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PC   phosphatidylcholine 
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TNF(R)  tumor necrosis factor (receptor) 

UPLC-MS/MS  ultra performance liquid chromatography tandem mass spectrometry  
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SUMMARY 

In the present thesis, the mode of action of three different natural secondary metabolites was 

clarified in human cancer cells and primary immune cells. The investigated compounds of this 

work were (I) the mycotoxin gliotoxin from Aspergillus fumigatus targeting leukotriene A4 

hydrolase (LTA4H), identifying thereby the cause of neutropenia during invasive aspergillosis 

(IA), (II) the melleolide dehydroarmillylorsellinate (DAO) and several structural analogs 

exhibiting, on the one hand, anti-inflammatory features by abrogating 5-lipoxygenase (5-LOX) 

product formation, and on the other hand, manipulate monocyte functions by covalent binding 

of the cellular membrane constituent phosphatidylethanolamine (PE), and finally (III), the 

myxobacterial compound myxochelin A hampering 5-LOX activity by iron chelation. Over the 

last decades, the link between inflammation and cancer gains relevance. Hence, it is important 

to investigate new anti-inflammatory drugs to prevent chronic diseases, and to elucidate the 

mechanism of action of cytotoxic compounds to develop new strategies of action for anti-

cancer drugs. Both approaches are the basis of this work. 

Gliotoxin is known as important virulence factor of A. fumigatus [1] causing IA by affecting 

neutrophils [2, 3], but the underlying molecular mechanism is still elusive. Our data revealed 

that gliotoxin inhibits the biosynthesis of the important neutrophil chemoattractant leukotriene 

B4 (LTB4) [4, 5] in vivo using the zymosan-induced peritonitis model in mice and the 

carrageenan-induced pleurisy model in rats. Furthermore, gliotoxin caused a reduced 

neutrophil infiltration into the peritoneal or thoracic cavity. Interestingly, gliotoxin suppressed 

solely LTB4 formation without compromising other eicosanoids. The well-known 5-LOX 

inhibitor zileuton [6] was deployed as reference drug reducing all 5-LOX products. Similar 

results were reached in vitro in human primary monocytes and neutrophils in comparison to 

zileuton and the selective LTA4H inhibitor SC-57461A [7, 8]. In addition, we confirmed gliotoxin 

as virulence factor of A. fumigatus by using an A. fumigatus strain containing a deletion of the 

gliP gene, which is responsible for gliotoxin biosynthesis (∆gliP) [9]. Supernatants of this strain 

failed to inhibit LTB4 production in neutrophils, and in line with this finding, histopathological 

investigations confirmed our hypothesis. Leukotrienes (LT) are formed by 5-LOX, which 

convert arachidonic acid (AA) in a two-step reaction to LTA4 followed by a hydrolysis to LTB4 

performed by LTA4H [10]. Interestingly, gliotoxin failed to impede LTA4H activity in non-cellular 

systems but pre-incubation with GSH enables inhibition of LTA4H activity by gliotoxin indicating 

that reducing conditions were crucial to cleave the intramolecular disulfide bond. The formed 

free thiol groups chelated the zinc ion in the active epoxide hydrolase center of the bifunctional 

enzyme [11] causing covalent and irreversible inhibition of LTA4H. Beside epoxide hydrolase 

activity, LTA4H exhibits also an aminopeptidase function involved in the resolution of 

inflammation by hydrolysis and inactivation of the tripeptide matrikine proline-glycine-proline 

(PGP) [12, 13]. We measured the enzymatic degradation of PGP in gliotoxin-treated 
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neutrophils by UPLC-MS/MS resulting in an exclusively abrogation of the epoxide hydrolase 

activity by gliotoxin. Additional, we excluded an inhibition of other bifunctional enzymes 

containing an epoxide hydrolase activity by investigating sEH activity [14] after treatment with 

gliotoxin.  

In contrast to gliotoxin, we identified myxochelin A biosynthesized by Pyxidicoccus 

fallax as direct 5-LOX inhibitor in cell-free assays (IC50=1.9 µM ± 0.2 µM), correlating with its 

anti-proliferative effects in leukemic cells. As expected, the catechol basic structure was crucial 

for hampering LT biosynthesis, whereas methylation of aromatic hydroxyl residues caused 

detrimental effects on 5-LOX inhibition. Structure-activity relationships formed a basis for 

further investigations and structural modifications.  

Besides myxochelins, also DAO act as direct and irreversible 5-LOX inhibitor in cellular 

(IC50=0.3 µM ± 0.1 µM) and non-cellular (IC50=2.8 µM ± 0.9 µM) experimental settings. 

Furthermore, DAO hampered the interaction between 5-LOX and its helper protein 5-LOX 

activating protein (FLAP) determined by a proximity ligation assay, and DAO inhibited solely 

the 5-LOX pathway without targeting other enzymes of the AA cascade. Screening of various 

melleolides for 5-LOX inhibition provided detailed information on the underlying structure-

activity relationships. Especially the α,β-unsaturated aldehyde turned out to be crucial for 

potent 5-LOX inhibition. This structural element is also known as Michael acceptor. 

Compounds containing a Michael acceptor structure showed interactions with cysteines 

located at the entrance to the catalytic center of 5-LOX [15, 16]. Using stable transfected HEK 

cells with 5-LOX cysteine mutants, we showed that cysteines are catalytically relevant causing 

reduced 5-LOX activity and mediated diminished product formation. 5-LOX translocation was 

not affected by DAO, but the interaction with FLAP at the nuclear membrane was hampered, 

especially by the 5-LOX_C159 mutant. Interestingly, DAO interacted with C159 triggering 

abrogated 5-LOX/FLAP interaction and impaired 5-LOX activity resulting in reduced LT 

formation. 

Besides its anti-inflammatory effects, DAO displayed remarkable cytotoxic properties 

towards human primary monocytes and cancer cells. DAO induced cell death in an unusual 

rapid onset, characterized by apoptotic and necrotic features. The apoptosis marker PARP 

was cleaved within 15 min with preceding a slight activation of caspases, whereas the potent 

cytotoxic compound staurosporine [17, 18] triggered PARP cleavage only after 5 hrs. 

Furthermore, DAO affected also the membrane integrity after 15 min measured by an LDH 

assay indicating an untypical mode of action for its cytotoxicity. We clarified the cytotoxic mode 

of action of DAO, which is seemingly due to a covalent binding of its α,β-unsaturated aldehyde 

group to the ethanolamine residue of membrane PE by UPLC-MS/MS. Furthermore, we 

excluded an effect on serine or choline residues of other phospholipids. With the help of 

subcellular fractionation, we identified that DAO interacted primarily with plasma and lysosomal 
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membrane parts of cells causing an abrogation of PE in the membrane fraction. Hence, 

destabilization of lysosomes and the related decreased intracellular pH might be induced by a 

DAO-PE interaction on lysosomal membranes mediating necrotic features of cell death.  

In conclusion, the results of this thesis clarified the mode of action and targets of two fungal 

toxins and of the myxobacterial compound myxochelin A in human cells. Inhibition of LTA4H 

activity in case of gliotoxin seems to be the reason for neutropenia during IA, providing the 

basis for new therapeutic approaches of this disorder. Myxochelin A and its derivatives 

represent an interesting substance class for new 5-LOX inhibitors, but further investigations 

are essential, e.g., the in vivo confirmation of the anti-inflammatory efficiency. Finally, the 

melleolide DAO influences 5-LOX activity, but it exhibits also potent cytotoxic activity in human 

cells due to its unusual rapid onset of cell death induction by covalent binding to membrane 

PE.  
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ZUSAMMENFASSUNG 

In der vorliegenden Arbeit wurde der Wirkmechanismus von drei verschiedenen natürlich 

vorkommenden Sekundärmetaboliten in Krebszellen und primären Immunzellen aufgeklärt. 

Die untersuchten Substanzen sind (I) Gliotoxin aus Aspergillus fumigatus, welches mit LTA4H 

interagiert und damit ein potentieller Auslöser für die Neutropenie während einer IA festgestellt 

werden konnte, (II) das Melleolid DAO und verwandte Strukturanaloga, welche aufgrund einer 

5-LOX-Hemmung anti-inflammatorische Eigenschaften besitzen, aber auch kovalent an das 

Membranlipid PE binden und damit wichtige monozytäre Funktionen manipulieren, und zu 

guter Letzt (III) Myxochelin A aus Myxobakterien, welches die 5-LOX Aktivität durch eine 

Chelatisierung des zentralen Eisen-Atoms beeinflusst. Innerhalb der letzten Jahrzehnte 

verfestigte sich der bestehende Zusammenhang zwischen Entzündung und Krebsgeschehen. 

Deshalb ist es von großer Bedeutung neue Wirkstoffe zu identifizieren und weiterzuentwickeln, 

die eine chronische Entzündung verhindern und Wirkmechanismen zytotoxischer Substanzen 

zu untersuchen, um neue Ansatzpunkte für die Krebsmedikation finden zu können. Beide 

Aspekte werden mit dieser Arbeit angesprochen und behandelt. 

Gliotoxin ist bekannt als bedeutender Virulenzfaktor von A. fumigatus [1], der durch gezielte 

Beeinflussung von Neutrophilen eine IA auslöst [2, 3]. Unsere Untersuchungen ergaben, dass 

Gliotoxin die Biosynthese von LTB4, welches ein wichtiger Signalstoff für die Chemotaxis von 

Neutrophilen ist [4, 5], in vivo und in vitro hemmt. LTB4 entsteht durch die von LTA4H 

ausgelöste Hydrolyse aus LTA4, welches durch 5-LOX aus Arachidonsäure (AA) gebildet wird 

[10]. Für die Untersuchungen in vivo nutzten wir zwei Entzündungsmodelle: (1) eine durch 

Zymosan ausgelöste Bauchfellentzündung (Peritonitis) in Mäusen und (2) eine durch 

Carrageen ausgelöste Brustfellentzündung (Pleuritis) in Ratten. In den Tiermodellen reduzierte 

Gliotoxin die Einwanderung von Neutrophilen in die spezifischen Gewebe und hemmte selektiv 

die LTA4H. Als Kontrollsubstanz diente der klinisch relevante 5-LOX Inhibitor Zileuton [6]. 

Diese Ergebnisse konnten ebenso in vitro in primären Monozyten und Neutrophilen im 

Vergleich zu Zileuton und dem LTA4H Inhibitor SC-57461A [7, 8] nachgewiesen werden. 

Zusätzlich wurde die Bedeutung von Gliotoxin als Virulenzfaktor mit Hilfe eines A. fumigatus 

Stammes, bei dem das verantwortliche Enzym gliP für die Gliotoxin Biosynthese eliminiert 

worden ist (∆gliP) [9], bestätigt. Kulturüberstände dieses Stammes zeigten keine Reduktion 

von LTB4 in behandelten Neutrophilen. Interessanterweise konnte eine Aktivität von Gliotoxin 

nur intrazellulär nachgewiesen werden, da ein reduzierendes Milieu notwendig ist, um die 

intramolekulare Disulfidbrücke zu spalten. Die entstehenden freien Thiolgruppen bilden einen 

Chelatkomplex mit dem zentralen Zink-Ion in der Epoxidhydrolase Bindungstasche [11], was 

eine kovalente und irreversible Hemmung der LTA4H bewirkt. LTA4H ist ein bifunktionales 

Enzym, welches neben der Epoxidhydrolaseaktivität noch eine Aminopeptidaseaktivität 

aufweist [12, 13]. Diese ist an der Resolution einer Entzündung durch die Hydrolyse und 
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Inaktivierung des Matrikins PGP beteiligt. Mittels UPLC-MS/MS konnten wir nachweisen, dass 

Gliotoxin die Degradation von PGP und damit die Aminopeptidaseaktivität nicht beeinflusst. 

Des Weiteren wurde eine Beeinflussung anderer bifunktionaler Enzyme wie die sEH, welche 

ebenso eine Epoxidhydrolase Aktivität besitzt [14], ausgeschlossen. 

Im Gegensatz zu Gliotoxin, identifizierten wir Myxochelin A, welches von dem 

Myxobakterium Pyxidicoccus fallax gebildet wird, als direkten 5-LOX Inhibitor (IC50=1,9 ± 0,2 

µM) aufgrund einer Komplexierung des zentralen Eisenions [19] im zellfreien Milieu, was mit 

seinen anti-proliferativen Eigenschaften in Leukämie-Zellen korreliert. Wie zu erwarten war, ist 

die Catechol-Grundstruktur verantwortlich für die verringerte LT-Bildung, da O-Methylierungen 

zu einem gravierenden Wirkungsverlust führen. Struktur-Wirkungsbeziehungen bilden die 

Grundlage für Strukturmodifikationen und weitere Untersuchungen.  

Des Weiteren hemmt das Melleolid DAO selektiv die 5-LOX Aktivität und verhindert 

damit auch die Biosynthese pro-inflammatorischer LT. DAO ist ein direkter und irreversibler 5-

LOX Inhibitor unter zellulären (IC50=0,3 µM ± 0,1 µM) oder zellfreien (IC50=2,8 µM ± 0,9 µM) 

Bedingungen. DAO verhindert die Interaktion zwischen 5-LOX und dem Helferprotein FLAP 

an der nukleären Membran, was wir mittels eines Proximity Ligation Assays analysiert haben. 

Neben DAO untersuchten wir auch andere Melleolide auf eine potentielle 5-LOX-Hemmung, 

um Informationen über Struktur-Wirkungsbeziehungen zu erhalten. Dabei ergab sich, dass 

das α,β-ungesättigte Aldehyd essentiell für die Interaktion mit 5-LOX ist. Dieses 

Strukturelement kann auch als Michael-Akzeptor bezeichnet werden und interagiert unter 

anderem mit Cysteinen, welche am Eingang zum katalytischen Zentrum der 5-LOX 

angeordnet sind [15, 16]. Wir nutzten stabil transfizierte HEK Zellen mit verschiedenen 5-LOX 

Cysteinmutanten und bestätigten aufgrund einer verminderten 5-LOX-Produktbildung, dass 

diese Cysteine katalytisch relevant für die LT-Biosynthese sind. Interessanterweise 

beeinflussten die Cysteinmutanten nicht die 5-LOX-Translokation, sondern die Interaktion mit 

FLAP, welche vorrangig über C159 gesteuert wird. DAO interagierte mit C159 und verursachte 

damit die gestörte 5-LOX/FLAP Interaktion, was eine verringerte 5-LOX Aktivität zur Folge 

hatte. 

Neben seinen anti-inflammatorischen Eigenschaften weist DAO auch zytotoxische 

Charakteristika in humanen Monozyten und Krebszellen auf. DAO induzierte untypisch schnell 

den Zelltod, welcher sowohl apoptotische als auch nekrotische Merkmale aufweist. So aktiviert 

DAO den Apoptosemarker PARP innerhalb von 15 min, wofür Staurosporin, ein bekannter 

Apoptose auslösender Pan-Kinase Inhibitor [17, 18], mindestens 5 h benötigt. Des Weiteren 

schädigt DAO auch innerhalb von 15 min die Membranintegrität von Zellen, was wir mittels 

LDH Assay nachweisen konnten. Diese Aspekte lassen einen eher untypischen 

Wirkmechanismus für die Zytotoxizität vermuten. Wir zeigten, dass die α,β-ungesättigte 

Aldehydgruppe von DAO kovalent an die Ethanolamin-Kopfgruppe von membranständigen 
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Phospholipiden bindet, während Phosphatidylcholin und –serin nicht betroffen waren. 

Aufgrund einer durchgeführten subzellulären Fraktionierung stellten wir fest, dass DAO 

vorrangig mit PE aus der Plasmamembran/Lysosomen-Fraktion interagierte, welches die 

Reduktion des PE-Gehaltes in diesen Fraktionen erklärte. Gleichzeitig könnten damit die zu 

beobachtende Degradierung von Lysosomen und der sinkende intrazelluläre pH-Wert erklärt 

werden.  

Zusammenfassend identifizierten wir den Wirkmechanismus und die Zielstrukturen der beiden 

Pilzgifte Gliotoxin und DAO und der myxobakteriellen Substanz Myxochelin A. Gliotoxin hemmt 

die LTA4H Aktivität, was die Neutropenie während einer IA verursacht. Myxochelin A und 

Strukturanaloga stellen eine vielversprechende Substanzklasse für neue 5-LOX Inhibitoren 

dar, wofür allerdings weitere Untersuchungen wie zum Beispiel die Bestätigung der 

Wirksamkeit in vivo notwendig sind. DAO hemmt ebenfalls die 5-LOX-Aktivität und weist ein 

interessantes Wirkprofil nicht zuletzt wegen seiner untypisch schnellen zytotoxischen Wirkung 

durch die kovalente Bindung von PE an humanen Zellmembranen auf.  
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1. INTRODUCTION 

1.1 Inflammatory response and cancer 

Acute inflammation is a self-limiting innate immune response to internal or external harmful 

stimuli aiming to restore the homeostatic balance and to protect the organism against infection 

or any tissue damage. Inflammation is characterized by five major symptoms: (I) redness, (II) 

swelling, (III) pain, (IV) heating, and (V) loss of function. Classical initiators of acute 

inflammation are tissue injury or infection by pathogens [20]. During acute inflammation, 

various pro-inflammatory mediators, e.g., cytokines, chemokines, and eicosanoids are 

released by macrophages or mast cells initiating the recruitment of leukocytes and plasma 

proteins to the site of infection or injury. Due to the direct contact with pathogens or pro-

inflammatory mediators, neutrophils are activated leading in a release of detoxifying agents, 

e.g., reactive oxygen species (ROS), to eliminate infectious agents. In a second step, 

monocytes and macrophages access the inflammatory site, where alternatively activated 

macrophages promote the resolution phase of inflammation [20, 21]. Thus, the recruitment of 

neutrophils is interrupted, and an alteration in lipid mediator (LM) biosynthesis occurs from pro-

inflammatory prostaglandins and leukotrienes (LT) to anti-inflammatory lipoxins, protectins, 

maresins, and resolvins, mainly produced by macrophages [22, 23]. Macrophages initiate 

tissue repair and phagocytosis of apoptotic neutrophils and other dead cells. In the case that 

the acute inflammatory response fails to remedy the infection or injury, inflammation becomes 

chronic [20, 21]. Dysregulated inflammation leads to a homeostatic imbalance and can 

promote several diseases, e.g., rheumatoid arthritis, cardiovascular diseases, and ultimately 

also cancer. Several pro-inflammatory mediators and enzymes, e.g., cytokines, chemokines, 

matrix metalloproteinases, vascular endothelial growth factors, cyclooxygenase-2 (COX-2), 

and 5-lipoxygenase (5-LOX) are involved in inflammation but play also an important role in 

tumorigenesis as part of a pro-tumorigenic tissue microenvironment [24, 25]. This tumor 

microenvironment arises during persistent inflammatory states surrounding tumor cells and 

triggering tumor growth via the above-mentioned released mediators of infiltrating immune 

cells. Beside innate immune cells and cancer cells, the microenvironment consists of adaptive 

immune cells and surrounding stroma containing blood vessels, fibroblasts, and extracellular 

matrix [26-28]. Furthermore, two transcription factors are mainly involved in (inflammation-

triggered) tumor development: (I) signal transducer and activator of transcription 3 (STAT3) 

inducible by interleukin (IL)-6, and (II) nuclear factor κ B (NFκB). NFκB is responsible for pro-

inflammatory, proliferative, and pro-survival gene expression leading to suppression of 

apoptosis and support of cell cycle progression in cancer cells [29-31]. As mentioned before, 

neutrophils release ROS, inter alia, to eliminate injuring agents, but excessive formation of 

ROS can also initiate tumorigenesis by subsequent DNA damage. Considering, that 20% of 

cancers are associated with chronic inflammation [32], and that the tumorigenesis process is 
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biased by inflammation, it is concluded that inflammation is one key regulator of tumor 

development through various pathophysiological processes. 

1.1.1 Arachidonic acid pathway 

Arachidonic acid (AA) is a notable polyunsaturated fatty acid (20:4 ω-6) in mammalian cells. 

Due to its esterification within membrane phospholipids, AA is a marked component of human 

cellular membranes and affects membrane fluidity and flexibility [33, 34]. Furthermore, as 

essential precursor of pro- and anti-inflammatory bioactive LM, AA plays an important 

biochemical role in the initiation and resolution of inflammation [34, 35]. Three various types of 

oxygenases convert AA to bioactive LM in mammals: (I) cyclooxygenases (COX), (II) 

lipoxygenases (LOX), and cytochrome P450 (CYP450) enzymes. Initially, AA can be released 

from cellular membranes by the cytosolic phospholipase A2 (cPLA2) [4]. Free AA may then be 

metabolized by COX-1 or COX-2 to pro-inflammatory prostanoids, that encompass 

prostaglandins and thromboxanes, which are crucial mediators of inflammation [36]. But also 

LOX, including 5-LOX, 8-LOX, 12-LOX, and 15-LOX, generate pro-inflammatory LT and anti-

inflammatory lipoxins from AA [4, 37, 38], and CYP450 isoenzymes form epoxyeicosatrienoic 

acid (EET) [39]. In the last decades, many chemically synthesized or natural compounds have 

been investigated, that interfere with the AA pathway and possess a promising potential as 

anti-inflammatory drugs, but only a few compounds reached the pharmaceutical market until 

now [40-42]. 

Fig. 1 The arachidonic acid 

pathway. 

AA – arachidonic acid, cPLA2 – 

cytosolic phospholipase A2, COX 

– cyclooxygenase, EET – 

epoxyeicosatrienoic acid, FLAP – 

5-lipoxygenase activating protein, 

LOX – lipoxygenase, LT – 

leukotriene, LTA4H – leukotriene 

A4 hydrolase, LTC4S – 

leukotriene C4 synthase 
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1.1.1.1 5-Lipoxygenase and its helper protein FLAP 

5-LOX is one of the six known LOX in humans and was first discovered in the year 1976 [43-

45]. 5-LOX is a soluble, 78 kDa protein expressed in the cytosol or inside the nucleoplasm of 

leukocytes (neutrophils, eosinophils, monocytes/macrophages, dendritic cells, mast cells, and 

B-lymphocytes) [46]. Mammalian 5-LOX exhibits a monomeric structure with 672 or 673 amino 

acids possessing two different functional domains: (I) an N-terminal C2-like domain (residues 

1-112), and (II) an α-helical C-terminal domain (residues 126-673) [19, 47]. The regulatory C2-

like domain consists of β-sheets and is responsible for Ca2+, membrane, and coactosin-like 

protein (CLP) binding. In contrast, the C-terminal domain represents the catalytic center of 5-

LOX with a non-hem iron [19]. This non-hem iron functions during the 5-LOX reaction 

mechanism as electron acceptor or donor forming a redox cycle between the inactive ferrous 

(Fe2+) and the active ferric (Fe3+) form promoted by lipid hydroxyperoxides [48]. Three 

conserved histidines (His367, His372, His550) and the carboxylate of the C-terminal Ile673 

coordinate the iron [10, 19]. The crystal structure reveals additionally a unique variation of 

small helix α2 in the catalytic domain controlling the entrance to the iron like a mobile lid [49], 

and the side chain of Phe177 and Tyr181 seals access to the catalytic domain, thereby called “FY 

cork” [19]. Usually, 5-LOX is described as monomeric protein, but also a homodimer formation 

of two monomers is reported [50, 51]. Dimer formation is caused by four cysteines (C159, C300, 

C416, C418) located at the region around the entrance to the catalytic center generating disulfide 

bonds by cross linking among each other [50, 51]. As monomer, 5-LOX exhibits an increased 

enzyme activity but after dimerization, the catalytic activity is reduced [51]. The C2- and the 

catalytic domain interact by a salt bridge between Arg101 of the β-sandwich and Asp166 located 

at the catalytic domain [49].  

FLAP 

The 5-LOX activating protein (FLAP) is an 18 kDa integral membrane protein embedded in the 

inner and outer leaflet of nuclear and endoplasmic membranes. FLAP belongs to the 

membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family and 

shows contrarily to other MAPEG family members no catalytic activity or GSH binding site [52, 

53]. FLAP was firstly discovered in the late 1980s as target of MK-886 that was found to inhibit 

LT biosynthesis devoid of targeting other enzymes of the AA cascade [54, 55]. In 2007, the 

crystal structure of FLAP in complex with the inhibitor MK-591 was determined [56]. This study 

demonstrated by X-ray crystallography a formed homotrimer anchored in the nuclear 

membrane, whereby each monomer consists of four transmembrane helices linked by two 

cytosolic and one luminal loop [56]. During LT biosynthesis, FLAP interacts as 5-LOX helper 

protein to transfer AA to 5-LOX by a so far unknown mechanism [57] and thus stimulating 

conversion of exogenous AA to 5-HpETE and additionally triggering dehydration of AA to LTA4 
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[58]. However, FLAP inhibitors are able to efficiently block LT biosynthesis gaining an 

interesting drug development field against inflammatory diseases [59]. 

Activation of 5-LOX and leukotriene formation 

Activation of 5-LOX can be mediated by cell stress or various external stimuli. Cell stress as a 

Ca2+-independent mechanism is caused by heat shock, osmotic stress, oxidative, or genotoxic 

agents [60]. These factors initiate activation of mitogen-activated protein kinases (MAPK) 

followed by phosphorylation of 5-LOX on several serine residues with divergent impacts [61]. 

External stimuli like N-formyl-methionyl-leucyl-phenylalanine in combination with 

lipopolysaccharide (fMLP/LPS), ionophores [62], platelet activating factor (PAF), thapsigargin 

[63], C5a, LTB4, and cytokines increase the intracellular Ca2+ concentration, and thus, 5-LOX 

and cPLA2 are activated [46]. cPLA2 translocates together with 5-LOX to the nuclear 

membrane and liberates, among other things, AA from arachidonyl-phosphatidylcholine. 

Accordingly, FLAP transfers AA to the membrane-associated 5-LOX for LT biosynthesis [64]. 

5-LOX generates pro-inflammatory LT in a two-step reaction: (I) oxygenation of AA to 5(S)-

hydroxyperoxy-6-trans-8,11,14-cis-eicosatetranoic acid (5-HpETE), and (II) dehydration to the 

instable epoxide 5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid (LTA4) [37, 

65]. Alternatively, 5-HpETE can be reduced by glutathione peroxidases to 5(S)-hydroxy-6-

trans-8,11,14-cis-eicosatetraenoic (5-HETE) [66]. The instable LTA4 can be stereospecific 

hydrolyzed by LTA4 hydrolase (LTA4H) to the important chemoattractant 5(S),12(R)-dihydroxy-

6,14-cis-8,10-trans-eicosatetraenoid acid (LTB4). Additional, LTA4 degrades non-

enzymatically into two inactive isomers (6-trans-LTB4, and 6-trans-12-epi-LTB4) [67]. 

Alternatively, LTA4 is transformed by LTC4 synthase (LTC4S) conjugating a glutathione (GSH) 

residue at the epoxide moiety to 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-

eicosatetraenoic acid (LTC4) in monocytes, macrophages, dendritic cells, and mast cells [68, 

69]. Several enzymes can metabolize LTC4 to 5(S)-hydroxy-6(R)-S-cysteinylglycyl-7,9-trans-

11,14-cis-eicosatetraenoic acid (LTD4) and 5(S)-hydroxy-6(R)-cysteinyl-7,9-trans-11,14-cis-

eicosatetraenoic acid (LTE4), which can be summarized together with LTC4 to cysteinyl-LT 

(cysLT). 

5-LOX inhibitors 

LT play an important role in acute and chronic inflammatory diseases and promote also the 

development and progression of cancer [37, 41, 65]. Different strategies are conceivable to 

interfere with LT: direct inhibition of enzymes involved in the AA pathway like cPLA2, 5-LOX, 

FLAP, LTA4H, LTC4S or antagonists of LT receptors like the compound montelukast [70]. 

Besides cPLA2, direct inhibition of 5-LOX is a common strategy to suppress a diversity of 

eicosanoids especially AA-derived LM. Direct 5-LOX inhibitors can be subdivided, based on 

their therapeutic mode of action, in four different inhibitor types: (I) redox active compounds 
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(e.g., natural compounds like coumarins, or flavonoids [71]) influencing mainly the 5-LOX 

redox cycle by reducing the active site iron (Fe3+) to its inactive ferrous (Fe2+) state, thereby, 

interrupting the catalytic reaction of 5-LOX [40, 41], (II) iron-chelating compounds 

characterized by hydroxamic acid (e.g., BWA4C [72]), or N-hydroxyurea residues (e.g., 

zileuton [6]) that cause reduced 5-LOX activity by chelating the active site iron, (III) non-redox 

active agents (e.g., embelin, and its derivatives [73, 74], ZD2138 [75], L-739,010 [76]), which 

are independent of redox characteristics competing with AA or lipid hydroxyperoxides for the 

binding to 5-LOX [40, 41], and (IV) novel inhibitors with unknown modes of action. These 

inhibitors of the latter group show interactions with different binding sites of the C2-like domain 

like hyperforin with the PC binding site [77, 78], or indirubin derivatives with the ATP binding 

site [79]. Furthermore, Michael acceptor-containing agents (e.g., thymoquinone, nitro fatty 

acids, U73122) are considered as additional new class of 5-LOX inhibitors by interacting with 

surface cysteines (C159, C300, C416, C418) at the dimerization interface of the catalytic center of 

5-LOX [16].  

1.1.1.2 Leukotriene A4 hydrolase and leukotrienes 

LTA4H, a soluble 69 kDa protein, is widely expressed in mammalian cells preferable in 

neutrophils but negligibly in eosinophils. The enzyme is localized in the cytosol or in the 

extracellular space [47, 80], but nuclear distribution has also been observed [81]. Additionally, 

LTA4H is a monomeric Zn2+ metalloenzyme that exhibits two distinct enzymatic activities: (I) 

an epoxide hydrolase activity that metabolizes LTA4 to the pro-inflammatory chemoattractant 

LTB4 predominantly in the cytosol, and (II) during the resolution state of inflammation an 

aminopeptidase activity that hydrolyzes and thus inactivates the pro-inflammatory tripeptide 

proline-glycine-proline (PGP) mainly in the extracellular space [12, 13, 82]. The 

aminopeptidase and epoxide hydrolase activities are exerted via distinct but overlapping active 

sites [82]. Interestingly, LTA4H can be inhibited by its own substrate LTA4 through a suicide 

inactivation mechanism interacting with Tyr378 within the active site [80, 83]. The crystal 

structure discloses three different domains: (I) an N-terminal domain (residues 1-207), (II) a 

Zn2+ containing catalytic domain (residues 461-450), and (III) an α-helical C-terminal domain 

(residues 461-610). The active site is situated between all three domains, and the catalytic 

Zn2+ ion is coordinated by two histidines (His295, His299), and Glu318 [84]. Close to the Zn2+, the 

residue Glu271 is shared between the two catalytic pockets and is responsible for both enzyme 

activities [85]. The binding site for LTA4 appears to be localized in the L-shaped hydrophobic 

pocket and contains the catalytic Zn2+ and Arg563 playing important roles for the epoxide 

hydrolase as well as the aminopeptidase activity [13, 86]. A mutation of Asp375 supported a 

crucial role of this residue for hydrolyzing LTA4 into LTB4 [87], and in contrast, mutations of the 

residues Glu296 and Tyr383 show a selective elimination of the aminopeptidase activity [88]. 

Besides LTA4, the tripeptide PGP is a physiological substrate of LTA4H [89] and exhibits similar 
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to LTB4 chemoattractant properties for neutrophils [90, 91]. PGP belongs to the family of 

matrikines and is generated from extracellular matrix collagen by metalloproteinases and 

prolylenpeptidases [92]. Normally, PGP is degraded by the aminopeptidase activity of LTA4H. 

If LTA4H is blocked, the enzyme fails to decompose PGP, and thus, PGP accumulates and 

induces neutrophil infiltration especially in the lung [12, 93]. For this reason, PGP plays an 

important role in pathology and development of chronic lung diseases and is used as biomarker 

for chronic obstructive pulmonary disease (COPD) [94]. 

LTA4H inhibitors 

LTA4H constitutes an attractive therapeutic target for the treatment of chronic inflammatory 

diseases, e.g., respiratory disease [89], inflammatory bowel diseases [95], or cancer [96], due 

to its high importance in the biosynthesis of inflammatory mediators. Until now, a variety of 

LTA4H inhibitors were discovered and developed, but most potent selective inhibitors failed in 

clinical trials due to their minimal efficacy [97]. Furthermore, the problem of most identified 

inhibitors is to block also the aminopeptidase activity, which plays a crucial role in the resolution 

of inflammation by degradation of the tripeptide PGP, beside hampering the epoxide hydrolase 

activity [98], e.g., JNJ-40929837 [99], SC-57461A [7, 8, 100], or SC-22716 [101]. Interestingly, 

inhibitors of other Zn2+ metalloproteinases, for example, bestatin [102], captopril [103], or 

kelatorphan [11], affect additionally both LTA4H activities by chelating the central Zn2+ ion. 

According to the importance of the PGP-degrading activity of LTA4H [12, 89], the novel route 

in drug design is to create new LTA4H inhibitors with a selective blockade of epoxide hydrolase 

activity without affecting the aminopeptidase activity [104, 105]. Recently, two selective 

epoxide hydrolase inhibitors were developed, 4-methoxydipehnylmethane (4-MDM) [106], and 

4-(4-benzylphenyl)thiazol-2-amine (ARM-1) [107]. These two compound classes are used to 

design analogues with an improved potency for clinical trials and an unaffected selectivity for 

inhibition of LTB4 biosynthesis [104, 105]. 

Leukotrienes  

LT are bioactive LM involved in the innate and adaptive immune response and play 

physiological and pathological roles in inflammation and in several diseases like asthma 

bronchiale, psoriasis, rheumatoid arthritis, cardiovascular diseases, allergy, and cancer. They 

are produced by pro-inflammatory cells, mainly by leukocytes, through the AA/5-LOX pathway, 

released from the cells by ATP-dependent efflux pumps and deliver their biological activity via 

specific G-protein coupled receptors (GPCR). LT can be divided into two classes: (I) the 

chemoattractant LTB4, and (II) the multi-functional cysLT.  

LTB4 is one of the most potent chemoattractants for neutrophils [4, 5] and plays an 

important role for the immune defense. LTB4 triggers the recruitment of immune cells like 

granulocytes, monocytes, macrophages, and T-cells into inflammatory tissue, their adherence 
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to the endothelium, and their activation [108]. Additional, LTB4 promotes the activation of 

phagocytosis of neutrophils and macrophages and triggers the generation of cytokines (IL1, 

IL2, IL6), and chemokines (MCP-1) in macrophages [108, 109]. These effects confirm the 

relevance of LTB4 in host defense against infections and pathologies of acute and chronic 

diseases like atherosclerosis [110], rheumatoid arthritis [111, 112], and cancer [4, 113]. LTB4 

mediates its effects by two GPCRs: (I) BLT1, and (II) BLT2. The expression of BLT1 is confined 

to leukocytes and represents a high affinity receptor. In contrast, the BLT2 receptor is 

ubiquitously expressed with low affinity for LTB4. A participation of BLT2 for host defense was 

reported, but the physiological role is poorly understood [114, 115]. 

Biological effects of cysLT were first discovered in the year 1938 without any knowledge 

about chemical features and their mode of action [116]. As described before, cysLT are GSH-

conjugated LT including LTC4, LTD4, and LTE4 known as slow acting substances of 

anaphylaxis but also as powerful smooth muscle contracting agents [116, 117] primarily in 

eosinophils, basophiles, mast cells, monocytes, and macrophages [68]. CysLT exhibit pro-

inflammatory, bronchoconstrictive, and vasoconstrictive properties and increase the 

recruitment of eosinophils by the release of chemokines (MCP-1), mucus secretion from 

bronchial epithelial cells, and the pulmonary vascular permeability [118, 119]. Besides their 

effects on asthma bronchiale, they play also a role in allergic rhinitis, atopic dermatitis, and 

chronic diseases, e.g., cardiovascular diseases [119-121]. CysLT can bind to three GPCR – 

CysLT1, CysLT2, and CysLT3. All cysLT bind to CysLT1 conveying most of their pro-

inflammatory effects but with different levels of affinity (LTD4>LTC4>LTE4) [122]. Potent 

selective LTD4 antagonists like montelukast, zafirlukast (withdrew from the pharmaceutical 

market since 2019) , and pranlukast (with primary usage in Japan) are used for the treatment 

of asthma bronchiale [123]. In contrast, LTC4 and LTD4 bind with equal affinity to CysLT2, and 

again LTE4 shows a reduced binding affinity (LTC4=LTD4>LTE4) [119, 124]. Recently 

discovered, the third cysLT receptor (CysLT3) exhibited a selective binding of LTE4 [125], but 

its role in inflammation has to be clarified. 

1.2 Cell death 

Cell death belongs to essential basic processes in mammalian cells mediating development 

and regulation of tissue homeostasis. On the basis of morphological and biochemical 

characteristics, cell death can be classified into three subgroups: (I) apoptosis (section 1.2.1), 

(II) autophagic cell death (section 1.2.2), and (III) necrosis (section 1.2.3) [126-128], whereby 

in many cases no clear distinction exists between individual forms, and composited processes 

occur.  
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1.2.1 Apoptosis 

 

Fig. 2 Apoptosis pathway. I) intrinsic pathway; II) extrinsic pathway. 

Apoptosis is the classical programmed cell death without induction of inflammation and is 

characterized by several morphological alterations to protect cells from an undesirable immune 

response [129, 130]. Typical morphological changes are chromatin condensation, and nuclear 

fragmentation, cell shrinkage, mitochondrial outer membrane permeabilization, and formation 

of apoptotic bodies [128-130]. These apoptotic bodies are small intact plasma membrane 

vesicles of disintegrated cells, containing cellular components and organelles, and can be 

eliminated by phagocytosis via neighboring cells [129]. Beside morphological features, 

apoptosis exhibits also biochemical characteristics. One major role plays the contribution of 

caspases, which are cysteine aspartyl proteases [131]. Under non-apoptotic conditions, 

caspases are inactive enzymes, called zymogens, and these pro-caspases can be activated 

by cleavage or dimerization [132, 133]. Caspase-mediated apoptosis can occur through two 

predominant pathways: (I) the extrinsic pathway, and (II) the intrinsic pathway. The extrinsic 

pathway is induced by extracellular signals, e.g., Fas ligands, TNFα, and TNF-related 

apoptosis-inducing ligands (TRAIL) binding to trans-membrane death receptors. Activated 

receptors form together with pro-caspase 8 a multi-protein death initiation signaling complex 

(DISC), which cleaves pro-caspase 8 in its active form. Subsequently, caspase 8 activates 

itself by autocleavage and triggers the cleavage of caspase 3 or induces the intrinsic 

mitochondrial pathway [134, 135]. Additionally, in response to stressing conditions, e.g., DNA 

damage, oxidative stress, growth factor withdrawal, cytotoxic compounds, or toxic insults, the 

mitochondrial outer membrane permeabilization increases by oligomerization of Bax/Bak 

[136], and the mitochondrial membrane potential dissipates resulting in an elimination of ATP 
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production [129, 137]. Consequently, mitochondria release several proteins like Cytochrome 

c, and these trigger together with ATP and the apoptotic protease-activating factor-1 (Apaf-1) 

the assembly of an apoptosome [138]. This complex initiates the recruitment and activation of 

caspase 9, which is able to cleave and therefore to activate caspase 3. Both pathways result 

in an activation of caspase 3 provoking the subsequent cleavage of poly-(ADP-ribose) 

polymerase-1 (PARP-1), which is essential for DNA repair and thus for cell survival. 

Furthermore, a caspase-independent PARP cleavage is also possible [139, 140].  

1.2.2 Autophagy and autophagic cell death 

Autophagy is a lysosomal degradation pathway, which is a pro-survival mechanism with spatial 

restriction. In short, cytoplasmic components are degraded and recycled in double-membraned 

vacuoles with the help of lysosomal hydrolases [141, 142]. Autophagic digestion is essential 

for survival, development, differentiation, and homeostasis, and it protects organisms from 

pathologies, e.g., cancer and infections [141]. In general, autophagy can be classified in (I) 

chaperone-mediated autophagy, (II) microautophagy, and (III) macroautophagy, whereby the 

latter is the major degradation process, which is primarily used by cells to generate energy in 

the form of ATP for their cell survival [143]. The basic macroautophagy process begins with 

isolated membrane residues, so-called phagophores. These membrane residues can originate 

from plasma membrane, endoplasmic reticulum (ER), Golgi, or mitochondria. Expansion of 

phagophores generates a double membrane-layered vesicle, the autophagosome. This 

autophagosome, containing cell organelles, protein aggregates, and endosomes, merges with 

lysosomes, holding lysosomal hydrolases, to the autolysosome. Within the autolysosome, 

captured material is degraded by hydrolases, and component parts are released to the cytosol 

for biosynthetic processes or for energy generation [142-144]. Autophagy can be regulated by 

many different factors which are specific for the respective organism, e.g., the up- and 

downstream pathway of the mechanistic target of rapamycin (mTOR), protein kinase A (PKA), 

proteins of the Bcl-2 family, and AMP-activated protein kinase (AMPK) as possible regulators 

for the mammalian macroautophagy [143-145]. The autophagic process is upregulated for 

generation of intracellular nutrients and energy or during oxidative stress, infection, and protein 

aggregate accumulation to remove intracellular pathogens [141, 145]. Furthermore, autophagy 

can also be activated by caspases [146]. Hyperactive autophagy provokes a breakdown of 

cellular organelles and proteins to generate energy comparable with a self-cannibalism that 

finally leads to cell death [141]. Cell death is mediated through autophagy, and on the other 

hand, cell death occurs with autophagy. In fact, the complete mechanism of autophagic cell 

death have not yet been fully clarified, but it is known that an increased autophagy activates 

the c-Jun N-terminal kinase (JNK) generating death signals [147]. Furthermore, autophagic 

cell death is mediated through the Bcl-2 family proteins Bax/Bak, located at the lysosomal 
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monomeric membrane, which cause an enhanced lysosomal membrane permeability resulting 

in an increased acidity [148].  

1.2.3 Necrosis 

In contrast to the previous types of cell death, necrosis is an uncontrolled process lacking the 

characteristics of apoptosis and autophagic cell death [128, 149] and can be elicited by direct 

chemical or radiologic insult [150]. Necrosis is originally characterized by a rapid rupture of 

plasma membrane caused by cytoplasmic swelling, dismantling of swollen organelles, and the 

involvement of the immune system leading to the release of pro-inflammatory intracellular 

factors [128, 149, 151]. Furthermore, necrosis exhibits several highly regulated mechanisms. 

These include early signs of mitochondrial dysfunction, e.g., ATP depletion, failed Ca2+ 

homeostasis, swelling, and enhanced ROS production, lysosomal rupture, and activation of 

proteases like calpains and cathepsins [149, 152, 153]. In fact, necrosis plays also a relevant 

role in many biological and immunological processes like microbial infections, adaptive 

immune responses, septic shock, cell homeostasis, and cancer [151, 153]. Three different 

types of necrosis are described: (I) pyroptosis, (II) necroptosis, and (III) lysosome-mediated 

necrosis (LMN) [151]. The best characterized form is pyroptosis, mediated through caspase 1 

activation and inflammasome signaling [154]. Also known as back up cell death pathway, 

necroptosis combines apoptotic and necrotic features. In the presence of caspase inhibitors, 

necrosis is initiated by death receptor ligands (TNFα, TRAIL, or Fas) and is regulated by 

receptor-interacting kinase 1 and 3 (RIP1/RIP3), and mixed lineage kinase domain-like (MLKL) 

[155]. Both necrotic forms are linked to inflammation. In contrast, LMN is linked to the adaptive 

immunity [156] and is induced by alum, silicea crystals, cholesterol crystals, amyloid proteins, 

and the dipeptide methyl ester Leu-Leu-OMe (LLOMe). One major characteristic feature is an 

early lysosome rupture followed by irreversible plasma membrane damage and proteolysis of 

proteins with low-molecular weight [151, 157, 158]. These effects are regulated by cathepsins 

[157]. 

1.3 Natural products 

 

 

 

 

 

 

 

 

Fig. 3 Structures of investigated natural compounds. 
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1.3.1 Gliotoxin from Aspergillus fumigatus 

The fungal secondary metabolite gliotoxin is an epidithiodioxopiperazine mycotoxin, and it is 

characterized by an intramolecular sulfur bridge and a dipiperazine core [159-161]. This 

intramolecular disulfide bond is responsible for the majority of biological activities [162] by 

triggering ROS production and interaction with cysteines within proteins [160], due to an 

intracellular redox cycle of gliotoxin. Gliotoxin is produced by various fungal species like 

Eurotium chevalieri and Trichoderma vireus but most commonly produced in Aspergillus 

fumigatus [160, 163]. The mycotoxin shows a variety of biological activities including antiviral 

effects by decreasing of multiplication of RNA through inhibition of RNA-dependent RNA 

polymerase [164, 165], inhibition of angiogenesis [166], and immunosuppressive impact [167, 

168]. These immunosuppressive effects are conferred by effects on the cytoskeleton of 

immune cells, features as potent virulence factor, and also by its cytotoxicity [160]. Gliotoxin 

abrogates phagocytosis of polymorphonuclear leukocytes (PMNL) and affects the actin 

cytoskeleton organization resulting in alterations of cell morphology and cell adhesion [169-

171]. In RAW264.7 macrophages, gliotoxin interferes with the inositol triphosphate metabolism 

impeding integrin activation, dysfunction in the actin cytoskeleton remodeling, and finally 

reduced phagocytosis [172]. Furthermore, gliotoxin shows inhibitory effects on 

farnesyltransferase and geranylgeranyltransferase [160], and it interferes with nicotinamide 

adenine dinucleotide phosphate oxidase complex formation leading to reduced ROS formation 

in phagocytes [173, 174]. Moreover, gliotoxin induces apoptosis in various cell types, except 

PMNL [175], through different pathways. Gliotoxin is able to stabilize IκBα preventing its 

degradation by proteasome [176], and thus, the transcription factor NFκB cannot be activated 

[177], causing a diminished pro-inflammatory cytokine release in vivo and in vitro [178]. 

Additional, gliotoxin increases the cellular concentration of cyclic adenosine monophosphate 

(AMP) by phosphorylation of histone H3 leading to an activation of PKA in thymocytes [179]. 

Another pathway of gliotoxin to trigger apoptosis is the interference with the Bcl-2 family 

member Bak resulting in a stimulation of the mitochondrial apoptosis pathway. As result, ROS 

production is increased and mediates the release of proapoptotic proteins like cytochrome C 

and leads eventually to apoptosis [180]. Finally, gliotoxin is a significant virulence factor in the 

pathology of A. fumigatus [1] eliciting IA [2]. IA affects primarily immunocompromised patients 

as well as immunocompetent patients with a high mortality rate varying between 30 to 90% 

[181]. During the infection process, A. fumigatus produces various mycotoxins with gliotoxin 

as most abundant and best characterized compound [163]. Indeed, gliotoxin is detectable in 

lung and sera of mice and human patients [182], and it is able to evoke aspergillosis in mice 

[2]. Due to its immunosuppressive characteristics, gliotoxin is used as diagnostic marker for IA 

[160]. 
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1.3.2 Melleolides from Armillaria mellea 

Melleolides are fungal secondary metabolites of the basidiomycete genus Armillaria mellea, a 

global widespread and edible genus with particular saprotrophic and parasitic characteristics 

[183, 184]. Constituents are sesquiterpene aryl esters with orsellinic acid from the polyketide 

pathway [185] as basic structure esterified with a protoilludene type secondary alcohol derived 

from the sesquiterpene pathway [184]. These combined structural elements are unique for the 

genus Armillaria [186]. The cultured mycelium of A. mellea is used as “Tienma” in traditional 

Chinese medicine to treat dizziness, headache, neurothenia, and insomnia [187, 188]. 

Melleolides show, besides antioxidative properties [189], also antimicrobial and antifungal 

activities [184, 188, 190, 191]. The modes of action for antimicrobial and antifungal effects are 

still unclear. Moreover, melleolides increase the maturation of dendritic cells [192] and 

enhance concanavalin A- or LPS-mediated lymphocyte proliferation [193]. Additional, 

melleolides exhibit cytotoxic properties towards various cancer cells [194] with several modes 

of action. Armillarikin induces apoptosis in human leukemia cells and hepatocellular carcinoma 

cells by caspase activation and increased ROS production followed by collapse of 

mitochondrial transmembrane potential [187]. In contrast, armillaridin causes autophagy-

mediated cell death in human leukemia cells by reduction of the mitochondrial transmembrane 

potential and effects on autophagic flux and on autophagosome-lysosome fusion resulting in 

an induction of autophagosome formation [195, 196]. Also arnamial possesses cytotoxic 

features [197] with a still unclear mechanism. Additional, some melleolides causes decreased 

DNA biosynthesis in human cancer cells hypothesizing this effect as reason for their 

cytotoxicity [194]. During the last years, several structure-activity relationship studies were 

performed and some structural properties disclosure, whether melleolides exhibit antifungal or 

cytotoxic effects. Of interest, structural elements causing antifungal or cytotoxic activity are 

dissimilar. While the position of the double bond within the sesquiterpene moiety causes 

antifungal activity [186], the degree of hydroxylation within the sesquiterpene moiety and a low 

number of alcohol functionalities are responsible for cytotoxicity [194].  

1.3.3 Myxochelin A from Pyxidicoccus fallax 

Pyxidicoccus fallax belongs to the family of Gram negative bacteria - these so-called predatory 

myxobacteria contain diverse macrolide antibiotics, e.g., gulmirecins [198], disciformycins 

[199], and anti-cancer agents, e.g., myxochelin A [200-202]. Myxochelins are assumed to 

mediate their biological activity as siderophores and thus securing the iron supply of the 

producing bacterium as iron chelating agents [203]. Besides their antiproliferative effects in 

leukemic cancer cell lines [200], myxochelins exert also antimetastatic effects [204, 205]. The 

catechol residues seem to be responsible for the biological activity, whereas methylation of the 

catechol hydroxyl residues diminishs their effects [200, 206].  
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2. AIM OF THE THESIS 

Acute inflammation is a physiological process to protect the host organism against infection 

and to restore homeostasis upon injury by an immune response. This response is mediated 

by various internal signals, e.g., eicosanoids, cytokines, and chemokines, or external signals, 

e.g., diverse microbes, leading to chronic inflammation and cancer in some cases. As member 

of the Excellence Graduate School “Jena School for microbial communication” (JSMC), which 

addresses microbial communication between microorganisms, their metabolic products and 

host organisms, this thesis aimed to investigate several natural secondary metabolites with 

potential anti-inflammatory and/or cytotoxic effects in primary immune cells and cancer cells 

for their immunomodulatory actions and to resolve the underlying molecular mechanisms. In 

view of the growing link between inflammation and cancer and the role of primary immune cells 

in tumorigenesis, the identification of crucial effectors is key for understanding their connection 

and may offer potential targets for therapeutic approaches. 

First, the effect of these secondary metabolites on LT biosynthesis have been 

investigated with the aim to clarify and to characterize the mechanisms for the underlying 

inhibition of LT formation. LT are bioactive LM, which are formed by 5-LOX and LTA4H, or 

LTC4S from the polyunsaturated fatty acid AA, playing a pivotal role in the innate and adaptive 

immune response, inflammation, and several diseases due to the recruitment of leukocytes to 

the site of infection or injury. In the last decades, a variety of 5-LOX, LTA4H, and LTC4S 

inhibitors were designed, investigated, and tested in clinical trials, but only a few compounds 

reached the pharmaceutical market, e.g., the 5-LOX inhibitor zileuton [6]. Main focus of this 

thesis was placed on an abrogation of LT biosynthesis by inhibition of 5-LOX or LTA4H. 

Therefore, inhibitory effects in cell-free assays were compared with the efficacy in various 

leukocytes including the influence of different stimuli or redox active agents. Furthermore, 

selectivity of inhibition was confirmed by the exclusion of effects on other enzymes involved in 

the AA metabolic pathway. In the case of 5-LOX inhibition, interaction with the 5-LOX helper 

protein was analyzed by immunofluorescence, and the detailed impact of concerned 

compounds was investigated. Moreover, physiological data for LTA4H inhibition were collected 

by distinct animal models of inflammation and infection. 

Second, the effects of natural compounds on human cell viability have been 

investigated to elucidate their mode of action as new approach for the development of anti-

cancer drugs. Hence, the cytotoxic properties of melleolides were studied in human primary 

monocytes and cancer cells including the characterization of apoptotic and necrotic features 

by flow cytometry experiments. Additionally, modifications in cell morphology were analyzed 

by light microscopy followed by a new established UPLC-MS/MS method to detect 

phospholipid-compound interactions, and subcellular fractionation was performed to address 

a specific accumulation in various cell organelles including cell membranes.   
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3.1 Manuscript I (M-I) 

 

 

Melleolides from honey mushroom inhibit 5-lipoxygenase via C159 

 

Stefanie König, Erik Romp, Verena Krauth, Michael Rühl, Maximilian Dörfer, Stefanie 

Liening, Bettina Hofmann, Ann-Kathrin Häfner, Dieter Steinhilber, Michael Karas, Ulrike 

Garscha, Dirk Hoffmeister, Oliver Werz 

Cell Chemical Biology 2019 26(1), 60-70 

 

 

In the present work, we characterized four melleolides isolated from Armillaria mellea and their 

effects on LT biosynthesis in human primary neutrophils. Melleolides abrogated the formation 

of LTB4 due to a selective inhibition of 5-LOX. In more detail, melleolides prevented the 

interaction between 5-LOX and its helper protein FLAP at the nuclear membrane by covalent 

binding of their α,β-unsaturated aldehyde moiety to cysteines located around the entrance to 

the catalytic center. Moreover, experiments with 5-LOX mutants, where selected cysteines 

have been substituted by serine, revealed two possible modes of actions caused by 

melleolides. First, the direct interaction with more than two of the cysteines C159, C300, C416, 

and C418 leading to a reduced 5-LOX activity, and second, the selective influence on C159, 

which prevented the 5-LOX/FLAP complex assembly at the nuclear envelope. Taken together, 

melleolides harboring a Michael acceptor functionality mediated the 5-LOX inhibition by 

targeting C159. 

 

 

Own contribution: Experimental design and performance of 5-LOX assays, 

immunofluorescence analysis, proximity ligation assays; assistance to HEK cell transfection; 

measurement of 5-LOX expression, FLAP expression, and phosphorylation of cPLA2, ERK-

1/2, p38 MAPK by Western Blot; maintenance of cell culture and performance of blood cell 

isolation; data analysis; writing the manuscript. Total contribution: 80%. 
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3.2 Manuscript II (M-II) 

 

 

Gliotoxin from Aspergillus fumigatus abrogates leukotriene B4 formation 

through inhibition of leukotriene A4 hydrolase 

 

Stefanie König, Simona Pace, Helmut Pein, Thorsten Heinekamp, Jan Kramer, Erik Romp, 

Maria Straßburger, Fabiana Troisi, Anna Proschak, Jan Dworschak, Kirstin Scherlach, 

Antonietta Rossi, Lidia Sautebin, Jesper Z. Haeggström, Christian Hertweck, Axel A. 

Brakhage, Jana Gerstmeier, Ewgenij Proschak, Oliver Werz 

Cell Chemical Biology 2019 26(4), 524-534 

 

 

This publication presents the effects of gliotoxin isolated from Aspergillus fumigatus on LTB4 

biosynthesis caused by inhibition of LTA4H in human primary immune cells. The potent 

neutrophil chemoattractant LTB4 is involved in several inflammatory diseases, e.g., IA caused 

by A. fumigatus leading to high mortality rates, especially for immunocompromised patients. 

The major virulence factor of A. fumigatus, gliotoxin, inhibited selectively the biosynthesis of 

LTB4 in vivo in two distinct animal models: (I) murine peritonitis, and (II) pleurisy in rats. 

Furthermore, we confirmed selective LTB4 inhibition in vitro in human primary immune cells. 

Intracellular GSH was crucial to cleave the disulfide bond of gliotoxin in order to chelate the 

zinc ion in the active center of the epoxide hydrolase pocket of LTA4H without affecting the 

aminopeptidase function and thus preventing neutrophil recruitment to the site of inflammation. 

Conclusively, we identified the target and a potential mode of action of gliotoxin in A. fumigatus 

pathology. 

 

Own contribution: Experimental design and performance of 5-LOX assays with several cell 

types, purified enzyme, agents, and stimuli, LM extraction for UPLC-MS/MS analysis; 

extraction of LM from animal samples and their analysis by UPLC-MS/MS and ELISA; 

experimental design, optimization, and performance of epoxide hydrolase and aminopeptidase 

activity assays of LTA4H; maintenance of cell culture and performance of blood cell isolation; 

data analysis; writing the manuscript. Total contribution: 75%. 
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3.3 Manuscript III (M-III) 

 

 

Myxochelins target human 5-lipoxygenase 

 

Sebastian Schieferdecker, Stefanie König, Andreas Koeberle, Hans-Martin Dahse, Oliver 

Werz, Markus Nett 

Journal of Natural Products 2015 78(2), 335-338 

 

 

Here, we described the isolation and characterization of biological activity of three myxochelins 

isolated from Pyxidicoccus fallax. While myxochelin A was already known, we identified 

myxochelin C and D as new structural representatives with isotopic incorporation. Besides the 

clarification of the structure, we performed various biological assay to clarify the mode of action 

of these myxochelins. We found that myxochelin A exhibits potent antiproliferative effects 

towards the leukemic K-562 cells, but fails to affect adherent HeLa cells. A methylation of the 

catechol residues reduced these antiproliferative effects. Furthermore, we identified 5-LOX as 

molecular target of myxochelins in cell-free assays (IC50=1.9 µM) correlating to suppression of 

proliferation of K-562 cells. As described before, myxochelins act as siderophores thus 

hypothesizing 5-LOX inhibition by iron chelation. Taken together, myxochelins may targeted 

5-LOX as iron-ligand agents leading to inhibition of proliferation in leukemic cells harboring 5-

LOX. 

 

 

Own contribution: Experimental design and performance of 5-LOX assays with purified 

enzyme, purification of human recombinant 5-LOX from E. coli; coordination of mPGES-1 

activity assay; data analysis; partially writing the manuscript. Total contribution: 30%. 
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3.4 Manuscript IV (M-IV) 

 

 

Melleolides induce rapid cell death in human primary monocytes  

and cancer cells 

 

Markus Bohnert*, Olga Scherer*, Katja Wiechmann, Stefanie König, Hans-Martin Dahse, 

Dirk Hoffmeister, Oliver Werz 

* contributed equally 

Bioorganic & Medicinal Chemistry 2014 22(15), 3856-61 

 

In this manuscript, we analyzed several melleolides, isolated from the basidiomycete genus 

Armillaria mellea, for their cytotoxic potential in human primary monocytes and in various 

cancer cell lines. Structure-activity relationship analysis revealed the importance of the α,β-

unsaturated double bound for potent cytotoxicity. Interestingly, DAO displayed comparable 

results for monocytes and HeLa cells in contrast to other antiproliferative compounds, which 

were less active against primary monocytes, e.g., staurosporine, or pretubulysin. Furthermore, 

DAO induced an unusual rapid onset of cell death (within < 1 hr), which contrasts cell death 

induction for other cytotoxic compounds (> 5 hrs). Based on morphological analysis and flow 

cytometry experiments, we hypothesized an untypical mechanism of rapid cell death induction 

for melleolides with an unknown target, combining necrotic as well as apoptotic features.  

 

 

 

Own contribution: Experimental design and performance of MTT assays with DAO and 

staurosporine in human primary monocytes and HeLa cells; isolation of monocytes and cell 

culture; data analysis; partially writing the manuscript. Total contribution: 20%. 
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3.5 Manuscript V (M-V) 

 

 

Rapid cell death induction by the honey mushroom mycotoxin 

dehydroarmillylorsellinate through covalent reaction with membrane 

phosphatidylethanolamines 

 

Stefanie König*, Konstantin Löser*, Helmut Pein*, Konstantin Neukirch, Anna Czapka, 

Stephanie Hoeppener, Maximilian Dörfer, Dirk Hoffmeister, Andreas Koeberle, Oliver Werz 

* contributed equally 

manuscript in preparation, planned submission: 3rd quarter 2019 in Cell Chemical Biology 

 

This work presents the clarification of the mode of action for the cytotoxicity of the melleolide 

DAO in human primary monocytes and cancer cells. DAO rapidly induced cell death within 15 

min analyzed by a reduced mitochondrial reductase activity and an increased PARP cleavage. 

We found that these effects were caused by an interaction of the α,β-unsaturated aldehyde of 

DAO with the head groups of phospholipids of cell membranes, which might be the reason for 

the rapid loss of plasma membrane integrity and cellular viability. As result, DAO reacted 

covalently via an 1,4-addition with ethanolamine and PE. In addition, subcellular fractionation 

was used to determine a predominant accumulation of DAO within a specific cell organelle 

fraction. Conclusively, DAO causes cell death by membrane damage, seemingly due to 

covalent modification of PE with detrimental consequences for cell integrity and viability. 

 

Own contribution: Experimental design and performance of MTT and LDH assay, Western 

Blot analysis of phospho-p38 MAPK, phospho-Akt, BiP, CHOP, and ATF-4 in monocytes; 

experimental design and performance of measurement of non-cellular and cellular DAO-PE 

adducts for UPLC-MS/MS analysis after treatment with phospholipase D; extraction of cellular 

DAO-PE adducts and their analysis by UPLC-MS/MS; experimental design, optimization, and 

performance of subcellular fractionation, Western Blot analysis of each fraction, extraction of 

cellular DAO-PE adducts and phospholipids in separated fractions and their analysis by UPLC-

MS/MS; maintenance of cell culture and performance of blood cell isolation; data analysis; 

writing the manuscript. Total contribution: 70%.  
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4. DISCUSSION 

In the last decades, several studies have described diverse biological functions of natural 

products in mammals biosynthesized by fungi, bacteria, or plants. Natural products are also 

known to interfere with the host defense as potent virulent factors, can cause cell death or 

possess anti-inflammatory features, but the underlying modes of action and molecular targets 

are still elusive. Considering the growing connection between inflammation and cancer, the 

present work focuses on the target identification of natural secondary metabolites to clarify 

interference with inflammation and their importance for pathogenicity. Here, we investigated 

DAO, gliotoxin, and myxochelins for their effects and underlying mechanisms in inflammatory 

processes and cell death induction in human cells. 

We identified 5-LOX as molecular target of the myxobacterial compound myxochelin A 

biosynthesized by Pyxidicoccus fallax and of the melleolide DAO from honey mushroom 

Armillaria mellea. While myxochelin A and various derivatives chelated the ferrous iron in the 

enzyme´s active site by its catechol residues (manuscript III), DAO interfered with surface 

cysteines located at the substrate entrance of 5-LOX (manuscript I) resulting in abrogated LT 

formation. Besides DAO, we tested several melleolides for structure-activity relationships and 

identified that the α,β-unsaturated aldehyde group serves as Michael acceptor mediating 5-

LOX inhibition. Michael acceptor containing compounds interact, inter alia, with cysteines 

located at the entrance to the catalytic center of 5-LOX and hence influencing 5-LOX activity 

and LT biosynthesis [15, 16]. In the case of DAO, this α,β-unsaturated aldehyde group interacts 

with C159 preventing 5-LOX/FLAP interaction without prejudicing nuclear 5-LOX translocation 

in intact neutrophils but failed to selectively target C159 in cell homogenates. Instead, DAO 

affected two or more cysteines (C159, C300, C416, C418) in lysed cells that results in an equally 

abrogated LT formation, indicating two distinct mode of actions in neutrophils (manuscript I) 

with minimal impairment of cell viability (unpublished data). Furthermore, DAO exhibited potent 

and similar cytotoxic properties in human monocytes as well as in various cancer cells with an 

untypical rapid onset of cell death compared to various antiproliferative and cytotoxic 

compounds. However, we revealed apoptotic as well as necrotic cell death characteristics of 

DAO by flow cytometry and light microscopy analysis including an abrogated metabolic activity 

of mitochondria (manuscript IV). Subsequently, we identified a covalent binding of the reactive 

α,β-unsaturated aldehyde group to the ethanolamine head group of the membrane 

phospholipid PE. Hence, we confirmed our previous hypothesis of a composed cell death 

process by showing simultaneously PARP cleavage and membrane rupture, measured by 

LDH release, correlating with increased DAO-ethanolamine adducts. Moreover, DAO 

manipulated mitochondrial functions and caused impaired autophagic processes with 

enhanced lysosomal rupture and decreased intracellular pH value leading to the assumption 

that DAO-induced cell death linked several dysfunctional cellular processes (manuscript V). 
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Another fungal toxin, gliotoxin, plays an important role in several inflammatory 

processes, e.g., inducing cell death in primary immune cells [175, 207] or inducing IA as potent 

virulence factor of Aspergillus fumigatus [1, 2]. Various theories exist for cell death induction 

and triggering IA with its indications [160], whereby only target identification of gliotoxin for IA 

plays a central role in this thesis. Our data show that gliotoxin abrogates the biosynthesis of 

the important neutrophil chemoattractant LTB4 by covalent binding to LTA4H. Furthermore, we 

found that gliotoxin chelates the zinc ion in the epoxide hydrolase center by its reduced free 

thiol groups but failed to inhibit LTA4H under non-cellular conditions. An inhibition of the 

aminopeptidase activity and an abrogation of other epoxide hydrolases could be excluded. 

Moreover, we confirmed our results in vivo and verified gliotoxin as virulence factor of A. 

fumigatus responsible for neutropenia and the resulting host resistance to A. fumigatus 

(manuscript II). 

4.1 Natural compounds and their effect on inflammatory key processes 

During the early phase of inflammation, pro-inflammatory signaling molecules, e.g., cytokines, 

chemokines, and several eicosanoids are produced by tissue resident macrophages or mast 

cells. These inflammatory mediators initiate the recruitment of leukocytes, mainly neutrophils, 

to the site of infection or injury for host protection. In the case of dysregulation, inflammation 

becomes persistent, which ultimately can even lead to cancer [21, 29, 208]. We tested the 

secondary metabolites DAO, myxochelin A, and gliotoxin in human primary immune cells to 

clarify their role in inflammatory processes and to reveal their modes of action. 

The metabolism of AA is one important pathway mediating initiation and resolution of 

inflammation depending on particular enzyme activity and LM formation. 5-LOX is part of the 

AA pathway and responsible for the biosynthesis of pro-inflammatory LT. The melleolide DAO 

abrogated 5-LOX activity in a direct and selective manner by interacting with C159 located at 

the catalytic entry and prevented thereby an interaction between 5-LOX and its helper protein 

FLAP (manuscript I). Indeed, the myxobacterial compound myxochelin A reduced also 

directly 5-LOX activity but instead of interacting with essential amino acids, myxochelin A 

seemingly chelated the central iron in 5-LOX by its catechol basic structure belonging to the 

family of iron ligand inhibitors (manuscript III). 

In the last years, the number of investigated naturally occurring 5-LOX inhibitors 

increased [40, 41], harboring various modes of action to impede LT biosynthesis. While 

embelin acted as non-redox inhibitor for hampering 5-LOX activity [74] or the indirubin 

derivative 6-BIO interacted with the ATP binding site of 5-LOX [79], compounds containing a 

catechol residue, e.g., rosmarinic acid [209], caffeic acid, and its derivatives [210, 211] were 

typical natural representatives for the iron-complexing inhibitor type. Also the siderophore 

myxochelin A [203] contained a catechol basic structure. We analyzed myxochelin A and 

various derivatives for structure-activity relationships for 5-LOX inhibition (manuscript III, [206, 
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212]). In line with results from previous investigations [203], we showed that the catechol basic 

structure was essential for abrogated LT biosynthesis and methylation of the aromatic hydroxyl 

residues resulted in a completely reversed 5-LOX inhibition. We observed increased inhibition 

of 5-LOX activity if the second hydroxyl moiety was located in meta position [206, 212], 

whereas the second hydroxyl residue in para position impaired the bioactivity [206]. 

Interestingly, derivatives harboring the second hydroxyl group in meta position did not lose 

their biological activity, although the chrome azurol S assay, measuring iron affinities, was 

negative [212]. This supports different modes of action for 5-LOX inhibition depending on the 

myxochelin structure. Furthermore, a single methoxy substituent at the catechol residue is 

sufficient for reducing 5-LOX inhibition. However, structural modifications at the lysinol partial 

structure were negligible for 5-LOX inhibition [206]. Myxochelins failed to inhibit 5-LOX activity 

in cellular systems or exhibited only a weak activity, assuming that the high polarity of the 

structure was responsible for limited cellular uptake. Of interest, the myxochelins showed a 

structural resemblance to another natural product, that is, curcumin which is biosynthesized 

by the plant Curcuma longa. Curcumin was previously identified as potent 5-LOX and mPGES-

1 inhibitor [213, 214], hypothesizing that myxochelins could also interfere with mPGES-1. 

However, myxochelins failed to inhibit mPGES-1 activity in cell-free assays supporting 

selective 5-LOX inhibition. Conceivably, myxochelins could possess antioxidant activities 

similar to caffeic acid and derivatives [210], which requires further investigations. In conclusion, 

myxochelins impeded primarily 5-LOX activity by iron-chelating effects of the catechol residue 

in the active center of the enzyme and represent an interesting substance class for 

investigation of new natural 5-LOX inhibitors. 

We examined four different melleolides for structure activity relationship for 5-LOX 

inhibition under cellular and non-cellular conditions (manuscript I). The structure of 

melleolides can be divided in a sesquiterpene moiety and an orsellinic acid residue. Melleolides 

harboring an α,β-unsaturated aldehyde group at position 1 with a ∆2,3 or ∆2,4 double bond 

exhibited potent 5-LOX inhibition, whereby compounds with a ∆2,3 double bond were less active 

or failed to diminish LT biosynthesis, when the α,β-unsaturated aldehyde group was replaced 

by a hydroxyl moiety. Interestingly, the Michael acceptor functionality might be responsible for 

further biological activities of melleolides like antifungal activity, antimicrobial activity, and 

cytotoxic properties published in previous studies [186, 194]. However, structural modifications 

at the orsellinic residue like a hydroxyl group at position 5´ instead of methylation or a 6´-

chlorine and hydroxylation at position 4 of the sesquiterpene moiety caused only a minor loss 

of 5-LOX inhibitory potency. We identified DAO and arnamial as most potent compounds for 

5-LOX inhibition, whereby arnamial was more potent under cell-free conditions, and DAO 

exhibited more reducing activity in cells with 10-fold lower IC50. Both structures were 

characterized by the α,β-unsaturated aldehyde group at position 1 with a ∆2,4 double bond but 
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arnamial contained a more liphophilic orsellinic acid residue (5´-methylation, 6´-chlorine). In 

fact, compounds with high lipophilicity correlated with more potent 5-LOX inhibition than less 

lipophilic structures [215], but this correlation explains not a 10-fold less inhibition under cell 

free conditions in case of DAO. All experiments were compared to the well-known 5-LOX 

inhibitor zileuton suppressing 5-LOX activity in comparable manner in different experimental 

settings (this study and others [6]). Furthermore, external supplementation of AA to intact cells 

reduced the inhibitory effect of DAO similarly to the potency under cell-free conditions, 

suggesting an additional effect of DAO on proteins/enzymes involved in the 5-LOX pathway. 

Indeed, several enzymes and enzyme activities participate in LT biosynthesis: (I) AA release 

by cPLA2 from membrane phospholipids, (II) AA transfer by FLAP to 5-LOX and 5-LOX/FLAP 

complex assembly, (III) nuclear 5-LOX translocation, and (IV) preceding activating 5-LOX 

signaling pathways such as phosphorylation by MAPK and cellular Ca2+ mobilization [10]. By 

means of our data, we excluded direct cPLA2 inhibition by determination of unaffected released 

[3H]-labeled AA. Instead we observed hampered 5-LOX/FLAP complex assembly leading to 

impeded AA transport by FLAP or a competition between DAO and AA for the 5-LOX binding 

pocket without affecting the 5-LOX translocation to the nuclear membrane. In general, 5-LOX 

inhibition can be mediated by iron-chelating agents, redox active compounds, or AA mimetics, 

which compete with AA for binding at the active or allosteric site of 5-LOX [40, 41]. Based on 

the chemical structure, DAO possesses no fatty acid-like features excluding competition with 

AA. Also, redox activities and iron-chelating effects were not reported for DAO. Interestingly, 

compounds containing a Michael acceptor functionality like thymoquinone (TQ), U73122 or 

nitro fatty acids showed a high reactivity with SH-groups and exhibited LT abrogation by 

building covalent adducts with surface cysteines located at the catalytic entrance to the 5-LOX 

activity center [15, 16, 216]. The 5-LOX structure contained nine different cysteines, whereby 

C99 and C449 were present in 12-LOX as well as in 15-LOX [15, 19]. As DAO inhibited neither 

12-LOX nor 15-LOX activity, we excluded an interaction with these two cysteines. The four 

cysteine residues C159, C300, C416, and C418 were located closed to the substrate entry [19, 51], 

and as published before, they are responsible for 5-LOX dimerization [51], 5-LOX/FLAP co-

localization at the nuclear envelope, and finally for influencing 5-LOX product formation without 

hampering 5-LOX translocation [50, 51]. We incubated stable transfected HEK cells containing 

cysteine mutants in which respective cysteines were replaced by serine (5-LOX_4C mutant). 

Interestingly, DAO failed to inhibit 5-LOX activity in intact cells as well as in cell homogenates 

supporting our presumption that DAO affected one or more cysteines by building a covalent 

bonding between the Michael acceptor group and the thiol group of cysteines. In contrast, 

zileuton, which is an iron-chelating agent [6], was still able to abrogate LT biosynthesis of the 

5-LOX_4C mutant, as expected. We replaced the four individual cysteines by serine and the 

melleolide was tested in cell-free and cell-based assays. Under cell-free conditions, DAO failed 
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to inhibit LT formation for single cysteine mutations implying that two or more cysteines were 

necessary for inhibition by DAO hypothesizing that DAO might affect a 5-LOX dimerization [51] 

via two or more cysteines with lacking 5-LOX/FLAP interaction, since FLAP has been active 

only in intact cells [53]. In contrast, interaction with C159 played a crucial role for diminished 5-

LOX activity in cells. Thus, our results indicated that DAO caused abrogated 5-LOX/FLAP 

complex assembly essentially via C159, except a participation of C300, C416, and C418 in intact 

cells.  

The nuclear membrane protein FLAP is essential for the LT biosynthesis as 5-LOX 

helper protein for AA transfer [64, 217] but exhibits no own enzymatic activity [52, 55]. Typical 

FLAP inhibitors showed comparable inhibitory characteristics as melleolides: active in cellular 

systems and reduced active or rather inactive under cell-free conditions. These compounds 

triggered reduced LT biosynthesis by preventing 5-LOX/FLAP assemblies without affecting 5-

LOX translocation being important for LT biosynthesis [217-220]. Furthermore, FLAP belongs 

to the MAPEG family and possesses sequence and structure homology to LTC4S and mPGES-

1 [221, 222]. Indeed, our data revealed no interference of MAPEG family members, e.g., 

LTC4S, mPGES-1, thus excluding a class effect against these proteins. In addition, cysteines 

(C159, C300, C416, C418) played an important role for 5-LOX/FLAP co-localization at the nuclear 

membrane as described before [50] and interaction with C416 and C418 by Michael acceptors 

impeded the entry of AA to the catalytic center of 5-LOX along with impaired LT biosynthesis 

[15, 216]. Along these lines, all cysteine mutants caused a strikingly lower LT formation, and 

interestingly the 5-LOX_4C mutant as well as the 5-LOX_C159S mutant failed to form complex 

assemblies with FLAP indicating the importance of C159 in AA metabolism. Interestingly, DAO 

required C159 for direct inhibition of 5-LOX activity leading to abrogated LT formation in intact 

cells. In contrast to zileuton, whose 5-LOX inhibition was independent of cysteine mutants, 

DAO failed to inhibit 5-LOX activity, when C159 was replaced by serine, suggesting a direct 

hampered 5-LOX/FLAP interaction, or the interaction between DAO and C159 evoked strong 

conformational modifications preventing 5-LOX/FLAP interaction and/or avoiding the substrate 

entry to the catalytic center. Moreover, melleolides and other Michael acceptors failed to inhibit 

5-LOX translocation, which is essential for LT formation [220, 223]. Hence, Michael acceptor-

containing compounds evinced commonalities to classical FLAP inhibitors, e.g., MK886 [217, 

219], but they differed clearly from other novel direct 5-LOX inhibitors like hyperforin [77] or 

indirubin [79].  

Taken together, melleolides especially DAO targets 5-LOX through a covalent binding 

via their α,β-unsaturated aldehyde group with the thiol group of C159 located at the catalytic 

entry of 5-LOX. DAO reduces LT biosynthesis by preventing 5-LOX/FLAP interaction via C159 

in cells, while on the enzymatic level DAO interferes with two or more cysteines leading to less 
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potent inhibition of 5-LOX activity. Finally, C159 is crucial for the 5-LOX/FLAP complex assembly 

at the nuclear envelope and the formation of LT.  

Besides 5-LOX inhibition, suppression of LT can be also mediated by LTA4H inhibition 

preventing LTB4 biosynthesis or through hampered LTC4S activity leading to abrogation of 

cysLT. LTB4 is known as potent chemoattractant for immune cells and plays an important role 

in host protection against infection through the recruitment of primary immune cells, especially 

neutrophils to the site of infection [4, 5]. We found that the mycotoxin gliotoxin abrogated LT 

formation by LTA4H inhibition in vitro and in vivo and hence causing neutrophil-mediated host 

resistance to IA (manuscript II).  

We used two distinct inflammatory animal models: (I) a murine zymosan-induced 

peritonitis model [224], and a (II) carrageenan-induced pleurisy model in rats [225] to 

investigate the effects of gliotoxin on inflammation and immune cells. In comparison to the 

well-known 5-LOX inhibitor zileuton [6], gliotoxin reduced LTB4 formation in murine and rat 

plasma and suppressed neutrophil infiltration into peritoneal and thoracic exudates at low 

doses. Furthermore, gliotoxin abrogated selective LTB4 formation without inhibiting 5-LOX, 12-

/15-LOX, and COX. Interestingly, tr-LTB4 isomers and LTC4 were increased after gliotoxin 

treatment, indicating further utilization of LTA4 and thus an intact upstream LTA4 biosynthetic 

pathway. These data suggest that LTA4 was used as substrate by LTC4S to generate LTC4 

and was non-enzymatically converted to tr-LTB4 derivatives. Such substrate shunting was 

previously reported and is a typical behavior of LTA4H inhibitors like captopril [226], SC-

57461A [8], and others [99], suggesting that gliotoxin targets LTA4H.  

Gliotoxin exhibited comparable results in vitro in human primary neutrophils and 

monocytes in comparison to the 5-LOX inhibitor zileuton [6] and the LTA4H inhibitor SC-

57461A [7], while zileuton suppressed all 5-LOX products and SC-57461A showed similar 

results to gliotoxin implying that gliotoxin acted as a selective LTA4H inhibitor. LTA4H is a 

bifunctional metalloenzyme harboring two distinct enzyme activities: (I) an epoxide hydrolase 

activity hydrolyzing LTA4 to the potent chemoattractant LTB4 during initiation of inflammation, 

and (II) an aminopeptidase activity inactivating the pro-inflammatory tripeptide PGP during 

resolution of inflammation [13, 82, 89]. Hence, development of LTA4H inhibitors with selective 

inhibition of the epoxide hydrolase activity is essential for therapeutic application interfering 

with the inflammatory response during a chronic inflammation [104]. Until now, only one 

selective epoxide hydrolase inhibitor was identified, that is, ARM-1 [107], whereas several 

other LTA4H inhibitors affect both enzyme activities including chemically synthesized 

compounds, e.g., SC-57461A [7], bestatin [102], captopril [103] as well as natural occurring 

ingredients, e.g., 6-gingerol [227], resveratrol [228], or α-lipoic acid [229]. Our data revealed 

gliotoxin as first natural compound targeting selective epoxide hydrolase activity. Furthermore, 

several other enzymes involved in the AA pathway harbor an epoxide hydrolase activity like 
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sEH or other hepoxilin hydrolases. Apart from its N-terminal phosphatase activity, sEH 

contains also a C-terminal epoxide hydrolase activity [230] converting anti-inflammatory epoxy 

fatty acids to their corresponding diol metabolites and playing hence an important role in 

inflammatory diseases, e.g., cardiovascular, neuro-inflammatory, and metabolic diseases [14, 

231, 232]. However, gliotoxin failed to inhibit sEH in two different cell lines A549 and HepG2 

[218] as wells as under cell-free conditions (unpublished data).  

Gliotoxin failed to suppress LTA4H activity under cell-free conditions. Structurally, 

epidithiodioxopiperazines contain an intramolecular disulfide bridge, which is mandatory for 

their biological activity and can be cleaved, inter alia, by glutathione (GSH) or dithiothreitol 

(DTT) to its reduced dithiol form [164]. Our data revealed that the reduced dithiol form of 

gliotoxin is required for suppression of LTA4H activity. Indeed, we provided exogenous GSH in 

cell-free experimental settings, whereas in intact cells GSH is abundant in the cytosol. Cellular 

treatment with the oxidizing diamide impaired the inhibitory effect of gliotoxin on LTA4H. As 

expected, redox active agents, e.g., GSH or diamide, did not influence the activity of SC-

57461A. Moreover, gliotoxin suppressed LTA4H activity, when it was first incubated in intact 

cells followed by a cell lysis prior stimulation, which indicates irreversible LTA4H inhibition 

comparable to SC-57461A. We assumed that reduced gliotoxin interacted with LTA4H, where 

the free thiol moieties reacted with the active site of LTA4H coordinating the epoxide hydrolase 

activity [82]. As described before, LTA4H is a monomeric zinc metalloenzyme in which zinc 

connects both enzymatic binding pockets [84]. Conceivably, gliotoxin reacted with the active 

site Zn2+ forming chelate complexes by its reduced free thiol groups supported by the results 

that supplementation of external Zn2+ ions impaired the inhibitory activity of gliotoxin without 

affecting the potency of SC-57461A. Our data were confirmed by a recently published paper, 

where reduced gliotoxin inhibited the Zn2+-dependent alkaline phosphatase by chelation of 

Zn2+ [233]. Along these lines, other thiodioxopiperazines exhibited similar modes of action like 

sporidesmin playing an important role in agriculture and veterinary medicine [234, 235] due to 

its interaction with thiol-disulfide oxidoreductases [236], or chaetocin being a substrate for 

thioredoxin reductase [237] as well as the antibiotic thiolutin harboring a dithiopyrrolone 

structure and inactivating JAB1/MPN/Mov34 (JAMM) metalloproteases [238]. All compounds 

are natural ingredients of fungi species containing an intramolecular disulfide bond and acted 

mostly under reducing conditions with metalloproteases harboring an active site Zn2+ ion. 

Furthermore, the inhibitory effects were avoided by external supplementation of Zn2+ ions [238, 

239] indicating further targets of gliotoxin and a possible substance class effect for Zn2+-

containing metalloproteases, where previously described structures could also interact with 

LTA4H except of chaetocin, which we have already tested (unpublished data).  

In the last decades, the influence of mycotoxins especially ingredients of the mold A. 

fumigatus increased the triggering of allergic and respiratory diseases for humans due to the 
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enhanced contact with molds [240, 241]. Humans continuously inhale conidia of A. fumigatus 

that trigger the host defense leading to a recruitment of neutrophils to the site of infection [242]. 

Immunocompromised patients lack the efficient innate immune response and hence exhibit an 

increased risk for diseases [243]. One major virulence factor of A. fumigatus is gliotoxin [244] 

causing IA with high mortality rates (30-95%) of immunocompromised patients [181] 

particularly with neutropenic conditions [1, 170, 245]. Of interest, neutrophils were resistant to 

gliotoxin-mediated apoptosis [175], and neutrophil functions were not affected by gliotoxin 

except phagocytosis [170]. Recently, it was shown that host-derived LTB4 played an important 

role in innate immunity to IA, and LTB4 was crucial for the host resistance to A. fumigatus 

mediating the recruitment of neutrophils [246]. Furthermore, LTB4-treated neutrophils exhibited 

an increased antifungal activity against A. fumigatus [247], and reduced LTB4 levels led to 

enhanced mortality of A. fumigatus infected mice and raised fungal germination in lung tissue 

[246]. These facts and the knowledge that gliotoxin was produced during the infection process 

[3] supported our hypothesis that reduced LTB4 formation by gliotoxin is the underlying 

mechanism for neutropenic conditions in the infected host. Furthermore, infection of mice with 

an A. fumigatus strain with an eliminated gliP gene (involved in the first biosynthesis step of 

gliotoxin (∆gliP) [248]) exhibited a reduced virulence of A. fumigatus confirming gliotoxin as 

significant inducer of aspergillosis [1]. As expected, ∆gliP-infected mice showed an abrogated 

neutrophil infiltration and a lower degree of destructed neutrophils in lung tissue in comparison 

to lung tissue of mice infected with wild type A. fumigatus. Together, ∆gliP and thus, the 

reduced gliotoxin biosynthesis failed to compromise neutrophils and their functions, indicating 

that gliotoxin caused neutropenia by hampered LTB4 formation due to LTA4H inhibition in A. 

fumigatus-infected hosts and clarifying thereby the underlying virulence mechanism of A. 

fumigatus-triggered IA.  

In conclusion, we identified LTA4H as a target of gliotoxin hampering the biosynthesis 

of the major chemoattractant for neutrophils, namely LTB4, which plays an important role in the 

innate immune response. The clarification of the mode of action of gliotoxin is of biological 

relevance for the pathology of A. fumigatus and the neutrophil-mediated host resistance 

against IA for the generation of clinical pictures and the development of new therapeutic 

approaches. 

4.2 Natural compounds and their influence on cell viability in human cells 

As previously described, gliotoxin and DAO play also an important role as potent fungal toxins 

in human cancer cells as well as in primary immune cells [186, 194, 207, 249] with partially 

enlightened modes of action, whereby the cytotoxicity of myxochelins have not been yet 

analyzed in human cells (additional data).  

In contrast to DAO, several targets of gliotoxin are known to mediate cell death. In 

general, cell death can be distinguished by three main types: (I) apoptosis, (II) autophagy, and 
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(III) necrosis, mediated by various signaling pathways [126]. In fact, gliotoxin induced 

apoptosis by caspase 3 activation [207] and increased ROS formation during its redox cycle 

eliciting oxidative stress [250, 251]. Additionally, gliotoxin caused activation of JNK leading to 

Bim activation and facilitation of the pro-apoptotic Bak oligomerization resulting in cytochrome 

c and ROS release by mitochondria followed by caspase 9 activation [180, 252]. Furthermore, 

DNA was fragmented by gliotoxin after enhanced cAMP levels, which activated PKA and 

triggered the phosphorylation of histone 3 [179], and gliotoxin prevented NFκB activation by 

IκBα stabilization [177]. However, neutrophils were not affected by gliotoxin regarding 

apoptosis [175]. Conventionally, cytotoxic agents exhibit a higher potency to induce cell death 

in cancer cells than in non-transformed cells (manuscript IV, [253]) mediated by intensified 

metabolic processes with high energy turnover and stronger proliferation of cancer cells. Also 

myxochelins reduced the viability only of cancer cells without affecting primary immune cells 

(additional data). Interestingly, these myxobacterial compounds exhibited cytotoxic effects 

primarily in leukemic cells hypothesizing a correlation to 5-LOX inhibition, since 5-LOX is one 

key enzyme in myeloid leukemia cells [254-256], and myxochelins failed to cause cytotoxicity 

in 5-LOX deficient HeLa cells (additional data, manuscript III). Nevertheless, existence of 

further targets related to their cytotoxicity should be considered. In the case of melleolides, 

DAO showed similar apoptotic patterns in primary monocytes as compared to several cancer 

cells with an untypical rapid onset of cell death (manuscript IV) linking apoptosis, autophagic 

cell death, and necrosis by targeting the phospholipid PE of various cellular membranes, 

leading to a loss of several pivotal cell functions (manuscript V).  

As described before, melleolides caused cytotoxic effects in human cells by ROS-

mediated caspase activation [187], decreased DNA synthesis [194], or due to autophagy-

associated cell death [195], but a specific target is still elusive. In general, most compounds 

mediating cell death evinced more potent cytotoxicity towards cancer cells due to their 

enhanced proliferation and increased metabolic processes as non-transformed cells [253, 257, 

258]. It was shown that melleolides from Armillaria mellea reduced potently cell viability of 

various human cancer cell lines [186, 194] lacking the analysis of cytotoxicity of melleolides in 

human primary cells. Our results exhibited similar cytotoxic effects of the sesquiterpene aryl 

ester DAO in human primary monocytes (IC50=2.3 µM) and in various cancer cells including 

the leukemic cell lines THP-1 (IC50=3.0 µM), MM6 (IC50=4.2 µM), K-562 (IC50=5.0 µM), and the 

immortal cervix carcinoma cell line HeLa cells (IC50=1.6 µM) (manuscript IV). Subsequently, 

we analyzed the structure-activity relationship of six different melleolides (including arnamial, 

6´-dechloroarnamial, DAO, armillarin, armillaridin, melleolide D) to get information about the 

structural residues, which are actively participated in cell death induction. As a result, 

compounds harboring a ∆2,4 double bond, e.g., arnamial, 6´-dechloroarnamial, and DAO, 

caused a potent loss of cell viability for all tested cell types, comparable to their antifungal 
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activity [186]. Armillarin and armillaridin, which possess a ∆2,3 double bond, induced similar 

cytotoxic effects in monocytic THP-1 and MM6 cell lines but showed a reduced cytotoxic 

potency in primary monocytes, K-562, and HeLa cells. Of interest, THP-1 and MM6 cells are 

acute monocytic leukemia cells, whereas K-562 cells are chronic myelogenous leukemia cells, 

which might be the reason for the different cytotoxic impact of DAO between the leukemia cell 

lines. In contrast, melleolide D possesses a ∆2,3 double bond and a hydroxyl residue instead 

of the free aldehyde moiety at position 1, resulting in negligible cytotoxic properties. In fact, 

compounds containing a ∆2,4 or a ∆2,3 unsaturated aldehyde caused potent cytotoxicity, 

whereas the ∆2,3 unsaturated aldehyde exerted reduced effects suggesting that only an 

unsaturated aldehyde residue at the sesquiterpene moiety caused reduced cell viability. 

Contrarily to the melleolides, the well-known apoptotic pan-kinase inhibitor staurosporine [259] 

and the cytotoxic myxobacterial compound pretubulysin, acting as microtubule disrupting 

agent [258, 260], caused efficient cytotoxicity in cancer cells but not so in monocytes. Hence, 

we hypothesize a general target for cytotoxicity of melleolides, which might be independent 

from proliferation and metabolic processes. Other sesquiterpenes like acylfulvenes and their 

natural precursor illudin S harboring also a ∆2,4 unsaturated aldehyde moiety [261], which show 

a high reactivity with thiol residues and cysteine-containing proteins [262], exhibited a 

comparable cytotoxicity for non-transformed cells and cancer cells, presumably due to an 

interaction with DNA after a reductive activation by prostaglandin reductase 1 [261]. 

Acylfulvenes and melleolides harbor similar structural elements, which may result in similar 

mechanisms for cell death induction like impaired DNA biosynthesis [194, 261, 262].  

Melleolides, especially DAO, caused rapid cytotoxic effects after about 1 hr measured 

by MTT assay, whereas the pan-kinase inhibitor staurosporine [259], the protein biosynthesis 

inhibitor cycloheximide and the DNA transcription inhibitor actinomycin [263] required more 

than 5 hrs to impair cell viability. We speculated that melleolides could interact with the plasma 

membrane to induce cell lysis. Opposed to this, morphological analysis of cells treated with 

DAO, staurosporine, or triton X-100 by light microscopy excluded cell lysis as possible 

mechanism. Thus, the detergent triton X-100 was used as positive control for cell 

permeabilization exhibiting contrarily modifications of cell morphology. Within the analyzed 

time, DAO caused typical features of necrosis such as plasma membrane rupture of the 

monocytes after 3 hrs exposure to DAO, whereas staurosporine induced fragmentation of the 

nucleus and triggered the formation of apoptotic bodies, which are characteristics of apoptosis 

[126, 128]. Interestingly, further investigations by flow cytometry disclosed also apoptotic 

signals without statistical significance in contrast to staurosporine, which clearly provoked 

significantly apoptosis without any necrotic patterns, as expected. Moreover, metabolic activity 

of mitochondria was decreased by DAO, which is also a sign of apoptosis, leading to the 
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hypothesis, that DAO may influence the mitochondrial membrane potential and DAO may 

induce various forms of cell death (manuscript IV). 

In general, the classical apoptosis pathway is dependent on caspase activation initiated 

by an extrinsic or intrinsic pathway leading to the cleavage of PARP [130]. In our study, DAO 

affected PARP cleavage already after 15 min, while staurosporine required 5 hrs for the 

cleavage. Of interest, caspases were only slightly affected by DAO indicating a caspase-

independent apoptosis [139], but pre-incubation with the pan-caspase inhibitor QVD prevented 

at least PARP cleavage [264], nevertheless reduced cell viability was available caused by DAO 

as well as staurosporine. Seemingly, slightly caspase 8 activation by DAO was sufficient for 

triggering apoptosis signaling (manuscript V). Furthermore, we showed by the decrease of 

the phosphorylation of the survival factor Akt and an increased phosphorylation of the stress 

factor p38 MAPK that cellular processes became disordered. However, activation of p38 

MAPK was independent on ER stress and on the activation of the unfolded protein response. 

Of interest, besides an abrogated metabolic activity, DAO disrupted also the cell membrane 

within 15 min measured by LDH assay supporting initiation of necrosis with the loss of 

membrane integrity. As described before, DAO harbors a reactive α,β-unsaturated aldehyde 

residue mediating the majority of its biological activities [186, 265]. Other natural products 

containing a Michael acceptor residue, especially an α,β-unsaturated aldehyde, modulated 

membrane functions like the sesquiterpene dialdehyde polygodial triggering a membrane 

rupture of Saccharomyces cerevisiae by building covalent adducts with phospholipids of the 

plasma membrane [266-269]. Similar effects were reported for ophiobolin A isolated from the 

Bipolaris genus that mediated cell death by forming pyrrole-containing adducts with PE of the 

cellular membrane [270]. However, ophiobolin A did not affect exclusively plasma membrane 

phospholipids, but also mitochondrial functionality provoked by depolarized mitochondrial 

membrane potential, increased ROS production, and mitochondrial network fragmentation 

[271, 272] linking apoptosis, autophagy, and necrosis. In the case of DAO, we detected a 

comparable mode of action to polygodial and ophiobolin A. By pre-incubations with the 

phospholipids PE, PS, and PC, we demonstrated that DAO interacted with the ethanolamine 

head group of PE measured by UPLC-MS/MS. Furthermore, the time course of DAO-

ethanolamine (DAO-EA) product formation correlated to LDH release, supporting our 

hypothesis that DAO-EA product formation was responsible for the early loss of membrane 

fluidity and functionality. Usually, PE is located at the inner leaflet of plasma membranes [273], 

but during the early stage of apoptosis PE as well as PS are translocated from the inner leaflet 

to the cell membrane surface [274], which may explain the early cytotoxic effects of DAO. 

Additional, PE is not only available in plasma membranes but also in other cell organelle 

membranes like nuclei, mitochondria, ER, or lysosomes, where a greater portion of PE is 

located within the outer leaflet of mitochondria in comparison to other organelles [273]. This 
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can be explained by the synthesis and trafficking of PE between ER and mitochondria [273]. 

As described before, other melleolides like armillarikin or armillaridin made a negative impact 

on mitochondrial transmembrane potential [187, 195], which plays an important role for ATP 

generation, and inducing thereby apoptosis. Consequently, mitochondrial dysfunction leads to 

an increased permeability of the mitochondrial membrane and a subsequent release of the 

proapoptotic stimulus cytochrome c into the cytosol, which initialize downstream events in the 

apoptotic cascade [275]. Of interest, exposure to DAO for 3 hrs enhanced strongly the release 

of cytochrome c into the cytosol with a simultanously decrease of non-cytosolic cytochrome c. 

These results were comparable to staurosporine increasing also the release of cytochrome c 

from mitochondria, but less pronounced as compared to DAO. Moreover, transmission electron 

microscopy (TEM) of monocytes after DAO treatment revealed us defects of the nuclear 

membrane and in particular, a disappearance of mitochondria, leading to the hypothesis that 

DAO induced rapid cell death by interacting with membranous PE of several cell organelles. 

Additional, we supported our thesis with liposome leakage assays, where DAO caused 

leakage of PE-composed liposomes in cell-free system, but liposomes made from PC were 

not affected by DAO indicating a covalent binding to the EA moiety in PE. Otherwise PE acts 

as anchor for autophagosomes [276] thus supporting recycling of cytoplasmic structures by 

autophagy leading to ATP generation [141]. Our data revealed that DAO interacted primarily 

with PE of the membrane fraction containing plasma membrane, lysosomes, and Golgi 

vesicles, and equally with mitochondria and nuclei after 15 min incubations analyzed by a 

subcellular fractionation. Interestingly, after 3 hrs, plasma membrane interaction of DAO was 

increased, whereas the accumulation in mitochondria remained unchanged and in nuclei 

decreased. As expected, exposure to DAO induced a reorganization of PE species, especially 

the most common PE species PE(18:0/18:1) and PE(18:1/18:1), in the plasma membrane 

fraction, which could be explained as protecting metabolic processes. Furthermore, an 

interaction of DAO with lysosomal PE could cause reduced PE amounts in lysosomal 

membranes and abrogated autophagic processes leading to apoptosis due to impaired ATP 

formation [276]. An enhanced amount of autophagosomes was detectable in apoptotic cells 

supporting autophagy as cytoprotective mechanism for elimination of toxic molecules [277, 

278]. As a consequence of intensified autophagic processes, formation of lysosomes 

increased resulting in a strengthened intake of DAO leading to a lysosomal rupture with 

intracellular acidification caused by released lysosomal hydrolases and finally triggering 

necrosis. Additional, lysosome formation could become hyperactive to support cell functions 

by energy generation resulting in a breakdown of cellular organelles and proteins provoking 

eventually self-cannibalism [147]. This hypothesis is supported by an increased lysosomal 

rupture and decreased intracellular pH value caused by DAO. However, autophagy correlated 

also with caspase 8 activation involving autophagy protein 5 (Atg5) and LC3-PE that are 
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responsible for the extension of autophagosomal membrane and autophagosome formation 

[279-282]. Our results demonstrate that DAO influenced only slightly caspase 8 activity without 

affecting other apoptotic caspases. Together with the intracellular PE interaction, the 

decreased PE amount and the decreased intracellular pH value, we speculate that DAO 

additionally prevented the autophagosomal membrane formation hypothesizing that affected 

cells might execute appropriate countermeasures to gain energy which could result in a 

hyperactive autophagy leading to a loss of organized metabolic processes and finally fast cell 

death.  

In conclusion, we studied the cytotoxic mode of action of DAO causing cell death by a 

covalent interaction of its α,β-unsaturated aldehyde moiety with the ethanolamine head group 

of PE of several cell organelles acting as non-ionic surfactant. Due to these effects, DAO linked 

various forms of cytotoxicity and thus leading to a destruction of metabolic processes.  

4.3 Conclusion 

We here characterized and clarified several biological activities and mode of actions of natural 

compounds from fungi and bacteria, namely DAO from Armillaria mellea, gliotoxin from 

Aspergillus fumigatus, and myxochelin A from Pyxidicoccus fallax, respectively, in human 

primary immune cells. The 5-LOX pathway plays a considerable role in inflammation by 

mediating the biosynthesis of important pro-inflammatory LM. DAO as well as myxochelins 

inhibited 5-LOX activity and thus prevented the formation of LT. In brief, we identified 5-LOX 

as a molecular target of melleolides from A. mellea and myxochelins from P. fallax. We propose 

that melleolides containing an α,β-unsaturated aldehyde moiety function as Michael acceptors 

leading to an interference of critical surface cysteines of 5-LOX. On the enzymatic level, two 

or more of these cysteines trigger the inhibitory effect of melleolides, whereas only C159 

mediates the suppression of cellular 5-LOX product formation by melleolides due to the 

prevention of 5-LOX/FLAP complex assembly. Conclusively, our data emphasize the 

importance of C159 for 5-LOX/FLAP interaction, which is a requirement for cellular LT 

biosynthesis. While melleolides appear unsuitable for the therapeutic usage due to their potent 

cytotoxicity towards primary immune cells representing a new way for cell death induction, 

myxochelins constitute an interesting substance class for new 5-LOX inhibitors. However, 

further investigations are crucial to fulfil the characterization of 5-LOX inhibition in vitro and to 

analyze the compounds in vivo. Furthermore, myxochelins could be used in the therapy of 

acute and chronic leukemia due to their anti-proliferative effects in leukemic cells without 

affecting primary cells requiring further investigations to clarify the mode of action. In contrast, 

DAO targets the membrane PE by a covalent reaction of its α,β-unsaturated aldehyde moiety 

with the EA head group of the phospholipid leading to a perturbation of cellular membrane 

structure. Consequently, membrane integrity is impaired, which might be the reason for the 

unusual rapid onset of cell death in various cell types. The knowledge about the cytotoxic 
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mechanism of DAO can be used as tool for the analysis of cellular processes and the 

generation of new anti-cancer drugs. Last but not least, we reveal LTA4H as molecular target 

of the mycotoxin gliotoxin from A. fumigatus, and thus, we suggest inhibition of the biosynthesis 

of the pivotal chemoattractant LTB4 as biological relevant mode of action of gliotoxin. On the 

basis of these immunomodulatory effects by gliotoxin in human neutrophils, new therapeutic 

approaches can be developed to successfully treat IA of immunocompromised patients and 

thus reducing the high mortality rate. Furthermore, gliotoxin can be used as structural starting 

basis for the design of new LTA4H inhibitors which affect only the pro-inflammatory epoxide 

hydrolase activity without influencing the aminopeptidase activity. 
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APPENDIX 1: ADDITIONAL DATA 

A.1 Effects of natural products on cancer cell proliferation 

The prevalence of cancer increases dictated due to our lifestyle, thus initiating 90% to 95% of 

cancer by lifestyle factors, for instance, tobacco smoke, obesity, stress, UV, or environmental 

pollutants [32]. Hence, it is of prime interest to search for additional compounds enabling new 

therapeutic approaches and to improve cancer therapy with reduced side effects. Several 

natural products exhibit, besides their anti-inflammatory potential, also antiproliferative effects 

on human cancer cells without affecting human primary immune cells suggesting a beneficial 

therapy option, e.g., pretubulysin [265], or myxochelin A. 

A.1.1 Myxochelin A reduces primarily cell viability of leukemic cancer cells 

 

Fig. A1 Effect by myxochelin A on cell viability of human cells. Various epithelial and leukemic 

cancer cells were treated with myxochelin A at indicated concentrations for (A) 24 hrs or (B) 48 hrs in 

comparison to human primary monocytes. Cell viability was analyzed by MTT assay after 24 hrs. Data 

are given as mean + S.E, n = 3.  

 

As published before, predatory myxobacteria generate a variety of antibiotics and anti-cancer 

agents [201, 202], e.g., myxochelin A. Moreover, myxochelin A and its derivatives were also 

described as antimetastatic agents analyzed in murine colon 26L-5 cells [204, 205], supporting 

their use as anti-cancer drugs. We analyzed the cytotoxic effect of myxochelin A in various 

cancer cells: (I) epithelial cancer cells including A549, HeLa, and MDAMB-231 cells, (II) 

leukemic cells consisting of HL-60, MM6, and THP-1 cells in comparison to freshly isolated 

human monocytes. Cells were treated with myxochelin A for 24 hrs or 48 hrs followed by 

addition of MTT (5 mg/mL PBS, as described in manuscript IV, V). As control, we used the 

well-known pan-kinase inhibitor staurosporine (1 µM) [259]. After 24 h (Fig. A1 A), myxochelin 

A reduced the cell viability of leukemic cells much more potent than the viability of endothelial 
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II 

cancer cells except the breast cancer cells MDAMB-231. Interestingly, MDAMB-231 cells are 

derived from metastatic side hypothesizing comparable characteristics to systemic cancer cells 

like HL-60, MM6, or THP-1 cells. As expected, after 48 hrs (Fig. A1 B), cytotoxic effects 

towards cancer cells increased, and again, leukemic cells were more affected by myxochelin 

A than epithelial cells. In contrast, cell viability of human primary monocytes was not impaired 

after 24 hrs neither 48 hrs.  
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M-II: Gliotoxin from Aspergillus fumigatus abrogates leukotriene B4 formation 

through inhibition of leukotriene A4 hydrolase   
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