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Abstract

With the advent of quantum computers, quantum key distribution is a promising can-
didate to ensure secure communication also in the future. Its security is based on
fundamental quantum mechanical principles and can be verified by measurements. A
multitude of experiments have demonstrated its applicability in various scenarios, as
e.g. recently between two ground stations which received photons from a satellite.
Higher-dimensional state spaces as provided by the orbital angular momentum of pho-
tons (OAM) could further improve the security and robustness to noise. Photons with
special phase profiles consisting of intertwined helices can carry such an orbital an-
gular momentum. When transmitted through free-space, these photons experience
atmospheric turbulence which introduces distortions of the phase carrying the infor-
mation. To counter-act turbulence distortions,adaptive optics has been developed in
astronomy. While its application has been considered in the context of classical OAM
communication, this thesis presents the first results of adaptive optics for OAM-based

quantum key distribution.

For this thesis, a simulation routine was developed to describe the action of at-
mospheric turbulence on OAM photons as well as the subsequent correction by an
adaptive optics system. The existing theoretical description of atmospheric turbulence
on OAM photons was extended to also describe the action of adaptive optics. As the
application scenario, the transmission of one photon from an entangled two-qubit state
was considered with the adaptive optics system located at the receiver. The main result
of this thesis is that the losses of the quantum mechanical properties of OAM photons
in atmospheric can be mitigated by adaptive optics. Both the entanglement and the
trace of the final state’s density matrix can be significantly improved. Furthermore,
the security of the quantum key distribution protocol can be ensured for two to three
times stronger turbulence as measured by the Fried parameter. Here, the quantum bit

error rate and the violation of a Bell inequality were evaluated as figures of merit. The



ABSTRACT

auxiliary laser beacon that is used to determine the phase distortions introduced by
turbulence also has an influence on the compensation of the OAM photons. Because
of the different beam geometry of the Gaussian beacon and the OAM photons, the
beam waist of the beacon was optimized. The optimum value depends on the OAM
of the photons as well as the type of adaptive optics compensation. Furthermore, the
figures of merit for quantum key distribution are more sensitive to the beacon beam
waist than the quantities associated with classical communication.

The presented results demonstrate the great potential of adaptive optics for OAM
communication. By reducing the crosstalk between OAM modes, adaptive optics could
allow for new experiments which profit even more from the high dimensionality of OAM
photons. The presented theoretical results will thus have a great impact on the future

realization of free-space experiments with OAM and adaptive optics.



Chapter 1

Introduction

Over many centuries, people have developed methods to protect their private messages
from eavesdroppers. Starting from simple substitution ciphers, these methods have
developed into an own mathematical discipline called cryptography. Unfortunately, the
only encryption method proven to be unbreakable is a one-time pad which uses a key of
the same length as the message for encryption. Clearly, such a method is inconvenient
because a new key has to be used for each transmission. Many other encryption
protocols are secure simply because breaking them takes too much computation time.
With the advent of quantum computers, new algorithms may become available that
can perform certain calculations much faster than classical computers. While quantum
technologies may thus be used to break current encryption, they may also provide new
encryption methods. An example is quantum key distribution which can be used to
generate secure keys for data transmission. The clear advantage of this method is that
its security is based on fundamental physical principles, in contrast to many classical
methods. Impressive quantum key distribution experiments have been performed with
polarization-encoded photons in a horizontal link over 143 km [1] and, more recently,
for satellite-to-ground transmission [2].

Apart from the two-dimensional states provided by polarization, higher-dimensional
state spaces could provide new interesting physics. Furthermore, the security and ro-
bustness to noise could be improved by using d-dimensional states, so-called qudits,
instead of qubits [3H6]. Alternatively, a higher-dimensional state space could be used to
create several parallel channels. Orbital angular momentum of light (OAM) is an exam-
ple of a high-dimensional system, in principle denumerably infinite, and provides a new

degree of freedom to encode (quantum) information. Several experiments have shown
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Figure 1.1: Adaptive optics setup to correct for turbulence distortions on OAM-encoded
light (red spiral arrow). In order to separate the turbulence distortion from the information
encoded in the phase, a so-called beacon with a known phase profile propagates simultane-
ously through the same atmosphere (blue straight arrow). Based on measurements on the
beacon, the adaptive optics system reverts the turbulence distortion of the OAM light.

the applicability of OAM in classical and quantum communication [7-9]. However, its
free-space transmission is hindered by atmospheric turbulence which introduces phase
distortions. Since OAM results from the complex phase structure of the involved light,
atmospheric turbulence introduces crosstalk between OAM states and thus disturbs

the communication protocol.

The aim of this thesis is to investigate the ability of adaptive optics to counter-
act the effect of atmospheric turbulence in an OAM-based quantum key distribution
scenario. Adaptive optics is a technology mostly known from astronomy where atmo-
spheric turbulence severely limits the resolution of Earth-based telescopes [10]. Nowa-
days, all large telescopes above 1 m diameter feature an adaptive optics system. Lab-
oratory experiments have shown that adaptive optics can partially reverse turbulence
distortions in classical OAM-based communication systems and by that reduce, e.g.,
the bit error rate [11, |12]. However, free-space experiments with adaptive optics in
both classical and quantum communication with OAM, have not been reported, to the
best of the author’s knowledge. In the context of quantum key distribution, this work

is the first to investigate the effect of adaptive optics for OAM-encoded photons.

To this end, a simulation routine was developed to model the propagation through
atmospheric turbulence as well as the action of the adaptive optics system. When
applying adaptive optics to OAM communication, it is crucial to separate the phase
distortion caused by turbulence from the encoded information. An auxiliary laser
beam, the so-called beacon, is simultaneously sent along the same path as the signal
to measure the turbulence-induced distortions as can be seen in Fig. 1.1 Typically,

the beacon has a Gaussian beam profile and, thus, does not carry an orbital angular



momentum. To model the propagation through atmospheric turbulence, a split-step
propagation with random phase screens was used. Three different models of adaptive
optics were implemented — an idealized phase-correcting system with infinite resolution
and a tip-tilt system as well as a realistic system which is based on measurements
performed in an existing adaptive optics setup [13]. The formal description of OAM
photons in atmospheric turbulence |14} 15] is extended to include the adaptive optics
system. Based on that, the efficiency of adaptive optics for OAM-encoded photons was
evaluated in terms of the entanglement, quantum bit error rate and violation of Bell
inequalities.

The thesis is structured as follows. In Chapter [2] the foundations for OAM-based
quantum key distribution are laid. First, the OAM of light is introduced. After some
basic concepts of quantum mechanics, the most famous quantum key distribution proto-
cols are explained and it is shown how they can be used with OAM photons. Chapter [3]
discusses the main limitation of light propagating through free space — atmospheric tur-
bulence. In particular, the routine used in this thesis to simulate the propagation of
OAM light and the Gaussian beacon is presented. Chapter [4]is dedicated to adaptive
optics — both the general working principle and the adaptive optics correction mod-
els used in this thesis. The results of this thesis are presented in the fifth and sixth
chapter. Chapter [5| presents the aforementioned extension of the framework on OAM
distortion by turbulence to adaptive-optics correction. Furthermore, the efficiency of
adaptive optics correction on OAM-based quantum key distribution is evaluated. In
particular, the entanglement of OAM photons, the trace of their density matrix, the
quantum bit error rate of the protocol and the violation of a Bell inequality are con-
sidered. Chapter 6 extends this proof of principle to a more detailed investigation of
the parameters. In particular, the geometry of the beacon is optimized to achieve an
even better AO correction. The last chapter 7 presents a conclusion of this thesis and

an outlook to future work.






Chapter 2

Orbital angular momentum and

quantum key distribution

The goal of this chapter is to introduce the concept of orbital angular momentum of
light (OAM) and its applicability in quantum key distribution. To this end, the con-
cept of OAM is derived in Sec. from the linear momentum of light and one example
of OAM-carrying light beams, the Laguerre-Gauss modes, are discussed. Next, some
basic concepts and notations of quantum mechanics are recapitulated in Sec. 2.2 A
connection between the OAM degree of freedom and quantum mechanics is made by
quantizing the classical OAM modes and by that introducing the concept of an OAM
photon. Based on that, quantum cryptography, in particular quantum key distribu-
tion, is discussed in Sec. 2.3} Two very popular communication protocols, the Bennet
Brassard 1984 (BB84) and Ekert 1991 (E91) scheme and their application in OAM
quantum cryptography are presented. Finally, the literature on classical and quantum

communication based on OAM-encoding is summarized in Sec.

2.1 Orbital angular momentum of light

The angular momentum of light was first investigated in the context of polarization.
In accordance with the predictions of Poynting [16], Beth experimentally verified the
angular momentum carried by circularly polarized light |[17]. To this end, he built an
apparatus sensitive enough to measure the torque of a half wave plate which reverses the
sense of rotation of a circularly polarized light beam. Specifically, the transformation

from left- to right-hand circular polarization implies a change of angular momentum

9



2. ORBITAL ANGULAR MOMENTUM AND QUANTUM KEY DISTRIBUTION

from +A to —h. Because the total angular momentum is conserved, the half wave plate
experiences a torque in the opposite direction. The angular momentum resulting from
the polarization of light is now called spin angular momentum. Only much later in
the 1990s was it realized that, similar to atomic angular momentum, there exists an
orbital component to the optical angular momentum which can be any integer multiple
of h |18]. To understand how light can carry an orbital angular momentum, a short
motivation is given in the following. Please consult Refs. [19-21] for a more detailed
and rigorous derivation.

It is known that the linear momentum of light is defined by an integral over the
linear momentum density defined by the cross product of the electric and magnetic

field vector, E and B, respectively [22]
P = eo/ E(r,t) x B(r,t)d%r. (2.1)
v

In analogy to mechanics, the angular momentum is an integral over the angular mo-
mentum density given by the cross product of the position vector r and the linear

momentum density:
J— 60/ r % [B(r,1) x B(r, 1)]d* . (2.2)
%

One can rewrite this formula by using the definition of the magnetic field in terms of

the vector potential, B = V x A, and separate it into two terms:

J=S+1L, (2.3)

S = EO/VE(I‘,t) x A(r,t)d°r, (2.4)

L=c Y [ Eirt)(r—ro)x V]A(r,t)d’r. (2.5)
j=(zy,2) "V

The first term S is often referred to as the intrinsic or spin angular momentum since it
is independent of the position of the origin. On the contrary, L depends on the choice
of origin and is thus called the orbital angular momentum. One can show that circular
polarization produces a spin angular momentum of +A per photon.

In contrast, the orbital angular momentum depends on the transverse profile of
a light beam. For linearly polarized light propagating in z-direction, one can find a

simplified expression for the z-component of L 19, Complement 4B|:

L. = / B(r,t)2 Ar, )d% | (2.6)
1%4

10



2.1.  Orbital angular momentum of light

given in polar coordinates r, 6, and z. Plane waves cannot carry an orbital angular

momentum as defined above since the derivative with respect to the azimuthal angle

0 vanishes. Hence, beams with a dependence on # will be studied in the following.
One example are the Laguerre-Gauss modes which are solutions of the paraxial

equation of a monochromatic wave in vacuum [23]

. Ou
Viu + 21]{:& =0, (2.7)

where V% is the transverse Laplacian in polar coordinates. More details on the prop-
agation of light through vacuum and turbulent media will be given in Ch. 8| In the
equation above, the complex exponential terms associated with propagation and the
temporal evolution have already been separated from the mode function. The Laguerre-
Gauss mode functions satisfy Eq. and are given by [23]:

It ,
Up (1,0, 2) = Ny, (;}/Z;) LL” (ﬁ;&) 6_#5)2ei%%ei(Qpﬂllﬂw(z)gila‘ (2.8)
Two mode numbers are required to describe their behavior, the radial number p and
the azimuthal number [ where p can take positive integer values and [ can take any
integer value. Here, Lfn denotes the associated Laguerre polynomials. The factor N,;
has been included for normalization. One can see that the mode function consists
of a polynomial multiplied by a Gaussian which both depend only on the radius. A
complex phase factor adds a spherical phase as the beam propagates along z. The
Gouy phase factor exp[i(2p+ |{|4+1)®(z)] adds another propagation-induced phase. Of
particular interest for this thesis is the complex phase factor exp(ilf) which depends
on the azimuthal index. The beam waist w(z), Gouy phase ®(z) and Rayleigh range

zr have the same definition as in the case of Gaussian beams

ZR = WTUJ% s (29)
w(z) = wo/1+ (2/2r)?, (2.10)
®(z) = arctan(z/zg) , (2.11)

where wy is the initial beam waist. If the radial and azimuthal indices are set to 0 in
Eq. , one obtains the mode function of a Gaussian beam.

Figure visualizes Eq. with exemplary intensity and phase profiles in the
transverse plane at z = 0. Apart from the fundamental Gaussian mode with p = 0,
[ = 0, the intensity profiles (upper row of Fig. exhibit a ring-like shape. Although

11
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p=0,l =3 Intensity

E H !
0
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Figure 2.1: Transverse profiles of Laguerre-Gauss modes with different mode indices. (Top
row) Intensity profiles show a ring-like maximum. (Bottom row) Phase profiles show [ tran-
sitions from 0 to 27

(a) 1=1 (b)1=3

Figure 2.2: Surfaces of equal phase plotted against the propagation direction z. The surfaces
consist of [ intertwined helices: (a) [ =1 and (b) I = 3.

not shown in the figure, there can be several concentric rings separated by circles of
vanishing intensity for p > 0. A very interesting feature of these modes is the phase
profile shown in the lower row of Fig. It consists of [ transitions from 0 to 27
caused by the exp(ilf) term in Eq. . An immediate consequence of this term
is the so-called vortex which is a discontinuity of the phase at the origin where the
intensity vanishes. The surfaces of constant phase along the propagation direction z,
as depicted in Fig. consist of [ intertwined helices revolving around the optical
axis. This rotating structure also makes it quite plausible that these beams carry an

angular momentum.

12



2.2. Quantum states and entanglement

Formally, this can be verified by inserting the mode functions from Eq. into
the formula for the orbital angular momentum, Eq. . The derivative of the exp(il6)
dependence with respect to 6 leads to an orbital angular momentum proportional to
the mode number [. A more detailed analysis shows that it has a value of Al per
photon [18]. Because [ can take any integer value, there are infinitely many possible
values of the orbital angular momentum. With this, one finds an interesting distinction
from the spin angular momentum of light which can only take two values, namely +A
and —h.

2.2 Quantum states and entanglement

Before motivating the transition from the classical mode functions given in the pre-
vious section to OAM photons, some of the basic concepts of quantum mechanics are
recapitulated. First, the notation used throughout this thesis is introduced. Next, the
entanglement of a bipartite system (e.g. two photons) is discussed as well as methods
for quantifying it. Then, the quantization of OAM-carrying light beams is discussed.

To highlight the differences between classical physics and quantum mechanics, let
us take a short detour to the Stern-Gerlach experiment. This approach closely follows
the first chapter of Ref. [24].

In the Stern-Gerlach experiment, a beam of hot silver atoms is passed through an
inhomogeneous magnetic field and detected by a glass plate as illustrated in Fig
Since silver atoms are electrically neutral and have one electron in their outer electronic
shell, one can approximate their magnetic dipole moment by that of a single electron.
In this configuration, the force caused by the inhomogeneous field is proportional to
the gradient of the magnetic field, here chosen to be in z-direction, multiplied by the

z-component of the magnetic dipole moment g called p,

0B
F, = p,— inhomogeneous field in z-direction . (2.12)

0z

Behind the field, glass plates record the arriving silver atoms showing two separated
peaks with no atoms arriving at the center. Assuming that u, can only take two values
+p and —p, the atoms can only be deflected in two directions.

Next, more subsequent inhomogeneous fields are introduced to the setup, but the
paths containing atoms with negative magnetic dipole moment are blocked. The second
field is oriented in z- and the third in z-direction. Now, one observes an effect that can-

not be explained with classical theory. Although the first inhomogeneous field selects

13



2. ORBITAL ANGULAR MOMENTUM AND QUANTUM KEY DISTRIBUTION

slit glass
(collimation) screen
oven N
silver atoms
z S
-

T

Figure 2.3: Schematic of the Stern-Gerlach experiment. An oven produces silver atoms
with random magnet dipole moment in z-direction. The inhomogeneous magnetic field (black
arrows) leads to a splitting into two beams (those with positive and those atoms with negative
pz). A glass plate is used to detect the atoms. Inspired by Ref. [25].

the atoms with positive dipole moment with respect to the z-axis, the final z-direction
measurement again shows two peaks for both positive and negative dipole moment.
Without the field in z-direction one observes just one peak. Thus, the measurement

in x-direction must change also the magnetic dipole moment in z-direction.

To explain this effect, an analogy can be drawn between p. and the polarization
of (classical) light. The magnetic dipole moment with +x and —p in z-direction is
analogous to vertical and horizontal polarization of light (0° and 90° rotations of a
linear polarizer). The measurements of +p and —p in z-direction, however, correspond
to +45° or —45° polarization. A linear light polarizer can thus be used to explain the
behavior of an inhomogeneous magnetic field with subsequent selection of only one
of the two beams. It is known that after a first vertical (0°) polarizer, a subsequent
horizontal polarizer (90°) does not transmit any light. However, after adding a 45°
polarizer in between the 0° and 90° polarizers, one observes a non-vanishing intensity
after the last polarizer. This analogy shows that, similar to linearly polarized (classical)
light, the silver atoms’ magnetic dipole moment in z-direction needs to be described

by a two-dimensional vector rather than a scalar.

Based on the intuition developed for the Stern-Gerlach experiment, a more formal
description of a quantum system is introduced. Similar to the z-component of the
magnetic dipole moment of the individual silver atoms, the state of any quantum

mechanical system is described by a vector, from now on denoted by |«). The states of

14



2.2. Quantum states and entanglement

the system are part of a so-called Hilbert space denoted by H which contains all complex
linear combinations of states |a). There exists also a dual space closely connected to
the vector space. Its vectors are represented by (/3|. The inner product of two vectors

is denoted by

{Ble) = ({BN)(le) € C. (2.13)

This quantity is very similar to the scalar product of two vectors in real vector space.
However, it is a complex number, meaning that not only its absolute value but also its
complex phase is important. As in real vector space, two states are orthogonal if their

inner product vanishes and one can define the norm of a state by

lal] = v{ala) . (2.14)

An observable of the system is represented by a Hermitian operator A, i.e. A =

AT = (A*)T. As a consequence, the eigenvectors {|a)} of the operator A form a basis of

‘H and the corresponding eigenvalues )\, are real numbers. A state |«) can be expanded
in terms of the eigenvectors of A

o) =) " cwld), (2.15)

CL/

with the weights ¢,, = (a’|or). When a measurement of the observable A is performed,
the state |a) will be transformed into one of the states |a) similar to the projection
a linear polarizer performs on classical light. The probability for each of the states is

given by
P(a) = [{ala)?, (2.16)

when the state |«) is normalized. It should be noted that for a single measurement, one
can observe but one of the possible outcomes. The probabilities defined by Eq.
can be obtained by preparing the same initial state and averaging over repeated mea-
surements of the system.

The vectorial nature of the above description also implies that — for a finite-
dimensional Hilbert space — one can express states and operators by vectors and ma-
trices, respectively. In addition, the change of the representation of a state from one
orthonormal basis {|a)} to another {|b)} can be performed by a transformation U
which is unitary, i.e. UTU = 1.

In a next step, consider the case of two quantum systems which can be described

both by the formalism introduced above. Mathematically, the two individual Hilbert

15



2. ORBITAL ANGULAR MOMENTUM AND QUANTUM KEY DISTRIBUTION

spaces H;/, are combined into a composite space by a tensor product leading to new

states
(W) = |a)r @ [B)e- (2.17)

For the sake of clarity, lower case Greek letters are from now on used for single quantum
systems and upper case Greek letters for bipartite systems. Since also superpositions of
these states are valid quantum states, there exist states that do not take the product
form of Eq. . Let us consider the example of two two-level quantum systems.
They both have a basis {|0), |1)} by which the single system states can be described.
Two examples of such states are the one with both systems in the 0 state [0); ® |0)2
or both in the 1 state |1); ® |1),. Since these states are part of the composite Hilbert

space, so is the following linear combination of these states

1

2
1

V2

with the short-hand notation for bipartite states |a); ® |8)2 = |, 3). Such a state
cannot be factorized into a form like Eq. (2.17). As a consequence, the two systems

need to be characterized together rather than individually and are called entangled. By

W) (10)1 ®@10)2 = [1)1 @ [1)2) , (2.18)

QI

(10,0) —|1,1)), (2.19)

performing a measurement on one of the systems, one immediately changes the state
of the other system. In fact, this peculiar behavior of entangled states can be exploited
in quantum key distribution as will be discussed in Sec. [2.3] It should be noted that it
is not possible to instantaneously transmit information (and thus faster than the speed
of light) without linking the two systems by another communication channel which was
one of the main concerns of this theory.

It may actually happen that a physical system is not in a state of the above form of
a vector which is called a pure state. In fact, the state of a quantum mechanical system
can be distributed statistically, as e.g. the . value of the silver atoms coming from the
oven in the Stern-Gerlach experiment where 50% have positive and the remaining 50%
have negative magnetic dipole moment. Such a mixture of states needs an extension
of the formalism described above. Instead of the vector description for pure states, a

mixed state needs to be described by a density matrix [26, p. 127 {.]

pP= sz|‘1’z><‘1’z| ) (2-20)

16



2.2. Quantum states and entanglement

composed of the pure state matrices |W;)(¥;| which appear with the classical proba-
bilities p;. Hence, the probabilities p; are positive real numbers and sum up to 1 for
a normalized state p. Practically, this matrix is obtained by a matrix multiplication
of the column vector |¥;) and the row vector (V;|. For a mixed state, Eq. is
always composed of more than one state. A simple check to determine whether a state
is pure or mixed is given by the trace of the squared density matrix which returns
tr(p?) = 1 for pure states and tr(p?) < 1 for mixed states [26]. Later in this thesis,
in Ch. b, mixed states will result from the averaging over the stochastic atmospheric
medium such that a density matrix description is required. Recall that a pure state is
called entangled, if it cannot be rewritten as a product state. Similarly, a mixed state
is called entangled, if one cannot find a decomposition as in Eq. for which all
|W;) are product states.

Now that the concept of entanglement has been introduced, the question arises how
to determine that a state is entangled and how to quantify it. The definition above is, in
fact, inconvenient in terms of a fast computation. An entire research field is dedicated
to finding functions that quantify entanglement, so-called entanglement measures. Such
a function should vanish for separable states and increase with increasing entanglement
of a state. In this thesis, the calculations are restricted to a two-qubit system which is
the simplest physical system that can exhibit entanglement. The general description of
entanglement measures in higher-dimensional systems or in multi-partite systems with
more than two constituents is much more involved and beyond the scope of this thesis.

For bipartite two-qubit states, a function called concurrence represents an entan-
glement measure [27]. To calculate it, one needs to define the flipping operator acting

on a single qubit |¢)) which interchanges the two possible qubit states |0) and |1):

) = oy |v), (2.21)

where [¢)*) is the complex conjugate of 1) and o, is the second Pauli matrix

0 —i
o, = (l 0) . (2.22)

A two-qubit state is flipped by applying this operation to both subsystems individu-
ally. To determine the entanglement of a pure state, the concurrence can be simply

calculated by

C(0) = [(T|P)], (2.23)

17



2. ORBITAL ANGULAR MOMENTUM AND QUANTUM KEY DISTRIBUTION

meaning that the concurrence is the overlap between the state and its flipped version.

One can easily show that a product state of form

[Wpro) = [11) © [t2) (2.24)

has vanishing concurrence, since |€prod> = |11) @ [1)2) and the single qubit overlap with
the initial and flipped state <w1/2‘J1/2> =0,

C(Wproa) = [(W1]101) X (1ha]ths)| = 0. (2.25)

In contrast, the maximally entangled state
1

V2

is equal to its flipped version |(Iv/ Bett) = |V pen) returning a concurrence of 1.

Wpen) = —=(10,1) = |1,0)) (2.26)

For mixed states, one defines the flip operation to the two-photon density matrix

p by
p=(oy®0y)p* (o, ®0y). (2.27)

The concurrence can then be calculated from the eigenvalues \; (sorted in descending

order) of the matrix
R = o7, (2.28)

according to [27]

C(p) = max(0, V2 — vAe = Vs — VA1) (2.29)

Later in this thesis, the concurrence is used to quantify the entanglement of turbulence-
distorted states. Since the turbulent medium behaves stochastically, the concurrence
depends on each realization of turbulence. To estimate the fluctuations of the concur-
rence, an error propagation was performed for the non-Hermitian matrix R which are
described in App. B of Ref. [2§]. The formula for the error of the concurrence as well
as its Matlab implementation were obtained by Giacomo Sorelli at the University of
Freiburg.

Until now, the details of the quantum system itself have not been discussed. This

thesis is restricted to the study of photons, in particular photons that carry orbital

For a general single qubit state defined by |1h;) = a|0) + b|1), the flipped version is i) =
—ib*|0) 4 ia*|1). The overlap (11|¢)1) = —ia*b* 4 ib*a™ = 0 vanishes.
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2.2. Quantum states and entanglement

angular momentum. The quantization of the electromagnetic field is treated in many
textbooks, e.g. Refs. [19,20]. Here, the main approach and its results are outlined. A
correspondence between classical and quantum physics is made by first finding a set
of canonical variables and the Hamiltonian of the classical system. When quantizing
the electromagnetic field, this calculation is based on Maxwell’s equations which yields
canonical variables for each plane wave with wave vector k and polarization s. Accord-
ing to the correspondence principle, the (classical) canonical variables are replaced by

quantum mechanical observables which have to satisfy the commutation relation

[ék,wi)k’,s’} = (A]k,sj)k’,s’ - i)k’,s’qk,s = ih(sk,k'(sssl : (230)

The Hamiltonian of this system has the form of a harmonic oscillator for each of the
modes. Instead of the Hermitian operators ¢ and p, one can use the non-Hermitian

annihilation and creation operators a and a'

dkvs - \/Qll‘m[w EZk,s + iﬁk,s] ) (231)
&I{,s = \/2;%[(’0 C.Alk,s - ii)k,s] ) (232)
[dk,& d]i’,g’] = ]]-5k,k’5ss’ . (233)

They satisfy the commutation relation given above and destroy or create excitations
of the system. The excitations of the electromagnetic field are known as photons.

As in many physical systems, there are different ways of choosing the most appro-
priate basis. Above, a description in terms of planes waves was chosen. However, there
are many equally suited sets of bases, e.g. wave packets, standing waves or, most inter-
esting for this thesis, Laguerre-Gauss modes. As discussed in Ref. [19, Complement 4C]
one can perform the transition between two sets of basis by a unitary transform. For
the following calculation, it is assumed that the light propagates only in z-direction and
the indices k and s are omitted. Since the Laguerre-Gauss modes represent a complete
orthonormal basis of the field in the transverse plane, there exists a set of creation and
annihilation operators a,; distinguishable by their radial and azimuthal indices p and
[, respectively. These operators create and annihilate photons in the Laguerre Gauss

mode which are the eigenstates of the quantum mechanical OAM operator [19]

L=h> ld aye., (2.34)

k7s7p7l

where e, is the unit vector in z-direction.
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2.3 Quantum key distribution

Based on the principles of quantum mechanics described above, one can develop new
communication schemes. An overview of this topic can be found in Ref. [29] and a
more detailed review is given in Ref. [30]. The following section is based on these two

references.

Current classical encryption methods are based on the fact that it is computa-
tionally too expensive to break them. However, new algorithms both better classical
algorithms as well as the development of quantum computers threaten their security.
While classical algorithms may just raise the bar for encryption, quantum algorithms
as for example the Shor algorithm may render them entirely insecure. A solution to
this problem is the use of one-time pads, an encryption key that is used for only one
message. To achieve complete security of the protocol, this key needs to be as long
as the message to be encoded [31]. The main obstacle of this method is the secure
transmission of the key between the two parties. A way to solve this problem is the so-
called quantum key distribution which achieves its security from fundamental physical
principles. Two parties, henceforth called Alice and Bob, create a one-time encryption
key by quantum key distribution. The message to be exchanged is then encrypted with
this key and could be transmitted by any communication channel. While there may be
many different quantum systems to transmit information, photons are by far the most

popular ones.

To this end, many quantum communication schemes have been developed; here,
the BB84 (proposed by Bennett and Brassard in 1984 [32]) and the E91 (proposed by
Ekert in 1991 [33]) protocol will be described in more detail. Both protocols can be
used with qubit systems, a single qubit in the BB84 and two entangled qubits for the
E91 protocol. Later in this thesis, the orbital angular momentum of light introduced
in Sec. is used to encode qubits. For better visualization, it is for now assumed
that the qubits are encoded in the polarization degree of freedom. Both protocols draw
their security from the fact that one cannot copy an arbitrary quantum state [34]. It
is important to note that the quantum state needs to be arbitrary. If Alice were to
use only two of the possible qubit states | 1) and |—), an eavesdropper could simply
intercept Bob’s photon and resend another photon based on the measurement result.

A quantum key distribution protocol thus needs to make use of more than two states.

First, the BB84 protocol is described which is shown schematically in Fig.

In this protocol, Alice can prepare a single photon qubit in two different basis sets,
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2.3. Quantum key distribution

e.g. vertical and horizontal polarization {| 1), |—)}, and diagonal and anti-diagonal
polarization {|),|\)}. Alice randomly chooses the basis in which the qubits are
encoded and which of the two states to encode. An important condition for the choice
of the basis sets is that they are mutually unbiased. This means that any two states
of different basis sets have to have an overlap of 0.5 (in the qubit case). Hence, every
state in one basis set has uniform probability for all states in the other basis set. An
eavesdropper therefore has a 50% chance of choosing the wrong basis to measure in.
Next, the photon is sent to Bob who randomly picks one of the two measurement basis
sets. To obtain the key, Alice and Bob communicate, e.g. by a classical channel, which
basis set they chose but not which value was encoded or measured. It is clear that
their values are not correlated if they chose different (mutually unbiased) basis sets.
If they chose the same basis, however, Bob’s measurement result should be perfectly
correlated with Alice’s prepared value. An eavesdropper, typically called Eve, trying to
intercept the photons sent to Bob has the problem that they have to properly guess the
basis that Alice and Bob used. In any other case, Eve’s measurement is in the wrong
basis meaning that she sends a wrong photon to Bob with 50% probability. Hence,
there will be some errors introduced by Eve’s interception. To detect an eavesdropper,
Alice and Bob need to determine the errors caused by Eve by calculating the so-
called quantum bit error rate. They choose a fraction of their data and compare not
only the basis but also the result of the measurement. With a detailed analysis, one
can show that the BB84 protocol is secure, meaning that an eavesdropper cannot
reconstruct the transmitted key, for a quantum bit error rate below 11% [35]. Clearly,
the measurements used to determine the quantum bit error rate cannot be used to
generate the key and thus reduce the key rate. However, it is a necessary step to
determine whether the communication was secure.

A scheme based on entangled photons is the E91 protocol [33], visualized in Fig.[2.5

Instead of preparing a single-photon state, Alice has an entangled photon source. It
produces a state as in Eq. (2.26))

1

V2

which has the special property that measurements on the two photons performed in the

same basis are always anti-correlated. One of the photons is kept in Alice’s laboratory
and the other is sent to Bob via the quantum channel. Instead of the two basis sets
from the BB84 protocol, three basis sets are used: for Alice {| 1),|—)}, {| 7), )},

{’7‘>7 | \>}7 called ai, Gz and as, and for Bob {| 7\>> |X>}7 {|7l>7 | \>}> {|)>7 ‘ \ >}7 or
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~

Alice Bob
state preparation measurement basis
quantum channel
| T)1=) [ 11—
or or
PONRY; | 7):1 )

J

! }

classical communication channel to
exchange chosen basis for all measurements and
some results for quantum bit error rate

Figure 2.4: Schematic of the BB84 protocol. Alice creates a single-photon state either in
the horizontal /vertical basis or in the diagonal/anti-diagonal basis. The photon is transmit-
ted to Bob, who performs measurements in a randomly chosen basis set. Via a (classical)
communication channel, Alice and Bob transmit their choices of basis for each photon.

b1, by and bs. Alice and Bob perform measurements on their photons, independently
choosing the measurement basis. Again, Alice and Bob use a classical communication
line to compare in which basis they performed their measurements. As mentioned
earlier, the outcome of measurements performed on the two photons is perfectly anti-
correlated, if performed in the same basis. This happens for two of the nine possible
combinations of basis sets (ag,b;) and (as, b2). These measurements are used to gen-
erate the key. Furthermore, four of the other combinations are used to evaluate a Bell
inequality, for example the Clauser-Horne-Shimony-Holt (CHSH) inequality [36], in

particular,
B = E((ll, bl) - E(al, bg) + E(ag, bl) + E(CL3, bg) . (236)

Here, E(a;,b;) is the correlation coefficient between the measurements performed in
basis a; and b;. In a classical measurement, the Bell parameter B can only take values
between —2 and 2. For entangled states, however, B can take values between —2+/2 and
2v/2. A violation of the inequality, i.e. |B| > 2, proves quantum mechanical correlations
and thus serves as a test of a secure key exchange. Measurements performed by Alice
and Bob in the remaining three of nine basis combinations are discarded.

The Bell parameter B can be calculated from a state’s density matrix by performing

the trace over the matrix product of p and the operator B ,

B =tr(pB), (2.37)
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Alice \

Bob
entangled two-photon state state measurement in basis
state measurement in basis [ quantum channel {7, 0
{11), =)} 1 photon {10 1N0)
{171 {1}
{7, 150}

classical communication channel to

exchange chosen basis for all measurements and
some results for Bell test

Figure 2.5: Schematic of the E91 protocol. Alice has an entangled photon source. The first
photon is sent to Bob and on the second Alice performs measurements in a random basis.
Bob randomly chooses his basis sets. The chosen basis is communicated by an additional
channel.

with
B=2v2( 1, =) (= 1|+ =D~ ) . (2.38)

A derivation of this formula is given e.g. in the supplemental material of Ref. [37];
since the chosen initial state is different, one has to swap the matrix elements leading
to the above equation. For example, the initial entangled state given by Eq. ,
achieves a maximum violation of this inequality with —24/2.

While for simplicity, the polarization basis was chosen to explain the quantum
key distribution protocols described above, one can use any other suitable quantum
mechanical property e.g. the orbital angular momentum degree of freedom which was
introduced in Sec. 2.1} For the BB84 protocol, one could for example choose the
following basis to encode qubits: {|—1),|+{)} and {|—1)+|+1),| =) —|+1)}. For the
Ekert91 protocol, a photon source creating an OAM-entangled state like | —1, 1)+ I, —1)
could be used. It should be stressed that OAM provides an, in principle, denumerably
infinite-dimensional Hilbert space enabling also higher-dimensional encoding. However,

the work presented in this thesis is restricted to OAM qubit transmission.
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2.4 State of the art of communication with orbital angular

momentum

In the following, a short summary of the literature on OAM communication is given.
A more detailed review is given in Ref. [38] which discusses the advances in the field
in the context of classical communication. Reference [39] summarizes the efforts in
turbulence correction, including adaptive optics, for classical OAM communication. A

review on the application of OAM in quantum physics can be found in Ref. [40].

The first proof-of-principle of classical communication with OAM encoding was
given in 2004 [41]. It also showed that eavesdropping on OAM-encoded communi-
cation is difficult since one needs to intercept the beam at its optical axis without
displacement. In addition, intercepting only a part of the beam’s aperture leads to er-
rors in the OAM measurement because of an uncertainty relation that exists between
OAM and the angle in polar coordinates [42]. Since then, OAM has been combined
with state-of-the-art communication systems to achieve data rates up to 1 Tbit/s [7]
and even 100 Thit/s [43], however, only for distances of a few meters. Over a distance
of 120 m, OAM-multiplexing has been demonstrated with four modes [44]. In that case,
turbulence was weak and did not limit the link performance. Another experimental
study evaluated the phase profile of OAM beams after propagation through a 1.6 km
long free-space channel in Erlangen [45]. Because of the limited aperture, a decrease
of the total OAM was measured by a mode sorter. In an even longer link of 3 km
across Vienna, OAM modes were used to transmit an image [46]. In particular, the
information was encoded in the intensity profile of OAM mode superpositions with +/
and —[ which feature an [-fold petal structure. At the receiver, a neural network was
used to determine the initial OAM since the beam was too distorted to couple into a
telescope. The transmission over a record distance of 143 km was achieved between
the Canary islands of La Palma and Tenerife [47]. Here, an observatory on Mount
Teide, Tenerife, served as a giant screen to recognize the intensity pattern of OAM

mode superpositions by a neural network similar to Ref. [46].

Already in the first experimental demonstration of OAM encoding, the effect of
atmospheric turbulence was mentioned as a limiting factor [41]. Many studies have been
devoted to determining the effect of turbulence on OAM modes. In weak turbulence
that can be described by a single phase screen, analytical formulas can be found for
the OAM mode crosstalk [14, 48]. For stronger turbulence, the channel crosstalk

of a classical communication system was investigated numerically in Ref. [49] for a
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large number of OAM states. In general, the crosstalk increases with the turbulence
strength [14, 48, 49]. The weak turbulence predictions have been verified in laboratory
experiments with spatial light modulators to introduce turbulence by a single phase
screen [50, [51].

Clearly, atmospheric turbulence has a detrimental effect on OAM-based commu-
nication. Thus, the application of turbulence correction, e.g. by means of adaptive
optics is feasible. Two experiments should be highlighted in this context, Ref. [11] and
Refs. [12, [52]. Both experiments implement a static laboratory system which features
a Gaussian beacon and a Shack-Hartmann wavefront sensor to measure turbulence-
induced distortions. Reference |11] emulates thick atmospheric turbulence by a proper
placement of two phase screens. The bits per photon achieved by OAM-encoding was
strongly improved as compared to the uncorrected case. In Refs. [12, 52|, a single
phase screen emulates turbulence distortions and the classical bit error rate is mea-
sured for an OAM-multiplexed communication signal. While the bit error rates were
very high without correction, adaptive optics could reduce it below the forward-error-
correction limit which is required for further post-processing of the communication sig-
nal. Furthermore, Ref. [12] applied either a post-compensation at the receiver but also
a pre-compensation at the transmitter. Similar approaches have been published with
phase correction with a wavefront sensor [53|, by phase retrieval with the Gerchberg-
Saxton algorithm [54] or with learning algorithms [55]. A recent publication, proposes
to correct for beam displacement without a beacon [56]. When a Gaussian beacon
is applied in the experiments, its beam is expanded to increase the overlap with the
OAM modes. A detailed investigation of the beacon’s beam waist on the correction

efficiency, in particular for quantum cryptography, is part of this thesis, see Ch. [0

In addition to the applications in classical communication, OAM is also of great
interest for quantum communication. In 2001, it was shown that photons can be entan-
gled in the OAM degree of freedom [57]. Nowadays, OAM-entangled photons can be
produced with mode numbers of several hundred [5§]. In the laboratory, quantum key
distribution with qutrits (three-dimensional quantum systems) was performed with a
quantum bit error rate below 10% [59]. The influence of atmospheric turbulence on
single photons was first investigated theoretically by Paterson [14]. A theoretical inves-
tigation of the entanglement decay of two OAM qubits suggested a better stability of
higher-order OAM modes [15], which is however restricted to the regime of weak tur-
bulence. This effect could be explained by introducing the so-called phase correlation

length [60]. In the weak turbulence regime, only one parameter is needed to describe
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this behavior — the ratio of the beam waist wg and the Fried parameter ry to describe
atmospheric turbulence. However, in strong turbulence, a second parameter is needed
and the stability of higher-order OAM modes is reduced [61]. In the laboratory, the
entanglement decay has been studied with a single phase screen for two qubits [62]
or for high-dimensional entanglement with a turbulence cell [63]. An experiment per-
formed inside a hall with a 210 m free-space propagation demonstrated quantum key
distribution with rotation-invariant states which employ both OAM and polarization
[64]. In Ottawa, four-dimensional states were transmitted through a free-space link of
300 m. Again, a combination of OAM and polarization was used which reduced the
impact of turbulence [9]. Over a 3 km free-space link in Vienna, OAM entanglement
could be transmitted and verified for I = 1 and [ = 2 [8]. Because of the strong tur-
bulence distortions, the beams were identified with masks by their intensity profile [8]
rather than coupling the light directly into a telescope.

While there have been impressive quantum experiments with OAM, they are always
limited by atmospheric turbulence as soon as propagation distances are above several
hundred meters. In this thesis, the possibility of applying adaptive optics to quantum
cryptography is investigated. To the best of the author’s knowledge, Ref. [2§], which
is part of this thesis, is the first publication to consider adaptive optics in this context.
Details of the results will be given in Chs. [land [0} Before that, the required background
knowledge and the used simulation methods are introduced both for the propagation

through atmospheric turbulence, Ch. [3, and the adaptive optics system, Ch. [4
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Chapter 3

Atmospheric turbulence

When looking at the night sky, one can observe that the light of the stars twinkles. The
cause of this effect is a variation of air pressure and temperature called atmospheric
turbulence which distorts the light as if it were passing through many, very weak
lenses. Atmospheric turbulence does not only limit astronomical observations but also
free-space optical communication. Turbulence is particularly detrimental to OAM-
encoded communication schemes because it distorts the phase into which information
is encoded.

The first section of this chapter, Sec.[3.1] gives a general introduction to atmospheric
turbulence and its effects on light propagation. In particular, the Kolmogorov theory
of turbulence which is used throughout this thesis is introduced and the important
parameters for optical turbulence resulting from it, the Fried parameter and the Rytov
variance, are given. Afterwards, the split-step propagation method is described in
Sec. which is used in this thesis to numerically model the propagation through
atmospheric turbulence. Finally, the choice of the simulation geometry and parameters
is motivated in Sec. 3.3

3.1 Light propagation through atmospheric turbulence

In this section, a short introduction to atmospheric turbulence is given and the turbu-
lence parameters used in this thesis are defined. The presented material is based on
Ref. [65], in particular Chs. 3, 5 and 7, as well as Ref. [23], Secs. 8.10-8.13. Earth’s
atmosphere consists of air and is subject to many external factors. The sunshine e.g.

introduces energy to the system. While large wind flows distribute this energy in a
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laminar fashion, on a smaller scale this energy is more efficiently transported by a tur-
bulent flow. In a laminar flow, all particles move in the same direction and different
layers cannot mix. Therefore, it is suitable for transportation of energy along larger
distances. In contrast, the turbulent flow allows for mixing of air masses and, by that,
for a faster distribution of energy and equalization of temperature on a smaller length
scale. At even smaller length scales, the friction between the molecules in the air suf-
fices to transport energy through dissipation. One can hence distinguish three regimes:
the laminar flow at large length scales on the order of the so-called outer scale Ly, the
turbulent flow, and the dissipation range for length scales on the order of the inner
scale [y. The range of turbulent flows [y < [ < Ly is called the inertial range.

At a certain position r, the refractive index can be described by [65]

(r)/1 mbar

n(r) =1+ 77.6 x 107°[1 +7.52 x 107*(A/1 pm)~?] PT(r)/l T (3.1)

in dependence of the local pressure P, temperature T" and wavelength \. The average
value of the refractive index is 1 and the fluctuations 4, (r) about the mean value are
on the order of 107 [10]

n(r) =1+ dn(r). (3.2)

Although these fluctuations are very small, they can have a strong impact on a light
beam when it propagates longer distances from several hundred meters to several kilo-
meters. At first, the beam only experiences phase distortions caused by the position-
dependent refractive index variations. After longer propagation distances, the phase-
distorted light interferes with itself and exhibits intensity distortions also known as
scintillation. In strong turbulence, random speckle patterns develop. Moreover, light
beams wander in the receiver plane which may lead to them missing the receiver aper-
ture while in addition the angle-of-arrival fluctuates. Another effect of turbulence is
the broadening of light beams. All these effects lower the transmission quality of light
through atmospheric turbulence and thereby reduce, e.g., the data rate and reliability
of free-space optical communication systems.

Therefore, it is important to understand the refractive index fluctuations and their
influence on light. The mathematical description of the flows leading to the refrac-
tive index distortions is provided by the Navier-Stokes equation, a general solution of
which has not been found or even proven to exist. In addition, the behavior of the
turbulent flow is highly dependent on the boundary conditions, i.e. the initial state

of the medium, which is hardly measurable. It is therefore more convenient to choose
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a stochastic description of the turbulent atmosphere and by Eq. (3.1)) of its refractive
index.
The first approach to statistically describe a position-dependent quantity is often

to find a dependence on said position. One can e.g. calculate the covariance function

B, (ry,re) = <5n(r1)5n(r2)> , (3.3)

which states how the refractive index variations at two positions are correlated. Here,
<> denotes the ensemble average. Another approach is choosing a description in
reciprocal space — the power spectrum — which gives the information how strongly
certain spatial frequencies contribute to the quantity. In fact, the covariance and the
power spectrum represent a Fourier transform pair according to the Wiener-Khinchin
theorem [65]. The most famous power spectrum of refractive index fluctuations was

derived by Kolmogorov based on scale arguments:
d,(k) =0.033C2x 13 1/Ly < k< 1/, (3.4)

where £ is the wavenumber in reciprocal space and C? is the refractive index structure
constant. The underlying assumptions of this spectrum are stochastic homogeneity and
isotropy. Homogeneity implies that the statistical properties of the fluctuations are in-
dependent of the position while isotropy makes them also independent of the direction.
The refractive index structure constant C? has typical values between 1077 m=2/3 for
weak turbulence and 107" m~%/% for strong turbulence. The power-law dependence
also leads to the fact that turbulence has a fractal or self-similar appearance. The ad-
vantage of the Kolmogorov model is the simplicity of its form which makes it possible to
evaluate many statistical quantities analytically. However, care must be taken outside
of the inertial range, in particular for small wavenumbers where the spectrum diverges.
There exist more specialized spectra such as the Tatarskii spectrum, the von Karman
spectrum or the modified von Karman spectrum, which include the effects of the inner
and outer scale, and even models with a different power law exponent. However, the
use of such specialized spectra requires the precise knowledge of the associated turbu-
lence parameters which strongly depend on the location of the experiment. Therefore,
the calculations in this thesis are restricted to the Kolmogorov spectrum of turbulence.

The propagation of light, or more precisely of its electric field vector E, through an

inhomogeneous mediumﬂ such as optical turbulence, can be described by the following

Tt should be stressed that statistical homogeneity and the homogeneity of a medium refer to
two different concepts. A homogeneous medium has a constant refractive index while statistical
homogeneity implies that statistical quantities only depend on position differences but not the position
itself.
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wave equation [65]
V2E(r) + k*n*(r)E(r) = 0, (3.5)

where it is assumed that there is no back-scattering or depolarization in the medium
and k = 27 /) is the wavenumber. For a monochromatic wave propagating e.g. in z-
direction, Eq. (3.5]) can be replaced by a scalar equation valid for each of its components
U

V2U(r) + k*n*(r)U(r) = 0. (3.6)

It becomes clear from Eq. (3.1 that the refractive index fluctuation is small compared

to the average value 1 such that the following approximation is justified:
n?(r) = 1+ 20n(r). (3.7)

By separating the spatial profile from the propagation part U = uwexp(ikz), the differ-

ential equation for propagation through turbulence is found:
V2u + 2ikd,u + 26n(r)k*u = 0. (3.8)

In free-space optical communication, one wants to send a confined light beam from
one party to the other along a distance that is much larger than the beam’s transverse
extent. It is thus justified to use the paraxial approximation which states that

0?u
0z?

)
< 'Qka—z . (3.9)

In consequence, the second derivative with respect to the propagation direction in the

Laplacian can be neglected
Vau + 2ikd,u + 20n(r)k*u = 0, (3.10)

where Vr is the Laplacian restricted to the transverse coordinates.
Optical turbulence is usually divided into two regimes — weak and strong scintilla-

tion. The Rytov variance given by
0% = 1.23C%K7/6 /6 (3.11)

is the most common criterion to distinguish between weak (0% < 1) and strong (0% > 1)
turbulence where L is the propagation distance. In weak turbulence, the Rytov variance

is proportional to the irradiance fluctuations of a plane wave.
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The first-order Rytov method represents a perturbational approach to solve Eq. (3.10))
in the case of weak turbulence where optical turbulence consists mostly of phase dis-
tortions. The field at a distance z is given by the vacuum solution — here denoted by

the index 0 — multiplied by a complex phase perturbation

u(r, z) = up(r, z) explig(r, )|, (3.12)

with a slight deviation from the notation of Ref. [65]. The complex phase perturbation
¢(r, z) can be expanded in several orders of the perturbational approach. The real part
of ¢ describes phase perturbations while the imaginary part is associated with intensity
distortions. In the first order of perturbation, the phase is given by the accumulated

refractive index fluctuations along a propagation distance |66]

o(r,z) = k:/oz on(r,2")dz". (3.13)

Please note that this approximation is only valid in the weak turbulence regime. This
approach is also implemented numerically in the single and multiple phase screen
method discussed in Sec.

One important statistical quantity of the aforementioned phase distortions is the
structure function D, which describes the difference of the phase distortions between

two points r and r’

Dy(r, ') = ([o(x) — 6(x')]*) (3.14)
In the case of the Kolmogorov spectrum, this is given by
r — 1| 5/3
Dy(r,r') = 6.88 (—) ) Kolmogorov spectrum (3.15)
T'o

A detailed derivation of the phase structure function for different power spectral den-
sities can be found in Ref. [66]. The newly introduced variable rq is the so-called Fried
parameter. It was first derived by Fried in the context of optimizing the signal-to-noise
ratio of a telescope [67] and takes values on the order of a few centimeters up to several
tens of centimeters at exceptional observation sites in the visible range [23]. For a plane

wave and a horizontal propagation path, it is given by

~3/5

ro = (0.423C2k*z2) (3.16)

It can be interpreted as the maximum distance of two points that experience similar

turbulence. Accordingly, a large Fried parameter is associated with weak turbulence.
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In large astronomical telescopes, the Fried parameter marks the transition between
diffraction-limited and turbulence-limited resolution. Increasing the telescope aperture
beyond the Fried parameter cannot increase its resolution, unless, turbulence correction
e.g. by adaptive optics is applied.

For strong turbulence, intensity fluctuations become increasingly important, in ad-
dition to the phase distortions. Then, another parameter is required to properly de-
scribe the statistics of atmospheric turbulence. Commonly, the Rytov variance given

in Eq. (3.11) is used in addition to the Fried parameter.

3.2 Split-step propagation

The phase screen model is a common method, also used in this thesis, to numerically
model the propagation through optical turbulence. As mentioned in the previous sec-
tion, the effect of turbulence consists mostly of phase distortions as long as it is weak
enough. Then, it can be shown that a single infinitesimally thin phase screen, properly
placed between the plane of the initial beam and the final plane, models turbulence
distortions [65]. The phase screen, as the name suggests, introduces only phase dis-
tortions to the beam. Anywhere apart from the location of the phase screen, the light
propagates as if it were in vacuum with én = 0.

As soon as turbulence becomes stronger, this model starts to deviate from the
statistical properties of three-dimensional turbulence. However, it is possible to di-
vide the propagation distance into several shorter distances that all correspond to
weak turbulence. As a result, the single phase screen model is replaced by a multiple
phase screen model as depicted in Fig. [3.1] The phase screens need to be properly
placed and their strength scaled such that the strong-turbulence characteristics can be
recovered. In horizontal turbulence, one often assumes that C? is constant along the
propagation distance. Then, equally spaced phase screens with almost equal turbulence
strength can be employed. For slant and vertical paths, the phase screen positions and
strengths need to be adjusted to the profile of C? along the propagation path. The
phase screens need to be generated in accordance with the turbulence spectrum, as e.g.
the Kolmogorov spectrum in our case. This section describes the split-step propagation
implemented to simulate the propagation through atmospheric turbulence — first, the
numerical propagation through vacuum and, second, the generation of the turbulent
phase screens.

In order to propagate the light between the phase screens, a numerical beam prop-
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3.2. Split-step propagation
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Figure 3.1: Schematic of the multiple phase screen or split-step model for 3 phase screens.
The three-dimensional medium is replaced by a finite number of infinitesimally thin phase
screens which introduce a random phase distortion as indicated by the false color profile of
the screens. Between the steps, a vacuum propagation is performed.

agation needs to be implemented. Earlier, the scalar wave equation was used to derive
the Laguerre Gauss modes, see Sec. Instead of solving this differential equation,

one can, based on a Green’s function approach, calculate the Fresnel integral |68, p.67]

1 A
u(re, z) = o // u(ry,0) exp (2[ry — raf*)dr; . (3.17)

To find the field in the transverse plane ry at a position z, one needs to know the
input field in the transverse plane defined by r; at a position z = 0. In the presented
calculations, this would be the field distribution at the transmitter. The integral in the
above equation can also be interpreted as a convolution of the function u(r, 0) and the
ik|r|?
2z

convolution theorem. It states that a convolution in coordinate space is equivalent to

complex phase factor exp( ). This can be more efficiently solved by applying the
a simple multiplication in Fourier space. Hence, one first calculates the Fourier trans-
forms of the functions, multiplies them and then applies an inverse Fourier transform

to obtain the convolution

u(ry, 2) = i]—“l [}" [u(r, 0)]]—"[exp (%)H : (3.18)

This method can be implemented numerically by two Fast-Fourier-Transforms acting
on a discretely sampled version of the input field. However, with this approach the

grid spacing of the output plane equals that of the input plane.
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3. ATMOSPHERIC TURBULENCE

By applying some algebra, one can reformulate Eq. to allow for a scaling
between the input and output plane sampling o = 0oyt /6in Where ;5,00 is the sampling
in the input and output plane, respectively. The detailed calculation can be found in
Ref. [69, p. 98] which leads to the expression

zk1a2

zf\zz a / U r1 exp 2 (1 a)rl) exp( ‘rz/a r1| )dl"1. (3-19)

exp(

u(ry, z) =

One can see that the output plane coordinate r, is now scaled by « as compared to
Eq. . In this thesis, the code provided in Ref. [69] was used to perform the beam
propagations, i.e. to evaluate Eq. . The sampling requirements as well as the
overall propagation geometry are discussed later in Sec. [3.3] Next, the second building
block of the split-step simulation, the random phase screens, are discussed.

To most accurately model the atmosphere, the spatial characteristics of the phase
screen should match those of the atmosphere. In the following, the phase screen gen-
eration and verification is discussed. For the phase screen generation, the code from
Ref. [69] was used which implements the method by Lane et al. [70]. Throughout
this thesis, turbulence is assumed to follow the Kolmogorov spectrum introduced in
Sec. B.11

The simplest and fastest generation method is based on Fast-Fourier-Transforms
[71]. First, one generates Gaussian random numbers b(x) in the frequency domain with
a mean value of 0 and variance of 1. To match the turbulence spectrum, these random
numbers are multiplied by the square root of ®(x). Finally, to obtain a phase screen

in coordinate space, one has to perform an inverse Fourier transform

— [[ v vaim)e . (320)

For a numerical evaluation, Eq. (3.20)) is discretized in a rectangular, linearly spaced

grid with N x N samples

go(m 5x,n5y) _ /5/11 5’111 pr,q\/q)(p 5/11’ q5ﬁy)e—27ri(Pm5m5fix+lIn5y5/£y) , (321)
p.q

where all indices m,n,p, ¢ run from —N/2 to N/2 — 1. This can be evaluated with
a Fast-Fourier-Transform if the spacing in reciprocal and coordinate space obey the

following relation

0Ky = —— and dky = ——. (3.22)
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Figure 3.2: Random phase screens generated (a) with Fast-Fourier-Transform method and
(b) with an additional subharmonic grid. The Fast-Fourier-Transform phase screen is periodic
at its boundaries leading to reduced low-frequency content. In contrast, the screen with an
additional subharmonic grid (7 subharmonic orders), has a large tip-tilt over the screen area.
Both screens have a side length of 0.8 m and a Fried parameter of 0.1 m.

The final phase screen is given by

wppr(méx,ndy) = \/0k, Ok, FET [bp,q\/q)(péﬁm,qéﬁy)] , (3.23)

where FF'T is short-hand for Fast-Fourier-Transform. This method is quite fast, even
for large phase screens. Unfortunately, the generated screens are periodic, as can be
seen in Fig. 3.2 (a). Hence, they do not contain tip and tilt which, however, have the
highest contribution to the wavefront error . In particular, tip and tilt induce beam
wander which would not be properly modeled.

One way to add more low-frequency content to the aforementioned phase screens
is by using an additional subharmonic (SH) grid as described by Lane et al. [70].
Here, the Cartesian grid from the Fast-Fourier-Transform method is divided near the
origin into logarithmically spaced subgrids of 3 x 3 grid points each. The square at the
origin is iteratively divided into more 3 x 3 grids. Because of the logarithmic sampling,
one cannot use a Fast-Fourier-Transform for the subharmonic grid, but rather has to

evaluate the sum directly

Smax 1

1
1 .
wsup(mdx,ndy) = Z Z Z > /8Ky 0Ky Copaq /CI)(Iip, /{q)eQm(Hpm&z%mqnéy) , (3.24)

s=1 p=—1qg=—1
St 5
with  k, = %, iy = ;gq . (3.25)
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3. ATMOSPHERIC TURBULENCE

The matrix ¢, ;, , consists of s,,q, 3x3 Gaussian random number matrices with vanishing
mean and variance equal to 1; dx, and dk, are equal to the frequency sampling of the
Fast-Fourier-Transform phase screen defined in Eq. (3.22). The scaling factor 1/3% in
Eq. accounts for the area that the subharmonic grid points occupy. In addition,
the spectrum is set to zero at the origin (p = 0,¢ = 0) because the Kolmogorov
spectrum diverges for vanishing frequencies. Finally, the low-frequency subharmonic
phase screen is added to a high-frequency phase screen generated with the Fast-Fourier-

Transform method
p(mox,ndy) = erpr(mox,ndy) + @sg(moxr,ndy). (3.26)

An example of the resulting phase screens is shown in Fig. (b). One can see that
the screen now exhibits a tip-tilt component as compared to the screen using only the
Fast-Fourier-Transform approach from Fig. (a).

To verify the generated screens and choose the appropriate number of subharmonics
Smaz, One can consider the phase structure function Dy. It can be conveniently cal-
culated by a Fast-Fourier-Transform [69] from zero-padded versions of the generated
phase screens. This calculation needs to be repeated for a large number of realiza-
tions. The resulting two-dimensional ensemble-averaged structure function matrix is
then averaged over the angle to obtain only the radial dependency. Figure com-
pares the structure function for different numbers of subharmonic grids for a specific
example of screen size and Fried parameter. It demonstrates the improvement that
can be achieved by increasing the number of subgrids. In Ref. [69], the low-order phase
screen is composed of three subgrids whereas Lane et al. [70] suggest using at least five

subgrids. The phase screens in this thesis were generated with 7 subharmonic orders.

3.3 Propagation scenario and simulation parameters

In the following, the propagation geometry and the simulation scenario are detailed.
These parameters will be used in Chs. [5] and [0] to calculate the propagation of orbital
angular momentum photons through the atmosphere. The choice of the right simula-
tion parameters is crucial both in terms of defining a sensible application scenario and
to avoid numerical issues in the calculation, e.g. due to bad sampling. Further, the
number of phase screens required to accurately model the statistics of three-dimensional
turbulence is determined. Finally, the sampling of the simulation routine is considered

to avoid aliasing and wrap-around effects. The resulting parameters of the simulation
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Figure 3.3: The structure function Dy(r) for different numbers of subharmonic grids. As the
number of subharmonics increases, the closer do the curves follow the theoretical structure
function (black dashed line) for the Kolmogorov spectrum given in Eq. . The lines
for 5 and 7 subharmonic orders almost coincide. The calculation was performed for a Fried
parameter of 0.1 m and an aperture of 0.8 m and is averaged over 1000 realizations.

routine are summarized in Tab. [3.1} The following parameters are determined: the
propagation distance, wavelength, transmitter and receiver aperture, and the initial
beam waist. As turbulence parameter the ratio wg/r¢ is chosen from which all other
parameters (e.g. C2 or 0%) can be calculated. Finally, the parameters of the simulation
such as the number of phase screens, input and output plane sampling and the number

of sampling points are determined.

The propagation distance z was chosen to be 1000 m. In an earlier publication
by the author [28], a shorter propagation of only 500 m distance was simulated. For
this thesis, a longer distance was chosen for two reasons. First, an experiment with-
out adaptive optics demonstrating OAM quantum communication with hybrid OAM
and polarization-encoded photons was demonstrated in Ottawa, Canada, over an ap-
proximate distance of 500 m [9]. Hence, 500 m may be too short a distance to fully
determine the potential of AO. Second, experiments with a distance of 3000 m in Vi-
enna demonstrated that the OAM modes were severely distorted [46, 73]. In one case,
the intensity distribution was analyzed by means of a machine learning algorithm [46].
In the other case, it was possible to couple into a telescope, but again only the intensity
profile could be analyzed by masks and not the phase [73]. Experiments in Erlangen

over 1600 m indicated a strong distortion of OAM beams [45]. Hence, a distance of
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3. ATMOSPHERIC TURBULENCE

Parameter Value
Distance z 1000 m
Wavelength A 1064 nm
Transmitter aperture D 200 mm
Initial beam waist wyq 26 mm
Beacon beam waist wy 2.45wq *
Receiver aperture 300 mm
Maximum value of C2 1.02 x 10~ 13m=2/3
Number of phase screens Npg 12
Position of ¢th phase screen 2;,113/3 2
Number of sampling points N 1024
Sampling in transmitter plane d;, 0.845 mm
Sampling in receiver plane d,,+ 1.17 mm

Table 3.1: Summary of the simulation parameters used throughout this thesis. The beacon
beam waist (marked by %) was fixed in Ch. [5] and iterated over in Ch. [6]

1000 m represents an intermediate value in between these two extremes. Additionally,
it represents a plausible distance for an OAM quantum link e.g. within a city.

For the wavelength, a value of 1064 nm was chosen. There exist some entangled
photon sources with such a wavelength [74]. Other common wavelengths for such
sources are 810 nm [75] as well as 1550 nm [76]. Because the adaptive optics system,
upon which the realistic adaptive optics calculations are based, operates at 1064 nm,
see Sec. [4.4] this wavelength choice allows a direct comparison with measured data of
the AO system. Finally, it should be stressed that one can rescale results obtained with
a certain set of parameters to another. This is possible because only two parameters are
required to describe the action of OAM photons in turbulence — the ratio between the
Fried parameter and the beam waist wg/ro and the normalized propagation distance
t = z/zg [61]. Both the Fried parameter (see Sec. and the Rayleigh range (see
Sec. depend on the wavelength. After a careful rescaling of said parameters, one
can obtain results on light with another wavelength.

Now that the propagation distance and wavelength have been fixed, only one free
parameter remains for the turbulence conditions, e.g. the Fried parameter. It has
been observed that the concurrence drops dramatically when the transition between
weak and strong scintillation occurs at o% = 1 [77] which with the chosen parameters
corresponds to wg/ro = 1.05. To properly observe this transition, the maximum value
of wg /1o is chosen to be twice as high, i.e. 2.1. This would be equivalent to a refractive
index structure constant as high as C? = 1.02 x 107 m~2/3 or a Rytov variance of
0% =3.17.
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3.3. Propagation scenario and simulation parameters

Another important quantity of the propagation geometry are the transmitter and
receiver apertures. To determine their optimum size, the beam broadening caused by
both diffraction and atmospheric turbulence was calculated as a function of the initial
beam waist. As an upper limit for the transmitting aperture, a value of 200 mm was
chosen for which lenses are commercially available. Mirror telescopes can be built
with much larger apertures but typically have a central obscuration. For OAM modes,
this may be problematic since their defining feature, the vortex at the axis of the
beam, could be affected by such an obscuration. Depending on the required power
transmission, here chosen to be 99%, one can determine the maximum beam waist for
the aperture. For a Gaussian beam, this is fulfilled if D > mw,. Since Laguerre-Gauss
modes have a larger beam radius by a factor of /I + 1 (for vanishing radial index),
this leads to

D > 7wo/lymaw + 1 . (3.27)

With OAM values up to 5, the maximum initial beam waist wy is 26 mm for a 200 mm
aperture. As a lower bound for the beam waist, a value of 1 mm was chosen which is
still achievable with conventional fiber collimators.

When choosing the beam waist at the transmitter, the associated beam radius at
the receiver should be reasonably small such that it can be coupled into the receiving
telescope aperture. While there is a vast literature on the turbulence-induced beam
broadening of Gaussian beams, see e.g. Ref. [65], only one publication with an analyt-
ical formula for the Laguerre-Gauss beam radius in turbulence was found [78]. Their
analytical calculations suggest that Laguerre-Gauss modes, while having a larger initial
beam radius, experience less beam broadening in turbulence than Gaussian modes. A
similar conclusion was drawn in Ref. [79] from a numerical split-step simulation. Please
note that, in contrast to the beam waist parameters wy and w(z) which are equal for
all OAM modes because of the chosen parameters, the quantity of interest here is the
root-mean-square radius of the beam. For a Gaussian beam, Ref. |[78] finds the same

results as commonly found in the literature [65] in the strong scintillation regimeﬂ

2
wpr = w\/l + 1.63(012%)6/5k—;2 with  w =woy/1+ 22/2%, (3.28)

where wyr denotes the long-term beam radius in turbulence and w corresponds to the

diffraction-limited beam waist. For the average beam radius of Laguerre-Gauss modes

2The Fried parameter has to be larger than the inner scale of turbulence, i.e. 79 > .
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Figure 3.4: Beam radius in 1000 m distance, (a) for 0% = 1, (b) for 0% = 3.17, calculated
from Eq. (3.29). For small initial beam waists, the beam radius at the receiver increases
strongly. In contrast, for larger beam diameters, the differences are not very pronounced.

with azimuthal index [ and radial index p = 0, the following formula can be found [78]:

w?
Wrro, = WLT 1 + ZT . (329)
Wi

Figure shows the long-term beam radius according to Eq. at the receiver in
1000 m distance for two turbulence conditions, (a) 6% = 1 and (b) 0% = 3.17 calculated
from Eq. . It can be seen that a small initial beam waist below 5 mm, would
require large collecting telescopes on the order of 1 m. Above 10 mm initial beam
waist, the dependence on wy becomes relatively flat. Comparing the two turbulence
conditions in (a) and (b), one sees that for stronger turbulence the received beam waist
becomes larger. However, the differences between the different OAM modes become
smaller as previously noted in Ref. .

Based on these considerations, an initial beam diameter of 26 mm was chosen for
the Laguerre-Gauss modes which is the largest diameter achievable with the provided
transmitter telescope aperture of 200 mm. Table lists the calculated beam radius
at the receiver for the different modes. The largest beam waist at the receiver has a
value of 85 mm. As discussed earlier, the aperture needs to be at least a factor of m
larger than the beam waist in order to collect more than 99% of the incoming light’s
power. A receiving aperture of 300 mm thus comfortably fits the received modes and

has been previously used for measurements with the realistic AO system developed at

Fraunhofer IOF [30], see also Sec.
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3.3. Propagation scenario and simulation parameters

Beam radius in mm

[ vacuum 0% =1 0% =3.17
0 29 35 54
1 41 47 62
2 50 56 69
3 58 63 75
4 65 69 80
5 71 75 85

Table 3.2: Average beam radius at the receiver for different values of [ and turbulence
strength in 1000 m distance for wg = 26 mm.

The number of phase screens is an important parameter for a split-step propagation
because it influences the reliability of the simulation, in particular, how well it approxi-
mates the three-dimensional turbulent medium. In this section, the approach presented
in Ref. [69, Ch. 9] as well as Ref. [65, Chs. 5-6] is followed and adapted to the chosen
propagation scenario described above. The first assumption of this calculation is that
the turbulence distortions are homogeneous along the propagation path, meaning that
the refractive index structure constant C? is constant. For such a scenario, it is conve-
nient to choose equidistantly spaced phase screens. The propagation distance is divided
into Npg shorter distances. For each of these steps, the three-dimensional medium is
replaced by a phase screen at the center of the step and vacuum propagations between
the screens.

With the split-step method, the Fried parameter and Rytov variance for propaga-
tion through extended turbulence, need to be reproduced, see Egs. (3.11} [3.16). Please
note that Ref. [69] uses the scintillation index to derive the number of phase screens,
while here for consistency the Rytov variance is considered. In the weak turbulence
regime, the Rytov variance is proportional to the scintillation index o = 407. The
formulas given in Ref. [69] have thus been multiplied by a factor of 4. In the strong
scintillation regime, ai saturates while 0% continually grows, unlike the scintillation ex-
perienced by light. The contribution of the individual screens to the overall scintillation

depends both on their Fried parameters ry; and on their positions z;

Nps —-3/5
ro = (Z rojf/f*) , (3.30)

=1
2 i —5/3 2\ /6
0% = 53256503 i (1 - ;> , (3.31)
=1

given here for a plane wave. This procedure is described in more detail in Ref. [69,
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p. 164 ff.]. In the chosen propagation scenario, the positions and propagation distances
of the ith phase screen are given by
z 1 —1/2

= and z; =
) T
Nps Nps

Az z. (3.32)

For equally spaced phase screens with constant C?, the Fried parameters of the indi-

vidual screens all have approximately the same value ry pg
-3
To = NPS/E’TO,PS . (333)

With the help of Egs. (3.32) and (3.33), the formula for the Rytov variance can be
further simplified

2 5/6 5/6,.—5/3 1 = L — 1/2 o0
0% = 5.32k7°/° 2P T —— E 1-— . 3.34
f " Nps &= ( Nps ) (3:34)

In the split-step propagation, each phase screen should only introduce weak scintilla-
tion. It is known that phase screens at a large distance from the receiver contribute
most to intensity variations. Hence, it suffices to ensure weak scintillation for the first
phase screen in order to meet the condition for all screens. Formally, this behavior can
be seen in Eq. where the first element of the sum has the highest value 012%71

P 1 5/6
2 _ 5 39k —5/6,5/6.-5/3 1— ) )
Op1 =53 2°°r, Nos SN e (3.35)

For the Rytov variance, weak scintillation occurs up to 0% ~ 1. Since this is only
a vague criterion and to avoid entering the transition regime from weak to medium
turbulence, it is required in the following calculation that the Rytov variance of each
phase screen should be smaller than 0.5, thus adding a safety factor of 2. Unfortu-
nately, Eq. is hard to solve for Npg. One possibility is to iterate over Npg and
choose the first value that fulfills the requirement. A simpler solution can be found by
approximating Eq. . For large values of Npg, the factor (1 — ﬁ)w 6 becomes
small and can be neglected. For example, the introduced error is less than 5% if Npg

is larger than 10. Rewriting the condition 012271 < 0.5 thus yields
Npg > 10.64k7%/625/6,5/3  for Npg > 10. (3.36)

With the chosen parameters from above, the minimum number of phase screens is
determined to be 12 for the strongest simulated turbulence with wq/rg = 2.1. This

number has been used for the simulations. The Fried parameters of the individual
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screens are found by a linear fit of Eqs. to the values for extended turbulence
in Egs. (3.16, B.11); for details see Ref. [69].

For the numerical calculations, one needs to sample the involved functions on a
discrete grid. To avoid numerical artifacts, the following parameters need to be chosen
carefully: input and output plane grid spacing, d;, and d,,;, and the number of samples
in each direction N. It is assumed that the sampling is uniform in z- and y-direction.
For these considerations, the simulated areas of interest in the initial plane D; and
the final plane Dy are important. In this case, they are given by the transmitter
and receiver aperture sizes. Please note that the computation grid in both planes is
chosen larger than these areas of interest. First, the input sampling 9;, is derived for
the Laguerre-Gauss modes based on the Nyquist criterion. Afterwards, the remaining
parameters are derived by the sampling criteria presented in Ref. [69].

The Nyquist criterion states that, for a band-limited input signal, the spacing needs

to allow at least 2 data points within one period of an oscillating wave [81], i.e.
1

2fmaa; '
First, the easiest case of a Laguerre-Gauss mode, namely the Gaussian beam (p =

(3.37)

0,/ = 0), in particular its spatial frequency spectrum, is considered. The Fourier
transform of a Gaussian mode function has again Gaussian shape with a waist of 2/wy
in Fourier space. Technically, the Gaussian beam spreads infinitely in transverse space
and is, in fact, not a band-limited function. However, choosing the simulated area large
enough can ensure that a large percentage of the optical power is indeed considered
in the simulation. To obtain more than 99% of the power in Fourier space, as in the
derivation of the transmitter apertures in coordinate space, one has to consider an area
with a diameter of 7 times its waist (in Fourier space), see also Eq. (3.27),
2T

maz,Gauss — — - 3.38
fmaz,c o (3.38)

In the next step, the Fourier space diameter of the Laguerre-Gauss modes with p =0
and [ # 0 needs to be calculated. First, the Fourier transform of the Laguerre-Gauss
modes with p = 0 and azimuthal index [ is calculated. The result has the form of the
Laguerre-Gauss modes (p = 0, azimuthal index [) in coordinate space, but with a waist
wo = 2/wp. The details of this calculation can be found in appendix . Based on this
similarity, one can immediately deduce that, as in coordinate space, the waist of the
modes scales with /1 + 1 as compared to Gaussian modes. This leads to

2
fmaa:,LG - w_/ﬂ V lmaac +1 s (339)
0
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where [,,,, is the highest value of [ in the simulation and equal to 5 in this thesis.
Combined with Eq. (3.37)), this results in a relation for the transmitter plane sampling

w
8in < 0

T Al + 1

This upper bound was chosen for the initial plane sampling, i.e. ¢;, = 0.845 mm. In

(3.40)

Ch.[6] the influence of the beacon waist, denoted by wy, is investigated. With the chosen
parameters and sampling, it is possible to simulate a range of 1/ V6w < wy, < v6wy —
the lower bound given by Eq. and the upper bound is determined by the aperture
size, see Eq. .

Next, the sampling criteria from Ref. [69] are considered. The sampling for the

receiving plane has to fulfill [69] :

Az — D56,

St < ———21 3.41
where the modified aperture sizes include a beam blurring induced by atmospheric
effects

Az
D,1/2 = D1/2 -+ CT'_O . (342)

For the scalar factor ¢, a value of 2 was chosen (range from 2 and 8). To obtain an
integer number of pixels (256) along the aperture diameter of 300 mm, 6,,; = 1.17 mm
was picked which is in accordance with the bound given by Eq. of 1.789 mm.

Finally, the total number of sampling points N and thus the size of the entire
simulated area needs to be chosen. In particular, it needs to be large enough to avoid
wrapping effects which lead to contributions from the outer rim of the computational
array to be scattered back into the center of the receiver plane
D Az

Dy
N >
- 25171 + 25out _l_ 6in50ut ’

(3.43)

which is equal to 959 with the chosen parameters. For the simulations, the number of
sampling points was chosen to be N =1024 which is the next-higher integer power of
two. The remaining sampling constraints in Ref. [69] refer to the radius of curvature
of the initial wavefront and the maximum step size. Both criteria are fulfilled with the

chosen sampling parameters.
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Chapter 4

Adaptive optics — theory and

simulation

To correct for the turbulence-induced distortions of light beams described in the pre-
vious chapter, adaptive optics (AO) can be applied. In the first section of this chapter,
the general working principle of AO is explained. This is the last section that is based
on the literature. The following sections, to represent the work performed for
this thesis. In particular, the three different simulation models of adaptive optics are
introduced which are used to obtain the results of this thesis presented in Chs. |5 and
Bl In Sec. an idealized AO system is presented. The next section describes
the simplest AO possible, which corrects for the tip and tilt degrees of freedom. The
idealized and tip-tilt AO systems can be seen as the limiting cases for best and worst
possible performance. The third AO model is based on an existing setup developed
at Fraunhofer IOF in the last few years. The author was part of the team developing
this system. Reference [13] is part of the work performed for this thesis and describes
the first results obtained with the system in the context of Earth-to-satellite commu-
nication. It also contains the details of the setup and its application scenario. In
particular, the author derived the requirements for the AO system based on the ap-
plication scenario such as the number of deformable mirror actuators, actuator stroke,
tip-tilt mirror stroke and AO system bandwidth and performed the final data analysis.
Section [4.4] details how the system was simulated in this thesis. In the next section
the efficiency of the three introduced models is compared. Finally, Sec. describes
the simulation routine which combines the split-step propagation from Ch. |3[ and the

adaptive optics modeling from this chapter.
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4. ADAPTIVE OPTICS — THEORY AND SIMULATION

4.1 Working principle of adaptive optics

To counter-act the influence of optical turbulence, a technology called adaptive optics
(AO) has been developed in the past few decades. The contents of this section is based
on Ref. [10]. Since a large variety of technological approaches exist that go beyond
the scope of this thesis, only the most common systems are described here. Most
AQ systems are based on the principle of correcting the phase ¢ of the received light
described by u

u(r) = |u(r)[e?™) (4.1)

By applying the complex conjugate phase, e.g. with help of a deformable mirror, the

phase can be corrected for
eore(r) = u(r)e ). (4.2)

In case of weak turbulence, this should suffice to recover a diffraction-limited opti-
cal quality. The efficiency is limited in the strong turbulence regime when intensity
fluctuations become significant.

A typical phase-correcting AO system — with a wavefront sensor, tip-tilt and de-
formable mirror which are all connected by a fast control loop — is shown in Fig.
First, the wavefront sensor measures the turbulence distortion of a reference object
such as the light of a nearby star or of a reference laser beam. Next, a corrective ele-
ment such as a deformable mirror, a tip-tilt mirror or a spatial light modulator is used
to correct for the phase distortion. The connection between the wavefront measure-
ment and the corrective elements requires a fast control loop since the characteristic
frequency of turbulence is on the order of tens to several hundred Hertz |10, p. 39].
Figure depicts a closed-loop system where the light is first reflected by the tip-
tilt and the deformable mirror and the wavefront sensor thus measures the residual
wavefront distortion.

This very common AO configuration is also known as post-compensation since the
beam’s wavefront is corrected at the receiver. An alternative approach, which is par-
ticularly interesting for Earth-to-satellite compensation, is called pre-compensation.
Here, the light beam receives AO correction before it experiences turbulence distor-
tion. The reference object, in optical communication the so-called beacon laser, has to
propagate along the same path as the light to be corrected but in opposite direction.
The uplink in an Earth-to-satellite link can only be pre-compensated because the tur-

bulence distortion is predominant in lower atmospheric layers. A phase correction is
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Figure 4.1: Schematic of a typical AO system in closed loop configuration. A wavefront
sensor measures the phase distortion and a control loop steers a tip-tilt and deformable
mirror.

thus restricted to low altitudes where the phase distortions have not developed into
intensity distortions. In Ref. [13], which is part of the work performed for this thesis, an
adaptive optics testbed for pre- and post-compensation of the uplink and downlink in
the application of Earth-to-satellite optical communication was presented. In this the-
sis, however, only results obtained with a post-compensation approach are presented.
Next, the individual elements of the AO system are discussed in more detail.

As can be understood from the discussion above, the correction of the beam can only
be as good as the measurement of the phase. Many different wavefront sensor schemes
exist, e.g. the pyramid wavefront sensor, curvature sensor, lateral shear interferometer
and Shack-Hartmann sensor, to name but a few. In this thesis, the Shack-Hartmann
sensor type is considered which consists of a lenslet array and a camera. To explain
its working principle, first consider how a single lens can be used to measure the angle
of incidence of light. A plane wave propagating along the optical axis of the lens is
transformed into a focal spot on the optical axis. If the propagation direction is tilted
with respect to the optical axis, it still produces a spot in the focal plane, but with a
certain displacement from the optical axis as shown in Fig. 4.2 The displacement A
and the tilt angle a are related by:

tana = % . (4.3)

In connection with a position-sensitive device, a lens can thus be used to determine the
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optical axis o 1A

\/
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Figure 4.2: Determination of incoming wavefront angle o with an ideal lens: an incoming
tilted wavefront produces a focal spot displaced by A from the optical axis.

tip and tilt of an incoming beam. This method is simulated in Sec. [4.3] when a tip-tilt
correcting AO system is introduced.

To determine the wavefront and not only its tip and tilt, one can use an array of
lenses instead of a single lens. It decomposes the incoming light into many subapertures
as shown in Fig. For a plane incoming wavefront, one observes an array of focal
spots aligned with the optical axes of the lenses within the array. For a distorted
wavefront, the spot displacement behind each of the lenses can be used to sense the local
wavefront slope along the lens. It should be noted that this slope only represents an
average slope within the area of the microlens. Consequently, information is lost if the
wavefront varies on a smaller scale than the size of the microlens. From evaluating all
spot displacements, an array of x- and y-slopes of the incoming wavefront is obtained.
By integrating these slopes, one can reconstruct the wavefront ¢(r) with a resolution
determined by the properties of the lenslet array, the pixel size and the signal-to-noise
ratio of the camera. The Shack-Hartmann sensor is modeled in the simulation of a
realistic AO to determine the wavefront correction, as described in Sec. 4.4]

To introduce the required wavefront correction, one can employ deformable and tip-
tilt mirrors. Tip-tilt mirrors only have two degrees of freedom — tip and tilt. This low
number of actuators allows for a fast control and a large deflection. Deformable mirrors
usually correct for a much larger number of degrees of freedom. For instance, unimorph
deformable mirrors consist of a mirror substrate with several actuators attached to it.
These actuators deform the mirror’s surface by applying a signal, e.g. a voltage.

Before operating an adaptive optics system, it is crucial to determine how the cor-

rective elements respond to the applied voltages. To this end, one records a so-called
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Figure 4.3: Working principle of a Shack-Hartmann sensor: a micro lens array decomposes
the incoming field into several subapertures. Behind the micro lens array, an array of focal
spots is recorded by a camera. The displacement of the spots is proportional to the local
slope of the incoming wavefront.

actuator influence function by subsequently applying a certain reference voltage to the
individual actuators and recording the deformation, e.g. with a wavefront sensor. It
should be noted that there are two underlying assumptions in the following discussion.
First, the deformable mirror deformation is assumed to scale linearly with the voltage.
Second, the deformable mirror surface is a linear combination of the single actuator
deflections when several actuators are activated at the same time. This linear relation-
ship can be expressed by a matrix relation between the voltages applied to the mirror

actuators v and the according wavefront slopes s measured by the wavefront sensor
s = Av, (4.4)

where A is the actuator influence matrix. In fact, to determine the required voltage
signal for the mirror to correct for a wavefront distortion, one needs the reversed
relation; namely, which voltages need to be applied to achieve a certain wavefront
slope. To this end, one calculates the pseudoinverse of the actuator influence matrix

A using a singular value decomposition to obtain the transfer matrix T’
v="Ts. (4.5)
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correction up to o
)3
piston 0? =1.03 (%)
5/3
tip o2 = 0.582 (20)
5/3
tilt o3 =0.134(2)
5/3
defocus o7 =0.111 <%)
D\5/3
astigmatism (0°) o2 = 0.0880 (%
D\/3
astigmatism (45°) o2 = 0.0648 (E

5/3
jth order (for large j) ajg- = 0.294417"@/2 (%)

Table 4.1: Residual wavefront error 0']2- after the first j Zernike polynomials have been
corrected for [72].

Noll studied the decomposition of turbulence-induced phase distortions in terms
of Zernike polynomials which represent a complete and orthonormal set of functions
defined within the unit circle [72]. Because the lowest order polynomials represent the
most common aberrations in optical systems such as defocus, astigmatism and coma,
they are a popular function set in the optics community. The Zernike decomposition
of turbulence distortions is of interest because it helps to estimate the importance
of different order modes and roughly the numbers of degrees freedom required for a
deformable mirror. In particular, Noll derived the residual wavefront error ajz- after the
first j Zernike polynomials are corrected for as listed in Tab. [4.1] In particular, tip and
tilt constitute approximately 87% of the wavefront error. In very weak turbulence, it is
therefore sufficient to correct for tip and tilt. As turbulence grows stronger, the higher-

order contributions become significant and higher-order correction becomes necessary.

4.2 Idealized adaptive optics

As mentioned above, AO systems influence the phase of the received light. Ideally,
an AO system would measure the incoming light’s phase, with infinite precision, and

apply its complex conjugatd’} The idealized AO simulated for this thesis does exactly

!There may be cases where it is not beneficial to apply correction with such high resolution, e.g.
when the light to be corrected and that to sense the wavefront (e.g. guide star in Astronomy or the
beacon in optical communication) are separated by a point-ahead angle or a different beam geometry
182, 183]
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that:

Qsideal = arg[ubeacon(x7 Y,z = L)] . (46)

The beacon field calculated by the split-step propagation described in Sec. is a
complex array and its phase is easily computed with the built-in function denoted by
arg in Eq. .

This system is highly idealized and thus neglects many limiting factors of real
AO systems, e.g., the deformable mirror fitting error caused by the finite number of
actuators and the wavefront sensor fitting error caused by the finite spatial sampling
and the sensor noise. In contrast to the idealized system, the realistic system accounts
for these effects as will be discussed later. The temporal errors caused by delay times of
the system such as sensor readout and deformable mirror response times are neglected
throughout this thesis. Additionally, geometric differences between the light used for
sensing — in this thesis the beacon and in astronomy the guidestar — and the signal can
lead to wavefront errors. This will be partially investigated in an optimization of the

beacon beam waist in Ch.

4.3 Tip-tilt compensation

In contrast to the idealized AO, the tip-tilt correction represents the most basic AO
system. To sense the angle of arrival of an incoming light beam, the spot displace-
ment in the focal plane of an ideal lens can be measured as described in Sec. 4.1} In
the simulation, the light incident on the receiver, obtained by the split-step propaga-
tion described in Sec. [3.2] is imaged by an ideal lens which is equivalent to a Fourier

transformation with an additional phase factor [68]

1
Y

Ugp(T2,Y2) = 27 (F5+2) // ub(azl,yl)e_%(“"’ﬁy?yl)dxldyl, (4.7)
where uy, is the mode function in the focal plane and w;, the received mode function of
the beacon at the receiver. Such a Fourier transform can be implemented numerically
by a Fast-Fourier-Transform and leads to a fixed sampling of the input and focal plane.

For the evaluation of Eq. (4.7), the code provided in Ref. [69] was used.

The displacement of the focal spot is determined by a standard center of mass
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calculation

> i@
Zi,j il

> iy

Zi,j il

where the summation is performed over all elements of the sampled field v denoted by

A, = (4.8)

A, = (4.9)

the indices 7 and j and the index fp has been dropped for the sake of clarity.
From the displacement of the focal spot and focal length of the lens f, one can

calculate the angle of incidence

A,
Qyjy = f/y : (4.10)

for the z- and y-direction, respectively. Here, the small angle approximation of the
tangent has been used, cf. Eq. (4.3). The reconstructed wavefront is then given by

¢rr(T,y) = 2; (z 2+ ayy) . (4.11)

The scaling by 27/ is necessary to convert the tilted wavefront into a phase given as
multiples of 2. The calculation is performed over the entire computation grid which
is much larger than the aperture. By that, numerical artifacts are avoided. The focal

length is chosen to be ten times larger than the aperture diameter of 300 mm.

4.4 Realistic adaptive optics system

In order to simulate a realistic AO system, the characteristics of an existing AO setup
developed at Fraunhofer IOF were adopted. Details of the system’s design and perfor-
mance can be found in Ref. |[13] which is part of the work performed for this thesis.
The system consists of a fast InGaAs camera combined with a 14 by 14 lenslet array, a
40 actuator deformable mirror and a tip-tilt mirror that are all connected to a real-time
control computer. After a partial redesign of the system, a beam with 31 mm diameter
illuminates the deformable mirror which has a 45 mm aperture [84]. The actuators are
arranged in three concentric circles with eight actuators in the inner circle and 16 in
the middle and outer ring. Figure [4.4] overlays the actuator layout, with a cross at the
center of the actuator, and the Shack-Hartmann lenslet array denoted by the blue grid.
The area of the beam is shown by the red circle. Results obtained with this system

for non-OAM communication in simulated and real-world turbulence are described in

Refs. [13] [30, [35].
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Figure 4.4: Comparison of the deformable mirror actuator pattern and the Shack-Hartmann
lens array. The deformable mirror has 40 actuators arranged in three concentric rings with
8 actuators in the inner ring and 16 actuators in the middle and outer ring. The actuator
areas are highlighted in gray and their centers are marked by crosses. The blue lines indicate
the boundaries of the Shack-Hartmann sensor lenses and the red circle the area of the beam.

In the simulations, both the influence of the Shack-Hartmann sensor, in particular
the division of the aperture into 14 by 14 lenslets, and the deformable mirror actuator
influence functions are incorporated. Additionally, the lowest-order modes tip and tilt

are assumed to be corrected for by the system described in Sec. [4.3]

In the following, the calculation of the realistic AO phase correction @cqa0 is
detailed as schematically shown in Fig.[4.5] It consists of the following steps: wavefront
slope calculation based on a Shack-Hartmann sensor, fitting of actuator voltages and
calculation of the phase correction based on reconstructed and interpolated actuator

influence functions. Afterwards, the tip-tilt correction is determined as in Sec. [4.3]
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Figure 4.5: Overview of the realistic AO simulation routine

The Shack-Hartmann sensor modeling is based on the previous description of an
ideal lens to obtain the gradient of a wavefront, see Sec. The subapertures given by
the lenslets are modeled by decomposing the beacon field into 14 by 14 subsets within
the receiving telescope. The ideal lens calculation is performed for each of the subsets
individually, see Eq. (4.7), and the position of the generated spots is determined by the
center of mass calculation from Egs. , . To avoid wrapping effects, the subarrays
are zero-padded to a four times larger array before the calculation. As a result, one
finds spot displacements both in z- and y-direction for each of the 196 lenslets which
are proportional to the local wavefront slopes s by Eq. .

Intuitively, one would expect this calculation to be slow as it is repeated 196 times.
Fortunately, it is performed on the area of the subaperture which is 1/14th of the
entire aperture. In addition, only those micro lenses which receive enough light are
considered in the calculation. To this end, a threshold to the total intensity received
within a micro lens aperture is introduced. This step is also performed in experiments
to discard spots that receive little light. If the received intensity is too low within one
micro lens, the signal-to-noise ratio decreases, leading to large errors on the measured
centroids. This could induce instabilities in the AO control loop which is prevented by
introducing the threshold. Spots below this threshold are discarded in the calculation —
both in the experiment and in the simulations presented here. In particular, a threshold
corresponding to 1% of the intensity received at the micro lens with the brightest spot

is applied.
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4.4. Realistic adaptive optics system

In the next step, one needs to connect the wavefront slopes to the deformable
mirror deflection which is given by the actuator influence function introduced earlier in
Sec.[d.1] To determine the actuator influence function, the deformable mirror actuators
are activated one after the other and the wavefront slopes are measured by the Shack-
Hartmann sensor. By performing a singular value decomposition, the actuator influence
function is decomposed into orthogonal modes. This modal actuator influence function
is inverted to obtain the transfer matrix 7". The required voltages at the actuators are
obtained from a matrix multiplication of the transfer matrix and the slope vector,
see also Eq. . For the simulations, the transfer matrix was constructed from an
actuator influence function measured with the existing AO system at Fraunhofer IOF.
With this AO system, the slope vector s has 14 by 14 entries both in x- and y-direction
which leads to a total of 392 entries while the voltage is a vector with 40 entries — one
for each actuator. Consequently, the transfer matrix is a 40 by 392 matrix. Because of
the applied threshold, a certain number of spots is discarded. In the calculation, this is
incorporated by selecting those slope and transfer matrix entries associated with lenses

receiving an intensity above the threshold.

After the voltages at the actuators have been found, one still needs to calculate the
phase correction which is achieved by the according mirror deformation. Remember
that the actuator influence function gives the slopes of the wavefront after activating
the mirror actuators. The wavefront profiles are reconstructed from the slopes (i.e. the
wavefront gradient) by the zonal algorithm from Ref. [86] implemented by Herbert
Gross. Since the resulting wavefront is sampled on the 14 by 14 grid of the lenslet
array, it was fitted to the numerical grid of the optical fields resulting in a matrix W; of
256 by 256 for the ith actuator. For this fit, the function gridfit from the MATLAB
Central File Exchange [87] was used. The correction of the deformable mirror is a
linear combination of the applied voltages at each actuator and the respective wavefront

profiles:

40
dom = > Wi (4.12)
=1

Next, the tip-tilt phase correction ¢pr is calculated from the beacon field corrected
by the deformable mirror u, exp(—i¢pys) as described in Sec. . This corresponds to
a closed-loop system where the tip-tilt sensing device is placed after reflection by the

deformable mirror. The final realistic AO correction is a sum of the higher-order DM
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and the lower-order tip-tilt correction

¢r6alAO = ¢DM + ¢TT . (413)

The approach of separating tip and tilt from the higher-order aberrations is applied in
many AO systems In fact, tip and tilt are the modes with the highest contribution to
the wavefront error in atmospheric turbulence [72], see also Tab. meaning that they
also require the highest stroke. Since the tip-tilt component would reduce the available
deflection of the deformable mirror for the higher-order modes, both a deformable
mirror and a tip-tilt mirror are included. This separation is implicitly included in the
actuator influence functions by subtracting the average centroid displacement along
the aperture beforehand.

Please note that this model of a realistic AO does not include all limitations of
such a system. In particular, the pixelation of the Shack-Hartmann sensor camera is
not included. This can have a considerable effect which should already be considered
in the design of the system, see also Ref. [13]. The camera also experiences noise
which leads to variations of the centroid position, in particular at low intensities. This
effect is only implicitly considered by the intensity threshold for weakly illuminated
micro lenses. Last but not least it should be mentioned that this simulation does not
take any temporal effects into account. These arise from limited exposure and readout
times of the camera, the computation time to determine the required voltages and the
time the deformable mirror needs to adjust to a new position. These delay times need
to be smaller than the time scale at which the turbulence distortions change. Such a
consideration was performed in the design of the system to, e.g., determine the number

of Shack-Hartmann microlenses and the required readout time of the camera.

4.5 Comparison of adaptive optics compensation models

In order to compare the different AO models presented above, an analysis of the point-
spread function and the power spectral density with and without correction was per-
formed. In addition, the Strehl ratio was calculated for different turbulence strengths.

To this end, a simplified simulation was performed which includes phase distor-
tions but neglects the intensity distortions developing in longer propagation. With the
method described in Sec. [3.2] random phase screens with the size of the receiving aper-
ture of 300 mm were generated. The circular pupil was homogeneously illuminated (1
within the aperture, 0 outside the aperture) and the phase screens were added by mul-
tiplying with exp(i¢). The three different AO algorithms presented in Secs. to
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Figure 4.6: Example of adaptive optics fitting of the input random phase screen shown
in (a). The false color plots denote the phase in radian. The second row (b-d) depicts the
calculated AO correction while the third row (e-g) plots the difference between AO correction
and initial distortion for (b,e) tip-tilt, (c,f) realistic, and (d,g) idealized AO.

30

20
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were applied to this incoming phase-distorted light. As a first visualization, Fig.
depicts an example of the resulting wavefront profiles and the residual wavefront er-
ror. The topmost plot (a) represents the input phase distribution coming from the
random phase screen. The second row of plots (b-d) shows the phase profile corrected
by the different AO schemes — (b) tip-tilt AO, (c¢) realistic AO and (d) idealized AO.
As expected, the tip-tilt AO only corrects for the general tip and tilt of the incoming
wavefront while the realistic AO resembles the input phase much more. However, it is
not able to correct for the small scale distortions which lie below the resolution of the
14 by 14 wavefront sensor array and the 40 actuator deformable mirror. The idealized
AOQ, by definition, can completely reconstruct the incoming wavefront. These observa-
tions become more evident from the third row of plots (e-g) which show the residual
phase distortion after correction, i.e. the difference between AO correction and the
input phase distortion — for (e) tip-tilt AO, (f) realistic AO and (g) idealized AO.
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After this example, a quantitative evaluation of AO efficiency is performed. To
separate the effects of the wavefront sensor and the deformable mirror, the realistic
AO scheme is further subdivided. The wavefront sensor scheme uses the calculation of
the wavefront slopes of a Shack-Hartmann sensor as described in Sec. but does not
consider the mirror capabilities. Instead, a zonal algorithm reconstructs the wavefront
on the 14 x 14 grid given by the geometry of the micro lens array [86]. Afterwards, the
wavefront is interpolated to the 256 x 256 calculation grid [87]. A subsequent tip-tilt
calculation corrects for the low-frequency distortions. By this procedure, the wavefront
sensor capabilities can be assessed individually from the rest of the AO system. The
deformable mirror scheme uses the reconstructed wavefront profiles on the 256 x 256
calculation grid which were obtained from the actuator influence function. To this end,
a least-squares fit is performed by a singular value decomposition. Again, the tip-tilt
correction is applied subsequently. In total, five different AO schemes can be compared
— no correction, tip-tilt, realistic, deformable mirror and wavefront sensor AO.

In the literature, see e.g. Refs. [88-91], an investigation of the system performance
is typically performed in the design phase of an adaptive optics system. Then, the
local turbulence conditions, telescope parameters and optical quality requirements are
analyzed to determine the number of Shack-Hartmann micro lenses and deformable
mirror actuators. The required optical quality is often specified by the point-spread
function. In the diffraction-limited case, the image of a telescope is a convolution of
the object and the point-spread function and thus the point-spread function is closely
connected to the resolution of the system. In astronomy, requirements on the point-
spread function would be determined from the objects to be investigated. The point-
spread function can be calculated from the Fraunhofer diffraction pattern of the pupil
function P which is equal to 1 inside the aperture and 0 otherwise [6§]. In a turbulence-
distorted system, the pupil function needs to be modified by the residual wavefront error
(68, 88|

P(x,y) = P(z,y) exp(ig(r,y)), (4.14)

where P(x,y) is the undistorted pupil function and ¢(x,y) is the phase distortion.
Hence, the point-spread function h is given by [6§]

h(z,y) = F[P(z,y)] . (4.15)

Typically, the intensity of the point-spread function |h(z,y)|* is measured in a real

system. While one is usually interested in the final point-spread function of the system,
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it is hard to derive analytical formulations of the AO compensation models. In fact, it
is possible to define such a function for the inverse Fourier transform of the intensity

point-spread function |h(x,y)[?, the so-called optical transfer function H [68]

H(for fy) = F IRz, )] (4.16)

While in the spatial domain, an image is formed by convolution of the point-spread
function and the object, in the frequency domain it is a product of the optical transfer
function and the object’s spectrum. This assumption also holds for an AO-corrected
telescope. While one needs an end-to-end simulation of the AO system and the tele-
scope to determine the point-spread function directly, it is possible to separate the

contributions of the AO and the telescope in the optical transfer function [90]

Htotal(fxa fy) = HAO<f27 fy)Htel(fm fy) ) (4-17)

which is similar to the result for an incoherent imaging system. The optical transfer
function can be determined from the spectra of the residual phase of the individual
adaptive optics components [90]. Hence, the point-spread function of the AO system
can be estimated by a product of functions in frequency space and a subsequent Fourier

transform

|h(l’, y)|2 = ‘F[Htotal(fxa fy)] . (418)

In this thesis, the situation is slightly different. The AO system has already been
built and its capabilities should be assessed. In addition, it is not possible to separate
the effects of the aperture and the AO system since the AO response is only defined
within the area of the aperture. Hence, the order of the calculation is reversed as to the
descriptions above — first the point-spread function is calculated from the generalized
pupil function and then the optical transfer function is calculated. To obtain the
generalized pupil function P, multiple realizations of atmospheric turbulence and the
AO system’s response are calculated. The phase in Eq. is the residual phase
after the application of the different AO schemes (or no correction), see Fig. 4.6| (e-
g). For each realization of turbulence, the intensity point-spread function |h(z,y)|? is
calculated and averaged over 1000 realizations.

The resulting point-spread functions are shown in Fig. [£.7on a double-logarithmic
scale for D /ry = 10. The black curve represents the diffraction-limited performance of
a telescope with a circular aperture diameter of 300 mm. It has a central peak and side

lobes for large distances from the center. This curve agrees with the known analytical
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Figure 4.7: Point-spread function for different degrees of correction for D /rg = 10. Different
degrees of AO correction are compared as indicated by the legend. Please note the double-
logarithmic scaling of the figure.

result which is an Airy function. The blue curve shows the turbulence-distorted result
which is much broader than the diffraction-limited one. When turbulence effects be-
come strong, i.e. D/rg > 1, the minimum achievable spot size is no longer determined
by the telescope aperture D but rather by the Fried parameter ry. This also means that
objects cannot be resolved as well as in the diffraction-limited case. By applying AO
correction, this effect can be partially reversed. The tip-tilt correction (red line) im-
proves the point-spread function and realistic AO (yellow line) improves it even more.
As mentioned above, the wavefront sensor and deformable mirror contributions were
simulated separately to provide more details on the systems’s limitations. It can be
seen that the green deformable mirror curve follows the diffraction-limited curve best.
The purple curve of the Shack-Hartmann sensor performs worse indicating that the
Shack-Hartmann sensor is the limiting element in the AO system. Similar observations
can be made for the optical transfer function which is discussed in App. [B]

In order to understand the contributions of certain spatial frequencies to the system

performance, the power spectral density ® of the residual wavefront is analyzed [92]
O(k) = | F[o]*. (4.19)
Atmospheric turbulence is often described in terms of the power spectral density, re-
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call for example the Kolmogorov spectrum introduced in Sec. Figure 4.8 displays
the power spectral density for the various AO schemes on a double-logarithmic scale
calculated for D/ro = 10. The maximum frequencies that the deformable mirror
and the wavefront sensor can correct for, fiaxpm and fuaxwrs, respectively, are indi-
cated by the black dashed lines. For the wavefront sensor, the frequency fuaxwrs =
1/(2D\y) = 7/D is easily calculated from the distance between the microlenses Dy,
by the Nyquist criterion. For the deformable mirror, this frequency is obtained by
calculating the distance between each actuator and its nearest neighbor. An average
is performed to obtain the characteristic distance between actuators D, and thus
Jmaxpm = 1/(2Dge) =~ 3.2/D. While for the deformable mirror the influence of the
limiting frequency can be observed in the curve, it is more subtle for the wavefront
sensor where a transition to a power-law behavior begins. As can be seen in Fig.
the deformable mirror achieves the lowest residual error for frequencies below its char-
acteristic frequency. Between the deformable mirror and wavefront sensor frequencies,
the wavefront sensor and the deformable mirror perform equally well. For large fre-
quencies, the deformable mirror, wavefront sensor and realistic AO scheme follow the
same power law which appears linear in the double-logarithmic plot. The tip-tilt cor-
rection outperforms the case without AO only for small frequencies as expected. The
case without AO increases less with increasing frequency as would be expected from
the Kolmogorov spectrum. This could be caused by the limitation of the phase screen
generation routine which, still, underrepresents low frequencies. Overall, one can con-
clude that the difference between the deformable mirror and wavefront sensor scheme

is mostly caused by the evolution in the frequency range below fiax pm-

A very popular quantity to evaluate AO system performance is the Strehl ratio. It
is defined as the ratio of the point-spread function at the energy centroid divided by
the diffraction-limited point-spread function at the energy centroid, which coincides
with the origin in both cases. Figure [4.9] plots the Strehl ratio versus the turbulence
strength given by the telescope diameter D divided by the Fried parameter ro. As
expected, all curves decay with increasing turbulence. Without correction, the decay
is fastest. Tip-tilt correction can delay the reduction of the Strehl ratio. The realistic
AO system can considerably increase the Strehl ratio. From the decay of its individual
components, the wavefront sensor and the deformable mirror, one can see that the

Shack-Hartmann sensor limits the performance as has already been noted above.
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Figure 4.8: Power spectral density (PSD) of AO-corrected turbulence distortions with
D/ro = 10. The higher the degree of AO correction, the lower is the power of turbulence
distortions. The black dashed lines indicate the important frequencies of the realistic AO
system given by the deformable mirror fi,ax pm and the wavefront sensor fiaxwrs-
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Figure 4.9: Strehl ratio for different values of D/r( for different degrees of correction.
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4.6 Layout of the simulation routine

The methods described in Sec. 3.2 and Secs. 4.2 to 4.4l were combined into a simulation
routine with the parameters from Sec. The goal of the simulations performed
for this thesis is the evaluation of adaptive optics compensation for light carrying
orbital angular momentum. A block diagram of this routine is shown in Fig.
A Gaussian beacon is used to perform wavefront measurements needed for the AO
correction. To this end, the beacon propagates through atmospheric turbulence with
the split-step propagation algorithm described in Sec. [3.2] It consists of alternating
vacuum propagations and the application of a turbulent phase screen. In total, the
beam is distorted by 12 such phase screens. After this split-step propagation, the
beacon reaches the receiver plane where a circular aperture of 300 mm is applied to
it. From the beacon field, the three AO phase corrections, for tip-tilt, realistic and
idealized AO, are calculated as described in Secs. [4.2] to [4.4]

The OAM signal is then propagated through turbulence, with the same phase
screens as the beacon experienced. Please note that for each of the simulated modes
with p = 0 and [ running from 1 to 5, the simulation needs to be run separately. All
of these modes are Laguerre-Gaussian modes with the same value of the waist equal
to wy. At the receiver, the circular aperture is applied as for the beacon. The phase
corrections calculated from the beacon profile are now used to determine the effect of
AO on the OAM modes. The figure of merit is the OAM mode content or the overlap
between the received light and the undistorted OAM modes

ot = Y0, (3, ), (i, §) exp(—idao(i, 5)) , (4.20)
,J

*
v,la

where u,;, is the initial mode with [ = [; propagated through turbulence and « , is
the complex conjugate of the vacuum-propagated field with [ = ls. This calculation
is repeated for different configurations of ¢ 40 — the tip-tilt, realistic and idealized AO
obtained from the beacon calculation. To compare these results to the uncorrected
case, the calculation is also performed once with ¢40(7,j) = 0. It is assumed that both
modes are normalized such that |g,;,|* returns the probability to measure an OAM
with value [y when the transmitted mode was [;. All other quantities considered later
in this thesis can be calculated from g, ,;,. Finally, it should be stressed that for each
value of the turbulence strength wg /7o, the simulation is repeated 1000 times to obtain

a proper number of ensemble elements of the turbulent medium.
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Chapter 5

Adaptive optics restoration of

orbital angular momentum photons

While adaptive optics for OAM encoding has been investigated in the context of classi-
cal communication [11} (12} 52], Ref. [28], which is part of the work in this thesis, is the
first in applying it to quantum communication. This chapter is based on the results
found in Ref. [28] and investigates the efficiency of adaptive optics correction on an
OAM-encoded quantum key distribution protocol.

In Sec. 5.1}, the existing formal description of OAM-entangled photons in turbulence
[14] is extended to also account for the effect of the adaptive optics. In addition, the
previously described simulation routine for atmospheric propagation, see Sec. [3.2] and
the adaptive optics simulation from Secs. to are connected to the final state
density matrix. With that, the concurrence, trace, quantum bit error rate and Bell
parameter can be obtained. Section compares the effect of different AO schemes on
the concurrence and trace of an OAM-entangled state distorted by atmospheric turbu-
lence. In Sec. the security of the quantum key distribution protocol is evaluated
in terms of the quantum bit error rate and the Bell parameter. Finally, Sec. dis-
cusses the limitations of a phase-only AO system and Sec. [5.5 compares the obtained

theoretical results to experiments from the literature.

5.1 Formal description of entangled two-qubit states

The following theoretical description of both the action of atmospheric turbulence and

adaptive optics on a maximally entangled two-photon state is the basis of all results
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e N ) propagation 4 Bob )
Lt through
boacon turbulence
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laser control
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adaptive wavefront
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Figure 5.1: Sketch of the considered scenario: Alice and Bob want to create a secret key for
secure communication via quantum key distribution. An entangled photon source at Alice’s
transmitter generates an OAM-entangled photon pair (red curly arrows). The first photon
remains in Alice’s laboratory. The second photon is sent to Bob through an atmospheric
channel which distorts it. The beacon laser beam (blue straight arrow) is sent through the
same channel such that an adaptive optics system at Bob’s receiver can measure the phase
distortions and correct the OAM photon’s wavefront. Based on Fig. 1 in Ref. [28].

o

entangled photon
source

- J

presented in this and the following chapter. It represents an extended version of Sec. 11
and Appendix A of Ref. [28] with a slightly adapted notation. The simulated setup
is the quantum key distribution between two parties, typically called Alice and Bob,
as depicted in Fig. 5.1} This setup is very similar to the E91 protocol which is one
but by far not the only possible implementation of quantum key distribution, see also
Sec. [2.2] Key to the protocol is the quantum state containing two entangled photonic
qubits prepared in Alice’s laboratory. One of the photons remains there, henceforth
called the first photon, and the second photon is sent to Bob via the atmospheric free-
space channel. Distortions within this channel affect only the second photon and lead
to crosstalk with other OAM modes. Thus, Bob’s received photon is transformed in a
way which could impair the communication protocol — either rendering it insecure or
reducing the key rate. To counter-act this effect, there is an adaptive optics system at
Bob’s receiver. It corrects the phase of the received photons based on measurements of
an auxiliary classical light beam, the beacon, which is sent in addition to the quantum
signal. It should propagate simultaneously and along the same path as the quantum
signal and, therefore, needs to be separated from it e.g. by polarization or wavelength.
Technical details of this separation procedure and thus influences on the quantum
signal are however not considered in this thesis since they depend on the experimental

implementation.

The initial state prepared by Alice contains photons in Laguerre-Gauss modes with

azimuthal quantum number 4/ for the first photon and —[ for the second photon and
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5.1. Formal description of entangled two-qubit states

vice versa. In the remainder of this thesis, the radial index is assumed to vanish, i.e.
p = 0, and thus left out in the notation. The single photon state is denoted by | 4 I).
The entangled two-photon state takes the form:

1
[Wo) = E(‘ - LD+, =0D) (5.1)

Such a state could be generated by a spontaneous parametric downconversion process
from a pump beam containing no OAM [57].

As already discussed, only Bob’s photon undergoes the distortion by atmospheric
turbulence. Since atmospheric turbulence conserves the total number of photons, but
rather changes the modal decomposition of the photon, it can be described by a unitary
operator Ur [93]. Please note that this operator is different for each realization of
turbulence and propagation parameters. Assuming that Alice’s laboratory setup does
not change the first photon’s state, the action of atmospheric turbulence is given by
a tensor product of the identity operator acting on the first photon and the unitary
operator Ur acting on the second photon. The two-photon state after propagation is

thus given by
[Wr) = (1® Ur)|P) . (5.2)

Similar to the action of weak atmospheric turbulence, the adaptive optics system in-
troduces a phase-only modification of the second photon and can be represented by a
unitary operator Uup. To be more precise, the turbulence unitary matrix transforms
the single mode input OAM state into a superposition of many, if not all, OAM states.
Geometrically, this could be interpreted as a rotation of the OAM mode space. The
goal of the unitary operator U,p is to reverse this rotation by applying its inverse trans-
form. However, Usp can only perform a transformation of the phase of the photon’s
mode function. In contrast, Ur introduces not only phase but also intensity transfor-
mations while maintaining the total number of photons. Thus, it is expected that AO
compensation may not always be able to reverse all effects of the turbulence distortion.

Again, Uap depends on the realization of turbulence and in addition on the AO

system itself. The final state after correction of the AO system reads
[Wa0) = (1@ UaoUr)|¥o) - (5.3)

Please note that local unitary operations cannot influence the entanglement of a quan-
tum state [94, 95]. At this stage of the calculation, the final state is still maximally

entangled although it has been transformed.
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5. ADAPTIVE OPTICS RESTORATION OF ORBITAL ANGULAR MOMENTUM PHOTONS

Next, it is assumed that Alice and Bob only measure the contributions to the
initially encoded states | & [) but not to any other OAM states. In contrast to many
analytical calculations [60, 96, only states with vanishing radial index p = 0 are
considered. It should be clear that a measurement over the entire infinite-dimensional
OAM basis is technically impossible and a restriction of the number of measured states
is always necessary. While it may seem drastic to only measure two of those states,
this is exactly the same number of states as would be measured in the two-dimensional
polarization basis which can also be used for this quantum key distribution protocol.
This restriction, or mathematically speaking truncation of the Hilbert space, can be
formally described by a projection operator to the | 1) subspace acting on the second

photon (since the first photon already is in the | & 1) qubit subspace)
=1 (| =1+ |+ {+]) . (5.4)

The final state after accounting for atmospheric turbulence, adaptive optics correction

and the truncation is given by
|¥) = (1@ ITUs0UT)[Wo) - (5.5)

Due to the projection in Eq. (5.5, the final state can have a different entanglement
than the initial state.
Because of the projection defined by Eq. (5.4), only the matrix elements which lead
to one of the final states | == 1) need to be calculated
T) = > > b L)l b1 @ UaoUr| W) . (5.6)
L=+l lo=+l
To evaluate this final state, one needs to insert the initial state |Wo) from Eq. (5.1
1
U) = — ((—=l|Us0Ur|l)| = 1, =1) + ({|{U0Ur|l)| — 1,1
¥) ﬁ(< [UaoUrll)] )+ (UUaoUr|l)| = 1,1)
+(=l|Us0Ur| — DL, =) + {{|U a0 Usurs| — D1, l)) : (5.7)

For the sake of clarity, the following short-hand notation for the single-photon matrix

elements is introduced

91,1 = (=l|UaoUr| = 1), (5.8)
911 = (H{UaA0Ur|l) (5.9)
g1 = (~l|UaoUr|l), (5.10)
gi.—1 = (YUs0Ur| = 1), (5.11)
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5.1. Formal description of entangled two-qubit states

where the first index corresponds to the final state and the second index to the initial
state. Equations and refer to the coefficients of remaining in the initial state
while Egs. and describe a change of the state. Consequently, the initial
state given in Eq. is transformed into the following final state:

g-i1

oy = | # (5.12)
\/5 g—1,—1
gi,—i

where a vector notation in the basis {| — 1, =), | — 1), |I, =), |I,{)} has been chosen[T}

Typically, it is not the single realization of the turbulent medium that is of interest
but rather the average effect of turbulence and adaptive optics. Therefore, an ensemble
average is performed which transforms a pure state like |¥) into a mixed state. Thus,

a density matrix description of the state becomes necessary:

2 * * *
|9-1,] 919-10 G-, 19-11  Gr,—19-10

Ll 990 gl 9% g 99
p=1UNT =51 . R (5.13)

9_119-1,-1 9119-1,-1 |91, 91,-19-1,—1

gil,lgl,—l g;k,lgl,—l gil,—lgl,—l |gz,—z|2

Now, one can perform the ensemble average of the density matrix. In the simulations,
the density matrices are calculated for one set of turbulence and propagation param-
eters as well as AO configurations. Afterwards, an ensemble average over the density
matrices given in Eq. is performed. To distinguish between the density matrix

of one realization and the ensemble-averaged one, a new symbol is introduced:

1
p = /T/’< P >Ensemble ' (514)

Since the projection onto the two-qubit subspace introduces a loss of the quantum
state, a re-normalization with the factor 1/A has been added in Eq. (5.14)

N = (trp) (5.15)

Ensemble *

The final form of the density matrix is used in the remainder of this thesis to describe
the evolution of the initial state from Eq. ((5.1]) in atmospheric turbulence and different
degrees of adaptive optics compensation. Different quantities can be calculated from

this density matrix as e.g. the concurrence which is a measure of the entanglement,

!The vector in dual space is given by (¥| = %(giu gl 951 gi_l).
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5. ADAPTIVE OPTICS RESTORATION OF ORBITAL ANGULAR MOMENTUM PHOTONS

the trace i.e. the number of detected photons, as well as the quantum bit error rate
and the Bell parameter.

Finally, the matrix elements given in Eq. need to be connected to the opti-
cal fields that are calculated by the numerical simulations described in Secs. and
4244l To calculate the involved scalar products, it is most convenient to choose the
spatial coordinate representation which, in an analytical calculation, is evaluated by

the integral

(Y|p) = /000 /027r Uy (1,0, 2)ug(r, 0, 2) rdrdd (5.16)

where ug and wu,;, correspond to the classical mode functions associated with the quan-
tum state |¢) and [¢)), respectively. The mode functions needed to evaluate Eq.
with help of Eq. are obtained from the numerical beam propagation described in
Sec. [3.2] and already contain the propagation through atmospheric turbulence and by
that Ur. The action of Uyp is incorporated in the mode function by multiplication with
the phase correction, see Ch. 4 In the numerical calculations, this integral is replaced
by a finite sum over the Cartesian computational grid, see Eq. . In comparison to
computations for a classical communication scenario, one would usually only calculate
the probability to remain in the initial mode equal to |g;;|*. In a quantum experiment,
the complex phase of the matrix elements also contains important information and is

needed to construct the final state.

5.2 Concurrence and trace restoration

Finally, all the numerical tools and the theoretical framework are available and can be
used to investigate the abilities of adaptive optics to improve free-space transmission
of OAM-entangled two photon states. First, the effect of atmospheric turbulence and
subsequent AO correction on the two-photon state is quantified, in particular, the
entanglement and the trace of an initially maximally entangled two photonic qubit
state. In Ref. [28] the following results and their interpretation have been published.
Please note however that the simulations were repeated with adapted parameters and
the plots thus correspond to a different set of data than in Ref. [28]. The biggest
difference is the propagation distance of 1000 m instead of 500 m in Ref. [28]. Since the
range of wy/rg is approximately the same, but the distance is twice as large, scintillation
is stronger. The larger scintillation range also required increasing the number of phase
screens from 4 to 12, which is discussed in detail in Sec.[3.3] In addition, the realistic AO
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5.2. Concurrence and trace restoration

system described in Sec. [£.4) was not included in the previous study. The beacon beam
waist is chosen to be the same and is equal to 2.45wy where wq is the OAM photon’s
beam waist. The OAM modes have a root-mean-square beam radius of v/2p + [ + Lwy.
Hence, the largest simulated OAM beam (p = 0,1 = 5) has a radius of v/6wy ~ 2.45w,.
By this choice, the Gaussian beacon has the same beam waist at the transmitter as
the largest OAM mode under consideration. In Ch. [6] the influence of the beacon on

the compensation efficiency is investigated in more detail.

As a first example, the evolution of an initial state with [ = 2 is considered. Fig-
ure[5.2]compares the final state entanglement measured by the concurrence, see Sec.[2.2]
as a function of wy /1o for different degrees of AO correction encoded by the line color.
At vanishing turbulence wq/rq = 0, all lines take the maximum value of 1 and then
decline gradually with increasing turbulence strength. The blue line shows the decline
of concurrence in atmospheric turbulence without correction. The loss of entanglement
is the fastest and after the concurrence has vanished, it does not recover again. With
tip-tilt correction (red line), one observes a strong improvement of the concurrence
which still declines to zero albeit at a larger value of wy/ry. The realistic AO preserves
the concurrence better than the tip-tilt AO. With the chosen simulation parameters,
the transition between weak and strong scintillation, (0% = 1) marked by the dashed
black line, occurs at wg/ro = 1.05. The idealized AO can recover approximately 97%

up to this point. For larger turbulence values, its decay increases noticeably. The

——no AO
0.8 —e— tip-tilt AO
’ realistic AO
—e— idealized AO
0.6
I
© 0.4
0.2 :
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0 0.5 1 1.5 2
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Figure 5.2: Concurrence decay of a maximally entangled two-qubit state with [ = 2 versus
turbulence parameter wg/ro. Each curve corresponds to a different degree of AO correction.
The black dashed line indicates 012% = 1. Without correction, the concurrence is almost lost
at this point.
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error bars shown in the plot were calculated as described in Sec. and represent
the standard deviation of the mean, meaning that the standard deviation of the single
realization is divided by v/ N where N is the number of realizations. This calculation

was performed in the same way for all the plots in this and the next chapter.

Next, the behavior of states with different initial OAM [ is compared in Fig. [5.3
Here, different colors and plot markers encode different values of {. In Fig. [5.3(a),
the entanglement decay without compensation is again shown as a function of wy/ry.
It is known form the literature [15, [96] that in the weak turbulence case, higher-
order OAM modes are more stable (without AO) and that a universal decay law of
OAM entanglement can be found by the introduction of the so-called phase correlation
length [60]. In addition, studies have shown theoretically and experimentally that as
scintillation increases, this stability is gradually lost |62]. With the chosen simulation
parameters, the stability of higher order modes is almost lost; only the [ = 1 and
[ = 2 perform slightly worse than the other modes which mostly follow the same
evolution. By applying adaptive optics, the concurrence can be increased such that it
is maintained in a larger turbulence range. For tip-tilt and realistic AO, the evolution
becomes mostly independent of [ (although [ = 1 performs slightly worse than the other
values). For idealized compensation, one can even see a reversal of the stability such
that lower-order OAM values have a slightly more stable concurrence. This trend was
already visible in Ref. |28], however due to the shorter propagation distance it was on
the order of the statistical fluctuations — in contrast to the new simulations. A similar

observation was previously made in Ref. [77].

The next important figure of merit is the trace of the received state NV, see Eq. .
In fact, it can be interpreted as the fraction of detected photons as compared to the
number of transmitted photons. The trace is thus connected to the received opti-
cal power or the signal-to-noise ratio in classical communication. While the reduc-
tion of the trace does not influence the concurrence because of the renormalization
in Eq. , a large fraction of lost photons may be detrimental to the quantum
key distribution protocol either because it reduces the secret key rate or because the

signal-to-noise ratio becomes too low.

Figure depicts the trace for [ = 2 for different degrees of AO correction denoted
by the line color. Again, all curves start at the maximum value of 1 at vanishing
turbulence and then decay considerably faster than the concurrence. While AO is
not able to prevent the decay of the trace, it significantly delays it. For example at

wo/ro = 1.05, without correction less than 9% of the initially transmitted photons are
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no AO tip-tilt AO

w0/7“0 wo/ro

Figure 5.3: Evolution of concurrence for different initial OAM [ from 1 to 5 (see legend) —
(a) without AO, (b) tip-tilt AO, (c) realistic AO and (d) idealized AO. In all plots, the black
dashed line marks the turbulence strength where 0% = 1 and by that the transition from
weak to strong turbulence. By applying AQO, it is possible to delay the loss of concurrence,
see (b-d).

detected at Bob’s receiver. The simplest correction of tip-tilt achieves approximately
21% and realistic AO 28%. The upper limit given by the idealized AO simulation lies
as high as 37%.

Comparing the results for different values of [ as shown in Fig. [5.5 one finds that
AO correction (b-d) can improve the trace as compared to the case without correction
(a) for all values of [. Additionally, as is already known for the case without correction
[15 96, 97], the lower-order OAM modes are less prone to a loss of trace than the
higher-order modes. This general behavior is not changed by the action of adaptive
optics. Again, idealized AO is more effective than the realistic and tip-tilt AO which

have approximately the same performance.
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Figure 5.4: Decay of the trace of the received state N for [ = 2. Different AO correction
schemes can increase the trace and by that reduce the loss of photons to other modes outside

of the encoding subspace.
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Figure 5.5: Trace for different values of [, (a) without compensation, (b) tip-tilt AO, (c)
realistic AO, (d) idealized AO. The error bars of the trace calculated from the standard
deviation are too small to be shown.
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5.3. Impact on security tests for quantum key distribution

5.3 Impact on security tests for quantum key distribution

The main advantage of quantum key distribution over the classical transmission of
a communication key is its security against eavesdroppers. To verify that an eaves-
dropper cannot have gained enough information to guess the transmitted key, Alice
and Bob can perform tests to determine the number of errors in their transmission
which an eavesdropper causes inevitably. Depending on the chosen protocol, one can
either perform tests of the quantum bit error rate (e.g. for the BB84 protocol) or,
for entanglement-based protocols (e.g. the E91 protocol), evaluate Bell inequalities.
From mathematical considerations of the quantum key distribution protocol, one can
derive lower bounds of the quantum bit error rate for secure communication. This
lower bound depends not only on the quantum key distribution protocol itself but
also on the operations assumed to be at the eavesdropper’s disposal. For the follow-
ing considerations, the threshold of 11% which is the commonly accepted threshold
for the BB84 protocol is chosen [35]. As already mentioned, the second approach is
given by Bell inequalities. With the chosen initial state, the Bell parameter given by
Egs. and a maximum value of 2v/2 and all values above 2 violate the
classical inequality. In the following, both methods are investigated.

Several effects add to the total quantum bit error rate such as detector efficiency
and noise statistics which are often setup-dependent. In the considered scenario, the
crosstalk between modes in the encoding subspace will have one of the highest contri-
butions. In the following, only the error rate R caused by this crosstalk is considered

which is given in terms of the transition matrix elements defined in Eqs. (5.1)

1
= N<’gil’l|2 + ’gflvl|2>Ensernble ’ (517)

It is clear that the total quantum bit error rate has a higher value than R. However,
whenever R exceeds the security threshold, so does the quantum bit error rate.
Figure shows the crosstalk rate R as a function of wg/r¢ in the case of [ = 2.
Without compensation (blue line), R rises quickly to a saturation value of 0.5. This
corresponds to a case where the number of false measurements equals the number of
correct measurements. Only for very weak turbulence does R stay below the security
threshold. Tip-tilt compensation improves this situation. With the realistic AO system,
the crosstalk rate can be reduced even better. The idealized AO performs best and
can achieve a crosstalk rate below the threshold for the largest range of turbulence

strengths.
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Figure 5.6: Contribution to the quantum bit error rate caused by crosstalk for [ = 2 versus
wo /1o for different AO schemes. The black dashed line indicates the threshold of 11% above
which the quantum key transmission may be insecure.

A comparison for values of [ between 1 and 5 is shown in Fig. [5.7 It becomes clear
that AO can delay the rise of the crosstalk rate above the security threshold. While
without AO (a), with tip-tilt AO (b) and with realistic AO (c), the crosstalk rate is
higher for lower values of [, the idealized AO compensation (d) leads to an evolution
independent of [. The advantage of higher-order OAM modes could be caused by the
fact that the larger the value of [, the larger the mode spacing. Since the crosstalk rate
only depends on the transition matrix elements which are known to decrease with [,
higher-order modes perform better in most cases.

In an entanglement-based protocol such as the E91 protocol, often Bell inequalities
are evaluated to check for eavesdroppers and to prove the non-classical nature of the
entangled quantum states. The evolution of the Bell parameter in Fig. [5.§ shows
that, without correction, a violation of the Bell inequalities is only possible within a
limited range of turbulence strengths which is approximately the same for all OAM
modes. By applying AO correction, the Bell parameter can be increased. As in all
previous plots, the idealized AO is most effective, and the realistic AO performs better
than the tip-tilt AO. In the case of idealized AO and for [ = 1 and [ = 2, the Bell
inequalities are violated within the entire range of simulated turbulence. For all degrees
of AO correction, the lower order modes achieve a violation of the Bell inequalities for
higher turbulence strengths. An overview of the values at which the Bell parameter
approximately intersects with B = 2 is given in Tab.[5.1] Since the number of sampling

points is limited, a linear evolution was assumed between data points to obtain the
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Figure 5.7: Quantum bit error rate caused by crosstalk for different values of [. The dashed
black line marks the security threshold of 11%. (a) Without AO, the crosstalk exceeds the
security threshold for relatively low turbulence strengths. (b) Tip-tilt AO, (c) realistic AO
and (d) idealized AO can increase the turbulence range where communication would be secure
significantly.

intersection between the simulation data and the B = 2 curve. With AO, the Bell
inequality is violated in a smaller turbulence range for larger OAM values. In addition,
idealized AO performs best, and realistic AO allows for stronger turbulence strengths
than tip-tilt AO.

5.4 Limitations of phase-only adaptive optics compensation

After the description of AO compensation efficiency in the previous sections, the ques-
tion may arise why the idealized AO cannot completely recover the initial state. To
understand this, it is instructive to examine the efficiency of idealized AO as a function

of the turbulence strength wg/rg. In particular, one can see that below the transition
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Figure 5.8: Bell parameter versus turbulence strength for OAM between 1 and 5 encoded
by the line color. The dashed black line indicates the transition between a violation of the
Bell inequality at B = 2. The different degrees of AO compensation are compared in the
plots — (a) no correction, (b) tip-tilt, (c) realistic and (d) idealized AO. The higher the degree
of compensation, the longer can the Bell inequalities be violated.

l no correction tip-tilt AO realistic AO idealized AO
=1 0.7 1.3 1.4 2.1*
=2 0.8 1.2 1.4 2.1*
=3 0.8 1.2 1.4 2.0
=4 0.8 1.1 1.3 1.8
=5 0.7 1.1 1.3 1.6

Table 5.1: Value of wg/r¢ for which the Bell parameter reaches a value of 2 depending on
the initial OAM [ and the degree of correction, compare also to Fig. For values marked
by * B = 2 is not reached, but the highest value of wg/ry in the simulation is given.
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from weak to strong turbulence (at wy/ro = 1.05) the idealized AO has a very high
efficiency, see e.g. Fig. where wg/ro = 1.05 is marked by the black dashed line.
However, the idealized AO quickly degrades as the turbulence strength increases be-
yond this boundary. In fact, this behavior is not so surprising since the transition to
stronger scintillation is basically defined by the fact that turbulence distorts not only

the phase but also the intensity distribution.

Clearly, a phase-only compensation, regardless of its efficiency, cannot correct for
the intensity distortions. It may thus be necessary to take a different design ap-
proach. One possibility would be to use pre-compensation, which has been mentioned
in Sec. [£.1] In that case, an AO system is implemented at the transmitter. The
photon’s wavefront is then deliberately distorted before propagation such that after
propagation the wavefront is plane. This requires a beacon to be sent in the opposite
direction of the light and thus adds complexity both at the transmitter and the receiver.
Pre-compensation is often considered in the context of classical Earth-to-satellite com-
munication where it compensates the uplink traveling from the ground station to the
satellite. In such a propagation geometry, turbulence distortions occur only on the
first few kilometers of the propagation distance such that pre-compensation is the
only physically meaningful compensation technique. In the horizontal propagation
scenario considered here, the pre-compensation cannot correct for the phase distor-
tions occurring closer to the receiver. Hence, two AO systems would be required. Still,
pre-compensation is a relatively new approach and only a few publications on it exist

13| 85, 08, 199].

5.5 Comparison to experimental data from the literature

The goal of this section is to put the presented simulation results into perspective with
experimental results from the literature — first for the turbulence model and then for
the combination of turbulence and adaptive optics. For a summary of the state of the
art of OAM communication, with and without adaptive optics, please refer to Sec.
The split-step method, which was also used in this thesis to numerically model the
propagation of OAM photons through atmospheric turbulence, has been verified in
experiments [62]. It was shown that the increased stability of the entanglement of
higher-order OAM modes known from weak turbulence theory is gradually reduced
as scintillation becomes important until the modes all perform equally [62]. In the

presented simulations, many of the OAM modes show the same entanglement decay,
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apart from [ = 1 and [ = 2 which still have a slightly lower concurrence than the higher-
order modes. Since the propagation scenario considered in this thesis corresponds to
medium scintillation, the presented theoretical results, without adaptive optics, are in
agreement with the experiments presented in Ref. [62].

A comparison to experiments with adaptive optics is unfortunately more difficult.
As was already discussed in Sec. no free-space experiments with OAM and adap-
tive optics have been presented. Furthermore, the author is not aware of any quantum
experiments with OAM and AO. The results of this thesis agree with the classical ex-
periments in that they show a reduction of the crosstalk between OAM modes. A quan-
titative comparison to the known laboratory experiments |11} (12, 52, |100] is however
limited because of several differences in the considered setup. First, many laboratory
experiments use a different kind of OAM modes which consist of a superposition of
several radial orders rather than the Laguerre-Gauss modes with p = 0 and azimuthal
index [ considered in this thesis. As was pointed out in Ref. [101], these modes exhibit
a much broader beam profile, the width of which is proportional to |I| + 1 instead of
\/m . For the practical implementation of an OAM link, such broad OAM modes
have the disadvantage of fitting fewer modes into the same receiving aperture as the
pure Laguerre-Gauss modes. Second, the laboratory experiments either used a single
phase screen approach and could thus only model weak turbulence |12, 52} [100] or they
used two phase screens to model moderate turbulence [11]. For example, Ref. [12] finds
a reduction of the crosstalk rate to adjacent modes of 12 dB with adaptive optics. The
experiment used a single phase screen thus modeling weak turbulence and a static AO
system with a very high resolution most similar to the idealized AO setup in this thesis.
In the presented simulations, a comparable improvement of 11.2 dB of the crosstalk
rate to adjacent modes with OAM =£(|/| — 1) can be achieved for the weakest simu-
lated value of turbulence (wy/rg = 0.105). For moderate turbulence (wg/ro = 1.05),
the crosstalk rate is only reduced by a factor between 3.3 and 6.8 dB. This is how-
ever not surprising because of the differences between the simulation scenario and the
experiments discussed above.

Clearly, a free-space experiment with OAM photons including adaptive optics re-
mains to be demonstrated. The results presented in this chapter give a clear motivation
to perform such an experiment. The next chapter investigates the influence of the bea-
con beam waist on the compensation efficiency which points out the importance of
choosing the proper beacon. Overall, the results of this thesis are expected to give new

impulses to experimental studies on OAM communication in free space.
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Chapter 6

Influence of beacon beam waist on

compensation efficiency

In this chapter, the suitability of the Gaussian beacon beam to measure the phase
distortions of the OAM photons is evaluated. It is known that Laguerre-Gauss modes
have a broader beam profile than the fundamental Gaussian mode which can be seen

from the formula for the root-mean-square radius given by [65]:

VAr2) = /2p + 1+ Ly . (6.1)

Hence, the Gaussian beacon and the Laguerre-Gauss signal have a different footprint as

they pass through the phase distortions caused by atmospheric turbulence. This could
lead to different turbulence distortions which consist not only of the phase fluctuations
but evolve into intensity fluctuations upon propagation. In addition, the Laguerre-
Gauss signal and the Gaussian beacon have a different beam width at the receiver
which has an impact on the wavefront measurement in the tip-tilt and the realistic
AO model. In previous studies of classical OAM communication with adaptive optics,
it was mentioned that the beacon is chosen larger than the OAM beam to ensure an
increased overlap of their beam profiles [11]. A detailed investigation of the beacon
beam waist as presented in the following chapter has not been published elsewhere, to
the best of the author’s knowledge.

To investigate its influence, simulations similar to those presented in the previous
chapter, Ch. |5 were performed where the beacon beam waist was varied in a certain
range. Section details the adaption of the simulation routine and gives an overview

of the obtained results. The different quantities relevant for quantum key distribution,
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concurrence, trace, crosstalk rate and the Bell parameter, which are already known
from the last chapter, are evaluated, in particular with respect to the beacon beam
waist. Based on the results, the Bell parameter is chosen as the figure of merit for the
optimization. In Sec. [6.2] the optimal beacon beam waist is derived as a function of
the initial OAM [ and the AO compensation scheme. Finally, the improvement that
can be achieved by this optimization is evaluated in Sec.

6.1 Overview of simulations with different beacon beam waists

To investigate the influence of the beacon beam waist on AO compensation of OAM
modes, in particular in the context of quantum key distribution, the simulations from
the previous chapter were extended. Instead of using a fixed value as in Ch. o the
beacon beam waist was iterated within the range of 0.4w, < wy, < 2.45w,, where wy
corresponds to the Laguerre-Gauss beam waist. This range was predetermined by the
sampling criteria for the chosen simulation parameters, see Sec. [3.3] But, these upper
and lower bounds are also meaningful from an experimental point of view. The sending
telescope aperture was chosen to be wy = %. According to Eq. , the loss of
optical power is below 1% for the largest OAM mode with p = 0,1 = 5. By rewriting
Eq. (3:27), one can find an inequality for the beacon beam waist w, < D/m = 2.45wy.
Accordingly, a Gaussian with a beam waist larger than 2.45wq, would indeed require
a larger sending telescope aperture which increases the cost of the system and is thus
unfeasible in most cases. Furthermore, the use of a much smaller beacon may cause
other experimental problems. Generating a very small beacon could be difficult within
a telescope with a large aperture and could thus require an auxiliary telescope. In that
case, the alignment of the signal and beacon telescope is crucial for the efficiency of
the experiment. In addition, there would be a displacement between the two optical
axes which would lead to differences in the experienced atmospheric turbulence and
thus reduce the AO correction efficiency. Last but not least, small beacon beam waists
increase the beam broadening due to diffraction. While this facilitates establishing the
optical link, the overall power of the beam needs to be increased to be able to measure
the signal which can also become an issue of eye-safety.

For all simulations, the Laguerre Gaussian beam waist wy is constant, see Tab.
for all values of [. For each value of wy, the beacon field is propagated through at-
mospheric turbulence as described earlier. Since AO compensation is applied to the

Laguerre-Gauss modes after propagation, the signal field is propagated only once for
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all values of wy. As in Ch. [5] the simulations for each set of parameters is averaged

over 1000 realizations of turbulence.

In the following, the same quantities as in the last chapter are evaluated — the
concurrence C', see Eq. , and the trace N of the final state density matrix,
see Eq. , the crosstalk rate R contributing to the quantum bit error rate, see
Eq. , and, in addition, the Bell parameter B. Figures , and give
an overview over the simulation results and are all arranged in the same way. The
individual plots show the given quantity as a function of the initial beacon waist wy,.
Each curve corresponds to one value of wy/rg which is encoded in the color of the lines.
The columns encode the different degrees of AO compensation — (left) tip-tilt, (middle)
realistic and (right) idealized AO. The rows represent different values of OAM running

from 1 to 5 arranged from top to bottom, respectively.

First, the quantities that are also connected to classical communication are consid-
ered, the trace N and the crosstalk rate R. The trace is proportional to the received
signal in classical communication; it gives the ratio between the received and the trans-
mitted optical power. The crosstalk rate is proportional to the channel crosstalk. The
trace shown in Fig. [6.1] saturates for larger values of wj,. The higher the initial OAM I,
the larger wy, needs to be. For the higher values of [, one can see that also a small initial
beacon waist could be feasible. The starting point of this saturation also depends on
the type of AO compensation. For the realistic AO it needs to be larger than for the
idealized AO. The influence of the beacon waist is strongest for the realistic AO. For
example in the case of [ = 5, there is a deep dip in the curve. For the trace, the
tip-tilt AO is least influenced by the beacon waist. The crosstalk rate R depicted in
Fig. [6.2] behaves similar to the trace. For low values of wy, there is a region of larger
crosstalk in the realistic AO scenario. For the other scenarios the performance is mostly

independent of the beacon beam waist as long as it is larger than approximately wy.

Now the question arises why the realistic AO is more susceptible to the beacon
waist than tip-tilt and idealized AO. One can understand this from the fact that the
realistic AO has a threshold for the Shack-Hartmann sensor as discussed in Sec. 4.4
It discards those micro lenses that receive less than 1% of the irradiation received at
the micro lens with the highest irradiation. For a narrow beam, which has an intensity
profile that drops rapidly, only the micro lenses in the center receive enough irradiation.
With just a few data points available, the wavefront fitting error is thus higher than for
a broader beam illuminating many micro lenses. While it is possible to use the results

from these micro lenses, experimentally the calculated results could not be trusted.
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tip-tilt realistic idealized

05 1 15 2 00.5 1 15 2 00.5 1 15 2

wy/wo wy/wo wy/wo

wo/ro [

0 05 1 15 2

Figure 6.1: Trace of the received state for wg/ry as encoded by the color of each line versus
the initial beacon beam waist. Each column corresponds to one AO correction scheme, with
tip-tilt, realistic and idealized AO from left to right, respectively. The rows stand for different
values of OAM between 1 and 5.
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tip-tilt realistic idealized

1 15

wp/wo wp/wo wy/wo

wo/ro [

0 05 1 15 2
Figure 6.2: Crosstalk rate for different turbulence strengths wq/ro encoded by the color of

the curves, AO correction schemes denoted by the column of the plot and initial OAM given
by the row of the plot.
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Figure 6.3: Influence of beacon beam waist on realistic AO compensation. (a) Number
of valid micro lenses plotted against beacon beam waist. The color encoding of the curves
indicates their respective turbulence strength. (b) Short-term beam radius of the beacon at
the receiver (black) versus the initial beacon beam waist wj for wg/rg = 1.26. The beam
radii of the Laguerre-Gauss modes are indicated by the colored lines. The error bars for the
beacon indicate the large fluctuation of the received beam radius and are omitted for the
Laguerre-Gauss modes for clarity.

For a camera pixel receiving too little illumination, the shot noise becomes comparable
or even equal to the signal. The resulting errors of the centroids and the associated
wavefront fitting errors are not included in the calculation, but are instead included
implicitly by the threshold.

To visualize the dependence of the initial beacon beam waist on the wavefront
measurement, Fig. [6.3(a)| shows the number of valid micro lenses against the initial
beacon waist wy. In addition, Fig. plots the beacon radius at the receiver versus
the initial beam waist wj, for one value of wq/ry. This quantity was calculated from the

optical field by the root-mean-square of the radius weighted by the beacon irradiance
_ Z |u|2[(:c - xc)Q + (y - yc)Q]
r= )
> [uf?
where the centroids x. and y,. are calculated by

. > lwigaig v — >y wis?yi (6.3)
‘ Ezg |wi g ? ’ ‘ Z” |ui j[? 7

see also Eqgs. (4.8}|4.9). As can be seen in Fig. |6.3(b)| the beacon radius at the receiver

has a minimum around w, = 0.7wy and the curve has a similar evolution as that for

(6.2)
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the number of detected micro lenses shown in Fig. [6.3(a)l For a large initial beam
waist, it increases slowly. For small initial beam waist, the curve increases rapidly.
The figure additionally shows the calculated beam radii for the Laguerre-Gauss modes.
As expected, the resulting values increase with increasing mode index [. This also
makes clear why, especially for high values of [, also the lower values of w;, lead to a

good AO correction where beacon and signal are again of similar size.

As can be seen in Figs. and [6.5] the concurrence and the Bell expectation value
B show a slightly different behavior than the trace and the crosstalk rate. While the
idealized AO saturates for larger beacon radii, the realistic and tip-tilt AO show a
decline for large values, indicating that there is an optimum beacon radius. This is
particularly interesting because classical communication protocols as well as the single
photon BB84 protocol are evaluated by only considering the trace and the quantum
bit error rate while an entanglement-based protocol such as the E91 works only if the
Bell inequalities are violated; the BB84 and E91 protocols were both introduced in
Sec. 2.3l To understand the difference between these quantities, one can reexamine
their calculation. The trace and the crosstalk rate only take the average absolute
value of the transition matrix elements into account. In contrast, the concurrence
and Bell inequality depend on the average value of the transition matrix elements.
Since the transition matrix elements are complex numbers, the results can be highly
different. The complex phase can produce an interference-like reduction of the sum. To
summarize, the parameters important for quantum protocols seem to be more sensitive
to the beacon beam waist than those for classical protocols. This could also explain
why the beacon waist has not been investigated in detail in previous studies but has
rather been chosen considerably larger than the OAM beam waist. Based on this
finding, the following discussions will be restricted to the concurrence C and the Bell
parameter B. Furthermore, the Bell parameter provides a strict criterion — if it has a

value above 2, a Bell inequality is violated, otherwise it is not.

6.2 Performed optimization

As detailed in the previous section, the Bell parameter has been chosen as the figure
of merit to optimize the beacon beam waist since its value is most sensitive to the
beacon beam waist and provides a strict criterion for the suitability for quantum key
distribution. The parameter B was calculated for each value of turbulence strength

wo/ro, OAM [ between 1 and 5, AO compensation scheme and, most importantly,
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Figure 6.4: Concurrence in dependence of the beacon beam waist wy: (left column) tip-tilt,
(middle column) realistic and (right column) idealized AO are compared for different OAM
values between 1 and 5 in the rows from top to bottom, respectively. Each curve has a color
that encodes the turbulence strength wg /7y as indicated by the colorbar below.
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tip-tilt realistic idealized

Figure 6.5: Bell parameter in dependence of the beacon beam waist wy: (left column)
tip-tilt, (middle column) realistic and (right column) idealized AO are compared for different
OAM values between 1 and 5 in the rows from top to bottom, respectively. Each curve has
a color that encodes the turbulence strength wg/r¢ as indicated by the colorbar below. The
black dashed line indicates the value of 2 above which a Bell inequality is violated.
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initial beacon beam waist w;, between 0.4w, and 2.45wy. The goal of the following
calculation is to find the optimum beacon beam waist which may depend on the OAM
value and the compensation scheme. However, the optimum beacon beam waist should
not depend on the turbulence strength since atmospheric conditions may change on
a short time scale during an experiment and a real-time optimization of the beacon
beam waist is hardly feasible.

To find suitable values of wy, the simulation data were scanned for violations of the
Bell inequality that are at least 90% of the maximum violation for that data set and

value of wq /7o
B(wy) — 2 > 0.9max{B(w,) — 2} . (6.4)

By this definition, the overall decay of S with increasing turbulence strength is not
part of the optimization. The values of w, for which Eq. is fulfilled are depicted
by the error bars in Fig. and plotted against the turbulence strength wg/ro. At
the points marked by circles, S takes its maximum value for the respective set of
parameters. For all degrees of AO compensation (denoted by different columns) and
values of OAM (running from 1 to 5, denoted by the rows), one can observe that the
number of acceptable beacon beam waists spans the entire simulated interval for weak
turbulence and narrows as the turbulence strength increases. It should be noted that
for the strongest values of turbulence, the Bell inequalities are not violated and thus
there are no more points in the plot. In accordance with the earlier discussion in
Sec. [6.1], one can see that the intervals of acceptable w, are largest for the idealized AO
(right column), indicating that it is least influenced by the beacon beam waist. The
plots also show the optimum beacon beam waist w;, (red and black line) which was
obtained from the calculation described in the following.

As can be seen in Fig. for low values of wg/rg, there exist many beacon beam
waists such that the Bell inequality is violated. This number decreases as the turbulence
strength increases. For large turbulence strength, the choice of the proper beacon beam
waist can thus be essential in violating the Bell inequality. To account for this effect, a
weighted average was chosen which stresses the importance of the values with a small
range of acceptable wy, values. This is achieved by the following standard formula to
obtain a weighted average from measurement data with different uncertainties [102,
p. 50]

o — 2B (6.5)
’ 214
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Figure 6.6: Beacon beam waists wy for which B(w) = 0.9 max{B(wy)} is fulfilled plotted
versus the turbulence strength wg/ro (blue error bars). The blue circles show where S takes
its maximum value. The three AO schemes are compared — (left row) tip-tilt AO, (middle
row) realistic AO and (right row) idealized AO. The values of OAM are denoted at the end
of the column. The red lines indicate the optimum beacon waist calculated by a weighted
average. The black line marks the value of wy, closest to this optimum which is included in
the set of simulated values.

91



6. INFLUENCE OF BEACON BEAM WAIST ON COMPENSATION EFFICIENCY

tip-tilt realistic idealized AO
calculated chosen calculated chosen calculated chosen
=1 1.00%0.06 1.00 1.47 £+ 0.06 1.40 1.24 +0.18 1.20
=2 1344005 140 161+£0.06 160 1.71+0.16 1.80
[=3 1.60+0.06 1.60 1.83+£0.08 1.80 2.06%=0.12 2.00
=4 18240.06 1.80 2.18+0.08 220 2.15£0.09 2.20
=5 2.09+0.07 2.00 2.45 £ 0.02 2.45 2.26 = 0.09 2.20

Table 6.1: Optimum beacon beam waists wy calculated from Egs. and for tip-tilt,
realistic and idealized AO. The approximated values chosen closest to the calculated values
and from the set of simulated values of wy listed in the right columns are used in Sec. to
evaluate the improvement achieved by the optimization.

where the sum is performed over the different values of turbulence strengths wg/rg
for each set of OAM and compensation efficiency individually. The value of w; is the
value of wy, for which B takes its maximum value and A; is half of the interval denoted
by the error bars in Fig. [6.6, One can see in Fig. that the error bars are not
distributed symmetrically around the maximum value (denoted by the circle) which is
not taken into account. Turbulence strengths are not included in the calculation if Bell
inequalities are not violated for any of the beacon beam waists. If there is only one data
point that violates the inequality, A; is set to half the distance to the next data point
to avoid division by 0. By this calculation, the red lines in Fig. are obtained. Since
the simulations were only performed for a certain number of w, values, the calculated
optimum was rounded to the next closest value for which simulations were performed.
The results are shown by the black dashed line in Fig. [6.6] To estimate the sensitivity

to the beacon beam waist, also the width of this interval is calculated,

1

ORI

in the same way as the uncertainty of a weighted average. If A,, is small, only few

Aopt - (66)

values of wy are suitable, meaning that finding the best beacon beam waist has a larger
impact. Table lists the resulting values for the three AO compensation schemes
and values of OAM between 1 and 5. These values are used in the next section to

investigate the improvement achieved by this optimization.
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6.3 Improvement achieved by beacon optimization

From the optimum beacon beam waist, the quantities investigated in Ch. [5| can be
reevaluated. As discussed in Sec.[6.1] the trace and quantum bit error rate only depend
very weakly on the beacon beam waist. Therefore, these plots will not be repeated here,
but are included in the Appendix [C] for completeness. Instead, this section focuses on
the concurrence and Bell inequality violation. First, consider the concurrence shown
in Fig. [6.7] The topmost plot shows the evolution of the concurrence without adaptive
optics and is repeated here for convenience. The second row of plots shows the results
with tip-tilt correction, (left) with the initial fixed value of w, = 2.45wq and (right) with
the optimized value given in Tab. [6.1] One can see that the concurrence is preserved
longer after the optimization. The improvement is especially noticeable for [ = 1
which is not well-corrected for a large beacon beam waist. For the realistic AO system,
the improvement is slightly less pronounced, which could be due to the fact that the
optimized beacon was higher for this case and the initial value of w, = 2.45wy thus
closer to the optimum. For [ = 1, as compared to the tip-tilt case, there is hardly an
improvement by using the realistic AO. However, the higher values of [ perform better
with realistic AO than in the tip-tilt case. In the idealized AO case, the optimization
of the beacon does not influence the correction efficiency.

To get a more detailed impression of the improvements caused by the beacon op-
timization, the value of B is shown in Fig. [6.§ It is arranged in the same way as the
previous figure, Fig. with the uncorrected case on top and the results with a fixed
beacon in the left column and those for the optimized beacon in the right column.
The lines with plot markers indicate the values of B while the dashed colored lines
indicate the turbulence strength where B = 2 indicating the transition from violation
to non-violation of the Bell inequality. For tip-tilt and realistic AO, B remains higher
for stronger values of turbulence with the optimized beacon beam waist. It should
be noted that the realistic AO is more successful in securing a violation of the Bell

inequality, in particular for [ > 2.
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- lo =1
—— l() =2
lp=3 no correction
—— l() =4
—— l() =35
fixed beacon w, = 2.45wyg optimized beacon wy

tip-tilt

realistic

idealized

Figure 6.7: Concurrence evolution before (left column) and after (right column) optimiza-
tion of the beacon beam waist. The topmost plot shows the evolution without AO correction.

The second to fourth row compare the different degrees of AO correction — tip-tilt, realistic
and idealized AO.
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Figure 6.8: Improvement of the Bell parameter evolution achieved by the beacon beam
waist optimization. On the top, the evolution without AO is shown. The colors encode
different values of OAM [. The left and right column compare the Bell parameter before and
after the optimization, respectively. In the second to fourth row, the tip-tilt, realistic and
idealized AO results are shown. To highlight the transition at B = 2 above which a Bell
inequality is violated, the dashed lines indicate the value of wg/ro where the curves cross.
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To summarize, this chapter has shown that the beacon beam waist has an effect
on the compensation efficiency of the AO system. The quantities associated with the
entanglement of the photons, the concurrence and the Bell parameter, can particularly
profit from an optimization of the beam beam waist, while the trace and error rate
also applicable to classical communication are less sensitive to it. Hence, quantum
key distribution systems can benefit from the right choice of the beacon beam waist.
Moreover, it could be shown that the optimum beacon beam waist depends on the AO
system configuration, for tip-tilt compensation the value is in general lower than for
the realistic AO system. The idealized AO system hardly depends on the beacon beam
waist, as long as it is chosen larger than the OAM signal beam waist. Furthermore,
it should be mentioned that in Figs. and the beacon beam waist is chosen
individually for the OAM modes. In an experiment transmitting several OAM modes
simultaneously, this may not be feasible because the beacon beam waist should only
have one value. In that case, the beacon beam waist should be chosen depending on
the particular choice of OAM modes to provide the overall best performance. Hence,

a more detailed optimization may be required.
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Chapter 7

Conclusion and outlook

High-dimensional systems have been a promising candidate to further improve quan-
tum key distribution in terms of security and robustness to noise. One example of
such high-dimensional systems are orbital angular momentum (OAM) photons which,
however, face a great obstacle in their free-space transmission, namely atmospheric
turbulence. Turbulence distorts the phase of photons, which is the defining property
of OAM, and is thus detrimental to the communication protocol. In this thesis, it was
demonstrated that adaptive optics can mitigate turbulence distortions for the applica-
tion of quantum key distribution. With help of the developed simulation routine, the
action of three adaptive optics systems is explored. The most simplistic tip-tilt system
and the idealized system with maximum resolution serve as the lower and upper bound
for the performance. A key element of the simulation routine is the model of an existing
adaptive optics system developed for classical optical communication. By applying a
phase correction based on measurements performed on a beacon, adaptive optics can
reduce the crosstalk between different OAM modes. Security criteria for quantum key
distribution protocols, in particular the quantum bit error rate and the violation of a
Bell inequality, are used to verify that, with adaptive optics, the applicability of OAM
can be extended to a stronger turbulence regime.

With this work it was demonstrated for the first time that adaptive optics bears
great potential for OAM-based quantum key distribution. The application scenario is
the transmission of one photon of an OAM-entangled two-qubit state through atmo-
spheric turbulence. To provide the required control loop signals for an adaptive optics
system, a Gaussian beacon co-propagates with the signal photons. Adaptive optics can

indeed improve the crosstalk both between modes used to encode the information and
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also to modes outside the encoding subspace. The entanglement which is lost through
the crosstalk and subsequent projection to the encoding subspace can be recovered by
applying adaptive optics to a certain degree. Because of the projection to a restricted
number of modes, the trace of the final state’s density matrix decreases with the tur-
bulence strength. Adaptive optics can counter-act this effect which, in an experiment,
would improve the signal-to-noise-ratio. Most importantly, adaptive optics can ensure
that security tests of the quantum key distribution protocol are positive for two to three
times stronger turbulence in terms of the Fried parameter. By that, adaptive optics

can considerably extend the applicability of OAM-based quantum key distribution.

The Gaussian beacon plays an important role in the adaptive optics system since
its measured wavefront determines the correction applied to the OAM photons. The
different geometries of a Gaussian beacon and the OAM photons with a Laguerre-
Gaussian mode profile were the motivation to optimize the beacon’s beam waist in
Chapter [6| The key finding is that the quantum-mechanical properties such as the
entanglement measured by concurrence and the Bell parameter benefit most from this
optimization. Consequently, the choice of the beacon beam waist can have an impact
on the design of a quantum experiment with OAM and adaptive optics. Because the
optimal beacon beam waist varies with the type of adaptive optics compensation and
the involved OAM modes, one could include a similar optimization as performed in

this thesis in the design of an experiment to achieve best performance.

For future work, the obvious and most urgent next step is the experimental imple-
mentation of a real-time AO system for OAM communication to go beyond the static
systems known in the literature. The results of this thesis provide a strong motivation
to implement such a system which could then be tested in a free-space link. Since
adaptive optics is a well-developed technology with several commercial suppliers on
the market, there is no technological obstacle that prevents the deployment of such
a system. For a quantum key distribution application, care should be taken in the
optical design to avoid that the classical beacon, which has a comparatively high in-
tensity, enters the quantum signal path. Depending on the propagation geometry, it
could be worthwile to include an additional pre-compensation adaptive optics system

at the transmitter to further improve the OAM transmission.

In the context of future experiments with higher-dimensional OAM states, the
results of this thesis can be useful, although the work focused on qubit systems. To
date, free-space experiments have been performed either for qubits or hybrid OAM and

polarization states because turbulence distortions and the associated crosstalk limited
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the OAM transmission. As a result, the potential of OAM communication and the
associated high dimensionality has not been fully exploited. A reduction of crosstalk as
demonstrated in this thesis, however, suggest that with adaptive optics new free-space
experiments involving higher-dimensional OAM states become possible. One example
would be the transmission of higher-dimensional entanglement which can already be
generated in the laboratory. Another possibility would be the transmission of several
qubits distinguished by their OAM to generate several simultaneous quantum channels,
similar to multiplexing in classical communication. In the long run, adaptive optics
could become an enabling technology to allow for a commercialization of OAM-based
both classical and quantum communication.

For OAM communication in quantum cryptography, this thesis has shown that
adaptive optics can help overcome the limitations of state-of-the-art systems. The
main result is that adaptive optics can recover OAM entanglement and allow for secure
quantum communication when it would not be possible due to turbulence distortions.
While some further optimizations of the adaptive optics configuration may be carried
out in the near future, the next important step is the experimental demonstration of
an adaptive optics system for OAM communication. Based on such results, the true

potential of the infinite-dimensional state space of OAM can be reached in the future.
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Appendix

A Derivation of Laguerre-Gauss mode size in Fourier space

In this section, the Fourier transform of Laguerre-Gauss modes is calculate which is
used in Sec. to determine the sampling of the modes. For convenience, the mode
function of Laguerre-Gauss modes is repeated here, see Eq. (2.8))

w(z) p \w2(z)

Since the radial index is not investigated in this thesis, i.e. p = 0, the mode function

1l .,
var U (262 ) o i B I () it
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is simplified thanks to Li(x) = 1. In addition, the calculation is performed at z = 0
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Now, the two-dimensional Fourier transform of this mode function % ,; can be calculated

1o, (k) — / / o (1) dr (3)

where r is the vector in the transverse plane. The calculation is performed in polar

coordinates, in real space (r,6) and in reciprocal space (k,¢). The scalar product in

Eq. ([3), can be expressed as k - r = kr cos(6 — ¢)

I
. o0 2 2 2 ' '
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0 0
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The angular integral returns the [th Bessel function of first kind [103]
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Accordingly, one obtains

Wo

("
o (k, ¢) = N07leil¢2m‘l/ (—) e wo Jy(kr)rdr. (6)
0

Next, the solution of the radial integral is known [104, Eq. 11.4.29]

[e’] bV 2
/ e~ (bt)dt = We if Re(v) > —1, Re(a®) > 0. (7)
0

The final result has thus the same form as the initial Laguerre-Gauss mode
loa(k, @) = Noge e o/, (8)

with a beam waist in reciprocal space of wy = wlo and a new normalization constant
N 0. Completely analogous to the calculation of the root-mean-square beam radius in

real space, one can find it in reciprocal space

() = /1. 9

0

With the result from Eq. @D, the sampling criterion for the Laguerre-Gauss modes can
be derived leading to Eq. (3.39).

B Optical transfer function for different adaptive optics mod-

els

In typical AO design studies, the optical transfer function is obtained by a product of
analytical estimates of the individual AO subsystems. The quantity of interest, the
point spread function, is then determined by an inverse Fourier transform of the optical
transfer function. In this thesis, an end-to-end AO simulation is performed such that
the point-spread function can be immediately computed without the optical transfer
function. For completeness, this section discusses the results obtained for the optical
transfer function of the different AO correction schemes. The optical transfer function
can be interpreted as a measure how well an optical system transmits certain frequency
components. For diffraction-limited systems, the optical transfer function decreases
from its initial value of 1 as the spatial frequency increases and reaches a value of 0 at
the cut-off frequency fo = D/(Af) determined by the telescope aperture. Figure
plots the absolute value of the optical transfer function which is also known as the

modulation transfer function. The turbulence strength was set to D/ry = 10. The
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B. Optical transfer function for different adaptive optics models
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Figure B.1: Modulation transfer function for different degrees of correction for D/ry = 10.
The curve without correction decays fastest while different degrees of AO correction can
increase the optical transfer function. With the deformable mirror scheme, the evolution is
closest to the diffraction-limited case.

diffraction-limited black curve decays from 1 at f =0 to 0 at f = f, as expected. The
blue curve shows that the turbulence-distorted optical transfer function decays fastest
and high frequencies are strongly suppressed. The tip-tilt correction in the red curve
can achieve a small increase. The realistic AO curve shown in yellow lies between
the turbulence-distorted and diffraction-limited curves. It transmits also the higher
frequencies but not as well as in the diffraction-limited case. The green curve showing
only the deformable mirror contribution performs best. One can see a small plateau in
the frequency range from 0.12f; to 0.2 fy. This behavior is in agreement with the better
performance also for the point-spread function. However, it may be a bit surprising
that the deformable mirror with only 40 actuators should have a better performance
than the Shack-Hartmann sensor with 196 subapertures. This impression is further
supported when considering the actuator shapes compared to the Shack-Hartmann
lenslets shown in Fig. 4.4 The analysis of the power spectral density performed in
Sec. indicates that mostly the better performance at low frequencies causes this
effect. Finally, it can be noted that the realistic AO has a similar evolution as the

Shack-Hartmann sensor.
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C Trace and quantum bit error rate after beacon optimization

The following figures compare the trace, Fig. [C.I] and the crosstalk rate R, Fig.
before the optimization of the beacon diameter as described in Ch. [6]in the left column
and after the optimization in the right. The topmost subplot gives the evolution
without AO correction and is thus independent of the beacon beam waist. The second
to fourth column give the results with tip-tilt, realistic and idealized AO, respectively.
In contrast to the concurrence and Bell inequality violation, the trace and the crosstalk
rate do not improve noticeably and are therefore only shown in this appendix for

completeness.
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Figure C.1: Evolution of the trace as a function of the turbulence strength wg/r¢: com-
parison before (left column) and after (right column) the beacon optimization described in
Ch. [6] The different rows correspond to different degrees of AO correction as denoted by
the label next to the plots. There is no significant improvement by the optimization for the
trace, in contrast to the concurrence and Bell parameter shown in Figs. [6.7 and [6.§]
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Figure C.2: Crosstalk rate for different turbulence strengths wg/rg and varying AO compen-
sation encoded by the rows. The left column depicts results before the beacon optimization
and the right column after the optimization. The beacon optimization has almost no effect
on the crosstalk rate.
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Zusammenfassung

Mit der fortschreitenden Entwicklung von Quantencomputern werden neue Verschliis-
selungsmethoden notwendig, die auch in Zukunft eine abhorsichere Ubertragung von
Nachrichten gewéhrleisten. Eine solche Methode reprisentiert der sogenannte Quan-
tenschliisselaustausch, dessen Sicherheit auf grundlegenden physikalischen Prinzipien
der Quantenmechanik beruht und mit Hilfe von Messungen verifiziert werden kann. Die
Anwendbarkeit des Quantenschliisselaustauschs wurde bereits in vielen Experimenten
demonstriert. Kiirzlich wurde sogar ein Quantenschliissel zwischen zwei entfernten Bo-
denstationen mit Hilfe einer Photonenquelle auf einem Satelliten erzeugt. Mit Hilfe
von hoherdimensional Zusténden wie beispielsweise Bahndrehimpulsphotonen koénn-
ten die Sicherheit und die Bestdndigkeit gegen Rauschen weiter erhoht werden. Der
Bahndrehimpuls entsteht durch die besonderen Phasenfronten dieser Photonen, die
aus ineinander verschlungenen Schraubenbahnen bestehen, und eréffnet einen theo-
retisch abzdhlbar unendlichen Zustandsraum. Eine starke Limitierung der Anwend-
barkeit fiir Freistrahlexperimente stellen jedoch atmosphéarische Turbulenzen dar, da
sie Phasenstorungen erzeugen. Durch die Enkodierung der Information in den Bahn-
drehimpuls und damit der Phase der Photonen hat Turbulenz einen besonders starken
Einfluss auf die Kommunikation mit Bahndrehimpulsphotonen. Zur Korrektur solcher
Phasenstorungen wurde eine Technologie in der Astronomie entwickelt — die adaptive
Optik. Wahrend adaptive Optik im Zusammenhang mit klassischer Kommunikation
mit Bahndrehimpuls bereits untersucht wurde, wird adaptive Optik in der vorliegen-
den Dissertation erstmals fir Quantenkommunikation mit Bahndrehimpulsphotonen
untersucht.

Im Rahmen der Promotion wurde eine Simulationsroutine entwickelt, mit der die
Ausbreitung von Bahndrehimpulsphotonen durch atmosphérische Turbulenz sowie die
anschlieBende Korrektur durch ein adaptiv-optisches System beschrieben werden kann.

Die bereits existierende formelle Beschreibung des Photonenzustands in atmosphéri-
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scher Turbulenz wurde durch die Wirkung der adaptiven Optik ergianzt. Als Szenario
wurde die Ubertragung eines Photons aus einem verschrankten Zwei-Qubit-Zustand
untersucht. Das zentrale Ergebnis der Arbeit ist die Erkenntnis, dass adaptive Op-
tik die Freistrahliibertragung fiir den Bahndrehimpuls-gestiitzen Quantenschliisselaus-
tausch auf vielfache Weise verbessern kann. Mit Hilfe von adaptiver Optik kann die
Verschrankung und die Spur der Dichtematrix deutlich erhéht werden. Als Sicher-
heitskriterien fiir die Quantenschliisseliibertragung wurden die Quantenfehlerrate und
die Verletzung von Bell-Ungleichungen ausgewahlt. Dank adaptiver Optik konnte so
eine sichere Ubertragungen in doppelt bis dreimal so starker Turbulenz gemessen am
Fried-Parameter nachgewiesen werden. Damit die adaptive Optik zwischen der Phasen-
storung und der Information in der Phase der Photonen unterscheiden kann, wird ein
klassicher Laserstrahl mit bekanntem Phasenprofil zum Messen der turbulenten Sto-
rungen benutzt. Aufgrund der unterschiedlichen Strahlgeometrien von Hilfsstrahl und
Bahndrehimpulsphotonen wurde der Einfluss des Strahlradius dieses Hilfstrahls auf die
Kompensationseffizienz untersucht. In Abhéngigkeit vom Bahndrehimpuls der Photo-
nen und der Art der adaptiv-optischen Korrektur konnte so ein optimaler Strahlradius
gefunden werden. Es wurde weiterhin gezeigt, dass insbesondere die fiir den Quanten-
schliisselaustausch wichtigen Giitekriterien von einer solchen Optimierung profitieren
koénnen.

Die Ergebnisse dieser Arbeit zeigen das grofie Potential von adaptiver Optik fir
Bahndrehimpuls-basierten Quantenschliisselaustausch auf. Durch die Reduktion des
Ubersprechens zwischen den Bahndrehimpuls-Zustinden mit Hilfe von adaptiver Op-
tik konnten neuartige Experimente erst ermoglicht werden. Die prasentierten theore-
tischen Ergebnisse setzen deshalb neue Impulse fiir die zukiinfige experimentelle Um-
setzung und Rahmenbedingungen von adaptiver Optik fiir Quantenschliisselaustausch

mit Bahndrehimpulsphotonen.
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