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Abstract

The family of 5–valent polyhedral graphs whose faces are all tri-
angles or 3s–gons, s ≥ 9, is shown to contain non–hamiltonian graphs
and to have a shortness exponent smaller than one.
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1. Introduction

All graphs in this paper are simple, that is, they have no loops or multiple
edges. For a graph G = (V,E), let v(G) = |V (G)| be the number of vertices
and c(G) be the length of a maximum cycle. Thus G is non–hamiltonian if
c(G) < v(G). For a family G of graphs the shortness coefficient, ρ(G), and
shortness exponent, σ(G), are defined as in Grünbaum and Walther [2] by

ρ(G) = lim inf
G∈G

c(G)

v(G)
, σ(G) = lim inf

G∈G

log c(G)

log v(G)
.

We consider polyhedral graphs, that is, 3–connected planar graphs. The
first example of a non–hamiltonian 3–regular polyhedral graph was given by
Tutte [12]. More recently Holton and McKay [4] showed that the smallest
such graphs have 38 vertices. Walther [13] showed how to convert a non–
hamiltonian 3–regular polyhedral graph into non–hamiltonian 4–regular and
5–regular graphs.

The theorem of Grinberg [1] made it easy to construct non–hamiltonian
polyhedral graphs. Grinberg gave as an example a graph in which, apart
from one face, all faces are 5–gons or 8–gons. This perhaps suggested the
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search for non–hamiltonian regular polyhedral graphs with only two types
of faces.

Let Γ(r; p, q) be the family of all r–regular polyhedral graphs whose
faces are only p–gons or q–gons, p < q. It follows from Euler’s relation for
polyhedra that Γ(r; p, q) is empty unless (r, p) ∈ {(3, 5), (3, 4), (3, 3), (4, 3),
(5, 3)}. Moreover, the families Γ(3; 3, 4),Γ(3; 3, 5) and Γ(3; 4, 5) are finite
and contain only hamiltonian graphs, while Γ(3; 3, q) is empty for q ≥ 10.
In other cases Γ(r; p, q) is infinite.

In Zaks [16] non–hamiltonian graphs in Γ(3; 5, 8) are constructed.
A number of later papers, including [3, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18],
give non–hamiltonian graphs in other families Γ(r; p, q) and inequalities in-
volving shortness parameters. Most such results are of the form ρ ≤ ρ0 < 1
(or σ ≤ σ0 < 1) for all q ≥ q0 but in a few cases there are other restric-
tions on q. No non–hamiltonian graphs are known in Γ(3; 4, q) when q is
even and, indeed, none exist if Barnette’s conjecture, that every 3–regular

bipartite polyhedral graph is hamiltonian, is true.
The inequality σ(Γ(3; 5, q)) < 1 was obtained in Harant [3] for q ≥

83, q 6≡ 0(mod 5). In Owens [8] this inequality was shown to hold for q ≥
12, q 6≡ 0(mod 5) and, by a different construction, for q ≥ 40, q ≡ 0(mod 5).

In Owens [6] it was shown that σ(Γ(5; 3, q)) < 1 for q ≥ 14, q 6≡
0(mod 3). When q ≡ 0(mod 3) the family Γ(5; 3, q) is a subfamily of the
family of all multitriangular graphs, that is, graphs such that the number
of edges of every face is divisible by three. Walther [15] showed that the
family of 5–regular multitriangular polyhedral graphs has a non–hamiltonian
member and even has shortness exponent less than one. He asked how few
types of faces there could be for these results to hold. Here, we give best
possible answers to these questions by proving the

Theorem. σ(Γ(5; 3, q)) < 1 for q ≥ 27, q ≡ 0(mod 3).

This result complements [6, Theorem 4]. The construction used is similar to
that in [15] but made more general by the use of a technique, called splitting

edges, which will now be described.

2. Constructions and Proofs

The operation of splitting an edge converts one 5–regular multitriangular
polyhedral graph into another. Figure 1 shows three ways to split an edge
AA

′

of a 5–regular graph.
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Figure 1

The edge AA
′

is replaced by two edges A1A
′

1, A2A
′

2 and eighteen new trian-
gular faces are produced. Also, two faces f, f

′

incident at AA
′

are enlarged
by three edges each. It is essential to specify which faces are to be enlarged
because different choices are possible (see Figure 1). After an edge AA

′

has
been split the operation can be repeated by splitting A1A

′

1 or A2A
′

2, with
the same (or different) choice of faces f, f

′

. Evidently splitting an edge
preserves the properties of being polyhedral, multitriangular and 5–regular.

Let q = 3s. A graph that can be a subgraph of a 5–regular multitrian-
gular polyhedral graph is shown in Figure 2(a). It is 5–regular apart from
the three vertices X1, Y1, Z1, which we call its linking vertices.
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Figure 2

The half edges incident at the linking vertices show how the subgraph is
attached to the rest of a 5–regular polyhedral graph in which it occurs. Let
the edges a1, b1, c1 shown as double lines in Figure 2(a) be split 1+ i, i, s−
i− 2 times respectively in such a way that the only faces to be enlarged are
f1, f2 and f3. It is easy to check that f1 and f2 become 3s–gons and f3 gains
3 + 6i extra edges. We denote the new subgraph by P 1(3, 6 + 6i, 3; 3s) and
represent it by a labelled triangle, as shown in Figure 2(b). The numbers
outside the triangle show how many edges this P 1–subgraph supplies to
the three adjoining faces of a graph in which it occurs. If that graph is in
Γ(5; 3, 3s), then 6 + 6i < 3s. This implies that s − i − 2 is non–negative,
which is essential since it is the number of times c1 has been split.

In a similar way a subgraph P 2(1 + 3j + 6k, 2 + 3j, 2; 3s) is obtained
from the subgraph shown in Figure 3(a) by splitting the edges shown as
double lines.
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Figure 3

In fact, let the edges a2, b2, c2, d2 be split j + k, k, j, s− j − k− 1 times in
such a way that the pairs of faces which are enlarged are f2 and f3, f1 and
f3, f1 and f4, f1 and f2, respectively. The faces f1 and f2 become 3s–gons
and the numbers of edges supplied by the P 2–subgraph to the adjoining
faces are as shown in Figure 3(b). In Figure 3(c) we show P 2(7, 2, 2; 6) as
an example of the construction for j = 0, k = 1.
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R(3, 5 + 3j, 1 + 3j + 6k, 8 + 6i; q) R(3, 5, 1 + 3j + 6k, 8 + 6i+ 3j; q)

Figure 4

A subgraph with four linking vertices can now be obtained by identifying
the vertex X1 of a P 1–subgraph with the vertex X2 of a P 2–subgraph to
form a vertex X. This can be done in two ways, as shown in Figure 4, and
we denote the two sorts of R–subgraph by

(a) R(3, 5 + 3j, 1 + 3j + 6k, 8 + 6i; 3s) and

(b) R(3, 5, 1 + 3j + 6k, 8 + 6i+ 3j; 3s).

Figure 5

Figure 5 shows a non–hamiltonian 3–regular polyhedral graph with
50 vertices.



Hamiltonicity in multitriangular graphs 83

The subgraph T , two copies of which appear in , is obtained from the usual
Tutte subgraph by replacing one 4–gon by three 4–gons and one vertex by
a triangle.

We state without proof a property of T that follows easily from the corre-
sponding property of the Tutte subgraph:

Every path from X to Y in T misses at least one of the 13 black vertices.

(The idea of black vertices was used in [2] and corresponds to that of
z–vertices in [6].) Hence every cycle in misses at least one of the 32 black
vertices.

The next step is to convert , with the aid of R–subgraphs, into a non–
hamiltonian graph in Γ(5; 3, 3s).

Two cases must be considered, according to the parity of s.

Case 1. (Odd s) Let s = 9 + 2t, q = 27 + 6t, where t ≥ 0.

The doubled lines in Figure 6 indicate the edges of a 1–factor of . Replace
each edge of this 1–factor by an R–subgraph. The numbers placed round
the doubled lines, taken in conjunction with Figure 4, show which particular
R–subgraphs are to be used. In Figure 6, + is an abbreviation for +6t. It
is easy to verify that there are values of i, j and k that produce all the
required R–subgraphs. Moreover, all faces of the new graph G that are
shown explicitly are (27 + 6t)–gons (implicitly there are triangles, namely
inside R–subgraphs). Hence G ∈ Γ(5; 3, q).

Let C be any cycle in G. Under the transformation that converts G

back into , C becomes a cycle C
′

in , or possibly a single vertex. If C contains
an edge of a particular P 1- or P 2–subgraph, then C

′

contains the vertex of
corresponding to this subgraph of G. Since C

′

must miss a black vertex of ,
C must miss all the edges of the corresponding P 1- or P 2–subgraph of G.

Case 2. (Even s) Let s = 10 + 2t, q = 30 + 6t, where t ≥ 0.

The graph G constructed in Case 1 has an odd number of q–gons, including
four within each R–subgraph. Since two faces are enlarged (by three edges
each) whenever an edge is split, it is not possible by splitting edges to replace
all q–gons by (q + 3)–gons and not alter any other faces.

Figure 7 shows a construction for even s similar to that given in Fig-
ure 6 for odd s.One (but only one) of the required R–subgraphs, namely
R(3, 17, 7 + 6t, 17 + 6t; q), cannot be obtained as in Figure 4. To obtain
this extra subgraph, take the subgraph shown in Figure 8(a) and let the
edges b2, c2, d2, g2, h2 be split 2 + 2t, 3, 4, 4, 5 + 2t times in such a way
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Figure 6
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Figure 7
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Figure 8

that the pairs of faces enlarged are f1 and f3, f1 and f4, f1 and
f2, f5 and f6, f2 and f5, respectively. The interior faces f1, f2, f5
become q–gons and the new P 2–subgraph supplies 7 + 6t, 11, 14 edges
to the three adjoining faces of a graph in which it occurs. By joining
this P 2–subgraph to P 1(3, 6 + 6t, 3; q) we obtain the required subgraph
R(3, 17, 7 + 6t, 17 + 6t; q). This completes Case 2. We now have a non–
hamiltonian graph G ∈ Γ(5; 3, q), for all q ≥ 27 such that q ≡ 0(mod 3).

A routine argument, using [6, Lemma 2], leads to the inequality

σ(Γ(5; 3, q)) ≤
log 30

log 31

for q ≥ 27, q ≡ 0(mod 3).

3. Remarks

(1) As far as we are aware, it is not known whether there exist non–
hamiltonian graphs in any of the following families:

Γ(3; 5, 6);

Γ(3; 4, q), where q is even and q ≥ 8;

Γ(4; 3, q), where 4 ≤ q ≤ 11;

Γ(5; 3, q), where 4 ≤ q ≤ 13 or q = 15, 18, 21, 24.
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(2) A theorem of Tutte implies that every non–hamiltonian polyhedral graph
G has connectivity exactly three. IfG is regular and 5–valent, then its cyclic
edge–connectivity is at most six [13, p.295]. This maximum is attained by
the non–hamiltonian 5–valent graphs constructed in [6] but not by those in
the present paper, because only four edges join an R–subgraph to the rest
of a graph in which it appears. We therefore ask whether there is, for some
k, a cyclically 6–edge–connected non–hamiltonian graph in Γ(5; 3, 3k).
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