ON LONGEST CYCLES IN ESSENTIALLY 4-CONNECTED PLANAR GRAPHS

IGOR FABRICI \(^{a}\)*, JOCHEN HARANT \(^{b}\)

AND

STANISLAV JENDROL’ \(^{a}\)

\(^{a}\)Institute of Mathematics
P.J. Šafárik University in Košice, Slovakia

\(^{b}\)Institute of Mathematics
Ilmenau University of Technology, Germany

Abstract

A planar 3-connected graph \(G\) is essentially 4-connected if, for any 3-separator \(S\) of \(G\), one component of the graph obtained from \(G\) by removing \(S\) is a single vertex. Jackson and Wormald proved that an essentially 4-connected planar graph on \(n\) vertices contains a cycle \(C\) such that \(|V(C)| \geq \frac{2n+4}{3}\). For a cubic essentially 4-connected planar graph \(G\), Grünbaum with Malkevitch, and Zhang showed that \(G\) has a cycle on at least \(\frac{3}{2}n\) vertices. In the present paper the result of Jackson and Wormald is improved. Moreover, new lower bounds on the length of a longest cycle of \(G\) are presented if \(G\) is an essentially 4-connected planar graph of maximum degree 4 or \(G\) is an essentially 4-connected maximal planar graph.

Keywords: planar graph, longest cycle.

2010 Mathematics Subject Classification: 05C10, 05C38.

1. Introduction and Results

We use standard notation and terminology of graph theory ([1]) and consider a finite simple 3-connected planar graph \(G\) with vertex set \(V(G)\) and edge set \(E(G)\). Let \(N(x), d(x) = |N(x)|\), and \(\Delta(G)\) denote the neighborhood, the degree of

\(\text{\quad \quad \qu
Let \(x \in V(G) \) in \(G \), and the maximum degree of \(G \), respectively. A subset \(S \subset V(G) \) is an \(s \)-separator of \(G \) if \(|S| = s \) and \(G - S \) is disconnected. It is well-known that \(G - S \) has exactly two components if \(G \) is a 3-connected planar graph and \(S \) is a 3-separator of \(G \). If \(S \) is a 3-separator of a 3-connected planar graph \(G \) and one component of \(G - S \) is a single vertex, then \(S \) is a trivial 3-separator of \(G \). If \(G \) is planar, 3-connected, and each 3-separator \(S \) of \(G \) is trivial, then \(G \) is essentially 4-connected. In the present paper we are interested in the length of longest cycles of an essentially 4-connected planar graph.

Jackson and Wormald [4] proved that every essentially 4-connected planar graph on \(n \) vertices contains a cycle \(C \) such that \(|V(C)| \geq \frac{2n+4}{3} \). For a cubic essentially 4-connected planar graph \(G \), Grünbaum and Malkevitch [3], and Zhang [8] showed that \(G \) has a cycle on at least \(\frac{3}{2}n \) vertices. Given a real constant \(c > \frac{3}{2} \), Jackson and Wormald [4] presented an infinite family of essentially 4-connected planar graphs \(G \) such that \(G \) does not contain a cycle on more than \(c \cdot n \) vertices. This observation is even true for essentially 4-connected maximal planar graphs. To see this, let \(G' \) be a 4-connected maximal planar graph on \(n' \geq 6 \) vertices embedded into the plane and let \(G \) be obtained by inserting a new vertex into each face of \(G' \) and connecting it with all three vertices of that face by an edge. Obviously, \(G \) is an essentially 4-connected maximal planar graph on \(n = n' + (2n' - 4) \) vertices and the \(2n' - 4 \) vertices in \(V(G) \setminus V(G') \) are pairwise independent. Hence each cycle of \(G \) contains at most \(2n' = \frac{2}{3}(n + 4) \) vertices. At the end of Section 2 we will show that \(G \) contains a cycle on exactly \(2n' = \frac{2}{3}(n+4) \) vertices.

It is well-known that a 3-connected planar graph on \(4 \leq n \leq 10 \) vertices is Hamiltonian. It remains open whether a maximal planar (or even an arbitrary planar) essentially 4-connected graph on \(n \geq 11 \) vertices contains a cycle \(C \) such that \(|V(C)| \geq \frac{2}{3}(n + 4) \).

Our results are presented in the following Theorem 1.

Theorem 1. Let \(G \) be an essentially 4-connected planar graph on \(n \geq 11 \) vertices and \(C \) be a longest cycle of \(G \). Then \(|V(C)| \geq \frac{1}{2}(n+4) \), \(|V(C)| \geq \frac{3}{4}n \) if \(\Delta(G) = 4 \), and \(|V(C)| \geq \frac{13}{24}(n+4) \) if \(G \) is maximal planar.

2. **Proofs**

In the remainder of the paper we assume that \(G \) is embedded into the plane. The two open sets into which a cycle \(C \) of \(G \) partitions the plane are the interior \(\text{int}(C) \) and the exterior \(\text{ext}(C) \) of \(C \). Furthermore, let \(B \) be a component of \(G - V(C) \). A vertex \(x \in V(C) \) is a touch vertex of \(B \) if \(x \) is adjacent to a vertex of \(V(B) \). Note that \(B \) has at least 3 touch vertices, if \(G \) is a 3-connected planar graph. In [7], Tutte proved a remarkable and famous result on cycles in 2-connected planar graphs.
graphs implying that a 4-connected planar graph is Hamiltonian. This result has been extended several times ([5, 6]). We will use the following Lemma 2 of Sanders ([5]) as a version of Tutte’s result for 3-connected planar graphs.

Lemma 2. Every 3-connected planar graph G with two prescribed edges a and b contains a cycle C through a and b such that each component of $G - V(C)$ has exactly 3 touch vertices.

A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if $V(G) \setminus V(C)$ is an independent set of vertices and $d(x) = 3$ for all $x \in V(G) \setminus V(C)$.

Lemma 3. Let G be an essentially 4-connected planar graph, and let a and b be non-adjacent edges of G. If a and b belong to a common face of G or all end vertices of a and b have degree at least 4 in G, then G contains an OI3-cycle C through a and b.

Proof. By Lemma 2, let C be a cycle of G through a and b such that each component of $G - V(C)$ has exactly three touch vertices. Since a and b are non-adjacent, $|V(C)| \geq 4$. We will show that C is an OI3-cycle of G. Suppose to the contrary that $G - V(C)$ has a component B with at least two inner vertices (w.l.o.g. let $V(B) \subset \text{int}(C)$). Since G is essentially 4-connected and $|V(C)| \geq 4$, the three touch vertices y, z, u of B separate G, hence they form the neighborhood of a vertex x of degree 3.

First assume that $x \in V(C)$ as shown in Figure 1 (C is the fat-drawn cycle).

![Figure 1](image1.png)

Let α be the face of G containing z, u and at least one vertex of $V(B)$ and let P be the boundary path of α connecting u and z and containing some vertex of $V(B)$. Furthermore, let C' be the (fat-drawn) cycle with $V(C') = V(P) \cup \{x\}$ as shown in Figure 2. It is clear that z and u are the only vertices of C' which possibly have a neighbor in $\text{int}(C') \cap V(G)$. It follows that $\text{int}(C') \cap V(G) = \emptyset$, because otherwise $\{z, u\}$ forms a 2-separator of G contradicting the 3-connectedness of G. Thus z and u are neighbors on C and, by symmetry, y and u are also neighbors on C. Consequently, $|V(C)| = 4$, the edges a and b cannot belong to a common
face, and one of them is incident with the vertex x of degree 3 contradicting the choice of a and b.

If $x \notin V(C)$ as shown in Figure 3, then, considering the (fat-drawn) cycles C'' in Figure 4 and C''' in Figure 5, it follows that $\text{int}(C'') \cap V(G) = \emptyset$ and $\text{int}(C''') \cap V(G) = \emptyset$ with similar arguments, hence $|V(C)| = 3$, also a contradiction.

Consequently, C is an OI$_3$-cycle through a and b.

Note that a Hamiltonian cycle of a graph is an OI$_3$-cycle. Let $a = yz$ be an edge of an OI$_3$-cycle C of a graph G and assume that y and z have a common neighbor $x \in V(G) \setminus V(C)$. Then let C' be the cycle of G obtained from C by replacing the edge a with the path (y, x, z). In this case, a is an extendable edge of C. Note that C' is again an OI$_3$-cycle of G, $|V(C')| = |V(C)| + 1$, and that C' has less extendable edges than C. Obviously, a longest OI$_3$-cycle of G does not contain an extendable edge.

For the proof of Theorem 1 it suffices to show the following lemma.

Lemma 4. Let G be an essentially 4-connected planar graph on $n \geq 11$ vertices.

(i) G contains an OI$_3$-cycle.

(ii) If C is an OI$_3$-cycle of G without extendable edges, then $|V(C)| \geq \frac{1}{2}(n + 4)$.

(iii) If $\Delta(G) = 4$ and C is an OI$_3$-cycle of G, then $|V(C)| \geq \frac{5}{8}n$.

(iv) If G is maximal planar and C is a longest OI$_3$-cycle of G, then $|V(C)| \geq \frac{13}{21}(n + 4)$.

Proof. If G is an essentially 4-connected plane graph without vertices of degree 3, then G is even 4-connected, hence, G contains a Hamiltonian cycle (Lemma 2). Since every Hamiltonian cycle is an OI$_3$-cycle, Lemma 4(i) is true in this case. If G is not maximal planar, then there exist two non-adjacent edges a and b of G belonging to a common face, hence, by Lemma 3, Lemma 4(i) follows.

Thus, for the proof of Lemma 4(i), it remains to deal with the case that G is maximal planar and contains a vertex of degree 3. Let $a = yz$ be an edge connecting two neighbors y and z of a vertex x of degree 3 in G. In this case we will show that $d(y) \geq 4$, $d(z) \geq 4$, and that there is an edge b being non-adjacent with a, and with both end vertices of degree at least 4. Consequently, the existence of an OI$_3$-cycle in G follows by Lemma 3, and Lemma 4(i) is true.
also in this case. Let \(u \) be the third neighbor of \(x \). The vertices \(y, z, u \) form a separating 3-cycle, hence because \(G \) is 3-connected, all of them have degree at least 4. Let \(w \in N(u) \setminus \{x, y, z\} \) be a fourth neighbor of \(u \). If \(d(u) = 4 \), then \(\{y, z, w\} \) is a 3-separator and both components of \(G - \{y, z, w\} \) contain at least two vertices, a contradiction to the essentially 4-connectedness of \(G \). It follows that \(d(u) \geq 5 \). Let \(v \in N(u) \setminus \{x, y, z, w\} \) such that \(v \in N(w) \). Since \(G \not\cong K_4 \), vertices of degree three are not adjacent in \(G \), thus one of the vertices \(w \) and \(v \) has degree at least four. We are done with \(b = uw \) or \(b = uv \), respectively, and Lemma 4(i) is completely proved.

The following Lemma 5 is proved in [2]. For completeness, we present its short proof here.

Lemma 5. If \(C \) is a cycle of a plane graph \(G \) on at least 4 vertices such that \(\text{int}(C) \cap V(G) \) is an independent set of vertices of degree 3 in \(G \) and, for each edge \(xy \) of \(C \), \(x \) and \(y \) do not have a common neighbor in \(\text{int}(C) \cap V(G) \), then \(|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4) \).

Proof. We proceed by induction on \(c = |V(C)| \). If \(c \leq 5 \), then, obviously, \(|\text{int}(C) \cap V(G)| = 0 \). Now let \(c \geq 6 \), \(d = |\text{int}(C) \cap V(G)| > 0 \), and \(\phi \) be an orientation of \(C \). Consider a fixed vertex \(x \in \text{int}(C) \cap V(G) \) and let \(x_1, x_2, \) and \(x_3 \) be the neighbours of \(x \) on \(C \) met in this order following \(\phi \). For \(i = 1, 2, 3 \), let \(C_i \) be the cycle obtained by the union of the path on \(C \) from \(x_i \) to \(x_{i+1} \) following \(\phi \) and the two edges \(xx_i \) and \(xx_{i+1} \) (where \(x_4 = x_1 \)), \(c_i = |V(C_i)| \), and \(d_i = |\text{int}(C_i) \cap V(G)| \). Obviously, \(c > c_i \geq 4 \) and for each edge \(xy \) of \(C_i \), \(x \) and \(y \) do not have a common neighbor in \(\text{int}(C_i) \cap V(G) \) (\(i = 1, 2, 3 \)). We have \(c_1 + c_2 + c_3 = c + 6, d_1 + d_2 + d_3 = d - 1 \), and, by induction hypothesis, \(d_i \leq \frac{c_i}{2} - 2 \) for \(i = 1, 2, 3 \). This implies \(d \leq \frac{c}{2} - 2 \). \(\square \)

To prove Lemma 4(ii), consider an OI3-cycle \(C \) of \(G \) without an extendable edge. Obviously, \(|V(C)| \geq 4 \) because \(n \geq 4 \). Moreover, for each edge \(xy \) of \(C \), \(x \) and \(y \) do not have a common neighbor in \((\text{int}(C) \cup \text{ext}(C)) \cap V(G) \). By Lemma 5, \(|\text{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4) \) and, by symmetry, \(|\text{ext}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4) \). Thus \(n = |V(C)| + |\text{int}(C) \cap V(G)| + |\text{ext}(C) \cap V(G)| \leq 2|V(C)| - 4 \) and Lemma 4(ii) is proved.

For the proof of Lemma 4(iii) consider an arbitrary OI3-cycle \(C \) of \(G \). Since \(V(G) \setminus V(C) \) is an independent set and \(d(x) = 3 \) for every \(x \in V(G) \setminus V(C) \), \(3(n - |V(C)|) \) equals the number \(e \) of edges between \(V(C) \) and \(V(G) \setminus V(C) \). If \(y \in V(C) \), then, because \(d(y) \leq 4 \), \(y \) has at most two neighbors in \(V(G) \setminus V(C) \). It follows \(e \leq 2|V(C)| \) and Lemma 4(iii) is proved.

It remains to prove Lemma 4(iv).

Let \(C \) be a longest OI3-cycle of \(G \). By Lemma 4(ii) and \(n \geq 11 \), we have \(|V(C)| \geq 8 \). Moreover, let \(H = G[V(C)] \) be the graph obtained from \(G \) by removing all vertices of degree 3 which do not lie on \(C \). Obviously, \(H \) is maximal.
planar and C is a Hamiltonian cycle of H. A face α of H is an empty face of H if α is also a face of G, otherwise α is a non-empty face of H. Denote by \mathcal{F} the set of empty faces of H. Note that every face of G has at least two (of three) vertices on C. The three neighbors of a vertex of $V(G) \setminus V(C)$ induce a separating 3-cycle of G creating the boundary of a non-empty face of H.

Lemma 6. Let $t = |\mathcal{F}|$ be the number of empty faces of H. For a positive real a, the inequalities $|V(C)| \leq at$ and $|V(C)| \geq \frac{a}{3a-1}(n+4)$ are equivalent.

Proof. Since every face of G which is not an empty face of H has exactly one vertex in $V(G) \setminus V(C)$, calculating the number of faces of G leads to $2n - 4 = t + 3(n - |V(C)|)$. It follows $t = 3|V(C)| - n - 4$ and directly the equivalence of $|V(C)| \leq at$ and $|V(C)| \geq \frac{a}{3a-1}(n+4)$. \Box

Using Lemma 6, it suffices to prove $|V(C)| \leq \frac{13}{15}t$.

Let H_1 and H_2 be the spanning subgraphs of H consisting of the cycle C and of its chords lying in the interior and in the exterior of C, respectively. Note that $E(H_1) \cap E(H_2) = E(C)$ and H_1 and H_2 are maximal outerplanar graphs.

An empty face φ of H is a j-face if exactly j of its three incident edges belong to $E(C)$. Since $|V(C)| \geq 8$, it follows $j \in \{0, 1, 2\}$ for any j-face φ of H. Note that C and a non-empty face of H do not have an edge in common because otherwise such an edge would be an extendable edge of C in G.

Since C does not contain extendable edges, every face of H incident with an edge of C is an empty face. An edge e of C incident with the faces φ and ψ is a (j, k)-edge for $1 \leq j, k \leq 2$, if φ is a j-face and ψ is a k-face.

For every edge $e \in E(C)$ we define the weight $w_0(e) = 1$. Obviously, $\sum_{e \in E(C)} w_0(e) = |V(C)|$.

First redistribution of weights

If x, y, and z are the vertices incident with a face φ of H, then we write $\varphi = [x, y, z]$. Let (u, x, y, v) be a subpath of C, xy be a $(2, 2)$-edge of C, and $\alpha = [u, x, y]$ and $\sigma = [x, y, v]$ be two adjacent 2-faces of H. Moreover, let β and τ be the faces of H incident with uy and xv and distinct from α and σ, respectively (see Figure 6). The cycle \tilde{C} obtained from C by replacing the path (u, x, y, v) by the path (u, y, x, v) is also a longest OI3-cycle of G, hence both uy and xv are not extendable edges of \tilde{C} and therefore β and τ are also empty faces of H.

The weight of all edges of C will be completely redistributed to empty faces of H by the following rules.

Rule R1. A $(2, 2)$-edge xy of C (Figure 6) sends weight $\frac{1}{3}$ to both incident 2-faces α and σ and weight $\frac{1}{6}$ to β (through the edge uy) and to τ (through the edge xv).
Rule R2. A (1, 2)-edge of C sends weight $\frac{2}{3}$ to the incident 1-face and weight $\frac{1}{3}$ to the incident 2-face.

Rule R3. A (1, 1)-edge of C sends weight $\frac{1}{2}$ to both incident 1-faces.

For an empty face φ, let $w_1(\varphi)$ be the total weight obtained by φ (in first redistribution). Obviously, $\sum_{\varphi \in \mathcal{F}} w_1(\varphi) = |V(C)|$.

Every empty face gets weight from (or through) at most two of its three incident edges (otherwise $|V(C)| \leq 6$, a contradiction). An empty face φ of H is good if $w_1(\varphi) \leq \frac{2}{3}$, otherwise it is bad.

Every 2-face φ gets weight only by rules R1 or R2, thus $w_1(\varphi) \leq \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ and φ is good.

A 0-face φ can get weight only by rule R1. It can get weight $\frac{1}{6}$ from two distinct edges of C through the same incident edge, thus $w_1(\varphi) \leq \left(\frac{1}{6} + \frac{1}{6}\right) + \left(\frac{1}{6} + \frac{1}{6}\right) = \frac{2}{3}$ and φ is good.

Every 1-face φ gets weight $\frac{2}{3}$ (by R2) or weight $\frac{1}{2}$ (by R3) from the incident edge lying on C. Furthermore, φ can get weight also through one of the remaining two incident edges (by R1). Thus $w_1(\varphi) \leq \frac{2}{3} + \left(\frac{1}{6} + \frac{1}{6}\right) = 1$. Moreover, if φ is bad, then $w_1(\varphi) = \frac{5}{6}$ or $w_1(\varphi) = 1$.

Now we describe all possible neighborhoods of bad faces.

Lemma 7. Let $\beta \in F(H_i), i \in \{1, 2\}$, be a bad face of H and let α and γ be the two faces of H_i adjacent to β, where α is a 2-face of H. The face β is of one of the following four types (Figure 7):

(B1) $w_1(\beta) = \frac{5}{6}$ and γ is an empty face,

(B2) $w_1(\beta) = 1$ and γ is an empty 0-face,

(B3) $w_1(\beta) = 1$ and $w_1(\gamma) = \frac{1}{2}$,

(B4) there is a 2-face σ of H_{3-i} adjacent (in H) to α, β, and τ, where τ is an empty 0-face of H.

Proof. If $\beta \in F(H_i), i \in \{1, 2\}$, is a bad face of H, then there is a 2-face α of H_i adjacent to β. Let $\gamma (\gamma \neq \alpha)$ be the second face of H_i adjacent to β (Figure 8).
Case 1. Let $w_1(\beta) = \frac{5}{6}$ and ux be a $(2, 2)$-edge (i.e., $zx \in E(H_{3-i})$, see Figure 9). The cycle \tilde{C} obtained from C by replacing the path (z, u, x, y, v) by the path (z, x, y, u, v) is a longest OI3-cycle of G and contains the edge uv, thus γ is an empty face of H (and β is of type B1).

Case 2. Let $w_1(\beta) = \frac{5}{6}$ and xy be a $(2, 2)$-edge (i.e., $xv \in E(H_{3-i})$). The face $\sigma = [x, y, v]$ is a 2-face of H_{3-i}. Let τ ($\tau \neq \sigma$) be the second face of H_{3-i} incident with xv. Since $|V(C)| \geq 8$, it follows $u \neq w$, hence τ cannot be a 2-face of H_{3-i}.

Case 2.1. If τ is a 0-face (Figure 10), then the cycle \tilde{C} obtained from C by replacing the path (u, x, y, v) by the path (u, y, x, v) is a longest OI3-cycle of G and contains the edge xv, thus τ is an empty face of H (and β is of type B4).

Case 2.2. If τ is a 1-face (Figure 11), then $\tau = [x, v, w]$ (since $uv \in E(H_i) \setminus E(C)$, uv is not an edge of H_{3-i}). The cycle \tilde{C} obtained from C by replacing the path (u, x, y, v, w) by the path (u, v, y, x, w) is a longest OI3-cycle of G and contains the edge uv, thus γ is an empty face of H (and β is of type B1).
Case 3. Let \(w_1(\beta) = 1 \). Now both \(ux \) and \(xy \) are \((2, 2)\)-edges (i.e., \(zx, xv \in E(H_{3-i}) \)). The face \(\sigma = [x, y, v] \) is a 2-face of \(H_{3-i} \). Let \(\tau (\tau \neq \sigma) \) be the second face of \(H_{3-i} \) incident with \(xv \). Again, \(\tau \) cannot be a 2-face of \(H_{3-i} \) and we consider two subcases.

Case 3.1. If \(\tau \) is a 0-face (see Figure 12, possibly \(\tau = [z, x, v] \)), then, for a similar reason as in Case 2.1, \(\tau \) is an empty face of \(H \) (and \(\beta \) is of type \(B_4 \)).

Case 3.2. If \(\tau \) is a 1-face, then \(\tau = [x, v, w] \). Since \(|V(C)| \geq 8 \), it follows \(z \neq w \), hence \(\gamma \) is not a 2-face of \(H_i \). We consider the last two subcases.

Case 3.2.1. If \(\gamma \) is a 0-face (see Figure 13), then, for a similar reason as in Case 1, \(\gamma \) is an empty face of \(H \) (and \(\beta \) is of type \(B_2 \)).

Case 3.2.2. If \(\gamma \) is a 1-face, then \(\gamma \neq [z, u, v] \) (otherwise \(\{z, x, v\} \) is a non-trivial 3-separator, a contradiction). Thus \(\gamma = [u, v, w] \) (see Figure 14) and \(vw \) is an \((1, 1)\)-edge (and \(\beta \) is of type \(B_3 \)). □

For a better overview, we list the current weights of all faces considered in Lemma 7:

(B1) \(w_1(\alpha) = \frac{2}{3} \), \(w_1(\beta) = \frac{5}{6} \), and \(w_1(\gamma) \leq \frac{2}{5} \);

(B2) \(w_1(\alpha) = \frac{2}{3} \), \(w_1(\beta) = 1 \), and \(w_1(\gamma) \leq \frac{1}{3} \), because \(\gamma \) obtains no weight through its common edge with \(\beta \) and at most \(\frac{1}{6} + \frac{1}{6} \) through at most one of its remaining two edges;

(B3) \(w_1(\alpha) = \frac{2}{3} \), \(w_1(\beta) = 1 \), and \(w_1(\gamma) = \frac{1}{2} \);

(B4) \(w_1(\alpha) = \frac{2}{3} \), \(\frac{5}{6} \leq w_1(\beta) \leq 1 \), \(w_1(\sigma) = \frac{2}{3} \), and \(w_1(\tau) \leq \frac{1}{2} \), because \(\tau \) obtains weight \(\frac{1}{6} \) through its common edge with \(\sigma \) and at most \(\frac{1}{6} + \frac{1}{6} \) through at most one of its remaining two edges.

Second redistribution of weights

The weight of all bad faces exceeded \(\frac{13}{18} \) will be redistributed to good faces in their neighborhoods.

Rule R4. A bad face \(\beta \) of type \(B_1 \) sends weight \(\frac{1}{18} \) to \(\alpha \) and to \(\gamma \) (through the common edge).

Rule R5. A bad face \(\beta \) of type \(B_2 \) or \(B_3 \) sends weight \(\frac{1}{18} \) to \(\alpha \) and weight \(\frac{2}{9} \) to \(\gamma \) (through the common edge).
Rule R6. A bad face β of type B4 sends weight $\frac{1}{18}$ to α and to σ (through the common edge) and the weight $\frac{1}{6}$ to τ (through the edge xv, see Figure 10).

For an empty face φ, let $w_2(\varphi)$ be the total weight of φ (after second redistribution). Obviously, $\sum_{\varphi \in F} w_2(\varphi) = \sum_{\varphi \in F} w_1(\varphi) = |V(C)|$.

A bad face φ of type B1 sends weight $2 \times \frac{1}{18}$ to good faces, thus $w_2(\varphi) = \frac{5}{6} - 2 \times \frac{1}{18} = \frac{13}{18}$. A bad face φ of type B2 or B3 sends weight $\frac{1}{18} + \frac{2}{9} = \frac{13}{18}$. Finally, a bad face φ of type B4 sends weight $2 \times \frac{1}{18} + \frac{1}{6}$ to good faces, thus $w_2(\varphi) \leq 1 - 2 \times \frac{1}{18} - \frac{1}{6} = \frac{13}{18}$.

If a 2-face φ gets weight by the rules R4, R5, or R6, then either by exactly one of the rules R4 and R5 ($\varphi = \alpha$ is adjacent to a 1-face β in this case) or by R6 ($\varphi = \sigma$ is adjacent to a 0-face τ in this case). Thus $w_2(\varphi) \leq \frac{2}{3} + \frac{1}{18} = \frac{13}{18}$.

A good 1-face φ has at most one adjacent bad face (otherwise $|V(C)| \leq 7$ by Lemma 7, a contradiction). If $w_1(\varphi) = \frac{1}{2}$, then $w_2(\varphi) \leq \frac{2}{3} + \frac{2}{9} = \frac{13}{18}$ (by R5). If $w_1(\varphi) = \frac{2}{3}$, then $w_2(\varphi) \leq \frac{2}{3} + \frac{1}{18} = \frac{13}{18}$ (by R4).

A 0-face φ gets through at least one of its incident edges no weight in first redistribution (1RD) and also in second redistribution (2RD). Let e be an edge incident with φ. If φ gets weight $\frac{2}{3}$ through e (by R5) in 2RD, then φ obtained no weight through e in 1RD. If φ gets weight $\frac{1}{6}$ through e (by R6) in 2RD, then φ has already obtained weight $\frac{1}{6}$ through e in 1RD. Finally, if φ gets no weight through e in 2RD, then φ has obtained weight at most $\frac{1}{3}$ through e in 1RD. Thus φ obtain through e weight at most $\frac{1}{3}$ (in 1RD and 2RD in total) and $w_2(\varphi) \leq \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ follows. Thus, Lemma 4 is completely proved.

It remains to show that the essentially 4-connected maximal planar graph G on $n = n' + 2(n' - 4)$ vertices constructed in Section 1 from the 4-connected maximal planar graph G' on $n' \geq 6$ vertices contains a cycle on exactly $2n'$ vertices. To see this, let a and b be two adjacent edges of G' which do not belong to a common face of G'. Note that a and b exist since $n \geq 6$ implies that each vertex of G' has degree at least 4. Consider a Hamiltonian cycle C' of G' through a and b (apply Lemma 2). Let $a = e_1, e_2, \ldots, e_{n'-1}, e_n' = b$ be the edges of C' met in this order along C'. For $j = 1, \ldots, n'$, consider the common neighbors $x_j \in (V(G) \setminus V(G')) \cap \text{int}(C')$ and $y_j \in (V(G) \setminus V(G')) \cap \text{ext}(C')$ of the end vertices u_j and v_j of e_j. It is easy to see that the vertices in $\{x_1, \ldots, x_{n'}, y_1, \ldots, y_{n'}\}$ are pairwise distinct (if n' is odd, then note that a and b do not belong to a common face of G'). Eventually, let the cycle C of G be obtained by replacing e_j in C' with the path (u_j, x_j, v_j) if j is odd and (u_j, y_j, v_j) if j is even ($j = 1, \ldots, n'$).

References

On Longest Cycles in Essentially 4-Connected Planar Graphs

Received 16 June 2015
Revised 23 September 2015
Accepted 23 September 2015