelkamp) were used
for vertical profiles (up to 265 cm depth), and additional post-
dam facies material was collected from augers. Samples of the
pre-dam facies were mainly acquired from soils and deposits
underlying the post-dam facies. In addition, sediments in riv-
erbeds and soils exposed at river banks upstream and down-
stream of the reservoirs were examined to further characterize
the pre-dam facies. When the affiliation of a sediment sample
was not obvious from field observations, it was ascribed to the
group “unclear”.

The overarching aim of the project under which the sam-
pling was undertaken is the assessment and physical and
chemical characterization of reservoir siltation (i.e., the post-
dam facies). Thus, more samples were collected from the post-
dam facies than from the pre-dam facies (Table 2). The

a b

Fig. 1 Location of the Kruger
National Park a within South
Africa and b study sites (reservoir
catchments) in the southern
Kruger National Park. Major
geological units are shown
according to Petersen (2012),
modified after Geological Survey
of South Africa (1986a, b)
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proportion of subsurface samples (5–265 cm depth) of the
total number of samples collected from the post-dam facies
r anges f rom 38% (Marheya r e se rvo i r ) t o 64%
(Nhlanganzwani reservoir). Local sandy delta-like deposits
clearly distinct from fine-grained blackish reservoir deposits
were observed close to tributary inlets. However, taking into
account the limited number of samples from these deposits
(N = 8), and the sensitivity of logistic regression and discrim-
inant analysis to outliers (Tabachnick and Fidell 2001), sam-
ples representing delta-like sediments were excluded from the
analysis. In total, 49 and 166 samples from the pre- and post-
dam facies, respectively, and 35 samples with unclear class
affiliation, were collected (total N = 250). A kmz file showing
the sample locations (N = 117) has been included as Electronic
Supplementary Material in the online version of this article
(Online Resource 1).

2.3 Laboratory analysis

Laboratory analysis focused on properties that differ markedly
between the pre- and post-dam facies, i.e., color, phosphorus
content, and grain size composition (Baade et al. 2012). A
Munsell Soil Color Chart was used to determine the color of
moist and rubbed bulk sediment. Munsell colors were con-
verted to RGB color space (Beaudette et al. 2013), and the

luminance (LUM), represented in discrete values ranging
from 0 (black) to 255 (white), was calculated according to
Russ and Russ (2008). Calcium-lactate leachable phospho-
rous (PCAL) was extracted from 5 g aliquots following
Schüller (1969). PCAL content was quantified with the modi-
fied molybdenum blue method (Murphy and Riley 1962),
measuring the extinction at 700 nm wavelength with an UV/
VIS spectrophotometer (Shimadzu UV-2401 PC).

Particle size distribution (PSD) was determined by sieving
(2 and 1 mm meshes) and laser diffraction analysis. Grain
size analysis on the ≤1 mm fraction was carried out with a
Beckman Coulter LS 13320 following pre-treatment with hy-
drogen peroxide (H2O2; 10 and 30%) to decompose organic
matter. Tetrasodium pyrophosphate (Na4P2O7 · 10 H2O) was
added to the suspension to ensure dispersion during the mea-
surement. Sieving and laser particle size data were combined
following Dinis and Castilho (2012) to obtain PSDs with 0.5φ
increments. Grain size fractions and texture classes are re-
ported according to the World Reference Base (WRB) classi-
fication system (FAO 2014).

The percentage of the <63 μm fraction (subsequently ab-
breviated Clay&Silt%) and the percentage of the >2 mm frac-
tion (Skeleton%) were calculated relative to the fine sediment
mass (<2 mm fraction). Mean grain size (LMean) and sorting
(LSort) of the fine sediment were determined with the

Table 1 Characteristics of
investigated reservoirs and
corresponding reservoir
catchments

Reservoir Catchment

Area
(ha)

Capacity
(103 m3)

Area
(km2)

Lithology Predominant soil group(s)

Data source (1) (1) (2) (3) (4)

Hartbeesfontein 3.1 30.1 4.3 Granite/gneiss (65%)

Gabbro (35%)

Arenosols/solonetzes

Phaeozems/vertisols

Marheya 6.8 100.6 27.5 Basaltic rocks (54%)

Sandstone (46%)

Luvisols/nitisols/vertisols

Arenosols

Silolweni 11.2 141.7 13.2 Ecca group (54%)

Granitic rocks (46%)

Solonetzes

Arenosols/solonetztes

Nhlanganzwani 16.1 257.0 16.5 Basalt (50%)

Rhyolite/dacite (50%)

Luvisols/nitisols/vertisols

Leptosols

(1) derived fromRTKGNSS surveying; (2) Baade and Schmullius (2015); (3) Geological Survey of South Africa
(1986a, b); and (4) according to the World Reference Base soil classification system (FAO 2014) based on Venter
(1990), Venter et al. (2003), Mills and Fey (2004), and van Zijl and Le Roux (2014)

Fig. 2 The dried-out Hartbeesfontein reservoir in October 2015.
Blackish reservoir deposits representing the post-dam facies are largely
restricted to the deepest parts of the reservoir basin and can be easily

distinguished from brighter adjacent soils belonging to the pre-dam
facies. The width of the reservoir deposits at the dam (left) is about 70 m
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logarithmic method of moments and are given in φ units
(Krumbein 1936). Hartigan’s dip statistic (DIP) was calculat-
ed for the sample-specific range of grain size exhibiting pos-
itive PSD values to obtain a measure of multimodality in
PSDs. DIP increases with growing divergence of an empirical
distribution from unimodality (Hartigan and Hartigan 1985).
In order to further compare shapes of PSD curves, reservoir-
specific mean PSDs with 95% confidence bands were calcu-
lated from all samples categorized as post-dam facies.
Subsequently, the Euclidean distance from PSDs to these con-
fidence bands, henceforth referred to as “particle size devi-
ance” (PSDDist), was determined by applying Eq. (1), where
N is the total number of 0.5 φ increments, the subscript i
belongs to the ith increment, and di (in percent) is defined
according to Eq. (2) as the distance between the particle size
frequency fi (in percent) of a given sample and the confidence
band specified by the upper and lower bounds ui (in percent)
and li (in percent), respectively.

PSDDist ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

d2i

v

u

u

t ð1Þ

di ¼
f i−ui; f i > ui
0; ui≥ f i≥ li
li− f i; f i < li

8

<

:

ð2Þ

Hence, the following variables were included in subse-
quent statistical analysis: LUM, PCAL content, Clay&Silt%,
Skeleton%, LMean, LSort, DIP, and PSDDist. Mean, mini-
mum, and maximum values of all examined soil and sediment
characteristics were calculated from all samples representing
the pre- and post-dam facies. Mean values are reported with
confidence intervals corresponding to the two-tailed 95% con-
fidence level (Cl95) and were calculated based on Student’s t
distribution. Prior to subsequent analysis, values of all sedi-
ment characteristics were centered and scaled.

2.4 Stratified random sampling

The number of pre- and post-dam facies samples differs
greatly among the four study sites (Table 2). For the estab-
lishment of a composite fingerprint applicable to all inves-
tigated reservoirs, an imbalanced dataset might evoke bias
(Zadrozny 2004; Ben-David et al. 2010) due to variable
soil and sediment characteristics at the different study sites.
Thus, a subset containing equal numbers of samples from
each reservoir was created for unbiased training and vali-
dation. The dataset was stratified so that each “stratum”

contained the samples from a certain reservoir and a certain
group (i.e., pre-dam facies, post-dam facies, or unclear
group affiliation). Afterwards, samples were randomly
drawn from strata representing either the pre- or post-dam
facies using the R software package “sampling” (Tillé and
Matei 2015; R Core Team 2014). The number of samples
had to correspond to the minimum of site-specific numbers
of available samples. Hence, 4 and 29 samples from each
site representing the pre- and post-dam facies, respectively,
were included in the subset. From this, about 50% of the
samples from all strata were randomly chosen and included
in a training set, while the other samples were retained for
validation. The training set contains 60 samples from the
pre-dam facies and 8 samples from the post-dam facies,
and the validation set consists of 56 samples from the
post-dam facies and 8 samples from the pre-dam facies.
Differences in the size of the training and validation set
result from uneven sample numbers in various strata
(Table 2). All samples not included in training and valida-
tion sets were merged into a test dataset together with all
samples with unclear group affiliation (N = 35).

2.5 Generation of synthetic datasets

Synthetic datasets were generated for two purposes: (i) to
examine uncertainties in variable selection and classification
results arising from the limited number of samples involved in
training and validation using a Monte Carlo approach (e.g.,
Carnes and Slade 1982) and (ii) to enhance the statistical pow-
er of the method comparison. Three compilations containing

Table 2 Number of sample locations and samples from the pre- and
post-dam facies of the Hartbeesfontein, Marheya, Silolweni, and
Nhlanganzwani reservoirs

Hart Marh Silol Nhlang Total

Sample locations 19 28 36 34 117

Post-dam facies 14 18 20 28 80

Pre-dam facies 4 5 16 4 29

Unclear group affiliation 3 8 11 8 30

Post-dam facies samples 33 29 29 75 166

Included in the training dataset 15 15 15 15 60

Included in the validation dataset 14 14 14 14 56

Included in the test dataset 4 0 0 46 50

Pre-dam facies samples 4 8 32 5 49

Included in the training dataset 2 2 2 2 8

Included in the validation dataset 2 2 2 2 8

Included in the test dataset 0 4 28 1 33

Unclear samples 3 12 12 8 35

Included in the test dataset 3 12 12 8 35

Total number of samples 40 49 73 88 250

Due to the inclusion of vertical profiles, the number of samples is gener-
ally higher than the number of sample locations. Identical numbers of
samples from each site were included in the training and validation
datasets. Samples with unclear group affiliation and all remaining sam-
ples were conflated in a test dataset
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1000 synthetic datasets with 200 samples each were created.
Datasets in the first compilation resemble the statistical distri-
bution of sediment properties that characterize the investigat-
ed pre- and post-dam facies. Statistical distributions are repre-
sented in kernel density estimates (KDEs) that were derived
from empirical data. Expectancy values of KDEs (i.e., expect-
ed mean values of sample populations randomly drawn from
KDEs) were varied within two-tailed Cl95 intervals to simu-
late a potential sampling bias.

The second and third compilations contain datasets with
differing statistical distributions that meet the criteria of
multivariate normality (Gaussian density functions
(GDFs)) and equal within-group covariance (eCov) matri-
ces (Mateo-Sanz et al. 2004; Bates and Mächler 2016).
While field data are highly unlikely to fulfill the latter
criteria (Sheriff et al. 2015), the second and third compila-
tions were created to test the performance of RLR and
stepwise DFA/LDA under conditions where the underlying
assumptions of stepwise DFA hold. Datasets from the sec-
ond compilation contain eight synthetic sediment proper-
ties for two groups of samples (i.e., the binomial case).
Datasets of the third compilation consist of 15 synthetic
sediment properties for 5 groups of samples (i.e., the mul-
tinomial case). Details on the generation of the compila-
tions and examples of synthetic datasets are provided in the
Electronic Supplementary Material (Online Resources 2
and 3).

2.6 Statistical pre-tests

Most recent sediment fingerprinting studies employ a non-
parametric test as a precursor step in the identification of com-
posite fingerprints to eliminate variables that do not signifi-
cantly discriminate between investigated groups of soils and
sediments (Miller et al. 2015). Here, the Mann-WhitneyU test
was applied on datasets containing two groups, while the
Kruskal-WallisH test was used for synthetic datasets with five
groups (Laceby et al. 2015). Since the pre-test is involved in
variable selection, its application was restricted to the training
data to ensure independency of validation results. Variables
that revealed no significant differences between groups at the
p = 0.05 significance level were excluded from subsequent
analysis. Normality of population distributions in the empiri-
cal dataset was tested individually for samples from the pre-
and post-dam facies as suggested by Royston (1983, 1992),
with the extended Shapiro-Wilk test for single variables and
Royston’s H test for multivariate normality (Korkmaz et al.
2014). Since the latter test revealed significant (p < 0.001)
divergence from multivariate normality for both groups,
Box’s M test for equal within-group covariance matrices was
omitted as the test relies on multivariate normality and is sen-
sitive to violations of this assumption (Manly 2004).

2.7 Regularized logistic regression (RLR)

Composite fingerprints were identified applying RLR with
elastic-net penalties (Hastie et al. 2009) using the R software
package “glmnet” (Friedman et al. 2010). The procedure fits a
logistic regression model, while coefficients of predictor var-
iables are systematically constrained, eliminating the influ-
ence of superfluous predictors (Simpson and Birks 2012).
Given a training dataset of n sediment samples with k sedi-
ment characteristics xi= (xi1, ... , xik), i∈{1, ... ,n}, belonging
to the classes yi, where yi=1, if the sample represents the post-
dam facies, and yi=0 otherwise, the binomial RLR method
after Friedman et al. (2010) fits a regression model (Eq. (3))
that expresses the probability of a sample xi to belong to the
class y=1 (post-dam facies).

Pβ y ¼ 1jx ¼ xið Þ ¼
1

1þ e− β0þβ1xi1þ:::þβkxikð Þ
ð3Þ

The unknown coefficient vector β= (β0, ... ,βk) needs to be
fitted. This is realized by solving Eq. (4), where βα;λ is the
optimal coefficient vector for a given parameter α with
0≤α≤1 and a non-negative weighting factor λ, ℓ(β) is the
log-likelihood function (Eq. (5)) corresponding to the cumu-
lative probability function Pβ and the (training) data (xi, yi),
and Lα(β) is the elastic-net penalty function (Eq. (6); for de-
tails, see Friedman et al. 2010).

βα;λ ¼ argmax
β

1
n
ℓ βð Þ−λLα βð Þ
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The strength of the constraint is governed by the choice of
the weighting factor λ in Eq. (4). Increasing λ will likely
decrease the penalty function Lα βα;λ

� �

, and consequently,
some coefficients in βα;λ will approach zero, thus eliminating
the influence of the corresponding predictor variables. The
elastic-net penalty is governed by the parameter α (Eq. 6)
and represents a generalization of the ridge regression
(α = 0) and lasso (α = 1) penalties (Zou and Hastie 2005).
Setting α close to 0 tends to result in simultaneous shrinkage
of coefficients from correlated variables with increasing λ,
which will likely result in a rather large number of remaining
variables in the resulting composite fingerprint. In contrast,
setting α close to 1 typically reduces the number of influential
variables (Simpson and Birks 2012).
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Since stepwise DFA is designed for the determination of a
parsimonious variable selection (Huberty 1989), α was set to
1 to facilitate the method comparison. Alternative values of
0.5 and 0.75 were also tested, but the pre-selection of α was
found to have only a small influence on resulting misclassifi-
cation rates, which amounted to <0.2 and <0.1% on average
for synthetic datasets resembling empirical data and those
meeting the requirements of stepwise DFA, respectively. The
optimal parameter λ was determined based on misclassifica-
tion rate estimates obtained from tenfold cross validation for a
sequence of values λ ranging from 10−4 to >10−1. Due to the
associated random partitioning of the training data, misclassi-
fication rates vary when cross validation runs are repeated.
Thus, mean misclassification rates and mean standard errors
were calculated from 100 cross-validation runs as this number
of iterations ensured a sufficient reproducibility of the results.
The optimal regression model was identified applying the
“one-standard-error rule” suggested by Hastie et al. (2009, p.
244). Accordingly, the optimal model belongs to the set of
regressionmodels whose mean (cross validation derived) mis-
classification rate is within the mean standard error range of
the regression model revealing the lowest mean misclassifica-
tion rate. Within this set, the regression model corresponding
to the highest value λ is considered optimal.

Fitted regression models (Eq. (3)) were used to calculate
probabilities of group membership. A sample x was classified
as a representative of the post-dam facies when the corre-
sponding probability Pβ(x) exceeded 0.5; otherwise, it was
ascribed to the pre-dam facies. The threshold 0.5 is the most
intuitive choice and induces identical chance of misclassifica-
tion for both groups. The variable importance VIj (in percent)
of a sediment property j∈{1, ... , k} was calculated based on
the absolute values of entries in the optimized coefficient vec-
tor βα;λ ¼ β0; :::;βkð Þ as shown in Eq. (7), i.e., excluding the
intercept β0.

VI j ¼ 100%⋅

β ̂
j
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For the application of Eq. (7), input data have to be cen-
tered and scaled.

Multinomial RLR is applied when soils and sediments of
G≥3 groups are to be distinguished. In this case, the regres-
sion model consists ofG equations having the form of Eq. (3)
(cf. Friedman et al. 2010). Coefficients of all equations are to
be fitted, while the selection of a grouped penalty (referring to
the option “type.multinomial = ‘grouped’” in the glmnet pack-
age) ensures simultaneous shrinkage of coefficients corre-
sponding to the same variable in all G equations.
Probabilities of group membership are calculated from the

fitted regression model, and samples are ascribed to the group
exhibiting the highest probability. Variable importance of sed-
iment characteristics can be assessed based on Euclidean
norms of vectors containing the corresponding G fitted coef-
ficients (instead of the absolute values in Eq. (7)) provided that
input data are centered and scaled.

2.8 Stepwise DFA and LDA

For comparison, variable selection and classification were
conducted applying stepwise DFA and LDA, respectively.
Stepwise DFA was performed with the forward selection al-
gorithm implemented in the R software package “klaR”
(Weihs et al. 2005). This algorithm repeatedly calculates
Wilks’ lambda for various variable subsets. In the first step,
the variable with the highest discriminatory power as indicat-
ed by the lowest Wilks’ lambda is selected. Afterwards, vari-
ables minimizing Wilks’ lambda are iteratively chosen from
the remaining variables and added to the model. At each step,
an F test is performed to evaluate the significance of the re-
duction in Wilks’ lambda. The variable selection ceases when
the p value exceeds a pre-defined threshold (for details, see
Tabachnick and Fidell 2001). Following D’Haen et al. (2013),
a threshold of p = 0.2 was used, which is in accordance with
the recommendations from Constanza and Afifi (1979).

Predictive LDAwas applied to the classification of samples
using the composite fingerprint identified with stepwise DFA.
Discriminant functions were set up based on samples from
training sets employing the maximum likelihood (ML) dis-
criminant rule and assuming identical prior probabilities.
The resulting discriminant function was used for classifica-
tion. Posterior probabilities were calculated with the “predic-
tive” method suggested by Venables and Ripley (2002, p.
339). Variable importance was calculated from absolute
values of coefficients in the discriminant function by applying
Eq. (7).

2.9 Monte Carlo simulations, validation, and method

comparison

Synthetic datasets resembling the structure of the empirical
data were employed inMonte Carlo simulations to investigate
uncertainties in classification results taking into account a po-
tential sampling bias (e.g., Carnes and Slade 1982). As above,
RLR and stepwise DFA/LDA were applied to synthetic
datasets following the statistical pre-test. The resulting regres-
sion models and discriminant functions were used for the clas-
sification of samples in the empirical dataset. Cases of incon-
sistency between field interpretation and classification results
for samples with unambiguous group affiliation were
interpreted as misclassifications. Mean variable importance,
mean probabilities of group membership for individual
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samples, and mean misclassification rates were calculated
from all simulations (N = 1000).

Moreover, all synthetic dataset compilations were ana-
lyzed to enhance the comparison between RLR and step-
wise DFA/LDA. Misclassification rates were calculated
separately for the training and validation subsets. While
misclassification rates derived from training data might
overvalue the performance of classifiers due to potential
overfitting, misclassification rate estimates obtained from
data not involved in the training of regression models and
discriminant functions are expected to reveal a more re-
liable indication for the evaluation of the methods (Hastie
et al. 2009). In addition, both approaches were compared
with respect to the number of identified fingerprint prop-
erties and posterior probabilities of group membership for
misclassified samples. For the latter, the probability re-
sidual ΔPpost of individual samples xi belonging to the
group yi was calculated based on the posterior probability
of group membership Ppost(yi| xi) as shown in Eq. (8).

ΔPpost xi; yið Þ ¼ 1−Ppost yijxið Þ ð8Þ

The mean probability residual of misclassified samples can
range between 0.5 and 1 and was used as an indicator for the
cogency of probabilities with respect to the conclusiveness of
related classification results. Average values with Cl95 inter-
vals were calculated for misclassification rates, mean proba-
bility residuals of misclassified samples, and number of se-
lected fingerprint properties. The significance of differences in
results derived with RLR and combined stepwise DFA/LDA
was tested with the Mann-Whitney U test.

3 Results and interpretation

3.1 Characteristics of the pre- and post-dam facies

The post-dam facies of all study sites is characterized by silt
loams exhibiting a black to brownish black color (2.5Y 2–3/1),
resulting in a luminance (LUM) < 75 when the sediment is
moist and rubbed. Grain size analysis reveals bimodal site-
specific mean PSDs with a maximum in the silt fraction
(Fig. 3a). Intra-site variability is rather small as evident in a
mean particle size deviance (PSDDist) < 8 (Fig. 3b).
Bimodality is reflected in mean values of Hartigan’s dip sta-
tistic (DIP) ranging from 0.04 to 0.05. Mean percentage of the
<63 μm fraction (Clay&Silt%) is 87 ± 2%. Skeleton (>2 mm)
is nearly absent in the post-dam facies apart from samples
taken at marginal positions within reservoir basins. Mean con-
tent of calcium-lactate leachable phosphorus (PCAL) is
90 ± 10 ppm.

The characteristics of the pre-dam facies differ markedly
from the post-dam facies. In the pre-dam facies, LUM shows

high variability and ranges between 40 and 130. Clay&Silt%
does not exceed 72% (Fig. 4a) and is 38 ± 5% on average,
while mean Skeleton% is 6 ± 2%. Mean grain size (LMean) is
higher (i.e., a lower value in terms of φ units), and sorting
(LSort) tends to be poorer than in the post-dam facies
(Fig. 4b). As expected, PSDDist values are higher and more
variable in the pre-dam facies with mean values >15 for all
study sites (Fig. 3b).MeanDIP values range between 0.04 and
0.07 and are therefore rather similar to values obtained from
the post-dam facies. PCAL content is generally low in the pre-
dam facies with a mean value of 17 ± 5 ppm, although higher
PCAL content of >50 ppm was found for some soil samples
taken at the Marheya reservoir (Fig. 4a).

Notably, the disparity of sediment properties between the
pre- and post-dam facies exceeds the inter-site variability
within both facies (Fig. 4). This justifies the application of a
joint composite fingerprint for all study sites which would
have been inadequate otherwise. The Mann-Whitney test re-
veals significant (p < 0.05) differences between the facies for
all considered variables except DIP (Table 3). At the same
time, the Shapiro-Wilk test indicates significant deviation
from normality for six and eight properties characterizing the
pre- and post-dam facies, respectively.

3.2 Composite fingerprints and variable importance

obtained from empirical data

The fitted RLR model corresponds to the parameter
λ = 0.0278 and reveals a cross validation-derived mis-
classification rate of 4 ± 2%. Results show that not all
input variables provide essential information for the dis-
crimination of the pre- and post-dam facies. While most
coefficients decrease with increasing λ (Fig. 5a, b), mis-
classification rates remain on a low level for λ < 10−2

(Fig. 5c). Coefficients and variable importance corre-
sponding to the optimized regression model are shown
in Table 4. Clay&Silt% has the highest variable impor-
tance (39%). PSDDist (26%) and PCAL content (26%) are
also important, while Skeleton% has only a minor influ-
ence (9%). All other variables have no significance for
the optimized model. Hence, the RLR-derived composite
fingerprint contains the following four variables:
Clay&Silt%, PSDDist, PCAL content, and Skeleton%.

Stepwise DFA identifies the same variables to be the most
important, although in a slightly different order with
Skeleton% being already selected in the second step
(Table 4). In addition, LMean and LSort are selected, resulting
in a composite fingerprint consisting of six sediment proper-
ties including all variables passing the Mann-Whitney test
except LUM. Wilks’ lambda is monotonically decreasing in
the course of the selection procedure, indicating improved
discriminatory power with the addition of a new variable in
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each iteration. The algorithm stops with a Wilks’ lambda of
0.23 after which no significant improvement can be achieved.

Coefficients of the discriminant function calculated with
LDA based on the composite fingerprint derived from step-
wise DFA indicate highest variable importance for
Clay&Silt% (48%) followed by LMean (20%) and LSort

(11%), although the latter two variables were selected only
in the sixth and fifth steps of the stepwise DFA, respectively.
Signs of coefficients in the RLR model and the discriminant
function are all in line with expectations (Table 4). For exam-
ple, PCAL coefficients are positive while coefficients of
Skeleton% are negative, indicating higher probability for a

a

c

b
Fig. 4 Selected sediment
properties of samples from all
study sites characterizing the pre-
and post-dam facies a percentage
of the <63-μm fraction
(Clay&Silt%) and calcium-lactate
leachable phosphorus content
(PCAL), b mean grain size and
sorting of the <2-mm fraction,
and cHartigan’s dip statistic (used
as a measure for multimodality in
PSDs) and luminance values

a b

Fig. 3 Variability of mean particle size distributions (PSDs) and derived
particle size deviance (PSDDist) amean PSDs with 95% confidence bands
for the post-dam facies in the Hartbeesfontein, Marheya, Silolweni, and
Nhlanganzwani reservoirs. Vertical dotted lines indicate the boundaries
between the clay, silt, and sand fractions, respectively. b Mean PSDDist

values obtained from samples of the pre- and post-dam facies for all study
sites. PSDDist values were calculated from particle size frequencies
(expressed in percent) according to Eq. (1) and are interpreted as a
dimensionless metric. Error bars denote 95% confidence intervals
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sample to belong to the post-dam facies with increasing PCAL

content and decreasing Skeleton%.

3.3 Classification results obtained from empirical data

Comparing results of the RLR approach with field interpreta-
tion reveals low misclassification rates of 2, 0, and 5% for
samples belonging to the training, validation, and test datasets,
respectively (Table 5). Misclassifications with RLR were ob-
tained for five soil samples including one sample in the train-
ing set and four samples in the test set. Combining stepwise
DFA and LDA performs only slightly poorer with 3, 3, and

4% misclassifications in the training, validation, and test sets,
respectively. In total, RLR and stepwise DFA lead to 2 and 3%
misclassifications (Table 5). Neglecting a potential sampling
bias, these figures represent an estimate for the risk of
misclassifying samples with unclear group affiliation.

Figure 6 depicts the probabilities for an affiliation to the
post-dam facies as derived from the RLR and LDA ap-
proaches for all samples involved in the analysis. With the
RLR model, 12% of all samples, including four out of five
misclassified samples, fall into the probability range of 0.2 to
0.8 (Fig. 6a). The stepwise DFA/LDA procedure is more de-
cisive in the sense that probabilities are strongly focused to-
wards 0 and 1 (Fig. 6b). Only 2% of all samples show prob-
abilities between 0.2 and 0.8, including none of the
misclassified samples. The mean probability residual for
misclassified samples is 0.69 ± 0.20 (N = 5) for RLR and
0.97 ± 0.03 (N = 7) for stepwise DFA/LDA. Samples with
unclear field interpretation reveal probabilities of <0.2, 0.2
to 0.8, and >0.8 for 18, 13, and 4 samples based on RLR
and for 18, 3, and 14 samples based on LDA approach, re-
spectively. Comparison of results derived from both methods
(Fig. 6c) yields 31 (89%) consistent and 4 (11%) inconsistent
classifications for samples with unclear class affiliation.

3.4 Mean variable importance and classification results

obtained from Monte Carlo simulations

Monte Carlo simulations based on RLR and stepwise DFA/
LDA reveal similar results regarding the mean variable impor-
tance. Clay&Silt% shows the highest mean variable impor-
tance (RLR 26%, LDA 23%; Fig. 7) followed by LMean
(23, 20%), PSDDist (22, 19%), and LSort (14, 16%). PCAL

content features a mean variable importance of 8 and 10% in
RLR and stepwise DFA/LDA, respectively, while Skeleton%
(4, 6%), LUM (2, 5%), and DIP values (1, 1%) have on aver-
age only a minor influence on classification results.

a b c

Fig. 5 Results of the variable selection with the RLR method a fitted
coefficients, b variable importance, and c average misclassification rates
with standard deviations obtained from tenfold cross validation (100
runs) for various values λ. The vertical dashed line denotes the optimal

value λ based on the “one-standard-error rule” suggested by Hastie et al.
(2009). Variables not included in the resulting composite fingerprint are
subsumed in the category “other variables”

Table 3 Mean values with 95% confidence levels (Cl95) of sediment
properties analyzed on samples from the pre- (N = 49) and post-dam
facies (N = 166) of all study sites and p values obtained from the
Shapiro-Wilk (pSW) and Mann-Whitney U tests (pMW)

Variable Post-dam facies Pre-dam facies pMW

Mean Cl95 pSW Mean Cl95 pSW

LUM (0–255) 58 2 <0.001 79 5 <0.001 0.017

PCAL (ppm) 90 10 <0.001 17 5 <0.001 <0.001

Clay&Silt%
(%)

87 2 0.063 38 5 <0.001 <0.001

Skeleton% (%) 0.7 0.3 <0.001 5.8 2.2 <0.001 0.001

LMean (φ) 6.8 0.1 0.703 3.7 0.3 0.243 <0.001

LSort (φ) 2.2 0.1 0.054 2.9 0.1 0.002 <0.001

DIP 0.05 0.01 <0.001 0.06 0.01 <0.001 0.402

PSDDist 5.3 0.5 0.026 18.2 2.1 <0.001 <0.001

Significant pSW values indicate deviation from normality, while signifi-
cant pMW values testify differences between population distributions in
the pre- and post-dam facies. Since the Mann-Whitney test represents a
precursor step in the identification of composite fingerprints, its applica-
tion was restricted to samples from the training set. Significant p values
(<0.05) are shown italics
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Uncertainties in the determination of the mean variable impor-
tance (Cl95) are <1%.

Mean probabilities of individual samples obtained from
RLR and stepwise DFA/LDA are in a comparable range
(Fig. 8), with an absolute mean and maximum deviation of
0.11 ± 0.01 and 0.25 ± 0.02, respectively. The number of
misclassifications does not differ significantly (p = 0.84).
Taking into account classification uncertainties for samples
with Cl95 intervals of mean posterior probabilities, including
the threshold 0.5, both approaches lead to 5 ± 1% misclassi-
fications. This figure can be interpreted as a fair estimate for
the risk of misclassifying samples with unclear group affilia-
tion, if a sampling bias in the empirical dataset is taken into
consideration (Carnes and Slade 1982). Moreover, 83 and
60% of samples that were misclassified with RLR and step-
wise DFA/LDA, respectively, fall into the mean probability
range between 0.2 and 0.8. This suggests that RLR-derived

mean probabilities especially represent a good indication for
classification conclusiveness. Comparison between classifica-
tion results obtained with RLR and stepwise DFA/LDA for
samples with unclear class affiliation yields 33 (94%) consis-
tent and 2 (6%) inconsistent classifications.

3.5 Method comparison based on synthetic dataset

compilations

A comparison of the performance of RLR and stepwise DFA/
LDA based on synthetic datasets reveals, on average, only
minor differences in misclassification rates but substantial dis-
parities in mean probability residuals for misclassified sam-
ples and the number of fingerprint properties (Fig. 9). Mean
misclassification rates calculated for datasets resembling the
structure of empirical data vary between the pre- and post-dam
facies (Table 5) but do not significantly differ between RLR

Table 5 Percentage of
misclassified samples in the
training, validation, and test data
subsets of empirical and synthetic
data obtained with RLR and
combined stepwise DFA/LDA,
respectively

Empirical dataset (N = 1) Synthetic datasets (N = 1000)

Post-dam Pre-dam Total Post-dam Pre-dam Total

RLR Training 0 13 2 0.3 ± 0.1 0.7 ± 0.1 0.4 ± 0.1

Validation 0 0 0 1.0 ± 0.2 2.4 ± 0.2 1.4 ± 0.1

Testa 0 12 5 – – –

Alla 0 10 2 0.7 ± 0.1 1.5 ± 0.2 0.9 ± 0.1

Stepwise DFA/LDA Training 2 13 3 0.1 ± 0.1 1.2 ± 0.1 0.7 ± 0.1

Validation 4 0 3 0.2 ± 0.1 2.3 ± 0.2 1.2 ± 0.1

Testa 0 9 4 – – –

Alla 2 8 3 0.1 ± 0.1 1.8 ± 0.1 0.9 ± 0.1

Misclassification rates of synthetic datasets correspond to mean values with 95% confidence intervals and were
derived from a compilation of 1000 datasets resembling the structure of the empirical dataset
a Samples ascribed to the group “unclear” based on field interpretation are precluded

Table 4 Coefficients (Coef) of the fitted regression model (α = 1; λ = 0.0278) and linear discriminant function obtained from regularized logistic
regression (RLR) and linear discriminant analysis (LDA), respectively, indicating variable importance (VI) and the evolution of Wilks’ lambda in the
course of stepwise discriminant function analysis (DFA)

Variable RLR Stepwise DFA LDA

Coef VI (%) Rank Wilks’ Λ Rank Coef VI (%) Rank

(Intercept) 2.21 – – – – 0 – –

Clay&Silt% 1.49 39 1 0.46 1 4.74 48 1

Skeleton% −0.36 9 4 0.36 2 −1.11 11 3

PSDDist −0.98 26 2 0.29 3 −0.55 6 5

PCAL 1.00 26 2 0.27 4 0.45 5 6

LSort 0 0 – 0.25 5 1.13 11 3

LMean 0 0 – 0.23 6 −1.96 20 2

LUM 0 0 – –
a

–
a

–
a

–
a

–
a

aVariable not selected in the course of the stepwise DFA
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and stepwise DFA/LDA for samples in the validation set
(p = 0.09). Notably, mean misclassification rates are <1.5%
(Fig. 9a), which is about 3.5% less than mean misclassifica-
tion rates compiled with Monte Carlo simulations for samples
of the empirical dataset. This is in line with expectations as

sediment characteristics in training and validation data of syn-
thetic datasets were drawn from identical KDEs. Mean prob-
ability residuals of misclassified samples are on average <0.67
for RLR and >0.75 for stepwise DFA/LDA (Fig. 9b), which is
a highly significant deviation (p < 0.001). In addition, the

a

b c

Fig. 6 Probabilities that samples from the training, validation, and test
subsets of the empricial dataset belong to the post-dam facies: a
probabilities of group membership obtained from regularized logistic
regression (RLR), b posterior probabilities calculated from linear

discriminant analysis (LDA) based on the composite fingerprint
identified with stepwise discriminant function analysis (DFA), and c

comparison of probabilities calculated with the aforementioned methods

a b

Fig. 7 Mean variable importance of investigated sediment characteristics
for the discrimination between the pre- and post-dam facies as derived
from a Monte Carlo approach with a binomial RLR and b stepwise DFA

based on 1000 synthetic datasets resembling the structure of the empirical
dataset. Error bars correspond to 95% confidence intervals
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mean number of fingerprint properties differs significantly
(p < 0.001) and amounts to 5.5 ± 0.1 and 6.2 ± 0.1 for RLR
and stepwise DFA, respectively (Fig. 9c).

The compilation of binomial synthetic datasets meeting the
criteria of stepwise DFA is more heterogeneous than the com-
pilation of datasets resembling empirical data, which results in
two to three times higher uncertainties of mean misclassifica-
tion rates (Fig. 9d). The difference of misclassification rates
derived from RLR and stepwise DFA is not significant
(p = 0.46) for training sets. For samples in validation sets,
RLR and stepwise DFA/LDA result in mean misclassification
rates of 1.0 ± 0.2 and 0.8 ± 0.2%, respectively. This difference
is significant (p < 0.001) despite overlapping confidence in-
tervals. Mean probability residuals of misclassified samples
are <0.65 for RLR and >0.71 for stepwise DFA (Fig. 9e),
while the mean number of variables included in composite
fingerprints is only 2.3 ± 0.1 for RLR and 4.8 ± 0.1 for step-
wise DFA (Fig. 9f). Therefore, the mean number of fingerprint
properties selected with RLR is 52 ± 3% lower than for step-
wise DFA, while 97 ± 3% of the variables selected via RLR
are also included in the composite fingerprint identified with
stepwise DFA. Differences in mean probability residuals of
misclassified samples and mean number of composite finger-
print properties are highly significant (p < 0.001).

These findings indicate that discrimination of the pre- and
post-dam facies based onRLR and stepwise DFA/LDA results
in an approximately equal number of misclassifications in the
current study, although composite fingerprints identified with
RLR contain on average 12 ± 1% less sediment properties.
Stepwise DFA/LDA leads to significantly lower mean mis-
classification rates than RLR when underlying assumptions
apply. However, classification with LDA is based on about
twice as many sediment properties and the absolute difference
in mean misclassification rates is only 0.2 ± 0.3%. Moreover,
probabilities of group membership obtained from RLR repre-
sent a better indication for the conclusiveness of classification
results, even if analyzed datasets meet the underlying assump-
tion of stepwise DFA. Similar results were obtained for mul-
tinomial synthetic datasets where mean misclassification rates
for validation sets derived from RLR and stepwise DFA are
0.2 ± 0.1 and 0.1 ± 0.1%, while mean probability residuals are
<0.70 and >0.78 and the mean number of selected variables
amounts to 8.3 ± 0.2 and 14.2 ± 0.1, respectively. Again,
differences in misclassification rates, mean probability resid-
uals, and the number of selected variables are significant with
p values <0.001. Hence, it appears that results obtained for the
binomial case can be extrapolated to the multinomial case.
However, further analyses on datasets with varying numbers

a

b c

Fig. 8 Mean probabilities that
samples from the study sites
belong to the post-dam facies as
derived from Monte Carlo
simulations based on 1000
synthetic datasets: a mean
probabilities of group
membership obtained from
regularized logistic regression
(RLR), b mean posterior
probabilities calculated from
linear discriminant analysis
(LDA) based on the composite
fingerprint identified with
stepwise discriminant function
analysis (DFA), and c comparison
of mean probabilities calculated
with the aforementionedmethods.
Error bars denote 95%
confidence intervals
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of sediment properties, groups, and samples are required to
test this hypothesis.

4 Discussion

4.1Merits and drawbacks of RLR and stepwise DFA/LDA

In this study, RLR performs slightly better for facies discrim-
ination than combining stepwise DFA and LDA, although
misclassifications derived from Monte Carlo simulations do
not significantly differ (p = 0.84). RLR uses 12 ± 1% less
predictors on average (Fig. 9). Moreover, RLR results in sig-
nificantly (p < 0.001) lower mean probability residuals for
misclassified samples. This implies a higher cogency of
RLR-derived probabilities of group membership concerning
classification conclusiveness compared to posterior probabil-
ities calculated with LDA. This is consistent with findings of
other studies that attested a superior performance of regression
shrinkage methods when compared to stepwise variable selec-
tion (Hastie et al. 2009; Makalic and Schmidt 2010). With
respect to the low number of misclassifications, stepwise
DFA and LDA still perform reasonably well. This implies that

deviation from multivariate within-group normality (Table 3)
does not severely impact the performance of stepwise DFA/
LDA in this study.

Although stepwise forward and backward selection will in
practice often perform just as well as other variable selection
techniques (Murtaugh 2009), we discourage their use for the
identification of composite fingerprints. Amajor disadvantage
of stepwise forward (and backward) selection is the disregard
of the fact that a combination of several variables not yet
included in (excluded from) the variable subset might have a
greater discriminatory power than the single variable entering
(leaving) the model (Thompson 1989). In each step, the selec-
tion of variables is conditional as it relies on the subset of
variables previously selected (Makalic and Schmidt 2010).
As a consequence, the discriminatory power of the ultimately
identified variable subset is often suboptimal (Huberty 1989).

Furthermore, the conditional selection of variables in step-
wise DFA leads to biases in Wilks’ lambda (Rencher and
Larson 1980), F-statistics, and p values (Thompson 1995).
Although alternative stopping rules are available, significance
levels obtained from F tests remain the most commonly
employed termination criterion in stepwise DFA (Munita
et al. 2006). If p values are not appropriately adjusted, this

a b c

d e f

Fig. 9 Performance of binomial RLR (dark symbols) and stepwise DFA/
LDA (light symbols) on synthetically generated datasets in terms of mean
misclassification rates (a, d), mean probability residuals for misclassified
samples (b, e), and mean number of variables involved in the resulting
composite fingerprints (c, f). Synthetic datasets (N = 1000) resembling the
structure of empirical data acquired from the pre- and post-dam facies of

investigated reservoirs were generated based on kernel density estimates
(KDE; a–c). Another compilation of synthetic datasets (N = 1000) was
created using randomly generated Gaussian density functions (GDFs) and
correlation matrices ensuring normally distributed values in each group
and equal within-group covariance (eCov), respectively (d–f). Error bars
of mean values correspond to 95% confidence intervals
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can lead to the inclusion of too many variables in the compos-
ite fingerprint, potentially involving variables with spurious
discriminatory power (Rencher and Larson 1980). This study
provides a good example since RLR results obtained from the
empirical dataset indicate that variables selected in the fifth
and sixth steps of the stepwise DFA (Table 4) are not essential
for discrimination and classification. Notably, the mean num-
ber of composite fingerprint properties identified with step-
wise DFA is significantly higher (p < 0.001) than for RLR
for all analyzed dataset compilations.

Results of this study indicate that stepwise DFA/LDA
leads to significantly (p < 0.001) lower mean misclassifi-
cation rates than RLR when data are normally distributed
in all groups and show equal within-group covariance ma-
trices (Fig. 9d). This is in accordance with previous studies
that showed classification based on discriminant functions
to be slightly superior to regression models, when under-
lying assumptions applied (Harrell and Lee 1985). In such
cases, “tabu search” algorithms (Stąpor 2015) might be
used for variable selection rather than stepwise forward
and backward procedures. Otherwise, the application of
regression models is preferable (Press and Wilson 1978).
Empirical data are, however, highly unlikely to satisfy the
assumptions of stepwise DFA (Sheriff et al. 2015), partic-
ularly concerning the covariance structure. Moreover, the
mean difference to RLR-derived misclassification rates by
means of absolute values is very small in this study
(0.2 ± 0.3%).

Regression shrinkage with the elastic-net penalty is a rea-
sonable alternative for the identification of composite finger-
prints, in particular when requirements of stepwise DFA are
not fulfilled. RLR is applicable for high-dimensional datasets
(Oswald and Putka 2015), where the so-called “best subset”
approaches (e.g., McCabe 1975) become impractical due to
their high computational costs (Jović et al. 2015). RLR can
handle datasets with many correlated variables (Härdle and
Simar 2015) and is comparatively robust against overfitting
due to the constraint imposed on coefficients of the regression
model (Harrell 2001). Unlike stepwise and best subset proce-
dures, RLR represents a “soft-thresholding” method (Hastie
et al. 2009), revealing a nuanced composite fingerprint involv-
ing information on variable importance.

RLR appears to be an attractive tool for sediment source
tracing studies, where variable selection is employed as a pre-
lude to the application of sediment unmixing models (Collins
and Walling 2002). In this framework, the subdivision of the
dataset into training and validation subsets is not required
unless the predictive power of the model is to be assessed
independently from training data. Whether composite finger-
prints in sediment source tracing studies should be favorably
parsimonious or involve a larger number of sediment proper-
ties is subject to an ongoing debate (e.g., Palazón et al. 2015;
Sheriff et al. 2015; Manjoro et al. 2016). RLR is a suitable

method to test the influence of the number of fingerprinting
properties on unmixing results, since criteria for the choice of
α and λ in the optimization of the regression model can be
considered as an analogy to the selection of the stopping rule
and significance level in stepwise DFA.

Collins and Walling (2002), for example, suggested to
stop variable selection with stepwise DFA as soon as all
samples are classified correctly (given that 100% correct
classifications are achieved). This can be similarly realized
with RLR by setting α= 1 and selecting the maximum val-
ue λ that leads to 100% correct classifications. Likewise,
the impact of the number of fingerprint properties on sed-
iment unmixing results may be tested (Laceby et al. 2015)
by systematically decreasing α from 1 towards 0, which
likely increases the number of selected variables in fitted
regression models (Simpson and Birks 2012). Although α

was found to have only a minor influence (0.2 ± 0.1%) on
misclassification rates in the current study, it might be
worthwhile to involve α in the optimization process
(Friedman et al. 2010), when the number of variables con-
stituting the composite fingerprint is of no importance.

Sample size requirements for RLR and stepwise DFA can
be considered as roughly similar. As a minimum criterion for
stepwise DFA, it has been suggested to ensure at least one
sample per variable in each group, while the total number of
samples involved in the training of the discriminant function
should be about 10 times the number of variables (Brown and
Tinsley 1983). RLR was successfully applied in genetic stud-
ies on datasets with >2000 variables containing <70 training
samples and a minimum of only 8 observations per group (Wu
2006). However, fitting the regression model including the
optimization of λ via cross validation becomes more uncertain
with decreasing sample size, and the glmnet algorithm
(Friedman et al. 2010) returns a warning message if the cross
validation-based estimation of misclassification rates is
founded on <8 observations in any group.

It might be considered a disadvantage that RLR results vary
slightly when analysis is repeated due to the randomness in-
volved in the cross validation-based optimization of λ. This
problem can be overcome by averaging multiple cross-
validation runs (see Sect. 2.7). Coefficient shrinkage and
changes in variable importance with increasing λ (Fig. 5a, b)
are not affected by randomness and give appreciable insights
into the discriminatory power of single variables and variable
combinations. Testing the performance of RLR based on em-
pirical datasets involving a higher number of tracers and
groups is required for a more complete assessment of the
potential of the method. Algorithms for binomial and multi-
nomial RLR (for two and more groups) are implemented in
statistics software such as SPSS (“CATREG”; IBM 2013) and
SAS (“GLMSELECT”; SAS Institute Inc. 2010). R scripts for
binomial and multinomial RLR analysis with the software
package glmnet (Friedman et al. 2010) are provided as
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Electronic Supplementary Material with the online version of
this article (Online Resources 4–8).

4.2 Potential of the RLR approach for facies

discrimination in reservoirs

Soils and sediments from the pre- and post-dam facies of
the investigated reservoirs can be distinguished in the field
based on color, structural fabric, texture, and other sedi-
mentary features. This is in accordance with many previ-
ous reservoir siltation studies (e.g., Small et al. 2003;
Haregeweyn et al. 2006; Tamene et al. 2006; Baade et al.
2012). However, the exact allocation of the base of reser-
voir deposits can be complicated if the underlying material
shows similar color and texture characteristics (Rausch and
Heinemann 1984). In these cases, a more detailed exami-
nation by means of laboratory analysis is useful to scruti-
nize and substantiate field interpretation (Foster et al.
2007; Schmengler and Vlek 2015).

The approach presented here can assist with the distinction.
Validation of classification results indicates that 2 and 5 ± 1%
misclassifications are to be expected for samples initially cat-
egorized as unclear when neglecting and taking into account a
potential sampling bias, respectively. Posterior probabilities
obtained from misclassified samples suggest that classifica-
tion based on RLR-derived probabilities <0.2 and >0.8 can
be regarded conclusive with a reasonable small probability of
fallacy. Into this range fall 63 and 46 ± 4% of the samples with
unclear group affiliation based on analysis on the empirical
dataset and 1000 Monte Carlo simulations, respectively.
Collection of replicate sampling and sampling of sediment
sequences improves the chance of conclusive classification
results. Hence, this approach is particularly powerful when
combined with an adjusted sampling strategy.

Grain size composition turns out to be a valuable indicator
for the discrimination of the pre- and post-dam facies, which is
evident in a mean variable importance >10% for Clay&Silt%,
PSDDist, LMean, and LSort, respectively (Fig. 7). Sediment
entering the reservoir has a grain size composition that is
already distinct from catchment soils due to various processes
involved in fluvial sediment transport (McLaren and Bowles
1985). Particle size-dependent settling velocities and dimin-
ished transport energy within reservoir basins lead to further
sorting and grain size distributions of reservoir deposits usu-
ally differing from fluvial sediments (Morris and Fan 1998).
Hence, grain size composition appears to be a robust indicator
for the discrimination of the pre- and post-dam facies.

PCAL content is also a useful parameter which is indicated
by a variable importance of 8 ± 1%. Enrichment by calcium-
lactate leachable phosphorus (PCAL), occasionally found in
the post-dam facies, has been attributed to an elevated PCAL

content in allochthonous sediment originating from topsoils
(Walter et al. 2012; Schmengler and Vlek 2015) but may be

also influenced by the exchange of phosphorus between water
and sediment (Søndergaard et al. 2003). In this study, a five-
fold higher PCAL content in the post-dam facies than in the
pre-dam facies was found. Walter et al. (2012) found only a
twofold PCAL enrichment in the post-dam facies of a reservoir
in northwest Peru. Similarly, Schmengler and Vlek (2015)
report a twofold PCAL enrichment in the post-dam facies of
two reservoirs in the semi-arid Burkina Faso plains. Thus, the
applicability of PCAL content for facies discrimination in res-
ervoirs outside the KNP merits further investigation.

Sediment color is useful for the facies discrimination in
reservoirs (Haregeweyn et al. 2006) when varying chemical
and physical sediment properties are reflected in distinct color
characteristics. The rather low variable importance of LUM
(2 ± 1%) in this study is somewhat surprising, taking into
account that field evidence suggests clear color differences
between the pre- and post-dam facies (Baade et al. 2012;
Fig. 2). This result might be partially attributable to soil sam-
ples from the pre-dam facies with color characteristics similar
to the post-dam facies but distinct grain size composition and
PCAL content (Fig. 4). Since the addition of LUM to a com-
posite fingerprint containing grain size parameters and PCAL

content does not (significantly) improve classification results
of the remaining samples, LUM is unlikely to be selected in
the variable selection process. Moreover, it is conceivable that
color differences between the facies are not fully expressed in
LUM. Therefore, it might be worthwhile to test alternative
color signatures in the future (Pulley and Rowntree 2016).

To some degree, all aforementioned sediment characteris-
tics may be subject to post-sedimentary alteration. By com-
parison, grain size parameters are expected to be rather con-
servative as weathering is assumed to exert only a minor in-
fluence on the particle size of modern (<65 years old) reser-
voir deposits. Phosphorus cycling is likely intensified in res-
ervoirs of the KNP due to the presence of wildlife (Masango
et al. 2010) and may trigger the uptake (and release) of mobile
phosphorus forms into (from) reservoir deposits (Søndergaard
et al. 2003). Sediment color can be altered with changing
redox conditions (Prokoph and Patterson 2004). However,
pre-examinations on a 2 m long vertical sampling profile re-
covered from the Silolweni reservoir in 2008 (Baade et al.
2012) indicated a six times higher PCAL content in the post-
dam facies as compared to the underlying pre-dam facies,
while less than 10% of the PCAL fraction were found to be
readily water soluble. Moreover, field observations revealed a
rather uniform color of the post-dam facies and little evidence
for color change apart from hydromorphic oxidation stains
that were also found in the pre-dam facies. Thus, non-
conservatism is not assumed to severely affect the usefulness
of the investigated sediment properties in the current study.
Summarizing these findings, the presented approach can be
most probably successfully applied for the discrimination of
facies in other reservoirs of the KNP.
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5 Conclusions

This study highlights the potential of regression shrinkage
methods for the discrimination of sedimentary facies in reser-
voirs and, more generally, for studies dealing with the discrim-
ination and classification of soils and sediments. Within a set
of sediment properties measurable with comparatively low
expenditure, RLR identifies grain size parameters
(Clay&Silt%, LMean, PSDDist, and LSort) and PCAL content
to be suitable sediment properties for the discrimination of the
pre- and post-dam facies (Table 4 and Fig. 7) for all investi-
gated reservoirs. A thorough validation of the RLR approach
neglecting and taking into account a potential sampling bias
reveals misclassification rates of 2 and 5 ± 1%, respectively.
Misclassification rates resulting from variable selection via
stepwise DFA and subsequent classification with (predictive)
LDA amount to 3 and 5 ± 1%, respectively, and are therefore
not significantly different (p = 0.84). This is remarkable, since
classification with RLR is based on a 12% lower mean num-
ber of fingerprint properties. Since catchments of the investi-
gated reservoirs mirror the heterogeneity of geological and
pedological conditions in the southern KNP, the approach pre-
sented here most probably can be successfully applied for
facies discrimination in other reservoirs.

Extending the method comparison to synthetic datasets vi-
olating and fulfilling the requirements of stepwise DFA (i.e.,
multivariate normality in each group and equal within-group
covariancematrices) leads to approximately equal and slightly
lower misclassification rates with stepwise DFA/LDA.
Although the latter difference is significant (p < 0.001), it
amounts only to 0.2 ± 0.3% by means of absolute values. At
the same time, RLR results in a 52% lower mean number of
fingerprint properties. Moreover, RLR-derived probabilities
of group membership are a more reliable indicator for classi-
fication conclusiveness than posterior probabilities obtained
from LDA, which is evident in significantly (p < 0.001) lower
mean probability residuals of misclassified samples. Given the
risk of suboptimal variable selection with stepwise DFA in-
volving variables with spurious discriminatory power, we dis-
courage its use for the identification of composite fingerprints.
RLR appears to represent a reasonable alternative, especially
when the requirements of stepwise DFA are not fulfilled.
Testing RLR on empirical datasets with a higher number of
tracers and groupswould help to further elucidate the potential
of the method.
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ABSTRACT: The assessment of sediment yield from reservoir siltation requires knowledge of the reservoir’s sediment trap efficiency

(TE). Widely used approaches for the estimation of the long-term mean TE rely on the ratio of the reservoir’s storage capacity (C) to its

catchment size (A) or mean annual inflow (I). These approaches have been developed from a limited number of reservoirs (N ≤40),

most of them located in temperate climate regions. Their general applicability to reservoirs receiving highly variable runoff such as

in semi-arid areas has been questioned. Here, we examine the effect of ephemeral inflow on the TE of 10 small (≤ 280× 103m3),

intermittently dry reservoirs located in the Kruger National Park. Fieldwork was conducted to determine the storage capacity of the

reservoir basins. The frequency and magnitude of spillage events was simulated with the daily time step Pitman rainfall–runoff model.

Different runoff scenarios were established to cope with uncertainties arising from the lack of runoff records and imperfect input data.

Scenarios for the relationship between water and sediment discharge were created based on sediment rating curves. Taking into

account uncertainties in hydrological modelling, uncertainties of mean TE estimates, calculated from all scenarios (N=9), are

moderate, ranging from ±6 to ±11%at the 95%confidence level. By comparison, estimating TE from the storage capacity to catchment

area (C/A) ratio induces high uncertainty (ranges of 35 to 65%), but this uncertainty can be confined (15 to 33%) when the latter ap-

proach is combinedwith hydrological modelling. Establishedmethods relying on the storage capacity tomean annual inflow (C/I) ratio

most probably lead to an overestimation of the TE for the investigated reservoirs. The approach presented here may be used instead to

estimate the TE of small, intermittently dry reservoirs in semi-arid climate regions. Copyright © 2017 John Wiley & Sons, Ltd.
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Introduction

Accounting for the sediment trap efficiency (TE) is fundamental

to reservoir siltation studies targeting an assessment of

contemporary sediment yield (e.g. Trimble and Bube, 1990;

Verstraeten and Poesen, 2000; Baade et al., 2012). TE is defined

as the proportion of sediment delivered to a reservoir that is

eventually deposited in the reservoir basin (Brown, 1944).

Disregarding sediment that is transported across and discharged

downstream may lead to a substantial underrating of the total

sediment flux. Data for field-based TE determination is often

not available. Thus, TE needs to be estimated from empirically

derived equations or physically-based models (Trimble

and Wilson, 2012). TE is controlled by the hydraulic retention

time and net settling velocity of suspended sediment particles

in the reservoir basin (Stabel, 1987). Therefore, it is subject to a

variety of factors including runoff conditions, sediment

dynamics, basin geometry, position and configuration of

reservoir inlets and outlets, size and shape of sediment particles,

flocculation, sediment and water density, mixing of the water

column, currents and turbulence, among others (e.g.

Heinemann, 1984; Haan et al., 1994). While physically-based

models have been employed for the determination of the TE of

small (≤ 1 ha) flood detention ponds (e.g. Wilson and Barfield,

1985; Verstraeten and Poesen, 2001; Takamatsu et al., 2010),

the long-term mean TE of larger reservoirs (> 1 ha) is usually

predicted with empirical approaches due to the complexity of

processes involved.

Several equations are available to assess the TE of ‘normally

ponded’ (Brune, 1953) reservoirs where no provision of

sediment sluicing or flushing is made (Sloff, 1991). Brown

(1944) suggested TE prediction from the ratio of the reservoir’s

water storage capacity (C) to its catchment size (A) (see

Table I for acronyms used in this study). This method is

attractive, because of low data requirements (Butcher et al.,

1992), but induces high uncertainty for reservoirs with low C/A

ratio, if no further information on runoff dynamics and

sediment characteristics is available (Verstraeten and Poesen,
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Table I. Alphabetical list of acronyms used in this study

Acronym Description

a coefficient of the sediment rating curve (Equation (8))

A reservoir catchment size

APE mean annual American class A-pan evaporation

AR full supply area of the reservoir

ASR initial area–storage relationship of the reservoir basin

b exponent of the sediment rating curve (Equation (8))

C water storage capacity (unspecified)

Cl95 two-tailed 95% confidence level

CM mean water storage capacity

CR initial water storage capacity

d index for a specific day

D dimensionless parameter used in Equation (13) that may range between 0.0046 and 1

dsoil soil thickness

dvadose thickness of the vadose zone

DTM digital terrain model

Ed evaporation from the reservoir’s water surface at a day d

FLAd flooded area within the reservoir basin at a day d

Fsoil factor accounting for vertical variations in the effective soil porosity

GNSS global navigation satellite system

HSR initial height–storage relationship of the reservoir basin

I mean annual inflow

Id volume of water flowing into the reservoir at a day d

KNP Kruger National Park

L over-water distance from the main reservoir inlet to the outlet

LRP local reference point

MAE mean annual Symon’s pan evaporation

MAP mean annual precipitation

MAR mean annual catchment runoff

Pd precipitation on the reservoir’s water surface at a day d

PI total size of the interception storage

PIBC size of the interception storage of grass and litter between the woody plant canopy

PIC size of the interception storage of the woody plant canopy

PIUC size of the interception storage of grass and litter under the woody plant canopy

POR effective soil porosity

Qbest best estimate runoff scenario

Qd mean catchment runoff at day d

QDR quaternary drainage region

Qhigh high runoff scenario

Qlow low runoff scenario

Qs total mass of sediment entering the reservoir

Qsd fluvial sediment delivery from the catchment at day d

RMSE root mean square error

RTK real-time kinematic

SANParks South African National Parks

SCd mean sediment concentration in water flowing into the reservoir at a day d

Sd water volume stored in the reservoir basin at a day d

Ŝd storage state of the reservoir (i.e. the stored volume of water and sediment) at a day d

SM total mass of reservoir deposits

SPILL mean annual reservoir spillage

SPILLd volume of spilled water at a day d

ST maximum soil storage, i.e. the sum of STsoil and STvadose
STO storativity of the vadose zone

STsoil water storage capacity of the soil

STvadose water storage capacity of the vadose zone

SVd sediment volume (reservoir deposits) stored in the reservoir basin until a day d

TC year of dam construction

TE sediment trap efficiency (unspecified)

TEB mean trap efficiency according to Equation (13) from Brown (1944)

TEC,d trap efficiency at a day d calculated with Equation (10) from US Army Corps of Engineers (1995)

TEd adjusted trap efficiency at a day d calculated with Equation (11)

TEH mean trap efficiency according to Equation (14) from Heinemann (1981)

TEH, fit mean trap efficiency according to Equation (15), i.e. a modification of Heinemann’s (1981) equation

TEsim mean trap efficiency calculated with Equation (12) based on the simulated water and sediment flux

TIN triangular irregular network

TLS terrestrial laser scanner

TS year of surveying or dam decommissioning

VS volume of reservoir deposits that accumulated until the year of surveying

WCOV mean fractional woody cover of the reservoir catchment

Note: Please refer to Table VI for an overview on parameters of the daily time step Pitman model.
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2000). Presuming the availability of runoff data, Brune (1953)

proposed an alternative method based on the ratio of the water

storage capacity to the mean annual inflow (I). Later, Brune’s

method was revised by Heinemann (1981) for the application

to small reservoirs (< 4000×103m3). Churchill (1948)

suggested TE prediction from a sedimentation index, which was

calculated from the water storage capacity, inflow rate and mean

flow velocity through the reservoir.

All aforementioned methods were developed from a limited

number of reservoirs (N ≤40), most of them located in

temperate climate regions of the eastern United States. Their

general applicability to reservoirs in semi-arid regions receiving

seasonally variable runoff has been questioned (Lewis et al.,

2009). Depending on their design and operation, high net

evaporation loss and intermittent inflow may lead to prolonged

periods without outflow (Haregeweyn et al., 2006), while storm

events might result in spillage significantly contributing to the

overall sediment discharge (Faithful and Griffiths, 2000). Lewis

et al. (2013) demonstrated that the TE of the large Burdekin Falls

Dam (storage capacity: 1.9×109m3), located in the

tropical summer rainfall zone of northeast Australia, was

overestimated by the standard Brune and Churchill equations

and that estimates could be improved by considering daily

discharge rather than annual or long-termmean inflow. So far, little

effort has been made to investigate the appropriateness of

established empirical approaches to estimate the TE of small reser-

voirs with variable and peaked hydrographs (Lloyd et al., 1998).

Here, we examine the effect of variable inflow on the TE of

small intermittently dry reservoirs with ungauged catchments

located in the southern Kruger National Park (KNP) (South

Africa). The aim of this study is to establish a methodological

approach for the estimation of the long-term mean TE of small

reservoirs with ephemeral spillage. Within the framework of

an ongoing study on contemporary and millennial scale

erosion rates in the KNP (Baade and Schmullius, 2015, 2016;

Glotzbach et al., 2016; Reinwarth et al., 2017), we surveyed in-

termittently dry reservoirs in order to quantify reservoir

siltation and average sediment yield throughout the past 30 to

80 years. For selected reservoirs (N=10), the frequency and

magnitude of spillage events, associated sediment discharge

and the long-term mean TE of the investigated reservoirs are

assessed for various scenarios based on results from fieldwork

and hydrological modelling. Resulting TE estimates are then

compared with TE values that were determined with the

approaches of Brown (1944) and Heinemann (1981). The

paper is organized as follows: the section on materials and

methods starts with a description of the study area and

investigated reservoirs. Then, methods involved in fieldwork,

pre-processing of input data, the structure and calibration of

the hydrological model and the set-up of scenarios are

described. Afterwards, the methodological framework for TE

estimation based on daily inflow and outflow data is presented.

Modelling results and trap efficiency estimates are reported and

associated uncertainties are discussed.

Materials and Methods

Study area and site descriptions

The KNP covers approximately 19 500 km2 of undulating

Lowveld savanna set aside for wildlife conservation just over

a century ago (Joubert, 1986). It is located in the northeast of

the Republic of South Africa (Figure 1a) between the Great

Escarpment to the west and the coastal plains of Mozambique

to the east. The climate in the study area is semi-arid with

>85% of rainfall occurring between October and April (Venter

et al., 2003). Mean annual precipitation (MAP) ranges from

500mm in the north and east to 800mm in the southwest

(Figure 1b). Evaporation rates are recorded with Symon’s pans

and American class A-pans (Table II). In this study, evaporation

always refers to Symon’s pan evaporation, unless stated

otherwise. Average daily evaporation varies from 2mm d�1 in

June/July to 6mm d�1 in December/January (Department of
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Figure 1. Catchments of investigated reservoirs (N = 10) within the southern Kruger National Park (KNP) and meteorological conditions in the study

area: (a) the location of the KNP within southern Africa; (b) rainfall stations in the vicinity of the southern KNP and corresponding Thiessen polygons

depicting mean annual precipitation (MAP); (c) meteorological stations recording pan evaporation (Symon’s pan or A-pan) and interpolated mean an-

nual Symon’s pan evaporation (MAE). Meteorological stations from which data were used in the hydrological modelling are numbered (see Table II).

Reservoir catchments (see Table III) are shown according to Baade and Schmullius (2015). Rainfall and evaporation data were taken from Department

of Water Affairs (2008). [Colour figure can be viewed at wileyonlinelibrary.com]
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Water Affairs, 2008). Mean annual evaporation (MAE) ranges

from 1300mm in the southwest to 1700mm in the north and

southeast (Figure 1c). Actual mean annual evapotranspiration

is in the order of 450mm to 700mm (Ramoelo et al., 2014;

van Eekelen et al., 2015). Climatic conditions are reflected in

the flow regimes of the rivers within the region. A few major

streams with headwaters in the Great Escarpment exhibit

perennial flow, but tributaries emanating from areas within

the KNP are characterized by ephemeral runoff (O’Keeffe

and Rogers, 2003). Hydrological connectivity within

catchments varies temporarily depending on antecedent soil

moisture conditions, whilst groundwater interactions can have

a distinct local influence on the flow duration of

ephemeral streams (Riddell et al., 2014). Overland flow and run-

off generation is typically caused by isolated rainfall events

(Cullum and Rogers, 2011) or recurrent rain associated with trop-

ical low-pressure systems (Dyson and vanHeerden, 2001).Major

regional flood events occurred in February 1977 (Pienaar, 1985),

February 2000 (Christie and Hanlon, 2001; Heritage et al., 2001;

Smithers et al., 2001) and January 2012 (Heritage et al., 2014;

Fitchett et al., 2016) in the study area. Minor regional floods were

observed in January 2013 and March 2014.

More than 50 small reservoirs were established in the KNP

prior to 1975 to ensure water supply for wildlife during the dry

season (Pienaar, 1985). Uncontrolled overflow spillways with

trapezoidal or rectangular cross-sections and a width of ≥10m

permit the release of infrequent storm discharge. These spillways

represent the only outlets, so that discharge to

downstream reaches is restricted to spillage events, when

reservoir storage capacity is exceeded. High evaporation rates

lead to strong water level fluctuations and occasional drying up

of the reservoirs (Figure 2). Black silt loams (according to the Food

and Agriculture Organization for the United Nations, 2014) have

accumulated in the deepest parts of the reservoir basins

(Reinwarth et al., 2017) where up to 60cm deep footprints of

large mammals (e.g. elephants and hippopotamus) provide

evidence for strong bioturbation. Bedload from tributaries is

deposited in backwater reaches and close to tributary inlets.

This study is based on the Hartbeesfontein, Marheya,

Lugmag, N0tswiriri, Jones-Se, Silolweni, N0wanetsana,

Mlondozi, Nhlanganzwani and Mpanamana reservoirs that

were established between 1950 and 1970 with initial storage

capacities ranging from 5 to 280× 103m3. With the exception

of the Mlondozi reservoir that has an up to 4m high concrete

wall, all reservoirs are impounded by earth dams. The

Nhlanganzwani, Silolweni, Lugmag, and N0wanetsana,

reservoirs were decommissioned in 2007, 2008, 2012 and

2014, respectively. All other reservoirs are still in use. Two

dam failures occurred at the Mpanamana reservoir prior to

1971 when the dam was finally repaired (Baade et al., 2012)

and the Lugmag dam was damaged during a flood in 2012 and

not repaired. No dam failures are known for the other

investigated reservoirs. The catchments vary in size from 3.2 to

104.2 km2 and are characterized by different geological

conditions as shown in Table III. Granite, gneiss, rhyolite and sed-

imentary rocks promote rather dense bush and shrub

savanna, while basalt and gabbro support open tree savanna

and grassland (Venter, 1990). The mean fractional woody cover

of the catchments varies from16 to 41% (Bucini et al., 2010). Un-

fortunately, runoff data is not available for any of the catchments.

Surveying and sediment mapping in reservoir
basins

Fieldwork was carried out in dried out reservoir basins and

involved surveying of the reservoir basins and volumetric

mapping of reservoir deposits. High-resolution surveying was

conducted along transects with a real-time kinematic (RTK)

global navigation satellite system (GNSS) using a LEICA GS10

base station and a GS15 rover (Baade and Schmullius, 2016).

The survey point density was enhanced at the spillways and

at transition points in the terrain (e.g. the dam, shoreline

notches, banks of tributaries). Local reference points (LRPs)

were established to ensure accurate merging of survey data

Table II. Mean annual precipitation (MAP) and mean annual Symon’s pan evaporation (MAE) recorded at meteorological stations in the vicinity of

the Kruger National Park, measurement periods, and percentage of data gaps

ID Station Code Precipitation Evaporation

Period MAP (mm) Gaps (%) Period Type MAE (mm) Gaps (%)

1 Satara SAT 1932–2016 530 ± 40 6 1961–1993 S 1640 ± 40 34

2 Nwanetsi NWA 1966–2016 520 ± 60 1 — — — —

3 Kingfisherspruit KFI 1956–2016 560 ± 50 1 — — — —

4 Tshokwane TSH 1944–2016 550 ± 40 1 — — — —

5 Skukuza SKZ 1911–2016 550 ± 40 6 1960–2009 A/S 1420 ± 30 12

6 Lower Sabie OSA 1968–2016 590 ± 70 17 — — — —

7 Crocodile Bridge KRO 1938–2016 610 ± 40 1 — — — —

8 Tenbosch TEN NA NA NA 1968–1980 A 1650 ± 90 40

9 Mhlati MHL 1968–1988 560 ± 130 26 1968–1998 S 1610 ± 30 36

Note: Daily rainfall data were provided by SANParks Scientific Services, Skukuza.Monthly evaporation data were taken fromDepartment ofWater Affairs

(2008). Mean annual evaporation rates that were recorded with American class A-pans (i.e. Type A) were converted to mean annual Symon’s pan

(i.e. Type S) evaporation rates after Bosman (1990). Uncertainties ofMAP andMAE correspond to the two-tailed 95% confidence level. NA, not available.

Figure 2. Water level fluctuations in the Mlondozi Reservoir. The reservoir is close to full stage in (a) February 2014. The maximum water depth is

about 1.8m and the width of the water surface in the foreground is about 150m. The water level is considerably lower in (b) September 2015. Black

reservoir deposits are exposed in (c) early March 2016 when the reservoir basin is dry. [Colour figure can be viewed at wileyonlinelibrary.com]

466 B. REINWARTH ET AL.

Copyright © 2017 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 43, 463–481 (2018)

                      Chapter 4 

 
55



acquired on different days. Post-processing of GNSS data was

conducted with the software LEICA Geo Office (version 8.4;

LEICA Geosystems, 2014). The Hartbeesfontein, N0tswiriri,

Jones-Se, Mlondozi and Mpanamana reservoirs were surveyed

with a terrestrial laser scanner (TLS; Riegl VZ-1000). Panorama

scans with a range of 450m and an angular resolution of

0.040° in vertical and horizontal dimension were conducted

from several positions to minimize data gaps from occlusion.

Absolute geo-referencing was based on tie points surveyed

with the RTK GNSS. Point clouds were merged and processed

with the software RiScan Pro 2.3 (Riegl, 2016) which involved

the removal of non-surface points (e.g. vegetation) through the

application of the RiScan Pro 2.3 terrain filter. Mean position

errors (1σ) of GNSS and TLS survey points amount to ≤2 cm

(Baade and Schmullius, 2016).

The initial surface of the reservoir basins was reconstructed based

on up to 60 depth soundings per reservoir fromwhich the thickness

of the reservoir deposits was determined. They were carried out

with a Pürckhauer type soil auger (1.5m; Ø: 18mm) and with

a gouge auger (3.4m; Ø: 12mm). The depth soundings were

performed along profiles running parallel to the dam and their

position was recorded using RTK GNSS measurements. The

boundary between the pre- and post-dam facies was identified

based on variations in colour and grain size (Baade et al.,

2012). The validity of this visual identification of the boundary

has been verified based on statistical analysis of 250 samples

and their physiochemical properties (Reinwarth et al., 2017).

Digital terrain models (DTMs) and characterization
of reservoir basins

Two digital terrain models (DTMs) were compiled for each

reservoir using the software ArcGIS 10.2 (Environmental

Systems Research Institute, 2013). The first DTM was generated

based on the RTK GNSS readings and represents the present

sediment surface of the reservoir basin. The second DTM

shows a reconstruction of the initial surface before the

accumulation of reservoir deposits commenced, and was

created by combining data from the RTK GNSS survey and

depth soundings, i.e. by subtracting the thickness of the

reservoir deposits from the altitude of the present sediment

surface. Both DTMs were derived by triangular irregular

network (TIN) interpolation between survey points.

Along-profile and along-thalweg breaklines were used to

enhance the resulting DTMs that were converted to raster grids

with a cell size of 0.5m×0.5m. The flooded area at full stage

(AR), the initial water storage capacity (CR) in the year of dam

construction (TC) as well as the storage capacity in the year of

surveying (TS) were determined assuming a height accuracy

of ±2.5 cm for the elevation of the overflow spillway, and a

mean random error of ±2.5 cm in the determination of the

sediment thickness for the area covered with reservoir deposits.

The volume of reservoir deposits (VS) that accumulated until the

survey date was calculated from the difference of the initial and

present-day storage capacity. The raster cells within the full

supply area were extracted to obtain functions that describe

the relationship between the flooded area, the water level and

the storage state of the reservoir. These functions were

compiled with the ‘raster’ package (Hijmans, 2014) of the

software R (version 3.1.1; R Core Team, 2014) and are

subsequently referred to as area–storage relationships (ASR)

and height–storage relationships (HSR).

The over-water distance (L) from the inlet of the main

tributary to the reservoir outlet was determined with the Cost

Distance tool of the Spatial Analyst extension in ArcGIS 10.2.

This tool calculates distances along paths over a cost raster

based on the weighted quasi-Euclidean chamfer metric that is

defined for a neighbourhood of 3 × 3 raster pixels (cf. Verwer,

1991). Distances of paths are weighted according to pixel

values of the cost raster. Values of 1 and 10 000 were assigned

to pixels being located within and outside the full supply area

of the reservoir, respectively. The value of 10 000 is arbitrary,

but sufficiently high to avoid distance determination along

Table III. Catchment characteristics of investigated reservoirs

ID Reservoir QDR Catchment area Rainfall station MAE Woody cover Lithology

(km
2
) (mm)

Hart Hartbeesfontein B73F 4.3 ± 0.3 KFI (100%) 1640 ± 110 0.41
Granite/Gneiss (65%)

Gabbro (35%)

Mar Marheya X40B 27.5 ± 0.3 SAT (100%) 1600 ± 90 0.23 Basalt (54%)

Sandstone (46%)

Lug Lugmag X40C 47.4 ± 0.2
TSH (85%)

1540 ± 110 0.40 Granite/Gneiss (100%)
SKZ (15%)

Nts N0tswiriri X32J 5.5 ± 0.1 SKZ (100%) 1510 ± 100 0.36 Granite/Gneiss (100%)

Jon Jones-Se X33A 6.2 ± 0.1 TSH (100%) 1500 ± 110 0.41 Granite/Gneiss (100%)

Silo Silolweni X40D 13.2 ± 0.7 TSH (100%) 1510 ± 110 0.50
Ecca group (54%)

Granite/Gneiss (46%)

Nwa N0wanetsana X32J 3.2 ± 0.1 SKZ (100%) 1500 ± 90 0.40 Granite/Gneiss (100%)

Mlo Mlondozi X33C 104.2 ± 0.8 TSH (59%) 1550 ± 120 0.16 Basaltic rocks (88%)

OSA (41%) Rhyolite/Granophyre (12%)

Nhlang Nhlanganzwani X33D 16.5 ± 0.8 KRO (58%) 1580 ± 90 0.30 Basaltic rocks (50%)

OSA (42%) Rhyolite/Dacite (50%)

Mpa Mpanamana X24H 10.0 ± 0.8 KRO (100%) 1580 ± 100 0.30 Rhyolite/Dacite (54%)

Basaltic rocks (46%)

Note: quaternary drainage region (QDR; Pitman and Bailey, 2015); catchment area (±2σ uncertainty; Baade and Schmullius, 2015), closest rainfall

station (for station codes, see Table II) with areal percentage of the corresponding Thiessen polygon on the reservoir catchment; mean annual Symon’s

pan evaporation (MAE ± standard prediction error) obtained from interpolation between meteorological stations (Department of Water Affairs, 2008)

via ordinary kriging; mean fractional woody cover (Bucini et al., 2010); and catchment lithology (Geological Survey of South Africa, 1986a, 1986b).

467ESTIMATING THE TRAP EFFICIENCY OF INTERMITTENTLY DRY RESERVOIRS

Copyright © 2017 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 43, 463–481 (2018)

                      Chapter 4 

 
56



paths crossing the shoreline. Since the utilized chamfer metric

slightly overestimates the true (Euclidean) distance (de Smith,

2004), all chamfer distances were multiplied with the scaling

factor 0.95 which yields unbiased distances with a 2σ error of

6% (Vossepoel, 1988). Characteristics of the investigated

reservoir basins are summarized in Table IV.

Parameterization of the daily time step Pitman
rainfall–runoff model

Rainfall–runoff modelling was conducted with the daily time

step Pitman rainfall–runoff model (Pitman, 1976) which is a

conceptual hydrological model involving 11 parameters for

calibration. It is a further development of an earlier monthly

time step model with a very similar model structure (Pitman,

1973, cited in Hughes, 2013a). The monthly Pitman model is

employed within water resource assessments for South Africa,

Lesotho and Swaziland that are carried out on the scale of

quaternary drainage regions (QDRs; originally defined by

Midgley and Pitman, 1969, cited in Pitman, 2011), i.e.

principal water management units >50 km2 (Hughes, 2004).

Within the framework of these assessments parameter sets have

been regionalized and were applied to ungauged catchments

(Kapangaziwiri, 2011; Hughes, 2013b). The nearly identical

model structure allows for the transfer of selected parameter

values from the calibrated monthly model to the daily version

of the Pitman model (Bailey, 2015).

The daily Pitman model incorporates interception, soil

moisture and groundwater storages and calculates daily runoff

from mean monthly Symon’s pan evaporation, daily and

monthly rainfall time series and catchment area (Figure 3).

For each day of rainfall, the model assumes an S-shaped

cumulative rainfall distribution and a linear relationship

between the duration of the rainfall event and the total daily

rainfall depth. The size of the interception storage is defined

by the parameter PI. Surface runoff is generated from

impervious surfaces and from infiltration excess. The

proportion of impervious surfaces to the total catchment area

is described by the parameter AI. Spatial variability of the

infiltration capacity on non-impervious surfaces is represented

by a symmetrical triangular distribution function where the

parameters ZMINN and ZMAXN denote the nominal

minimum and maximum catchment absorption rate,

respectively (for details see Pitman, 1976). The infiltration

capacity is adjusted depending on the ratio of the simulated

instantaneous soil moisture state to the maximum soil storage

(ST). The relationship between actual evaporation, potential

evaporation and soil moisture state is controlled by the

parameter R that may range between 0 and 1; whereby

catchment evaporation is assumed to equal potential evapora-

tion rates, when the soil moisture deficit is zero. In addition,

Table IV. Characteristics of the investigated reservoirs

Reservoir TC TS Survey CR VS AR L

(× 10
3
m

3
) (× 10

3
m

3
) (ha) (m)

Hartbeesfontein 1950 2015 TLS/GNSS 39.9 ± 0.8 9.76 ± 0.37 3.04 ± 0.06 270 ± 20

Marheya 1970 2014 GNSS 106.9 ± 1.9 6.33 ± 0.73 6.76 ± 0.07 660 ± 40

Lugmag 1957 2012a GNSS 156.7 ± 3.1 13.78 ± 0.74 11.97 ± 0.13 880 ± 50

N0tswiriri 1960 2016 TLS/GNSS 11.6 ± 0.2 1.70 ± 0.06 0.95 ± 0.02 260 ± 20

Jones-se 1957 2015 TLS/GNSS 27.5 ± 0.7 3.12 ± 0.34 2.35 ± 0.07 290 ± 20

Silolweni 1969 2008a GNSS 162.3 ± 3.1 17.37 ± 1.38 11.19 ± 0.12 840 ± 50

N0wanetsana 1960 2014a GNSS 5.1 ± 0.2 1.33 ± 0.08 0.56 ± 0.01 110 ± 10

Mlondozi 1951 2016 TLS/GNSS 140.3 ± 2.2 33.88 ± 1.33 9.77 ± 0.16 1040 ± 60

Nhlanganzwani 1956 2007a GNSS 279.4 ± 4.1 22.89 ± 0.97 15.98 ± 0.26 820 ± 50

Mpanamana 1957/1971b 2016 TLS/GNSS 101.2 ± 2.1 28.48 ± 0.74 7.95 ± 0.18 390 ± 20

Note: year of dam completion (TC), year of survey or decommissioning (TS), survey type (Survey), initial storage capacity (CR), i.e. in the year of dam

completion, volume of reservoir deposits (VS) that accumulated until in the year of survey or decommissioning, full supply area (AR) and over water-

distance (L) from the main reservoir inlet to the outlet. Uncertainties of CR, VS and AR correspond to the 95% confidence level. For L, the 2σ error is

reported. TC is given according to Pienaar (1985) and Kloppers and Bornman (2005).
aThe year of decommissioning is indicated.
bThe Mpanamana Dam was initially constructed in 1957 and finally repaired in 1971 after two dam failures.

Daily and Monthly

Rainfall Time Series

Mean Monthly

Evaporation

Input Data

Catchment

Size

Interception

Infiltration 

(AI, ZMINN, ZMAXN, ST)

Soil Moisture

Percolation

(SL, FT, POW)

Groundwater Groundwater Discharge

(GL)

Surface Runoff

(TL)

Interception Loss

(PI)

Storages Processes and Parameters

Evaporation 

(R)

Figure 3. Scheme of the daily time step Pitman rainfall–runoff model. Abbreviations in brackets denote parameters that may be adjusted for model

calibration (after Pitman, 1976).
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groundwater discharge may contribute to the simulated runoff.

A power relationship between the soil moisture state and

groundwater recharge is supposed, which depends on the

maximum soil storage (ST) that includes the storage capacity

in the vadose zone (Kapangaziwiri, 2011), a threshold SL

defining the soil moisture content below which no percolation

occurs, the parameter FT representing the percolation rate at

soil moisture equal to ST, and an exponent POW (Pitman,

1976). The lag of surface runoff and groundwater discharge is

controlled by the parameters TL and GL, respectively (Pitman

et al., 2015).

Description of the reservoir water balance model

The occurrence and magnitude of spillage events was

simulated with amodified version of the reservoir water balance

model by Hughes (1992) (Figure 4). Volumetric changes in the

reservoir water storage governed by inflow, precipitation and

evaporation were calculated with daily resolution by applying

Equation (1). Potential groundwater supply, seepage and water

abstraction by animals were neglected.

Sdþ1 ¼ Sd þ Id þ Pd � Ed � SPILLd (1)

Sd (in m3) is the water volume stored in the reservoir

basin at a day d; Id (in m3) refers to the daily inflow that is

calculated with the Pitman model; Pd (in m3) and Ed (in m3)

correspond to rainfall and evaporation on and from the water

surface, respectively; and SPILLd (in m3) represents

uncontrolled spillage that occurs only, if Sd exceeds the water

storage capacity of the reservoir. Thus, Pd and Ed depend on

the extent of the flooded area (FLAd in m2) in the reservoir

basin. FLAd, Pd and Ed equal zero, if the reservoir is dried-out

at the beginning of the day d (i.e. Sd=0). Otherwise, FLAd is cal-

culated with the reservoir-specific area–storage function ASR

(Equation (2)) based on the current storage state (Ŝd in m3) that

is defined as the sum of the stored water (Sd in m3) and the

sediment volume (SVd in m3).

FLAd ¼ ASR Ŝd

� �

¼ ASR Sd þ SV dð Þ (2)

The accumulation of sediment throughout the lifetime of the

reservoir is approximated by assuming a proportional

increase of the cumulative volume of sediment and inflowing

water. This approach is related to the ‘double mass’ concept

(Rooseboom and Annandale, 1981) that presumes a linear

relationship between cumulative river discharge and cumula-

tive sediment delivery on decadal or longer timescales for sta-

tionary climate and catchment conditions (Walling and Fang,

2003). The cumulative sediment volume was scaled with re-

spect to the mapped sediment volume (Table IV). Sediment com-

paction is neglected since studied reservoir deposits show little

variation in dry bulk density with increasing sediment depth

(Baade et al., 2012, and unpublished data from this study).

Meteorological input data for hydrological
modelling

Daily rainfall time series from meteorological stations within

the KNP were provided by the South African National Parks

(SANParks) Scientific Services, Skukuza. From this data, rainfall

time series for the reservoir catchments were interpolated based

on Thiessen polygons (Figure 1b). Gaps in the time series

(Table II) were filled with data from the rainfall station being

closest to the respective reservoir catchment among all stations

providing records for the corresponding time period. Mean

monthly evaporation was compiled from monthly evaporation

time-series available for four stations (Department of Water Af-

fairs, 2008; Figure 1c). For stations providing American class A-

pan evaporation values, mean annual A-pan evaporation (APE

in mm) was converted to mean annual Symon’s pan evapora-

tion (MAE in mm) with Equation (3) after Bosman (1990).

MAE ¼
APE � 26:3622

1:0786
(3)

The MAE for the reservoir catchments was interpolated by

ordinary kriging using a spherical semivariogram model that

was optimized via leave-one-out cross-validation. Finally, the

fractional contribution of individual months to the mean annual

evaporation, recorded at the nearest meteorological station, was

multiplied with the interpolated MAE to obtain mean monthly

Symon’s pan evaporation rates for the reservoir catchments.

Assessment of historical storage states

In the absence of runoff data, the coupled Pitman rainfall–

runoff and reservoir water balance model was calibrated

against reservoir storage state observations. These observations

include direct observations on the days of fieldwork, when the

reservoirs were usually completely dry. Further information was

derived from aerial photographs of the National Geospatial

Information (NGI) database (NGI, 2016) operated by the

Department of Rural Development and Land Reform, South

Africa, and high-resolution satellite images (Quickbird-2,

GeoEye-1, Worldview-2 and Pléiades 1A) available from

Google Earth® (Table V). Aerial photographs and satellite

Reservoir:

Initial storage capacity(C) 

Rainfall 

(P)

depending 

on FLA

Evaporation 

(E)

depending 

on FLA

Area-storage relationship (ASR)

Water storage (S) 

Sediment volume (SV)

Flooded area (FLA)

Outflow (SPILL) 

only, if S + SV > C

Inflow (I) 

Pitman model

Figure 4. Scheme of the reservoir water balance model (after Hughes, 1992, modified).
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images were co-registered on orthorectified aerial images

(scale: 1:10 000) acquired between 2008 and 2010. Water

levels (in metres above sea level) were determined by digitizing

the extent of water surfaces and comparing them with the DTM

representing the reservoir basin in the year of dam completion.

Water levels were converted to storage states (Ŝd) by means of

the height–storage relationship (HSR). The entire procedure

was repeated three times for each image and mean values

of Ŝd with uncertainty bounds were determined.

Uncertainty bounds correspond to the two-tailed 95%

confidence level (Cl95) and were calculated based on

Student’s t-distribution.

Calibration of the hydrological model based on
empirically derived storage states and catchment
characteristics

Most parameters of the hydrological model (Table VI) were set

by taking into account catchment characteristics and results of

recent water resource assessments (Pitman and Bailey, 2015;

Sami, 2015). Parameter values of AI, SL, R and POWwere taken

from parameter sets provided by Pitman and Bailey (2015) for the

corresponding quaternary drainage regions. The parameter FT

was set to the minimum value of 0.01mm d�1, which is recom-

mended for ephemeral rivers (Pitman, 1976). The parameter TL

that governs the lag of surface runoff was set to zero days, since

peak river discharge most probably occurs within less than four

hours after heavy rainfall events given the rather small size of

the reservoir catchments (Schmidt and Schulze, 1984). Different

scenarios were adopted for the parameter GL that controls the

lag of groundwater discharge. Diminishing the GL value leads

to an increase in simulated maximum daily flows associated

with runoff events, but has very little influence on simulated total

runoff volumes and water level fluctuations. Modelling results

from Pitman (1976) suggest that GL typically ranges from one to

six days with a median value of three days, while hydrological

studies within the KNP (Riddell et al., 2014) point to GL values

varying between one and three days. Thus, different scenarios

with GL values varying between one and three days were tested.

The parameter PI was estimated with Equation (4) after Yu

and D’Odorico (2014) where WCOV denotes the mean

fractional woody cover of the reservoir catchments (Table III;

Bucini et al., 2010), PIC (in millimetres) is the size of the

interception storage of the woody plant canopy, and PIUC

Table V. Overview on the number of aerial images, satellite images and field observations available to this study to determine historical storage

states of investigated reservoirs

Type Aerial image Satellite image Field observation Total

Sensor Zeiss RMK Leica DMC Quickbird-2 GeoEye-1 Worldview-2 Pléiades 1A

Geometric resolution <3m 0.5m 2.4m 1.8m 1.8m 0.5m

Period 1974–1977 2008–2010 2002–2005 2009 2011 2013–2016 2008 2014–2016

Source (1) (1) (2) (2) (2) (3) (4) (5)

Number of observations

Hartbeesfontein 1 1 1 — — 1 — 1 5

Marheya 1 1 1 — — 2 — 1 6

Lugmag 1 1 1 — — —
a

— —
a 3

N’tswiriri — 1 1 — — 2 — 1 5

Jones-se 1 1 — — — 2 — 1 5

Silolweni 1 —
a 1 — — —

a
—

a
—

a 2

N’wanetsana — 1 1 — — 2 — —
a 4

Mlondozi — 1 1 1 1 2 1 1 8

Nhlanganzwani 1 —
a 1 — —

a
—

a
—

a
—

a 2

Mpanamana 1 1 1 — 1 1 1 1 7

Sources: (1) NGI (2016); (2) Google Earth/DigitalGlobe; (3) Google Earth/CNES/Astrium; (4) Baade et al. (2012); (5) this study.
aThe reservoir was already decommissioned at the date of image acquisition or date of survey.

Table VI. Overview on parameters of the daily time step Pitman model (Pitman, 1976)

Parameter Description Unit

PI size of the interception storage mm

AI proportion of impervious surfaces to the total catchment area —

ZMINN nominal minimum catchment absorption rate mm h
�1

ZMAXN nominal maximum catchment absorption rate mm h
�1

ST maximum soil storage, i.e. the sum of the storage capacity in the vadose zone and the soil storage capacity mm

R controls the relationship between actual evaporation, potential evaporation and soil moisture state; parameter ranges

between 0 and 1

—

SL soil moisture content below which no percolation occurs mm

FT percolation rate at soil moisture equal to ST mm d
�1

POW influences the relationship between soil moisture state and groundwater discharge —

TL lag of surface runoff d

GL lag of groundwater discharge d
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(in millimetres) and PIBC represent the size of the interception

storage of grass and litter under (subscript ‘UC’) and between

(subscript ‘BC’) the woody plant canopy, respectively.

PI ¼ WCOV � PIC þ PIUCð Þ þ 1�WCOVð Þ�PIBC (4)

Following Yu and D’Odorico (2014), PIC was assumed to

equal 2mm, while PIUC and PIBC were set to 1mm, respectively

which is comparable to interception losses reported for woody

plant canopy (de Villiers, 1982; Scholes and Walker, 1993) and

grass (Tsiko et al., 2012) in savannas of southern Africa.

The parameter ST was estimated with a procedure suggested

by Kapangaziwiri and Hughes (2008). Accordingly, ST (in

millimetres) is the sum of the storage capacity of the vadose

zone (STvadose in millimetres) that is mainly composed of

unconsolidated weathered material above hard rock within

the KNP (Riddell et al., 2014) and the soil storage capacity

(STsoil in millimetres) (Equation (5)).

ST ¼ ST vadose þ ST soil (5)

STvadose depends on the thickness (dvadose in millimetres) of

the vadose zone, its storativity (STO) and a dimensionless factor

(Fvadose) that reflects the extent to which percolating water is

subject to lateral flow (Kapangaziwiri, 2011) (Equation (6)).

STsoil is a function of the soil depth (dsoil in millimetres), the

effective soil porosity (POR in cm3 cm�3) and a factor (Fsoil) that

accounts for vertical variations in the effective soil porosity

(Equation (7)).

ST vadose ¼ dvadose �STO�Fvadose (6)

ST soil ¼ d soil �POR�F soil (7)

The evaluation of groundwater levels in boreholes

(N> 1000) showed that dvadose is generally <50m within the

KNP (Du Toit, 1998, cited in Riddell et al., 2014). According

to Sami (2015), STO ranges from 1.8 to 2.8 × 10�3 for the

quaternary catchments in which the investigated reservoirs

are located. The value of Fvadose may vary between zero and

one (for details, see Kapangaziwiri, 2011). Venter (1990)

provides ranges of typical soil depths for various land types in

the KNP whose spatial distribution is closely related to lithology

(Table VII). POR depends on soil texture and may

range between 0.32 and 0.49 (Rawls et al., 1982) and the factor

Fsoil typically varies between 0.7 and 0.9 (Kapangaziwiri,

2010). Based on these data and Equations (5)–(7), plausible

ranges of ST values were calculated for each lithology. The

mean of minimum and maximum values for specific lithologies

was adopted and mean ST values for the reservoir catchments

were calculated based on weighted averages depending on

the respective proportion of lithological units within the

catchment area (Table III).

The parameters ZMINN and ZMAXN were calibrated

targeting the minimization of the root mean square error

(RMSE) in the prediction of historical storage states. In order

to facilitate comparison between different reservoirs, the RMSE

was expressed as a percentage of the initial storage capacity.

Taking into account the limited availability of information

about historical storage states (Table V), identical ZMINN and

ZMAXN were adopted for all reservoirs. The calibration of

ZMINN and ZMAXN was based on a training set including

the Hartbeesfontein, Marheya, Jones-Se, Mlondozi, and

Mpanamana reservoirs for which ≥5 calibration points were

available. Data on historical storage states of the Lugmag,

N0tswiriri, Silolweni, N0wanetsana and Nhlanganzwani

reservoirs were reserved for validation. The start of rainfall–

runoff simulations was set at least five years prior to the dam

construction to ascertain realistic initial catchment conditions.

Simulations of water-level fluctuations started on 1 October in

the year of dam construction and ended in the year of dam

decommissioning (if applicable) or with the survey date. For

the Mpanamana reservoir, simulations were started in 1971

when the dam was finally repaired. The RMSE for historical

storage states ranges from 16 to 36% (mean±Cl95: 22± 10%)

of the initial storage capacity in the training set and from 9 to

28% (18±9%) in the validation set (Table VIII).

Set up of runoff scenarios

The lack of runoff records and the limited availability of

information about historical storage states induce uncertainty

in the calibration of the hydrological model. Additional

uncertainty arises from imperfect input data. Hydrological

catchment response partially depends on short-term rainfall

intensities (Riddell et al., 2014) which might not be well

represented by daily rainfall data. Nearest rainfall stations are

10 to 30 km away from the reservoir catchments (Figure 1b).

Storm cells that bring heavy rain to the KNP typically have

elliptical footprints extending about 15 and 70 km along the

minor and major axis, respectively (Dixon, 1977, cited in

Venter et al., 2003). It is therefore unclear how well interpolated

rainfall time series represent actual rainfall over the reservoir

catchments. Although errors might be partially averaged out

over longer time-spans, errors in predicted storage states may

accumulate over time, affect model calibration and, thus, the

simulated frequency and magnitude of spillage events.

Fortunately, errors in simulated water levels are reset to zero

each time the drying up or spilling of a reservoir is correctly

predicted by the model.

Table VII. Estimation of the parameter ST for various lithologies based on typical soil depths in associated land types in the southern KNP as reported

by Venter (1990)

Lithology Land type Soil depth (m) ST (mm)

Minimum Maximum Mean

Granite/Gneiss Nhlanguleni 0.3–1.0 70 580 330

Gabbro Orpen 0.3–1.0 70 580 330

Ecca Shale/Mudstone Vutome 0.3–1.0 70 580 330

Sandstone Vutome 1.0–2.0 220 1010 620

Basalt Satara 0.3–1.5 70 800 440

Granophyre/Rhyolite Sabiepoort 0.0–1.0 0 580 290

Note: The range of ST values was calculated with Equations (5)–(7) from Kapangaziwri and Hughes (2008). Mean ST estimates represent the mean of

minimum and maximum ST values and were used to calculate the parameter ST for the reservoir catchments.
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In order to cope with the uncertainty, three different runoff

scenarios were set up for each parameter set. The first scenario

was obtained by running the calibrated Pitman model with the

parameter GL set to two and the interpolated meteorological

time-series for the reservoir catchments. This scenario can be

considered a best estimate and is subsequently called the Qbest

scenario. The second and third scenarios represent low (Qlow)

and high runoff (Qhigh) scenarios that were created by running

the calibrated model with GL values of three and one, lower

and higher rainfall, higher and lower evaporation, and using

minimum and maximum 2σ uncertainty bounds for the

catchment area, respectively. Time series with lower (and

higher) rainfall were generated by multiplying daily rainfall

amounts from the Qbest scenario with the ratio between the

lower (upper) uncertainty bounds (95% confidence level) and

the mean value of the MAP that resulted from interpolation

with Thiessen polygons. Time series of higher (lower) S-pan

evaporation were generated in the same manner by using daily

evaporation values from the Qbest scenario and upper (lower)

bounds of the standard prediction errors that were obtained

from interpolation via ordinary kriging.

The resulting Qlow and Qhigh scenarios were used to

calculate envelope curves for storage states that were predicted

based on the Qbest scenario. Lower (and upper) envelope

curves correspond to low (high) rainfall and high (low)

evaporation and the Qlow (Qhigh) runoff scenarios, respectively.

Since the Qlow and Qhigh scenarios were simulated with almost

identical parameter sets as the Qbest scenario (the parameter GL

has little influence on simulated water levels), the Qlow and

Qhigh scenarios usually lead to an underestimation and

overestimation of empirically derived storage states,

respectively. Moreover, the magnitude of flood events is much

higher (lower) in the Qhigh (Qlow) scenario than in the Qbest

scenario. This set-up takes into account that errors in the

calibation of the hydrological model and in the simulation of

the frequency and magnitude of spillage events that may arise

from uncertain input data are difficult to quantify.

Trap efficiency estimation from daily inflow and
outflow data

The TE can be estimated from daily inflow and outflow data

when the following assumptions are made: (i) during periods

without reservoir spillage, TE equals 100% (Brune, 1953); (ii)

TE can be estimated on a daily basis applying Churchill’s

method for periods when spillage occurs (Lewis et al., 2013);

(iii) considering daily time steps, flow retardation during

spillage events is negligible when the reservoir is at full stage

at the beginning of the day (Dendy, 1974); (iv) the relationship

between daily catchment runoff and sediment load can be

described with a sediment rating curve (e.g. Asselman, 2000)

where the daily mean sediment concentration (SCd in kg m�3)

in the inflowing water at day d is a function of the mean daily

catchment runoff Qd (in m3 s�1), a coefficient a and an

exponent b (Equation (8)).

SCd ¼ a�Qd
b (8)

Then, the daily sediment delivery Qsd (in kg d�1) from the

catchment can be calculated with Equation (9) where the factor

86400 (= 24 × 60× 60) results from the unit conversion from

seconds to days.

Qsd ¼ 86400�SCd �Qd ¼ 86400�a�Qd
bþ1 (9)

Borland (1971) recommended the application of Churchill’s

(1948) TE estimation approach for intermittently dry reservoirs.

According to Lewis et al. (2013), the trap efficiency TEC,d
(in percent) after Churchill (1948) can be calculated for single

days on which the reservoir spills by applying Equation (10)

from the US Army Corps of Engineers (1995).

TEC ;d ¼ 112� 800� 0:3048�
Cd

2

Qd
2�L

� ��0:2

(10)

Cd denotes the water storage capacity (in m3) which

decreases over time due to reservoir siltation, and L is the

over-water distance (in metres) from the inlet of the main

tributary to the overflow spillway. Equation (10) is based on an

approximation of Churchill’s sedimentation index where the

mean flow velocity is calculated by dividing the flow rate Qd

through the Cd/L ratio (i.e. the mean cross-sectional area;

Borland, 1971). TEC,d is set to 100% when the evaluation of

Equation (10) results in a value >100%, which may arise from

low daily inflow rates corresponding to long retention times of

the suspended sediment in the reservoir basin.

Depending on the storage state of the reservoir at the

beginning of the first day of a spillage event, a substantial

amount of inflowing water and sediment may be retained in

the reservoir basin, before spilling commences. Thus, TEC,d

Table VIII. Calibrated parameter sets and root mean square errors (RMSEs) obtained from the comparison of empirically derived and simulated

historical storage states (resulting from the Qbest scenario)

Reservoir PI AI ZMINN ZMAXN ST R SL FT POW TL GLa RMSE

(mm) (mm h
�1
) (mm h

�1
) (mm) (mm) (mm d

�1
) (d) (d) (%)

Training set

Hartbeesfontein 1.8 0 4.75 15.0 330 0.5 0 0.01 3 0 1–3 16

Marheya 1.5 0 4.75 15.0 520 0.5 0 0.01 3 0 1–3 36

Jones-Se 1.8 0 4.75 15.0 330 0.5 0 0.01 3 0 1–3 22

Mlondozi 1.3 0 4.75 15.0 420 0.5 0 0.01 3 0 1–3 18

Mpanamana 1.6 0 4.75 15.0 360 0.5 0 0.01 3 0 1–3 17

Validation set

Lugmag 1.8 0 4.75 15.0 330 0.5 0 0.01 3 0 1–3 28

N0twsiriri 1.7 0 4.75 15.0 330 0.5 0 0.01 3 0 1–3 9

Silolweni 2.0 0 4.75 15.0 330 0.5 0 0.01 3 0 1–3 15

N0wanetsana 1.8 0 4.75 15.0 330 0.5 0 0.01 3 0 1–3 21

Nhlanganzwani 1.6 0 4.75 15.0 370 0.5 0 0.01 3 0 1–3 17

Note: In order to facilitate comparison between the reservoirs, the RMSE is expressed as a percentage of the initial storage capacity.
aGL values of 2, 3 and 1 were adopted in the Qbest, Qlow and Qhigh scenarios, respectively.
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most probably underestimates the TE for these days, since

Equation (10) assumes continuous spillage during the

considered period of time (Dendy, 1974). In order to account

for this effect, the daily TE is adjusted with Equation (11) where

Id (in m3) and SPILLd (in m3) denote the daily volume of

inflowing and spilled water, respectively.

TEd ¼ 100%� 1�
SPILLd
Id

� �

þ TEC ;d �
SPILLd
Id

(11)

Equation (11) assumes a TE of 100% before the water level

reaches the height of the overflow, and a trap efficiency equal

to TEC,d as soon as water is spilled. For days without inflow

for which Equation (10) is not defined, the adjusted daily

sediment trap efficiency TEd (in percent) is set to 100%. TEd is

usually higher than TEC,d at the first day of a spillage event,

when SPILLd is smaller than Id, and approximately equal

afterwards. Rainfall onto the reservoir can result in

SPILLd exceeding Id. In this case, TEd is slightly lower than

TEC,d which is in accordance with elevated outflow rates.

The mass of delivered sediment that is eventually deposited

in the reservoir basin can be calculated for each single day by

multiplying TEd and Qsd. The total mass of sediment Qs (in

kg) entering the reservoir in a certain time interval and the

corresponding mass of accumulated reservoir deposits SM (in

kg) equal the sum of the daily values. Hence, the long-term

mean trap efficiency (TEsim in percent) can be calculated with

Equation (12):

TE sim ¼
SM

Qs
¼

∑
d

TEd �Qsdð Þ

∑
d

Qsd
¼

∑
d

TEd �Qd
bþ1

� �

∑
d

Qd
bþ1

(12)

The subscript ‘sim’ indicates that the sediment flux is

simulated based on the water storage capacity that is

diminished over time due to reservoir siltation, the effective

flow length through the reservoir and daily inflow and outflow

rates. The exponent b, introduced with Equation (8),

determines the extent to which the sediment load of inflowing

water increases with increasing water discharge. In the absence

of an established sediment rating curve, assumptions are to be

made. According to Syvitski et al. (2000), b typically

ranges between 0.5 and 1.5. Thus, three scenarios were

adopted in this study: b=0.5, 1 and 1.5. Combining the three

runoff scenarios (Qbest, Qlow and Qhigh) with the three scenarios

for the relationship between daily catchment runoff and

sediment load (b=0.5, 1 and 1.5) leads to nine scenarios in

total. For each scenario, the TEsim value was calculated. Mean

TEsim values were calculated from all nine scenarios and are

reported with uncertainties at the 95% confidence level

(Cl95). In addition, the mean annual runoff (MAR) depth, and

the ratio of the volume of spilled water to the volume of

inflowing water, henceforth referred to as spillage to

inflow ratio (SPILL/I), were determined.

Trap efficiency estimates after Brown and
Heinemann

TEsim values were compared with trap efficiency estimates

according to Brown (1944; TEB in percent) and Heinemann

(1981; TEH in percent). Equation (13) from Brown (1944) is

based on the initial storage capacity (CR in m3), the catchment

area (A in km2), and a dimensionless parameter D that equals

0.1 in the ‘average’ case (Brown, 1944), but may

range between 0.046 and 1.

TEB ¼ 100%� 1�
1

1þ 0:0021�D� CR

A

 !

(13)

Minimum (and maximum) TEB values were calculated based

on a D value of 0.046 (and 1) and using maximum (minimum)

2σ uncertainty bounds for the catchment area. In addition, the

parameter D was systematically varied, following a suggestion

of Verstraeten and Poesen (2000), to test which value resulted

in the lowest mean deviation from mean TEsim estimates. The

TEH after Heinemann (1981) was calculated with Equation (14)

based on the mean storage capacity (CM in m3), i.e. the mean of

the storage capacity in the year of dam completion and at the

survey date, and the simulated mean annual inflow (I in m3).

TEH ¼ �22þ
119:6� CM

I

0:012þ 1:02� CM

I

(14)

Minimum (and maximum) TEH values were calculated from

the storage capacity at the survey date (in the year of dam

completion) and the Qhigh (Qlow) runoff scenarios. Differences

in TE estimates are always reported by means of absolute

values.

Results and Interpretation

Catchment runoff, water level fluctuations and
spillage events

Modelling results are in agreement with the ephemeral

character of surface runoff that was observed in all investigated

reservoir catchments. The simulations reveal low mean annual

runoff (MAR) depths in the Qbest scenario ranging from 3.3 to

16.3mm (Table IX). The maximum MAR depth among all

scenarios amounts to 30.1mm, implying a runoff coefficient

of <5% which is consistent to findings from Riddell et al.

(2014). MAR depths for the corresponding quaternary drainage

regions (QDRs) that were derived with the monthly time-step

Pitman model (Pitman and Bailey, 2015) fall in between MAR

depths obtained from Qlow and Qhigh scenarios for 8 out of 10

reservoir catchments. Lower simulated MAR depths for the

Lugmag reservoir catchment than for the corresponding QDR

X40C might be explained by the location of the reservoir in

the eastern part of the QDR and increasing rainfall towards

the Great Escarpment in the west. Lower simulated MAR depths

for the Marheya reservoir catchment than for the corresponding

QDR X40B are attributable to the widespread occurrence of

sandstone areas in the Marheya reservoir catchment for which

a rather high infiltration and soil water storage is assumed

(Table VII).

As an example, Figure 5 shows simulated water level

fluctuations and spillage events for the Hartbeesfontein

reservoir. [Additional figures for all other reservoirs are

provided as Supporting Information to this article.] The results

highlight that water levels in the investigated reservoirs are

governed by catchment runoff, rainfall and evaporation. Water

levels decrease during periods without inflow, since mean

annual evaporation loss from the water surface is two to three

times higher than MAP. As a result, all investigated reservoirs

dry out occasionally. When inflow occurs, the water level rises

rapidly sometimes leading to spillage. Although spilling events

are seldom, 76 to 93% of the inflowing water is spilled

according to the Qbest scenario. The Qlow and Qhigh scenarios

result in lower and higher SPILL/I ratios of 39 to 90% and 81

to 96%, respectively.
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Prominent simulated spillage events coincide with regional

floods in the study area. The regional flood event in February

1977 led to the overflowing of all investigated reservoirs except

for the N0tswiriri and N0wanetsana reservoirs. The exceptional

flood in February 2000 (Smithers et al., 2001) caused spilling

of all reservoirs, while subsequent rainfall and high antecedent

soil moisture likely triggered further spillage until early April

2000. In January 2012, all non-decommissioned reservoirs

spilled in the Qbest scenario except for the Marheya reservoir.

Subsequent spillage occurred partially as a consequence of

minor floods in January 2013 and March 2014. In addition,

the simulations provide evidence for local floods affecting only

single (or a few) reservoirs, like the strong local flood at

Hartbeesfontein in February 1960 (Figure 5).

Simulated sediment flux and long-term trap
efficiency estimates

Based on the sediment rating curve approach, the simulations

indicate that sediment delivery occurred mainly during major

local and regional flood events in 1960, 1977, 2000, 2012,

2013 and 2014, as exemplified for the Hartbeesfontein

reservoir in Figure 6. [Figures for all other studied reservoirs

are provided as Supporting Information.] In the Qbest scenarios,

the sediment delivery during major local and regional floods

accounts for ≥72%, ≥ 82% and ≥88% of the total sediment flux

at all study sites, if the sediment rating curve exponent b is set

to 0.5, 1 and 1.5, respectively. High-discharge events cause

spilling of the reservoirs. Thus, the delivered sediment is only

partially deposited in the reservoir basin. Taking into account

simulated TE values, the Qbest scenarios with values b of 0.5,

1 and 1.5 indicate that ≥64%, ≥ 75% and ≥83% of the reservoir

deposits were delivered to the reservoirs during major local and

regional floods.

The contribution of small runoff events, i.e. other than the

earlier mentioned, varies with the value of b. For b=0.5, small

events still contribute a relevant amount of sediment (≤ 28%),

with b=1 they are less important (≤ 18%) and with b=1.5 they

are unimportant (≤ 12%). Sediment that is delivered during small

runoff events is effectively trapped due to low transport

energy and since spilling rarely occurs. Therefore, TEsim esti-

mates are on average 12% higher in the b=0.5 scenarios than

in the b=1.5 scenarios, when identical runoff scenarios

are considered (Table X). Comparing TEsim estimates for different

runoff scenarios but identical values b results on average in 24%

higher TEsim values for the Qlow scenario than for the Qhigh

scenario which is clearly attributable to the differing frequency

and magnitude of spillage events in the runoff scenarios.

Mean TEsim values tend to increase with increasing ratios of

initial storage capacity to catchment area (CR/A) and mean
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Figure 5. Simulated water level fluctuations for the Hartbeesfontein reservoir and volume of spilled water at days when overflow occurred derived

from the Qbest scenario. Lower and upper envelope curves for water level fluctuations correspond to the Qlow and Qhigh runoff scenarios, respectively.

Major local and regional floods are marked with arrows. Error bars of calibration points depict the uncertainty of empirically derived historical storage

states at the 95% confidence level. [Colour figure can be viewed at wileyonlinelibrary.com]

Table IX. Simulated mean annual runoff (MAR) depth and spillage to mean annual inflow ratios (SPILL/I) for reservoir catchments according to the

Qbest, Qlow, and Qhigh scenarios, and simulated MAR depths for the corresponding quaternary drainage regions (QDRs) that were derived with the

monthly time-step Pitman model in the WR2012 study (Pitman and Bailey, 2015)

Reservoir QDR Period MAR depth (mm) SPILL/I (%)

WR2012a Qbest Qlow Qhigh Qbest Qlow Qhigh

Hartbeesfontein B73F 1950–2015 13.7 11.0 5.5 21.4 82 78 87

Marheya X40B 1970–2014 10.1 3.3 0.8 8.6 77 39 88

Lugmag X40C 1957–2012 22.5 8.9 4.5 18.0 89 87 93

N0tswiriri X32J 1960–2016 15.3 9.0 4.0 18.2 92 88 95

Jones-Se X33A 1957–2015 8.6 12.6 6.2 24.2 89 84 94

Silolweni X40D 1969–2008 10.3 11.4 5.1 24.2 78 69 84

N0wanetsana X32J 1960–2014 15.3 9.4 4.3 18.9 93 90 96

Mlondozi X33C 1951–2016 5.4 5.5 2.1 14.6 92 86 96

Nhlanganzwani X33D 1956–2007 5.7 7.2 3.6 15.5 76 69 81

Mpanamana X24H 1971–2016 12.7 16.3 9.1 30.1 84 79 91

aHydrological simulations of the WR2012 study end in September 2010.
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Table X. Long-termmean trap efficiency (TEsim) estimates obtained from hydrological modelling, initial storage capacity to catchment size ratios (CR/

A) and mean storage capacity to mean annual inflow ratios (CM/I) for all investigated reservoirs

Reservoir TEsim (%) CR/A (10
�3

m) CM/I

b = 0.5 b = 1.0 b = 1.5 Mean

Qbest Qlow Qhigh Qbest Qlow Qhigh Qbest Qlow Qhigh (N = 9) Qbest Qlow Qhigh

Hartbeesfontein 75 84 65 70 81 58 67 79 53 70 ± 8 9.3 ± 0.6 0.8 1.5 0.4

Marheya 76 86 65 70 82 60 67 79 56 71 ± 8 3.9 ± 0.1 1.1 4.7 0.4

Lugmag 51 60 37 42 54 24 37 50 17 41 ± 11 3.3 ± 0.1 0.4 0.9 0.2

N0tswiriri 58 68 43 49 61 32 44 55 24 48 ± 11 2.1 ± 0.1 0.2 0.5 0.1

Jones-Se 64 71 55 55 65 44 50 63 36 56 ± 9 4.4 ± 0.1 0.3 0.7 0.2

Silolweni 80 82 71 73 78 64 68 75 59 72 ± 6 12.3 ± 0.7 1.1 2.4 0.5

N0wanetsana 59 69 45 51 61 34 46 55 26 50 ± 10 1.6 ± 0.1 0.1 0.3 0.1

Mlondozi 34 48 24 23 40 13 16 35 8 27 ± 10 1.4 ± 0.1 0.2 0.6 0.1

Nhlanganzwani 86 94 76 84 93 70 82 93 66 83 ± 8 16.9 ± 0.9 2.3 4.6 1.1

Mpanamana 76 84 64 70 81 54 65 78 46 69 ± 10 10.1 ± 0.8 0.5 1.0 0.3

Note: TEsim estimates and CM/I ratios were calculated separately for the Qbest, Qlow and Qhigh runoff scenarios. Moreover, TEsim was determined for

different scenarios representing relationships between runoff and sediment load, i.e. b = 0.5, 1 and 1.5. Mean TEsim values with 95% confidence

(Cl95) intervals were calculated from all scenario combinations (N= 9). Uncertainties of CR/A ratios were calculated based on Cl95 intervals for

CR and 2σ errors for A (according to Baade and Schmullius, 2015).
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Figure 6. Cumulative volume of sediment that was delivered to and deposited in the Hartbeesfontein reservoir according to the Qbest runoff scenario

and different relationships between daily runoff and sediment load, i.e. (a) b = 0.5, (b) b = 1 and (c) b = 1.5. The cumulative sediment volume is

expressed as a percentage of the total sediment volume delivered to the reservoir until the survey date. The percentage of deposited sediment at

the survey date equals the long-term mean trap efficiency (TEsim) of the reservoir according to the Qbest scenario. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Figure 7. Relationship between mean trap efficiency estimates (TEsim) derived from modelling and (a) the initial water storage capacity (CR) to catch-

ment size (A) ratio and (b) the mean water storage capacity (CM) to mean annual inflow (I) ratio for all investigated reservoirs (N = 10). The relationship

between CR/A ratios and TEB values (with envelope curves) according to Brown (1944), and the relationship between CM/I ratios and TEH values ac-

cording to Heinemann (1981) as well as the fitted curve TEH, fit represented by Equation (15) are indicated. I was calculated based on the Qbest sce-

nario. Error bars of mean TEsim values correspond to the 95% confidence level.
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storage capacity to mean annual inflow (CM/I) (Figure 7). Mean

TEsim values of the Hartbeesfontein (70 ±8%), Marheya

(71±8%), Silolweni (72 ±6%), Nhlanganzwani (83± 6%) and

Mpanamana reservoirs (69 ±10%) are >60%. Therefore, CR/A

and CM/I ratios of these reservoirs, the latter obtained from the

Qbest scenario, are >3.9 × 10�3m and >0.5, respectively

(Table X). Mean TEsim values <60% were calculated for the

Lugmag (41±11%), N0tswiriri (48 ± 11%), Jones-Se (56 ±9%),

N0wanetsana (50 ±10%) and Mlondozi reservoirs (27 ±10%)

that are characterized by low CR/A and CM/I ratios of

<4.4 × 10�3m and <0.4, respectively.

Comparison with trap efficiency estimates after
Brown and Heinemann

TEB estimates after Brown (1944) are consistent with TEsim values

obtained from hydrological modelling, since ranges of TEB
values for D values between 0.046 and 1 overlap with Cl95 in-

tervals of all mean TEsim values (Figure 8). However, the estima-

tion based on Brown’s method involves high uncertainty due to

low CR/A ratios ranging from 1.4 to 16.9 × 10�3m (Table X). On

average, TEB values are 55±8% lower for D=0.046 than for

D=1, while the difference for individual reservoirs ranges from

35% (Nhlanganzwani reservoir) to 65% (N0tswiriri reservoir). A

more detailed inspection shows that mean TEB estimates, i.e.

D=0.1, are 0% (Lugmag reservoir) to 26% (Marheya

reservoir) lower than mean TEsim values with a mean

difference of 9 ± 7%. The lowest mean absolute deviation

between mean TEsim and TEB values is achieved by setting D to

0.14 and amounts to 7 ±5%. All mean TEsim estimates fall into

the TEB range represented by D values of ≥0.1 and ≤0.4

(Table XI). These boundaries correspond to TEB ranges varying

between 15% (Nhlanganzwani reservoir) and 33% (N0tswiriri

reservoir) with a mean value of 27 ±5%.

The method from Heinemann (1981) reveals, in general,

high TEH estimates of 80 to 95%. This can be attributed to

high CM/I ratios ranging from 0.1 to 2.3 according to the

Qbest scenario (Table X), suggesting a long retention time of

inflowing water and sediment in the reservoirs. TEH values

that were derived from Qbest scenarios are roughly identical

(±3%) to maximum TEB estimates (i.e. D=1) for the

Hartbeesfontein, Jones-Se, Silolweni, Nhlanganzwani and

Mpanamana reservoirs, but 5 to 16% higher than maximum

TEB estimates for the Marheya, Lugmag, N0tswiriri,

N0wanetsana and Mlondozi reservoirs. Furthermore, the Qbest

scenario reveals TEH estimates that are 12% (Nhlanganzwani

reservoir) to 63% (Mlondozi reservoir) higher than mean

TEsim values and do not overlap with the corresponding

Cl95 intervals. This methodological comparison suggests that

Heinemann’s (1981) approach overestimates the TE of

reservoirs in the southern KNP. Equation (15) represents a

modification of Heinemann’s (1981) equation that results

from fitting the relationship between mean TEsim estimates

and CM/I ratios derived from the Qbest scenario (Figure 7b).
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TEsim values for all investigated reservoirs (N = 10). TEB estimates were calculated by settingD to 0.1 in Equation (13), while the lower and upper ends
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TEH; fit ¼
97:928� CM

I

0:296þ 1:031� CM

I

(15)

Themean absolute deviation between TEH, fit values (in percent)

and mean TEsim values is 8±4% and therefore nearly identical to

the mean absolute deviation between TEB and mean TEsim values

(7±5%), if D is set to 0.14.

Discussion

The relevance of the hydrological regime for the TE of

reservoirs has been previously highlighted (e.g. Heinemann,

1984; Haan et al., 1994) and is corroborated by results of this

study. The simulations indicate that the long-term (40 to 65years)

mean TE of all investigated reservoirs is strongly influenced by

a few (N ≤6) high-discharge events. According to the Qbest

scenarios, these events account for ≥72% of the sediment

delivery and ≥64% of the sediment volume that was

accumulated in the reservoir basin until the survey date. This

is in accordance with other studies on the siltation of reservoirs

with ephemeral inflow. Bussi et al. (2013) showed that four

flood events contributed 65 to 70% to the sediment volume

that was accumulated within a 20 year period in a small

reservoir in eastern Spain. Likewise, Fischhendler et al. (2003,

p. 29) attributed 70% of the sediment volume that was

accumulated within 40years in a large reservoir (7.3×106m3)

in western Israel to ‘a small number of very large floods’.

Given the erratic occurrence of high-discharge events, MAR

is a rather poor indicator for the prediction of sediment flux in

ephemeral streams. Brune (1953) already noticed that his TE

estimation approach that relies on MAR values might lead to

an overestimation of the TE for intermittently dry reservoirs.

Later, several authors have cautioned that the methods from

Brune (1953) and Heinemann (1981) might be inadequate for

reservoirs with ephemeral inflow (e.g. Borland, 1971; Lloyd

et al., 1998; Verstraeten and Poesen, 2000). This is supported

by the modelling results, since TEH values often exceed TEsim
and TEB estimates without overlapping uncertainty bounds

(Figure 8). By comparison, the method of Brown (1944) appears

to be more reliable. Indeed, Brown’s method was applied in

many reservoir siltation studies taking place in semi-arid and

arid environments (e.g. Haregeweyn et al., 2006; Tamene

et al., 2006; Baade et al., 2012; Alahiane et al., 2016). For

reservoirs with low C/A ratios, the selection of an adequate

value D is crucial to achieve reliable TE estimates with a

reasonable uncertainty (Verstraeten and Poesen, 2000).

Without confining the range of D values, this study reveals

differences of 35 to 65% between minimum and maximum

TEB estimates. Compared to mean TEsim estimates, the ‘average’

D value of 0.1 (Brown, 1944) leads to slightly lower TEB values

with a mean difference of 9 ± 7%.

The approach presented here can most probably reduce

uncertainties in the TE estimation for intermittently dry

reservoirs as the frequency and magnitude of spillage events

are explicitly taken into account. An important assumption is

that the method of Churchill (1948) is appropriate for the daily

TE estimation during spillage periods. Borland (1971)

recommended Churchill’s method for intermittently dry

reservoirs. More recent studies indicate that Churchill’s method

is preferable especially when the long-term mean TE is

estimated based on daily time steps. Butcher et al. (1992)

compared TE estimates for single high-discharge events with

empirical TE determinations for two small reservoirs (140 and

360× 103m3) in the southern Pennines (United Kingdom).

Although the TE of single events was variable and difficult to

predict, Butcher et al. (1992) found that Churchill’s method

resulted in TE estimates close to empirical values when results

of the entire measurement period were totalled. Similarly,

Lewis et al. (2013) derived TE estimates for the large Burdekin

Falls Dam (1.9 × 109m3) in northeast Australia by applying

Churchill’s method on a daily basis. The resulting TE estimates

fell within Cl95 intervals of empirical TE determinations for four

out of five years in the monitoring period.

The suitability of Churchill’s method partially depends on the

particle size of the delivered sediment that is not considered in

Equation (10). Coarse and flocculated sediment is subject to

higher settling velocities and therefore more efficiently trapped

than fine and dispersed sediment (Heinemann, 1984). Chen

(1975) investigated the TE for quiescent and turbulent

flow conditions and showed that Churchill’s method reveals re-

liable TE values for sediments with a grain size between 6 and 8

φ-units. Grain size data for suspended sediment is currently not

available, but reservoir deposits in the KNP are characterized by

a mean grain size (logarithmic methods of moments; Krumbein,

1936) of about 6.8 φ-units with rather small variations between

different reservoirs (Reinwarth et al., 2017). Taking into account

these considerations, Churchill’s method is a plausible choice

with respect to reservoirs in the KNP.

The presented approach also relies on the assumption that

the relationship between streamflow and sediment discharge

can be described with a sediment rating curve. Previous work

Table XI. Trap efficiency estimates for the investigated reservoirs based on the methods from Brown (1944; TEB) and Heinemann (1981; TEH) and

mean TEsim estimates obtained from modelling

TEB (%) TEH (%) TEsim (%)

D = 0.14 D = 0.10 D = 0.40 Mean Minimum Maximum Mean ±Cl95

Hartbeesfontein 73 66 89 94 92 94 70 ± 8

Marheya 53 45 77 94 92 95 71 ± 8

Lugmag 49 41 74 92 88 93 41 ± 11

N0tswiriri 38 31 64 89 84 93 48 ± 11

Jones-Se 57 48 79 91 88 93 56 ± 9

Silolweni 78 72 91 94 92 95 72 ± 6

N0wanetsana 31 25 57 87 80 91 50 ± 10

Mlondozi 28 22 53 90 81 93 27 ± 10

Nhlanganzwani 83 78 93 95 94 95 83 ± 8

Mpanamana 75 68 89 93 90 94 69 ± 10

Note: TEB estimates are shown for D values (see Equation (13)) of 0.14, 0.10 and 0.40. The value of D = 0.14 results in the lowest mean deviation

between TEB and TEsim values, while D values of 0.10 and 0.40 are interpreted as lower and upper uncertainty bounds, respectively. Mean, minimum

and maximum values of TEH estimates were determined from all investigated scenarios. Uncertainties of mean TEsim estimates correspond to the 95%

confidence level (Cl95).
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has shown that this relationship is likely to vary on different

timescales owing to changing sediment availability along

drainage lines and variable sediment delivery from

inter-drainage areas (e.g. Walling, 1977; Grenfell and Ellery,

2009). However, the different scenarios corresponding to

values for the exponent b of 0.5, 1 and 1.5 represent a range

of possible relationships that likely includes a scenario that

can be considered realistic (Syvitski et al., 2000). The mean

absolute difference for TEsim estimates obtained from b values

of 0.5 and 1.5 is 12%. This indicates that the potential

impact of variable relationships between streamflow and

sediment discharge on mean TEsim estimates is reasonably

low in this study.

Sediment load measurements and data from repeated

reservoir siltation surveys in the southern KNP against which

the simulations could be tested are unfortunately missing.

The staff gauge at the Mlondozi dam shows that the thickness

of reservoir deposits increased by 1.2 ft (= 0.37m)

between September 2008 and March 2016 (Figure 9). Based

on the HSR of the initial reservoir basin, this indicates that

about 31% of the total volume of reservoir deposits in the

Mlondozi reservoir were accumulated between these two

dates. This compares to simulated values ranging from 19%

(b=0.5) to 28% (b=1.5) in the Qbest scenario. The difference

between empirically-derived and simulated values can be

explained by inaccuracies in the determination of the sediment

volume from observations at a single point (Ramos-Diez et al.,

2016). Alternatively, the deviation may reflect uncertainties in

the simulation of the frequency and magnitude of spillage

events.

In this study, uncertainties in hydrological modelling are

mainly due to the lack of runoff records and water level

readings. Comparison between mean RMSEs in the prediction

of historical storage states, obtained from reservoirs included

in the training (22±10%) and validation sets (18± 9%), indi-

cates that the calibration of the hydrological model is rather ro-

bust, but imperfect input data may induce uncertainty which is

indicated by differing MAR depths and SPILL/I ratios among the

runoff scenarios (Table IX). Although uncertainties in

hydrological modelling must be taken into account, the impact

on TEsim estimates is moderate. The mean absolute difference

between TEsim values obtained from Qlow and Qhigh scenarios

for identical values b is 24%, which leads to acceptable

uncertainties, if mean TEsim values are adopted. Furthermore,

errors that result from imperfect input data and model

calibration are random. Mean TEsim values that were derived

from all scenarios are therefore highly unlikely to systematically

overestimate or underestimate the actual TE of the reservoirs.

Modelling uncertainties could be diminished, if water and

sediment levels in the reservoirs were regularly monitored.

Moreover, recent studies suggest that uncertainties could be

further reduced, if data on catchment runoff (Riddell et al.,

2014) and a more detailed geo-hydrological characterization

of the catchments (Dippenaar and van Rooy, 2014; van Zijl

and Le Roux, 2014; van Zijl et al., 2016) should become

available.

The modelling results are strengthened through the

comparison with TEB estimates after Brown (1944). The

simulations indicate that the calibration and regionalization of

the parameter D in Brown’s method that was suggested by

Verstraeten and Poesen (2000) is feasible for reservoirs in the

southern KNP. Setting D to 0.14 results in the lowest mean

absolute deviation of 7 ± 5% between mean TEsim and TEB
values. TEB values corresponding to D values of 0.1 and 0.4

can be interpreted as lower and upper uncertainty bounds,

respectively, which leads to ranges in TEB values varying from

15 to 33%. This is in accordance with considerations from

Brown (1944) who expected D values >0.1 for reservoirs

Figure 9. Staff gauge at the concrete wall of the Mlondozi dam. Photographs from (a) September 2008 and (b) March 2016 indicate an increase in

the thickness of reservoir deposits of about 1.2 ft (= 0.37m) within 7.5 years. [Colour figure can be viewed at wileyonlinelibrary.com]
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receiving small and variable runoff. The appropriateness of the

established D values for management purposes in areas outside

the KNP or neighbouring game reserves remains to be studied,

since differing catchment characteristics (e.g. land use) may

alter the hydrological catchment response as well as the rela-

tionship between TE values and CR/A ratios (e.g. Brune, 1953).

Conclusions

This study underscores the importance of the frequency and

magnitude of rainfall and runoff events for the estimation of

the long-term mean TE of small, intermittently dry reservoirs.

Combining results from hydrological modelling with a

sediment rating curve approach indicates that a few high

discharge events (N≤ 6) within the lifetime of the investigated

reservoirs (40 to 65 years) had a strong influence on their

long-term mean TE. According to the Qbest scenarios, these

events contributed ≥72 and ≥64% to the delivered and

deposited sediment, respectively. Although uncertainties in

hydrological modelling must be taken into account due to

the lack of runoff records and imperfect input data, the

uncertainty of mean TEsim estimates is moderate, ranging

from ±6 to ±11% at the 95% confidence level. The results

corroborate that the method from Heinemann (1981) tends

to overestimate the TE of small, intermittently dry reservoirs

in semi-arid climate regions. The approach from Brown

(1944) appears to be more reliable, but leads to large

differences between minimum and maximum TEB estimates

ranging from 46 to 63%, if the parameter D in Equation (13)

is not confined. For the southern part of KNP, D=0.14

provides the smallest deviation compared to the more

sophisticated modelling approach used in this paper. Thus,

the proposed methodological framework can contribute to a

reduction of uncertainties, since the frequency and magni-

tude of spillage events is explicitly taken into account. The

approach has the potential to be applied to other reservoirs

in semi-arid regions with similar characteristics.
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Abstract 10 

Reservoir siltation surveys facilitate the quantification of the mean area-specific 11 

sediment yield (SSY) of catchments for decadal and longer time spans. This requires 12 

information on the volume (VS) and dry bulk density (dBD) of reservoir deposits, the 13 

period of time (TR) during which they were accumulated, the reservoir sediment trap 14 

efficiency (TE) and the catchment area (A). For the calculation of the catchment-wide 15 

average rate of erosion by water (E), the sediment delivery ratio (SDR) of the catchment 16 

needs to be estimated. Each step in this workflow represents a potential source of 17 

uncertainty. The fractional contribution of individual error sources to uncertainties in 18 

SSY and E values has been rarely systematically assessed. Here, we infer mean SSY and 19 

E values for small to medium-sized catchments (≤100 km2) of 15 small (≤350 × 103 m3) 20 

intermittently dry reservoirs located in the southern Kruger National Park and 21 

observation periods of 30 to 65 years. We explore the relative importance of related 22 

uncertainties expressed at the 95% confidence level. The resulting SSY values range 23 

from 5 to 80 t km-2 yr-1 with a mean (and median) of 30 ± 10 t km-2 yr-1 24 

(20 [15, 50] t km-2 yr-1) and correlate significantly with mean annual precipitation 25 

(R = 0.71; p < 0.01). The mean (and median) E value is 85 ± 30 t km-2 yr-1 26 

(70 [45, 115] t km-2 yr-1) when catchments being affected by gully erosion (N = 3) are 27 
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excluded. For gullied catchments, higher E values (up to 360 t km-2 yr-1) were 28 

determined. Mean relative uncertainties for SSY and E values amount to ±21% and 29 

±46%, respectively. Uncertainties in SSY values arise mainly from the TE estimation 30 

(mean fractional uncertainty contribution of 64%), while the SDR estimation is the 31 

major cause (79%) for uncertain E values. Uncertainties in the determination of VS and 32 

dBD values are rather unimportant, contributing together <30% and <6% to the 33 

uncertainty of SSY and E values on average, respectively. Conclusions are drawn 34 

regarding a reasonable surveying and sampling strategy. 35 

 36 

Keywords  reservoir deposits, reservoir siltation survey, sediment mapping, 37 

uncertainty propagation 38 

 39 

1. Introduction  40 

Reservoir siltation surveys provide an excellent opportunity to assess the sediment yield 41 

of catchments (e.g., Langbein and Schumm, 1958; Foster and Walling, 1994; Baade et 42 

al., 2012). The accumulation of reservoir deposits represents an off-site effect of soil 43 

erosion by water (Verstraeten et al., 2006) and is, thus, a valuable indicator for soil 44 

erosion monitoring (e.g., Van Rompaey et al., 2003; Brazier, 2004; Msadala et al., 45 

2012). Interrelations between erosion, sediment yield and reservoir siltation have been 46 

recently reviewed by Dutta (2016). Reservoir siltation surveys can be realized within a 47 

few days and permit the quantification of the average sediment yield for decadal or 48 

longer time spans (Rausch and Heinemann, 1984). Hence, the approach is particularly 49 

useful for regions with inter-annually variable erosion where long-term records on 50 

fluvial sediment transport are lacking (Vanmaercke et al., 2014).  51 
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The workflow suggested by Jolly (1982) involves the determination of the 52 

volume (VS) and dry bulk density (dBD) of reservoir deposits that accumulated 53 

throughout a specific period of time (TR). The proportion of the sediment load being 54 

delivered to the reservoir that is eventually deposited in the reservoir basin defines the 55 

reservoir sediment trap efficiency (TE) (Brown, 1944). In the absence of empirical data, 56 

the long-term mean TE can be estimated with appropriate equations or models (e.g., 57 

Heinemann, 1981; Haan et al., 1994; Reinwarth et al., 2018). For this, the water storage 58 

capacity (C) of the reservoir needs to be ascertained. Provided that the size of the 59 

reservoir catchment (A) is known, the area-specific sediment yield (SSY) can be 60 

calculated with Eq. (1) (e.g., Bussi et al., 2013). 61 

 62 

ATET

dBDV
SSY

R

S

⋅⋅

⋅
=  (1) 

 63 

Linking sediment yield and catchment erosion is not straightforward due to the 64 

storage and remobilization of sediment in inter-drainage areas and along watercourses 65 

upstream the reservoir (e.g., Brown et al., 2009). The sediment delivery ratio (SDR) 66 

describes the interrelationship between erosion by water and fluvial sediment delivery 67 

and is defined as the ratio of SSY to the catchment-wide average gross erosion rate (E) 68 

(Glymph, 1954; Roehl, 1962). Hence, E can be quantified with Eq. (2) (e.g., after 69 

Walling, 1983). 70 

 71 

SDR

SSY
E =  (2) 

 72 
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Errors in the quantification of SSY and E may arise from an inaccurate 73 

determination of VS (Evans and Church, 2000; Díaz et al., 2014; Ramos-Diez et al., 74 

2017), dBD (Verstraeten and Poesen, 2001), A (Oksanen and Sarjakoski, 2005) or 75 

uncertainties regarding TR. Further substantial errors may be introduced by the TE 76 

(Rowan et al., 1995) and SDR estimation (USDA-SCS, 1983). Albeit some notable 77 

exceptions exist (e.g., Evans and Church, 2000; Verstraeten and Poesen, 2002; Baade et 78 

al., 2012), resulting uncertainties in sediment yield and catchment erosion data were 79 

rarely systematically assessed and reported. 80 

Here, we quantify the relative contribution of individual error sources to the total 81 

uncertainty inherent in SSY and E values that were inferred from high-resolution 82 

reservoir siltation surveys. The study is a contribution to a project that aims at the 83 

assessment of contemporary (<102 years) and long-term (>104 years) erosion rates in the 84 

southern Kruger National Park and we report contemporary mean SSY and E values for 85 

small to medium-sized catchments (≤100 km2) of 15 intermittently dry reservoirs. The 86 

structure of the paper is as follows: the section on materials and methods starts with a 87 

description of the study area and study sites. Then, the field-based determination of C, 88 

VS and dBD values is described in detail. Uncertainties regarding TR, the estimation of 89 

TE, the determination of A and the calculation of SDR are outlined, and the procedure 90 

for the assessment of the uncertainty propagation is presented. Thereafter, the results are 91 

shown, SSY values, E values and associated uncertainties are reported and the 92 

correlation between SSY values and catchment properties is explored. In the discussion 93 

section, the findings are compared to results from an earlier reconnaissance survey 94 

(Baade et al., 2012) that was carried out with a distinctively lower resolution. Finally, 95 

conclusions are drawn concerning an opportune survey and sampling strategy. 96 

 97 
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2. Materials and methods 98 

2.1. Study area and study site descriptions 99 

The Kruger National Park (KNP) is a 19,500 km2 large conservation area located in the 100 

northeast of South Africa (Fig. 1a). The area belongs to the tectonically stable 101 

"Lowveld" geomorphic province (Partridge et al., 2010) with the Great Escarpment to 102 

the west and the coastal plains of Mozambique to the east (Venter et al., 2003). The 103 

southern KNP is characterized by an undulating relief (Fig. 1b) with altitudes ranging 104 

from 150 to 840 m asl. (MacFayden et al., 2016). The entire region was subject to low 105 

denudation rates (<10 m Myr-1) throughout the Quaternary (Chadwick et al., 2013; 106 

Glotzbach et al., 2016). The climate is semi-arid with >85% of rainfall occurring 107 

between October and April (Venter et al., 2003) and monthly average temperatures 108 

ranging from 17 °C in June to 27 °C in January (Zambatis, 2006). These conditions 109 

support various subtypes of savanna vegetation. Major geological units 110 

 111 

 112 

Fig. 1. Location of the study area and investigated reservoir catchments (N = 15): (a) the Kruger 113 

National Park (KNP) within South Africa; (b) relief map of the southern KNP with catchments of 114 

the surveyed reservoirs (see Table 1); (c) major lithological units in the southern KNP. The 115 

hillshade representation of the relief was derived from the SRTMGL1 digital elevation model 116 

(USGS EROS, 2015). Lithological units are shown according to Petersen (2012), modified after 117 

Geological Survey of South Africa (1986a, b). 118 
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strike from north to south (Fig. 1c), with intrusive rocks (i.e., granite, gneiss and 119 

gabbro) in the west, volcanic rocks (i.e., basalt, rhyolite and granophyre) in the east, and 120 

a narrow stretch of sedimentary rocks (i.e., shales of the Ecca Group and sandstones) in 121 

between (Geological Survey of South Africa, 1986a, 1986b). Footslopes of granite areas 122 

are prone to the formation of solonetzes (Van Tol et al., 2015). Some of these sodic 123 

patches are nearly bare of vegetation and were identified as potential erosion hotspots 124 

partially supporting gully formation (Khomo and Rogers, 2005). Less than 3% of the 125 

KNP is directly disturbed by human infrastructure (Freitag-Ronaldson et al., 2003). 126 

Thus, large parts of the KNP can be considered intact wilderness (MacFayden, 2010). 127 

About 50 small reservoirs with earth and concrete dams were established in the 128 

KNP prior to 1975 to secure water provision for wildlife (Pienaar, 1985). They impound 129 

intermittent surface runoff and trap sediment. Water levels fall during extended 130 

droughts and rise rapidly within the course of runoff events (Reinwarth et al., 2018). 131 

Uncontrolled overflow spillways permit the release of water and suspended sediment 132 

when the water storage capacity is exhausted. Reservoir deposits are accumulated in the 133 

lowest parts of the reservoir basins (Fig. 2) and can be characterized as black silt loams  134 

 135 

 136 

Fig. 2. The dried-out Jones-Se reservoir in September 2015. Black silt loams in the lower part of 137 

the reservoir basin can be easily distinguished from bright adjacent soils and sediments. Close 138 

to the dam (in the foreground), the width of the reservoir deposits is about 50 m. The Leica 139 

GS10 base station on the dam crest to the left marks the local reference point (LRP) that was 140 

established for high-resolution surveying with the real-time kinematic global navigation 141 

satellite system (RTK GNSS). 142 

 143 
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(Reinwarth et al., 2017), referring to the texture nomenclature of the FAO (2014). They 144 

overlie soils and fluvial sediments that are typically brighter in colour and coarser in 145 

grain size (Baade et al., 2012). Surfaces of dry reservoir deposits exhibit prominent 146 

desiccation cracks, while footprints of large mammals (e.g., elephants and 147 

hippopotamus) point to intensive bioturbation. Bedload from tributaries is deposited 148 

close to the reservoir inlets and further upstream and consists mainly of sand and gravel. 149 

Here, reservoir siltation was assessed in nine reservoirs that dried-out 150 

temporarily between 2014 and 2016 (i.e., the Hartbeesfontein, Marheya, Mazithi, 151 

N'tswiriri, Jones-Se, Mlondozi, Mpanamana, Kumana and N'watimhiri reservoirs) and 152 

six reservoirs that were decommissioned between 2004 and 2015 (i.e., Lugmag, 153 

Silolweni, N'wanetsana, Newu 1, Newu 2 and Nhlanganzwani reservoirs). Dam failures 154 

occurred at the Mpanamana reservoir in 1968 and 1971 after which the dam was soon 155 

repaired (Baade et al., 2012). The dam of the Newu 1 reservoir broke during a major 156 

flood in 2000, was repaired, but eventually decommissioned in 2004. Thereafter, the 157 

free-flowing stream cut into the reservoir deposits, thereby eroding a significant 158 

proportion of the accumulated sediment. Prior to 2004, the Newu 1 and Newu 2 159 

reservoirs were impounded by the same dam, but fed by different tributaries. Both 160 

reservoirs became connected during flood events, but show clearly separated areas of 161 

sediment deposition. Thus, the Newu 1 and Newu 2 reservoirs are considered separately 162 

in this study. The Lugmag dam was damaged during a flood in 2012 and not repaired, 163 

but there was no indication for a substantial loss of reservoir deposits until the survey 164 

date. No dam failures have been reported for the other study sites. 165 

The reservoir catchments (Fig 1b) vary in size from 0.6 to 104 km2 and represent 166 

the diversity of environmental conditions in the southern KNP (Table 1). The mean 167 

slope inclination (Slope), derived from the Shuttle Radar Topographic Mission (SRTM) 168 
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1 arc-second (~30 m) digital elevation model (SRTMGL1, USGS EROS, 2015), ranges 169 

from 1.0° to 6.3° (Fig. 3a). The mean annual precipitation (MAP), interpolated from 170 

data of rainfall stations by means of Thiessen polygons (Reinwarth et al., 2018), varies 171 

between 530 and 670 mm (Fig. 3b). According to the fractional woody cover (WCOV) 172 

map by Bucini et al. (2010), mean WCOV values are 16% to 30% (i.e., grassland and 173 

open tree savanna) for catchments that are primarily underlain by 174 

 175 

Table 1 Catchment properties of the investigated reservoirs: catchment size (A); mean slope 176 

inclination (Slope; based on SRTMGL1, USGS EROS, 2015), mean annual precipitation (MAP; 177 

based on rainfall data from meteorological stations provided by SANParks Scientific Services, 178 

Skukuza, and interpolation with Thiessen polygons), mean fractional woody cover (WCOV; 179 

Bucini et al., 2010), area percentage of bare surfaces (BareSurf) and roads (based on aerial 180 

images; NGI, 2016) and catchment lithology (Geological Survey of South Africa, 1986a, 1986b). 181 

ID Reservoir A Slope MAP WCOV BareSurf  Roads Lithology 

  [km
2
] [°] [mm] [%] [%] [%]  

Hart Hartbeesfontein 4.2 2.4 560 41 3.3 0.3 
Granite/Gneiss (65%) 

Gabbro (35%) 

Mar Marheya 27.4 2.2 530 23 0.1 0.3 
Basalt (54%) 

Sandstone (46%) 

Lug Lugmag 47.4 1.9 550 40 0.3 0.6 Granite/Gneiss (100%) 

Maz Mazithi 19.9 1.0 550 25 <0.1 0.1 
Sandstone (99%) 

Basaltic rocks (1%)  

Nts N'tswiriri 5.5 2.4 550 36 <0.1 0.7 Granite/Gneiss (100%) 

Jon Jones-Se 6.2 2.5 550 41 <0.1 0.2 Granite/Gneiss (100%) 

Silo Silolweni 13.3 1.4 550 50 1.5 0.2 
Ecca Group (54%) 

Granite/Gneiss (46%) 

Nwa N'wanetsana 3.3 5.4 550 40 <0.1 0.0 Granite/Gneiss (100%) 

Mlo Mlondozi 104.2 1.8 580 16 0.1 0.3 
Basaltic rocks (88%) 

Rhyolite/Granophyre (12%) 

Newu 1 Newu 1 20.4 6.3 670 37 0.2 0.2 
Granite/Gneiss (89%) 

Gabbro (11%) 

Newu 2 Newu 2 0.6 3.2 670 33 0.4 0.0 Granite/Gneiss (100%) 

Nhlang Nhlanganzwani 16.5 3.0 580 30 0.6 0.2 
Basaltic rocks (50%) 

Rhyolte/Dacite (50%) 

Mpa Mpanamana 10.0 3.5 610 30 0.5 0.4 
Rhyolite/Dacite (54%) 

Basaltic rocks (46%) 

Kum Kumana 6.6 2.1 550 40 0.2 0.3 
Sandstone (96%) 

Ecca Group (4%) 

Hiri N'watimhiri 6.3 2.7 560 41 0.7 <0.1 Granite/Gneiss (100%) 
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 182 

 183 

Fig. 3. Overview on catchment properties of the investigated reservoirs: (a) catchment size and 184 

mean slope inclination (based on SRTMGL1, USGS EROS, 2015); (b) mean annual precipitation 185 

(based on rainfall data from meteorological stations provided by SANParks Scientific Services, 186 

Skukuza and Thiessen polygons); and mean fractional woody cover (Bucini et al., 2010); 187 

(c) area percentage of bare surfaces (excluding roads and rock exposures) and roads (NGI, 188 

2016). The predominant lithology of the catchments was derived from 1:250,000 geological 189 

maps (Geological Survey of South Africa, 1986a, 1986b). 190 

 191 

volcanic rocks, and 30% to 50% (i.e., bush and shrub savanna) for catchments being 192 

characterized by intrusive and sedimentary rocks. The only exception is the Mazithi 193 

catchment that is dominated by sandstone, but shows a low WCOV value of 25%. 194 

Several catchments encompass areas that are nearly bare of vegetation. Mapping the 195 

area percentage of bare surfaces (BareSurf) from aerial images acquired between 2008 196 

and 2010 (NGI, 2016) and excluding roads and erosion-resistant rock outcrops reveals 197 

BareSurf values >1% for the Hartbeesfontein (3.3%) and Silolweni catchments (1.5%) 198 

and values <1% for all other sites (Fig. 3c). Gully systems were detected in the 199 

Hartbeesfontein, Silolweni and Newu 1 catchments. The area percentage of roads 200 

(Roads) on the reservoir catchments, as derived from aerial images (NGI, 2016), ranges 201 

from 0.0% to 0.7%. 202 

 203 

204 
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2.2. Survey of the current reservoir basin topography 205 

The reservoir basins were surveyed using the Global Navigation Satellite System 206 

(GNSS). At each reservoir, a Local Reference Point (LRP) was established with 207 

reference to the South African network of continuously operating GNSS stations 208 

(TrigNet). High temporal resolution GNSS data (1 s) spanning 6 to 8 hours per day 209 

were collected using a Leica GS10 base station. Post-processing of TrigNet and LRP 210 

records to determine LRP coordinates was conducted with the software Leica Geo 211 

Office (vers. 8.4; Leica Geosystems, 2014). A real-time kinematic (RTK) GNSS survey 212 

of the basin topography was carried out along transects as exemplified in Fig. 4 for the  213 

 214 

 215 

Fig. 4. TIN representation of the Digital Terrain Model (DTM) for the present-day Jones-Se 216 

reservoir basin obtained from Terrestrial Laser Scanning (TLS), scan positions (TLS ScanPos), 217 

position of RTK GNSS survey points and location of depth soundings. Coordinates (in meters) 218 

refer to the UTM projection, Zone 36, WGS 84 Datum. Heights are shown in meters above the 219 

ellipsoid (HAE) of WGS 84. 220 

 221 
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Jones-se reservoir and included a survey of the reservoir deposits boundary. The survey 222 

point density was enhanced along terrain breaks (e.g., the dam, shoreline notches and 223 

banks). Each point was determined with reference to the LRPs using a Leica GS15 224 

rover operated in RTK mode with a measurement period of 10 s. The total number of 225 

RTK GNSS points for the ten reservoirs surveyed solely using RTK GNSS varied from 226 

300 to >1000 which corresponds to an average posting of 10 to 20 m (Table 2). 227 

 228 

Table 2 Spatial resolution of the RTK GNSS and TLS surveys and sediment mapping based on 229 

depth soundings (DS) with soil augers. 230 

Reservoir  Survey area [ha]  Number of points  Posting [m] 

  RTK GNSS TLS DS  RTK GNSS TLS
1)

 DS  RTK GNSS TLS
1)

 DS 

Hartbeesfontein  11.7 13.1 1.2  802 1.2 × 10
6
 45  12.1 0.25 16.6 

Marheya  22.2 n.a. 2.4  943 n.a. 39  15.3 n.a. 24.9 

Lugmag  38.5 n.a. 2.6  1075 n.a. 63  18.9 n.a. 20.2 

Mazithi  n.a. 27.2 1.2  n.a. 1.5 × 10
6
 26  n.a. 0.25 21.8 

N'tswiriri  n.a. 5.2 0.3  n.a. 3.4 × 10
6
 32  n.a. 0.10 8.9 

Jones-Se  9.3 17.9 0.6  574 2.0 × 10
6
 36  12.7 0.25 12.7 

Silolweni  46.7 n.a. 4.2  1087 n.a. 59  20.7 n.a. 26.6 

N'wanetsana  8.4 n.a. 0.3  682 n.a. 35  11.1 n.a. 9.1 

Mlondozi  20.3 26.5 5.1  435 3.5 × 10
6
 65  21.6 0.20 28.0 

Newu 1  26.2 n.a. 4.2  1291 n.a. 72  14.3 n.a. 24.2 

Newu 2  7.9 n.a. 0.2  301 n.a. 18  16.2 n.a. 11.6 

Nhlanganzwani  35.4 n.a. 3.7  854 n.a. 56  20.3 n.a. 25.7 

Mpanamana  n.a. 19.6 2.9  n.a. 1.4 × 10
6
 56  n.a. 0.25 22.6 

Kumana  n.a. 32.3 1.1  n.a. 2.6 × 10
6
 34  n.a. 0.25 18.2 

N'watimhiri  n.a. 7.5 0.4  n.a. 0.7 × 10
6
 34  n.a. 0.25 11.0 

Mean  22.7 18.7 2.0  804 2.0 × 10
6
 45  16.3 0.23 18.8 

1) For the ease of data processing, the posting of TLS data was reduced to 0.10 to 0.25 m. 231 

 232 

At eight reservoirs, the basin topography was surveyed with a Riegl VZ-1000 233 

Terrestrial Laser Scanner in 300 kHz acquisition mode providing a maximum range of 234 

about 450 m. Panorama scans with an angular resolution of 0.04° were conducted from 235 

several positions around the reservoir (Fig. 4) to minimize data gaps from occlusion. 236 

The point clouds were co-registered using RTK GNSS tie points and the Multi-Station 237 

Adjustment (MSA) tool implemented in RiScan Pro 2.5 (Riegl, 2017), where needed. 238 

Processing of the point cloud involved the limitation to single and last targets and the 239 
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removal of non-terrain points (e.g., vegetation) with the terrain filter implemented in 240 

RiScan Pro. The total number of terrain points obtained from laser scanning varies from 241 

41 to 100 × 106. However, for the ease of data processing, the original point clouds were 242 

reduced to data sets with 0.01 m vertical and 0.1 to 0.25 m horizontal resolution 243 

(Table 2). 244 

Accordingly, TLS data provide a very detailed representation of the basin 245 

topography which is evident in a >40 times higher average resolution for TLS than for 246 

RTK GNSS surveys. RTK GNSS and TLS surveys were carried out jointly in 247 

Hartbeesfontein, Jones-Se and Mlondozi reservoirs which permits a method 248 

comparison. Mean position errors (1σ) of TLS and GNSS survey points were <0.02 m 249 

with reference to established LRPs (Baade and Schmullius, 2016) and are therefore 250 

negligible (Balzter et al., 2016). 251 

 252 

2.3. Mapping of reservoir deposits 253 

The thickness of the reservoir deposits was mapped based on depth soundings with a 254 

Pürckhauer-type soil auger (1.5 m; Ø: 18 mm) and a gouge auger (3.4 m; Ø: 12 mm). 255 

Between 18 and 72 depth soundings were performed per reservoir along up to 14 256 

transects running perpendicular to the former thalweg. This corresponds to a posting 257 

ranging from 9 to 30 m for areas being currently covered with reservoir deposits 258 

(Table 2). For each depth sounding, the boundary between the post-dam facies (i.e., 259 

black silt loams; Fig. 2) and the pre-dam facies (i.e., soils and fluvial sediments) was 260 

identified based on colour and grain size. The validity of this visual identification has 261 

been confirmed by statistical analysis on physicochemical properties of 250 samples 262 

(Reinwarth et al., 2017). The distance between the facies boundary and the sediment 263 

surface equals the thickness of the reservoir deposits which was ascertained with a 264 

folding rule. When the boundary was not clearly identifiable, the minimum and 265 
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maximum sediment thickness were recorded and used separately in the calculation of 266 

the volume of the reservoir deposits. 267 

Errors in sediment thickness readings are mainly due to the probing with 268 

hammer-driven augers (Garrison, 2016). The sediment may become compacted as the 269 

auger is driven into the ground. On the opposite, friction may lead to a downward 270 

displacement of sediment when the auger is removed. Additional minor errors may arise 271 

from measuring inaccuracies. Effects of sediment compaction and displacement as well 272 

as measuring errors are random and likely averaged out with an increasing number of 273 

observations. The absolute uncertainty of mean values can be quantified with Eq. (3) 274 

assuming unbiased and normally distributed random errors (e.g., Crawley, 2007). 275 

 276 

N

t
Cl

N 1,025.0
95

−
⋅

=
σ

 (3) 

 277 

Cl95 denotes the uncertainty of the mean value at the 95% confidence level, N is the 278 

number of observations, σ is the standard deviation of all observations and t0.025, N-1 is 279 

the appropriate two-sided t value derived from Student's t distribution with N - 1 280 

degrees of freedom. 281 

Fig. 5 illustrates that the Cl95 uncertainty of the mean sediment thickness, 282 

obtained from all sediment thickness readings, decreases with an increasing number of 283 

depth soundings. Assuming unbiased and normally distributed 2σ errors of ±1 cm, 284 

±3 cm and ±5 cm for individual readings, the Cl95 uncertainty of the mean sediment 285 

thickness drops below ±1 cm (±2.5 cm) when the number of depth soundings exceeds 286 

3 (2), 11 (3) and 26 (6), respectively. It must be taken into account that errors 287 

 288 
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 289 

Fig. 5. The effect of unbiased and normally distributed errors in individual sediment thickness 290 

readings and the number of depth soundings on the (two-tailed) uncertainty of the 291 

determined mean sediment thickness. The uncertainty of the mean sediment thickness was 292 

calculated based on Student's t distribution and is displayed at the 95% confidence level. 293 

 294 

are probably not perfectly unbiased and normally distributed. Hence, the uncertainty of 295 

the mean sediment thickness was assumed to be ±2.5 cm for all reservoirs. 296 

 297 

2.4. Determination of the water storage capacity (C) of the reservoir and the volume 298 

of reservoir deposits (VS) 299 

In order to determine the water storage capacity (C) of the reservoirs and the volume of 300 

reservoir deposits (VS), three different digital terrain models (DTMs) were compiled for 301 

each reservoir. The first model represents the topography of the dried-out reservoir 302 

basin at the survey date (Fig. 4). This DTM was created from surface points surveyed 303 

either with the RTK GNSS or the TLS. The second model represents minimum altitude 304 

bounds for the reconstruction of the initial basin topography, and the third model the 305 

corresponding maximum altitude bounds. Minimum (and maximum) altitude bounds 306 

were calculated by subtracting the maximum (minimum) sediment thickness from the 307 

altitude of the current sediment surface. The difference between the second and third 308 
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version of DTMs represents the uncertainty that arises from depth soundings where the 309 

boundary between the pre- and post-dam facies was not clearly identifiable. 310 

All DTMs are based on triangular irregular network (TIN) interpolation carried 311 

out with the software ArcGIS 10.4 (Esri, 2015). For DTMs that were generated from 312 

RTK GNSS data and sediment thickness readings, breaklines representing the dams and 313 

other terrain features as well as reconstructed thalwegs were introduced to enhance the 314 

TIN representation of the basin topography. The position of thalwegs was approximated 315 

by connecting the lowest points in the reconstructed pre-dam topography of all depth 316 

sounding transects. For the Newu 1 reservoir where a channel cut into the reservoir 317 

deposits after the failure of the dam in 2000, the pre-erosional basin topography was 318 

reconstructed. This reconstruction is based on the interpolation between terraces 319 

consisting of reservoir deposits that were surveyed on both sides of the incised channel. 320 

For the Hartbeesfontein, Jones-Se and Mlondozi reservoirs, DTMs were generated both 321 

from the RTK GNSS and the TLS observations. 322 

The DTMs were used to derive the full supply area (AR) of the reservoirs, the 323 

initial water storage capacity (CR) and the storage capacity at the survey date (Cs). CR 324 

was determined by calculating the average of the respective minimum (CR, min) and 325 

maximum bounds (CR, max) that were obtained from the DTMs representing the 326 

maximum and minimum altitude bounds of the pre-dam topography, respectively. CS 327 

and AR were calculated assuming a height accuracy of ±2.5 cm for the elevation of the 328 

overflow spillway. For the spillways of the broken Newu 1 and Newu 2 dams, a lower 329 

height accuracy of ±5 cm was assumed. The volume of the reservoir deposits (VS) that 330 

accumulated during the lifetime of the reservoir equals the difference between CR and 331 

CS. In addition, the area that is currently covered with reservoir deposits (AS) was 332 

determined from data of the RTK GNSS survey. 333 
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Uncertainties in the calculation of VS arise from the random error in the 334 

determination of the mean sediment thickness (see section 2.3), whereby the mean 335 

sediment thickness equals the ratio of VS to AS. Further uncertainty is due to the 336 

difference between CR, max and CR, min that results from depth soundings for which the 337 

boundary between the pre- and post-dam facies was not clearly identifiable. Following 338 

Taylor (1997), the overall absolute uncertainty δVS was calculated with Eq. (4) where 339 

δVS, ran denotes the absolute random error at the 95% confidence level (Cl95), and 340 

δVS, boundary is the absolute uncertainty arising from the identification of the facies 341 

boundary. 342 

 343 

2

,

2

, boundarySranSVS VV ∂+∂=∂  (4) 

 344 

Depending on the posting of the depth soundings, additional errors may be introduced 345 

by the TIN interpolation (Heritage et al., 2009). However, in this study, the posting of 346 

depth soundings is rather low (i.e., high resolution) and comparable to (i.e., 0.7 to 347 

1.7 times) the posting of RTK GNSS survey points (Table 2). For the Hartbeesfontein, 348 

Jones-Se and Mlondozi reservoirs, where RTK GNNS and TLS survey data are both 349 

available, the Cl95 intervals of CS values obtained from the RTK GNSS-based and 350 

TLS-based DTMs are all overlapping. Hence, the effect of interpolation errors on 351 

VS values is assumed to be negligible. In this study, the random uncertainty δVS, ran is the 352 

major source of uncertainty contributing to δVS as it is 1 to >10 times higher than the 353 

uncertainty range δVS, boundary for all investigated reservoirs. Since δVS, ran values 354 

correspond to the 95% confidence level, δVS can be likewise interpreted as a Cl95 355 

interval. 356 

 357 
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2.5. Determination of the dry bulk density (dBD) 358 

Samples for the determination of the dry bulk density (dBD) of the reservoir deposits 359 

were gathered from the sediment surface (0 to 0.05 m) at various locations across the 360 

reservoir basin using stainless steel core rings (100 cm3; Ø: 50 mm). Up to three profiles 361 

per reservoir were established to examine dBD variations in the vertical dimension. 362 

Vertical sampling (up to 2.7 m) was conducted in central positions close to the dam and 363 

in the middle part of the reservoir basin. Subsurface samples were recovered 364 

alternatively with core rings or a liner sampler (0.3 m; Ø: 50 mm) using a sampling kit 365 

with extension rods (Eijkelkamp®). In the laboratory, liners were sub-sampled and the 366 

height of the aliquots (ca. 50 mm) was measured to determine the sample volume. Core 367 

ring and liner samples were weighed and oven-dried at 105 °C for at least 24 h after 368 

which no further weight reduction was recorded. The dBD was calculated by dividing 369 

the dry sample mass through the bulk sediment volume. In addition, the water content 370 

of the samples (in wt. %) was ascertained and is reported relative to the wet mass. 371 

The determination of the dBD was found to be more difficult for dry surfaces 372 

with abundant desiccation cracks. The cracks result from swelling and shrinkage of fine 373 

reservoir deposits with changing water content (Stewart et al., 2016) and are particularly 374 

prominent in areas with very fine deposits close to the dam. Driving core rings and 375 

liners into these surfaces frequently led to disruption of the sampled material, rendering 376 

dBD determination from these samples unreliable (Grossmann and Reinsch, 2002). 377 

Consequently, core ring and liner samples containing disrupted material were discarded. 378 

Instead, clod samples (0 to <0.15 m) were gathered to obtain dBD values from cracked 379 

surfaces. Following Burt and Soil Survey Staff (2014), three clods were collected within 380 

a circumference of 1 m to determine the average dBD for each sample location. Clods 381 

were reduced to about fist-size using hammer, chisel and spatula. Clod samples were 382 

                      Chapter 5 

 
88



 

 

oven-dried to ascertain the dry mass. Following Baade et al. (2012), the volume was 383 

determined by submerging the clods in oil and recording the volume displacement. A 384 

fluid with a high viscosity was chosen to prevent intrusion of liquid into clods. 385 

However, as the clods were not sealed (cf. Brasher et al., 1966), some oil intruded into 386 

pores and along cracks. Thus, clods were weighed prior to and after immersion. 387 

Immediately after the immersion, oil was allowed to drip off and the clod surface was 388 

thoroughly dried with paper towel. Hence, the weight difference can be attributed to 389 

intruded oil. The determined clod volume was corrected based on the determined mass 390 

increase and the density of the oil (mean ± Cl95: 0.91 ± 0.02 g cm-3) which was 391 

ascertained from three independent measurements. The clod method typically results in 392 

0.1 g cm-3 (Van Remortel and Shields, 1993) to 0.15 g cm-3 (Pires et al., 2011) higher 393 

dBD values than sampling with core rings, because the clod method does not fully 394 

account for the volume of macro pores and cracks. Thus, dBD values obtained from 395 

clods were diminished by 0.1 g cm-3, following Baade et al. (2012). 396 

Neither sampling with core rings nor the clod method account for the volume of 397 

large (up to 8 cm wide) desiccation cracks (Fig. 6). This leads to an overestimation of 398 

dBD values where desiccation cracks are prominent. Thus, the volume fraction of 399 

desiccation cracks on the bulk sediment was investigated. Rectangular reference areas 400 

(1 × 1 m) of cracked sediment surfaces were marked with folding rulers. Hand-held 401 

nadir photos were taken from about 1.5 m above ground and the mean depth of the 402 

cracks in the reference area was determined. Nadir photos were ortho-rectified and areas 403 

representing sediment columns and cracks were mapped to quantify the area percentage 404 

of cracks at the surface. The mean depth and mean area percentage of cracks were 405 

calculated from ten sample locations in total. Correction factors were compiled 406 

assuming v-shaped desiccation cracks (Cummins and Potter, 1967; Baade et al., 2012), 407 
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i.e., correction factors equal one minus the proportion of cracks on the sediment surface 408 

and increase linearly towards one with increasing sampling depth until the mean depth 409 

of the cracks is reached. The mapping of desiccation cracks revealed a mean area 410 

percentage and a mean depth (±Cl95) of 29 ± 6 % and 19 ± 3 cm with maximum values 411 

of up to 45% and 35 cm, respectively (Fig. 6). This results in correction factors of 0.75 412 

(or 0.86) for a mean sampling depth of 2.5 cm (10 cm). Corrected dBD values were 413 

obtained by multiplying correction factors and uncorrected dBD values. Mean dBD 414 

values with Cl95 uncertainties as well as coefficients of variation (CV) were calculated 415 

separately for the investigated reservoirs. In addition, these statistics were calculated 416 

from all site-specific means. No dBD data is available for the N'tswiriri reservoir for 417 

which the mean dBD value of the nearby N'wanitsana reservoir was adopted.  418 

 419 

 420 

Fig. 6. A heavily cracked sediment surface. Mapping reveals that up to 35 cm deep v-shaped 421 

desiccation cracks make up 45 % of the reference area. 422 

 423 

2.6. Duration of sediment accumulation (TR) 424 

The period of time (TR) during which the reservoir deposits were accumulated starts 425 

with the year of dam construction (TC) and ends with the year of surveying or dam 426 

decommissioning (TS). TC has been reported for most investigated reservoirs by Pienaar 427 

(1985) and Kloppers and Bornman (2005) as shown in Table 3. Since TS is known, this 428 
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implies a low uncertainty of ±1 year for most TR values. Unfortunately, TC is not exactly 429 

known for the Mazithi, Kumana and N'watimhiri reservoirs. A small dam next to the 430 

present-day Mazithi dam was already established in the 1930s (Pienaar, 1985), but 431 

aerial images (NGI, 2016) show that the Mazithi reservoir did not exist in its current 432 

configuration prior to 1944. The completion of the present-day Mazithi and Kumana 433 

dams was most probably associated to the establishment of a tar road that leads over 434 

both dam crests. Another tar road is situated on the crest of the N'watimhiri dam. The 435 

first tar roads within the KNP were established in 1961 (Freitag-Ronaldson and  436 

 437 

Table 3 Characteristics of reservoirs and reservoir catchments: year of dam construction (TC; 438 

according to Pienaar (1985) and Kloppers and Bornman (2005), year of a dam failure (if 439 

applicable), year of surveying or decommissioning (TS), effective time of sediment 440 

accumulation (TR) with maximum uncertainties, current status of the investigated reservoirs, 441 

i.e., either decommissioned (De) or active (Ac), trap efficiency (TE) estimates with uncertainties 442 

at the 95% confidence level (Reinwarth et al., 2018), catchment size (A) with 2σ uncertainties 443 

(modified after Baade and Schmullius, 2015) and estimated sediment delivery ratio (SDR) with 444 

uncertainties at the 95% confidence level (based on USDA-SCS, 1983). 445 

Reservoir TC Failure TS TR Status TE A SDR 

    [years]  [%] [km
2
]  

Hartbeesfontein 1950 – 2015 65 ± 1 Ac 70 ± 8 4.2 ± 0.1 0.30 ± 0.10 

Marheya 1970 – 2014 44 ± 1 Ac 71 ± 8 27.4 ± 0.8 0.20 ± 0.10 

Lugmag 1957 2012 2012 55 ± 1 De 40 ± 10 47.4 ± 1.3 0.20 ± 0.10 

Mazithi 1961
1)

 – 2016 49 ± 8 Ac 60 ± 15 19.9 ± 0.6 0.25 ± 0.10 

N'tswiriri 1960 – 2016 56 ± 1 Ac 50 ± 10 5.5 ± 0.2 0.30 ± 0.10 

Jones-Se 1957 – 2015 58 ± 1 Ac 56 ± 9 6.2 ± 0.2 0.30 ± 0.10 

Silolweni 1969 – 2008 39 ± 1 De 72 ± 6 13.3 ± 0.4 0.25 ± 0.10 

N'wanetsana 1960 – 2014 54 ± 1 De 50 ± 10 3.3 ± 0.1 0.35 ± 0.15 

Mlondozi 1951 – 2016 65 ± 1 Ac 25 ± 10 104.2 ± 2.9 0.15 ± 0.05 

Newu 1 1971 2000 2004 31 ± 2 De 80 ± 15 20.4 ± 0.6 0.25 ± 0.10 

Newu 2 1971 – 2014 43 ± 1 De 91 ± 8 0.6 ± 0.1 0.45 ± 0.15 

Nhlanganzwani 1956 – 2007 51 ± 1 De 83 ± 8 16.5 ± 0.5 0.25 ± 0.10 

Mpanamana 1958 1968, 1971 2016 52 ± 8 Ac 70 ± 10 10.0 ± 0.3 0.25 ± 0.10 

Kumana 1961
1)

 – 2015 48 ± 7 Ac 90 ± 8 6.6 ± 0.2 0.30 ± 0.10 

N'watimhiri 1961
1)

 – 2015 46 ± 9 Ac 89 ± 8 6.3 ± 0.2 0.30 ± 0.10 

1) The construction of the first tar roads in the KNP in 1961 represents a maximum age for the Mazithi, 446 

Kumana and N'watimhiri reservoirs. A minimum age was derived from aerial images. 447 

 448 
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Foxcroft, 2003) which is interpreted as a maximum age for the three reservoirs. A 449 

minimum age can be derived from aerial images (NGI, 2016) indicating that the Mazithi 450 

and Kumana reservoirs were installed prior to 1974, while the N'watimhiri reservoir was 451 

built before 1978. Adopting the mean value of minimum and maximum ages results in 452 

TR values of 49 ± 8, 48 ± 7 and 46 ± 9 years for the Mazithi, Kumana and N'watimhiri 453 

reservoirs, respectively. For the Mpanamana reservoir that was established in 1958, it is 454 

unknown how much reservoir deposits were removed due to dam failures prior to 1971. 455 

This results in an uncertainty of ±8 years for the TR value. Likewise, an uncertainty of 456 

±2 years was adopted for the Newu 1 reservoir, since it is unclear whether the backward 457 

incision of the channel started as a consequence of the dam failure in 2000 or only after 458 

the decommissioning in 2004. Hence, the relative uncertainty of TR values (εTR) ranges 459 

from ±2% to ±20% among the investigated reservoirs. 460 

 461 

2.7. Estimation of the sediment trap efficiency (TE) 462 

The sediment trap efficiency (TE) of the reservoirs has been estimated with a modelling 463 

framework described in detail by Reinwarth et al. (2018). This framework takes into 464 

account that the reservoirs spill only during infrequent runoff events when the water 465 

storage capacity is exhausted, while a TE of 100% can be assumed for extended periods 466 

without spillage. In the absence of runoff records, catchment runoff was simulated with 467 

the daily time-step Pitman rainfall-runoff model (Pitman, 1976). The relationship 468 

between water and sediment discharge was modelled based on sediment rating curves. 469 

Nine scenarios were established to cope with uncertainties that arise from hydrological 470 

modelling and assumptions concerning sediment rating curves (for details, see 471 

Reinwarth et al., 2018). The mean TE was calculated from all nine scenarios and ranges 472 
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from 25% to >90% among the reservoirs (Table 3). The relative Cl95 uncertainty (εTE) 473 

of the mean TE varies between ±8% and ±37%. 474 

 475 

2.8. Determination of the catchment size (A) 476 

The catchment area of the reservoirs (Fig. 1b, c) was ascertained separately from six 477 

different digital elevation models (DEMs) using the software ArcHydro Tools (Esri 478 

Water Resources Team, 2014). Baade and Schmullius (2015) delineated the catchments 479 

based on the 0.4 (~12 m), 1 (~30 m) and 3 arc-second (~90 m) versions of the 480 

TanDEM-X Intermediate DEM (IDEM; Bräutigam et al., 2014) and the void-filled 481 

1 arc-second (SRTM1GL, USGS EROS, 2015) and 3 arc-second versions (SRTM4.1, 482 

Jarvis et al., 2008) of the Shuttle Radar Topography Mission (SRTM) DEM. In 483 

addition, the catchment size was determined from the 1 arc-second version of the final 484 

TanDEM-X DEM (Zink et al., 2016) that became available in April 2017. For each 485 

reservoir, the mean catchment size (A) and the corresponding 2σ deviation were derived 486 

from all six DEMs (Table 3). The mean relative 2σ deviation (εA) amounts to ±3% and 487 

was adopted as a general uncertainty estimate for catchment size in this study. 488 

 489 

2.9. Estimation of the sediment delivery ratio (SDR) 490 

The majority of worldwide observations on the mobilization and transport of sediments 491 

in river catchments <104 km2 points to a decreasing sediment delivery ratio (SDR) with 492 

increasing catchment size (A) (de Vente et al., 2007). Many authors have argued for an 493 

exponential relationship (Eq. 5) with empirically fitted coefficients κ1, κ2, and κ3 (e.g., 494 

Auerswald, 1989). 495 

2

13

κ
κκ ASDR ⋅+=  (5) 

 496 
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The prediction of the SDR with Eq. (5) represents a black-box concept (Walling, 1983), 497 

since influencing factors such as rainfall conditions, contributions from different 498 

sediment sources, sediment and hydrologic connectivity in catchments and 499 

characteristics of the eroded material (Klaghofer et al., 1992; Lu et al., 2006; Wohl et 500 

al., 2017) are not taken into account. It is therefore expectable that relationships 501 

between SDR and A are variable (Fryirs, 2013). 502 

Table 4 shows values for the coefficients κ1, κ2, and κ3, derived from data 503 

presented by USDA-SCS (1983), from which minimum, maximum, and best estimates 504 

for SDR values can be calculated based on Eq. (5). Best estimates according to 505 

USDA-SCS (1983) were adopted in this study and the respective uncertainty was 506 

calculated at the 95% confidence level (Cl95). For this, a normal distributed deviation 507 

of SDR values from best estimates was assumed. Minimum and maximum estimates 508 

were interpreted as 3σ bounds (i.e., 99.7% of SDR values fall in between). Based on 509 

these assumptions, Cl95 intervals were calculated from equidistant percentiles (i.e., 510 

0.1%, 17%, 33%, 50%, 67%, 83%, and 99.9%). Accordingly, best estimates for SDR 511 

values range from 0.15 to 0.45 for the study sites (Table 3) with relative uncertainties 512 

(εSDR) varying from ±35% to ±42% (Fig. 7). 513 

 514 

Table 4 Values for the parameters κ1, κ2 and κ3 in Eq. (5) for the estimation of the sediment 515 

delivery ratio based on catchment size according to USDA-SCS (1983). 516 

 κ1 κ2 κ3 Unit of A 

Minimum estimate 0.103 -0.299 0.005 mi
2
 

Best estimate 0.644 -0.096 -0.302 mi
2
 

Maximum estimate 1.902 -0.048 -1.331 mi
2
 

Note: 1 mi
2
 equals 2.59 km

2 
517 

 518 
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 519 

Fig. 7. Relationship between catchment size and sediment delivery ratio (SDR) according to 520 

USDA-SCS (1983) (see Eq. 5 and Table 4) and SDR estimates for all reservoir catchments. Error 521 

bars depict uncertainties at the 95% confidence level. 522 

 523 

2.10. Assessment of uncertainty propagation and fractional uncertainty 524 

contributions 525 

The mean area-specific sediment yield (SSY) of the reservoir catchments and a best 526 

estimate for catchment-wide average rates of erosion by water (E) were calculated with 527 

Equations (1) and (2). In addition, an estimate for minimum catchment-wide rates of 528 

erosion by water (Emin) was calculated with Eq. (6) from the mass of sediment trapped 529 

in the reservoirs. 530 

 531 

AT

dBDV
E

R

S

⋅

⋅
=min

 (6) 

 532 

Accordingly, Emin does not account for eroded material that is released to downstream 533 

reaches when the reservoir spills (i.e., the reservoir trap efficiency, TE) and sediment 534 

that is temporarily stored in the catchment (i.e., the sediment delivery ratio, SDR). 535 

The propagation of uncertainties was quantified following Taylor (1997). 536 

Accordingly, the relative uncertainty εSSY of SSY values results from the propagation of 537 
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relative uncertainties in the determined volume (εVS) and dry bulk density (εdBD) of the 538 

reservoir deposits, the period of time during which the reservoir deposits were 539 

accumulated (εTR), the catchment size (εA) and the trap efficiency (εTE) as shown in 540 

Eq. (7). 541 

 542 

22222

TEATRdBDVSSSY εεεεεε ++++=  (7) 

 543 

The relative uncertainties εVS, εdBD and εTE represent uncertainties at the 95% 544 

confidence level (Cl95) and εA is a mean 2σ deviation where 95% of all values are 545 

expected to fall within the error margins when normally distributed errors are assumed. 546 

The uncertainty εTR is a maximum uncertainty, but, in general, low compared to other 547 

uncertainties. Hence, the resulting εSSY value can be interpreted as a 95% confidence 548 

interval. The fractional uncertainty contribution (FUCX, SSY) of individual factors X (i.e., 549 

TR, VS, dBD, A and TE) to the overall uncertainty inherent in SSY values was quantified 550 

with Eq. (8). 551 

 552 

2

2

,

SSY

X
SSYXFUC

ε

ε
=  (8) 

 553 

The relative uncertainty of best estimates for catchment-wide average erosion rates (εE) 554 

and the fractional uncertainty contribution (FUCSDR, E) of the relative uncertainty of the 555 

sediment delivery ratio (εSDR) to εE were quantified analogously with the Equations (9) 556 

and (10), respectively.  557 

 558 
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ε
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 559 

Since εSDR is expressed at the 95% confidence level, εE can be likewise interpreted as a 560 

relative Cl95 uncertainty. The relative uncertainty of Emin values (εEmin) was calculated 561 

with Eq. (7), whereby εTE was set to zero. 562 

The mean of relative uncertainties and fractional uncertainty contributions 563 

obtained from all studies was determined and is reported together with the respective 564 

Cl95 interval (Eq. 3). For SSY, E and Emin values, the mean and median were both 565 

calculated to facilitate comparison with published values from related studies. The 566 

boundaries of asymmetric Cl95 intervals for median values were derived with the 567 

adjusted percentile bootstrap method from Davison and Hinkley (1997, p. 203f.). The 568 

calculations were performed with the R software package 'boot' (Canty and Ripley, 569 

2017) based on 10,000 ordinary bootstrap replicates. The high number of replicates 570 

ensures reproducible results. 571 

 572 

3. Results and interpretation 573 

3.1. Water storage capacity (C) and volume of reservoir deposits (VS) 574 

The analysis of survey data reveals full supply areas (AR) varying from 0.6 to 16.0 ha 575 

for the investigated reservoirs (Table 5). The present-day water storage capacity (CS) is 576 

lowest for the N'wanetsana reservoir (3,700 ± 100 m3) and highest for the Newu 1 577 

reservoir (312,400 ± 4,200 m3). Relative uncertainties of CS values are low, ranging 578 

from ±1% to ±4%. Moreover, RTK GNSS and TLS data for the Hartbeesfontein, Jones-579 
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Se and Mlondozi reservoirs result in CS values that differ by ≤3% and show overlapping 580 

uncertainty intervals. 581 

Reservoir deposits show a 'wedge-shaped' distribution (Morris and Fan, 1998) in 582 

all investigated reservoirs, i.e., the sediment thickness is highest close to the dam and 583 

decreases steadily towards the reservoir inlet and the shorelines. This is illustrated in 584 

Fig. 8 for the Jones-Se reservoir where the sediment thickness reaches 2.4 m close to the 585 

 586 

Table 5 Water storage capacity, volume of reservoir deposits and silting ratio for all 587 

investigated reservoirs. 588 

Reservoir Survey  Reservoir basin  Reservoir deposits  Silting ratio 

   AR CS CR  AS VS VS/AS  AS/AR VS/CR 

   [ha] [10
3
 m

3
] [10

3
 m

3
]  [ha] [10

3
 m

3
] [m]  [%] [%] 

Hartbeesfontein 
RTK GNSS 

TLS 
 

3.0 

2.8 

30.1 ± 0.8 

31.1 ± 0.7 

39.9 ± 0.8 

41.3 ± 0.8 
 1.2 9.8 ± 0.4 0.79  

41 

44 

25 

24 

Marheya RTK GNSS  6.8 100.6 ± 1.7 106.9 ± 1.9  2.4 6.3 ± 0.7 0.26  36 6 

Lugmag RTK GNSS  12.0 143.0 ± 3.0 156.7 ± 3.1  2.6 13.8 ± 0.7 0.54  21 9 

Mazithi TLS  5.0 50.1 ± 1.2 57.2 ± 1.4  1.2 7.1 ± 0.5 0.57  25 12 

N'tswiriri TLS  1.0 9.9 ± 0.2 11.6 ± 0.2  0.3 1.7 ± 0.1 0.67  27 15 

Jones-Se 
RTK GNSS 

TLS 
 

2.3 

2.4 

24.3 ± 0.6 

23.7 ± 0.7 

27.5 ± 0.7 

26.8 ± 0.8 
 0.6 3.1 ± 0.3 0.54  

25 

24 

11 

12 

Silolweni RTK GNSS  11.2 144.9 ± 2.8 162.3 ± 3.1  4.2 17.4 ± 1.4 0.41  37 11 

N'wanetsana RTK GNSS  0.6 3.7 ± 0.1 5.1 ± 0.2  0.3 1.3 ± 0.1 0.46  52 26 

Mlondozi 
RTK GNSS 

TLS 
 

9.3 

9.8 

106.9 ± 2.3 

108.6 ± 1.7 

140.8 ± 2.2 

142.6 ± 2.7 
 5.1 33.9 ± 1.3 0.66  

55 

52 

24 

24 

Newu 1 RTK GNSS  8.5 312.4 ± 4.2 349.4 ± 4.4  4.2 37.1 ± 1.2 0.88  50 11 

Newu 2 RTK GNSS  2.8 35.0 ± 1.4 35.9 ± 1.4  0.2 0.9 ± 0.1 0.36  9 2 

Nhlanganzwani RTK GNSS  16.0 256.6 ± 4.0 279.4 ± 4.1  3.7 22.9 ± 1.0 0.62  23 8 

Mpanamana TLS  7.9 72.7 ± 2.0 101.2 ± 2.1  2.9 28.5 ± 0.7 1.00  36 28 

Kumana TLS  11.1 140.7 ± 2.8 145.5 ± 2.8  1.1 4.8 ± 0.4 0.43  10 3 

N'watimhiri TLS  4.1 66.2 ± 1.0 67.5 ± 1.0  0.4 1.3 ± 0.2 0.30  10 2 

Note: full supply area (AR), current water storage capacity (CS), initial water storage capacity 589 

(CR), area covered by reservoir deposits (AS), volume of reservoir deposits (VS), mean sediment 590 

thickness (VS/AS), area-related silting ratio (AS/AR) and volume-related silting ratio (VS/CR). 591 

 592 

 593 
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 594 

Fig. 8. Digital Terrain Model (DTM) of the central part of the Jones-Se reservoir basin obtained 595 

from TIN interpolation of RTK GNSS survey points, variations in the thickness of reservoir 596 

deposits derived from depth soundings (DS), and sample locations of surface samples (core 597 

ring and clod) and vertical sample profiles (VP1 and VP2) for the determination of the dry bulk 598 

density (dBD). Coordinates (in meters) refer to the UTM projection, Zone 36, WGS 84 Datum. 599 

Heights are shown in meters above the WGS 84 ellipsoid. 600 

 601 

dam. Here, the area being covered with reservoir deposits (AS) encompasses 0.6 ha 602 

which is 25% of the full supply area. For all other reservoirs, AS ranges from 0.2 to 603 

5.1 ha with AS/AR ratios of 9% to 55%. The volume of the reservoir deposits (VS) varies 604 

from 900 to 37,100 m3 which implies a low mean sediment thickness (VS/AS) of 0.26 to 605 

1.00 m. The reconstructed initial water storage capacity (CR) ranges from 5,100 m3 to 606 

349,400 m3 and the silting ratio (VS/CR) indicates that 2% to 28% of the initial storage 607 

capacity has been lost by reservoir siltation. Relative uncertainties in the determination 608 

of VS range from ±3% to ±16%. 609 

 610 

 611 
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3.2. Variability of the dry bulk density (dBD) 612 

The dry bulk density (dBD) of the reservoir deposits shows little evidence for 613 

systematic variations with sediment depth, but some scattering is recognizable in dBD 614 

values that were obtained from surface samples. This is exemplified for the Jones-Se 615 

reservoir in Fig. 9. The majority of samples taken from >50 cm depth, including the 616 

vertical profiles VP1 and VP2 (see Fig. 8), give almost identical dBD values of 1.1 to 617 

1.3 g cm-3 (Fig. 9a). The dBD of samples from ≤50 cm depth ranges from 0.9 to 618 

1.5 g cm-3. At the day of sampling, the water content was nearly constant (ca. 30 wt. %) 619 

in >50 cm depth, and decreased from about 50 cm depth towards the sediment surface 620 

(Fig. 9b). 621 

 622 

 623 

Fig. 9. Variability of the (a) dry bulk density and (b) water content of core ring and clod samples 624 

gathered from reservoir deposits in the Jones-Se reservoir. The vertical sample profiles VP1 625 

and VP2 (see Fig. 8) are highlighted. 626 

 627 

Clod samples from the surface reveal a water content of <10 wt.%, while the 628 

water content of core ring samples is ≥10 wt.%. This elucidates that the core ring 629 

method frequently leads to disruption of sediment with a water content <10 wt.%. 630 

Following the corrections for desiccation cracks and the intrusion of oil in the volume 631 

determination for clods (see section 2.5), there is no significant offset between dBD 632 

values obtained from core ring and clod samples. The coefficient of variation for dBD 633 
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values obtained from all samples is 10% and the mean dBD value (±Cl95) for the Jones-634 

Se reservoir amounts to 1.2 ± 0.1 g cm-3. 635 

For all other reservoirs, the mean dBD ranges from 0.6 to 1.5 g cm-3. Site-636 

specific standard deviations (σdBD) vary between 0.10 and 0.26 g cm-3 (Table 6) which 637 

leads to coefficients of variation (CVdBD) of 8% to 22%. The Cl95 intervals of most site-638 

specific mean dBD values overlap with the Cl95 interval of the overall average of all 639 

site-specific mean dBD values of 1.13 ± 0.12 g cm-3 (Fig. 10). The only exceptions are 640 

the site-specific mean dBD values of the Mpanamana (0.63 ± 0.11 g cm-3) and Kumana 641 

reservoirs (1.41 ± 0.07 g cm-3). Relative uncertainties (εdBD) of site-specific mean dBD 642 

values range from 3% to 17%. 643 

 644 

Table 6 Dry bulk density (dBD) of reservoir deposits: number of samples (N), mean values with 645 

uncertainties at the 95% confidence level (Cl95), standard deviation (σdBD) and coefficient of 646 

variation (CVdBD) for the investigated reservoirs (N = 14). 647 

Reservoir N Mean ± Cl95 σdBD CVdBD 

  [g cm
3
] [g cm

3
] [%] 

Hartbeesfontein 58 1.08 ± 0.06 0.22 20 

Marheya 18 1.13 ± 0.10 0.20 18 

Lugmag 46 1.15 ± 0.08 0.25 22 

Mazithi 6 1.22 ± 0.10 0.10 8 

Jones-Se 64 1.16 ± 0.03 0.12 10 

Silolweni 68 1.32 ± 0.05 0.19 14 

N'wanetsana 29 1.20 ± 0.06 0.14 12 

Mlondozi 8 0.94 ± 0.12 0.14 15 

Newu 1 45 1.09 ± 0.06 0.21 19 

Newu 2 9 1.43 ± 0.20 0.26 18 

Nhlanganzwani 72 1.06 ± 0.05 0.20 19 

Mpanamana 6 0.63 ± 0.11 0.10 16 

Kumana 29 1.41 ± 0.07 0.18 13 

N'watimhiri 31 1.00 ± 0.08 0.21 21 

All sites 14 1.13 ± 0.11 0.18 16 

 648 
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 649 

Fig. 10. Mean dry bulk density (dBD) of reservoir deposits with uncertainties at the 95% 650 

confidence level and predominant catchment lithology. The horizontal dashed line depicts the 651 

average of all site-specific mean dBD values (N = 14) and the corresponding 95% confidence 652 

uncertainty bounds. 653 

 654 

3.3. Minimum catchment-wide rates of erosion by water (Emin), mean area-specific 655 

sediment yield (SSY), and best estimates for catchment-wide average rates of 656 

erosion by water (E) 657 

Minimum catchment-wide rates of erosion by water (Emin) determined from the mass of 658 

the reservoir deposits range from 4 to 64 t km-2 yr-1 with a mean of 20 ± 10 t km-2 yr-1 659 

and median of 10 [5, 35] t km-2 yr-1 (Cl95) for all study sites. Relative uncertainties of 660 

Emin values (εEmin) vary between ±5% and ±23% reflecting mainly the uncertainty of the 661 

volume and dry bulk density determination. However, Emin values do not account for the 662 

reservoir trap efficiency and sediment delivery ratio being considered in area-specific 663 

sediment yield (SSY) and catchment-wide average rates of erosion by water (E). 664 

SSY varies from 5 to 80 t km-2 yr-1 (Table 7) with an overall mean (and median) 665 

of 30 ± 10 t km-2 yr-1 (20 [15, 50] t km-2 yr-1). Relative uncertainties (εSSY) range from 666 

±12% to ±40% and are therefore much lower than the variability of SSY values among 667 

the individual catchments. This variability may be partially attributable to differing 668 

catchment properties (Fig. 11). SSY values correlate highly significant (Pearson's  669 
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Table 7 Minimum catchment-wide rates of erosion by water (Emin), mean area-specific 671 

sediment yield (SSY, corrected for TE), and best estimates (E, corrected for TE and SDR) for 672 

catchment-wide average rates of erosion by water for all study sites with relative uncertainties 673 

(εEmin, εSSY, and εE) expressed at the 95% confidence level. 674 

Reservoir  Emin εEmin  SSY εSSY  E εE 

  [t km
-2

 yr
-1

] [%]  [t km
-2

 yr
-1

] [%]  [t km
-2

 yr
-1

] [%] 

Hartbeesfontein  39 ± 3 7  55 ± 8 14  175 ± 75 42 

Marheya  6 ± 1 10  8 ± 2 19  40 ± 20 46 

Lugmag  6 ± 1 8  15 ± 4 28  80 ± 40 51 

Mazithi  9 ± 2 18  15 ± 5 30  65 ± 35 51 

N'tswiriri  7 ± 1 6  14 ± 3 24  45 ± 20 46 

Jones-Se  10 ± 1 5  18 ± 4 20  60 ± 30 45 

Silolweni  44 ± 3 6  62 ± 8 13  245 ± 105 43 

N'wanetsana  9 ± 1 7  18 ± 4 22  55 ± 25 45 

Mlondozi  5 ± 1 13  17 ± 7 40  115 ± 65 58 

Newu 1  64 ± 6 9  80 ± 20 21  360 ± 170 47 

Newu 2  49 ± 7 15  55 ± 10 19  125 ± 50 40 

Nhlanganzwani  29 ± 2 6  35 ± 4 12  145 ± 65 43 

Mpanamana  35 ± 8 23  50 ± 10 27  190 ± 95 49 

Kumana  21 ± 3 15  24 ± 5 20  85 ± 35 45 

N'watimhiri  4 ± 1 21  5 ± 1 28  15 ± 10 49 

Mean  20 ± 10 11  30 ± 10 21  120 ± 50 46 

Median  10 [5, 35] 9  20 [15, 50] 21  85 [55, 145] 45 

 675 

R = 0.71; p < 0.01) with mean annual precipitation (MAP). The correlation coefficient 676 

increases to R = 0.92 (p < 0.001) when the Hartbeesfontein and Silolweni catchments 677 

are excluded. Moreover, a weakly significant correlation (R = 0.45; p < 0.10) exists 678 

between SSY values and the mean slope inclination (Slope). This correlation is highly 679 

significant (R = 0.68; p < 0.01) when the Hartbeesfontein and Silolweni catchments are 680 

excluded. MAP and Slope values covary which is evident in a significant correlation 681 

coefficient of R = 0.58 (p < 0.03). 682 

The Hartbeesfontein and Silolweni catchments, revealing outlying values in the 683 

SSY to MAP and SSY to Slope relationships, show by far the highest area percentage of 684 

bare surfaces (BareSurf ≥ 1.5%). SSY and BareSurf values show a weakly significant 685 

correlation (R = 0.44; p = 0.10), but this relationship becomes insignificant (R = 0.22; 686 

p = 0.5) when the Hartbeesfontein and Silolweni catchments are excluded. Gullied 687 
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catchments (i.e., the Hartbeesfontein, Silolweni and Newu 1 catchments) show the 688 

highest SSY values (≥55 t km-2 yr-1) among the study sites. SSY values and catchment 689 

size (A) exhibit a negative, but insignificant correlation (R = -0.22; p = 0.4). No 690 

significant correlation was found between SSY values and the mean fractional woody 691 

cover (WCOV; R = 0.29; p = 0.3) and the area percentage of roads (Roads; R = -0.19; 692 

p = 0.5). Moreover, there is no obvious relationship between SSY values and the 693 

predominant catchment lithology. 694 

 695 

 696 

Fig. 11. Relationships between area-specific sediment yield (SSY) values and (a) catchment size, 697 

(b) mean slope inclination, (c) mean annual precipitation, (d) mean fractional woody cover, (e) 698 

area percentage of roads, and (f) area percentage of bare surfaces. Error bars depict 699 

95% confidence intervals. For significant relationships (p ≤ 0.10), linear fits are depicted 700 

together with uncertainty bounds corresponding to the 95% confidence level (Cl95). 701 

 702 

Best estimates for catchment-wide average rates of erosion by water (E) are 703 

≥15 t km-2 yr-1 and ≤190 t km-2 yr-1 (Fig. 12) except for the gullied Silolweni 704 

(245 ± 105 t km-2 yr-1) and Newu 1 catchments (360 ± 170 t km-2 yr-1). A comparatively 705 

high value was also determined for the Hartbeesfontein catchment 706 
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(175 ± 75 t km-2 yr-1), thus, highlighting the potential role of gully erosion in elevating E 707 

values. The overall mean and median E value for all study sites amounts to 708 

120 ± 50 t km-2 yr-1 and 85 [55, 145] t km-2 yr-1 (Cl95), respectively (Table 7). 709 

Excluding gullied catchments results in a mean (and median) E value of 710 

85 ± 30 t km-2 yr-1 (70 [45, 115] t km-2 yr-1). Relative uncertainties of E values (εE) 711 

range from ±40% to ±58% and are, thus, on average more than three times higher than 712 

εSSY values. This leads to overlapping uncertainty intervals for most catchment-specific 713 

E values and impedes the analysis of correlations between catchment properties and 714 

average erosion rates. 715 

 716 

 717 

Fig. 12. Best estimates for catchment-wide average rates of erosion by water for catchments 718 

of all investigated reservoirs. Error bars depict uncertainties at the 95% confidence level. 719 

 720 

3.4. Uncertainty propagation and fractional uncertainty contribution 721 

Table 8 provides an overview on the relative uncertainty (εX) and fractional uncertainty 722 

contribution (FUCX, SSY) of individual factors (X) to the overall uncertainty inherent in 723 

SSY values. FUCVS, SSY values are ≤39% at all study sites and amount to 11% on average. 724 

FUCdBD, SSY values reveal a similar average of 14%, whereby the rather high FUCdBD, SSY 725 

values for the Newu 2 (56%) and Mpanamana reservoirs (40%) can be attributed to the  726 

 727 
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Table 8 Relative uncertainty (εX) of individual factors (X) and their fractional uncertainty 728 

contribution (FUCX, SSY and FUCX, E) to the overall uncertainty inherent in area-specific sediment 729 

yield (SSY) and best estimates for catchment-wide average rates of erosion by water (E). 730 

Reservoir  εVS εdBD εTR εTE εA  εSDR  FUCVS, SSY FUCdBD, SSY FUCTR, SSY FUCTE, SSY  FUCA, SSY  FUCSDR, E 

  [%] [%] [%] [%] [%]  [%]  [%] [%] [%] [%]  [%]  [%] 

Hartbeesfontein  4 6 2 11 3  39  8 17 1 70  4  89 

Marheya  12 9 2 11 3  42  38 22 1 36  2  83 

Lugmag  5 7 2 27 3  42  4 6 <1 89  1  69 

Mazithi  8 8 16 23 3  41  6 7 28 58  1  64 

N'tswiriri  4 5 2 23 3  40  2 4 1 91  1  74 

Jones-Se  11 3 2 16 3  40  30 2 1 65  2  80 

Silolweni  8 4 3 8 3  41  39 9 4 43  5  91 

N'wanetsana  6 5 2 20 3  39  7 5 1 86  2  76 

Mlondozi  4 13 2 37 3  42  1 10 <1 88  <1  53 

Newu 1  3 6 6 19 3  41  2 7 9 81  2  79 

Newu 2  8 14 2 9 3  35  18 56 2 22  2  78 

Nhlanganzwani  4 5 2 10 3  41  12 15 3 64  5  92 

Mpanamana  3 17 15 14 3  41  1 40 31 27  1  69 

Kumana  9 5 15 9 3  40  20 6 52 19  2  80 

N'watimhiri  16 8 20 9 3  40  33 8 48 10  1  67 

Mean  7 8 6 16 3  40  11 14 9 64  2  79 

Note: individual factors are the volume (VS) and dry bulk density (dBD) of reservoir deposits, the period 731 

of time (TR) during which the reservoir deposits were accumulated, the reservoir trap efficiency (TE), the 732 

catchment size (A) and the sediment delivery ratio (SDR) 733 

 734 

small number of dBD samples (N < 10) collected at these sites. Uncertainties regarding 735 

the period of time during which the reservoir deposits were accumulated (FUCTR, SSY) 736 

contribute ≤4% to the uncertainty of SSY values when the year of dam construction is 737 

documented, but reach up to 52% otherwise. The contribution of uncertainties in the 738 

estimation of the trap efficiency (FUCTE, SSY) ranges from 10% to 91% with a mean of 739 

64%. Hence, the TE estimation contributes on average more than four times more 740 

uncertainty to SSY values than all other factors (Fig. 13). The fractional uncertainty 741 

contribution arising from the delineation of the catchment area (FUCA, SSY) is ≤5% and 742 

therefore unimportant. The uncertainty of E values is mainly due to uncertain sediment 743 

delivery ratios (SDR) which is reflected in FUCSDR, E values ranging from 53% to 92% 744 

with a mean of 79% (Table 8). Low relative uncertainties of Emin values are clearly 745 
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attributable to the fact that these values are independent of the TE and SDR estimation 746 

and provide evidence for the high precision of the fieldwork. 747 

 748 

 749 

Fig. 13. Relative uncertainty (εSSY) in area-specific sediment yield (SSY) values at the 750 

95% confidence level and representation of fractional uncertainty contributions arising from 751 

the determination of the volume (VS) and dry bulk density (dBD) of the reservoir deposits, the 752 

catchment size (A), the trap efficiency (TE) and the operation time of the reservoirs (TR) during 753 

which the mapped reservoir deposits were accumulated. 754 

 755 

4. Discussion 756 

4.1. Low fractional uncertainty arising from the determination of the volume of 757 

reservoir deposits (VS) 758 

The results show that uncertainties in the determination of the volume of the reservoir 759 

deposits (VS) are rather insignificant provided that reservoir siltation surveys are carried 760 

out with a sufficiently high resolution. In this study, the mean fractional uncertainty 761 

contribution (FUCVS, SSY) amounts to 11% with respect to the area-specific sediment 762 

yield (SSY) for all catchments. The mean contribution to the uncertainty of catchment-763 

wide average erosion rates (E) is 2%. 764 

Information about the impact of the survey resolution can be gained from the 765 

comparison with VS values that were established within the course of a preparatory 766 
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reconnaissance survey carried out in 2008 (Baade et al., 2012). At that time, VS values 767 

were determined for Silolweni, Mlondozi, Nhlanganzwani and Mpanamana reservoirs 768 

based on sediment thickness measurements and plan views of the reservoir basins that 769 

were derived from satellite images (Quickbird) available at Google Earth. The shape of 770 

the sedimentary infill was approximated by means of pyramid frustums and prisms with 771 

vertical trapezoidal cross sections and assuming a steadily decreasing sediment 772 

thickness with increasing distance from the dam (for details, see Baade et al., 2012). 773 

The method was developed at the Silolweni reservoir where nine depth soundings were 774 

performed along two transects one of which ran parallel to the dam and the other one 775 

followed the long axis of the reservoir. At the Mlondozi, Nhlanganzwani and 776 

Mpanamana reservoirs, the sediment thickness was determined only at a single location.  777 

The comparison between results from the reconnaissance survey and the current 778 

study (Table 9) reveals VS values with overlapping 95% confidence intervals for the 779 

Silolweni and Nhlanganzwani reservoirs that were decommissioned in 2008 and 2007, 780 

respectively. For the Mlondozi reservoir, the reconnaissance survey indicated a 781 

sediment thickness of 2.0 m close to the dam resulting in a 8,000 m3 (24%) lower VS 782 

value than in the current study. A staff gauge mounted at the Mlondozi dam shows that 783 

the sediment thickness increased by about 0.4 m from 2008 until 2016 as sedimentation 784 

continued (cf. Reinwarth et al., 2018). Using a maximum sediment thickness of 2.4 m, 785 

the method from Baade et al. (2012) results in a VS value of 31 ± 5 × 103 m3 which is 786 

consistent to 34 ± 1 × 103 m3 ascertained in the current study. For the Mpanamana 787 

reservoir, the reconnaissance survey gave a VS value of 8 ± 2 × 103 m3 based on a 788 

minimum sediment thickness of 1.0 m close to the dam, because the depth sounding did 789 

not reach the base of the reservoir deposits. The survey in 2016 revealed a maximum 790 

 791 
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Table 9 Comparison of the volume (VS) and dry bulk density (dBD) of reservoir deposits and 792 

associated uncertainties at the 95% confidence level determined by Baade et al. (2012) with 793 

results from this study. Note the varying number of depth soundings (NDS) and dry bulk density 794 

measurements (NdBD). 795 

Reservoir  Baade et al. (2012)  This study 

  NDS VS εVS NdBD dBD εdBD  NDS VS εVS NdBD dBD εdBD 

   [10
3
 m

3
] [%]  [g cm

-3
] [%]   [10

3
 m

3
] [%]  [g cm

-3
] [%] 

Silolweni  9 15 ± 3 20 10 1.8 ± 0.1 6  59 17 ± 1 8 68 1.3 ± 0.1 4 

Mlondozi  1 26 ± 4
1)

 15 11 1.6 ± 0.1 6  65 34 ± 1
1)

 4 8 0.9 ± 0.1 13 

Nhlanganzwani  1 24 ± 7 30 5 1.7 ± 0.1 6  56 23 ± 1 4 72 1.1 ± 0.1 5 

Mpanamana  1 8 ± 2
1), 2)

 25 n.a.
3)

 n.a.
3)

 n.a.
3)

  56 28 ± 1
1)

 3 6 0.6 ± 0.1 17 

1) Sedimentation continued after the reconnaissance survey carried out by Baade et al. (2012). 796 

2) The depth sounding did not reach the base of the reservoir deposits. 797 

3) A mean dBD value of 1.7 ± 0.1 g cm
-3

 was assumed for the Mpanamana reservoir. 798 

 799 

sediment thickness of 3.4 m close to the dam. Using this value in combination with the 800 

method from Baade et al. (2012) results in a VS value of 27 ± 7 × 103 m3 which is 801 

likewise in good agreement with 28 ± 1 × 103 m3 determined in the current study. 802 

These results show that reliable VS values can be achieved based on very limited 803 

data when reasonable assumptions about the geometry of the sedimentary infill can be 804 

made. Such assumptions can be underpinned when the river cross section below the 805 

dam, the minimum height of the sediment surface in the reservoir basin, and the height 806 

of the reservoir inlet are surveyed (e.g., Castillo et al., 2007). Relative uncertainties 807 

reported by Baade et al. (2012) vary between ±15% and ±30% at the 95% confidence 808 

level (Cl95). This is comparable to average errors of 7% to 28% that were determined 809 

by Ramos-Diez et al. (2017) for various methods permitting the calculation of VS when 810 

no or only few sediment thickness readings are available. Accepting a relative 811 

uncertainty εVS of ±15% (or ±30%) and mean uncertainties of other individual factors in 812 

Eq. (7) as shown in Table 8 would result in a 4% (15%) higher εSSY value that would 813 

then amount to ±24% (±36%). At the same time, the εE value would rise by 2% (9%) 814 

which is a small effect. 815 

 816 
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4.2. Low fractional uncertainty arising from the determination of the  817 

dry bulk density (dBD) 818 

The site-specific mean dBD values determined in this study are in an expectable range. 819 

According to Annandale (1987), the dBD of 50 years old reservoir deposits is typically 820 

>1.10 and <1.35 g cm-3. Into the latter range fall 11 out of 14 investigated reservoirs 821 

when Cl95 intervals are taken into account (Table 6). The Cl95 uncertainty of the site-822 

specific mean dry bulk density (dBD) depends on the intra-site variability of dBD values 823 

and the number of dBD measurements (NdBD). The intra-site variability that can be 824 

recognized from surface samples (Fig. 9) is probably mainly due to variations in 825 

sediment texture and porosity (Morris and Fan, 1998). Variations in vertical dimension 826 

are rather low which is in contrast to other reservoir siltation studies where sediment 827 

compaction led to increasing dBD values with increasing sediment depth (e.g., Lane and 828 

Koelzer, 1943; Rausch and Heinemann, 1984). For the investigated reservoirs, the effect 829 

of sediment compaction is presumably small due to the rather low thickness of the 830 

reservoir deposits (≤ 3 m). 831 

The standard deviation (σdBD) of dBD values ranges from 0.10 to 0.26 g cm-3 832 

among the reservoirs which leads to coefficients of variation (CVdBD) between 8% and 833 

22% (Table 6). This is comparable to CVdBD values of 4% to 40% reported by 834 

Verstraeten and Poesen (2001) for 13 small flood retention ponds in Belgium. For σdBD 835 

values of 0.1, 0.2 and 0.3 g cm-3, the absolute uncertainty (δdBD) of the mean dBD is 836 

<0.1 g cm-3 at the 95% confidence level (Cl95) when NdBD is ≥7, ≥18 and ≥38, 837 

respectively (Fig. 14). In this study, the absolute uncertainty (δdBD) of the mean dBD is 838 

<0.1 g cm-3 for all reservoirs where ≥20 samples were collected. Including (and  839 
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 841 

Fig. 14. Relationship between the number of dBD samples (NdBD) collected at individual study 842 

sites and the absolute uncertainty of site-specific mean dBD values expressed at the 95% 843 

confidence level. Curves depicting the relationship for dBD values with a standard deviation 844 

(σdBD) of 0.1, 0.2 and 0.3 g cm
-3

 are presented. 845 

 846 

excluding) study sites with <20 dBD samples results in a mean relative uncertainty 847 

(εdBD) of ±8% (±5%) and a mean fractional uncertainty contribution (FUCdBD, SSY) of 848 

14% (8%). With respect to E values, the mean fractional uncertainty contribution is 849 

3% (1%). 850 

The calculation of Cl95 uncertainties (Eq. 3) relies on the assumption of 851 

unbiased and normally-distributed random errors of individual measurements, but does 852 

not account for systematic offsets. Comparing data from Baade et al. (2012) and the 853 

current study reveals 0.5 to 0.7 g cm-3 (40% to 80%) higher dBD values for the 854 

reconnaissance survey (Table 9). This discrepancy cannot be explained by the 855 

respective Cl95 intervals, but points to methodological differences. In the 856 

reconnaissance survey, site-specific mean dBD values were ascertained from unsealed 857 

clod samples that were collected from side walls of excavation pits. Afterwards, the 858 

dBD determination followed the workflow for clod samples described in section 2.5, but 859 

dBD values were not corrected for intruding oil. 860 
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The problem of fluid intrusion that occurs when the clods are submerged to 861 

ascertain the clod volume has been previously described (Burt and Soil Survey Staff, 862 

2014, p. 108) and may be circumvented by sealing the clods with semi-permeable 863 

plastic lacquer (Brasher et al., 1966). Results from this study suggest that uncorrected 864 

dBD values of initially dry unsealed clod samples (water content < 10 wt. %) are on 865 

average about 0.2 g cm-3 higher than corrected values. The usage of a fluid with low 866 

viscosity and a correction for fluid intrusion are therefore recommended for dBD 867 

determinations with unsealed clods. An additional problem may arise for moist clod 868 

samples (water content ≥10 wt. %), since oven-drying prior to the volume determination 869 

may lead to sediment shrinkage. For a sample with a dBD of 1.2 g cm-3, a volume 870 

reduction of 20% (i.e., about the mean area percentage of desiccation cracks on dry 871 

surfaces) results in an overestimation of 0.3 g cm-3 (25%). Although the clod volume 872 

can be determined prior to oven-drying when the clods are sealed (for details, see 873 

Grossman and Reinsch, 2002), the core ring method appears to be preferable for moist 874 

sediment. On the opposite, the clod method is recommended to ascertain dBD values of 875 

dry sediment, in particular when the core ring method fails due to sediment disruption. 876 

Following the correction for intruding oil and desiccation cracks, dBD values 877 

derived from core ring and clod samples are in good agreement (Fig. 9). Even if it is 878 

assumed that a mean εdBD value of ±8% underestimates the overall uncertainty in dBD 879 

values by a factor of 2 (or 4) due to methodological issues, the mean relative uncertainty 880 

of area-specific sediment yield values (εSSY) would increase by only 4% (17%) leading 881 

to a mean εSSY value of ±25% (±37%). The increase in the mean relative uncertainty of 882 

catchment-wide average erosion rates (εE) would amount to 2% (10%) which is a small 883 

effect compared to uncertainties arising from other potential error sources. 884 

 885 

                      Chapter 5 

 
112



 

 

4.3. Major fractional uncertainty arising from the estimation of the  886 

sediment trap efficiency (TE) 887 

Estimates for the mean sediment trap efficiency (TE) show a mean relative Cl95 888 

uncertainty (εTE) of ±16% which imposes a mean fractional uncertainty contribution 889 

(FUCTE, SSY) of 64%. The TE estimation is therefore the major source of uncertainty with 890 

respect to SSY values. This is not surprising as the mean TE of a reservoir depends on 891 

numerous influential factors. The model that was used for the TE estimation (Reinwarth 892 

et al., 2018) accounts for rainfall-runoff conditions, temporally variable sediment 893 

delivery from the catchment, the distance that particles must travel across the reservoir 894 

basin to reach the reservoir outlet and the frequency and magnitude of spillage events. 895 

Grain size characteristics of the delivered sediment were implicitly taken into 896 

consideration (for details, see Reinwarth et al., 2018). Other influential factors such as 897 

the mixis of the water column, currents, turbulence, and flocculation which may affect 898 

the settling velocity of sediment particles (Heinemann, 1984; Haan et al., 1994) can be 899 

partly accounted for in more sophisticated physically-based models that were developed 900 

for small ponds (≤1 ha) (e.g., Wilson and Barfield, 1985). These factors are, however, 901 

difficult to address in larger reservoirs (>1 ha) without extensive monitoring efforts. 902 

In general, the TE estimation is more uncertain for reservoirs with low TE values 903 

(e.g., Brown, 1944; Morris and Fan, 1998). This is supported by results from this study 904 

where the Mlondozi reservoir reveals the lowest TE estimate (25 ± 10%) and the highest 905 

εTE value (±37%). Compared to this, εTE values are ≤10% for all reservoirs with a mean 906 

TE of >80%. For the reduction of uncertainties, SSY values should be, thus, 907 

preferentially assessed from reservoirs for which a high mean TE can be anticipated 908 

(Foster et al., 1990).  909 
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In this study, modelled TE estimates are in good agreement with an empirical 910 

relationship (Eq. 11) that was established by Brown (1944). 911 

 912 
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 913 

Accordingly, TE values can be estimated from the ratio of the reservoir's initial water 914 

storage capacity (CR) to its catchment size (A) and a parameter D that may vary between 915 

0.046 and 1. For the investigated reservoirs, the highest correlation (R2 = 0.81) to 916 

modelled TE values is achieved by setting D to 0.17 (Fig. 15a) which results in an 917 

absolute root mean square error (RMSE) of 9%. Lower and upper envelope curves  918 

 919 

 920 

Fig. 15. Relationship between the modelled sediment trap efficiency (TE), the initial water 921 

storage capacity (CR) of the reservoirs, catchment size (A) and volume of mean annual 922 

precipitation (VMAP) in the reservoir catchments: (a) TE as a function of the CR/A ratio with 923 

curves corresponding to Eq. (11) from Brown (1944). The best fit (R
2
 = 0.81) is achieved by 924 

setting the parameter D to 0.17. D values of 0.1 and 0.4 represent lower and upper envelope 925 

curves for the investigated reservoirs, respectively; (b) TE as function of the VMAP/CR ratio. The 926 

best exponential fit (R
2
 = 0.81) is shown. Error bars of TE estimates depict 95% confidence 927 

intervals that were derived from nine modelling scenarios (for details, see Reinwarth et al., 928 

2018). 929 
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correspond to D values of 0.1 and 0.4, respectively. There is, moreover, a good 930 

relationship between modelled TE values and the ratio of the volume of mean annual 931 

precipitation (VMAP) in the reservoir catchments to the initial water storage capacity (CR) 932 

of the reservoirs (Fig. 15b). Here, the best exponential fit (R2 = 0.81) results in an 933 

absolute RMSE of 8%. 934 

These findings suggest that the relationships shown in Fig. 15 can be used to 935 

estimate TE values for reservoirs in the Kruger National Park with an uncertainty 936 

comparable to those obtained from modelling (Table 3). The relationship of Brown 937 

(1944) appears to be rather robust considering that is was established from reservoirs in 938 

the United States many of which are located in temperate climate regions. The optimal 939 

D value of 0.17 derived from this study is close to the default value of 0.1 suggested by 940 

Brown (1944). Using this default value would lead to an absolute RMSE of 13% which 941 

is only slightly higher than the RMSE obtained for D = 0.17 (9%). The transferability of 942 

the basic relationship between TE values and the often readily available VMAP/CR ratios 943 

to reservoirs outside the study area needs further assessment since climate conditions 944 

and catchment properties control the runoff regime that, in turn, exerts a strong 945 

influence on TE values (Lewis et al., 2013; Reinwarth et al., 2018). 946 

 947 

4.4. Major fractional uncertainty arising from the estimation of the  948 

sediment delivery ratio (SDR) 949 

The mean relative uncertainty of best estimates for catchment-wide average rates of 950 

erosion by water (E) is more than three times higher than for area-specific sediment 951 

yield (SSY) values. This is clearly attributable to the uncertain estimation of the 952 

sediment delivery ratio (SDR) (Fig. 7) that affects E values, but not SSY values. In this 953 

study, the mean relative uncertainty of SDR values (εSDR) amounts to ±40% which 954 
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propagates into a mean fractional uncertainty contribution (FUCSDR, E) of 79% with 955 

respect to E values. This comparatively large uncertainty can be partially attributed to 956 

the application of lumped SDR to A relationships that were developed from data 957 

collected on different continents (Table 4). Establishing a regionalized relationship 958 

might potentially reduce uncertainties (USDA-SCS, 1983; de Vente et al., 2007), but is 959 

currently unfeasible due to the paucity of data on contemporary erosion rates for the 960 

Lowveld geomorphic province. Estimating the SDR based on empirical equations 961 

requires little input data, but does not capture the complex interplay of processes 962 

involved in the erosion, transport and storage of sediment within the catchment (Fryirs, 963 

2013). Moreover, empirical relationships fail to represent the dependency of SDR values 964 

on the timescale on which SSY and E values are considered (Walling, 1983). Therefore, 965 

several authors have recommended the application of sediment routing models (e.g., 966 

Klaghofer et al., 1992; Lu et al., 2006). 967 

So far, no attempts have been made to model intermediate sediment storage in 968 

reservoir catchments within the Kruger National Park. Models permitting a SDR 969 

assessment (see Aksoy and Kavvas, 2005) typically require detailed information about 970 

rainfall-runoff conditions, relief characteristics, soil properties, vegetation cover and 971 

land use (e.g., Van Rompaey et al., 2001; Lu et al., 2006). The calibration and 972 

validation of such models can be challenging given the difficulties to empirically assess 973 

erosion rates on the catchment scale (Van Rompaey et al., 2003; Brazier, 2004). With 974 

respect to the investigated reservoir catchments, further research is needed to trace 975 

sediment from various sources and to quantify changes in the sediment storage. Non-976 

quantified errors in modelled SDR values can be 'significant' (Van Rompaey et al., 977 

2003), even when detailed information about the catchment is available. Assuming that 978 

modelling would, for example, reduce the mean uncertainty of SDR values established 979 
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in this study by 25% (or 50%), the mean uncertainty of E values would decrease by 980 

19% (36%). This would result in a FUCSDR, E value of 68% (49%) that would be then 981 

still higher than the mean fractional uncertainty contribution arising from the TE 982 

estimation. The SDR estimation remains therefore a major source of uncertainty and 983 

challenge in erosion rate assessments based on reservoir siltation surveys. 984 

 985 

4.5. Unaccounted uncertainties 986 

A certain percentage of the reservoir deposits may not originate from the catchment, but 987 

from other autochthonous and allochthonous sediment sources (Foster et al., 1990; 988 

Verstraeten and Poesen, 2002). This may lead to an overestimation of SSY and E values 989 

and, thus, induce some additional uncertainty that, so far, has not been accounted for. In 990 

the investigated reservoirs, autochthonous sediment production occurs mainly due to 991 

biotic processes as the presence of large mammals supports eutrophication (Oberholster 992 

et al., 2009). Data from Baade et al. (2012) and additional measurements carried out 993 

within the framework of this study reveal a mean total carbon (TC) content ranging 994 

from 2 to 4 wt. % for reservoir deposits of the Hartbeesfontein, Marheya, Silolweni, 995 

Mlondozi and Nhlanganzwani reservoirs. The ratio of the mean total organic carbon 996 

(TOC) content to the mean TC content ranges from 85% to 95%. Multiplying TOC 997 

concentrations with the 'Van Bemmelen factor' of 1.72 (Burt and Soil Survey Staff, 998 

2014) suggests that the mean organic matter content is <6 wt. %. Since the fractional 999 

contribution of organic matter from autochthonous and allochthonous sources is 1000 

unknown, an overestimation of less than 3 ± 3% can be assumed for SSY and E values. 1001 

This is a small uncertainty compared to εSSY and εE values shown in Table 7. 1002 

The wet and dry deposition of dust from the atmosphere represents an additional 1003 

allochthonous sediment source (Verstraeten and Poesen, 2002). The net flux of dust into 1004 
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reservoirs likely increases with the mean flooded area. Hence, the sensitivity of SSY and 1005 

E values increases with an increasing mean flooded area to catchment size ratio. For the 1006 

study sites, total dust deposition rates are unknown, but contemporary mean rates are 1007 

most probably <200 g m-2 yr-1 (DEA, 2009; Lawrence and Neff, 2009). Correcting SSY 1008 

and E values based on the assumption of a uniform mean net deposition rate of 1009 

100 g m-2 yr-1 (or 200 g m-2 yr-1) on the full supply area (AR) of the reservoir results in 1010 

1 (3) t km-2 yr-1 lower SSY values and 3 (7) t km-2 yr-1 lower E values on average. This is 1011 

an unimportant effect, especially as calculations based on AR would probably lead to an 1012 

overcorrection, since water levels of the investigated reservoirs are seldom at full stage 1013 

(cf. Reinwarth et al., 2018). 1014 

Erosion along shorelines and on nearby areas is a further potential source of 1015 

uncertainty (Foster et al., 1990; Lloyd et al., 1998). At the investigated reservoirs, wave-1016 

induced erosion is likely intensified by the foraging and trampling of ungulates (e.g., 1017 

herds of buffalo and antelope) (Thrash, 1998). Volumetric core ring measurements point 1018 

to a dry bulk density of about 1.5 g cm-3 for the eroded material. A uniform average 1019 

erosion rate of 0.1 mm yr-1 (or 0.5 mm yr-1) for the proportion of the full supply area 1020 

being not covered with reservoir deposits (i.e., AR minus AS) would therefore lead to a 1021 

maximum overestimation of SSY and E values by 1 (6) t km-2 yr-1 and 4 (19) t km-2 yr-1, 1022 

respectively. Soils and sediments constituting the pre-dam facies contain coarse 1023 

particles (≤2 φ-units) that are nearly absent in reservoir deposits (Reinwarth et al., 1024 

2017). This might point to a minor sediment input from shorelines and adjacent areas. 1025 

However, with currently available data, erosion rates within reservoir basins cannot be 1026 

quantified. Appropriate data may become available in the future, when reservoir basins 1027 

are resurveyed by means of high-resolution terrestrial laser scanning (TLS). 1028 

 1029 
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4.6. Factors governing contemporary sediment yield in the southern  1030 

Kruger National Park 1031 

This study reveals mean area-specific sediment yield (SSY) values ranging from 5 to 1032 

80 t km-2 yr-1 for the investigated reservoir catchments (N = 15) and observation periods 1033 

of 30 to 65 years. These findings are in good agreement with SSY values of 10 to 1034 

60 t km-2 yr-1 (N = 5) determined in the reconnaissance survey (Baade et al., 2012). The 1035 

mean relative uncertainty of SSY values ranges from ±12% to ±40% (Table 7) and is 1036 

therefore comparable to uncertainties arising from other SSY measuring techniques (e.g., 1037 

Phillips et al., 1999; Baade and Liese, 2002; Verstraeten and Poesen, 2002). 1038 

The results indicate that SSY values for the investigated reservoir catchments 1039 

increase with increasing mean annual precipitation (MAP). The correlation between SSY 1040 

and MAP is high (R = 0.71; p < 0.01), although MAP values vary only between 530 and 1041 

670 mm (Fig. 11). This might point to a higher annual rainfall erosivity for areas 1042 

receiving more rainfall and is plausible as storm events contribute substantially to 1043 

rainfall amounts in the Kruger National Park (Venter et al., 2003). Modelling results 1044 

from Reinwarth et al. (2018) suggest, moreover, a more frequent occurrence of surface 1045 

runoff for catchments with a high MAP, and a substantial contribution (≥65%) to the 1046 

overall sediment delivery by a few (N ≤ 6) high discharge events for all investigated 1047 

catchments. Higher MAP values leading to increased and more frequent surface runoff 1048 

might enhance erosion rates as well as sediment delivery (Walling, 1983). 1049 

The weakly significant correlation (R = 0.45; p < 0.10) between SSY values and 1050 

mean slope inclination (Slope) is in agreement with other studies pointing to increasing 1051 

erosion rates with increasing slope inclination (e.g., Glotzbach et al., 2016; Favis-1052 

Mortlock et al., in press). Taking into account the significant correlation between MAP 1053 

and Slope values (R = 0.58; p < 0.03), the effects of higher rainfall amounts and steeper 1054 
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relief may be superimposed. More research is required to scrutinize the observed 1055 

correlations and to disentangle the complex interrelationships (see Riddell et al., 2014) 1056 

between rainfall characteristics and runoff generation in the KNP. 1057 

Gullied catchments reveal the highest SSY values (≥55 t km-2 yr-1) among all 1058 

study sites. Field observations show that gully heads are often located in areas with 1059 

distinctively reduced vegetation cover. It is possible that these bare surfaces partly 1060 

coincide with 'sodic duplex soils' (Venter et al., 2003), i.e., solonetzes with an abrupt 1061 

texture change from a clayey subsoil to a loamy topsoil (Fey et al., 2010; van Zijl et al., 1062 

2016). Sodic patches in granite areas of the KNP (Khomo and Rogers, 2005) as well as 1063 

duplex soils in general (e.g., van Zijl et al., 2013) were found to be vulnerable to gully 1064 

erosion. 1065 

Historical aerial images acquired since the 1940s (NGI, 2016) indicate that the 1066 

size of bare surfaces fluctuates over time and that bare areas existed already prior to the 1067 

construction of the reservoirs. Depending on the resolution and quality of historical 1068 

aerial images, gullies are often not easily identified. Field observations suggest, 1069 

however, that a part of the existing gully systems continued to erode in recent years. 1070 

Gully systems can be furthermore expected to function as pathways along which 1071 

sediment is transported towards the reservoirs (Rowntree and Foster, 2012). The 1072 

potential nexus between sodic patches, duplex soils and gully formation in the KNP 1073 

merits therefore further investigation. 1074 

 1075 

4.7. Low contemporary erosion rates in the southern Kruger National Park 1076 

Minimum catchment-wide rates of erosion by water (Emin) indicate that mean and 1077 

median erosion rates in the southern Kruger National Park exceed 20 ± 10 t km-2 yr-1 1078 

and 10 [5, 35] t km-2 yr-1 (Cl95), respectively (Table 7). Best estimates (E) are typically 1079 
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≤190 t km-2 yr-1, although E values of up to 360 t km-2 yr-1 were determined for gullied 1080 

catchments (N = 3). The mean (and median) E value for all study sites amounts to 1081 

120 ± 50 t km-2 yr-1 (85 [55, 145] t km-2 yr-1). If gullied catchments are excluded, the 1082 

mean (and median) E value decreases to 85 ± 30 t km-2 yr-1 (70 [45, 115] t km-2 yr-1). It 1083 

must be kept in mind that erosion rates on the plot scale may differ markedly as 1084 

established E values do not reflect the expectable small-scale variability of erosion rates 1085 

in the catchments (e.g., Worrall et al., 2014).  1086 

Relative uncertainties of E values established in this study are high (±46%), but 1087 

comparable to uncertainties of soil loss estimates derived from models such as the 1088 

Universal Soil Loss Equation (e.g., Gericke, 2015). Taking into account these 1089 

uncertainties, the results are consistent to low E values of 2 to 75 km-2 yr-1 reported by 1090 

Hoffman and Ashwell (2001, p. 85) for conservation areas within South Africa. This 1091 

supports the assertion from Baade et al. (2012) that contemporary SSY and E values 1092 

within the Kruger National Park are about an order of magnitude lower than in nearby 1093 

areas being characterized by intensive land use (Wessels et al., 2007). Independent data 1094 

on contemporary SSY and E values for small to medium-sized (<100 km2) catchments in 1095 

the Lowveld geomorphic province against which findings from this study could be 1096 

compared is unfortunately still lacking. 1097 

 1098 

5. Conclusions 1099 

This study quantifies the mean area-specific sediment yield (SSY) and catchment-wide 1100 

average rate of erosion by water (E) for 15 small to medium-sized (≤100 km2) reservoir 1101 

catchments in the southern Kruger National Park and observation periods of 30 to 1102 

65 years. Catchment-specific SSY values range from 5 to 80 t km-2 yr-1 with a mean (and 1103 

median) of 30 ± 10 t km-2 yr-1 (20 [15, 50] t km-2 yr-1) for all study sites. SSY values 1104 
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correlate highly significant with mean annual precipitation (R = 0.71; p < 0.01) and 1105 

weakly significant with the mean slope inclination (R = 0.45; p < 0.10) and area 1106 

percentage of bare surfaces (R = 0.44; p = 0.10) within the catchments. Best estimates 1107 

for E values range from 15 to 360 t km-2 yr-1 with a mean (and median) of 1108 

120 ± 50 t km-2 yr-1 (85 [55, 145] t km-2 yr-1), whereby E values >190 t km-2 yr-1 are 1109 

restricted to catchments that are affected by gully erosion. Excluding gullied catchments 1110 

(N = 3) reveals a mean (and median) E value of 85 ± 30 t km-2 yr-1 1111 

(70 [45, 115] t km-2 yr-1). 1112 

A thorough error analysis points to a low mean relative uncertainty of ±21% for 1113 

SSY values, while the mean relative uncertainty for E values is comparatively high 1114 

amounting to ±46%. The trap efficiency (TE) estimation causes the highest fractional 1115 

uncertainty contribution (64%) with respect to SSY values and the SDR estimation is by 1116 

far the most important source of uncertainty (79%) in the determination of E values. By 1117 

comparison, mean fractional uncertainty contributions arising from the determination of 1118 

the volume (VS) and dry bulk density (dBD) of the reservoir deposits are low, amounting 1119 

together to <30% with respect to SSY values and <6% with respect to E values. Other 1120 

potential sources of uncertainty are unimportant, contributing together 11% and <3% to 1121 

uncertainties in SSY and E values, respectively. 1122 

These results have notable implications concerning an opportune surveying and 1123 

sampling strategy. Comparing the findings of this study with results from the 1124 

reconnaissance survey (Baade et al., 2012) elucidates that very limited field data are 1125 

sufficient to determine VS values with an uncertainty of less than ±30%, given that valid 1126 

assumptions can be made about the geometry of the sedimentary infill. When variations 1127 

of dBD values (e.g., due to sediment compaction or desiccation cracks) are adequately 1128 

taken into account, the mean dBD can be ascertained with a reasonably low uncertainty 1129 
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(i.e., less than ±8% or ±0.1 g cm-3 in this study), if >20 samples are collected. Increasing 1130 

the surveying and sampling resolution has only a minor effect on uncertainties in SSY 1131 

and E values due to the overall low fractional uncertainty contribution arising from the 1132 

VS and dBD determination. The highest potential to reduce uncertainties in SSY and E 1133 

values obtained from reservoir siltation surveys clearly lies in an improvement of the TE 1134 

and SDR estimation. Here, emerging concepts to quantify sediment and hydrologic 1135 

connectivity (Wohl et al., 2017) represent a promising approach. 1136 
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Tab. 1 Data for catchments of reservoirs located in the Lowveld geomorphic province, but 

outside the Kruger National Park (based on Rooseboom et al., 1992). 

Reservoir Long Lat TR A MAP SSY SDR E 

 [° E] [° S] [yrs] [km
2
] [mm] [t km

-2
 yr

-1
]  [t km

-2
 yr

-1
] 

Klaserie Dam 31.0708 -24.5250 19 165 630 120 0.15 ± 0.10 900 ± 400 

Primkop Dam 31.0750 -25.3875 17 158 810 55 0.15 ± 0.10 400 ± 150 

Longmere Dam 31.0208 -25.2792 39 27 920 250 0.20 ± 0.15 1200 ± 500 

Klipkopjes Dam 31.0169 -25.2169 19 78 1020 235 0.20 ± 0.15 1400 ± 600 

Da Gama Dam 31.0208 -25.1417 8 62 1140 565 0.20 ± 0.15 3200 ± 1400 

Note: longitude (Long), latitude (Lat), operational lifetime of the reservoirs up to the survey date (TR), 

catchment size (A), mean annual precipitation (MAP), contemporary mean area-specific sediment yield 

(SSY), sediment delivery ratio (SDR), best estimate for the contemporary catchment-wide average rate 

of erosion by water (E); MAP was interpolated using Thiessen polygons based on data provided by 

Pitman and Bailey (2015); SDR and E were calculated as described in chapter 5 and are reported with 

95% confidence intervals. 

 

Inside the KNP, best estimates for catchment-wide average rates of erosion by 

water (E) are typically ≤190 t km
-2

 yr
-1

 but reach of up to 360 t km
-2

 yr
-1

 for gullied 

catchments. Calculating sediment delivery ratios (SDR), as described in 

chapter 5 (section 2.9), leads to E values of 400 to 3,200 t km
2
 yr

-1
 for the reservoir 

catchments west of the KNP (Fig. 1b). These catchments receive 630 to 1140 mm of 

mean annual precipitation (MAP; Tab. 1) which is one to two times higher than in the 

southern KNP. In addition, the foothills of the Great Escarpment show a higher relief 

energy than most areas in the southern KNP (Fig. 1). Accordingly, natural erosion rates 

might be elevated in the westernmost areas of the Lowveld. However, the results suggest 

that E values (like SSY values) for areas outside the KNP are typically by an order of 

magnitude higher than inside. This huge difference clearly points to a significant 

acceleration of soil erosion outside the KNP (Wentzel, 2002; Wessels et al., 2007). 

More research is certainly required to assess the variability of E values in the Lowveld 

for areas that are under continued intensive land use. 

 

6.2 Comparison of contemporary sediment yield and rates of erosion by water with 

long-term denudation rates inside the Kruger National Park 

Contemporary rates of erosion by water in the Kruger National Park (KNP) can be also 

compared against long-term denudation rates (i.e., average rates of physical erosion and 

chemical weathering for time spans >10
4
 years) that were determined by Chadwick et 

al. (2013) and Glotzbach et al. (2016). In both studies, long-term average denudation 
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Tab. 2 Comparison of spatially averaged long-term average denudation rates (DLt) derived from 

in-situ produced cosmogenic 
10

Be in river sediments (Chadwick et al., 2013; Glotzbach et al., 

2016) and contemporary rates of erosion by water (this study) in the southern Kruger National 

Park (KNP). 

Catchments 
Long-term (>10

4
 years)  

average rates 
 

Contemporary (30 to 65 years)  

average rates 

 DLt DLt ELt  Emin SSY E 

 [10
-6

 m yr
-1

] [t km
-2

 yr
-1

] [t km
-2

 yr
-1

]  [t km
-2

 yr
-1

] [t km
-2

 yr
-1

] [t km
-2

 yr
-1

] 

 Reservoir catchments being recently affected by gully erosion for which DLt data is available (N = 3)
1)

 

Hartbeesfontein 5.3 ± 0.5 14 ± 1 ~7  39 ± 3 55 ± 8 175 ± 75 

Silolweni 2.9 ± 0.3 8 ± 1 ~4  44 ± 3 62 ± 8 245 ± 105 

Newu 1 9.7 ± 1.0 26 ± 3 ~13  64 ± 6 80 ± 20 360 ± 170 

 Reservoir catchments without recent gully systems for which DLt data is available (N = 7) 

Lugmag 3.8 ± 0.4 10 ± 1 ~5  6 ± 1 15 ± 4 80 ± 40 

Mazithi 2.2 ± 0.2 6 ± 1 ~3  9 ± 2 15 ± 5 65 ± 35 

N'tswiriri 5.2 ± 0.5 14 ± 1 ~7  7 ± 1 14 ± 3 45 ± 20 

Jones-Se 5.2 ± 0.5 14 ± 1 ~7  10 ± 1 18 ± 4 60 ± 30 

N'wanetsana 6.5 ± 0.7 18 ± 2 ~9  9 ± 1 18 ± 4 55 ± 25 

Mlondozi 2.7 ± 0.3 7 ± 1 ~4  5 ± 1 17 ± 7 115 ± 65 

N'watimhiri 6.1 ± 0.6 16 ± 2 ~8  4 ± 1 5 ± 1 15 ± 10 

Mean 5 ± 2 12 ± 4 ~6  7 ± 2 14 ± 4 60 ± 25 

Median 5 [2, 6]  14 [6, 15] ~7  7 [4, 9] 15 [5, 17] 60 [15, 65] 

 All reservoir catchments for which DLt data is available (N = 10) 

Mean 5 ± 2 13 ± 4 ~7  20 ± 15 30 ± 20 120 ± 75 

Median 5 [2, 6] 14 [7, 15] ~7  9 [5, 25] 20 [15, 55] 70 [50, 175] 

 All study sites within the southern KNP (N = 32 for DLt, and N = 15 for Emin, SSY and E) 

Mean 5 ± 1 12 ± 2 ~6  20 ± 10 30 ± 10 120 ± 50 

Median 5 [4, 5] 13 [10, 14] ~6  10 [5, 35] 20 [15, 50] 85 [55, 145] 

Note: long-term average denudation rate (DLt); long-term rate of physical erosion (ELt) based on the 

assumption of a chemical depletion fraction of ~0.5 for the southern KNP (Chadwick et al., 2013); 

minimum estimate for contemporary catchment-wide rates of erosion by water (Emin); contemporary 

mean area-specific sediment yield (SSY); best estimate for contemporary catchment-wide average rates 

of erosion by water (E). Following Glotzbach et al. (2016), an uncertainty of 10% was assumed for 

individual DLt values. Uncertainties of Emin, SSY and E values as well as uncertainties of mean and median 

values correspond to the 95% confidence level; 1) For gullied catchments, mean and median values are 

not reported as the small number of sites would induce considerable uncertainty, partly exceeding 100% 

at the 95% confidence level. 

 

values, respectively. Catchments that were recently affected by gully erosion (N = 3) 

can be easily identified as outliers. For these catchments, Emin, SSY and E values are 

>2 (and >4), >3 (>6) and >12 (>24) times higher than DLt (and ELt) values, respectively. 

When the comparison is restricted to catchments without recent gully systems (N = 7), 

pairs of Emin and DLt values typically fall in between the 1:2 and 1:1 lines (Fig. 2a). Pairs 

of SSY and DLt values roughly follow the 1:1 line (Fig. 2b), while all E values except 

one (i.e., the N'watimhiri reservoir) are higher than DLt values (Fig. 2c). The mean and 
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median E value of non-gullied catchments exceeds the mean and median DLt (and ELt) 

value by a factor of >4 (>8). These results are in agreement with values that were 

derived from other sample locations in the southern KNP (Fig. 1c). Considering the 

mean and median for all sample locations, SSY and E values are >1.5 (and >3) and 

>6 (>14) times higher than DLt (and ELt) values, respectively. 

In this comparison, the strongly differing temporal scales, for which average 

rates of denudation, erosion and sediment yield were assessed, must be kept in mind 

(e.g., van Blanckenburg, 2006). Differing long-term and contemporary erosion rates 

may be explained by above average erosion and sediment transport since the 

establishment of the oldest investigated reservoir in 1950 (Pienaar, 1985) which might 

be a stochastic effect. Variable average erosion rates on decadal scales may result from 

fluctuating rainfall amounts (Boardman et al., 2015). Records of mean annual 

precipitation (MAP) from the KNP since 1911 show alternating wet and dry spells of 

about five (MacFayden et al., in press) to ten years (Gertenbach, 1980) each that are 

possibly interlinked to the El Niño Southern Oscillation (MacFayden et al., in press) and 

other teleconnections (e.g., Tyson et al., 2002). At the same time, rainfall records 

provide no evidence for significantly different MAP values prior to and after the 

construction of the reservoirs (Baade et al., 2012). However, available rainfall records 

are too short to make precise projections on the statistical return period of high-

magnitude rainfall-runoff events (e.g., Dalrymple, 1960, p. 64) that contribute 

substantially to erosion and sediment transport within the KNP (Heritage et al., 2014; 

see also chapter 4). 

Low long-term average denudation rates within the study area imply a long 

exposure time (typically ≥10
5
 years) of minerals to cosmic rays (Glotzbach et al., 2016). 

Accordingly, denudation rates derived from cosmogenic nuclide concentrations are 

influenced by pre-Holocene environmental conditions. A coherent picture of 

environmental change in savanna biomes of southern Africa throughout the past glacial-

interglacial cycles has not yet been achieved (Meadows and Quick, 2016). It is therefore 

unclear how well long-term average rates of denudation or physical erosion, derived 

from cosmogenic nuclides, reflect contemporary rates (<10
2
 years) that would occur 

under pristine environmental conditions. 

Contemporary erosion rates in catchments with recent gully systems are clearly 

higher than long-term average rates (Tab. 2), more so because 
10

Be-derived values may 

be overrated for gullied catchments (see Glotzbach et al., 2016). Khomo and Rogers 
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(2005) highlighted that sodic patches, possibly associated with 'duplex soils' (i.e., 

solonetzes; Van Zijl et al., 2016), might play a key role in the formation of gullies 

within the KNP (see also chapter 5, section 4.6). Glotzbach et al. (2016, p. 318) 

considered gullies to reflect either a 'transient landscape response to climate change' or 

an 'anthropogenically induced' feature, possibly caused by an increased game number or 

an altered fire regime. Field observation suggest that the concentration of overland flow 

along management roads might partially promote gully formation. Disentangling the 

factors that recently led to gully erosion in the KNP would be of great interest for a 

sustainable management of environmental resources within the national park. 

 

6.3 Comparison of contemporary sediment yield and erosion rates established in this 

study with values from other reservoir siltation studies in South Africa 

Figure 3a provides an overview on the location of reservoirs within South Africa with 

catchments of a comparable size to those in the southern KNP (i.e., ≤100 km
2
; N = 38) 

for which SSY and E values were determined (Rooseboom et al., 1992; Foster et al., 

2008, 2012). Of the 23 sites located outside the KNP, twelve reservoirs are situated in a 

conservation estate (CE) that includes national parks, nature and biosphere reserves, and 

other protected environments (DEA, 2017). However, most of these reservoirs were 

constructed prior to the establishment of the respective CEs and some of the reservoir 

catchments encompass areas outside the protected zone. Hence, SSY values ascertained 

for these catchments often do not correspond to near-natural conditions. 

In general, SSY values for reservoirs located inside CEs tend to be lower than for 

reservoirs outside CEs, whereby SSY values from the southern KNP are all lower than 

the overall mean SSY value of 140 ± 60 t km
-2

 yr
-1

 (Fig. 3b). Mean SSY values for 

catchments of reservoirs inside other CEs and outside CEs exceed the mean SSY value 

for the southern KNP by factors of four and ten, respectively (Fig. 3c). The same 

pattern, with lowest values for the KNP, higher values for other CEs, and highest values 

for areas outside CEs, applies to minimum, maximum and median SSY values (Tab. 3). 

The application of a Mann-Whitney U test (see chapter 3, section 2.6) elucidates that 

SSY values for the KNP differ significantly from SSY values outside CEs (pMW < 0.001) 

and also from values inside CEs (pMW < 0.03). Excluding the KNP, the difference 

between SSY values ascertained from reservoirs inside and outside CEs is barely  
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Tab. 3 Mean area-specific sediment-yield (SSY) values and best estimates of catchment-wide 

average erosion by water (E) for reservoir catchments ≤100 km
2
 located in the Kruger National 

Park (KNP), and inside and outside of conservation estates (CE; except KNP) within South Africa 

(based on boundaries of CEs according to DEA, 2017, and SSY data from Rooseboom et al., 

1992, Foster et al., 2008, 2012, and this study). 

   SSY [t km
-2

 yr
-1

]  E [t km
-2

 yr
-1

] 

 N  Min Max Mean Median  Min Max Mean Median 

within KNP 15  5 80 30 ± 10 20 [15, 50]  15 360 120 ± 50 85 [55, 145] 

inside CE
1)

 12  7 355 135 ± 80 90 [25, 200]  35 1500 600 ± 300 550 [150, 950] 

outside CE 11  40 1100 300 ± 200 235 [45, 270]  200 3200 1400 ± 700 1200 [300, 1700] 

All 38  5 1100 140 ± 60 55 [35, 105]  15 3200 650 ± 250 250 [150, 650] 

Note: mean and median values are reported with 95% confidence intervals; 1) SSY values may not 

necessarily correspond to near-natural conditions, since CEs were often established after the 

construction of the reservoirs. 

 

significant (pMW = 0.10). At the same time, SSY values do not significantly correlate 

with catchment size (A; R = -0.06; p = 0.71) (Fig. 3d) and mean annual precipitation 

(MAP; R = 0.04; p = 0.79) (Fig. 3e). 

Calculating mean and median E values as described in chapter 5 results in >4 

and >11 times higher values for catchments of reservoirs inside recently established 

CEs and outside CEs, respectively, than for reservoir catchments within the southern 

KNP (Tab. 3). The mean (and median) E value for reservoir catchments outside CEs 

amounts to 1400 ± 700 t km
-2

 yr
-1

 (1200 [300, 1700] t km
-2

 yr
-1

) and is in good 

agreement with the nation-wide average soil loss of 1260 t km
-2

 yr
-1

 (Le Roux et al., 

2008; Msadala et al., 2012) predicted with a modified version of the Revised Universal 

Soil Loss Equation (RUSLE; Renard et al., 1991). 

These results highlight that SSY and E values in the near-natural savanna 

landscape of the southern KNP are low compared to other areas in South Africa that are 

subject to a distinct human impact. Despite regional evidence for human-induced 

vegetation changes (Dean et al., 1995; MacPherson et al., in press) and accelerated soil 

erosion caused by pre-colonial pastoralists (Marker and Evers, 1976), the onset of 

widespread accelerated soil erosion in South Africa likely coincided with the expansion 

of colonial farming in the 19th century (e.g., Meadows and Asmal, 1996; Showers, 

2010, 156f.; Reinwarth et al., 2013). Only little information is available regarding the 

magnitude by which natural erosion rates were accelerated. Compton et al. (2010) 

reconstructed a tenfold increase in the average sediment load of the Orange River in the 

late Holocene and attributed this to the man-made acceleration of soil erosion. This 
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study points to a similar human-induced intensification of soil erosion in areas located 

outside CEs in the northeast of South Africa (see section 6.1). 

With respect to the catchment scale, data on contemporary erosion and sediment 

yield for near-natural conditions in South Africa against which results from this study 

could be compared is presently very scarce. In this regard, interesting insights may be 

gained from emerging data (DWS, 2017) obtained from recurrent reservoir siltation 

surveys. These data may facilitate decadal-scale assessments of SSY values and 

elucidate effects of soil protection measures and land use change outside CEs (e.g., 

Gebel et al., 2017), land rehabilitation and conservation inside CEs, as well as climate 

variability and change. 

 

6.4 Comparison of contemporary rates of erosion by water within the Kruger 

National Park with previously published values for near-natural conditions and rates 

of tolerable soil loss in South Africa 

Previous measurements that were carried out on experimental plots covered with grass 

and scrub (Haylett, 1960; Mathee, 1984, cit. in Hoffman and Ashwell, 2001, p. 85) or 

savanna vegetation (Venter, 1988) have pointed to contemporary rates of sheet and rill 

erosion of <75 t km
-2

 yr
-1

 for near-natural conditions in South Africa (see chapter 2.2). 

Excluding gullied catchments, E values in the southern KNP are ≤190 t km
-2

 yr
-1

 with a 

mean (and median) of 85 ± 30 t km
-2

 yr
-1

 (70 [45, 115] t km
-2

 yr
-1

). Hence, catchment-

specific E values are partly higher than values that were measured on experimental 

plots. Beside uncertainties related to the derivation of E values from reservoir siltation 

surveys and differing environmental conditions at the study sites, issues of scale are to 

be taken into consideration.  

The approach of this study reveals average E values integrated over space and 

time, but does permit an assessment of spatially variable erosion rates on a scale 

comparable to plots (Worrall et al., 2014). At the same time, plot scale measurements 

may be a poor indicator for catchment-wide average erosion rates (Poesen, 2018), 

especially when localized sediment sources contribute substantially to the sediment flux 

in the catchment. With few exceptions (e.g., Haylett, 1960), plot scale studies in South 

Africa were undertaken for periods of <5 years. Modelling results for the southern KNP 

(see chapter 4) suggest that rainfall-runoff events with a return period >5 years 

contributed ≥65% to the overall fluvial sediment delivery over 30 to 65 years. Hence, 
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erosion rates likely vary by a factor of >10 among different 5 yr periods of observation. 

Bearing in mind these considerations, previous data on erosion rates under near-natural 

conditions for South Africa appear to be in accordance with results from this study. 

Long-term average rates of soil formation in South Africa amount to about 

10 t km
-2

 yr
-1

 (Huntley et al., 1989, cit in. Kassier and Groenewald, 1992, p. 87; Decker 

et al., 2011). Although rates of soil formation tend to increase with a decreasing soil 

thickness (Stockmann et al., 2014), a soil loss of ≥1000 t km
-2

 yr
-1

 (Russell, 1983, cit in 

Scott et al., 1998, p. 57; Pretorius and Cooks, 1989) is by an order of magnitude too 

high, if a sustainable use of soil resources in South Africa is aspired. For this, an 

average soil loss of <500 t km
-2

 yr
-1

 (Le Roux and Smith, 2014), and possibly 

distinctively less than this, is required. Interpreting E values for catchments within the 

southern KNP that are not affected by gully erosion as benchmarks for tolerable rates of 

soil loss in the Lowveld leads to a soil conservation management goal of 

≤190 t km
-2

 yr
-1

. 

 

6.5 Conclusions 

This study provides mean contemporary area-specific sediment yield (SSY) values and 

best estimates for catchment-wide average rates of erosion by water (E) for the near-

natural savanna environment of the southern Kruger National Park (KNP). SSY and E 

values were determined by means of high-resolution reservoir siltation surveys for 

15 reservoir catchments, varying in size from <1 km
2
 to about 100 km

2
, and observation 

periods of 30 to 65 years. Following Baade et al. (2012), reservoir deposits (i.e., the 

post-dam facies) could be distinguished from soils and sediments belonging to pre-dam 

facies based on colour and grain size. This field-based differentiation was verified by 

the physicochemical characterization of 250 samples from both facies and statistical 

analysis via stepwise discriminant function analysis (DFA) and regularized logistic 

regression (RLR). The mean relative uncertainty in the determination of the volume (VS) 

and dry bulk density (dBD) of reservoir deposits, expressed at the 95% confidence level 

(Cl95), amounts to 7% and 8%, respectively. Together, this corresponds to a mean 

fractional contribution of <30% and <6% to uncertainties of SSY and E values, 

respectively. Hence, field and laboratory measurements are a minor source of 

uncertainty in this study. 
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Best estimates for the trap efficiency (TE) range from 25% to >90% among the 

investigated reservoirs. This is in agreement with TE values derived from the equation 

by Brown (1944). Other empirical relationships, established mainly in temperate 

climate regions (e.g., Heinemann, 1981), overestimate the TE of reservoirs in the KNP. 

The mean relative uncertainty in the TE estimation amounts to ±16% (Cl95). This 

results in a mean fractional uncertainty contribution of 64% with respect to SSY values. 

Uncertainties of E values arise mainly from the SDR estimation. The mean relative 

uncertainty of SDR values amounts to ±40% (Cl95) and contributes 79% to the 

uncertainty of E values. The overall mean relative uncertainty for SSY and E values 

amounts to ±21% and ±46% (Cl95), respectively. 

SSY values determined in this study range from 5 to 80 t km
-2

 yr
-1

 (N = 15) and 

are in accordance with SSY values of 10 to 60 t km
-2

 yr
-1

 (N = 5) ascertained in the 

reconnaissance survey (Baade et al., 2012). SSY values correlate highly significantly 

with mean annual precipitation (MAP; R = 0.71; p < 0.01) and weakly significantly with 

mean slope inclination (Slope; R = 0.45; p < 0.10), whereby MAP and Slope covary 

(R = 0.58; p < 0.03). E values of non-gullied catchments range from 15 to 

190 t km
-2

 yr
-1

 with a mean (and median) of 85 ± 30 t km
-2

 yr
-1

 (70 [45, 115] t km
-2

 yr
-1

). 

Gullied catchments (N = 3) show elevated E values of up to 360 t km
-2

 yr
-1

. SSY and E 

values of gullied catchments are still low compared to catchments outside the KNP. It 

cannot be decided, with the available data, whether contemporary gully erosion in the 

KNP is primarily driven by natural factors (e.g., climate or soil properties) or due to 

human impact (e.g., management roads, altered fire regime). SSY and E values appear to 

be highly variable on sub-decadal to decadal timescales considering that modelling 

results indicate a ≥65% contribution to the overall sediment delivery by a few (N ≤ 6) 

high-discharge events at all study sites. 

Mean SSY and E values within the KNP are by an order of magnitude lower than 

SSY and E values from reservoir catchments located at the western boundary of the 

Lowveld (Rooseboom et al., 1992). Small catchments (≤100 km
2
) of reservoirs in other 

regions of South Africa located outside conservation estates likewise show >10 times 

higher SSY and E values (ibid.; Foster et al., 2008, 2012) than reservoir catchments in 

the KNP. This difference can be attributed to low erosion rates in the near-natural 

savanna environment of the southern KNP (Baade et al., 2012) as compared to other 

areas where past and present anthropogenic influences such as farming activities, crop 
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cultivation, and other forms of land use, led to accelerated soil erosion (e.g., Boardman 

et al., 2012). 

Results from this study are in accordance with previously published erosion rates 

for near-natural conditions in South Africa (see chapter 2.2) when spatially differing 

environmental conditions and issues of scale (i.e., spatial and temporal) are taken into 

account. At the same time, mean and median E values determined in this study are 

>4 times higher than spatially averaged long-term denudation rates (DLt) for the same 

catchments (Glotzbach et al., 2016). DLt values within in the KNP are, in turn, 

comparable to DLt values in other regions of South Africa (see chapter 2.3). Soil 

formation rates are possibly similar to DLt values (Huntley et al., 1989, cit in. Kassier 

and Groenewald, 1992, p. 87; Decker et al., 2011) and probably not higher than 

E values of non-gullied catchments within the southern KNP (Stockmann et al., 2014). 

Thus, tolerable rates of soil loss for a sustainable use of soil resources in the Lowveld 

are ≤190 t km
-2

 yr
-1

. 

 

6.6 Open research questions and potential future research directions 

This study will hopefully stimulate further research as there is a number of open 

questions that remain unanswered. The approach that was pursued in this study permits 

the assessment of spatially averaged rates of sediment yield and erosion by water. It 

does not allow to quantify relative contributions from localized sediment sources in the 

catchments. A sediment source tracing study (cf. Walling, 2013), currently undertaken 

at Rhodes University, Grahamstown (South Africa), might become an important step 

towards the assessment of erosion rates on the sub-catchment scale. Preliminary results 

suggest that soils originating from different lithologies can be distinguished in selected 

catchments using composite fingerprints consisting of magnetic (Miller, pers. comm.
1
) 

and geochemical properties. 

A mapping of sediment sources and sinks in the catchment based on field 

observations and remote sensing products (e.g., high-resolution aerial imagery and 

digital elevation models) would help to explore sediment transport paths within the 

catchments (Wohl et al., 2017). Combining this information with a modelling approach 

(e.g., Lu et al., 2006) might reduce uncertainties regarding the estimation of sediment 

                                                           
1
 Unpublished preliminary research report by Jordan K. Miller (Rhodes University, Grahamstown) 

submitted to SANParks in April 2017. 
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delivery ratios (SDR). The granulometric characterization and quantification of 

sediments that are intermediately stored in reservoir catchments (e.g., Fuchs et al., 

2011) as well as the determination of typical timescales of sediment storage (e.g., 

Heritage et al., 2014) might help to set-up and validate such a model. Uncertainties in 

the reservoir trap efficiency (TE) estimation can be reduced, if uncertainties in the 

hydrological modelling are diminished. A reduction of uncertainties is feasible on the 

basis of a more detailed geo-hydrological characterization of the reservoir catchments 

(van Zijl et al., 2016), on-site monitoring of rainfall, runoff (Riddell et al., 2014) and 

fluvial sediment transport, as well as the recording of water level fluctuations in 

reservoirs. 

At the moment, it is not possible to empirically validate modelling results on the 

temporal variability of erosion and sediment delivery within the catchments. The 

reconstruction of the sediment accumulation for individual past flood events by 

stratigraphic analysis of reservoir deposits (e.g., Bussi et al., 2013) is likely problematic 

within the Kruger National Park (KNP) given intensive bioturbation caused by large 

mammals (e.g., hippopotamus and elephants). However, the increase in the mass of 

reservoir deposits after future flood events may be ascertained by repeated high-

resolution surveys of reservoir basins (e.g., Rodriguez-Lloveras et al., 2015). 

Furthermore, it is currently unclear whether gully erosion in the KNP is due to 

human impact or natural drivers (Glotzbach et al., 2016). Disentangling factors that 

govern gully erosion in the KNP would be of great interest in the context of previous 

studies which highlighted that gully erosion in South Africa may not necessarily reflect 

human impact (Botha et al., 1994; Lyons et al., 2013). It seems that little information is 

available regarding the evolution of gully systems in the KNP over time. Mapping 

gullies might provide information about their spatial proximity to management roads 

and help to elucidate the role of the fire regime and vegetation cover. A characterization 

of soils at places where gullies were formed might clarify a potential nexus between 

gully formation, sodic patches (Khomo and Rogers, 2005) and duplex soils (e.g., Van 

Zijl et al., 2013). Monitoring the retreat of gully heads would help to quantify the 

contribution of sub-surface material to the overall sediment delivery. This would be a 

valuable information to reduce uncertainties in the assessment of long-term average 

denudation rates based on cosmogenic nuclide concentrations in river sediments (cf. 

Glotzbach et al., 2016). 
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Except for a single study site in the northern KNP where cosmogenic nuclide 

concentrations in river sediments were determined (Chadwick et al., 2013), data on 

erosion rates in the KNP is only available for its southern part. There is a strong rainfall 

gradient from the southern KNP (mean annual precipitation, MAP, of 500 to 700 mm) 

towards the north (MAP of 300 to 500 mm) (MacFayden et al., in press). Given the 

observed correlation between mean area-specific sediment yield (SSY) and MAP, it 

would be interesting to extend the dataset by surveying reservoirs in the northern KNP. 

At the same time, it would be helpful to study areas outside the KNP, as it appears that 

rates of contemporary erosion and sediment yield for parts of the Lowveld that are under 

intensive land use are not yet well established. 

Although the comparison of contemporary and long-term average erosion rates 

is not without problems (due to strongly differing timescales and the quantification of 

chemical weathering; cf. Riebe et al., 2003), the combined approach opens up 

interesting perspectives. By extending the combined analysis to other near-natural 

environments, it might be possible to approach the long-held research question (e.g., 

Murgatroyd, 1979) whether rates of denudation and soil formation under near-natural 

conditions in South Africa are in an approximately steady-state, or if the thickness of 

the soil mantle fluctuates over time as a response to climate change (e.g., within the 

course of glacial-interglacial cycles). Answering this question would be of great 

relevance as it would help to further constrain tolerable rates of soil loss permitting the 

conservation of soil resources in South Africa. 
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Electronic Supplementary Material (Online Resource 2) 

1 Introduction 

In the following, the generation of synthetic dataset compilations that were used within the 
framework of Monte-Carlo simulations is described in detail. Three compilations containing 
1000 synthetic datasets with 200 samples each were created. The first compilation contains 
datasets that resemble the statistical distribution of empirical data (eight sediment properties) 
characterizing the pre- and post-dam facies (i.e. two groups of samples). A sampling bias was 
simulated to examine uncertainties in variable selection and classification results arising from 
the limited number of samples in the empirical dataset. The second and third compilations 
contain datasets with differing statistical distributions that were generated based on Gaussian 
Density Functions (GDFs) and equal within-group covariance matrices (eCov). Datasets in 
the second and third compilation contain data from 8 and 15 sediment properties for two (i.e 
the binomial case) and five groups (i.e. the multinomial case) of samples, respectively. In 
each dataset 50 % of the samples from each group were included in the training set, while 
another 50 % were retained for validation. In binomial datasets of the first and second 
compilation the group-specific proportion of samples was varied randomly between 20 % and 
80 %. This range includes the case of the empirical dataset (23 % samples from the pre-dam 
facies), while the rather comprehensive number of samples reveals a solid basis for training 
and validation (Brown and Tinsley 1983). In the third compilation with multinomial datasets, 
group-specific proportions were allowed to range randomly between 10 % to 30 %. 
 

2 First compilation: synthetic datasets based on kernel density estimates 

Datasets of the first compilation were generated based on kernel density estimates (KDEs) 
that were obtained from the empirical dataset using the software R (vers. 3.1.1; R Core Team 
2014). KDEs were compiled separately for the pre- and post-dam facies and all investigated 
sediment characteristics. For each synthetic dataset, KDEs were calculated from an individual 
empirical data subset containing 4 and 29 samples from the pre- and post-dam facies of each 
reservoir, respectively. Subsets were generated via stratified random sampling (see 
section 2.5). Kernel density estimation was performed with Gaussian kernels and the normal 
reference distribution smoothing bandwidth ("nrd0") recommended by Silverman (1986, 
p. 48). KDEs were subsequently modified to simulate a potential sampling bias. Expectancy 
values (i.e. expected mean values of sample populations randomly drawn from KDEs) were 
allowed to vary randomly within two-tailed Cl95 intervals of mean values derived from the 
corresponding empirical data subset (Kraushaar et al. 2015). Coefficients of variation 
represented in KDEs were left unchanged. Sediment properties characterizing synthetic 
samples were generated by randomly drawing values from the modified KDEs. In the event of 
irrational sediment characteristics (negative values for PCAL content, Clay&Silt%, Skeleton%, 
LSort, PSDDist and DIP) the corresponding quantities were set to zero. Likewise, LUM was 



 

ensured to range between 0 and 255 and Skeleton% was reduced accordingly, if the sum of 
Clay&Silt% and Skeleton% exceeded 100 %. 
 
3 Second compilation: binomial synthetic datasets fulfilling multivariate normality and 

equal within-group covariance matrices 

Datasets of the second compilation were created based on randomly generated Gaussian 
density functions (GDFs) and random correlation matrices. Random GDFs characterizing the 
value distribution of specific sediment properties in each group were generated following 
Sheriff et al. (2015). Random expectancy values of sediment properties were allowed to differ 
at maximum by a factor of 10 between the groups, while coefficients of variation determining 
the standard deviation of GDFs were randomly varied between 8 % and 73 %. Random 8 × 8 

correlation matrices 
corr

M  (i.e. positive definite matrices with one row and one column for 

each sediment property and unit diagonal) were compiled using the 'nearPD' algorithm 
(Higham 2002) which is implemented in the R software package 'Matrix' (Bates and Mächler 
2016). Afterwards, synthetic datasets were generated following the procedure suggested by 

Mateo-Sanz et al. (2004). The Cholesky decomposition 
M

L  of 
corr

M  was compiled (i.e. a 

lower triangular matrix fulfilling T

MMcorr
LLM = , where T

M
L  is the transpose of 

M
L ) and 

multiplied with a 8 × 200 matrix (8 sediment properties and 200 synthetic samples) containing 
numbers that were randomly drawn from the standard normal distribution. The resulting 
matrix consists of 8 columns (representing synthetic sediment properties) with 200 entries 
each (representing synthetic samples). These entries were multiplied with the standard 
deviation of the corresponding group-specific GDF. Afterwards, the associated mean value of 
the GDF was added. The resulting dataset is characterized by (approximately) normally 
distributed sediment properties in each group and a (nearly) equal within-group covariance 

(eCov) structure that is prescribed by 
corr

M  (Mateo-Sanz et al. 2004). Synthetic datasets for 

which variable selection via stepwise DFA failed due to variable co-linearity (cf. Hill and 
Lewicki 2006) were replaced. 

 

4 Third compilation: multinomial synthetic datasets fulfilling multivariate normality 

and equal within-group covariance matrices 

Datasets of the third compilation were generated by following the workflow that was used to 
create datasets for the second compilation. In order to compile datasets with five groups and 
15 sediment properties, five random GDFs were created for each sediment property. Random 
15 × 15 correlation matrices were compiled. The corresponding Cholesky decompositions 
were multiplied with 15 × 200 matrices containing numbers that were randomly drawn from 
the standard normal distribution. All remaining calculations were performed analogously to 
the binomial case. 
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Electronic Supplementary Material (Online Resource 4) 

1 Introduction 

In the following, we provide a brief instruction on the use of the Online Resources 3, 5, 6, 7 

and 8 which are supplied together with this pdf document. These files can be opened and run 

with the freely available software environment R (R Core Team 2014). The files are used to 

conduct binomial and multinomial regularized logistic regression (RLR) on example data 

(Online Resource 3) using the software package 'glmnet' (Friedman et al. 2010). We provide 

information on the installation of the software, explain the purpose of the R files (Online 

Resources 5–8) and give hints to their usage. 

 

2 Installation of the software environment R 

The R software environment is available for Windows, (Mac) OS X and Linux. The most 

recent release can be downloaded from the following homepage: https://cloud.r-project.org/ . 

Since the 'glmnet' package is subject to ongoing further development, we are confident that 

the package will be supported by future R versions. However, earlier releases of the software 

are available from the same website (https://cloud.r-project.org/). We used the 'base' 

installation for Windows (64-bit; version 3.1.1) and the 'glmnet' version 2.0-5. Moreover, we 

did not encounter any problems with the more recent version R 3.3.1. Following the 

installation instructions the R software can be easily installed (storage requirements: 

ca. 70 megabyte). The R scripts (Online Resources 5–8) may assist with the installation of the 

'glmnet' package. 

 

3 Purpose of the Online Resources 3 to 7 

Online Resource 3 ('ESM_3_R_Example_Data.RData') is a workspace for the R software 

environment containing synthetically generated example data that are used for the illustration 

of binomial and multinomial RLR. The Online Resources 5 to 8 represent R scripts that can 

be run to perform RLR analysis on the example data. Binomial RLR (i.e. for the 

discrimination of 2 groups of soils and sediments) is performed with the Online Resources 5 

('ESM_5_binomial_fingerprinting.R') and 7 ('ESM_7_binomial_classification.R'). 

Multinomial RLR (for ≥ 3 groups) is performed with the Online Resources 6 

('ESM_6_multinomial_fingerprinting.R') and 8 ('ESM_8_multinomial_classification.R'). 

The Online Resources 5 and 6 are used to identify composite fingerprints and to 

quantify the variable importance of each sediment property involved in the analysis. Data are 

centred and scaled and a statistical pre-test (binomial: Mann-Whitney U-test; multinomial: 

Kruskal-Wallis H-test) is performed to eliminate properties that do not significantly differ 

between the groups. Subsequently, the RLR model is fitted based on all samples. 

Misclassification rates and variable importance are calculated. Properties with a variable 

importance > 0 represent fingerprint properties. A plot is created showing the evolution of 

coefficients, variable importance and cross validation derived misclassification rates with 



 

increasing λ (this parameter controls the strength of the regularization). A summary of the 

results is presented in the R console when calculations are completed. Misclassification rates 

derived from this procedure might overvalue the performance of the RLR model when applied 

to samples not involved in model training (Hastie et al. 2009). 

The Online Resources 7 and 8 demonstrate the use of RLR when the performance of 

the model is to be validated independently from training data. Statistical pre-tests and the 

optimization of the RLR model are restricted to samples from the training subset and all 

samples (i.e. samples from the training and validation subsets) are subsequently classified. 

Classification involves the determination of the (posterior) probability of group membership 

for each sample. As above, the variable importance is compiled, but misclassification rates are 

calculated separately for the training and validation set. In addition, misclassification rates are 

assessed for single groups. R scripts are organized in consecutively numbered sections that 

start with three hash tags ('###'). In addition, all R scripts contain comments describing the 

content of the R code, which will be printed in the R console when the scripts are run. 

 

4 Usage of the RData and R files 

We recommend to save all RData (Online Resource 3) and R files (Online Resources 5–8) in 

the same directory (e.g., "C:\RLR\example"). Once the R software is installed, double-

clicking on the R workspace (Online Resource 3) will open the R console. Alternatively, the 

file can be opened within R by selecting 'File' and 'Load Workspace...'. R scripts (Online 

Resources 5-8) can be opened by selecting 'File' and 'Open script...' (or with a text editor). 

The scripts are run by copying and pasting lines (or entire sections) of the script into the R 

console. When the script is opened within R, lines can be alternatively executed by marking 

them with the cursor and using the shortcut 'Ctrl' and 'R'. When functions involve multiple 

lines of R code, the respective lines should be run at once. In the same manner it is possible to 

run entire scripts. 

Prior to the execution of the R code, the directory path to the R workspace (Online 

Resource 3) has to be set, default settings of the algorithms may be changed and the 'glmnet' 

package needs to be installed. This is realized by editing and running the sections 1 to 3 which 

are identical in all supplied R scripts. In section 1, the directory path has to be entered (i.e. the 

line 'Directory = "<path name>"'). The default path is "C:/RLR/example", but needs to be 

changed accordingly, if the R workspace (Online Resource 3) was saved in another directory. 

The path must be entered between double quotes. Note that R uses the slash ('/') instead of the 

backslash ('\') for directory paths. Afterwards, changes may be saved by clicking on the R 

script and selecting 'File' and 'Save'. The name of the RData file (Online Resource 3) should 

not be modified. Otherwise, adjustments are to made in section 4 ('Load example data') of the 

R scripts. 

In section 2 ('Settings'), the significance level that is employed in the statistical pre-test 

may be changed. The default value is 0.05 for the Mann-Whitney U-test 

('MW.significance.level') and Kruskal-Wallis H-test ('KW.significance.level'), respectively. 

Furthermore, the parameter α defining the elastic-net penalty may be set (0 ≤ α ≤ 1). The 

default value is 'alpha_values = 1', but it is also possible to involve several values 'alpha' in 

the analysis. In this case a vector may be provided (e.g., 'alpha_values = c(0.5, 0.75, 1)'). Note 



 

that vectors are defined with the R function 'c'. If various values are entered, the algorithms 

will eventually select the RLR model that resulted in the lowest cross validation derived 

misclassification rate. In addition, the number of cross validation iterations ('cv.iter') can be 

set. The default value is 10. Increasing this integer (e.g., 'cv.iter = 100) most probably 

enhances the reproducibility of the results, but leads to longer computing times. 

The R code in section 3 checks if the 'glmnet' package is already available. When the 

package is not found, installation is started automatically via the command 

'install.package("glmnet")', which installs 'glmnet' and additional packages (if not yet 

available) that are required to run 'glmnet' (e.g., 'Matrix', 'utils', 'foreach'). An internet 

connection needs to be established during the installation. A 'https CRAN mirror' has to be 

selected from a list. The mirrors 'Germany (Münster)' and 'Australia (Melbourne)' worked fine 

for us, but other mirrors will most probably work just as well. Afterwards, the packages are 

installed automatically. Information on subsequent sections is provided with comments that 

will be printed in the R console when the scripts are run. The 'help' function can be useful to 

obtain more detailed information on specific commands. Typing 'help(require)' in the R 

console and pressing the 'Enter'-key will, for example, open a html file with detailed 

information on the 'require' function.  
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Content of the compact disc (CD) 

This doctoral thesis contains a compact disc (CD) including supplementary material for 

the chapters 3 and 4 (i.e., the folders 'ch3esm' and 'ch4esm'), and a digital version of this 

thesis. An overview on the content of the CD is provided in Tab. A1. 

Tab. A1 Content of the CD attached to this thesis. 

Folder File Description 

ch3esm ch3esm1.pdf Screenshot of the Google Earth file 'ch3esm9.kmz' (see below) 

 ch3esm2.pdf Explanatory notes about the generation of synthetic dataset 

compilations used in this study 

 ch3esm3.pdf R code that can be used to create the R workspace 'ch3esm10.rdata' 

(see below) 

 ch3esm4.pdf Explanatory notes on the utilization of the files provided as Online 

Resources 5 to 8 (i.e., the files 'ch3esm10.rdata', 'ch3esm11.r', 

'ch3esm12.r', 'ch3esm13.r', and 'ch3esm14.r') 

 ch3esm5.pdf pdf version of the file 'ch3esm11.r' (see below) 

 ch3esm6.pdf pdf version of the file 'ch3esm12.r' (see below) 

 ch3esm7.pdf pdf version of the file 'ch3esm13.r' (see below) 

 ch3esm8.pdf pdf version of the file 'ch3esm14.r' (see below) 

 ch3esm9.kmz GoogleEarth file containing the sample locations of the study. The 

number of samples, the sample type (surface or subsurface; pre-dam 

facies, post-dam facies, unclear or 'various' when samples from 

different categories were taken from varying depths) is indicated.  

 ch3esm10.rdata R workspace containing synthetically generated example data for RLR 

analysis 

 ch3esm11.r R script for the identification of a composite fingerprint from example 

data (' ch3esm10.rdata') applying binomial RLR with the R software 

package ‘glmnet’ 

 ch3esm12.r R script for the identification of a composite fingerprint from example 

data (ch3esm10.rdata') applying multinomial RLR with the R software 

package ‘glmnet’ 

 ch3esm13.r R script for the optimization of a regression model and subsequent 

classification applying binomial RLR on example data 

('ch3esm10.rdata') using the software package ‘glmnet’ 

 ch3esm14.r R script for the optimization of a regression model and subsequent 

classification applying multinomial RLR on example data 

('ch3esm10.rdata') using the software package ‘glmnet’ 

ch4esm ch4esm1.pdf Figure showing the simulated lake level fluctuations for the 

investigated reservoirs (for details, see 'ch4esm3.pdf)' 

 ch4esm2.pdf Figure showing the cumulative volume sediment delivered to and 

deposited in the reservoirs (for details, see 'ch4esm3.pdf) 

 ch4esm3.pdf Figure captions for figures provided in 'ch4esm1.pdf' and 

'ch4esm2.pdf' 

digversion dissreinwarth.pdf digital version of this doctoral thesis 
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