Dissertation zur Erlangung des akademischen Grades
Doctor philosophiae (Dr. phil.)

Simulator Sickness in Fahrsimulationsumgebungen -
Drei Studien zu Human Factors

vorgelegt der Fakultät Wirtschaftswissenschaften und Medien
der Technische Universität Ilmenau
von Anne Hösch

1. Gutachterin: Prof. Dr. Nicola Döring
2. Gutachter: Prof. Dr. Wolfgang Broll
3. Gutachter: Prof. Dr. Mark Vollrath

Tag der wissenschaftlichen Aussprache: 23.11.2018
Danksagungen

Darüber hinaus danke ich all meinen Kollegen (vor allem Dr. Rohangis Mohseni, Clarissa Tröger, Roberto Walter) und allen Hilfskräften (Maria Dubiago, Tijana Mesterovic, Darja Schütz, Martha Fogel, Dario Dräger) für ihre Unterstützung. Danke auch an alle Versuchspersonen, die an den Untersuchungen teilgenommen haben.

¹ Das Projekt VISTA4F wurde gefördert durch das Thüringer Ministerium für Wirtschaft, Wissenschaft undDigitale Gesellschaft. Weitere Informationen finden sich unter https://www.tu-ilmenau.de/mkmp/forschung/gefoerderte-forschungsprojekte/vista4f/
Inhaltsübersicht

Danksagungen ... 2
Inhaltsübersicht .. 3
Inhaltsverzeichnis .. 4
Abkürzungsverzeichnis ... 9
Tabellenverzeichnis .. 10
Abbildungsverzeichnis .. 14
Zusammenfassung .. 15
Abstract ... 17
1 Einleitung .. 19
2 Fahrsimulationen .. 25
3 Simulator Sickness .. 34
4 Die Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness .. 54
5 Die Beziehung zwischen visueller Aufmerksamkeitsleistung und Simulator Sickness .. 93
6 Die Beziehung zwischen Fahrertypen und Simulator Sickness 127
7 Diskussion .. 173
8 Literaturverzeichnis .. 180
9 Anhang ... 204
Inhaltsverzeichnis

Danksagungen .. 2

Inhaltsübersicht ... 3

Inhaltsverzeichnis ... 4

Abkürzungsverzeichnis ... 9

Tabellenverzeichnis .. 10

Abbildungsverzeichnis .. 14

Zusammenfassung ... 15

Abstract .. 17

1 Einleitung ... 19

1.1 Relevanz Fahrsimulationen ... 20

1.2 Relevanz Simulator Sickness ... 21

1.3 Aufbau der Arbeit ... 24

2 Fahrsimulationen .. 25

2.1 Beschreibung/Definition ... 25

2.2 Vorteile .. 27

2.3 Kritiken ... 28

2.4 Forschungsmethoden innerhalb von Fahrsimulationen ... 29

2.4.1 Psychometrische Tests .. 30

2.4.2 Selbstbewertung der Fahrer .. 31

2.4.3 Weitere Datenerhebungsmethoden ... 32

2.5 Schlussfolgerungen für Forschung und Praxis .. 32

3 Simulator Sickness .. 34

3.1 Symptomatik ... 35

3.2 Theoretische Hintergründe ... 36

3.2.1 Sensorische Konflikttheorie ... 36

3.2.2 Poison-Theorie ... 38
3.3 Verfahren zur Erfassung von Simulator Sickness..39
 3.3.1 Physiologische Verfahren .. 39
 3.3.2 Fragebogenverfahren – Der Simulator Sickness Questionnaire (SSQ) 40
3.4 Einflussfaktoren...44
 3.4.1 Charakteristiken der Simulationsumgebung .. 45
 3.4.2 Charakteristiken der Fahraufgabe ... 48
 3.4.3 Human Factors ... 50
4 Die Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness ..54
 4.1 Physische und psychische Beschwerden.. 54
 4.2 Forschungsstand ...55
 4.2.1 Forschungsstand physische Beschwerden... 55
 4.2.2 Forschungsstand zur psychischen Beschwerden............................... 57
 4.3 Forschungshypothesen und Forschungsfrage ... 60
 4.4 Methode ..61
 4.4.1 Stichprobe .. 61
 4.4.2 Design ... 61
 4.4.3 Messmethoden ... 62
 4.4.4 Simulationsumgebung ... 64
 4.4.5 Vorgehen ... 66
 4.4.6 Statistische Datenanalyse ... 67
 4.5 Ergebnisse ..67
 4.5.1 Deskriptivistatischen der einzelnen Simulator Sickness Symptome 68
 4.5.2 Deskriptivistatischen und Korrelationen physischer und psychischer Beschwerden sowie der Simulator Sickness Skalen .. 69
 4.5.3 Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness ... 71
4.5.4 Deskriptivstatistiken sowie Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness getrennt nach Geschlecht 74

4.6 Diskussion .. 88

4.6.1 Zusammenfassung der Untersuchung ... 88

4.6.2 Ergebnisinterpretation ... 89

4.6.3 Limitationen der Untersuchung ... 90

4.6.4 Stärken der Untersuchung ... 91

4.6.5 Implikationen für Forschung und Praxis ... 92

5 Die Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness 93

5.1 Visuelle Aufmerksamkeit ... 94

5.1.1 Aufmerksamkeit .. 94

5.1.2 Visuelle Aufmerksamkeit ... 96

5.2 Forschungsstand ... 97

5.3 Forschungsfragen ... 99

5.4 Methode ... 100

5.4.1 Stichprobe .. 101

5.4.2 Design .. 101

5.4.3 Messmethoden .. 102

5.4.4 Simulationsumgebung ... 105

5.4.5 Vorgehen .. 107

5.4.6 Statistische Datenanalyse ... 107

5.5 Ergebnisse .. 108

5.5.1 Deskriptivstatistiken der einzelnen Simulator Sickness Symptome und Fehlerarten der Aufgabe der visuellen Aufmerksamkeitsleistung 108

5.5.2 Deskriptivstatistiken und Korrelationen visueller Aufmerksamkeit und Simulator Sickness .. 109

5.5.3 Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness . 110
5.5.4 Deskriptivstatistiken sowie die Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness getrennt nach Geschlecht........... 112

5.6 Diskussion .. 120

5.6.1 Zusammenfassung der Untersuchung... 120

5.6.2 Ergebnisinterpretation ... 121

5.6.3 Limitationen der Untersuchung ... 124

5.6.4 Stärken der Untersuchung .. 125

5.6.5 Implikationen für Forschung und Praxis... 125

6 Die Beziehung zwischen Fahrertypen und Simulator Sickness 127

6.1 Fahrverhalten und seine Prädiktoren .. 128

6.1.1 Fahrverhalten .. 128

6.1.2 Sensation Seeking ... 130

6.1.3 Persönlichkeit ... 131

6.1.4 Kognitive Variablen .. 131

6.2 Forschungsstand .. 132

6.2.1 Zusammenhang zwischen Sensation Seeking und Fahrverhalten................. 132

6.2.2 Zusammenhang zwischen dem Big Five-Persönlichkeitsmodell und Fahrverhalten... 136

6.2.3 Zusammenhang zwischen kognitiven Variablen und Fahrverhalten 139

6.2.4 Zusammenhang zwischen den verwendeten Konstrukten und Simulator Sickness... 141

6.3 Forschungsfragen .. 142

6.4 Methode .. 143

6.4.1 Stichprobe .. 143

6.4.2 Design .. 144

6.4.3 Messmethoden ... 144

6.4.4 Simulationsumgebung... 150
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSQ</td>
<td>Simulator Sickness Questionnaire</td>
</tr>
<tr>
<td>TVP</td>
<td>Test zur Erfassung verkehrsrelevanter Persönlichkeitsmerkmale</td>
</tr>
<tr>
<td>LCT</td>
<td>Lane Change Task</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>VIF</td>
<td>Varianzinflationsfaktor</td>
</tr>
<tr>
<td>VAL</td>
<td>Visuelle Aufmerksamkeitsleistung</td>
</tr>
<tr>
<td>AF</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td>VF</td>
<td>Verwechslungsfehler</td>
</tr>
<tr>
<td>DBQ</td>
<td>Manchester Driver Behaviour Questionnaire</td>
</tr>
<tr>
<td>NISS</td>
<td>Need Inventory for Sensation Seeking</td>
</tr>
<tr>
<td>CompACT</td>
<td>Computerized Attention and Concentration Tests</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

Tab. 1: Ladungsmatrix der Faktorenanalyse nach Kennedy et al. (1993, S. 8) ... 42
Tab. 2: Übersicht über die Subskalen des Simulator Sickness Questionnaires; SSQ) ... 43
Tab. 3: Soziodemographische Charakteristiken der Stichprobe (N = 91) ... 62
Tab. 4: Itemanzahl, Range der Itemantworten und Reliabilitätswerte (Cronbachs α) der Subskalen des TVPs und des SSQs 63
Tab. 5: Mittelwerte, Konfidenzintervalle und Standardabweichungen der Simulator Sickness Symptome ... 68
Tab. 6: Mittelwerte, Standardabweichungen und Korrelationen der Prädiktor- und Kriteriumsvariablen ... 70
Tab. 7: Regressionsanalyse mit psychischen Beschwerden als Prädiktor für Übelkeit ... 71
Tab. 8: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Übelkeit als Kriteriumsvariable 72
Tab. 9: Regressionsanalyse mit psychischen Beschwerden als Prädiktor für Okulomotorik .. 72
Tab. 10: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Okulomotorik als Kriteriumsvariable 72
Tab. 11: Regressionsanalyse mit physischen und psychischen Beschwerden als Prädikten für Desorientierung 73
Tab. 12: Regressionsanalyse mit psychischen Beschwerden als Prädiktor für die Gesamtskala des SSQs .. 74
Tab. 13: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit der Gesamtskala des SSQs als Kriteriumsvariable 74
Tab. 14: Reliabilitätswerte (Cronbachs α) der verwendeten Skalen getrennt nach Geschlecht .. 75
Tab. 15: Mittelwerte, Konfidenzintervalle und Standardabweichungen der einzelnen Simulator Sickness Symptome, der Simulator Sickness Subskalen und physischer sowie psychischer Beschwerden getrennt nach Männern und Frauen .. 76
Tab. 16: Geschlechterunterschiede der einzelnen Simulator Sickness Symptome, der Subskalen des Simulator Sickness Questionnaires und physischer sowie psychischer Beschwerden .. 78
Tab. 17: Korrelationen der Prädiktor- und der Kriteriumsvariablen getrennt nach Geschlecht ... 80
Tab. 18: Regressionsanalyse der männlichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Übelkeit 81
Tab. 19: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Übelkeit als Kriteriumsvariable für die männlichen Versuchsteilnehmer ... 81
Tab. 20: Regressionsanalyse der männlichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Okulomotorik 82
Tab. 21: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Okulomotorik als Kriteriumsvariable für die männlichen Versuchsteilnehmer............................... 82
Tab. 22: Regressionsanalyse der männlichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Desorientierung........ 83
Tab. 23: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Desorientierung als Kriteriumsvariable für die männlichen Versuchsteilnehmer.. 83
Tab. 24: Regressionsanalyse der männlichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für die Gesamtskala des SSQs... 84
Tab. 25: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit der Gesamtskala des SSQs als Kriteriumsvariable für die männlichen Versuchsteilnehmer.......................... 84
Tab. 26: Regressionsanalyse der weiblichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Übelkeit......................... 85
Tab. 27: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Übelkeit als Kriteriumsvariable für die weiblichen Versuchsteilnehmer.. 85
Tab. 28: Regressionsanalyse der weiblichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Okulomotorik........... 86
Tab. 29: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Okulomotorik als Kriteriumsvariable für die weiblichen Versuchsteilnehmer.. 86
Tab. 30: Regressionsanalyse der weiblichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Desorientierung........ 87
Tab. 31: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Desorientierung als Kriteriumsvariable für die weiblichen Versuchsteilnehmer.. 87
Tab. 32: Regressionsanalyse der weiblichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für die Gesamtskala des SSQs... 88
Tab. 33: Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit der Gesamtskala des SSQs als Kriteriumsvariable für die weiblichen Versuchsteilnehmer.. 88
Tab. 34: Soziodemographische Charakteristiken der Stichprobe (N = 36).... 101
Tab. 35: Mittelwerte, Konfidenzintervalle und Standardabweichungen der Simulator Sickness Symptome und der Fehlerarten der visuellen Aufmerksamkeit.. 109
Tab. 36: Mittelwerte, Standardabweichungen und Korrelationen der Prädiktor- und Kriteriumsvariablen.. 110
Tab. 37: Regressionsanalyse mit visueller Aufmerksamkeitsleistung (VAL) als Prädiktor für Okulomotorik.. 111
Tab. 38: Regressionsanalyse mit visueller Aufmerksamkeitsleistung (VAL) als Prädiktor für Desorientierung.. 111
Tab. 57: Multivariate und univariate Varianzanalyse der Simulator Sickness Subskalen für die Fahrerarten
Abbildungsverzeichnis

Abb. 1: Querschnitt des Simulators	65
Abb. 2: Fahrsimulator in der Fahrsimulationsumgebung	65
Abb. 3: Verwendete Lane Change Task aus Versuchspersonensicht	66
Abb. 4: Kurs des Lane Change Tasks	66
Abb. 5: Beispielitem aus dem d2R-Aufmerksamkeits- und Konzentrationstest (Brickenkamp et al., 2010)	103
Abb. 6: Verwendetes Lenkrad inklusive Stimulusreaktion (gelber Knopf)	103
Abb. 7: Zielreiz und Distraktoren	103
Abb. 8: Fahraufgabe aus Versuchspersonensicht	106
Abb. 9: Querschnitt des Simulators	150
Abb. 10: Fahrsimulator in der Fahrsimulationsumgebung	150
Abb. 11: Verwendete Lane Change Task aus Versuchspersonensicht	151
Abb. 12: Kurs des Lane Change Tasks	151
Zusammenfassung

Die zweite Untersuchung, ebenfalls eine korrelative Querschnittsuntersuchung im Labor ohne Messwiederholung, widmete sich der Beziehung zwischen visueller Aufmerksamkeitsleistung und dem Erleben von Simulator Sickness. N = 36

Abstract

Based on the ongoing interest in driving simulations in academia and industry, research has also been focused on human-machine interaction (Rizzo, Sheffield, Stierman, & Dawson, 2003). Especially possible negative side-effects like simulator sickness have been of growing importance, because of considerations about ethical justifiability and avoidance of confounding variables (Biernacki & Dziuda, 2014; Brucks & Watters, 2009). Simulator sickness describes the experience of nausea, oculomotor disturbances, and disorientation during a simulation exposition and with that, requires experimenters to consider ethical justifiability and probable confounding variables (Biernacki & Dziuda, 2014; Brucks & Watters, 2009). Further, simulator sickness is influenced by numerous technological and human factors (Neukum & Grattenthaler, 2006). However, the research on psychological factors and their relation to simulator sickness is still scarce (Milleville-Pennel & Charron, 2015). The present thesis investigates human factors related to the experience of simulator sickness in driving simulation environments. Three studies have been conducted to explore this research area.

The first study addressed the relationship between current physical and psychological complaints and the experience of simulator sickness after an exposure to a driving simulation environment. This study was conducted as a correlative, cross-sectional laboratory study without repeated measure. N = 91 participants (M Age = 24.84 years, SD = 4.79, 26 % women) were asked to answer the subscales for physical and psychological complaints of the „Tests zur Erfassung verkehrsrelevanter Persoenlichkeitsbeschreibung“ (test for assessment of driving-related personality characterics; Spicher & Haensgen, 2000) before completing the Lane Change Task (Mattes, 2003) in a driving simulation environment. Subsequently, they answered the Simulator Sickness Questionnaire (Kennedy, Lane, Berbaum & Lilienthal, 1993). Stepwise multiple regression analyses with physical and psychological complaints as predictors and simulator sickness as criterion variable showed that physical complaints do not serve as a significant predictor for simulator sickness, whereas psychological complaints do serve as a significant predictor for simulator sickness.

The second study examined the relationship between visual attention performance and the experience of simulator sickness by means of a correlative, cross-sectional laboratory study without repeated measure. N = 36 (M Age = 24.69 years, SD = 3.03, 47 % women) participants were asked to complete a driving task for testing visual attention
performance in a driving simulation environment. Afterwards, simulator sickness was measured with the Simulator Sickness Questionnaires (Kennedy et al., 1993). Linear regression analyses did not show a significant relation between visual attention performance (predictor) and simulator sickness (criterion). However, all regression analyses showed a negative relation between visual attention performance and simulator sickness. This could be an indication that the experience of simulator sickness declines with increasing visual attention performance or, vice versa, visual attention performance declines with increasing experience of simulator sickness.

The third study addressed two research questions: First, it explores which driver types can be identified based on different psychological characteristics. Second, it investigates, whether these driver types differ in their experience of simulator sickness. In an explorative, cross-sectional laboratory study (without repeated measure), \(N = 86 \) (\(M_{\text{Age}} = 24.40 \) years, \(SD = 3.89 \), 23 % women) participants were asked to answer the Manchester Driver Behaviour Questionnaire (Reason, Manstead, Stradling, Baxter, & Campbell, 1990), the Need Inventory of Sensation Seeking (Roth, Hammelstein, & Braehler, 2014), and the test for assessment of driving-related personality characteristics (Tests zur Erfassung verkehrsrelevanter Persönlichkeitsbeschreibung; Spicher & Haensgen, 2000). They were further asked to complete two PC-based tests for assessing attention (CompACT-SR; Prieler, 2011a) und concentration (CompACT-CO; Prieler, 2011b). Subsequently, participants completed the Lane Change Task (Mattes, 2003) in a driving simulation environment and answered the Simulator Sickness Questionnaire (Kennedy et al., 1993). A hierarchical cluster analysis could identify four driver types (anxious, careless, cautious, and aggressive). Based on these driver types, a MANOVA did not show significant differences of the driver types regarding the experience of simulator sickness.

The studies are limited by the use of only one simulation task and environment. Future research should also vary task difficulty and should also use experimental designs. Despite these limitations, the results of the present studies stress the importance of research on the relationship between human factors and simulator sickness and show that there still are major research gaps.
1 Einleitung

Das Erleben der Schwere von Simulator Sickness wird durch zahlreiche technologische Bedingungen, aber auch durch Human Factors beeinflusst (Kolasinski, 1995). Obwohl die Forschung zu den beeinflussenden technologischen und individuellen Faktoren breit aufgestellt ist, ist wenig zu psychologischen Faktoren bekannt (Milleville-Pennel & Charron, 2015). Um die Forschungslücken weiter zu schließen lautet die zugrundeliegende Forschungsfrage der vorliegenden Arbeit: Welche Human Factors
weisen einen Zusammenhang mit dem Erleben von Simulator Sickness in Fahrsimulationsumgebungen auf?

1.1 Relevanz Fahrsimulationen

und den anhaltenden Versuch, menschliche Fehler während des Fahrprozesses zu reduzieren sowie die sinkenden Kosten für Simulationsumgebungen, werden immer häufiger Fahrsimulationen in Forschung und Praxis eingesetzt, mittels welcher potentielle Risikofaktoren untersucht und Trainings durchgeführt werden können (Dziuda, Biernacki, Baran & Truszczynski, 2014; Rebenitsch, 2015; Vollrath & Krems, 2011).

Fahrsimulationen werden zu Forschungs- (Studien zur Wahrnehmung des Fahrers unter verschiedenen Straßen-, Sichtbarkeits- und Verkehrsbedingungen; Kemeny & Panerai, 2003), Trainings- (Fahrsicherheit/-sforschung; Rizzo et al., 2003) und Design-evaluationszwecken (Fahrzeugdesign; Kemeny & Panerai, 2003) genutzt (Stoner et al., 2011). Dabei ist die Erwartung an immer realistischer werdende Simulationsumgebungen (z. B. durch ein weiteres Sichtfeld oder durch hochauflösende Details der Umgebung), dass Fahrtrainings schneller und besser werden. Jedoch konnte die empirische Forschung bisher keine allgemeingültigen Effekte auf die Trainings-effektivität nachweisen (Kennedy et al., 2003).

1.2 Relevanz Simulator Sickness

Durch die zunehmende Popularität von Simulationsumgebungen in der fahrbezogenen empirischen Forschung wird auch die Interaktion des Menschen mit virtuellen Umwelten zu einem zentralen Forschungsfeld. In den Vordergrund rückt dabei die Erforschung der Simulator Sickness (Rizzo et al., 2003). Dabei handelt es sich um

Basierend auf internationalen (American Psychological Association, 2002) und nationalen Richtlinien der psychologischen Forschungsethik kann dies problematisch bei der Durchführung von Untersuchungen mit Versuchspersonen sein, denn

Psychologinnen und Psychologen […] stellen sicher, dass durch die Forschung Würde und Integrität der teilnehmenden Personen nicht beeinträchtigt werden. Sie treffen alle geeigneten Maßnahmen, um Sicherheit und Wohl der an der Forschung teilnehmenden Personen zu gewährleisten, und versuchen, Risiken auszuschließen.“ (Ethikrichtlinien der Deutsche Gesellschaft für Psychologie (DGPs), 2016, Richtlinie 7.3 (1))

für Trainings von Einsatzfahrten der Polizei und ermittelten dabei unter anderem Simulator Sickness bedingte Ausfallraten, welche sie als vorzeitigen Fahrtabbruch bzw. eine Fortführung des Trainings unter veränderten Bedingungen definierten. An zwei aufeinanderfolgenden Trainingstagen konnten sie einen 48 % respektive 43 % Dropout von Versuchspersonen aufgrund der Symptomschwere der Simulator Sickness verzeichnen (Neukum & Grattenthaler, 2006). Nach Anpassungen der Simulationsumgebung konnten die Ausfallraten zunächst auf 18 % am ersten Trainingstag und 23 % am zweiten Trainingstag gesenkt werden. Eine weitere Anpassung konnte ähnlich gesenkte Ausfallraten von 20 % am ersten und 17 % am zweiten Trainingstag erzielen (Neukum & Grattenthaler, 2006).

Ein weiterer Grund zur empirischen Auseinandersetzung mit Simulator Sickness und entsprechenden Prädiktoren besteht in der Vermeidung von Ergebnisverzerrungen. Simulator Sickness beeinflusst zum einen die Validität sowie die Reliabilität von Forschungsergebnissen der Fahrsimulationsforschung und zum anderen auch die Leistung der Versuchsteilnehmer (Dziuda et al., 2014; Stoner et al., 2011). Die Leistung kann durch unangemessenes Verhalten, Motivationsverlust, Verlust der Konzentrationsfähigkeit (Kennedy, Allgood, Van Hoy & Lilienthal, 1987), Aufgabenvermeidung und Verhaltensänderung zur Reduktion der Symptome beeinträchtigt werden (Silvermann & Slaughter, 1995). Es ist davon auszugehen, dass Ergebnisse aus Fahrsimulationsuntersuchungen nicht generalisierbar sind, wenn Simulator Sickness nicht angemessen überwacht wird (Stoner et al., 2011).

Darüber hinaus können anhaltende Simulator Sickness Symptome Tätigkeiten beeinflussen, denen nach der Simulationsexposition nachgegangen wird. Betroffen ist vor allem das Führen eines Kraftfahrzeugs, welches durch Ermüdungsscheinungen, Schläfrigkeit und verschlechterte Vigilanzleistung beeinträchtigt werden kann (Neukum & Grattenthaler, 2006).
1.3 Aufbau der Arbeit

Die vorliegende Arbeit ist wie folgt strukturiert: Zunächst werden \textit{Fahrsimulationen} (Kapitel 2) sowie das Kernkonstrukt der Dissertation, \textit{Simulator Sickness}, erläutert (Kapitel 3). Dabei werden die Symptomatik, die theoretischen Hintergründe sowie Messmethoden und Einflussfaktoren beschrieben. Aufbauend darauf folgt die Darstellung der drei Studien, die im Rahmen des Dissertationsvorhabens durchgeführt wurden: Die erste Studie widmete sich der \textit{Beziehung zwischen aktuellen physischen sowie psychischen Beschwerden und Simulator Sickness} (Kapitel 4), die zweite Studie erfasste die \textit{Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness} in einer Fahrsimulationsaufgabe (Kapitel 5) und die dritte Studie untersuchte die \textit{Beziehung zwischen Fahrertypen und Simulator Sickness} (Kapitel 6). Abschließend werden in einer \textit{Diskussion} (Kapitel 7) die Erkenntnisse dieser Arbeit zusammengetragen und hinsichtlich Limitationen, Stärken und Implikationen für Forschung und Praxis diskutiert.
2 Fahrsimulationen

Die Entwicklung von Fahrsimulationen wurde durch Verbesserungen in den Bereichen Elektronik, Computer und Displaytechnologien stark vorangetrieben. Ziel der Entwicklung von Fahrsimulationen war und ist es, valide Repräsentationen der realen Fahrumgebungen zu erreichen (Allen et al., 2011), um sichere Fahrumwelten zu schaffen, in welchen menschliches Fahrverhalten untersucht werden kann. Ziele dabei sind u.a. die Reduktion menschlicher Fehler während des Fahrens (Dziuda et al., 2014) als auch Trainings für Novizenfahrer (Filtness, Tones, Bates, Watson & Williamson, 2013). Aufgrund ihrer Relevanz für Forschung und Gesellschaft sind Fahrsimulationen die Testumgebungen dieser Arbeit. Im folgenden Kapitel wird zunächst, unter Beachtung der historischen Entwicklung, beschrieben, was in dieser Arbeit als Fahrsimulation definiert wird (Kapitel 2.1), anschließend werden sowohl die Vorteile (Kapitel 2.2) als auch mögliche Nachteile (Kapitel 2.3) der Nutzung von Fahrsimulationen diskutiert. Abschließend werden zentrale Methoden der Fahrsimulationsforschung berichtet (Kapitel 2.4).

2.1 Beschreibung/Definition

Fahrsimulationen werden als Systeme in multisensorischen Umgebungen definiert, in welchen der Fahrer virtuelle Fahrzeugbewegungen wahrnimmt und kontrolliert (Kemeny & Paneria, 2003). Die Versuchspersonen sollen sich in dem System so verhalten, als würden sie in einem realen Fahrzeug fahren (Castro, 2009).

In der Praxis können Simulatoren genutzt werden, um Fähigkeiten, die zum Fahren benötigt werden, zu lernen, zu trainieren und gegebenenfalls zu bewerten (Bertin et al., 2004; Castro, 2009). Des Weiteren kann die Effektivität von Fahrtrainings und der Fahrschulerziehung bewertet werden. Durch Fahrsimulationen kann zudem dem Bedarf einer Erneuerung der Fahrkenntnisse aufgedeckt werden (Caird & Horrey, 2011).
2.2 Vorteile

Simulationsumgebungen Risiken, die in der realen Fahrumwelt auftreten können, nicht beinhalten. Dennoch können Situationen in Fahrsimulationen ähnliche Emotionen hervorrufen wie reale Fahrsituationen (Caird & Horrey, 2011).

2.3 Kritiken

Ein weiterer Kritikpunkt an der Verwendung von Fahrsimulationsumgebungen ist das Auftreten von ungewollten, negativen Nebeneffekten. Einer dieser Nebeneffekte ist Simulator Sickness (Pausch, Crea & Conway, 1992; siehe Kapitel 3 dieser Arbeit). Diese Nebeneffekte können die Messreliabilität beeinflussen und dazu führen, dass sich die Leistung von Versuchspersonen während der Durchführung der Fahraufgabe verschlechtert, dass die Trainings- effektivität sinkt und dass Versuchspersonen die Aufgabe in der Simulationsumgebung nicht beenden können (Dziuda et al., 2014).

2.4 Forschungsmethoden innerhalb von Fahrsimulationen

Psychologische Forschung umfasst eine Vielzahl von Möglichkeiten der Datenerhebung: psychometrische Testverfahren, Fragebögen (Selbst- und Fremd-
bewertung), physiologische Messungen und Beobachtungen (eine detaillierte Darstellung ist z. B. bei Döring & Bortz (2016) in Kapitel 10 zu finden). In Fahrsimulationen können die verschiedenen Arten der psychologischen Datenerhebung verwendet werden, welche an dieser Stelle kurz dargestellt werden.

2.4.1 Psychometrische Tests

Forschung in Fahrsimulationen bedient sich dieser Form psychometrischer Testverfahren oftmals anhand allgemeiner Leistungstests zur Erfassung von Reaktionszeiten (Castro, 2009). Die Reaktionszeitmessungen sollen dabei die Fahrleistung bewerten. Der Vorteil dieser Methoden ist, dass die Reaktion direkt erfolgt und es somit keine zeitliche Verzögerung zwischen dem Stimulus und der Reaktion der Versuchsperson auf diesen gibt. Eine Limitation dieser Methodik ist, dass die Reaktionsursache nicht genau ergründet werden kann. Der Fahrer kann auf verschiedene Reize inner- und außerhalb des Fahrzeugs reagieren (z. B. Geschwindigkeitsreduktion, Veränderung der visuellen Suchmuster; Castro, 2009). Untersuchungsschwerpunkte in

2.4.2 Selbstd Bewertung der Fahrer

In der Fahrsimulationsforschung kann mithilfe dieser Methoden erörtert werden, wie Informationen aus der Fahrümwelt generiert werden. So können Fahrer beispielsweise verbal beschreiben, wie sie Informationen sammeln und wie sie anhand dieser ihre Fahrentscheidungen treffen. Auf eine besondere Schwierigkeit treffen die Erhebungsmethoden, wenn nach Erklärungen für Fahrprozesse gefragt wird, welche die
Versuchsperson automatisch vollführt. Dennoch bieten diese Methoden die Möglichkeit, Informationen zu sammeln, die anders schwierig zu erfassen sind (z. B. Meinungen, Gefühle, Fahrhäufigkeiten, häufig genutzte Fahr Routen; Castro, 2009).

2.4.3 Weitere Datenerhebungsmethoden

2.5 Schlussfolgerungen für Forschung und Praxis

3 Simulator Sickness

Das Konstrukt Simulator Sickness leitet sich von Motion Sickness ab (Kennedy et al., 1993). Der Begriff Motion Sickness wurde im 19. Jahrhundert zur Erklärung von Seekrankheiten (daher oft auch als sea sickness bezeichnet) eingeführt und als umfassende Bezeichnung für Symptome, die in Bewegungssituationen auftreten können, verwendet. Durch die voranschreitende Digitalisierung und dem damit verbundenen Einsatz von Simulatoren wurde auch der Begriff Motion Sickness auf diese Kontexte spezifiziert. 1957 erwähnten Havron und Butler erstmals, dass bei Untersuchungen in Helikoptersimulationen eine spezifische Form der Motion Sickness auftrat (Neukum & Grattenthaler, 2006).

Ziel dieses Kapitels ist es, einen Überblick über Simulator Sickness zu geben. Zu diesem Zweck wird in Kapitel 3.1 zunächst die entsprechende Symptomatik beschrieben, in Kapitel 3.2 werden die für diese Arbeit relevanten Theorien zur Entstehung von Simulator Sickness umrissen, in Kapitel 3.3 werden typische Erhebungsmethoden benannt und in Kapitel 3.4 werden Faktoren auf verschiedenen Ebenen beschrieben, die das Erleben von Simulator Sickness beeinflussen (Charakteristiken der Simulationsumgebung, Charakteristiken der Fahraufgabe und Human Factors).
3.1 Symptomatik

Die Simulator Sickness Symptomatik ist stark angelehnt an die Symptome der Motion Sickness. Sie entsprechen diesen Symptomen allerdings nicht vollständig, da die Symptome aufgrund ihrer verschiedenen sensorischen Ursachen nicht ohne weiteres auf den Simulationskontext übertragen werden konnten (Kennedy et al., 1993; eine ausführlichere Darstellung der Ableitung von Simulator Sickness aus Motion Sickness ist in Kapitel 3.3.2 nachzulesen).

3.2 Theoretische Hintergründe

3.2.1 Sensorische Konflikttheorie

Die am weitesten verbreitete Theorie zur Erklärung von Simulator Sickness ist die sensorische Konflikttheorie (engl. Sensory Conflict Theory oder Cue Conflict Theory) nach Reason und Brand (1975). Laut dieser Theorie erleben nur Personen mit einem intakten vestibulären System Simulator Sickness. Die zugrundeliegende Annahme hierbei ist, dass die Orientierung im dreidimensionalen Raum durch sensorische Inputs an das zentrale Nervensystem übertragen wird. Simulator Sickness entsteht dann, wenn die Erwartungen des sensorischen Systems, die auf früheren Erfahrungen basieren, nicht mit dem übereinstimmen, was das sensorische System in der Simulationsumgebung aufnimmt. Durch die Diskrepanz zwischen Erwartung und Simulationsrealität entsteht
ein interner Konflikt, der durch das sensorische System nicht gelöst werden kann, wodurch Simulator Sickness ausgelöst wird. Beispielsweise fehlen bei einem feststehenden Fahrsimulator vestibuläre Reize, welche Beschleunigungen beim Fahren indizieren könnten und welche die Person durch ihre Erfahrung im Realfahrzeug erwartet. Da in Simulationsumgebungen dieser Art ausschließlich visuelle Reize zur Bewegungsindikation vorhanden sind, entsteht ein sensorischer Konflikt zwischen den vorhandenen visuellen Informationen und den fehlenden vestibulären Reizen, welche zusätzlich eine Fahrbewegung vermitteln könnten (Neukum & Grattenthaler, 2006; Stoner et al., 2011). Dieses Missverhältnis kann durch den Körper nicht gelöst werden und führt in Folge dessen zu Simulator Sickness (Duh, Parker, Philips & Furness, 2004). Der Theorie zufolge erlernen Personen, die regelmäßige Erfahrung mit Realfahrzeugen haben, Simulator Sickness Symptome stärker als Personen, die diese Erfahrungen nicht so häufig haben (siehe dazu auch Kapitel 3.4.3; Stoner, Fisher & Mollenhauer Jr., 2011).

Trotz einiger Erklärungsansätze kann diese Theorie Simulator Sickness nicht vollständig erklären. Auf Basis dieser Theorie ist keine Vorhersage über das Auftreten und die Schwere der Symptome möglich. Darüber hinaus erklärt sie nicht, warum Simulator Sickness verstärkt bei der ersten Exposition in einer Simulationsumgebung

Trotz dieser Schwächen ist die sensorische Konflikttheorie die an weitesten verbreitete und akzeptierte Theorie zur Erklärung von Simulator Sickness. Experimentelle Daten stützen diese Theorie (Mollenhauer, 2004). In Untersuchungen mit wenig vestibulärem Input (z. B. ohne scharfe Kurven) und mit geringem Input für das visuelle System (z. B. Szenarien mit einer angemessenen Distanz zu Objekten am Straßenrand) werden weniger Simulator Sickness Symptome erlebt (Stoner et al., 2011).

3.2.2 Poison-Theorie

3.3 Verfahren zur Erfassung von Simulator Sickness

Die Verfahren zur Messung von Simulator Sickness unterscheiden sich nach Messmethodik. An dieser Stelle werden physiologische Verfahren und Fragenbogenverfahren erläutert. Physiologische Verfahren werden vergleichsweise selten genutzt, sodass sie an dieser Stelle nur kurz umrissen werden. Der Hauptfokus dieses Unterkapitels wird auf der Beschreibung des Simulator Sickness Questionnaires (SSQ; Kennedy et al., 1993) liegen, welches als das zentrale Verfahren zur Messung von Simulator Sickness gilt (Kennedy et al., 2003; Neukum & Grattenthaler, 2006).

3.3.1 Physiologische Verfahren

Physiologische Messungen werden eher selten zur Erfassung von Simulator Sickness genutzt, da bislang keine klare Beziehung zwischen den beiden Konstrukten nachgewiesen werden konnte (Stoner et al., 2011). Dennoch sollten sie kurz Erwähnung finden, da sie auf ein nicht ausreichend erforschtes Forschungsfeld hinweisen. An dieser Stelle werden exemplarisch zwei Studien beschrieben, in welchen versucht wurde, Simulator Sickness mittels physiologischer Verfahren zu messen. Bertin et al. (2004) erhoben in ihrer Simulationsstudie neben dem Motion Sickness Questionnaire auch elektrodermale Aktivität, Hautwiderstand, Hauttemperatur sowie Herzfrequenz. Die Autoren stellten heraus, dass Hautwiderstand, Hauttemperatur und Herzfrequenz mit stärkerem Erleben von Motion Sickness abnahmen (signifikant negativer Zusammenhang). Für elektrodermale Aktivität konnte keine signifikante Beziehung zum Motion Sickness Questionnaire gefunden werden (Bertin et al., 2004). Die Ergebnisse können nicht vollständig auf die Beziehung zwischen Simulator Sickness und physiologischen Reaktionen übertragen werden, sie geben allerdings einen Hinweis auf die Beziehung, da sich wie in Kapitel 3.3.2 beschrieben, die Simulator Sickness
40

Questionnaire Subskalen aus dem Motion Sickness Questionnaire entwickelt haben (Kennedy et al., 1993).

3.3.2 Fragebogenverfahren – Der Simulator Sickness Questionnaire (SSQ)

Zur Erfassung von Simulator Sickness hat sich in der Forschung der Simulator Sickness Questionnaire als Selbstberichtsverfahren etabliert (Kennedy et al., 2003; Neukum & Grattenthaler, 2006; weitere Selbstberichtsverfahren sind unter anderem der Simulator Adaptation Questionnaire (SAQ; Rizzo et al., 2003), das Graybiel Classification System (Kennedy et al., 2003) und die Simulator Sickness Visual Analogue Scale (SS-VAS; Treleaven et al., 2015)). Rebenitsch (2015) geht davon aus, dass in 75 % aller Studien in Simulationskontexten der Simulator Sickness Questionnaire zur Erfassung des Konstruks verwendet wird. Basis für den Simulator Sickness Questionnaire ist der Motion Sickness Questionnaire (MSQ), der 1965 von Kellog, Kennedy und Graybiel entwickelt wurde. Die mit dem MSQ erfassten Symptome wurden vor allem zur Messung in bewegungsstarken Umgebungen (z. B. See Fahrt, Luftfahrt) genutzt. Sie konnten nicht vollständig auf den Simulationskontext übertragen werden, da
innerhalb dieses Kontextes nur kleiner Anteil der untersuchten Population Symptome erlebte und diese weniger stark ausgeprägt waren (Kennedy et al., 1993).

Zur Konstruktion des Simulator Sickness Questionnaires reduzierten die Originalautoren zunächst die Länge des Motion Sickness Questionnaires durch den Ausschluss von Items, die in der Eichstichprobe zu weniger als einem Prozent auftraten (z. B. Erbrechen), die sich in Schwere und Prävalenz nicht veränderten und die sich als irrelevant für den Simulationskontext herausstellten (z. B. Langeweile). Insgesamt blieben 16 der 28 Items des Motion Sickness Questionnaires erhalten. Zur näheren Analyse der Symptomgruppen wurde eine explorative Faktorenanalyse mit Hauptachsenanalyse und Varimaxrotation durchgeführt, welche in drei Faktoren resultierte: Übelkeit (engl. nausea), Okulomotorik (engl. oculomotor) und Desorientierung (engl. disorientation). Auf jeder dieser Faktoren laden 7 Items. Die Ergebnisse der Ladungsmatrix sind in Tabelle 1 (sortiert nach der Reihenfolge der Items im Fragebogen) und die aus der Faktorenanalyse extrahierten Skalen sowie die zugehörigen Items sind in Tabelle 2 abgebildet. Die Skalen sind nicht disjunkt. Das bedeutet, dass einige der Items als Ergebnis der Faktorenanalyse auf mehr als einer Skala mit einer Ladung von $\geq .30$ laden (Kennedy et al., 1993).
Tabelle 1
Ladungsmatrix der Faktorenanalyse von Kennedy et al. (1993, S. 208)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Übelkeit</th>
<th>Okulomotorik</th>
<th>Desorientierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>.65</td>
<td>.40</td>
<td>.18</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>.15</td>
<td>.54</td>
<td>-.04</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>.22</td>
<td>.53</td>
<td>.15</td>
</tr>
<tr>
<td>Überanstrengung der Augen</td>
<td>.00</td>
<td>.74</td>
<td>.17</td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>-.01</td>
<td>.61</td>
<td>.43</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>.53</td>
<td>.21</td>
<td>.13</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>.15</td>
<td>.54</td>
<td>-.04</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>.22</td>
<td>.53</td>
<td>.15</td>
</tr>
<tr>
<td>Überanstrengung der Augen</td>
<td>.00</td>
<td>.74</td>
<td>.17</td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>-.01</td>
<td>.61</td>
<td>.43</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>.53</td>
<td>.21</td>
<td>.13</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>.15</td>
<td>.54</td>
<td>-.04</td>
</tr>
<tr>
<td>Konzentrationsschwierigkeiten</td>
<td>.32</td>
<td>.39</td>
<td>.27</td>
</tr>
<tr>
<td>Kopfdruck</td>
<td>.12</td>
<td>.17</td>
<td>.37</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td>.01</td>
<td>.36</td>
<td>.40</td>
</tr>
<tr>
<td>Schwindel (Augen auf)</td>
<td>.17</td>
<td>.07</td>
<td>.76</td>
</tr>
<tr>
<td>Schwindel (Augen zu)</td>
<td>.17</td>
<td>.09</td>
<td>.65</td>
</tr>
<tr>
<td>Gleichgewichtstörung</td>
<td>.18</td>
<td>.08</td>
<td>.37</td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>.64</td>
<td>.03</td>
<td>.21</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>.41</td>
<td>.04</td>
<td>.22</td>
</tr>
</tbody>
</table>

Anmerkung: Ladungen > .30 wurden fett markiert. Sortierung entsprechend der Originalautoren.

Tabelle 2

Übersicht über die Subskalen des Simulator Sickness Questionnaires (SSQ)

<table>
<thead>
<tr>
<th>Items</th>
<th>Übelkeit (N)</th>
<th>Okulomotorik (O)</th>
<th>Desorientierung (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>- Allgemeines Unwohlsein</td>
<td>- Gleichgewichtsstörung</td>
<td></td>
</tr>
<tr>
<td>- Schwitzen</td>
<td>- Schwitzen</td>
<td>- Schwindel (Augen auf)</td>
<td></td>
</tr>
<tr>
<td>- Erhöhter Speichelfluss</td>
<td>- Kopfschmerzen</td>
<td>- Schwindel (Augen zu)</td>
<td></td>
</tr>
<tr>
<td>- Übelkeit</td>
<td>- Überanstrengung der Augen</td>
<td>- Übelkeit</td>
<td></td>
</tr>
<tr>
<td>- Konzentrations- schwierigkeiten</td>
<td>- Konzentrations- schwierigkeiten</td>
<td>- Kopfdruck</td>
<td></td>
</tr>
<tr>
<td>- Magen macht sich bemerkbar</td>
<td>- Probleme scharf zu sehen</td>
<td>- Probleme scharf zu sehen</td>
<td></td>
</tr>
<tr>
<td>- Aufstoßen</td>
<td>- Verschwommenes Sehen</td>
<td>- Verschwommenes Sehen</td>
<td></td>
</tr>
</tbody>
</table>

Skalenbildung

<table>
<thead>
<tr>
<th>Items</th>
<th>N = (\sum_{\text{Itemscore}} \times 9.54)</th>
<th>O = (\sum_{\text{Itemscore}} \times 7.58)</th>
<th>D = (\sum_{\text{Itemscore}} \times 13.92)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range der Skala</td>
<td>0 – 200.34</td>
<td>0 – 159.18</td>
<td>0 – 292.32</td>
</tr>
</tbody>
</table>

Zur Bildung der nicht-disjunkten Gesamtskala (engl.: *total score*, TS) des Simulator Sickness Questionnaires werden die Summenscores der Subskalen aufaddiert (somit 21 Items) und mit dem Faktor 3.74 multipliziert (wodurch sich ein Range der Gesamtskala von 0 bis 235.62 ergibt): \(\text{TS} = \left(\sum_{\text{Itemscore}_N} + \sum_{\text{Itemscore}_O} + \sum_{\text{Itemscore}_D} \right) \times 3.74 \).

Die Betrachtung der Werte der Subskalen kann auch auf Defizite verschiedener technischer Teilsysteme hinweisen: Hohe Werte auf der Subskala Übelkeit weisen auf Probleme bezüglich der Bewegungsplattform oder auf Bewegungsverzögerungen hin. Auf problematische Eigenschaften des Sichtsystems (Field of View, Distanz zum Bildschirm oder Verzögerungen im Bild) deuten hohe Okulomotorikwerte hin. Hohe
Werte im Bereich Desorientierung können als Hinweis auf einen zu hohen Anteil vertikaler Inhalte in der Simulation gewertet werden (Drexler et al., 2004), welche unter anderem durch Rotationsbewegungen induziert werden. Desorientierung kann darüber hinaus auch entstehen, wenn die Person visuelle Hinweisreize auf einer Bewegung erhält, dabei aber ohne motorische Reize im Simulator sitzt (Kennedy et al., 2003).

Innerhalb einer Simulationsumgebung ist zudem davon auszugehen, dass Selektions- und Trainingseffekte zum Tragen kommen: Personen mit einer hohen Anfälligkeit für Motion Sickness (als Indikator für Simulator Sickness) werden nicht den Beruf des Piloten ergreifen (Selektionseffekt). Darüber hinaus gehören Simulationsexpositionen zur Pilotenausbildung und es setzen Gewöhnungseffekte ein, die das Erleben von Simulator Sickness reduzieren können (Trainingseffekt). Zum anderen unterscheiden sich die Erfahrungen der Flug- von denen einer Fahrsimulation z. B. hinsichtlich der Wahrnehmung der Eigenbewegung (Neukum & Grattenthaler, 2006). Auch die Expositionsdauer unterscheidet sich: Flugsimulationen dauern oftmals mindestens eine Stunde und können bis zu vier Stunden dauern, Fahrsimulationen hingegen sind meist deutlich kürzer als eine Stunde (Kennedy et al., 2003).

Trotz dieser Limitationen merken Kennedy et al. (2003) an, dass der Simulator Sickness Questionnaire eine gute prädiktive Validität aufweist und reliabler ist als objektive Verfahren, wie z.B. die Erfassung physiologischer Daten, ist.

3.4 Einflussfaktoren

Die Anfälligkeit für Simulator Sickness ist schwer einzuschätzen, da das Erleben von Simulator Sickness durch unterschiedliche individuelle und technologische Faktoren beeinflusst wird (Neukum & Grattenthaler, 2006), deren Vielfältigkeit die Abschätzung des Erlebens von Simulator Sickness erschweren (Jinjakam & Hamamoto, 2013). Im
 Folgenden werden Charakteristiken der Simulationsumgebung und der Fahraufgabe sowie Human Factors als Einflussfaktoren beschrieben. Die Differenzierung wurde von Kolasinski (1995) vorgeschlagen. Der Fokus liegt an dieser Stelle auf den Human Factors, welche Grundlage für die Forschungsfrage dieser Arbeit sind. Um einen Überblick über die Einflussfaktoren von Simulator Sickness zu erarbeiten, werden zunächst Charakteristiken der Simulationsumgebung (Kapitel 3.4.1) und der Fahraufgabe (Kapitel 3.4.2) skizziert. Anschließend werden Human Factors erläutert, welche mit dem Erleben von Simulator Sickness verbunden sind (Kapitel 3.4.3).

3.4.1 Charakteristiken der Simulationsumgebung

Simulator Sickness Symptome werden ebenfalls durch Verzögerungen begünstigt, die entstehen, wenn eine Versuchsperson eine Eingabe in der Simulation macht (z. B. Lenken oder Bremsen) und die Reaktion der Simulationsumgebung auf diese Handlung nicht unmittelbar erfolgt. Die Veränderungen im Sicht- und Bewegungsfeld des Simulators sind oft zeitverzögert nach der Eingabe der Versuchsteilnehmer (Pausch et al., 1992), was zu einem Konflikt zwischen den visuellen und vestibulären Sinnesinformationen führen kann. Dies kann entsprechend der sensorischen Konflikttheorie (siehe Kapitel 3.2.1) zu Simulator Sickness führen (Neukum & Grattenthaler, 2006).

3.4.2 Charakteristiken der Fahraufgabe

Einige Studien konnten nachweisen, dass auch die Gestaltung und die Art einer Kurve das Erleben von Simulator Sickness beeinflussen (Chrysler & Williams, 2005; Edwards, Creaser, Caird, Lamsdale & Chisholm, 2003; Mourant, Rengerajan, Cox, Li &

3.4.3 Human Factors

Hinsichtlich der Untersuchung von Geschlechtseffekten zeigte sich, dass Frauen mehr Simulator Sickness Symptome (als auch Motion Sickness als Indikator für das Simulator Sickness) erleben als Männer (Dobie et al., 2001; Golding, 2006; Kennedy et al., 1995; Park et al., 2006; Reason & Brand, 1975). Rizzo et al., (2003) konnten ebenfalls

Untersuchungen hinsichtlich der Auswirkung des Alters auf Motion Sickness (an dieser Stelle aufgrund der Konstruktähe zu Simulator Sickness (Kennedy et al., 1993) als Indikator für dieses herangezogen) zeigten, dass Personen zwischen 2 und 12 Jahren am anfälligsten für Motion Sickness sind. Anschließend nimmt diese Anfälligkeit im Verlauf der Lebensspanne kontinuierlich ab und ist ab einem Alter von 50 Jahren nur
noch selten nachzuweisen (Reason & Brand, 1975). Aktuellere Studien zeigten widersprüchliche Ergebnisse hinsichtlich der Beziehung zwischen dem Alter von Versuchspersonen und Simulator Sickness. Es gibt Untersuchungen, die herausfanden, dass jüngere Versuchspersonen mehr Simulator Sickness Symptome erleben als ältere, allerdings keine höheren Dropoutraten aufzeigen (Rizzo et al., 2003). Andere Untersuchungen zeigten hingegen, dass ältere Versuchspersonen in einem Simulator mit fester Basis eine höhere Wahrscheinlichkeit haben, Simulator Sickness zu entwickeln (Brooks et al., 2010, Hein, 1993) und eine Fahrsimulationsstudie eher aufgrund der Symptomschwere abbrechen als jüngere Versuchspersonen (Park et al., 2006). Park et al. (2006) fanden dabei einen Interaktionseffekt zwischen Alter und Geschlecht: In ihrer Untersuchung waren ältere Frauen (zwischen 70 - 90 Jahren) anfälliger für Dropouts aus einer Fahrsimulationsstudie (46.7 %) verglichen mit Männern dieses Alters (29.7 %) sowie Frauen (17.2 %) und Männern (9.0 %) zwischen 21 und 50 Jahren.

4 Die Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness

Ausgehend von Kennedy et al. (1993), die empfehlen, dass nur Personen mit einem unauffälligen Gesundheitszustand einer Simulationsumgebung ausgesetzt werden sollten, widmet sich dieses Kapitel einer Studie zur Beziehung zwischen aktuellen physischen sowie psychischen Beschwerden und Simulator Sickness. Zunächst werden *physische und psychische Beschwerden* definiert (Kapitel 4.1) und von Krankheitssymptomen abgegrenzt, anschließend wird der *Forschungsstand* aufgearbeitet (Kapitel 4.2), aus welchem sich die *Forschungshypothesen* ableiten (Kapitel 4.3). Darauf aufbauend wird die *Methode* dieser Untersuchung beschrieben (Kapitel 4.4) und die *Ergebnisse* werden dargestellt (Kapitel 4.5). In der anschließenden *Diskussion* werden die Ergebnisse interpretiert und Limitationen sowie Stärken der Studie kritisch beurteilt (Kapitel 4.6).

4.1 Physische und psychische Beschwerden

4.2 Forschungsstand

Es liegen bislang keine Forschungsergebnisse über die Beziehung physischer und psychischer Beschwerden zu Simulator Sickness vor. Allerdings gab es bereits Forschungsbemühungen zum Zusammenhang zwischen Simulator Sickness und Krankheit sowie physischer und psychischer Beeinträchtigungen und Störungen, die jeweils als Indikatoren für physische und psychische Beschwerden dienen und an dieser Stelle vorgestellt werden.

4.2.1 Forschungsstand physische Beschwerden

Ein Vergleich zwischen Personen ohne neurologische Störungen, Schlaganfallpatienten und Personen mit neurologischen Störungen zeigte, dass Versuchspersonen mit neurologischen Störungen (28 %) und Schlaganfallpatienten (25 %) höhere Wahrscheinlichkeiten haben, ein Simulationsexperiment abzubrechen, als Personen ohne neurologische Störungen (17 %). Diese Effekte waren allerdings nicht signifikant. Die Autoren kontrollierten die Effekte für Geschlecht und Alter. Nach dieser Kontrolle zeigte sich, dass Versuchspersonen mit neurologischen Störungen und Schlaganfallpatienten signifikant höhere Wahrscheinlichkeiten hatten, ein Simulationsexperiment aufgrund von Simulator Sickness Symptomen vorzeitig abzubrechen. Die Autoren berichteten einen Odds Ratio von 2.41 für diesen Effekt, was einem η^2 von .06 und somit einem kleinen Effekt entspricht. Als möglichen Grund für die zunächst nicht gefundenen Unterschiede zwischen den Untersuchungsgruppen führten die Autoren neben sozialer Erwünschtheit an, dass Personen mit neurologischen Störungen möglicherweise versuchen, Symptome der Simulator Sickness zu verbergen und trotz des Erlebens dieser die Simulationsfahrt beenden (Rizzo et al., 2003).

Whitney et al. (2006) untersuchten, wie sich Personen mit und ohne Gleichgewichts-störungen in einem virtuellen Supermarkt orientierten. Dazu wurden die

4.2.2 Forschungsstand zur psychischen Beschwerden

An dieser Stelle werden die Ergebnisse verschiedener Untersuchungen zur Beziehung zwischen Verfolgungswahn, Demenz sowie posttraumatischen Belastungsstörungen (als Indikatoren für psychische Beschwerden) und Simulator Sickness betrachtet. Fornells-Ambrojo et al. (2008) widmeten sich in ihrer Untersuchung der Fragestellung, ob es aus Sicherheits- und Akzeptanzgründen realisierbar ist, Personen, die aktuell unter Verfolgungs-wahn leiden, einer Untersuchung in einer virtuellen Realität auszusetzen. Die Versuchs-personen wurden gebeten, eine U-Bahn zu erkunden und zu beschreiben, was sie von den virtuellen Personen denken und was diese über die Versuchsperson denken könnten. Unter anderem verglichen die Autoren dabei

In einer anderen Untersuchung (Flynn et al., 2003) wurden Versuchspersonen \((N = 6)\) mit Demenz gebeten, nach einer Simulationsexposition zu bewerten, ob sie mittels Joystick durch die Umgebung navigieren konnten, ob sie die dargestellten Objekte als realistisch betrachteten und ob sie denken, dass sie die Kontrolle über die Handlungen in der Simulationsumgebung hatten. In einer zweiten Sitzung wurden die Versuchspersonen gebeten, einfache Aufgaben (z. B. ein Telefonat führen oder einen Ort zum Sitzen und Ausruhen finden) in einem virtuellen Park zu lösen. Die Deskriptiveergebnisse bezüglich des Erlebens von Simulator Sickness zeigten dabei keine eindeutigen Tendenzen: Bei zwei Versuchspersonen wurde nach der ersten Simulationsexposition ein höherer Okulomotorikwert festgestellt als vor der ersten Exposition, bei zwei weiteren Versuchspersonen wurden im Vergleich zur Baseline vor der ersten Simulationserfahrung nach dieser ein niedrigerer Okulomotorikwert verzeichnet. Es konnten keine signifikanten Unterschiede zwischen den Übelkeits-, Okulomotorik- und Desorientierungsskalen vor und nach der ersten Simulations-aufgabe

Bei einer weiteren Untersuchung einer virtuellen Konfrontationstherapie wurden phobische und nichtphobische Versuchspersonen hinsichtlich des Erlebens von Simulator Sickness untersucht (Robillard, Bouchard, Fournier & Renaud, 2003). Es zeigten sich keine signifikanten Unterschiede zwischen den Versuchspersonengruppen auf den Skalen des SSQs (\(\eta^2 \) lag zwischen .02 und .10, was geringen Effekten entspricht; Robillard et al., 2003). Eine andere Studie phobischer Patienten in einer virtuellen Konfrontationstherapie zeigte, dass Simulator Sickness mit steigender Expositionsdauer stärker erlebt wurde (Bouchard, St.-Jacques, Renaud & Wiederhold, 2009). Dabei wurden die Versuchspersonen alle 5 Minuten mit dem Item „Wie stark erleben sie Simulator Sickness

Zusammenfassend kann an dieser Stelle festgehalten werden, dass es noch keine klaren Ergebnisse hinsichtlich psychischer Störungen (als Indikatoren für psychische Beschwerden) und deren Beziehung zu Simulator Sickness gibt, was unter anderem auf geringe Stichprobengrößen zurückzuführen ist (siehe z. B. Beck et al., 2007). Dennoch zeigten die bisherigen Untersuchungen Tendenzen, die auf ein stärkeres Erleben von Simulator Sickness verglichen mit psychisch gesunden Personen hinweisen (z. B. Beck et al., 2007; Freeman et al., 2010). Dies unterstreicht die Relevanz der nachfolgenden Studie, die sich neben der Untersuchung aktueller physischer Beschwerden auch mit aktuellen psychischen Beschwerden und der Beziehung zu Supervisor Sickness befasst.

4.3 Forschungshypothesen und Forschungsfrage

Basierend auf den Erkenntnissen vorangegangener Forschung ergeben sich zwei Forschungshypothesen:

H1: Je mehr *physische Beschwerden* eine Person berichtet, umso stärker ist Simulator Sickness in einer Fahrssimulationsumgebung ausgeprägt.

H2: Je mehr *psychische Beschwerden* eine Person berichtet, umso stärker ist Simulator Sickness in einer Fahrssimulationsumgebung ausgeprägt.

Einige Untersuchungen fanden einen Unterschied zwischen Männern und Frauen hinsichtlich der Ausprägung von Simulator Sickness mit dem Konsens, dass Frauen Simulator Sickness stärker erleben als Männer (z. B. Golding, 2006; Liu et al., 1999; Rizzo et al., 2003;). Diese werden darauf zurückgeführt, dass Frauen generell eher Symptome zugeben (Biocca, 1992; Rebenitsch & Owen, 2014) und dass Frauen ein weiteres Field of View haben, durch welches ein Flickern eher wahrgenommen werden
kann als bei einem engeren Field of View (LaViola Jr., 2000). Da es bisher noch keine Theorie und keine Untersuchungen zum Geschlechtereffekt der Beziehung der untersuchten Variablen gibt, soll an dieser Stelle explorativ geprüft werden, ob Geschlechtsunterschiede auch hinsichtlich der Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness bestehen. Zu diesem Zweck wurde die folgende Forschungsfrage erstellt:

FF1: Gibt es Geschlechtstünterschiede in der Beziehung zwischen physischen sowie psychischen Beschwerden und Simulator Sickness?

4.4 Methode

Zur Darstellung der Methodik erfolgt zunächst eine Stichprobenbeschreibung (Kapitel 4.4.1), anschließend wird das Design der Untersuchung benannt (Kapitel 4.4.2). Darauf aufbauend werden die Messmethoden (Kapitel 4.4.3), die Simulationsumgebung (Kapitel 4.4.4) das Vorgehen während der Untersuchung (Kapitel 4.4.5) sowie die statistische Datenanalyse (Kapitel 4.4.6) beschrieben.

4.4.1 Stichprobe

N = 94 Versuchspersonen wurden über den Mailverkeiler der Technischen Universität Ilmenau sowie über persönliche Kontakte in eine Selbstselektionsstichprobe rekrutiert. Aufgrund fehlender Werte wurden *n = 3* Personen aus der Analyse ausgeschlossen, sodass die finale Stichprobe aus *N = 91* (*M_{Alter} = 24.84* Jahre; *SD_{Alter} = 4.79* Jahre, 26% Frauen) Personen bestand. Tabelle 3 gibt einen detaillierten Überblick über die soziodemographischen Charakteristiken der Stichprobe. Wie in dieser Tabelle ersichtlich, besteht die Stichprobe zu einem großen Anteil aus männlichen (74%) Teilnehmern. Zudem sind die Versuchspersonen jung (89% sind zwischen 18 und 29 Jahren alt) und haben einen hohen Bildungsgrad (alle Versuchspersonen haben das Abitur oder einen Hochschulabschluss).

4.4.2 Design

Bei dieser Studie handelte es sich um eine korrelative Querschnittsuntersuchung im Labor ohne Messwiederholung.
4.4.3 Messmethoden

In dieser Untersuchung wurden zwei Verfahren verwendet: Der *Test zur Erfassung verkehrsrelevanter Persönlichkeitsbeschreibung* (TVP; Spicher & Hänsgen, 2000; Kapitel 4.4.3.1) zur Erfassung physischer und psychischer Beschwerden und der *Simulator Sickness Questionnaire* (SSQ; Kennedy et al., 1993; Kapitel 4.4.3.2) zur Erfassung von Simulator Sickness. Diese werden nachfolgend kurz beschrieben.

Tabelle 3
Soziodemographische Charakteristiken der Stichprobe (N = 91)

<table>
<thead>
<tr>
<th>Charakteristik</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiblich</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>Männlich</td>
<td>67</td>
<td>74</td>
</tr>
<tr>
<td>Alter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>81</td>
<td>89</td>
</tr>
<tr>
<td>30-39</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>40-49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50-59</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>60-69</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beziehungsstatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alleinstehend</td>
<td>89</td>
<td>98</td>
</tr>
<tr>
<td>Verheiratet</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Geschieden/Verwitwet</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bildung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauptschulabschluss</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Realschul-/Regelschulabschluss</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abitur</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>Bachelor</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>Master</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Diplom/Staatsexamen</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Promotion</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Anmerkung. Alle Prozentangaben sind gerundet.
4.4.3.1 Test zur Erfassung verkehrsrelevanter Persönlichkeitsbeschreibung

Tabelle 4
Itemanzahl, Range der Itemantworten und Reliabilitätswerte (Cronbachs α) der Subskalen des TVPs und des SSQs

<table>
<thead>
<tr>
<th>Skala</th>
<th>Anzahl der Items</th>
<th>Range Itemantworten</th>
<th>Cronbachs α</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physische Beschwerden</td>
<td>10</td>
<td>1 – 4</td>
<td>.770</td>
</tr>
<tr>
<td>Psychische Beschwerden</td>
<td>9</td>
<td>1 – 4</td>
<td>.819</td>
</tr>
<tr>
<td>SSQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übelkeit</td>
<td>7</td>
<td>0 – 3</td>
<td>.754</td>
</tr>
<tr>
<td>Okulomotorik</td>
<td>7</td>
<td>0 – 3</td>
<td>.836</td>
</tr>
<tr>
<td>Desorientierung</td>
<td>7</td>
<td>0 – 3</td>
<td>.754</td>
</tr>
<tr>
<td>Gesamtskala</td>
<td>21</td>
<td>0 – 3</td>
<td>.913</td>
</tr>
</tbody>
</table>
4.4.3.2 Simulator Sickness Questionnaire (SSQ)

4.4.4 Simulationsumgebung

Im Folgenden werden der verwendete Fahrsimulator (Kapitel 4.4.4.1) und die verwendete Fahraufgabe (Kapitel 4.4.4.2) beschrieben.

4.4.4.1 Fahrsimulator

In dieser Untersuchung wurde eine Sitzkiste mit fester Basis genutzt. Die Sitzkiste bestand aus einem VW T5 Sitz, einem Lenkrad (Thrustmaster TX Racing Wheel Leather Edition), Pedalen und einer manuellen Gangschaltung (Trust-master TH8A shifter). Die Simulation wurde über einen Intel Xeon E5-2670 – PC (64GB 2133Hz DDR4 RAM, Nvidia Quadro M6000 12GB) implementiert und über 2 Barco F 50 – Projektoren (120Hz-active-stereo) wiedergegeben. Der Multifunktionsanzeiger eines realen Fahrzeugs nachempfunden, zeigte ein Projektor in der Sitzkiste die Geschwindigkeit sowie den Gang, in welchem die Versuchsperson fährt. Der zweite Projektor projizierte die Simulationsaufgabe auf eine $3.60m \times 2.25m$ Leinwand (Weidner & Broll, 2017). Abbildung 1 zeigt einen Querschnitt des gebauten Simulators und Abbildung 2 zeigt den Simulator in der Fahrsimulationsumgebung.
4.4.4.2 Fahraufgabe

Abb. 3. Verwendeter Lane Change Task aus Versuchspersonensicht, mit freundlicher Genehmigung von F. Weidner.

Abbildung 4 zeigt den Kurs des Lane Change Tasks. Auf insgesamt 10 Geraden werden den Versuchspersonen jeweils 10 Schilder (insgesamt 100 Schilder) präsentiert. In den Kurven werden dabei keine Spurwechsel verlangt. Die ersten beiden Geraden dienten als Trainingsstrecken, um den Versuchspersonen die Möglichkeit zu geben, sich an die Simulationsumgebung zu gewöhnen. Die Versuchspersonen verbrachten ca. 20 Minuten mit der Bewältigung des Lane Change Tasks.

4.4.5 Vorgehen

Alle Versuchspersonen wurden zu Beginn ihrer Teilnahme an der Untersuchung schriftlich über die Inhalte der Studie und ihre Rechte (Anhang 2) informiert. Die Versuchs-personeninformation wurde entsprechend der Empfehlungen zu ethisch vertretbarer Forschung in Fahrsimulationsumgebungen von Caird und Horrey (2011)

4.4.6 Statistische Datenanalyse

4.5 Ergebnisse

Die Darstellung der Ergebnisse dieser Untersuchung erfolgt in mehreren Schritten: Zunächst erfolgt eine deskriptivstatistische Auswertung der einzelnen Symptome des Simulator Sickness Questionnaires (Kapitel 4.5.1) sowie eine deskriptive und korrelative Auswertung der verwendeten Subskalen des TVPs und des SSQs (Kapitel 4.5.2). Darauf aufbauend werden die Ergebnisse der multiplen Regressionsanalysen zur Untersuchung des Zusammenhangs zwischen physischen und psychischen Beschwerden (Prädiktorvariablen) und Simulator Sickness (Kriteriumsvariablen) dargestellt (Kapitel
4.5.3). Abschließend werden die Ergebnisse der genannten Analysen getrennt nach Geschlecht beschrieben (Kapitel 4.5.4).

4.5.1 Deskriptivstatistiken der einzelnen Simulator Sickness Symptome

In Tabelle 5 werden die Mittelwerte, Konfidenzintervalle und Standardabweichungen der erhobenen Simulator Sickness Symptome berichtet.

Tabelle 5
Mittelwerte, Konfidenzintervalle und Standardabweichungen der Simulator Sickness Symptome

<table>
<thead>
<tr>
<th>Symptom</th>
<th>M</th>
<th>95% KI</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müdigkeit</td>
<td>0.87</td>
<td>[0.67; 1.07]</td>
<td>0.99</td>
</tr>
<tr>
<td>Überanstrengung der Augen</td>
<td>0.84</td>
<td>[0.63; 1.04]</td>
<td>0.99</td>
</tr>
<tr>
<td>Konzentrationsschwierigkeiten</td>
<td>0.73</td>
<td>[0.55; 0.92]</td>
<td>0.92</td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>0.59</td>
<td>[0.42; 0.78]</td>
<td>0.92</td>
</tr>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>0.59</td>
<td>[0.42; 0.77]</td>
<td>0.91</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td>0.56</td>
<td>[0.37; 0.75]</td>
<td>0.90</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>0.55</td>
<td>[0.38; 0.73]</td>
<td>0.79</td>
</tr>
<tr>
<td>Kopfdruck</td>
<td>0.55</td>
<td>[0.37; 0.75]</td>
<td>0.92</td>
</tr>
<tr>
<td>Gleichgewichtstörung</td>
<td>0.53</td>
<td>[0.05; 0.20]</td>
<td>0.36</td>
</tr>
<tr>
<td>Schwindel (Augen auf)</td>
<td>0.49</td>
<td>[0.30; 0.71]</td>
<td>0.99</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>0.48</td>
<td>[0.30; 0.68]</td>
<td>0.92</td>
</tr>
<tr>
<td>Schwindel (Augen zu)</td>
<td>0.45</td>
<td>[0.34; 0.76]</td>
<td>1.00</td>
</tr>
<tr>
<td>Erhöhter Speichelfluss</td>
<td>0.40</td>
<td>[0.22; 0.57]</td>
<td>0.86</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>0.38</td>
<td>[0.23; 0.56]</td>
<td>0.81</td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>0.33</td>
<td>[0.18; 0.51]</td>
<td>0.82</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>0.18</td>
<td>[0.07; 0.31]</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Es zeigte sich, dass Müdigkeit ($M = 0.87; SD = 0.99$), Überanstrengung der Augen ($M = 0.84; SD = 0.99$) und Konzentrationsschwierigkeiten ($M = 0.73; SD = 0.92$) die am stärksten ausgeprägten Symptome waren. Dies entspricht den Ergebnissen von Neukum und Grattenthaler (2006), welche als am stärksten ausgeprägte Symptome Müdigkeit, Überanstrengung der Augen, allgemeines Unwohlsein und Konzentrationschwierigkeiten identifizieren konnten. Alle genannten Items lassen sich der Subskala Okulomotorik zuordnen (siehe Kapitel 3.3.2 sowie Kennedy et al., 1993). Am schwächsten ausgeprägt waren Kopfschmerzen ($M = 0.38; SD = 0.81$), Magen macht sich bemerkbar ($M = 0.33; SD = 0.82$) sowie Aufstoßen ($M = 0.18; SD = 0.61$). Die letzteren beiden Symptome lassen sich der Subskala Übelkeit zuordnen, Kopfschmerzen hingegen gehören zur Subskala Okulomotorik (siehe Kapitel 3.3.2 sowie Kennedy et al., 1993).

4.5.2 Deskriptivstatistiken und Korrelationen physischer und psychischer Beschwerden sowie der Simulator Sickness Skalen

Physische Beschwerden sind im Mittel weniger stark ausgeprägt als psychische Beschwerden. Ein Einstichproben-\(t\)-Test konnte zeigen, dass dieser Unterschied signifikant ist ($t(90) = -8.87, p < .001, d = .93; 1 - \beta = .99$). Dieser Unterschied zeigte einen großen Effekt. Der \(t\)-Test zeigte zudem eine hohe Power. Die beiden Prädiktorvariablen korrelieren dennoch hoch miteinander ($r = .700, p < .001; 1 - \beta = .99$; siehe Tabelle 6), was bedeutet, dass sie positiv zusammenhängen (eine Person mit hohen Werten im Bereich physischer Beschwerden hat meist auch hohe Werte im Bereich psychischer Beschwerden), aber dennoch unterschiedlich stark ausgeprägt sind. Die Korrelation ging ebenfalls mit einer hohen Teststärke einher. Tabelle 6 zeigt die Mittelwerte, Standardabweichungen und Korrelationen von Prädiktor- und Kriteriumsvariablen.
Tabelle 6
Mittelwerte, Standardabweichungen und Korrelationen der Prädiktor- und KriteriumsvARIABLEN

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>95% KI</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prädiktoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Physische</td>
<td>1.40</td>
<td>[1.32, 1.48]</td>
<td>0.39</td>
<td>.700*</td>
<td>.496*</td>
<td>.528*</td>
<td>.618*</td>
<td>.599*</td>
<td></td>
</tr>
<tr>
<td>Beschwerden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Psychische</td>
<td>1.75</td>
<td>[1.65, 1.86]</td>
<td>0.53</td>
<td>—</td>
<td>.588*</td>
<td>.695*</td>
<td>.725*</td>
<td>.735*</td>
<td></td>
</tr>
<tr>
<td>Beschwerden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KriteriumsvARIABLEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Übelkeit</td>
<td>31.03</td>
<td>[24.01, 39.21]</td>
<td>35.63</td>
<td>—</td>
<td>.682*</td>
<td>.773*</td>
<td>.882*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Okulomotorik</td>
<td>34.57</td>
<td>[27.49, 41.98]</td>
<td>34.76</td>
<td>—</td>
<td>.812*</td>
<td>.920*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Desorientierung</td>
<td>50.94</td>
<td>[39.32, 62.72]</td>
<td>57.96</td>
<td>—</td>
<td></td>
<td>.942*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Gesamtskala SSQ</td>
<td>42.91</td>
<td>[34.28, 51.74]</td>
<td>42.76</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung. *p < .05; KI = Konfidenzintervall, Range physische und psychische Beschwerden: 1 – 4; Range Übelkeit: 0 – 200.34; Range Okulomotorik: 0 – 159.18; Range Desorientierung: 0 – 292.32, Range Gesamtskala SSQ: 0 – 235.62.

gleichen Items gemessen werden (zur Erklärung siehe Tab. 2, Kapitel 3.3.2). Für alle Korrelationen konnte eine hohe Teststärke \((1 - \beta > .90) \) ermittelt werden.

4.5.3 Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness

Die schrittweisen multiplen Regressionsanalysen zeigten keine Beziehung zwischen physischen Beschwerden und Übelkeit, Okulomotorik sowie der Gesamtskala des SSQs auf. Physische Beschwerden wurden daher aus diesen Regressionsmodellen ausgeschlossen. Für psychische Beschwerden hingegen konnte für jede der genannten Kriteriumsvariablen eine Beziehung großer Effektstärke gefunden werden. Für die Subskala Desorientierung zeigte die schrittweise multiple Regressionsanalyse, dass sowohl physische als auch psychische Beschwerden als Prädiktoren betrachtet werden können. Physische Beschwerden zeigten eine mittlere Effektgröße \((r_{sp} = .22) \), psychische Beschwerden hingegen eine große Effektgröße \((r_{sp} = .52) \).

Die Tabellen 7 – 13 zeigen die Ergebnisse der schrittweisen multiplen Regressionsanalysen sowie die Übersicht über die ausgeschlossenen Variablen. In der nachfolgenden Darstellungen (Tabelle 7 und 8) ist zu erkennen, dass psychische Beschwerden als signifikanter Prädiktor mit einer großen Effektgröße \((\beta = .59; \ t(89) = 6.85; \ p < .001; \ r_{sp} = .59) \) für Übelkeit in das Regressionsmodell einging, physische Beschwerden konnten nicht als signifikanter Prädiktor identifiziert werden konnte. Die entsprechenden Koeffizienten der ausgeschlossenen Variable sind in Tabelle 8 zu finden. Es konnte zudem festgestellt werden, dass für das signifikante Regressionsmodell eine große Teststärke zu verzeichnen ist \((1 - \beta > .99) \).

<table>
<thead>
<tr>
<th>Variable</th>
<th>(B)</th>
<th>(95% \text{ KI})</th>
<th>(\beta)</th>
<th>(t)</th>
<th>(p)</th>
<th>(r_{sp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>39.68</td>
<td>[28.17, 51.19]</td>
<td>0.59</td>
<td>6.85</td>
<td><.001</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Anmerkung. \(R^2 = .345 \) \((N = 91, \ p < .001) \); \(VIF = 1.00; \ 1 - \beta > .99; \) \(\text{KI} = \) Konfidenzintervall.
Auch für die Skala Okulomotorik wurden ebenfalls psychische Beschwerden als signifikanter Prädiktor mit hoher Effektgröße (β = .70, t(89) = 9.13, p < .001; r_sp = .70) in das Regressionsmodell aufgenommen (Tabelle 9). Das Modell zeigte ebenfalls eine hohe Teststärke (1 – β > .99). Physische Beschwerden wurden wegen fehlender Signifikanz aus dem Modell ausgeschlossen (Tabelle 10).

Tabelle 9
Multiple Regressionsanalyse mit psychischen Beschwerden als Prädiktor für Okulomotorik

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische</td>
<td>45.81</td>
<td>[35.84, 55.79]</td>
<td>0.70</td>
<td>9.13</td>
<td><.001</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Anmerkung. \(R^2 = .483 \) (N = 91, p < .001); \(VIF = 1.00; \) 1 – β > .99; KI = Konfidenzintervall.

Tabelle 10
Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Okulomotorik als Kriteriumsvariable

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_sp</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische</td>
<td>0.08</td>
<td>0.77</td>
<td>.444</td>
<td>0.08</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Für die Subskala Desorientierung zeigte sich ein anderes Muster. Sowohl physische ($\beta = .22; t(89) = 2.16; p = .034; r_{sp} = .22$, Effekt mittlerer Stärke) als auch psychische Beschwerden mit ($\beta = .57; t(89) = 5.74; p < .001; r_{sp} = .52$, Effekt großer Stärke) konnten als signifikante Prädiktoren in das Regressionsmodell aufgenommen werden (Tabelle 11).

Tabelle 11

Regressionsanalyse mit physischen und psychischen Beschwerden als Prädiktoren für Desorientierung

<table>
<thead>
<tr>
<th>Variablen</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>31.74</td>
<td>[2.51, 60.97]</td>
<td>0.22</td>
<td>2.16</td>
<td>.034</td>
<td>0.22</td>
</tr>
<tr>
<td>Psychische Beschwerden</td>
<td>63.09</td>
<td>[41.24, 84.95]</td>
<td>0.57</td>
<td>5.74</td>
<td><.001</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .550$ ($N = 91$, $p = .034$); $VIF = 1.96$; $1 - \beta > .99$; KI = Konfidenzintervall.

Für das Regressionsmodell mit physischen und psychischen Beschwerden als Prädiktoren für Desorientierung konnte ebenfalls eine hohe Teststärke verzeichnet werden ($1 - \beta > .99$).

Für die Gesamtskala des Simulator Sickness Questionnaires zeigte sich, wie auch bei den Subskalen Übelkeit und Okulomotorik, dass psychische Beschwerden mit einem Effekt großer Stärke als signifikanter Prädiktor in das Regressionsmodell einging ($\beta = .74; t(89) = 10.22; p < .001; r_{sp} = .74$, Tabelle 12), physische Beschwerden allerdings nicht (Tabelle 13). Auch dieses Modell zeigte eine hohe Teststärke ($1 - \beta > .99$).
Tabelle 12

Regressionsanalyse mit psychischen Beschwerden als Prädiktor für die Gesamtskala des SSQ

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>59.52</td>
<td>[47.99, 71.15]</td>
<td>0.74</td>
<td>10.22</td>
<td><.001</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .540$ ($N = 91, \, p < .001$); $VIF = 1.00$; $1 - \beta > .99$; KI = Konfidenzintervall.

Tabelle 13

Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit der Gesamtskala des SSQs als Kriteriumsvariable

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>0.17</td>
<td>1.67</td>
<td>.099</td>
<td>0.18</td>
<td>2.00</td>
</tr>
</tbody>
</table>

4.5.4 Deskriptivstatistiken sowie Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness getrennt nach Geschlecht

Wie in Tabelle 14 zu erkennen ist, sind die Reliabilitätskoeffizienten für alle Skalen sowohl für Männer als auch Frauen ausreichend hoch, um die Skalen in weitere Berechnungen zu inkludieren. Die Reliabilitätskoeffizienten in der weiblichen Substichprobe sind leicht höher als die der männlichen Substichprobe.

Tabelle 14

Reliabilitätswerte (Cronbachs α) der verwendeten Skalen getrennt nach Geschlecht

<table>
<thead>
<tr>
<th>Skala</th>
<th>Männer (n = 67)</th>
<th>Frauen (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physische Beschwerden</td>
<td>.695</td>
<td>.832</td>
</tr>
<tr>
<td>Psychische Beschwerden</td>
<td>.751</td>
<td>.875</td>
</tr>
<tr>
<td>SSQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übelkeit</td>
<td>.722</td>
<td>.790</td>
</tr>
<tr>
<td>Okulomotorik</td>
<td>.821</td>
<td>.847</td>
</tr>
<tr>
<td>Desorientierung</td>
<td>.717</td>
<td>.780</td>
</tr>
<tr>
<td>Gesamtskala SSQ</td>
<td>.898</td>
<td>.926</td>
</tr>
</tbody>
</table>

Tabelle 15

Mittelwerte, Konfidenzintervalle und Standardabweichungen der einzelnen Simulator Sickness Symptome, der Simulator Sickness Subskalen sowie der Gesamtskala und physischer sowie psychischer Beschwerden getrennt nach Geschlecht

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Männer (n = 67)</th>
<th>Frauen (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>95 % KI</td>
</tr>
<tr>
<td>Überanstrengung der Augen</td>
<td>0.78</td>
<td>[0.57; 1.00]</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>0.73</td>
<td>[0.54; 0.96]</td>
</tr>
<tr>
<td>Konzentrations-</td>
<td>0.63</td>
<td>[0.43; 0.85]</td>
</tr>
<tr>
<td>schwierigkeiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>0.58</td>
<td>[0.37; 0.84]</td>
</tr>
<tr>
<td>Verschwommeness Sehen</td>
<td>0.52</td>
<td>[0.33; 0.75]</td>
</tr>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>0.51</td>
<td>[0.31; 0.82]</td>
</tr>
<tr>
<td>Gleichgewichtstörungen</td>
<td>0.48</td>
<td>[0.27; 0.73]</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>0.45</td>
<td>[0.30; 0.61]</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>0.45</td>
<td>[0.25; 0.67]</td>
</tr>
<tr>
<td>Kopfdruck</td>
<td>0.40</td>
<td>[0.24; 0.63]</td>
</tr>
<tr>
<td>Erhöhter Speichelfluss</td>
<td>0.33</td>
<td>[0.16; 0.54]</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>0.30</td>
<td>[0.15; 0.49]</td>
</tr>
<tr>
<td>Schwindel (Augen zu)</td>
<td>0.30</td>
<td>[0.13; 0.49]</td>
</tr>
</tbody>
</table>

Kopfschmerzen
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Wert</th>
<th>Konfidenzintervall</th>
<th>Mittelwert</th>
<th>Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwindel</td>
<td>0.30</td>
<td>[0.12; 0.51]</td>
<td>0.76</td>
<td>[0.50; 1.33]</td>
</tr>
<tr>
<td>(Augen auf)</td>
<td></td>
<td></td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>0.24</td>
<td>[0.09; 0.43]</td>
<td>0.74</td>
<td>[0.25; 0.97]</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>0.22</td>
<td>[0.07; 0.43]</td>
<td>0.69</td>
<td>[0.00; 0.20]</td>
</tr>
<tr>
<td>Subskala Desorientierung</td>
<td>42.18</td>
<td>[30.75; 54.23]</td>
<td>75.40</td>
<td>[48.14; 71.80]</td>
</tr>
<tr>
<td>Gesamtskala SSQ</td>
<td>37.01</td>
<td>[28.08; 49.89]</td>
<td>59.37</td>
<td>[38.35; 53.04]</td>
</tr>
<tr>
<td>Subskala Okulomotorik</td>
<td>30.66</td>
<td>[23.76; 38.58]</td>
<td>45.48</td>
<td>[29.70; 41.88]</td>
</tr>
<tr>
<td>Subskala Übelkeit</td>
<td>26.91</td>
<td>[19.51; 34.74]</td>
<td>42.53</td>
<td>[25.45; 43.03]</td>
</tr>
<tr>
<td>Psychische Beschwerden</td>
<td>1.66</td>
<td>[1.56; 1.77]</td>
<td>2.00</td>
<td>[1.74; 2.26]</td>
</tr>
<tr>
<td>Physische Beschwerden</td>
<td>1.34</td>
<td>[1.27; 1.42]</td>
<td>1.58</td>
<td>[1.39; 0.50]</td>
</tr>
</tbody>
</table>

Anmerkung. KI = Konfidenzintervall. Range der einzelnen Simulator Sickness Symptome: 0 – 3; Range Übelkeit: 0 – 200.34; Range Okulomotorik: 0 – 159.18; Range Desorientierung: 0 – 292.32; Range Gesamtskala SSQ: 0 – 235.62; Range physische und psychische Beschwerden: 1 – 4. Sortierung der einzelnen Symptome, der Skalen des Simulator Sickness Questionnaire und der psychischen und physischen Beschwerden, jeweils absteigend nach der Höhe der Mittelwerte der männlichen Teilstichprobe.

Tabelle 16

<table>
<thead>
<tr>
<th>Symptom / Subskala</th>
<th>t(89)</th>
<th>p</th>
<th>Cohens d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überanstrengung der Augen</td>
<td>0.95</td>
<td>.346</td>
<td>.22</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>1.95</td>
<td>.059</td>
<td>.54</td>
</tr>
<tr>
<td>Konzentrationsschwierigkeiten</td>
<td>1.71</td>
<td>.092</td>
<td>.51</td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>0.20</td>
<td>.846</td>
<td>.05</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td>0.67</td>
<td>.502</td>
<td>.17</td>
</tr>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>1.33</td>
<td>.191</td>
<td>.35</td>
</tr>
<tr>
<td>Gleichgewichtsstörungen</td>
<td>0.79</td>
<td>.432</td>
<td>.19</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>2.08</td>
<td>.040*</td>
<td>.49</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>0.56</td>
<td>.578</td>
<td>.14</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>2.18</td>
<td>.037*</td>
<td>.63</td>
</tr>
<tr>
<td>Erhöhter Speichelfluss</td>
<td>1.11</td>
<td>.273</td>
<td>.29</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>1.45</td>
<td>.156</td>
<td>.41</td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>1.58</td>
<td>.124</td>
<td>.42</td>
</tr>
<tr>
<td>Schwindel (Augen auf)</td>
<td>2.58</td>
<td>.015*</td>
<td>.79</td>
</tr>
<tr>
<td>Schwindel (Augen zu)</td>
<td>2.35</td>
<td>.025*</td>
<td>.68</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>-1.93</td>
<td>.057</td>
<td>.30</td>
</tr>
<tr>
<td>Subskala Desorientierung</td>
<td>2.09</td>
<td>.045*</td>
<td>.59</td>
</tr>
<tr>
<td>Gesamtskala SSQ</td>
<td>1.91</td>
<td>.066</td>
<td>.54</td>
</tr>
<tr>
<td>Subskala Okulomotorik</td>
<td>1.53</td>
<td>.123</td>
<td>.43</td>
</tr>
<tr>
<td>Subskala Übelkeit</td>
<td>1.63</td>
<td>.114</td>
<td>.44</td>
</tr>
<tr>
<td>Psychische Beschwerden</td>
<td>2.26</td>
<td>.031*</td>
<td>.65</td>
</tr>
<tr>
<td>Physische Beschwerden</td>
<td>2.15</td>
<td>.040*</td>
<td>.63</td>
</tr>
</tbody>
</table>

Es zeigte sich, dass Frauen signifikant mehr Schwitzen \((t(89) = 2.08; p < .045; d = .49; 1 - \beta = .66)\), Kopfdruck \((t(89) = 2.18; p < .045; d = .63; 1 - \beta = .84)\) und Schwindel bei geschlossenen Augen \((t(89) = 2.35; p < .045; d = .68; 1 - \beta = .88)\) sowie geöffneten Augen \((t(89) = 2.58; p < .045; d = .79; 1 - \beta = .95)\) erleben. Diese Unterschiede zeigten jeweils einen mittleren Effekt bei einer geringen (lediglich für das Item Schwitzen) bis hohen Teststärke. Bis auf das Item Schwitzen laden die genannten Items auf der SSQ-Subskala Desorientierung, welche ebenfalls einen mittleren signifikanten Effekt des Geschlechtsunterschieds zeigt \((t(89) = 2.09; p < .045; d = .59; 1 - \beta = .79; \text{Teststärke ausreichend})\). Frauen zeigten auf dieser Subskala signifikant höhere Werte als Männer. Des Weiteren erleben Frauen signifikant mehr physische \((t(89) = 2.15; p < .045; d = .63; 1 - \beta = .84)\) und psychische Beschwerden \((t(89) = 2.26; p < .045; d = .65; 1 - \beta = .86)\). Auch für diese Variablen zeigten sich hohe Effektstärken und eine ausreichende Teststärke.

In Tabelle 17 sind die Korrelationen der Prädiktor- und der Kriteriumsvariablen getrennt nach Geschlecht abgebildet. Es ist zu erkennen, dass alle Korrelationen der weiblichen Stichprobe höher sind als die in der männlichen Stichprobe. Wie in der Gesamtstichprobe auch korrelieren in beiden Substichproben die Prädiktor- und die Kriteriumsvariablen untereinander hoch. In der männlichen Stichprobe korrelieren physische und psychische Beschwerden mit einer mittleren bis großen Effektgröße signifikant mit allen Simulator Sickness Subskalen. In der weiblichen Stichprobe sind alle Korrelationen zwischen Prädiktor- und Kriteriumsvariablen hoch ausgeprägt. Alle Korrelationen weisen in beiden Teilstichproben hohe Teststärken auf \((1 - \beta > .90)\).

Wie in der Gesamtstichprobe auch, ist in Tabelle 18 zu erkennen, dass psychische Beschwerden als Prädiktor für Übelkeit \((\beta = .49; t(65) = 4.49; p < .001)\) mit einer hohen Effektstärke \((r_{sp} = .49)\) in das Regressionsmodell der männlichen Teilstichprobe
eingingen, nicht aber physische Beschwerden (Tabelle 19). Für das Modell konnte eine hohe Teststärke (1 – β = .98) gezeigt werden.

Tabelle 17
Korrelationen der Prädiktor- und der Kriteriumsvariablen getrennt nach Geschlecht

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männer (n = 67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Physische</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschwerden</td>
<td>—</td>
<td>.644*</td>
<td>.425*</td>
<td>.352*</td>
<td>.555*</td>
<td>.490*</td>
</tr>
<tr>
<td>2. Psychische</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschwerden</td>
<td>—</td>
<td>.487*</td>
<td>.602*</td>
<td>.683*</td>
<td>.661*</td>
<td></td>
</tr>
<tr>
<td>3. Übelkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>.631*</td>
<td>.748*</td>
<td>.870*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Okulomotorik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>.748*</td>
<td>.898*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Desorientierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>.924*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Gesamtskala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frauen (n = 24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Physische</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschwerden</td>
<td>—</td>
<td>.715*</td>
<td>.535*</td>
<td>.721*</td>
<td>.636*</td>
<td>.682*</td>
</tr>
<tr>
<td>2. Psychische</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschwerden</td>
<td>—</td>
<td>.680*</td>
<td>.796*</td>
<td>.733*</td>
<td>.793*</td>
<td></td>
</tr>
<tr>
<td>3. Übelkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>.731*</td>
<td>.786*</td>
<td>.889*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Okulomotorik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>.890*</td>
<td>.946*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Desorientierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>.960*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Gesamtskala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung. *p < .05
Tabelle 18

Regressionsanalyse der männlichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Übelkeit

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>35.29</td>
<td>[19.61; 50.98]</td>
<td>0.49</td>
<td>4.49</td>
<td><.001</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .237$ ($N = 67, \ p < .001$); $VIF = 1.00$; $1 - \beta = .98$; KI = Konfidenzintervall.

Tabelle 19

Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Übelkeit als Kriteriumsvariable für die männlichen Versuchsteilnehmer

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>0.19</td>
<td>1.36</td>
<td>.179</td>
<td>0.17</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Dieses Muster zeigt sich erneut bei der Subskala Okulomotorik: Auch hier zeigten sich psychische Beschwerden als signifikanter Prädiktor mit einer hohen Effektstärke ($\beta = .60; \ t(65) = 6.08; \ p < .001; \ r_{sp} = .60$; Tabelle 20), physische Beschwerden hingegen nicht (Tabelle 21). Das Regressionsmodell konnte auch an dieser Stelle eine hohe Teststärke aufweisen ($1 - \beta > .99$).
Tabelle 20
Regressionsanalyse der männlichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Okulomotorik

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>42.73</td>
<td>[28.70; 56.76]</td>
<td>0.60</td>
<td>6.08</td>
<td><.001</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .363$ ($N = 67; p < .001$); $VIF = 1.00$; $1 - \beta > .99$; KI = Konfidenzintervall.

Tabelle 21
Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Okulomotorik als Kriteriumsvariable für die männlichen Versuchsteilnehmer

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>-0.06</td>
<td>-0.46</td>
<td>.646</td>
<td>-0.06</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Anders als in der Gesamtstichprobe konnte für die männliche Stichprobe nicht gezeigt werden, dass für die Skala Desorientierung beide Beschwerdearten als Prädiktoren in das Modell eingebracht werden konnten. Auch für diese Subskala konnten psychische Beschwerden als signifikanter Prädiktor mit hoher Effektstärke identifiziert werden ($\beta = .68; t(65) = 7.55; p < .001; r_{sp} = .68$; Tabelle 22), physische Beschwerden hingegen nicht (Tabelle 23). Das Regressionsmodell zeigte eine hohe Teststärke ($1 - \beta > .99$).
Tabelle 22
Regressionsanalyse der männlichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Desorientierung

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>77.38</td>
<td>[14.84; 56.85]</td>
<td>0.68</td>
<td>7.55</td>
<td><.001</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .467$ ($N = 67, p < .001$); $VIF = 1.00$; $1 - \beta > .99$; KI = Konfidenzintervall.

Wie in allen Subskalen für die männlichen Versuchsteilnehmer, zeigte sich dieses Muster auch für die Gesamtskala des Simulator Sickness Questionnaires: Psychische Beschwerden waren für diese ein signifikanter Prädiktor ($\beta = .66$; $t(65) = 7.10$; $p < .001$; Tabelle 24), für physische Beschwerden konnte dies nicht nachgewiesen werden (Tabelle 25). Für den signifikanten Prädiktor zeigte sich wie auch in den Modellen der Subskalen ein großer Effekt ($r_{sp} = .66$). Es wurde zudem ebenfalls eine hohe Teststärke ermittelt ($1 - \beta > .99$).

Tabelle 23
Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Desorientierung als Kriteriumsvariable für die männlichen Versuchsteilnehmer

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>0.20</td>
<td>1.68</td>
<td>.097</td>
<td>0.21</td>
<td>1.71</td>
</tr>
</tbody>
</table>
Tabelle 24

Regressionsanalyse der männlichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für die Gesamtskala des SSQ

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>55.71</td>
<td>[40.04; 71.37]</td>
<td>0.66</td>
<td>7.10</td>
<td><.001</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .437$ ($N = 67, p < .001$); $VIF = 1.71$; $1 - \beta > .99$; KI = Konfidenzintervall.

Tabelle 25

Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit der Gesamtskala des SSQs als Kriteriumsvariable für die männlichen Versuchsteilnehmer

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>0.11</td>
<td>0.91</td>
<td>.368</td>
<td>0.11</td>
<td>1.71</td>
</tr>
</tbody>
</table>

In den nachfolgenden Tabellen 26 – 33 werden die Ergebnisse der Regressionsanalysen für die weiblichen Versuchsteilnehmer dargestellt. Die Ergebnisse entsprechen denen der männlichen Teilstichprobe: In allen Regressionsmodellen zeigte sich, dass psychische Beschwerden mit einer mittleren bis großen Effektgröße ein Prädiktor für die jeweilige Simulator Sickness (Sub-)Skala ist, nicht aber physische Beschwerden.

In Tabelle 26 sind die Ergebnisse für psychische Beschwerden als signifikanter Prädiktor für Übelkeit in der weiblichen Substichprobe zu finden ($\beta = .68; t(22) = 4.35; p < .001; r_{sp} = .41$; mittlerer Effekt). Physische Beschwerden konnten nicht als signifikanter Prädiktor identifiziert werden (Tabelle 27). Das Regressionsmodell zeigte eine hohe Teststärke ($1 - \beta > .97$).
Regressionsanalyse der weiblichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Übelkeit

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>43.75</td>
<td>[22.89, 64.62]</td>
<td>0.68</td>
<td>4.35</td>
<td><.001</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .462$ ($N = 24$, $p < .001$); $VIF = 1.00$; $1 - \beta = .97$; KI = Konfidenzintervall.

Tabelle 27
Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Übelkeit als Kriteriumsvariable für die weiblichen Versuchsteilnehmer

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>0.10</td>
<td>0.43</td>
<td>.665</td>
<td>0.10</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Dieses Muster zeigte sich auch für die Subskala Okulomotorik: Als signifikanter Prädiktor gingen psychische Beschwerden mit einer hohen Effektstärke in das Modell ein ($\beta = .80$; $t(22) = 6.18$; $p < .001$; $r_{sp} = .80$; Tabelle 28), physische Beschwerden allerdings nicht (Tabelle 29). Auch dieses Regressionsmodell zeigte eine hohe Teststärke ($1 - \beta > .99$).
Tabelle 28

Regressionanalysis der weiblichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Okulomotorik

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>49.88</td>
<td>[33.13, 66.24]</td>
<td>0.80</td>
<td>6.18</td>
<td>< .001</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .634 \ (N = 24; \ p < .001); \ VIF = 1.00; \ 1 - \beta > .99; \ KI = \text{Konfidenzintervall}.

Tabelle 29

Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Okulomotorik als Kriteriumsvariable für die weiblichen Versuchsteilnehmer

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>0.31</td>
<td>1.77</td>
<td>.092</td>
<td>0.36</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Für Desorientierung konnte, wie bei den männlichen Versuchsteilnehmern auch, bei den weiblichen Versuchsteilnehmern nicht das Regressionsmodell der Gesamtstichprobe gefunden werden. Für diese Subskala konnten erneut psychische Beschwerden als signifikanter Prädiktor mit einer hohen Effektstärke identifiziert werden ($\beta = .73; \ t(22) = 5.06; \ p < .001; \ r_{sp} = .73; \ \text{Tabelle 30}$), nicht aber physische Beschwerden (Tabelle 31). Für dieses Modell konnte eine hohe Teststärke identifiziert werden ($1 - \beta > .99$).
Tabelle 30
Regressionsanalyse der weiblichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für Desorientierung

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>78.72</td>
<td>[46.44, 111.01]</td>
<td>0.73</td>
<td>5.06</td>
<td><.001</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .538$ ($N=24$, $p < .001$); $VIF = 1.00$; $1 - \beta > .99$; KI = Konfidenzintervall.

Tabelle 31
Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit Desorientierung als Kriteriumsvariable für die weiblichen Versuchsteilnehmer

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>0.23</td>
<td>1.11</td>
<td>.278</td>
<td>0.24</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Das Regressionsmodell der weiblichen Teilstichprobe mit der Gesamtskala des SSQs als Kriteriumsvariable bildet das bisher gefundene Muster der weiblichen Stichprobe ebenfalls ab: Psychische Beschwerden konnten als signifikanter Prädiktor in das Modell aufgenommen werden ($\beta = .79$; $t(22) = 6.11$; $p < .001$; $r_{sp} = .79$; Tabelle 32), physische Beschwerden allerdings nicht (Tabelle 33). Auch für dieses Regressionsmodell konnte eine hohe Teststärke ermittelt werden ($1 - \beta > .99$).
Tabelle 32
Regressionsanalyse der weiblichen Versuchsteilnehmer mit psychischen Beschwerden als Prädiktor für die Gesamtskala des SSQ

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychische Beschwerden</td>
<td>62.91</td>
<td>[41.55, 84.28]</td>
<td>0.79</td>
<td>6.11</td>
<td>< .001</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .629$ ($N = 24$, $p < .001$); $VIF = 1.00$; $1 - \beta > .99$; $KI = $ Konfidenzintervall.

Tabelle 33
Übersicht der ausgeschlossenen Variable aus der Regressionsanalyse mit der Gesamtskala des SSQs als Kriteriumsvariable für die weiblichen Versuchsteilnehmer

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>r_{sp}</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physische Beschwerden</td>
<td>0.24</td>
<td>1.30</td>
<td>.211</td>
<td>0.27</td>
<td>2.01</td>
</tr>
</tbody>
</table>

4.6 Diskussion

An dieser Stelle sollen die Befunde dieser Untersuchung diskutiert werden. Zu diesem Zweck erfolgt zunächst eine Zusammenfassung der Studie (Kapitel 4.6.1), anschließend werden die gefundenen Ergebnisse interpretiert (Kapitel 4.6.2), um abschließend auf Limitationen (Kapitel 4.6.3), Stärken (Kapitel 4.6.4) und Implikationen (Kapitel 4.6.5) der Untersuchung einzugehen.

4.6.1 Zusammenfassung der Untersuchung

Diese Studie untersuchte die Beziehung zwischen aktuellen physischen und psychischen Beschwerden und dem Erleben von Simulator Sickness. Vorhergesagt wurde, dass sowohl physische ($H1$) als auch psychische Beschwerden ($H2$) einen positiven Zusammenhang mit Simulator Sickness aufweisen. Zudem wurde geprüft, ob es einen Unterschied dieser Beziehung zwischen Männern und Frauen gibt ($FF1$). Zur

4.6.2 Ergebnisinterpretation

Ausprägung physischer Beschwerden geben auch an, stärker an psychischen Beschwerden zu leiden.

Darüber hinaus könnten auch weitere Variablen die Beziehung zwischen physischen sowie psychischen Variablen und Simulator Sickness beeinflussen und als konfundierende Variablen dieser Beziehung in Betracht gezogen werden. Subjektiv wahrgenommener Stress kann das Erleben physischer Beschwerden erhöhen (Gallo et al., 2015), wohingegen Selbstbewusstsein und der sozioökonomische Status einer Person das Erleben von psychischen Beschwerden beeinflussen kann (Bolognini, Plancherel, Bettschart & Halfon, 1996; WHO International Consortium In psychiatrie epidemiology, 2000).

4.6.3 Limitationen der Untersuchung

Diese Studie hat Limitationen. Eine Limitation ist die Stichprobenzusammensetzung. Durch die Charakteristiken einer technischen Universität bestand die Stichprobe zu überwiegenden Teil aus jungen, männlichen Studierenden. Die

4.6.4 Stärken der Untersuchung

Eine Stärke dieser Studie besteht darin, dass sie eine der ersten Untersuchungen ist, die sowohl aktuelle physische als auch aktuelle psychische Beschwerden mit dem Erleben von Simulator Sickness in Verbindung brachte. Bisherige Untersuchungen haben sich meist auf eine spezifisch physische bzw. psychische Erkrankung oder Störung fokussiert (z. B. Schlaganfallpatienten in Rizzo et al., 2009; Personen mit Gleichgewichtsstörungen in Whitney et al., 2006; Demenz in Flynn et al., 2003), obwohl zwischen physischer und psychischer Gesundheit bzw. psychischem Wohlbefinden (als Indikatoren für fehlende physische und psychische Beschwerden) ein starker Zusammenhang besteht (Cho, Martin, Margrett, MacDonald & Poon, 2011; Ohrnberger, Fichera & Sutton, 2017).

Beziehung zwischen psychischen Beschwerden und Subskalen der Simulator Sickness gefunden. Dieses Ergebnis zeigt die Relevanz weiterer Untersuchungen mit Personen mit subklinischen sowie klinischen psychischen Beschwerden zur Überprüfung der Generalisierbarkeit dieser Ergebnisse.

4.6.5 Implikationen für Forschung und Praxis

Direkte Forschungsimplikationen ergeben sich aus den Limitationen dieser Untersuchung. Untersuchungen mit altersheterogenen Stichproben ausgewogener Geschlechtsverteilung können tiefere Einblicke in die Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness geben.

Des Weiteren sollten experimentelle Studiendesigns oder Messwiederholungsdesigns implementiert werden, um Kausalaussagen über die Beziehung zwischen physischen und psychischen Beschwerden und Simulator Sickness zuzulassen (Döring & Bortz, 2016).

5 Die Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness

Reize und deren Interferenzen mit vestibulären Reizen entstehen (Sensorische Konflikthetheorie, Reason & Brand, 1975). In Fahrsimulationsumgebungen werden Konflikte dieser Art ausgelöst, wenn die visuellen Reize eine Bewegung induzieren, die vestibulären Reize für diese Bewegung nicht vorliegen (Neukum & Grattenthaler, 2006).

Da sowohl für den Fahrprozess in der Simulationsumgebung als auch für das Erleben von Simulator Sickness visuelle Hinweisreize von besonderer Bedeutung sind (Neukum & Grattenthaler, 2006; Vollrath & Krems, 2011), widmet sich dieses Kapitel einer Studie zur Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness. Zunächst wird visuelle Aufmerksamkeit definiert (Kapitel 5.1), anschließend wird der Forschungsstand zur Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness aufgearbeitet (Kapitel 5.2), aus welchem sich die Forschungsfrage (Kapitel 5.3) ableiten. Darauf aufbauend wird die Methode der Untersuchung (Kapitel 5.4) beschrieben und die Ergebnisse (Kapitel 5.5) werden dargestellt. In der abschließenden Diskussion (Kapitel 5.6) werden die Ergebnisse interpretiert und Limitationen sowie Stärken der Studie kritisch beurteilt.

5.1 Visuelle Aufmerksamkeit

Um das Konstrukt der visuellen Aufmerksamkeit näher zu beleuchten, sollte zunächst erläutert werden, was unter Aufmerksamkeit verstanden wird (Kapitel 5.1.1). Aufbauend auf diesem grundlegenden Verständnis wird das Konstrukt der visuellen Aufmerksamkeit beschrieben (Kapitel 5.1.2).

5.1.1 Aufmerksamkeit

5.1.2 Visuelle Aufmerksamkeit

Funktionsweise aufweist, ist der endogene Mechanismus gekennzeichnet durch eine intentionale Orientierung auf zentrale Hinweisreize, eine relative lange Latenz (> 200 ms) und eine kontrollierte Funktionsweise (Müller et al., 2015).

5.2 Forschungsstand

visuelle Aufmerksamkeit diente die Reaktionszeit auf die Zielreize. Motion Sickness wurde mittels des Motion Sickness Susceptibility Questionnaires erfasst. Die Autoren fanden eine signifikant negative Korrelation zwischen der Fähigkeit, die Aufmerksamkeit auf das periphere Sichtfeld zu richten (als Indikator für visuelle Aufmerksamkeit) und dem Erleben von Motion Sickness. Die Autoren fanden dabei mittlere \(r = -0.468 \) bis große Effekte \(r = -0.688 \). Es kann argumentiert werden, dass eine hohe Aufmerksamkeit mit dem niedrigen Erleben von Motion Sickness einhergeht bzw. dass umgekehrt bei hoher Motion Sickness eine niedrige Aufmerksamkeitsleistung gezeigt wurde (Wei et al., 2018). Die Arbeiten von Fujita (2004) und Wei et al. (2018) weisen auf zwei mögliche Richtungen der Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness hin, welche im folgenden Kapitel beschrieben werden. Beide Arbeiten fanden außerhalb des Kontextes Fahrsimulation statt. Dies und der generell sehr geringe Forschungsstand zur Beziehung zwischen visueller Aufmerksamkeit und dem Erleben von Simulator Sickness unterstreichen die Relevanz der folgenden Untersuchung.

5.3 Forschungsfragen

Zum anderen ist es möglich, dass den Versuchspersonen bei einer stärker fokussierten Aufmerksamkeit auf die Fahraufgabe die Abweichungen der Simulationsumgebung von der realen Fahrumgebung stärker bewusst werden. Dadurch
erleben sie mehr Simulator Sickness (z. B. Fujita, 2004). Auch dieser Effekt würde sich anhand der sensorischen Konflikttheorie (Reason & Brand, 1975) begründen lassen: Die Fokussierung auf die visuellen Stimuli verstärkt den Konflikt zwischen der Erwartung an die Fahrumgebung und der wahrgenommenen Fahrumgebung in der Simulation. Aufgrund der wenig vorhandenen Forschung und der Möglichkeit des Auftretens von zwei verschiedenen Richtungen der Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness (positive vs. Negative Beziehung), wird an dieser Stelle folgende ungerichtete Forschungsfrage (FF) gestellt, um die Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness zu untersuchen:

FF1: Gibt es einen Zusammenhang zwischen der visuellen Aufmerksamkeit in einer Fahrsimulationsaufgabe und dem Erleben von Simulator Sickness?

Wie in der ersten Untersuchung beschrieben, existieren Forschungsergebnisse, die belegen, dass Frauen mehr Simulator Sickness Symptome erleben (z. B. Golding, 2006; Liu et al., 1999; Rizzo et al., 2003) und welche somit eine differenzierte Betrachtung des Zusammenhangs zwischen visueller Aufmerksamkeit und Simulator Sickness basierend auf dem Geschlecht der Versuchspersonen nahelegen. Aus diesem Grund wird auch in dieser Untersuchung untersucht, ob sie Männer und Frauen hinsichtlich der Beziehung zwischen den untersuchten Variablen unterscheide:

FF2: Gibt es Geschlechtsunterschiede in der Beziehung zwischen visueller Aufmerksamkeitsleistung und Simulator Sickness?

5.4 Methode

Wie bereits in der ersten Studie werden auch an dieser Stelle zunächst die Stichprobencharakteristiken (Kapitel 5.4.1) und das Design der Untersuchung (Kapitel 5.4.2) beschrieben. Anschließend werden die Messmethoden (Kapitel 5.4.3) und die Simulationsumgebung (5.4.4) erläutert. Abschließend wird näher auf das Vorgehen der Untersuchung (Kapitel 5.4.5) sowie die statistische Datenanalyse Bezug genommen (Kapitel 5.4.6).
5.4.1 Stichprobe

\(N = 36 \) Versuchspersonen (\(M_{\text{Alter}} = 24.69 \) Jahre; \(SD_{\text{Alter}} = 3.03 \) Jahre; 47 % Frauen) wurden über den Mailverteiler der Technischen Universität Ilmenau sowie über Gruppen in sozialen Medien in eine Selbstselektionsstichprobe rekrutiert. In Tabelle 34 ist ein detaillierter Überblick über die soziodemographischen Charakteristiken der Stichprobe zu finden. Wie dort ersichtlich ist, sind ähnlich viele Männer wie Frauen in der Stichprobe. Zudem sind die Versuchspersonen jung (92 % sind zwischen 18 und 29 Jahren alt) und gebildet (alle Versuchspersonen haben das Abitur oder einen Hochschulabschluss).

Tabelle 34

<table>
<thead>
<tr>
<th>Soziodemographische Charakteristiken der Stichprobe ((N = 36))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charakteristik</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Weiblich</td>
</tr>
<tr>
<td>Männlich</td>
</tr>
<tr>
<td>Alter</td>
</tr>
<tr>
<td>18-29</td>
</tr>
<tr>
<td>30-39</td>
</tr>
<tr>
<td>40-49</td>
</tr>
<tr>
<td>50-59</td>
</tr>
<tr>
<td>60-69</td>
</tr>
<tr>
<td>Bildung</td>
</tr>
<tr>
<td>Abitur</td>
</tr>
<tr>
<td>Hochschulabschluss</td>
</tr>
</tbody>
</table>

Anmerkung. Alle Prozentangaben sind gerundet.

5.4.2 Design

Bei dieser Studie handelte es sich um eine korrelative Querschnitts- und Laboruntersuchung ohne Messwiederholung.
5.4.3 Messmethoden

In dieser Untersuchung wurden zwei Methoden verwendet: Zum einen wurde ein Verfahren zur Erfassung der visuellen Aufmerksamkeit genutzt, welches visuelle Aufmerksamkeit während der Durchführung der Fahraufgabe misst (Walter, 2017), zum anderen wurde der Simulator Sickness Questionnaire (Kennedy et al., 1993) nach der Simulationsexposition genutzt, um das Erleben von Simulator Sickness zu erfassen.

5.4.3.1 Verfahren zur Erfassung der visuellen Aufmerksamkeit

Um visuelle Aufmerksamkeit in einer Fahrsimulation zu messen, wurde eine an Fahrsimulationen angepasste Adaption des d2R-Aufmerksamkeits- und Konzentrationstests genutzt (Walter, 2017). Der d2R- Aufmerksamkeits- und Konzentrationstest ist ein validierter psychometrischer Paper and Pencil-Test zur Messung der visuellen Aufmerksamkeit. In der Originalversion des Testverfahrens
werden Versuchspersonen gebeten, alle „d“s mit 2 Strichen (Zielreiz) durchzustreichen. Die Striche können sowohl unter dem Buchstaben liegen, als auch darüber beziehungsweise jeweils ein Strich darüber und darunter. Diese Zielreize unterscheiden sich von zwei weiteren Stimuliarten: Zum einen gibt es in diesem Testverfahren “d”s mit mehr oder weniger als einem Strich (Distraktor 1) und “p”s mit Strichen (Distraktor 2).

Die Aufgabe der Versuchspersonen in diesem Test ist es, innerhalb der vorgegebenen Zeit von 4:40 Minuten alle Zielreize durchzustreichen und alle Distraktoren nicht durchzustreichen (Brickenkamp et al., 2010). Abbildung 5 zeigt einen exemplarischen Auszug aus dem d2R-Aufmerksamkeits- und Konzentrationstest.

Abb. 5. Beispielitem des d2R-Aufmerksamkeits- und Konzentrationstests, entnommen aus Brickenkamp et al. (2010).

Abb. 6: Verwendetes Lenkrad inklusive Stimulusreaktion (gelber Knopf), eigene Abbildung.

Wie im Manual des d2R-Aufmerksamkeits- und Konzentrationstests vermerkt, handelt es sich damit um eine Aufmerksamkeitsaufgabe, da relevante Reize selektiert werden müssen (Brickenkamp et al., 2010).

Ebenfalls an den d2R-Aufmerksamkeits- und Konzentrationstest adaptiert wurden die beiden möglichen Fehlerarten: Auslassungs- und Verwechslungsfehler. Als Auslassungsfehler (AF) wird das fehlende Drücken des Knopfes bei einem Zielreiz bezeichnet. Wenn eine Versuchsperson den Knopf bei einem Distraktor drückt, ist dies ein Verwechslungsfehler (VF). Basierend auf den Fehlerwerten kann die visuelle Aufmerksamkeitsleistung (VAL) berechnet werden:

\[\text{VAL} = \text{Anzahl korrekter Reaktionen auf Zielreize} - \text{AF} - \text{VF} \]
Die Anzahl der bearbeiteten Verkehrsschilder variierte zwischen den Versuchspersonen. Da die Verkehrsschilder im gleichen Abstand voneinander entfernt platziert wurden, konnten den Versuchspersonen mehr Verkehrsschilder (Zielreize und Distriktoren) angezeigt werden, je schneller diese Personen in der Fahrsimulation fuhren (Walter, 2017). Auch dies ist ähnlich dem d2R-Aufmerksamkeits- und Konzentrations- test, der auch die Bearbeitungsgeschwindigkeit der Versuchspersonen erfasst (Brickenkamp et al., 2010). In der nachfolgenden Studie haben die Versuchspersonen $M = 133.56$ ($SD = 22.82$; Range: 103 – 192) Verkehrsschilder bearbeitet, davon waren $M = 67.33$ ($SD = 8.44$; Range: 52 – 90) Zielreize.

Die Aufgabe in der Fahrsimulation hatte wie der d2R-Aufmerksamkeits- und Konzentrations- test eine Dauer von 4:40 Minuten und zusätzlich eine einminütige Eingewöhnungszeit, um den Versuchspersonen die Möglichkeit zu geben, sich an die Simulationsumgebung zu gewöhnen (Gesamtdauer: 5:40 Minuten; Walter, 2017).

5.4.3.2 Simulator Sickness Questionnaire (SSQ)

In dieser Untersuchung wurde ebenfalls der Simulator Sickness Questionnaire von Kennedy et al. (1993) genutzt. Wie in Kapitel 4.4.3.2 beschrieben, besteht dieser Fragebogen aus 16 Items, die auf einer vierstufigen Likertskala von 0 – „gar nicht“ bis 3 – „stark“ gemessen werden. Das Verfahren bildet Simulator Sickness auf den drei nicht-disjunkten Subskalen Übelkeit (7 Items, Cronbachs $\alpha = .360$), Okulomotorik (7 Items, Cronbachs $\alpha = .700$) und Desorientierung (7 Items, Cronbachs $\alpha = .678$) sowie einer Gesamtskala (21 Items, Cronbachs $\alpha = .842$) ab. Diese Skalen wurden entsprechend der Instruktionen der Originalautoren gewichtet, sodass sich unterschiedliche Ranges ergeben (Übelkeit: 0 bis 200.34, Okulomotorik: 0 bis 159.18, Desorientierung 0 bis 292.32, Gesamtskala: 0 bis 235.62; Kennedy et al., 1993). Die verwendete Fragebogenversion ist unter Anhang 1 zu finden.

5.4.4 Simulationsumgebung

Zur Beschreibung der Simulationsumgebung wird zunächst der Fahrsimulator beschrieben (Kapitel 5.4.4.1) und anschließend die Fahraufgabe in der Simulationsumgebung (Kapitel 5.4.4.2).
5.4.4.1 Fahrsimulator

In dieser Untersuchung wurde ebenfalls der Fahrsimulator (Weidner & Broll, 2017) genutzt, der in Kapitel 4.4.4.1 verwendet wurde.

5.4.4.2 Fahraufgabe

In der von Walter (2017) konstruierten Fahrsimulationsumgebung wird ebenfalls zwischen diesen beiden Fahraufgaben differenziert. In der primären Fahraufgabe müssen die Versuchspersonen das Fahrzeug auf der Straße halten (lenken, bremsen, anfahren, schalten). Die sekundäre Fahraufgabe besteht darin, bestimmte Verkehrsschilder als Zielreize und andere Verkehrsschilder als Distraktoren zu identifizieren und entsprechend der definierten Aufgabe einen Knopf am Lenkrad beim Erscheinen von Zielreizen zu drücken (siehe Kapitel 5.4.3.1 für eine detaillierte Beschreibung der Aufgabe).

5.4.5 Vorgehen

Die Versuchspersonen wurden über das Vorgehen der Untersuchung aufgeklärt und unterzeichneten anschließend eine Einverständniserklärung zur Teilnahme an der Untersuchung und zur Verwendung der Daten für wissenschaftliche Zwecke (Anhang 6). Im Anschluss wurden die Versuchspersonen gebeten, einen demographischen Fragebogen auszufüllen (Anhang 7) und die Instruktionen zum Fahren im Fahrsimulator sowie die Instruktionen zur Aufgabe zur Erfassung der visuellen Aufmerksamkeit zu lesen. Nach diesen Erklärungen und einer Eingewöhnungszeit (eine Minute) an die Simulationsumgebung wurden die Versuchspersonen gebeten, die Aufgabe in der Fahrsimulation zu bearbeiten (Zeit dafür: 4:40 Minuten). Im Anschluss an die Simulationsexposition füllten die Versuchs-personen den Simulator Sickness Questionnaire aus und wurden mündlich über die Ziele der Untersuchung informiert. Das vollständige Vorgehen ist dieser Untersuchung ist unter Anhang 8 zu finden.

5.4.6 Statistische Datenanalyse

5.5 Ergebnisse

Auch in dieser Untersuchung erfolgt die statistische Auswertung in mehreren Schritten: Zunächst werden die deskriptivstatistischen Ergebnisse der einzelnen Simulator Sickness Symptome sowie der Fehlerarten der Aufgabe zur Erfassung der visuellen Aufmerksamkeitsleistung dargestellt (Kapitel 5.5.1), anschließend werden die Ergebnisse der deskriptivstatistischen und der korrelativen Analyse von visueller Aufmerksamkeit und den Subskalen des Simulator Sickness Questionnaires beschrieben (Kapitel 5.5.2). Anschließend erfolgt die Darstellung der linearen Regressionsanalysen zur Erörterung des Zusammenhangs zwischen visueller Aufmerksamkeit als Prädiktor für die einzelnen Simulator Sickness Subskalen (Kapitel 5.5.3). Abschließend werden alle Analysen getrennt nach Geschlecht dargestellt (Kapitel 5.5.4).

5.5.1 Deskriptivstatistiken der einzelnen Simulator Sickness Symptome und Fehlerarten der Aufgabe der visuellen Aufmerksamkeitsleistung

In Tabelle 35 werden die Mittelwerte, Konfidenzintervalle und Standardabweichungen der erhobenen Simulator Sickness Symptome sowie der Fehlerarten der Aufgabe zur Erfassung der visuellen Aufmerksamkeitsleistung berichtet. Es zeigte sich, dass alle Symptome schwach ausgeprägt waren (Range: 0 – 3). Überanstrengung der Augen ($M = 0.94; SD = 0.75$), Müdigkeit ($M = 0.81; SD = 0.77$) und verschwommenes Sehen ($M = 0.50; SD = 0.70$) waren die am stärksten ausgeprägten Symptome. Am schwächsten ausgeprägt waren erhöhter Speichelfluss ($M = 0.06; SD = 0.23$), Gleichgewichtsstörungen ($M = 0.03; SD = 0.17$) sowie Aufstoßen ($M = 0.03; SD = 0.17$). Hinsichtlich der Fahrrfehler zeigte sich, dass Versuchspersonen signifikant mehr Verwechslungsfehler ($M = 4.28; SD = 2.66$) als Auslassungsfehler ($M = 1.42; SD = 0.97$) begingen ($t(35) = -5.88; p < .001$). Dieser Unterschied zeigte einen großen Effekt ($d = .98$). Der verwendete t-Test zeigte zudem eine hohe Teststärke ($1 – \beta = .99$).
<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>95 % KI</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überanstrengung der Augen</td>
<td>0.94</td>
<td>[0.72; 1.19]</td>
<td>0.75</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>0.81</td>
<td>[0.56; 1.06]</td>
<td>0.77</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td>0.50</td>
<td>[0.48; 0.92]</td>
<td>0.70</td>
</tr>
<tr>
<td>Kopfdruck</td>
<td>0.43</td>
<td>[0.44; 0.73]</td>
<td>0.60</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>0.42</td>
<td>[0.44; 0.73]</td>
<td>0.60</td>
</tr>
<tr>
<td>Konzentrationsschwierigkeiten</td>
<td>0.39</td>
<td>[0.42; 0.66]</td>
<td>0.55</td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>0.39</td>
<td>[0.40; 0.88]</td>
<td>0.65</td>
</tr>
<tr>
<td>Schwindel (Augen zu)</td>
<td>0.31</td>
<td>[0.38; 0.65]</td>
<td>0.53</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>0.31</td>
<td>[0.35; 0.88]</td>
<td>0.62</td>
</tr>
<tr>
<td>Schwindel (Augen auf)</td>
<td>0.25</td>
<td>[0.32; 0.65]</td>
<td>0.50</td>
</tr>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>0.22</td>
<td>[0.28; 0.65]</td>
<td>0.49</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>0.14</td>
<td>[0.17; 0.62]</td>
<td>0.42</td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>0.14</td>
<td>[0.17; 0.62]</td>
<td>0.42</td>
</tr>
<tr>
<td>Erhöhter Speichelfluss</td>
<td>0.06</td>
<td>[0.00; 0.35]</td>
<td>0.23</td>
</tr>
<tr>
<td>Gleichgewichtstörung</td>
<td>0.03</td>
<td>[0.00; 0.28]</td>
<td>0.17</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>0.03</td>
<td>[0.00; 0.28]</td>
<td>0.17</td>
</tr>
<tr>
<td>Verwechselungsfehler</td>
<td>4.28</td>
<td>[2.21; 3.00]</td>
<td>2.66</td>
</tr>
<tr>
<td>Auslassungsfehler</td>
<td>1.42</td>
<td>[1.14; 1.72]</td>
<td>0.97</td>
</tr>
</tbody>
</table>

5.5.2 Deskriptivstatistiken und Korrelationen visueller Aufmerksamkeit und Simulator Sickness

Die Mittelwerte für Okulomotorik, Desorientierung und die Gesamtskala des SSQs liegen im unteren Viertel der jeweiligen Skalen und sind somit niedrig ausgeprägt.
Die Kriteriumsvariablen korrelieren hoch miteinander ($r = .818 – r = .935; p < .05$), was unter anderem darauf zurückgeführt werden kann, dass die Skalen nicht disjunkt sind (siehe Tabelle 2, Kapitel 3.3.2). Es zeigten sich keine signifikanten Korrelationen der Prädiktorvariable (visuelle Aufmerksamkeitsleistung, VAL) mit den Kriteriumsvariablen Okulomotorik ($r = -.146; p = .926; 1 – \beta = .22$), Desorientierung ($r = -.029; p = .525; 1 – \beta = .07$) und der Gesamtskala des SSQs ($r = -.088; p = .828; 1 – \beta = .13$). Die nicht signifikanten Korrelationskoeffizienten waren niedrig ausgeprägt und deuteten auf eine mögliche negative Zusammenhangsrichtung hin. Die Teststärken der Korrelationen zwischen Prädiktor und den Kriteriumsvariablen waren gering. Die Teststärken für die Korrelationen der SSQ-Subskalen zeigten hohe Teststärken ($1 – \beta > 99$). Tabelle 36 zeigt die Mittelwerte, Standardabweichungen und Korrelationen von Prädiktor- und Kriteriumsvariablen.

Tabelle 36
Mittelwerte, Konfidenzintervalle, Standardabweichungen und Korrelationen der Prädiktor- und Kriteriumsvariablen

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>95 % KI</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prädiktorvariable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. VAL</td>
<td>61.64</td>
<td>[59.42, 63.75]</td>
<td>6.66</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kriteriumsvariablen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Okulomotorik</td>
<td>26.32</td>
<td>[20.21, 32.85]</td>
<td>20.01</td>
<td>-.146</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Desorientierung</td>
<td>28.23</td>
<td>[19.72, 37.89]</td>
<td>30.40</td>
<td>.029</td>
<td>.818*</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>SSQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung. $N = 36$; *$p < .05$; Range visuelle Aufmerksamkeitsleistung: 48.00 – 80.00; Range Okulomotorik: 0 – 159.18; Desorientierung: 0 – 292.32, Range Gesamtskala SSQ: 0 – 235.62; KI = Konfidenzintervall.

5.5.3 Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness

Die linearen Regressionsanalysen zeigten keine signifikante Beziehung zwischen visueller Aufmerksamkeitsleistung und einer der Kriteriumsvariablen auf. Die Tabellen
37 – 39 zeigen die Ergebnisse der Regressionsanalysen. Für die Regressionsanalyse mit visueller Aufmerksamkeitsleistung als Prädiktor für Okulomotorik zeigte sich ein nicht signifikantes Ergebnis mit einem schwachen bis mittleren Effekt ($\beta = -.15; t(35) = -.86; p = .396; f = .15$; Tabelle 37). Es zeigte sich eine geringe Teststärke ($1 - \beta = .21$).

Tabelle 37
Regressionsanalyse mit visueller Aufmerksamkeitsleistung (VAL) als Prädiktor für Okulomotorik

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>-.44</td>
<td>[-1.72; 0.60]</td>
<td>-.15</td>
<td>-.86</td>
<td>.396</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .021$ ($N = 36$); $f^2 = .02; 1 - \beta = .21$; KI = Konfidenzintervall.

Für die Regressionsanalyse mit visueller Aufmerksamkeitsleistung als Prädiktor für Desorientierung zeigte sich ein nicht signifikantes Ergebnis mit einem schwachen Effekt ($\beta = -.13; t(35) = -.17; p = .868; f = .03$). Es zeigte sich ebenfalls eine geringe Teststärke ($1 - \beta = .15$).

Tabelle 38
Regressionsanalyse mit visueller Aufmerksamkeitsleistung (VAL) als Prädiktor für Desorientierung

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>-.13</td>
<td>[-1.58; 1.35]</td>
<td>-.03</td>
<td>-.17</td>
<td>.868</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .001$ ($N = 36$); $f^2 = .01; 1 - \beta = .15$; KI = Konfidenzintervall.

Die Regressionsanalyse mit visueller Aufmerksamkeitsleistung als Prädiktor für die Gesamtskala des SSQs ergab ebenfalls ein nicht signifikantes Ergebnis mit einem schwachen Effekt ($\beta = -.28; t(35) = -.09; p = .608; f = .09$). Es zeigte sich auch für diese Analyse eine geringe Teststärke ($1 - \beta = .15$).
Tabelle 39

Regressionsanalyse mit visueller Aufmerksamkeitsleistung (VAL) als Prädiktor für die Gesamtskala des SSQs

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>-0.28</td>
<td>[-1.50, 0.85]</td>
<td>-0.09</td>
<td>-0.52</td>
<td>0.608</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = 0.008$ ($N = 36$); $f^2 = 0.01$; $1 - \beta = 0.15$; KI = Konfidenzintervall.

5.5.4 Deskriptivstatistiken sowie die Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness getrennt nach Geschlecht

Im folgenden Kapitel soll geprüft werden, ob es Geschlechtsunterschiede hinsichtlich der Symptomausprägung von Simulator Sickness gibt und ob sich die Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness zwischen den beiden Geschlechtern unterscheidet. An dieser Stelle wird nur zwischen männlichen und weiblichen Versuchs-personen differenziert, da wie in der vorangegangenen Studie kein_e Untersuchungsteilnehmer_in angab, einem anderen Geschlecht anzugehören.

Zunächst werden die deskriptivstatistischen Befunde der Prädiktor- und Kriteriumsvariablen getrennt nach Geschlecht sowie die t-Test-Ergebnisse der Vergleiche zwischen den Geschlechtern berichtet. Im Anschluss werden die Regressionsanalysen mit visueller Aufmerksamkeitsleistung als Prädiktor und den Simulator Sickness Subskalen sowie der Gesamtskala des Simulator Sickness Questionnaires als Kriteriumsvariablen getrennt für Männer und Frauen dargestellt. In der Reliabilitätsanalyse konnte festgestellt werden, dass wie in der Gesamtstichprobe Okulomotorik (Männer: Cronbachs $\alpha = 0.657$; Frauen: Cronbachs $\alpha = 0.722$), Desorientierung (Männer: Cronbachs $\alpha = 0.587$; Frauen:
Cronbachs $\alpha = .681$) und die Gesamtskala des SSQs (Männer: Cronbachs $\alpha = .795$; Frauen: Cronbachs $\alpha = .846$) als ausreichend reliabene Skalen identifiziert wurden, Übelkeit hingegen nicht (Männer: Cronbachs $\alpha = .280$; Frauen: Cronbachs $\alpha = .332$). Tabelle 40 zeigt die Mittelwerte, die dazugehörigen Konfidenzintervalle sowie die Standardabweichungen der Simulator Sickness Symptome und der entsprechenden Skalen sowie der Fehlerarten und der visuellen Aufmerksamkeitsleistung getrennt nach Geschlechtern.

Tabelle 40

Mittelwerte, Konfidenzintervalle und Standardabweichungen der einzelnen Simulator Sickness Symptome, der Simulator Sickness Subskalen, Fehlerarten der visuellen Aufmerksamkeitsleistung und visueller Aufmerksamkeitsleistung getrennt nach Männern und Frauen

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Männer (n = 19)</th>
<th>Frauen (n = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>95% KI</td>
</tr>
<tr>
<td>Überanstrengung der Augen</td>
<td>0.74</td>
<td>[0.42; 1.05]</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>0.74</td>
<td>[0.42; 0.73]</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td>0.47</td>
<td>[0.21; 0.61]</td>
</tr>
<tr>
<td>Konzentrations-</td>
<td>0.37</td>
<td>[0.16; 0.50]</td>
</tr>
<tr>
<td>schwierigkeiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>0.32</td>
<td>[0.11; 0.53]</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>0.32</td>
<td>[0.11; 0.53]</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>0.26</td>
<td>[0.11; 0.47]</td>
</tr>
<tr>
<td>Kopfdruck</td>
<td>0.21</td>
<td>[0.05; 0.42]</td>
</tr>
<tr>
<td>Schwindel (Augen zu)</td>
<td>0.21</td>
<td>[0.05; 0.42]</td>
</tr>
<tr>
<td>Symptom</td>
<td>Wert</td>
<td>[Min; Max]</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Allgemeines</td>
<td>0.16</td>
<td>[0.00; 0.32]</td>
</tr>
<tr>
<td>Unwohlsein</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Schwindel (Augen auf)</td>
<td>0.11</td>
<td>[0.00; 0.32]</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Übelkeit</td>
<td>0.00</td>
<td>[0.00; 0.16]</td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>0.00</td>
<td>[0.00; 0.26]</td>
</tr>
<tr>
<td>Erhöhter Speichelfluss</td>
<td>0.00</td>
<td>[0.00; 0.00]</td>
</tr>
<tr>
<td>Gleichgewichtsstörungen</td>
<td>0.00</td>
<td>[0.00; 0.00]</td>
</tr>
<tr>
<td>Subskala Okulomotorik</td>
<td>23.14</td>
<td>[15.96; 29.87]</td>
</tr>
<tr>
<td>Subskala Desorientierung</td>
<td>18.32</td>
<td>[10.26; 20.25]</td>
</tr>
<tr>
<td>Verwechslungsfehler</td>
<td>4.95</td>
<td>[3.79; 5.89]</td>
</tr>
<tr>
<td>Auslassungsfehler</td>
<td>1.53</td>
<td>[1.11; 1.95]</td>
</tr>
<tr>
<td>Visuelle Aufmerksamkeitsleistung</td>
<td>62.47</td>
<td>[3.81; 7.17]</td>
</tr>
</tbody>
</table>

Anmerkung. Range der einzelnen Simulator Sickness Symptome: 0 – 3; Range Okulomotorik: 0 – 159.18; Range Desorientierung: 0 – 292.32; Range Gesamtskala SSQ: 0 – 235.62; Range Auslassungsfehler: 0 – 3; Range Verwechslungsfehler: 0 – 8; Range visuelle Aufmerksamkeitsleistung: 48.00 – 80.00; KI = Konfidenzintervall. Sortierung der einzelnen Symptome, Skalen des SSQ und Fehlerarten der visuellen Aufmerksamkeitsleistung jeweils absteigend nach Höhe der Mittelwerte der männlichen Teilstichprobe.
Es zeigt sich, dass Frauen generell höhere Werte für die einzelnen Symptome berichten als Männer, außer für die Symptome Schwitzen, Kopfschmerzen und Aufstoßen. Frauen zeigten zudem höhere Werte auf allen untersuchten Skalen des Simulator Sickness Questionnaires auf als Männer: Sie zeigten allerdings weniger Fehler (sowohl Auslassungs- als auch Verwechslungsfehler) und eine geringere visuelle Aufmerksamkeitsleistung als Männer.

Tabelle 41 zeigt die Ergebnisse der t-Tests für den Geschlechtsvergleich der einzelnen Simulator Sickness Symptome, der Subskalen sowie der Gesamtskala des Simulator Sickness Questionnaires, der Fehlerarten der visuellen Aufmerksamkeitsleistung und der visuellen Aufmerksamkeitsleistung. Es zeigt sich, dass Frauen signifikant mehr Kopfdruck (t(34) = -2.23; p < .045; d = .76; 1 – β = .72) erlebten. Frauen hatten auch eine höhere Ausprägung auf der Subskala Desorientierung als Männer (t(34) = -0.21; p < .045; d = .73; 1 – β = .69). Beide Unterschiede zeigten einen mittleren Effekt. Für beide Analysen zeigte sich zudem eine nicht ausreichende Teststärke.
Tabelle 41

Geschlechterunterschiede der einzelnen Simulator Sickness Symptome, der Subskalen des Simulator Sickness Questionnaires, der Fehlerarten der visuellen Aufmerksamkeitsleistung sowie der visuellen Aufmerksamkeitsleistung

<table>
<thead>
<tr>
<th></th>
<th>t(85)</th>
<th>p</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überanstrengung der Augen</td>
<td>-1.78</td>
<td>.085</td>
<td>.60</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>-0.55</td>
<td>.587</td>
<td>.18</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td>-0.24</td>
<td>.815</td>
<td>.08</td>
</tr>
<tr>
<td>Konzentrationschwierigkeiten</td>
<td>-0.23</td>
<td>.817</td>
<td>.67</td>
</tr>
<tr>
<td>Proktereste scharf zu sehen</td>
<td>-0.71</td>
<td>.480</td>
<td>.23</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>0.10</td>
<td>.919</td>
<td>.05</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>0.61</td>
<td>.546</td>
<td>.19</td>
</tr>
<tr>
<td>Kopfdruck</td>
<td>-2.23</td>
<td>.035*</td>
<td>.76</td>
</tr>
<tr>
<td>Schwindel (Augen zu)</td>
<td>-1.13</td>
<td>.268</td>
<td>.38</td>
</tr>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>-0.82</td>
<td>.420</td>
<td>.27</td>
</tr>
<tr>
<td>Schwindel (Augen auf)</td>
<td>-1.84</td>
<td>.078</td>
<td>.77</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>1.00</td>
<td>.331</td>
<td>.30</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>-2.06</td>
<td>.056</td>
<td>.72</td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>-2.06</td>
<td>.056</td>
<td>.72</td>
</tr>
<tr>
<td>Erhöhter Speichelfluss</td>
<td>-1.46</td>
<td>.163</td>
<td>.55</td>
</tr>
<tr>
<td>Gleichgewichtsstörungen</td>
<td>-1.00</td>
<td>.332</td>
<td>.34</td>
</tr>
<tr>
<td>Subskala Okulomotorik</td>
<td>-0.99</td>
<td>.331</td>
<td>.34</td>
</tr>
<tr>
<td>Gesamtskala SSQ</td>
<td>-1.78</td>
<td>.085</td>
<td>.59</td>
</tr>
<tr>
<td>Subskala Desorientierung</td>
<td>-0.21</td>
<td>.045*</td>
<td>.73</td>
</tr>
<tr>
<td>Auslassungsfehler</td>
<td>1.64</td>
<td>.113</td>
<td>.55</td>
</tr>
<tr>
<td>Verwechslungsfehler</td>
<td>0.71</td>
<td>.480</td>
<td>.25</td>
</tr>
<tr>
<td>Visuelle Aufmerksamkeitsleistung</td>
<td>0.79</td>
<td>.434</td>
<td>.26</td>
</tr>
</tbody>
</table>

Anmerkung. *kumuliertes p < .045 (Bonferronikorrektur); signifikante Ergebnisse wurden fett markiert. Sortierung entsprechend Tabelle 40, jeweils nach der Höhe der Mittelwerte der männlichen Teilstichprobe.

Die Regressionsanalyse der männlichen Teilstichprobe mit visueller Aufmerksamkeitsleistung als Prädiktor für Okulomotorik ergab ein nicht signifikantes Ergebnis mit einem schwachen Effekt ($\beta = .23; t(18) = .09; p = .926; f = .03$; Tabelle 42). Es zeigte sich für diese Analyse eine geringe Teststärke ($1 – \beta = .11$).

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuelle Aufmerksamkeitsleistung</td>
<td>0.05</td>
<td>[-0.80; 1.46]</td>
<td>0.23</td>
<td>0.09</td>
<td>.926</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .001 ($N = 19$); f$ = .01; $1 – \beta = .11$; KI = Konfidenzintervall.

Die Regressionsanalyse der männlichen Teilstichprobe mit visueller Aufmerksamkeitsleistung als Prädiktor für Desorientierung ergab ebenfalls ein nicht signifikantes Ergebnis mit einem schwachen Effekt ($\beta = .16; t(18) = .65; p = .525; f = .16$; Tabelle 43). Es zeigte sich auch für diese Analyse eine geringe Teststärke ($1 – \beta = .15$).
Regressionsanalyse der männlichen Versuchsteilnehmer mit visueller Aufmerksamkeitsleistung als Prädiktor für Desorientierung

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuelle Aufmerksamkeitsleistung</td>
<td>0.44</td>
<td>[-0.21; 2.43]</td>
<td>0.16</td>
<td>0.65</td>
<td>.525</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .024$ ($N = 19$); $f^2 = .02$; $1 - \beta = .15$; KI = Konfidenzintervall.

Die Regressionsanalyse der männlichen Teilstichprobe mit visueller Aufmerksamkeitsleistung als Prädiktor für die Gesamtskala des SSQs ergab auch ein nicht signifikantes Ergebnis mit einem schwachen Effekt ($\beta = .05$; $t(18) = .22$; $p = .828$; $f = .05$; Tabelle 44). Es zeigte sich auch für diese Analyse eine geringe Teststärke ($1 - \beta = .15$).

Regressionsanalyse der männlichen Versuchsteilnehmer für visuelle Aufmerksamkeitsleistung als Prädiktor für die Gesamtskala des SSQ

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuelle Aufmerksamkeitsleistung</td>
<td>0.11</td>
<td>[-0.57; 1.52]</td>
<td>0.05</td>
<td>0.22</td>
<td>.828</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .003$ ($N = 19$); $f^2 = .11$; $1 - \beta = .15$.; KI = Konfidenzintervall.

Ergebnis mit einem schwachen Effekt ($\beta = -.28; t(16) = -1.12; p = .284; f = .29; \text{Tabelle 45}$). Es zeigte sich eine geringe Teststärke ($1 - \beta = .41$).

Tabelle 45

Regressionsanalyse der weiblichen Versuchsteilnehmer mit visueller Aufmerksamkeitsleistung (VAL) als Prädiktor für Okulomotorik

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuelle Aufmerksamkeitsleistung</td>
<td>-1.04</td>
<td>[-3.96; 0.78]</td>
<td>-0.28</td>
<td>-1.12</td>
<td>.284</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .076 (N = 17); f^2 = .13; 1 - \beta = .41; \text{KI = Konfidenzintervall.}$

Die Regressionsanalyse der weiblichen Teilstichprobe mit visueller Aufmerksamkeitsleistung als Prädiktor für Desorientierung ergab ebenfalls ein nicht signifikantes Ergebnis mit einem schwachen Effekt ($\beta = -.08; t(16) = -.30; p = .766; f = .08; \text{Tabelle 46}$). Es zeigte sich auch für diese Analyse eine geringe Teststärke ($1 - \beta = .20$).

Tabelle 46

Regressionsanalyse der weiblichen Versuchsteilnehmer mit visueller Aufmerksamkeitsleistung (VAL) als Prädiktor für Desorientierung

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuelle Aufmerksamkeitsleistung</td>
<td>-0.46</td>
<td>[-4.10; 2.59]</td>
<td>-0.08</td>
<td>-0.30</td>
<td>.766</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .006 (N = 17); f^2 = .04; 1 - \beta = .20; \text{KI = Konfidenzintervall.}$

Die Regressionsanalyse der weiblichen Teilstichprobe mit visueller Aufmerksamkeitsleistung als Prädiktor für die Gesamtskala des SSQs zeigte ein nicht signifikantes Ergebnis mit einem schwachen Effekt ($\beta = -.14; t(16) = -.55; p = .590; f = .08$; Tabelle 46).
Es zeigte sich auch für diese Analyse eine geringe Teststärke ($1 - \beta = .25$).

Tabelle 47

Regressionanalyse der weiblichen Versuchsteilnehmer mit visueller Aufmerksamkeitsleistung (VAL) als Prädiktor für die Gesamtskala des SSQ

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95 % KI</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuelle Aufmerksamkeitsleistung</td>
<td>-0.57</td>
<td>[-3.59; 1.53]</td>
<td>-0.14</td>
<td>-0.55</td>
<td>.590</td>
</tr>
</tbody>
</table>

Anmerkung. $R^2 = .020$ ($N = 17$); $f^2 = .06$; $1 - \beta = .25$; KI = Konfidenzintervall.

5.6 Diskussion

Die Diskussion der Untersuchung erfolgt in mehreren Schritten: Die Untersuchung wird zunächst zusammengefasst (Kapitel 5.6.1). Anschließend werden die gefundenen Ergebnisse interpretiert (Kapitel 5.6.2), um abschließend auf die Limitationen (Kapitel 5.6.3) und Stärken der Untersuchungen (Kapitel 5.6.4) sowie auf Implikationen für Forschung und Praxis einzugehen (Kapitel 5.6.5).

5.6.1 Zusammenfassung der Untersuchung

5.6.2 Ergebnisinterpretation

Es ist möglich, dass weitere Variablen, die an dieser Stelle nicht berücksichtigt wurden (beispielsweise Alter und Aufgabenschwierigkeit) sowohl einen Einfluss auf das Erleben von Simulator Sickness (McCauley & Sharkey, 1992) als auch auf die Beziehung zwischen visueller Aufmerksamkeitsleistung und Simulator Sickness haben. In dieser Studie wurde eine altershomogene Gruppe (*M*_{Alter} = 24.69 Jahre; *SD*_{Alter} = 3.03 Jahre) untersucht und die Schwierigkeit der Aufgabe zur Messung visueller Aufmerksamkeitsleistung wurde nicht variert. Es ist möglich, dass die Aufgabe zu einfach gestaltet war für die Versuchspersonen, da diese an deutschsprachige Verkehrsschilder gewöhnt sind. Zudem wurde in dieser Studie nur die visuelle Aufmerksamkeit hinsichtlich der sekundären Fahraufgabe (Erkennen von Verkehrs-schildern und Reaktion auf diese) gemessen, nicht aber hinsichtlich der primären Fahr-aufgabe. Würde man die visuelle Aufmerksamkeitsleistung auf beide Fahraufgaben messen, würde dies die Varianz der Korrelations- und Regressionsanalysen verringern und die Ergebnisse hinsichtlich der Beziehung zwischen visueller Aufmerksamkeitsleistung und Simulator Sickness präzisieren.

Für die männliche Teilstichprobe zeigte sich die umgekehrte (nicht signifikante, aber positive) Richtung der Beziehung zwischen den untersuchten Variablen. Eine signifikante, positive Beziehung zwischen den Variablen würde bedeuten, dass mit
steigender visueller Aufmerksamkeitsleistung ein stärkeres Erleben von Simulator Sickness einhergeht oder vice versa. Auch hier kann eine Erklärung anhand der sensorischen Konflikttheorie gefunden werden: Die Theorie geht davon aus, dass verschiedene sensorische Reize in der Simulationsumgebung nicht mit den Erfahrungen übereinstimmen, welche die Person aufgrund früherer Erlebnisse aus der realen Umwelt erwartet (Reason & Brand, 1975; Stoner et al., 2011). Es könnte also anzunehmen sein, dass die wahrgenommenen Differenzen zwischen Simulations- und realer Umwelt durch höhere Aufmerksamkeitsleistung hinsichtlich der Fahraufgabe präsent sind.

Die niedrigen Simulator Sickness Werte können auch aus einem weiteren Grund durch den Messzeitpunkt verzerrt sein. Ergebnisse einer Untersuchung zeigten, dass Simulator Sickness Symptome erst einige Zeit nach der Simulationserfahrung auftreten können (Übelkeit und Desorientierung: 10 Minuten nach der Exposition, Okulomotorik: 15 Minuten nach der Exposition; Min et al., 2004). In der durchgeführten Studie
bearbeiteten die Versuchspersonen den Simulator Sickness Questionnaire direkt nach der Fahrt in der Simulationsumgebung (also nach 5:40 Minuten), was möglicherweise dazu führte, dass verzögert auftretende Symptome nicht mehr erfasst werden konnten.

5.6.3 Limitationen der Untersuchung

Eine weitere Limitation ist in der Stichprobenzusammensetzung begründet. Engström et al. (2013) gehen davon aus, dass erfahrene Fahrer nur wenig bewusste Anstrengung benötigen, um zu wissen, auf welche Fahraspekte sie sich konzentrieren müssen (Aufmerksamkeitsallokation). Novizenfahrer hingegen sind hinsichtlich dieser Aufmerksamkeitsallokation noch nicht so routiniert wie erfahrene Fahrer Engström et al., 2013). Das Alter der Stichprobe ($M = 24.69; SD = 3.03$) lässt vermuten, dass noch recht wenig Fahrerfahrung vorhanden ist und somit viel bewusste Anstrengung benötigt wurde, um die Aufmerksamkeit auf die relevanten Fahraspekte zu lenken.

Darüber hinaus konnte keine kausale Beziehung zwischen den Variablen festgestellt werden. Um dies zu leisten, sind experimentelle Studien notwendig (Döring & Bortz, 2016).
5.6.4 Stärken der Untersuchung

Die Stärken der Untersuchung sollten nicht vernachlässigt werden. Diese Studie ist eine der ersten, die sich der Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness widmete. Es konnte dabei ein erster Hinweis auf einen möglichen negativen Zusammenhang zwischen den Variablen gegeben werden.

Eine weitere Stärke dieser Studie ist die Erhebungsmethodik. Durch die Erfassung der visuellen Aufmerksamkeitsleistung während der Fahrsimulationsaufgabe werden keine zusätzlichen Geräte benötigt, welche kostenintensiv sind und die Leistung der Versuchspersonen beeinflussen könnten.

5.6.5 Implikationen für Forschung und Praxis

Darüber hinaus sollten experimentelle Studien durchgeführt werden, um die Kausalität der Beziehung zwischen visueller Aufmerksamkeit und Simulator Sickness zu erforschen. Beispielsweise könnten Kontrollgruppen in der Simulationsumgebung
fahren, welche keine Aufgaben zur visuellen Aufmerksamkeit bearbeiten müssen und anschließend die Gruppen hinsichtlich ihres Erlebens von Simulator Sickness vergleichen.

6 Die Beziehung zwischen Fahrertypen und Simulator Sickness

Ähnlich wie die bisher auf einzelnen Konstrukten basierte Analyse von Fahrern, ist auch das Konstrukt Simulator Sickness bisher oftmals nur in Verbindung mit einzelnen individuellen (z. B. Alter in Park et al., 2006 oder bei Personen mit Gleichgewichtsstörungen in Tyrell et al., 2017) Faktoren untersucht worden, nicht aber mit einer Kombination an Human Factors.

Sickness zusammengefasst. Die abschließende Diskussion (Kapitel 6.6) reflektiert die Ergebnisse, benennt Stärken und Limitationen der Untersuchung und gibt einen Ausblick für Forschung und Praxis.

6.1 Fahrverhalten und seine Prädiktoren

6.1.1 Fahrverhalten

Bei der Konstruktion eines Verfahrens zur Erfassung verschiedenen Fahrstilen (multidimensional driving style inventory; Taubman-Ben-Ari, Mikulincer & Gillath, 2004) konnten die Autoren vier Fahrstile kategorisieren: a) rücksichtsloser und leichtsinniger Stil, b) ängstlicher Stil, c) wütender und feindseliger Stil sowie d)

Es lässt sich zusammenfassend festhalten, dass das Fahrverhalten nicht unbabhängig vom Fahrstil ist (Taubman-Ben-Ari et al., 2004), welcher wiederum durch zahlreiche Human Factors beeinflusst wird. Diese können unter anderem Sensation Seeking, Persönlichkeit und kognitive Variablen sein, welche im Folgenden erläutert werden (Constantinou et al., 2011; Dahlen & White, 2006; Taubman-Ben-Ari & Yehiel, 2012; Ulleberg & Rundmo, 2002).

6.1.2 Sensation Seeking

Sensation Seeking wird häufig anhand mehrerer Subskalen gemessen. Diese sind unter anderem Gefahren- und Abenteuersuche (engl. Thrill and Adventure Seeking), was die Tendenz beschreibt, Aktivitäten mit einer erhöhten Wahrscheinlichkeit für Gefahren und Geschwindigkeiten aufzusuchen, Erfahrungssuche (engl. Experience Seeking, welches nonkonformistische Lebensstile beschreibt), soziale und sexuelle Enthemmung (engl. Disinhibition) und Empfänglichkeit für Langeweile (engl. Boredom Susceptibility), was die Abneigung gegen Wiederholungen und Routinen beschreibt (Beauducel & Brocke, 2003).
6.1.3 Persönlichkeit

6.1.4 Kognitive Variablen

6.2 Forschungsstand

Die Aufarbeitung des Forschungsstands der nachfolgenden Studie erfolgt in zwei Schritten: Zunächst wird erläutert, wie die einzelnen Fahrverhaltensprädiktoren mit ebendiesem zusammenhängen (Kapitel 6.2.1 – 6.2.3) im Anschluss wird aufgearbeitet, welche Zusammenhänge zwischen den einzelnen Variablen und Simulator Sickness in der Forschung gefunden wurden (Kapitel 6.2.4).

6.2.1 Zusammenhang zwischen Sensation Seeking und Fahrverhalten

in einem Überholverbotszone und Fahren unter Alkoholeinfluss (beide Studien zeigten kleine bis mittlere Effektgrößen von $r = .23$ bis $r = .36$; Arnett, 1996; Arnett et al., 1997).

Iversen und Rundmo (2002) entwickelten eine Kurzskala, um Sensation Seeking zu erfassen und mit der Driving Anger Scale (DAS; Deffenbacher, Deffenbacher, Lynch & Richards, 2003), welche Ärgererleben während des Fahrens erfasst, zu korrelieren. In den Ergebnissen zeigte sich eine positive Korrelation kleiner Effektgröße ($r = .17$) zwischen den Variablen. In einem Strukturgleichungsmodell konnten die Autoren zudem zeigen, dass sowohl riskantes Fahren als auch die Beteiligung an Unfällen von Sensation Seeking beeinflusst werden (Iversen & Rundmo, 2002).

und zwischen Sensation Seeking und dem vorsichtigen Fahrstil einen negativen Zusammenhang (Effekt mittlerer Größe $r = -.31$) ermitteln.

Cestac, Paran und Delhomme (2011) identifizierten Geschwindigkeitsüberschreitungen als einer der zentralen riskanten Fahrverhaltensweisen junger Fahrer (15 – 24 Jahre). In ihrer Studie untersuchten die Autoren den Zusammenhang zwischen Geschwindigkeitsübertretungen (gemessen an Szenarien zur Erfassung behavioraler Intentionen, bei welchen die Versuchspersonen ihre potentielle Reaktion angeben sollten), bisherigen Geschwindigkeitsübertretungen und Sensation Seeking. Es zeigte sich, dass je stärker Sensation Seeking ausgeprägt war, umso höher war die Intention der Personen, die Geschwindigkeit zu übertreten, umso öfter berichteten sie von Geschwindigkeits-übertretungen und umso höher war die Anzahl geschwindigkeitsbedingter Verkehrsverstöße im vergangenen Jahr (kleine bis mittlere Effektgrößen: $r = .19 - r = .39$; Cestac et al., 2011).

In einer weiteren Untersuchung wurde untersucht, wie Sensation Seeking und Fahrverhalten in einer Simulationsumgebung zusammenhängen (Marengo, Settanni & Vidotto, 2012). Das konkrete Fahrverhalten wurde mittels zwei Variablen erfasst: der Unfall-beteiligung während der simulierten Fahrt und einem Index für sicheres Fahren. Zusätzlich erhoben die Autoren mittels Selbstberichtsverfahren die bisherige Erfahrung
der Versuchs-personen mit gefährlichem Fahren (Fahren unter Einfluss von Substanzen, Geschwindigkeits-übertretungen u.ä.). Es zeigte sich, dass je stärker Sensation Seeking ausgeprägt war, umso höher war die Unfallbeteiligung in der Simulationsumgebung, umso mehr Fahrtun unter Substanzeinfluss sowie Verkehrsverstöße wurden berichtet und umso geringer fiel der Sicherheitsindex des Fahrers in der Simulationsumgebung aus (kleine bis mittlere Effekt: \(r = .11 \) bis \(r = .34 \); Marengo et al., 2012).

6.2.2 Zusammenhang zwischen dem Big Five-Persönlichkeitsmodell und Fahrverhalten

Untersuchungen zum Zusammenhang von Persönlichkeitsfaktoren und Fahrverhalten zeigten, dass vor allem aggressives und riskantes Fahrverhalten von besonderer Bedeutung für die Forschung ist. Dieses Verhalten führt zu Verkehrsunfällen, die eine der Haupt-todesursachen bei Menschen zwischen einem und 44 Jahren sind (Dahlen et al., 2012).

Anitei, Charif, Burtaverde and Mihaila (2014) untersuchten den Zusammenhang zwischen dem Big Five-Persönlichkeitsmodell (erfasst mittels des International Personality Item Pools; Goldberg, 1992) und aggressivem Fahrverhalten. Die Autoren

Gewissenhaftigkeit zeigte negative Zusammenhänge mit dem Verlust der Kontrolle über das Fahrzeug und riskantem Fahren. Emotionale Stabilität (als Skalengegenpol zu Neurotizismus) wies negative Korrelationen mit dem nahen Auffahren auf andere Fahrzeuge und aggressivem Fahren auf. In dieser Untersuchung konnten ausschließlich kleine Effekte gefunden werden (max. $r = -.12$).

6.2.3 Zusammenhang zwischen kognitiven Variablen und Fahrverhalten

Die Beziehung zwischen kognitiven Variablen und Fahrverhalten erscheint in einigen Aspekten paradox. Constantinou, et al. (2011) gehen davon aus, dass junge
Menschen ihren physischen und kognitiven Höhepunkt haben. Darüber hinaus sind die jüngeren Generationen besser gebildet als die älteren Generationen und sollten dadurch Risiken während des Fahrens besser antizipieren können. Auf der anderen Seite entwickelt sich der präfrontale Kortex (verantwortlich für Inhibition, Schlussfolgerungen und Entscheidungen) noch bis zum 25. Lebensjahr, sodass davon auszugehen ist, dass junge Fahrer möglicherweise nicht in der Lage sind, das Risiko komplexer Aufgabe wie dem Fahren vollständig zu erfassen (Constaninou et al., 2011).

Wie bereits in Studie 2 (Kapitel 5) erwähnt, sind kognitive Variablen zur visuellen Informationsverarbeitung von besonderer Bedeutung für den Fahrprozess, da die meisten fahrerelevanten Informationen visuell aufgenommen werden (Hills, 1980). Daher ist die Untersuchung von kognitiven Variablen zur Erfassung von Fahrertypen unabdingbar.
6.2.4 Zusammenhang zwischen den verwendeten Konstrukten und Simulator Sickness

Hinsichtlich der Beziehung zwischen *Fahrverhalten* und dem Erleben von Simulator Sickness konnte eine Studie identifiziert werden, die sich mit dieser Thematik auseinandersetzte (Mullen, Waever, Riendeau, Morrison & Bédard, 2010). Die Autoren verglichen fahrrelevante Variablen von Personen, die eine Fahrsimulationen aufgrund der Schwere von Simulator Sickness Symptomen nicht beenden konnten, und Personen, die eine Fahrsimulationsaufgabe abschließen konnten. Es zeigte sich, dass Personen, die wegen des Erlebens von Simulator Sickness die Fahraufgabe vorzeitig beendeten, signifikant weniger Fahreffehler beim Starten und Bremsen aufwiesen als Personen (großer Effekt, $d = 1.13$), welche die Simulation nicht vorzeitig abbrachen. Es konnten keine signifikanten Unterschiede des vorzeitigen Abbruchs aufgrund von Simulator Sickness wegen Verkehrsverstößen an Lichtsignalanlagen, Verkehrsverstößen wegen Unaufmerksamkeit und Fehlern beim Überholen, der Geschwindigkeit oder beim Wenden gefunden werden (kleine bis große Effekte: $d = .23 - .86$; Mullen et al., 2010). Neben dieser Studie konnte keine weitere Untersuchung zum Zusammenhang von Fahrverhalten und Simulator Sickness identifiziert werden. Der Mangel an Forschung hinsichtlich dieser Variablen könnte ein Hinweis darauf sein, dass der Forschungsfokus mehr auf den dem Fahrverhalten zugrunde-liegenden Variablen liegt.

Auch die Beziehung zwischen Persönlichkeit und Simulator Sickness wurde bisher fast nicht untersucht, obwohl Kolasinski (1995) bereits anmerkte, dass sowohl Neurotizismus als auch Introversion mit der Anfälligkeit für Simulator Sickness zusammenhängen. Einen Hinweis auf einen potentiellen Zusammenhang gibt eine Arbeit...
aus den frühen 1970er Jahren zu Motion Sickness (Wilding & Meddis, 1972). Die Autoren untersuchten die Beziehung zwischen Motion Sickness und dem Eysenck Personality Inventory. Die Ergebnisse zeigten einen nicht-signifikanten positiven Zusammenhang zwischen Motion Sickness und Extraversion und einen signifikant positiven Zusammenhang zwischen Motion Sickness und Neurotizismus (keine Angabe von Effektgrößen; Wilding & Meddis, 1972). Es ist dennoch unklar, inwieweit diese Ergebnisse auf den Simulationskontext übertragbar sind.

Der Forschungsstand zum Zusammenhang zwischen kognitiven Variablen und dem Erleben von Simulator Sickness wurde bereits in der zweiten Untersuchung (Kapitel 5.2) aufgearbeitet und soll an dieser Stelle nur kurz zusammengefasst werden. Die Untersuchungen lieferten keine einheitlichen Resultate: der Fokus der visuellen Aufmerksamkeit war schlechter, je stärker die Versuchspersonen Simulator Sickness erlebten (Bahit et al., 2016; Wibirama et al., 2015). Dennoch ist die Kausalität der Beziehung zwischen den Variablen unklar, da kaum entsprechende Untersuchungen durchgeführt wurden.

6.3 Forschungsfragen

Durch den geringen Forschungsstand zur Kombination von Human Factors zu Fahrerprofilen und den ebenfalls geringen Forschungsstand zur Beziehung derartiger Merkmalskombinationen un dem Erleben von Simulator Sickness, weist diese Untersuchung einen explorativen Charakter auf. In dieser Studie sollen zwei Forschungsfragen (FF) untersucht werden:

FF 1: Welche Fahrertypen können aufbauend auf Fahrverhalten, Sensation Seeking, Persönlichkeit und kognitiven Variablen gebildet werden?

FF 2: Unterscheiden sich die Fahrertypen hinsichtlich ihres Erlebens von Simulator Sickness?
6.4 Methode

Zur Erläuterung der Methode erfolgt zunächst die Stichprobenbeschreibung (Kapitel 6.4.1). Im Anschluss werden Design (Kapitel 6.4.2), Messmethoden (Kapitel 6.4.3) und die Simulationsumgebung (Kapitel 6.4.4) beschrieben. Abschließend werden das Vorgehen der Untersuchung (Kapitel 6.4.5) und die statistische Datenanalyse (Kapitel 6.4.6) erläutert.

6.4.1 Stichprobe

\(N = 94\) Versuchspersonen konnten über den Mailverteiler der Technischen Universität Ilmenau, soziale Medien und persönliche Kontakte rekrutiert werden. Davon mussten \(n = 7\) Personen aufgrund fehlender Daten von der statistischen Datenanalyse ausgeschlossen werden. Eine weitere Person konnte nicht in die Analyse einbezogen werden, da sie hinsichtlich des Alters als Ausreißer identifiziert wurde. Das entsprechende Boxplot zur Darstellung der Ausreißeranalyse ist unter Anhang 10 zu finden. Die finale Stichprobe setze sich aus \(N = 86\) Versuchspersonen (Alter: \(M = 24.40; SD = 3.89,\) 23 % Frauen) zusammen. Es ist in Tabelle 48 zu erkennen, dass die Stichprobe zu einem großen Teil aus jungen Personen besteht, welche zum großen Teil männlich sind (73 %) und einen hohen Bildungsgrad haben (jede Versuchsperson hat mindestens Abitur). Tabelle 48 zeigt die soziodemographischen Charakteristiken der Stichprobe.
Tabelle 48

Soziodemographische Charakteristiken der Stichprobe (N = 86)

<table>
<thead>
<tr>
<th>Charakteristik</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiblich</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Männlich</td>
<td>63</td>
<td>73</td>
</tr>
<tr>
<td>Alter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>79</td>
<td>92</td>
</tr>
<tr>
<td>30-39</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>40-49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50-59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60-69</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beziehungsstatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alleinstehend</td>
<td>84</td>
<td>98</td>
</tr>
<tr>
<td>Verheiratet</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Geschieden/Verwitwet</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bildung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauptschule</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Realschule/Regelschule</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abitur</td>
<td>48</td>
<td>56</td>
</tr>
<tr>
<td>Bachelor</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Master</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Diplom/Staatsexamen</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Promotion</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Anmerkung. Alle Prozentangaben sind gerundet.

6.4.2 Design

Bei dieser Studie handelt es sich um eine explorative Querschnittsuntersuchung im Labor ohne Messwiederholung.

6.4.3 Messmethoden

Um Fahrertypen zu identifizieren, wurden verschiedene Verfahren verwendet: Der Manchester Driver Behaviour Questionnaire (Reason et al., 1990), das Need Inventory of Sensation Seeking (Roth et al., 2014), die Persönlichkeitsdimensionen des Tests zur Erfassung verkehrsrelevanter Persönlichkeitsmerkmale (Spicher & Hänsgen,
2000) sowie der CompACT-Sr (Prieler, 2011a) und der CompACT-Co (Prieler, 2011b), zwei Verfahren zur Erfassung kognitiver Leistungen. Simulator Sickness wurde im Anschluss an die Simulationsexposition mit dem Simulator Sickness Questionnaire (Kennedy et al., 1993) erfasst. Im Folgenden werden die genannten Verfahren kurz erläutert.

6.4.3.1 Manchester Driver Behaviour Questionnaire (DBQ)

Tabelle 49

Itemanzahl und Reliabilitätswerte (Cronbachs α) der Subskalen des DBQs

<table>
<thead>
<tr>
<th>Skala</th>
<th>Anzahl der Items</th>
<th>Cronbachs α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrfehler</td>
<td>21</td>
<td>.804</td>
</tr>
<tr>
<td>Verkehrsverstöße</td>
<td>17</td>
<td>.798</td>
</tr>
<tr>
<td>Versehen</td>
<td>9</td>
<td>.628</td>
</tr>
<tr>
<td>Unbeabsichtigte Verkehrsverstöße</td>
<td>3</td>
<td>.165</td>
</tr>
</tbody>
</table>

6.4.3.2 Need Inventory of Sensation Seeking (NISS)

Tabelle 50

Itemanzahl und Reliabilitätswerte (Cronbachs α) der Subskalen des NISS

<table>
<thead>
<tr>
<th>Skala</th>
<th>Anzahl der Items</th>
<th>Cronbachs α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedürfnis nach Stimulation</td>
<td>11</td>
<td>.881</td>
</tr>
<tr>
<td>Vermeidung von Ruhe</td>
<td>6</td>
<td>.781</td>
</tr>
</tbody>
</table>
6.4.3.3 Test zur Erfassung verkehrsrelevanter Persönlichkeitsmerkmale (TVP)

Um die Anzahl der zu verwendenden Skalen der Clusteranalyse zu reduzieren, wurden die situationsübergreifenden und die verkehrsspezifischen Skalen zusammengefügt. Bis auf die Skala „Extraversion“ konnten die Reliabilitäten der einzelnen Skalen durch die Zusammenführung der Subskalen verbessert werden. Für Extraversion zeigte sich nur eine Verbesserung des Reliabilitätswerts verglichen mit der situationsübergreifenden Subskala. Tabelle 51 zeigt die Reliabilitätswerte der situationsübergreifenden, der verkehrsspezifischen und der zusammengeführten Skalen (unter „Gesamt“).
Tabelle 51

Itemanzahl und Reliabilitätswerte (Cronbachs α) der Subskalen des TVPs

<table>
<thead>
<tr>
<th>Skala</th>
<th>Anzahl der Items</th>
<th>Cronbachs α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Situationsübergreifend</td>
<td>11</td>
<td>.751</td>
</tr>
<tr>
<td>Verkehrsspezifisch</td>
<td>11</td>
<td>.853</td>
</tr>
<tr>
<td>Gesamt</td>
<td>22</td>
<td>.804</td>
</tr>
<tr>
<td>Emotionale Labilität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Situationsübergreifend</td>
<td>12</td>
<td>.840</td>
</tr>
<tr>
<td>Verkehrsspezifisch</td>
<td>10</td>
<td>.816</td>
</tr>
<tr>
<td>Gesamt</td>
<td>22</td>
<td>.882</td>
</tr>
<tr>
<td>Gewissenhaftigkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Situationsübergreifend</td>
<td>12</td>
<td>.719</td>
</tr>
<tr>
<td>Verkehrsspezifisch</td>
<td>9</td>
<td>.585</td>
</tr>
<tr>
<td>Gesamt</td>
<td>21</td>
<td>.734</td>
</tr>
<tr>
<td>Offenheit für neue Erfahrungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Situationsübergreifend</td>
<td>10</td>
<td>.714</td>
</tr>
<tr>
<td>Verkehrsspezifisch</td>
<td>8</td>
<td>.798</td>
</tr>
<tr>
<td>Gesamt</td>
<td>18</td>
<td>.799</td>
</tr>
<tr>
<td>Verträglichkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Situationsübergreifend</td>
<td>10</td>
<td>.610</td>
</tr>
<tr>
<td>Verkehrsspezifisch</td>
<td>7</td>
<td>.634</td>
</tr>
<tr>
<td>Gesamt</td>
<td>17</td>
<td>.647</td>
</tr>
</tbody>
</table>

6.4.3.4 Computerized Attention and Concentration Tests (CompACT)

Die CompACT-Verfahren (Prieler, 2011a, b) bieten die Möglichkeit, PC-gestützt optische und akustische Aufmerksamkeits- und Konzentrationsleistungen zu messen (Prieler, 2011a). Für diese Studie wurden zwei Testverfahren ausgewählt: Zum einen wurde aus dem CompACT-Simple Reaction (Sr) ein Subtest zur Messung der Reaktion auf optische Stimuli gewählt. Da circa 90 % aller Fahrinformationen über visuelle Stimuli aufgenommen werden (Vollrath & Krems, 2011), ist die Reaktion auf optische Stimuli im Fahr- und Fahrsimulationskontext relevanter als beispielsweise die Reaktion auf akustische Stimuli, welche ebenfalls mittels des CompACT-Sr erfasst werden könnten.

Zum anderen wurde der CompACT-Concentration (Co) verwendet. In der Testform „Test zur Feststellung der quantitativen/qualitativen Konzentrationsleistung“ werden Probanden aufgefordert, Kreise und Vierecke hinsichtlich ihrer Anzahl zu vergleichen und per entsprechender Taste anzugeben, welche Form in der Überzahl vertreten ist. In der gewählten Testform wird ein Item erst eingeblendet, wenn ein vorangegangenes Items bearbeitet wurde. Der Test wird nach exakt 6 Minuten systembedingt abgebrochen. Damit ist es möglich, Quantität (Gesamtzahl der bearbeiteten Items) und Qualität (Anzahl der korrekt gelösten Items) zu betrachten. Die Reliabilität (Cronbachs α) der gewählten Testform liegt zwischen .802 und .975 (Prieler, 2011b).

6.4.3.5 Simulator Sickness Questionnaire (SSQ)

Zur Erfassung des Erlebens von Simulator Sickness wurde auch in dieser Studie der Simulator Sickness Questionnaire (Kennedy et al., 1993) verwendet. Dieser besteht aus 16 Items, die jeweils auf einer vierstufigen Likertskala (0 – „gar nicht“ bis 3 – „stark“) gemessen werden. Der Simulator Sickness Questionnaire bietet die Möglichkeit, eine Gesamtskala (21 Items, da einige Items aufgrund der fehlenden Disjunktheit der Subskalen doppelt in die Gesamtskala einfließen [Kennedy et al., 1993, S. 212]; Cronbachs $\alpha = .914$), sowie drei nicht disjunkte Subskalen zu bilden: Übelkeit (7 Items, Cronbachs $\alpha = .751$), Okulomotorik (7 Items, Cronbachs $\alpha = .838$) und Desorientierung (7 Items, Cronbachs $\alpha = .754$). Die Skalen werden entsprechend der Empfehlungen von Kennedy et al. (1993) gewichtet, sodass sie unterschiedliche Ranges aufweisen: Gesamtskala: 0 bis 235.62, Übelkeit: 0 bis 200.34, Okulomotorik: 0 bis 159.18, und Desorientierung: 0 bis 292.32 (Kennedy et al., 1993). Die verwendete Fragebogenversion ist unter Anhang 1 zu finden.
6.4.4 Simulationsumgebung

6.4.4.1 Fahrsimulator

![Abb. 9. Querschnitt der Sitzkiste, mit freundlicher Genehmigung von F. Weidner.](image1)

![Abb. 10. Sitzkiste in der Fahrsimulationsumgebung, eigene Abbildung.](image2)

6.4.4.2 Fahraufgabe

In dieser Untersuchung wurde ebenfalls der Lane Change Task (Abbildung 11) genutzt, welcher in Kapitel 4.4.4.2 detailliert beschrieben wurde. Das Szenario ist auf einer dreispurigen Fahrbahn ohne andere Verkehrsteilnehmer lokalisiert. Die primäre Fahraufgabe besteht darin, anhand der Informationen von Schildern, die an beiden Straßenrändern platziert sind, Spurwechselmanöver entsprechend der Beschilderung durchzuführen (Mattes, 2003).
Abb. 11. Verwendeter Lane Change Task, mit freundlicher Genehmigung von F. Weidner.

Auf dem Lane Change Task fuhren die Versuchspersonen 10 Geraden ab. Dabei wurden ihnen jeweils 10 Schilder (insgesamt 100 Schilder) präsentiert, die anzeigten, auf welche Spur die Versuchspersonen wechseln sollen. Die ersten beiden Geraden dienten dem Trainings- und Gewöhnungszweck. Abbildung 12 zeigt den Kurs des Lane Change Tasks.

6.4.5 Vorgehen

Zu Beginn der Untersuchung wurden alle Versuchspersonen über die Studieninhalte sowie die Versuchspersonenrechte informiert (Anhang 2). Im Anschluss wurden sie gebeten, einen demographischen Fragebogen (Anhang 3), den Manchester Driver Behaviour Questionnaire (DBQ; Reason et al., 1990), das Need Inventory of Sensation Seeking (NISS; Roth et al., 2014) sowie den Test zur Erfassung verkehrsrelevanter Persönlichkeits-beschreibung (TVP; Spicher & Hänsgen, 2000) auszufüllen und am PC den CompACT-Sr (Prieler, 2011a) sowie den CompACT-Co

6.4.6 Statistische Datenanalyse

Anschließend wurde mittels Mehrfaktorieller Varianzanalyse (MANOVA) geprüft, ob sich die gefundenen Fahrertypen hinsichtlich ihres Erlebens von Simulator Sickness unterscheiden. Die Ergebnisse der Prüfungen der Voraussetzungen für die Verwendung einer Clusteranalyse sowie einer MANOVA sind unter Anhang 12 bzw.
Anhang 13 zu finden. Alle Analysen wurden mit einem Alphaniveau von 5 % durchgeführt.

6.5 Ergebnisse

Zur Darstellung der Ergebnisse werden zunächst die deskriptiven Statistiken der für die Clusteranalyse verwendeten Skalen aufgezeigt (Kapitel 6.5.1), anschließend erfolgt die Aufarbeitung der Resultate der Clusteranalyse zur Abbildung der gefundenen Fahrertypen (Kapitel 6.5.2). Abschließend werden die Ergebnisse der MANOVA zur Prüfung des unterschiedlichen Erlebens von Simulator Sickness zwischen den Fahrertypen dargelegt (Kapitel 6.5.3).

6.5.1 Deskriptivstatistiken der verwendeten Skalen

Tabelle 52
Mittelwerte und Standardabweichungen der für die Clusteranalyse verwendeten Skalen

<table>
<thead>
<tr>
<th>Skala</th>
<th>M</th>
<th>95 % KI</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versehen</td>
<td>1.78</td>
<td>[1.70; 1.86]</td>
<td>0.39</td>
</tr>
<tr>
<td>Fahrruhverkehr</td>
<td>1.77</td>
<td>[1.69; 1.84]</td>
<td>0.35</td>
</tr>
<tr>
<td>Verkehrswidrigkeiten</td>
<td>1.70</td>
<td>[1.61; 1.79]</td>
<td>0.41</td>
</tr>
<tr>
<td>NISS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedürfnis nach Stimulation</td>
<td>2.94</td>
<td>[2.79; 3.07]</td>
<td>0.68</td>
</tr>
<tr>
<td>Vermeidung von Ruhe</td>
<td>2.81</td>
<td>[2.66; 2.94]</td>
<td>0.67</td>
</tr>
<tr>
<td>TVP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verträglichkeit</td>
<td>2.82</td>
<td>[2.76; 2.90]</td>
<td>0.33</td>
</tr>
<tr>
<td>Gewissenhaftigkeit</td>
<td>2.81</td>
<td>[2.74; 2.88]</td>
<td>0.33</td>
</tr>
<tr>
<td>Offenheit</td>
<td>2.80</td>
<td>[2.71; 2.89]</td>
<td>0.41</td>
</tr>
<tr>
<td>Extraversion</td>
<td>2.35</td>
<td>[2.27; 2.43]</td>
<td>0.39</td>
</tr>
<tr>
<td>Emotionale Labilität</td>
<td>1.95</td>
<td>[1.87; 2.04]</td>
<td>0.43</td>
</tr>
<tr>
<td>CompACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration (Co)</td>
<td>283.83</td>
<td>[274.87; 293.12]</td>
<td>43.11</td>
</tr>
<tr>
<td>Simple reaction (Sr)</td>
<td>39.33</td>
<td>[39.09; 39.56]</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Zunächst wurden zur Prüfung einer möglichen Reduktion der für die Clusteranalyse verwendeten Skalen Pearsons Korrelationskoeffizienten berechnet. Die Ergebnisse der Analyse sind in Anhang 14 zu finden. Es ist zu erkennen, dass die Skalen Bedürfnis nach Stimulation (NISS) und Extraversion (TVP) hoch miteinander korrelieren ($r = .579; \ p < .001$). Dennoch ist vom Ausschluss einer der Variablen aus 2 Gründen abzusehen: Erstens misst die Skala Bedürfnis nach Stimulation eine grundlegende Tendenz, besonders stimulierende Situationen aufzusuchen (Roth et al., 2014), wohingegen die Skala Extraversion durch verschiedene Eigenschaftswörter gekennzeichnet ist: gesprächig, offen, gesellig. Auch „abenteuerlustig“ ist eine Beschreibung für Personen mit einer hohen Ausprägung auf dieser Skala (Spicher &

6.5.2 Fahrertypen

Der leichsinnige Fahrertyp weist erhöhte Werte auf allen Skalen des Manchester Driver Behaviour Questionnaires auf. Auch das Bedürfnis nach Stimulation und die Vermeidung von Ruhe sind leicht erhöht, ebenso wie die Persönlichkeitsdimensionen Extraversion und Emotionale Labilität. Die Skalen Offenheit, Gewissenhaftigkeit und
Verträglichkeit hingegen sind unterdurchschnittlich ausgeprägt. Die gemessenen kognitiven Variablen weisen beide einen leicht positiven Wert auf.

Tabelle 53

Clusterzentren der Fahrertypen.

<table>
<thead>
<tr>
<th></th>
<th>Ängstlich (n = 9)</th>
<th>Leichtsinnig (n = 24)</th>
<th>Vorsichtig (n = 49)</th>
<th>Aggressiv (n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versehen</td>
<td>-1.00</td>
<td>0.81</td>
<td>-0.29</td>
<td>1.00</td>
</tr>
<tr>
<td>Fahrrehler</td>
<td>-0.49</td>
<td>0.89</td>
<td>-0.35</td>
<td>0.01</td>
</tr>
<tr>
<td>Verkehrsverstöße</td>
<td>-0.22</td>
<td>0.59</td>
<td>-0.44</td>
<td>1.98</td>
</tr>
<tr>
<td>NISS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedürfnis nach Stimulation</td>
<td>1.21</td>
<td>0.31</td>
<td>-0.46</td>
<td>1.28</td>
</tr>
<tr>
<td>Vermeidung von Ruhe</td>
<td>-1.05</td>
<td>0.50</td>
<td>-0.15</td>
<td>1.17</td>
</tr>
<tr>
<td>TVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verträglichkeit</td>
<td>-0.81</td>
<td>-0.67</td>
<td>0.55</td>
<td>-0.83</td>
</tr>
<tr>
<td>Gewissenhaftigkeit</td>
<td>0.12</td>
<td>-0.24</td>
<td>0.16</td>
<td>-0.12</td>
</tr>
<tr>
<td>Offenheit</td>
<td>-0.40</td>
<td>-0.20</td>
<td>0.17</td>
<td>1.92</td>
</tr>
<tr>
<td>Extraversion</td>
<td>0.99</td>
<td>0.27</td>
<td>-0.47</td>
<td>1.98</td>
</tr>
<tr>
<td>Emotionale Labilität</td>
<td>0.53</td>
<td>0.23</td>
<td>-0.18</td>
<td>1.00</td>
</tr>
<tr>
<td>CompACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>0.84</td>
<td>0.11</td>
<td>-0.15</td>
<td>-0.23</td>
</tr>
<tr>
<td>Simple Reaction</td>
<td>-0.39</td>
<td>0.30</td>
<td>0.09</td>
<td>-2.07</td>
</tr>
</tbody>
</table>

Anmerkung. Sortierung entsprechend Tabelle 52 nach der Höhe der Mittelwerte.

Zur genaueren Analyse werden in Tabelle 54 die Gruppenunterschiede der Fahrertypen auf den verwendeten Skalen dargestellt (Sortierung per Verfahren absteigend nach den Mittelwerten der jeweiligen Subskalen des ängstlichen Fahrertyps).

Es zeigten sich signifikante Unterschiede zwischen den Fahrertypen auf allen Skalen des DBQs: Verkehrsverstöße \((F(3, 85) = 18.67; p < .001; \eta^2 = .41)\), Fahrrehler \((F(3, 85) = 12.71; p < .001; \eta^2 = .32)\) und Fahrversehen \((F(3, 85) = ^6.74; p < .001; \eta^2 = .38)\). Auch die Subskalen des NISS (Bedürfnis nach Stimulation: \(F(3, 85) = 16.86; p < .001; \eta^2 = .38)\) und Vermeidung von Ruhe: \(F(3, 85) = 9.75; p < .001; \eta^2 = .26)\)
konnten signifikante Unterschiede zwischen den Fahrertypen aufzeigen. Bezüglich der Skalen des TVP zeigten sich nur auf den Skalen Extraversion \((F(3, 85) = 19.80; p < .001; \eta^2 = .42) \) und Verträglichkeit \((F(3, 85) = 17.83; \ p < .001; \eta^2 = .40) \) signifikante Unterschiede zwischen den Fahrertypen. Die gefundenen Fahrertypen unterschieden sich sowohl in den Ergebnissen des CompACT-Sr \((F(3, 85) = 8.86; p < .001; \eta^2 = .25) \) als auch in den Ergebnissen des CompACT-Co \((F(3, 85) = 2.91; p < .001; \eta^2 = .10) \). Für alle signifikanten Unterschieden konnten kleine Effektstärken \((\eta^2 < .06) \) ermittelt werden. Abgesehen von der Analyse des CompACT-Co, welche eine geringe Teststärke aufwies \((1 – \beta = .71) \), konnte für alle Analysen eine hohe Teststärke \((1 – \beta > .71) \) gefunden werden.

Hinsichtlich der TVP Skalen Emotionale Labilität \((F(3, 85) = 1.87; p = .141; \eta^2 = .06; 1 – \beta = .45) \), Offenheit \((F(3, 85) = 1.29; p = .282; \eta^2 = .05; 1 – \beta = .39) \) und Gewissenhaftigkeit \((F(3, 85) = 1.91; p = .135; \eta^2 = .07; 1 – \beta = .52) \) konnten keine signifikanten Unterschiede zwischen den Fahrertypen gefunden werden. Auf diesen Skalen zeigten sich sowohl niedrige Effektgrößen als auch niedrige Teststärken.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ängstlich</th>
<th>Leichtsinnig</th>
<th>Vorsichtig</th>
<th>Aggressiv</th>
<th>(F(3, 85))</th>
<th>(p)</th>
<th>(\eta^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verkehrsverstöße</td>
<td>1.61 0.26</td>
<td>1.95 0.35</td>
<td>1.53 0.30</td>
<td>2.51 0.51</td>
<td>18.67</td>
<td><.001</td>
<td>.41</td>
</tr>
<tr>
<td>Fahreffler</td>
<td>1.60 0.25</td>
<td>2.08 0.38</td>
<td>1.65 0.25</td>
<td>1.77 0.25</td>
<td>12.71</td>
<td><.001</td>
<td>.32</td>
</tr>
<tr>
<td>Versehen</td>
<td>1.40 0.29</td>
<td>2.10 0.36</td>
<td>1.67 0.29</td>
<td>2.17 0.37</td>
<td>16.74</td>
<td><.001</td>
<td>.38</td>
</tr>
<tr>
<td>NISS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulation</td>
<td>3.75 0.40</td>
<td>3.14 0.53</td>
<td>2.62 0.57</td>
<td>3.80 0.56</td>
<td>16.86</td>
<td><.001</td>
<td>.38</td>
</tr>
<tr>
<td>Vermeidung Ruhe</td>
<td>2.11 0.78</td>
<td>3.14 0.44</td>
<td>2.71 0.61</td>
<td>3.58 0.48</td>
<td>9.75</td>
<td><.001</td>
<td>.26</td>
</tr>
<tr>
<td>TVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewissenhaftigkeit</td>
<td>2.85 0.45</td>
<td>2.70 0.47</td>
<td>2.86 0.36</td>
<td>2.46 0.33</td>
<td>1.91</td>
<td>.135</td>
<td>.07</td>
</tr>
<tr>
<td>Extraversion</td>
<td>2.73 0.32</td>
<td>2.46 0.37</td>
<td>2.17 0.26</td>
<td>3.09 0.24</td>
<td>19.80</td>
<td><.001</td>
<td>.42</td>
</tr>
<tr>
<td>Offenheit</td>
<td>2.68 0.37</td>
<td>2.75 0.31</td>
<td>2.87 0.33</td>
<td>2.77 0.20</td>
<td>1.29</td>
<td>.282</td>
<td>.05</td>
</tr>
<tr>
<td>Verträglichkeit</td>
<td>2.56 0.36</td>
<td>2.60 0.27</td>
<td>3.01 0.24</td>
<td>2.56 0.26</td>
<td>17.83</td>
<td><.001</td>
<td>.40</td>
</tr>
<tr>
<td>Labilität</td>
<td>2.18 0.41</td>
<td>2.05 0.46</td>
<td>1.87 0.41</td>
<td>1.90 0.18</td>
<td>1.87</td>
<td>.141</td>
<td>.06</td>
</tr>
<tr>
<td>CompACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>319.89 28.20</td>
<td>287.42 48.78</td>
<td>276.37 40.47</td>
<td>272.50 31.89</td>
<td>2.91</td>
<td>.039</td>
<td>.10</td>
</tr>
<tr>
<td>Simple Reaction</td>
<td>38.89 1.45</td>
<td>39.67 0.76</td>
<td>39.43 1.00</td>
<td>37.00 1.16</td>
<td>8.86</td>
<td><.001</td>
<td>.25</td>
</tr>
</tbody>
</table>
Post-hoc Vergleiche der verwendeten Skalen zwischen den Fahrertypen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bonferroni post-hoc Vergleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBQ</td>
<td></td>
</tr>
<tr>
<td>Verkehrsverstöße</td>
<td>Leichtsinnig > Vorsichtig*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Ängstlich*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Leichtsinnig*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Vorsichtig*</td>
</tr>
<tr>
<td>Fahrfehler</td>
<td>Leichtsinnig > Ängstlich*</td>
</tr>
<tr>
<td></td>
<td>Leichtsinnig > Vorsichtig*</td>
</tr>
<tr>
<td>Versehen</td>
<td>Leichtsinnig > Ängstlich*</td>
</tr>
<tr>
<td></td>
<td>Leichtsinnig > Vorsichtig*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Ängstlich*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Vorsichtig*</td>
</tr>
<tr>
<td>NISS</td>
<td></td>
</tr>
<tr>
<td>Bedürfnis nach Stimulation</td>
<td>Ängstlich > Leichtsinnig*</td>
</tr>
<tr>
<td></td>
<td>Ängstlich > Vorsichtig*</td>
</tr>
<tr>
<td></td>
<td>Leichtsinnig > Vorsichtig*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Vorsichtig*</td>
</tr>
<tr>
<td>Vermeidung von Ruhe</td>
<td>Leichtsinnig > Ängstlich*</td>
</tr>
<tr>
<td></td>
<td>Leichtsinnig > Vorsichtig*</td>
</tr>
<tr>
<td></td>
<td>Vorsichtig > Ängstlich*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Ängstlich*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Vorsichtig*</td>
</tr>
<tr>
<td>TVP</td>
<td></td>
</tr>
<tr>
<td>Extraversion</td>
<td>Ängstlich > Vorsichtig*</td>
</tr>
<tr>
<td></td>
<td>Leichtsinnig > Vorsichtig*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Leichtsinnig*</td>
</tr>
<tr>
<td></td>
<td>Aggressiv > Vorsichtig*</td>
</tr>
<tr>
<td>Verträglichkeit</td>
<td>Vorsichtig > Ängstlich*</td>
</tr>
<tr>
<td></td>
<td>Vorsichtig > Leichtsinnig*</td>
</tr>
<tr>
<td></td>
<td>Vorsichtig > Aggressiv*</td>
</tr>
<tr>
<td>CompACT</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>Ängstlich > Vorsichtig*</td>
</tr>
<tr>
<td>Simple Reaction</td>
<td>Ängstlich > Aggressiv*</td>
</tr>
<tr>
<td></td>
<td>Leichtsinnig > Aggressiv*</td>
</tr>
<tr>
<td></td>
<td>Vorsichtig > Aggressiv*</td>
</tr>
</tbody>
</table>

Anmerkung. * p < .05. Sortierung entsprechend Tabelle 54, per Verfahren absteigend nach den Mittelwerten der jeweiligen Subskalen des ängstlichen Fahrertyps.
6.5.3 Unterschiede der Fahrertypen hinsichtlich Simulator Sickness

Die zweite Fragestellung dieser Untersuchung ist, ob sich die Fahrertypen hinsichtlich ihres Erlebens von Simulator Sickness unterscheiden. Um diese Fragestellung statistisch zu beantworten, werden zunächst in Tabelle 56 die Mittelwerte und Standardabweichungen der einzelnen Simulator Sickness Symptome sowie der entsprechenden Skalen getrennt nach den vier extrahierten Fahrertypen berichtet. Es ist zu erkennen, dass Müdigkeit in allen Fahrergruppen eines der am stärksten ausgeprägten Symptome ist. Die Ausprägung der Symptome ist zwischen den Fahrertypen unterschiedlich. Abgesehen von Müdigkeit lässt sich kein eindeutiges Muster bezüglich eines einheitlich recht stark bzw. recht schwachen Symptoms erkennen. Dies lässt sich auch auf die (Sub-)Skalen des Simulator Sickness Questionnaires übertragen. Auch hier ist kein einheitliches Muster in der Stärke der Ausprägung zu erkennen. Unter Anhang 16 ist die vollständige ANOVA zur Überprüfung der Unterschiede zwischen den Fahrertypen hinsichtlich der einzelnen Simulator Sickness Symptome zu finden. Es konnten signifikante Unterschiede bei zwei Symptomen gefunden werden: Gleichgewichtsstörungen \(F(2, 85) = 4.81; \ p = .004; \ \eta^2 = .15 \) und Magen macht sich bemerkbar \(F(2, 85) = 3.15; \ p = .029; \ \eta^2 = .10 \). Beide Unterschiede zeigten kleine Effekte. Die Analyse des Symptoms zeigte eine hohe Teststärke \(1 – \beta = .91 \), die Analyse des Symptoms „Magen macht sich bemerkbar“ hingegen nicht \(1 – \beta = .71 \). Nach Bonferroni post-hoc Tests zeigte sich hinsichtlich Gleichgewichtsstörungen ein signifikanter Unterschied zwischen ängstlichen und dem vorsichtigen Fahrertyp \(p = .011 \) und hinsichtlich des Symptoms „Magen macht sich bemerkbar“ zeigten sich signifikante Unterschiede zwischen dem ängstlichen und dem leichtsinnigen Fahrertyp \(p = .046 \) sowie zwischen dem ängstlichen und dem vorsichtigen Fahrertyp \(p = .036 \).
Tabelle 56
Mittelwerte und Standardabweichungen der einzelnen Simulator Sickness Symptome und der Simulator Sickness Questionnaire-Skalen getrennt nach Fahrertypen

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Ångstlich</th>
<th>Leichtsinnig</th>
<th>Vorsichtig</th>
<th>Aggressiv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Gleichgewichtsstörungen</td>
<td>1.44</td>
<td>1.42</td>
<td>0.63</td>
<td>1.06</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>1.33</td>
<td>1.23</td>
<td>0.67</td>
<td>0.87</td>
</tr>
<tr>
<td>Konzentrationschwierigkeiten</td>
<td>1.33</td>
<td>1.23</td>
<td>0.67</td>
<td>0.87</td>
</tr>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>1.11</td>
<td>1.23</td>
<td>0.67</td>
<td>0.92</td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>1.11</td>
<td>1.36</td>
<td>0.25</td>
<td>0.74</td>
</tr>
<tr>
<td>Überanstrengung der Augen</td>
<td>1.00</td>
<td>1.12</td>
<td>0.83</td>
<td>1.09</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>0.89</td>
<td>0.78</td>
<td>0.50</td>
<td>0.72</td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>0.89</td>
<td>1.05</td>
<td>0.42</td>
<td>0.78</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>0.78</td>
<td>1.20</td>
<td>0.75</td>
<td>1.03</td>
</tr>
<tr>
<td>Schwindel (Augen auf)</td>
<td>0.56</td>
<td>1.13</td>
<td>0.67</td>
<td>1.13</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td>0.44</td>
<td>0.73</td>
<td>0.67</td>
<td>0.87</td>
</tr>
<tr>
<td>Kopfdruck</td>
<td>0.44</td>
<td>1.01</td>
<td>0.71</td>
<td>1.12</td>
</tr>
<tr>
<td>Erhöhter Speichelfluss</td>
<td>0.22</td>
<td>0.44</td>
<td>0.63</td>
<td>1.10</td>
</tr>
<tr>
<td>Schwindel (Augen zu)</td>
<td>0.22</td>
<td>0.67</td>
<td>0.54</td>
<td>0.93</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>0.11</td>
<td>0.33</td>
<td>0.25</td>
<td>0.74</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>0.11</td>
<td>0.33</td>
<td>0.42</td>
<td>0.93</td>
</tr>
<tr>
<td>Gesamtskala SSQ</td>
<td>39.90</td>
<td>27.86</td>
<td>29.76</td>
<td>31.49</td>
</tr>
<tr>
<td>Okulomotorik</td>
<td>36.22</td>
<td>22.35</td>
<td>25.27</td>
<td>23.41</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>34.98</td>
<td>35.70</td>
<td>21.07</td>
<td>24.05</td>
</tr>
</tbody>
</table>
Tabelle 57 zeigte die Ergebnisse der mehrfaktoriellen Varianzanalyse. Es ist zu erkennen, dass sich die Fahrertypen weder hinsichtlich Übelkeit ($F(3,82) = .72, p = .546, \eta^2 = .03; 1 – \beta = .25$), noch hinsichtlich Okulomotorik ($F(3,82) = .71, p = .549, \eta^2 = .03; 1 – \beta = .25$), Desorientierung ($F(3,82) = .06, p = .979, \eta^2 = .01; 1 – \beta = .10$) oder der Gesamtskala des Simulator Sickness Questionnaires ($F(3,82) = .23, p = .872, \eta^2 = .01; 1 – \beta = .10$) unterscheiden. Es zeigten sich in der Analyse sowohl kleine Effektgrößen als auch geringe Teststärken.

<table>
<thead>
<tr>
<th>Variable</th>
<th>MANOVA $F(3, 82)$</th>
<th>Übelkeit</th>
<th>Okulomotorik</th>
<th>Desorientierung</th>
<th>Gesamtskala SSQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrertypen</td>
<td>1.62</td>
<td>0.72</td>
<td>0.71</td>
<td>0.06</td>
<td>0.23</td>
</tr>
</tbody>
</table>

6.6 Diskussion

Um diese Untersuchung und ihre zentralen Ergebnisse wiedzugeben, wird zunächst die Studie kurz zusammengefasst (Kapitel 6.6.1), um anschließend die gefundenen Ergebnisse zu interpretieren (Kapitel 6.6.2). Es werden Limitationen (Kapitel 6.6.3) und Stärken (Kapitel 6.6.4) dieser Untersuchung diskutiert und abschließend werden Implikationen für Forschung und Praxis angeführt (Kapitel 6.6.5).
6.6.1 Zusammenfassung der Untersuchung

6.6.2 Ergebnisinterpretation

Die Interpretation der Ergebnisse erfolgt an dieser Stelle in zwei Schritten: Zunächst werden die Fahrertypen, welche die Ergebnisse der Clusteranalyse zur ersten Forschungsfrage sind, diskutiert. Darauf aufbauend folgt die Interpretation der Ergebnisse der zweiten Forschungsfrage zu Unterschieden im Erleben von Simulator Sickness zwischen den gefundenen Fahrertypen.

6.6.2.1 Fahrertypen

Durch die Clusteranalyse konnten vier Fahrertypen extrahiert werden, welche in Übereinstimmung mit den Ergebnissen von Taubman-Ben-Ari et al. (2004) als ängstlicher, leichtsinniger, vorsichtiger und aggressiver Fahrertyp bezeichnet werden können. Der vorsichtige Fahrertyp ist gekennzeichnet durch eine geringe Ausprägung in

6.6.2.2 Unterschiede der Fahrertypen hinsichtlich des Erlebens von Simulator Sickness

Zum anderen ist es möglich, dass nur einzelne Variablen das Erleben von Simulator Sickness beeinflussen, wie z. B. das Alter oder die Ausprägung von Sensation Seeking, eine Kombination verschiedener Variablen allerdings keinen zusätzlichen Erklärwert hinsichtlich des Erlebens von Simulator Sickness bietet.

Eine weitere Erklärung für die fehlende Signifikanz der Unterschiede der Fahrertypen hinsichtlich des Erlebens von Simulator Sickness kann in der niedrigen Teststärke begründet werden. Es ist wahrscheinlich, dass die Stichprobengröße nicht ausreichend groß war, um mögliche Effekte aufzudecken.

6.6.3 Limitationen der Untersuchung

Eine weitere Limitation besteht im Transfer der gefundenen Ergebnisse in reale Kontexte. Es müsste untersucht werden, ob sich die gefundenen Fahrertypen in der realen Fahr umwelt validieren lassen. Da auch situative Faktoren einen Einfluss auf konkrete

6.6.4 Stärken der Untersuchung

Trotz der Limitationen dieser Untersuchung sollten auch die Stärken hervorgehoben werden. Diese Studie ist eine der ersten, die systematisch Fahrertypen aufgrund psychologischer Merkmale untersucht hat. Dies kann eine Grundlage für weitere Forschung zur Typenbildung im verkehrspsychologischen Bereich sein.

Zum anderen war diese Studie auch eine der ersten, die sich mit der Beziehung zwischen Merkmalskombinationen relativ stabiler individueller Faktoren und dem Erleben von Simulator Sickness auseinandergesetzt hat.

6.6.5 Implikationen für Forschung und Praxis

Hinsichtlich der Fahrertypen sollten zunächst auch altersheterogene Stichproben untersucht werden. Andere Studien zeigten, dass vor allem junge männliche Fahrer zu aggressiven und riskanten Fahrverhaltensweisen neigen. Aggressive Fahrweisen können vor allem bei Männern festgestellt werden. So berichten doppelt so viele Männer von aggressiven Fahrverhaltensweisen wie Frauen (Vanlaar et al., 2008). Außerdem geben

Diese Untersuchung weist zudem einige praktische Implikationen, welche sich vor allem auf Interventionskampagnen aggressiven und riskanten Fahrens beziehen, auf. Interventionen weisen bisher eher einen unimodalen Charakter auf. Diese Interventionen sind aber nicht für alle Fahrertypen gleich wirksam, da hinsichtlich sicheren Fahren unterschiedliche Bedürfnisse und Persönlichkeitstraits beachtet werden sollten, um effektivere Interventionsstrategien zu erreichen (Ulleberg, 2002).

Förderung vorsichtiger und adaptiver Verhaltensweisen im Straßenverkehr geschult und trainiert werden.
7 Diskussion

Die abschließende Diskussion dieser Arbeit gliedert sich in eine Zusammenfassung der Arbeit (Kapitel 7.1), eine generelle Diskussion der Ziele und Resultate dieser Arbeit (Kapitel 7.2), die Reflexion von Limitationen und Stärken der Arbeit (Kapitel 7.3) und Ausführungen zu praktischen und Forschungsimplicationen (Kapitel 7.4).

7.1 Zusammenfassung der Arbeit

7.2 Generelle Ergebnisdiskussion

Die Gründe für fehlende Signifikanz der Ergebnisse sind dabei breit gestreut und können in den Charakteristiken der Simulationsumgebung, den Charakteristiken der Fahrtaufgabe und weiteren Human Factors (für eine weitere Erläuterung dieser siehe
Kapitel 3.4) begründet sein. Zu den Charakteristiken der Simulationsumgebung, welche das Erleben von Simulator Sickness beeinflussen, gehört unter anderem die Verwendung einer Bewegungsplattform. Eine Nutzung dieser kann das Erleben von Simulator Sickness verstärken, da entsprechend der sensorischen Konflikttheorie (Reason & Brand, 1975) Konflikte zwischen dem, was eine Person visuell wahrnimmt, und dem, was die Bewegungsplattform an vestibulären Reizen weitergibt, entstehen (McCauley & Sharkey, 1992). In den durchgeführten Studien wurde keine Bewegungsplattform genutzt, welche das Erleben von Simulator Sickness verstärken könnte. Dies könnte ein Grund für die niedrigen Ausprägungen von Simulator Sickness sein.

Neben den genannten Gründen der fehlenden Signifikanz einiger Ergebnisse, sollten auch die geringen Teststärken beachtet werden, welche vor allem in der zweiten und dritten Studie auftraten. Anhand dieser kann vermutet werden, dass die Stichprobengrößen nicht ausreichend waren, um mögliche Effekte aufzudecken.

7.3 Limitationen und Stärken

Darüber hinaus wurde nicht erfasst, wie sich die Symptome des Simulator Sickness Questionnaires im Laufe der Simulationsexposition verändern. Simulator
Sickness wurde lediglich im Anschluss an die Fahrsimulationsexposition erhoben. Dies entspricht den Empfehlungen der Originalautoren des Verfahrens, welche nahelegen, nur Postexpositions-daten als Grundlage für die statistische Datenanalyse zu verwenden (Kennedy et al., 1993).

Eine weitere Limitation betrifft die Komplexität der Fahrumwelt. Papelis und Ahmad (2001) gehen davon aus, dass Verkehr eine der Hauptkomponenten in einer Fahrsimulations-umgebung ist, da die Erfahrungen der Fahrer hauptsächlich auf Interaktionen mit anderen Verkehrsteilnehmern beruhen. In den Untersuchungen dieser Arbeit wurden ausschließlich Simulationsaufgaben ohne weitere Verkehrsteilnehmer genutzt, was zu relativ reizarmen Verkehrsumwelten führte.

Trotz der genannten Limitationen sind die Stärken der Untersuchungen zu beachten. Zum einen wurden in den Studien Konstrukte mit dem Erleben von Simulator Sickness in Beziehung gesetzt, welche bisher in der Forschung kaum beachtet wurden. Es zeigte sich dabei, dass weitere Untersuchungen dieser notwendig sind, um die gefundenen Ergebnisse zu generalisieren.

Zudem konnten in diesen Untersuchungen mittels wenig komplexer Fahraufgaben signifikante Effekte und potentielle Richtungen von Beziehungen gefunden werden. Durch die Einfachheit der Fahraufgaben wurden die ethische Vertretbarkeit und der Schutz der Versuchspersonen vor potentiellen Schädigungen gewährleistet.

7.4 Praktische und Forschungsimplikationen

Aus den Untersuchungen ergeben sich einige Forschungs- sowie praktische Implikationen. Forschungsimplikationen ergeben sich dabei direkt aus den Limitationen der Untersuchungen. Zum einen sollten die Ergebnisse durch Variationen der
Charakteristiken der Simulationsumgebung sowie der Fahraufgabe und unter Beachtung weiterer Human Factors generalisiert werden.

sich an die Realumgebung readaptieren. Es sollten objektive Messungen der Effekte erfolgen, welche auch nach der Simulations-exposition stattfinden und im Zusammenhang mit dem Erleben von Simulator Sickness stehen (z. B. Haltungsstabilität, Hand-Auge-Koordination, visuelle Funktionen; Stanney & Kennedy, 1997).

8 Literaturverzeichnis

http://www.roadsafetyobservatory.com/Evidence/Details/11406

James, W., A. (1890). The principles of psychology. New York: Dover.

Abgerufen von der Website des Defence Technical Information Center:

phobic Participants in Therapeutic Virtual Environments Derived from Computer Games, *CyberPsychology and Behavior*, 6, 467-476. doi: 10.1089/109493103769710497

https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/TransportVerkehr/Verkehrsunfaelle/Tabellen/HauptverursacherFahrzeugart.html

Statistisches Bundesamt (2017b). *Fehlverhalten der Fahrzeugführer bei Unfällen mit Personenschaden*. Abgerufen von der Website des Statistischen Bundesamts:
https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/TransportVerkehr/Verkehrsunfaelle/Tabellen/FehlverhaltenFahrzeugfuhrer.html

Steinberg, L., Albert, D., Cauffman, E., Banich, M., Graham, S., & Woolard, J. (2008). Age differences in sensation seeking and impulsivity as indexed by behavior and

9 Anhang

Anhangsverzeichnis

1 Verwendete Version des Simulator Sickness Questionnaires (SSQ, Kennedy et al., 1993)
2 Studieninformation und Einverständniserklärung (Studie 1 und 3)
3 Demographischer Fragebogen (Studie 1 und 3)
4 Ablaufplan Studie 1
5 Voraussetzungsprüfung der multiplen Regressionsanalyse (Studie 1)
6 Studieninformation und Einverständniserklärung (Studie 2)
7 Demographischer Fragebogen (Studie 2)
8 Ablaufplan Studie 2
9 Voraussetzungsprüfung der linearen Regressionsanalyse (Studie 2)
10 Ausreißeranalyse des Alters (Studie 3)
11 Ablaufplan Studie 3
12 Voraussetzungsprüfung der Clusteranalyse (Studie 3)
13 Voraussetzungsprüfung der mehrfaktoriellen Varianzanalyse (Studie 3)
14 Interkorrelationen der für die Clusteranalyse verwendeten Skalen (Studie 3)
15 Dendogramm (Studie 3)
16 ANOVA der Unterschiede der Fahrertypen hinsichtlich der einzelnen Simulator Sickness Symptome (Studie 3)
Anhang 1: *Verwendete Version des Simulator Sickness Questionnaires (SSQ, Kennedy et al., 1993)*

Simulator Sickness Questionnaire

Versuchspersonencode: ______________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Gar nicht</th>
<th>Leicht</th>
<th>Mäßig</th>
<th>Stark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allgemeines Unwohlsein</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Müdigkeit</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kopfschmerzen</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Überanstrengung der Augen</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Probleme scharf zu sehen</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Erhöhter Speichelfluss</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Schwitzen</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Übelkeit</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Konzentrationsschwierigkeiten</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Kopfdruck</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Verschwommenes Sehen</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Schwindel bei offenen Augen</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Schwindel bei geschlossenen Augen</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Gleichgewichtsstörung</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Magen macht sich bemerkbar</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Aufstoßen</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang 2: Studieninformation und Einverständniserklärung (Studie 1 und 3)

Liebe_r Untersuchungsteilnehmer_in,

Das Fachgebiet für Medienpsychologie und Medienkonzeption untersucht in dem Forschungsprojekt VISTA4F, welche Fahrertypen sich aus verschiedenen psychologischen Konstrukten ableiten lassen und wie sich Probanden in unterschiedlichen Simulations-umgebungen verhalten. Wir freuen uns, dass Sie sich für diese Forschung interessieren und bereit sind, an dieser Untersuchung teilzunehmen!

1 Ziele des Experiments

Das Experiment verfolgt zwei Ziele: Zum einen sollen aus verschiedenen Daten (psychologisch, physiologisch, motorisch) Typen von Fahrern erkannt werden. Zum anderen soll herausgefunden werden, welches der vorhandenen Labore des Instituts am effizientesten zur Nutzung als Fahrsimulation geeignet ist.

2 Ablauf und Inhalt der Untersuchung

sich in eine Liste eintragen, welche die Mailadressen der Probanden sammelt, die über die Ergebnisse der Untersuchung nach Abschluss dieser informiert werden möchten.

3 Freiwilligkeit und Anonymität

4 Was nutzt Ihre Teilnahme?

5 Welche Risiken sind mit einer Teilnahme verbunden?

Es sind keine Risiken mit Ihrer Teilnahme an dem Experiment verbunden. Es kann bei manchen Personen sein, dass Sie ein leichtes Schwindel- oder Übelkeitsgefühl während bzw. nach der Erfahrung in der Fahrsimulation verspüren. Sollte dies der Fall sein, wird Ihnen die Versuchsleiterin zur Seite stehen.

6 Einverständniserklärung

Ich habe die Informationen über die Studie sorgfältig gelesen und eine Kopie dieses Schreibens für meine Unterlagen erhalten.
Ich erkläre mich hiermit

☐ einverstanden
☐ nicht einverstanden

an dem Experiment von Frau Anne Hösch, M.Sc. teilzunehmen. Ich bin damit einverstanden, dass die im Rahmen des Forschungsprojektes erhobenen Daten und Untersuchungsergebnisse in anonymisierter Form zu Forschungszwecken verwendet werden.

Datum ___________________________ Unterschrift ___________________________
Anhang 3: Demographischer Fragebogen (Studie 1 und 3)

Bitte vervollständigen Sie die folgenden Angaben:

Versuchspersonencode: ________________

Alter: ________ Jahre

Geschlecht:
- o Weiblich
- o Männlich
- o Anderes: __________________________

Familienstand:
- o Ledig und Single
- o Ledig, aber in einer Beziehung
- o Verheiratet
- o Geschieden
- o Verwitwet

Bildungsgrad:
- o Hauptschule
- o Real-, Regelschule
- o Abitur/Fachhochschulreife
- o Bachelor
- o Master
- o Diplom/Staatsexamen
- o Promotion
Anhang 4: Ablaufplan Studie 1

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Vorgehen</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Begrüßung der Versuchspersonen</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>„Willkommen zu einer Fahrsimulationsstudie. Diese Untersuchung besteht aus drei Teilen: Zuerst werden Sie gebeten, einige Fragen zu aktuellen physischen und psychischen Beschwerden zu bearbeiten. Anschließend werden Sie in der Fahrsimulation fahren und zuletzt werden Sie einige Fragen zu Ihrer Simulationserfahrung beantworten. Um Anonymität zu gewährleisten, wird jede Versuchsperson einen eigenen Versuchspersonencode generieren.“</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Studieninformation und Einverständniserklärung</td>
<td>5 min</td>
</tr>
<tr>
<td></td>
<td>„Hier finden Sie alle Informationen zur Untersuchung. Bitte lesen Sie diese sorgfältig und unterschreiben Sie die Einverständniserklärung, wenn Sie an dem Experiment teilnehmen möchten.“</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Demographischer Fragebogen</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>„Zuerst möchten wir etwas über Sie erfahren. Bitte beantworten Sie diesen Fragebogen.“</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fragebogen zu physischen und psychischen Beschwerden</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td>„Der nächste Fragebogen dreht sich um Ihre aktuell erlebten physischen sowie psychischen Beschwerden. Bitte lesen Sie die Instruktionen sorgfältig und beantworten Sie die Items.“</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lane Change Task in der Fahrsimulation</td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td>„Wir werden jetzt die Fahrsimulation starten. Sie haben ein paar Minuten Zeit, um sich an die Simulation zu gewöhnen. Sie werden am Bildschirm über den Start der Experimentalphase informiert. Während der gesamten Fahrt werden Ihnen Schilder anzeigen, dass Sie auf eine andere Spur wechseln sollen. Bitte wechseln Sie die Spur so schnell und exakt wie möglich. Bitte halten Sie eine Geschwindigkeit von 60 km/h. Vergessen Sie nicht zu schalten. Bitte halten Sie die Spur bis Sie aufgefordert werden, sie zu wechseln.“</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Simulator Sickness Questionnaire</td>
<td>3 min</td>
</tr>
<tr>
<td></td>
<td>„Ich werde Ihnen jetzt einen kurzen Fragebogen geben, der Ihre Erfahrung mit der Simulation erfassen sollen.“</td>
<td></td>
</tr>
</tbody>
</table>
„Vielen Dank für Ihre Teilnahme an unserer Studie. Hier haben Sie dafür ein kleines Geschenk. Ich hoffe, Sie hatten Spaß und nehmen wieder an einem Experiment teil.“
Anhang 5: *Voraussetzungsprüfung der multiplen Regressionsanalyse (Studie 1)*

a) Gesamtstichprobe

<table>
<thead>
<tr>
<th>Voraussetzung</th>
<th>Prüfergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kriteriumsvariable ist intervalskaliert</td>
<td>Physische sowie psychische Beschwerden wurden auf einer vierstufigen Likertskaa mit gleichen Abständen gemessen. Intervallskalenniveau kann angenommen werden.</td>
</tr>
<tr>
<td>Prädiktorvariable ist intervalskaliert oder als Dummyvariable codiert</td>
<td>Übelkeit, Okulomotorik, Desorientierung und die Gesamtskala des SSQs wurden auf einer vierstufigen Likertskala mit gleichen Abständen gemessen. Intervallskalenniveau kann angenommen werden.</td>
</tr>
<tr>
<td>Gauss-Markov-Annahme 1: Regressionskoeffizienten sind linear.</td>
<td>Postulierte lineare Modelle: Ūbelkeit = β₀ + β₁ * physische Beschwerden + β₂ * psychische Beschwerden</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauss-Markov-Annahme 4: Ausprägungen der Kriteriumsvariablen sind nicht konstant.</td>
<td>MinÜbelkeit = 0.00, MaxÜbelkeit = 143.10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zudem sind die Streudiagramme in Abb. A1 – A8 zu beachten.</td>
</tr>
<tr>
<td></td>
<td>Kriteriumsvariablen sind nicht konstant.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fehlerwert dieselbe Varianz (Homoskedasitizität).

Unabhängigkeit des Fehlerwerts

Überprüfung mittels Durbin-Watson-Test
Übelkeit = 1.34
Okulomotorik = 2.20
Desorientierung = 2.10
Gesamtskala SSQ = 1.84
Werte zwischen 1.5 und 2.5 sind akzeptabel → unabhängige Fehlerwerte für Okulomotorik, Desorientierung und der Gesamtskala

Normalverteilung des Fehlerwerts

Die Fehlerwerte der Skalen sind rechtssteil und linksschief. Zur visuellen Prüfung siehe Abb. 13 – 16.

Keine Multikollinearität

Toleranz = .499; VIF = 2.005. Keine Multikollinearität.

Abb. A1 – Abb. A8: Streudiagramme
Abb. A5 – A12: Bedingter Erwartungswert des Fehlers und Prüfung Homoskedastizität

Abb. A9: Übelkeit
Abb. A10: Okulomotorik
Abb. A11: Desorientierung

Abb. A12: Gesamtskala SSQ

Abb. A13 – A16: Normalverteilung Fehlerwerte

Abb. A13

Abb. A14

Abb. A15

Abb. A16
b) Männliche Teilstichprobe

<table>
<thead>
<tr>
<th>Voraussetzung</th>
<th>Prüfergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss-Markov-Annahme 4: Ausprägungen der Kriteriumsvariablen sind nicht konstant.</td>
<td>$\min_{\text{Übelkeit}} = 0.00, \max_{\text{Übelkeit}} = 143.10$$\min_{\text{Okulomotorik}} = 0.00, \max_{\text{Okulomotorik}} = 136.44$$\min_{\text{Desorientierung}} = 0.00, \max_{\text{Desorientierung}} = 180.96$$\min_{\text{Gesamtskala SSQ}} = 0.00, \max_{\text{Gesamtskala SSQ}} = 142.12$ Zudem sind die Streudiagramme in Abb. A17 – A24 zu beachten. Kriteriumsvariablen sind nicht konstant.</td>
</tr>
<tr>
<td>Unabhängigkeit des Fehlerwerts</td>
<td>Überprüfung mittels Durbin-Watson-Test $\text{Übelkeit} = 1.78$$\text{Okulomotorik} = 2.65$$\text{Desorientierung} = 2.31$$\text{Gesamtskala SSQ} = 1.06$ Werte zwischen 1.5 und 2.5 sind akzeptabel \rightarrow unabhängige Fehlerwerte für Übelkeit und Desorientierung</td>
</tr>
<tr>
<td>Keine Multikollinearität</td>
<td>Für eingeschlossene Variable (psychische Beschwerden): $\text{- Toleranz} = 1.00; \text{VIF} = 1.00$. Keine Multikollinearität.</td>
</tr>
</tbody>
</table>
Für ausgeschlossene Variablen (physische Beschwerden):
- Toleranz = .59; VIF = 1.71. Keine Multikollinearität.

Abb. A17 – Abb. 24: Streudiagramme

Abb. A17

Abb. A18

Abb. A19

Abb. A20

Abb. A21

Abb. A22
Abb. A23 – A27: Bedingter Erwartungswert des Fehlers und Prüfung Homoskedastizität

Abb. A25: Übelkeit

Abb. A26: Okulomotorik

Abb. A27: Desorientierung

Abb. A28: Gesamtskala SSQ
Abb. A29 – A32: Normalverteilung Fehlerwerte
Abb. A29: Übelkeit
Abb. A30: Okulomotorik
Abb. A31: Desorientierung
Abb. A32: Gesamtskala SSQ
c) Weibliche Teilstichprobe

<table>
<thead>
<tr>
<th>Voraussetzung</th>
<th>Prüfergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss-Markov-Annahme 4:</td>
<td>MinÜbelkeit = 0.00, MaxÜbelkeit = 124.02</td>
</tr>
<tr>
<td>Ausprägungen der Kriteriumsvariablen sind nicht konstant.</td>
<td>MinOkulomotorik = 0.00, MaxOkulomotorik = 121.28</td>
</tr>
<tr>
<td></td>
<td>MinDesorientierung = 0.00, MaxDesorientierung = 236.64</td>
</tr>
<tr>
<td></td>
<td>MinGesamtskala_SSQ = 0.00, MaxGesamtskala_SSQ = 157.08</td>
</tr>
<tr>
<td></td>
<td>Zudem sind die Streudiagramme in Abb. A33 – A40 zu beachten.</td>
</tr>
<tr>
<td></td>
<td>Kriteriumsvariablen sind nicht konstant.</td>
</tr>
<tr>
<td>Für jeden Wert der Kriteriumsvariablen hat der Fehlerwert dieselbe Varianz (Homoskedasitizität).</td>
<td>Überprüfung mittels Durbin-Watson-Test</td>
</tr>
<tr>
<td>Unabhängigkeit des Fehlerwerts</td>
<td>Übelkeit = 1.40</td>
</tr>
<tr>
<td></td>
<td>Okulomotorik = 1.30</td>
</tr>
<tr>
<td></td>
<td>Desorientierung = 1.06</td>
</tr>
<tr>
<td></td>
<td>Gesamtskala SSQ = 0.98</td>
</tr>
<tr>
<td></td>
<td>Werte zwischen 1.5 und 2.5 sind akzeptabel (\rightarrow) unabhängige Fehlerwerte für keine der Skalen</td>
</tr>
<tr>
<td>Keine Multikollinearität</td>
<td>Für eingeschlossene Variable (psychische Beschwerden):</td>
</tr>
<tr>
<td></td>
<td>- Toleranz = 1.00; VIF = 1.00. Keine Multikollinearität.</td>
</tr>
<tr>
<td></td>
<td>Für ausgeschlossene Variablen (physische Beschwerden):</td>
</tr>
</tbody>
</table>
- Toleranz = .49; VIF = 2.05. Keine Multikollinearität.

Abb. A33 – Abb. A40: Streudiagramme

Abb. A33

Abb. A34

Abb. A35

Abb. A36

Abb. A37

Abb. A38
Abb. A39 – A44: Bedingter Erwartungswert des Fehlers und Prüfung Homoskedastizität

Abb. A41: Übelkeit
Abb. A42: Okulomotorik
Abb. A43: Desorientierung
Abb. A44: Gesamtskala SSQ
Abb. A45 – A48: Normalverteilung Fehlerwerte
Abb. A45: Übelkeit
Abb. A46: Okulomotorik
Abb. A47: Desorientierung
Abb. A48: Gesamtskala SSQ
Liebe(r) Untersuchungsteilnehmer_in,

1 Ziel & Inhalte des Forschungsprojektes

2 Freiwillige Teilnahme und Anonymität

Die Teilnahme an diesem Experiment ist freiwillig. Sie können jederzeit und ohne sich rechtfertigen zu müssen mit dem Experiment aufhören, ohne dass dadurch irgendwelche Nachteile für Sie entstehen. Selbiges gilt für das Ausfüllen der Fragebögen. Ihre Daten werden vollständig vertraulich behandelt, sodass jederzeit Ihre Anonymität gewahrt bleibt.
Anhang 7: Demographischer Fragebogen (Studie 2)

Der folgende Fragebogen enthält zunächst einige allgemeine Fragen an Sie. Um die Speicherung, Verarbeitung und Verfolgung von Daten zu vereinfachen, bitte ich jeden Teilnehmer, einen Teilnehmercode zu erstellen. Sämtliche Daten werden selbstverständlich vertraulich behandelt, sodass die Anonymität aller Teilnehmer gewährleistet ist. Falls Sie noch weitere Fragen haben, können Sie diese jederzeit stellen.

Bitte tragen Sie hier Ihren Teilnehmercode in folgender Form ein:

Geburtsjahr (JJJJ) + Anfangsbuchstabe Nachname + Anfangsbuchstabe Vorname + Geburtstag und Monat (TTMM)

1. **Wie alt sind Sie?**
 ______ Jahre

2. **Bitte geben Sie Ihr Geschlecht an:**
 - □ Männlich
 - □ Weiblich
 - □ Anderes, und zwar: _____________________

3. **Was ist Ihr höchster Bildungsabschluss?**
 - □ Hauptschulabschluss
 - □ Realschulabschluss (Mittlere Reife)
 - □ Fachhochschulreife (Abschluss einer Fachoberschule)
 - □ Abitur, allgemeine oder fachgebundene Hochschulreife
 - □ Hochschulabschluss (Bachelor, Master oder Diplom durch Universität, FH)
 - □ Promotion
 - □ Bisher kein Abschluss
 - □ Anderer Abschluss, und zwar: _____________________

Dies war der erste Teil der Untersuchung. Wir können nun mit der Fahrsimulationsaufgabe beginnen!
Anhang 8: *Ablaufplan Studie 2*

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Vorgehen</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Begrüßung der Versuchspersonen</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>„Willkommen zu einer Fahrsimulationsstudie. Diese Untersuchung besteht</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aus drei Teilen: Zuerst werden Sie gebeten, einige demographische Fragen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zu beantworten. Anschließend werden Sie in der Fahrsimulation fahren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>und zuletzt werden Sie einige Fragen zu Ihrer Simulationserfahrung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beantworten. Um Anonymität zu gewährleisten, wird jede Versuchsperson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>einen eigenen Versuchspersonencode generieren.“</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Studieninformation und Einverständniserklärung</td>
<td>5 min</td>
</tr>
<tr>
<td></td>
<td>„Hier finden Sie alle Informationen zur Untersuchung. Bitte lesen Sie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diese sorgfältig und unterschreiben Sie die Einverständniserklärung,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wenn Sie an dem Experiment teilnehmen möchten.“</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Demographischer Fragebogen</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>„Zuerst möchten wir etwas über Sie erfahren. Bitte beantworten Sie diesen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fragebogen.“</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fahrsimulationsaufgabe inklusive Erklärung dieser Aufgabe</td>
<td>6 min</td>
</tr>
<tr>
<td></td>
<td>„Der Fahrsimulator funktioniert im Prinzip wie ein normales Auto. Der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sitz ist mit einem Drehknopf an der hinteren rechten Ecke verstellbar.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Das Lenkrad enthält einige zusätzliche Bedienelemente. Für dieses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experiment ist nur der gelbe Knopf an der rechten Seite des Lenkrads</td>
<td></td>
</tr>
<tr>
<td></td>
<td>relevant. Die Pedale entsprechen der Anordnung in einem normalen Fahrzeug</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(linkes Pedal Kupplung, mittleres Pedal Bremse, rechtes Pedal Gas). Sie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>werden auf einer Landstraße fahren und Ihre Aufgabe besteht darin, den</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gelben Knopf an der rechten Seite des Lenkrads zu drücken, wenn Sie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>das folgende Verkehrszeichen sehen: [Bild von Zielreiz in der Aufgaben-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beschreibung]. Bitte drücken Sie den Knopf sobald das Schild erscheint,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aber unbedingt bevor Sie daran vorbeifahren. Falls Sie die folgenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schilder sehen, sollen Sie keinen Knopf drücken, sondern einfach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weiterfahren: [Bilder der Distraktorreize in der Aufgaben-beschreibung].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bitte bleiben Sie wie im echten Straßenverkehr auf der rechten Seite der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fahrbahn. Sie dürfen die Geschwindigkeit die Sie fahren möchten frei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wählen. Wir können jetzt mit dem Experiment beginnen. Es wird insgesamt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ca. 6 Minuten dauern. Zunächst haben Sie Zeit, sich an den Simulator und</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dessen Steuerung zu gewöhnen. Die erste Minute des Experiments fließt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nicht in die Auswertung ein, sondern dient dazu, dass Sie sich mit der</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aufgabe vertraut</td>
<td></td>
</tr>
</tbody>
</table>
machen können. Sollten Sie noch weitere Fragen zur Aufgabe, dem Fahrsimulator oder dem Experiment haben, können Sie diese jetzt stellen. Viel Spaß!“

<table>
<thead>
<tr>
<th>5</th>
<th>Simulator Sickness Questionnaire</th>
<th>3 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Ich werde Ihnen jetzt einen kurzen Fragebogen geben, der Ihre Erfahrung mit der Simulation erfassen soll.“</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Verabschiedung</th>
<th>1 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Vielen Dank für Ihre Teilnahme an unserer Studie. Hier haben Sie dafür ein kleines Geschenk. Ich hoffe, Sie hatten Spaß und nehmen wieder an einem Experiment teil.“</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang 9: *Voraussetzungsprüfung der linearen Regressionsanalyse (Studie 2)*

a) Gesamtstichprobe

<table>
<thead>
<tr>
<th>Voraussetzung</th>
<th>Prüfergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kriteriumsvariable ist intervallskaliert</td>
<td>Physische sowie psychische Beschwerden wurden auf einer vierstufigen Likertskala mit gleichen Abständen gemessen. Intervallskalenniveau kann angenommen werden.</td>
</tr>
<tr>
<td>Prädiktorvariable ist intervallskaliert oder als Dummyvariable codiert</td>
<td>Visuelle Aufmerksamkeitsleistung wurde mit einer kontinuierlichen Skala mit gleichen Abständen gemessen. Intervallskalenniveau kann angenommen werden.</td>
</tr>
<tr>
<td>Gauss-Markov-Annahme 1: Postulierte lineare Modelle:</td>
<td>Okulomotorik $= \beta_0 + \beta_1 \cdot $ Visuelle Aufmerksamkeits-leistung</td>
</tr>
<tr>
<td></td>
<td>Desorientierung $= \beta_0 + \beta_1 \cdot $ Visuelle Aufmerksamkeits-leistung</td>
</tr>
<tr>
<td></td>
<td>Gesamtskala SSQ $= \beta_0 + \beta_1 \cdot $ Visuelle Aufmerksamkeitsleistung</td>
</tr>
<tr>
<td>Gauss-Markov-Annahme 2: Keine Zufallsstichprobe, sondern Selbstselektionsstichprobe.</td>
<td></td>
</tr>
<tr>
<td>Gauss-Markov-Annahme 4: MinOkulomotorik = 0.00, MaxOkulomotorik = 98.54</td>
<td></td>
</tr>
<tr>
<td>Ausprägungen der Kriteriumsvariablen sind nicht konstant.</td>
<td>MinDesorientierung = 0.00, MaxDesorientierung = 111.36</td>
</tr>
<tr>
<td></td>
<td>MinGesamtskala_SSQ = 0.00, MaxGesamtskala_SSQ = 93.50</td>
</tr>
<tr>
<td>Zudem sind die Streudiagramme in Abb. A49 – A51 zu beachten.</td>
<td></td>
</tr>
<tr>
<td>Kriteriumsvariablen sind nicht konstant.</td>
<td></td>
</tr>
<tr>
<td>Unabhängigkeit des Fehlerwerts</td>
<td>Überprüfung mittels Durbin-Watson-Test</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Okulomotorik = 2.26</td>
<td></td>
</tr>
<tr>
<td>Desorientierung = 2.00</td>
<td></td>
</tr>
<tr>
<td>Gesamtskala SSQ = 2.01</td>
<td></td>
</tr>
<tr>
<td>Werte zwischen 1.5 und 2.5 sind akzeptabel → unabhängige Fehlerwerte für Okulomotorik, Desorientierung und der Gesamtskala</td>
<td></td>
</tr>
</tbody>
</table>

Abb. A52 – A54: Bedingter Erwartungswert des Fehlers und Prüfung Homoskedastizität

Abb. A52: Okulomotorik

Abb. A53: Desorientierung

Abb. A54: Gesamtskala SSQ

Abb. A55 – A57: Normalverteilung Fehlerwerte

Abb. A55: Okulomotorik

Abb. A56: Desorientierung
Abb. A57: Gesamtskala SSQ
b) Männliche Teilstichprobe

<table>
<thead>
<tr>
<th>Voraussetzung</th>
<th>Prüfergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearität des Zusammenhangs zwischen Kriterium</td>
<td>Keine Linearität des Zusammenhangs zwischen den Prädiktorvariablen und den</td>
</tr>
<tr>
<td>Gauss-Markov-Annahme 3:</td>
<td>Der bedingte Erwartungswert der Fehler ist nicht exakt Null, es gibt</td>
</tr>
<tr>
<td>Gauss-Markov-Annahme 4:</td>
<td>MinOkulomotorik = 0.00, MaxOkulomotorik = 60.64</td>
</tr>
<tr>
<td>Ausprägungen der Kriteriumsvariablen sind nicht</td>
<td>MinDesorientierung = 0.00, MaxDesorientierung = 83.52</td>
</tr>
<tr>
<td>konstant.</td>
<td>MinGesamtskala_SSQ = 0.00, MaxGesamtskala_SSQ = 48.62</td>
</tr>
<tr>
<td></td>
<td>Zudem sind die Streudiagramme in Abb. A57 – A59 zu beachten.</td>
</tr>
<tr>
<td></td>
<td>Kriteriumsvariablen sind nicht konstant.</td>
</tr>
<tr>
<td>Für jeden Wert der Kriteriumsvariablen hat der</td>
<td>Überprüfung mittels Durbin-Watson-Test</td>
</tr>
<tr>
<td>Fehlerwert dieselbe Varianz</td>
<td>Okulomotorik = 2.51</td>
</tr>
<tr>
<td>(Homoskedasitizität).</td>
<td>Desorientierung = 2.48</td>
</tr>
<tr>
<td>Unabhängigkeit des Fehlerwerts</td>
<td>Gesamtskala SSQ = 2.62</td>
</tr>
<tr>
<td></td>
<td>Werte zwischen 1.5 und 2.5 sind akzeptabel ➔ unabhängige Fehlerwerte für</td>
</tr>
<tr>
<td></td>
<td>Okulomotorik und Desorientierung</td>
</tr>
<tr>
<td>Normalverteilung des Fehlerwerts</td>
<td>Die Fehlerwerte der Skalen sind annähernd normalverteilt, allerdings leicht</td>
</tr>
</tbody>
</table>
Abb. A57 – Abb. A59: Streudiagramme

Abb. A57

Abb. A58

Abb. A59

Abb. A60 – A62: Bedingter Erwartungswert des Fehlers und Prüfung Homoskedastizität

Abb. A60: Okulomotorik

Abb. A61: Desorientierung
Abb. A62: Gesamtskala SSQ

Abb. A63 – A65: Normalverteilung Fehlerwerte
Abb. A63: Okulomotorik
Abb. A64: Desorientierung

Abb. A65: Gesamtskala SSQ
c) Weibliche Teilstichprobe

<table>
<thead>
<tr>
<th>Voraussetzung</th>
<th>Prüfergebnis</th>
</tr>
</thead>
</table>
| Gauss-Markov-Annahme 4: Ausprägungen der Kriteriumsvariablen sind nicht konstant. | $Min_{\text{Okulomotorik}} = 0.00, Max_{\text{Okulomotorik}} = 98.54$ $Min_{\text{Desorientierung}} = 0.00, Max_{\text{Desorientierung}} = 111.36$ $Min_{\text{Gesamtskala SSQ}} = 0.00, Max_{\text{Gesamtskala SSQ}} = 93.50$
Zudem sind die Streudiagramme in Abb. A66 – A68 zu beachten.
Kriteriumsvariablen sind nicht konstant. |
| Unabhängigkeit des Fehlerwerts | Überprüfung mittels Durbin-Watson-Test
Okulomotorik = 1.95
Desorientierung = 2.00
Gesamtskala SSQ = 2.01
Werte zwischen 1.5 und 2.5 sind akzeptabel
unabhängige Fehlerwerte für die Fehlerwerte aller Skalen |
Abb. A66 – Abb. A68: Streudiagramme

Abb. A66: Bedingter Erwartungswert des Fehlers und Prüfung Homoskedastizität

Abb. A67: Okulomotorik

Abb. A68: Desorientierung
Abb. A71: Gesamtskala SSQ

Abb. A72 – A74: Normalverteilung Fehlerwerte
Abb. A72: Übelkeit
Abb. A73: Okulomotorik
Abb. A74: Desorientierung
Anhang 10:

Ausreißeranalyse des Alters (Studie 3)

Die Prüfung der Ausreißerwerte des Alters wurde mittels eines Boxplots durchgeführt. Die zentralen Kennwerte für die Analyse sind die Folgenden:

Median = 24; \(Q_{0.25} = 22; \) \(Q_{0.75} = 27 \)

\(IQA = Q_{0.75} - Q_{0.25} = 27 - 22 = 5 \)

Anhand dieser Werte erfolgte eine Identifikation von milden Ausreißern (15, 16, 51) und einem Extremwert, basierend auf der Annahme, dass milde Ausreißer in einem Bereich von 1.5*IQ-A (in dieser Verteilung wäre dies der Wert 7.5) bis 3*IQ-A (in dieser Verteilung ist dies der Wert 15) liegen (Plate, 2016). In dieser Verteilung würden milde Ausreißer zwischen 34.5 und 42.0 liegen. Basierend auf diesen Überlegungen wurde nur der Extremwert aus der Analyse exkludiert. Die folgende Graphik dient der Darstellung des Boxplots.
Anhang 11: Ablaufplan Studie 3

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Vorgehen</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Begrüßung der Versuchspersonen</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>„Willkommen zu einer Fahrsimulationsstudie. Diese Untersuchung besteht aus drei Teilen: Zuerst werden Sie gebeten, einige Fragebögen sowie ein PC-gestütztes Verfahren zur Erfassung kognitiver Leistungen zu bearbeiten. Anschließend werden Sie in der Fahrsimulation fahren und zuletzt werden Sie einige Fragen zu Ihrer Simulationserfahrung beantworten. Um Anonymität zu gewährleisten, wird jede Versuchsperson einen eigenen Versuchspersonencode generieren.“</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Studieninformation und Einverständniserklärung</td>
<td>5 min</td>
</tr>
<tr>
<td></td>
<td>„Hier finden Sie alle Informationen zur Untersuchung. Bitte lesen Sie diese sorgfältig und unterschreiben Sie die Einverständniserklärung, wenn Sie an dem Experiment teilnehmen möchten.“</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Demographischer Fragebogen</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>„Zuerst möchten wir etwas über Sie erfahren. Bitte beantworten Sie diesen Fragebogen.“</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Manchester Driver Behaviour Questionnaire</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td>„Der nächste Fragebogen dreht sich um Ihr Fahrverhalten. Bitte lesen Sie die Instruktionen sorgfältig und beantworten Sie die Items.“</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Need Inventory of Sensation Seeking</td>
<td>5 min</td>
</tr>
<tr>
<td></td>
<td>„Im nächsten Fragebogen geht es um Sensation Seeking. Bitte halten Sie sich an die gegebenen Instruktionen.“</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Test zur Erfassung verkehrsrelevanter Persönlichkeitsbeschreibung</td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td>„Den letzten Test am PC haben Sie beendet. Jetzt werden Sie den letzten Fragebogen beantworten. Hierbei geht es um Persönlichkeit.“</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Compact Testbatterie</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td>„Die nächsten beiden Tests werden Sie am PC bearbeiten. Es handelt sich um Tests zur Erfassung der Konzentrations- und“</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lane Change Task in der Fahrsimulation</td>
<td>30 min</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
<td>------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Simulator Sickness Questionnaire</th>
<th>3 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ich werde Ihnen jetzt einen kurzen Fragebogen geben, der Ihre Erfahrung mit der Simulation erfassen soll.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verabschiedung</th>
<th>1 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Vielen Dank für Ihre Teilnahme an unserer Studie. Hier haben Sie dafür ein kleines Geschenk. Ich hoffe, Sie hatten Spaß und nehmen wieder an einem Experiment teil.“</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang 12: Voraussetzungsprüfung der Clusteranalyse (Studie 3)

<table>
<thead>
<tr>
<th>Voraussetzung</th>
<th>Prüfergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stichprobe muss ausreichend groß sein</td>
<td>$N = 86$ nicht sehr groß, aber in der Praxis sind kleine Stichproben üblich</td>
</tr>
<tr>
<td>Bereinigung fehlender Werte</td>
<td>Versuchspersonen mit fehlenden Werten wurden aus der Analyse ausgeschlossen</td>
</tr>
<tr>
<td>auftretende Skalenniveau</td>
<td></td>
</tr>
<tr>
<td>Bei großen Unterschieden hinsichtlich des Wertebereichs, sollten Variablen</td>
<td>Alle Skalen wurden z-transformiert.</td>
</tr>
<tr>
<td>transformiert werden</td>
<td></td>
</tr>
</tbody>
</table>
Anhang 13: *Voraussetzungsprüfung der mehrfaktoriellen Varianzanalyse (Studie 3)*

<table>
<thead>
<tr>
<th>Voraussetzung</th>
<th>Prüfergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die abhängige Variable ist intervallskaliert</td>
<td>Die Skalen des Simulator Sickness Questionnaires werden auf einer vierstufigen Likertskala abgebildet und können als intervallskaliert betrachtet werden.</td>
</tr>
<tr>
<td>Die unabhängigen Variablen sind kategorial (nominal- oder ordinaskaliert)</td>
<td>Die unabhängige Variable besteht aus 4 Fahrertypen und ist nominalskaaliert.</td>
</tr>
<tr>
<td>Die Gruppen der unabhängigen Variable sind unabhängig</td>
<td>Gruppen sind unabhängig.</td>
</tr>
</tbody>
</table>
| Homogenität der Varianzen | Übelkeit: $F(3, 82) = .756, p = .522$
Okulomotorik: $F(3, 82) = .427, p = .734$
Desorientierung: $F(3, 82) = .594, p = .621$
Gesamtskala SSQ: $F(3, 82) = .130, p = .942$
Varianzhomogenität kann angenommen werden |

Cluster 1: Ängstlicher Fahrertyp
Abb. A75
Abb. A76
Cluster 2: Leichtsinniger Fahrertyp

Abb. A77

Abb. A78

Abb. A79

Abb. A80

Abb. A81

Abb. A82
Cluster 3: Vorsichtiger Fahrertyp
Abb. A83

Cluster 4: Aggressiver Fahrertyp
Abb. A87
<table>
<thead>
<tr>
<th>Skalen</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DBQ Fahrfehler</td>
<td></td>
<td>.406*</td>
<td>.743*</td>
<td>.136</td>
<td>.080</td>
<td>.017</td>
<td>.291*</td>
<td>-.051</td>
<td>-.091</td>
<td>-.144</td>
<td>.105</td>
<td>-.089</td>
</tr>
<tr>
<td>2. DBQ Verstöße</td>
<td></td>
<td></td>
<td>.515*</td>
<td>.201</td>
<td>.164</td>
<td>.409*</td>
<td>.009</td>
<td>-.150</td>
<td>-.256*</td>
<td>-.433*</td>
<td>-.153</td>
<td>-.128</td>
</tr>
<tr>
<td>3. DBQ Versehen</td>
<td></td>
<td></td>
<td></td>
<td>.166</td>
<td>.170</td>
<td>.222*</td>
<td>.140</td>
<td>-.025</td>
<td>.047</td>
<td>-.200</td>
<td>.071</td>
<td>-.179</td>
</tr>
<tr>
<td>4. NISS BS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.024</td>
<td>.579*</td>
<td>.150</td>
<td>-.139</td>
<td>.128</td>
<td>-.384*</td>
<td>-.331*</td>
<td>.159</td>
</tr>
<tr>
<td>5. NISS VR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.160</td>
<td>-.215*</td>
<td>-.011</td>
<td>-.157</td>
<td>-.084</td>
<td>-.051</td>
<td>.007</td>
</tr>
<tr>
<td>6. TVP E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.021</td>
<td>-.057</td>
<td>-.193</td>
<td>-.538</td>
<td>-.220*</td>
<td>.094</td>
</tr>
<tr>
<td>7. TVP EL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.087</td>
<td>-.001</td>
<td>-.134</td>
<td>.100</td>
<td>-.057</td>
</tr>
<tr>
<td>8. TVP G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.134</td>
<td>.213*</td>
<td>.158</td>
<td>-.043</td>
</tr>
<tr>
<td>9. TVP O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.275*</td>
<td>.045</td>
<td>.075</td>
</tr>
<tr>
<td>10. TVP V</td>
<td></td>
<td>.144</td>
<td>-.116</td>
</tr>
<tr>
<td>11. CompACT Sr</td>
<td></td>
<td>.016</td>
</tr>
<tr>
<td>12. CompACT Co</td>
<td></td>
</tr>
</tbody>
</table>
Anhang 15: *Dendogramm (Studie 3)*
Anhang 16: ANOVA der Unterschiede der Fahrertypen hinsichtlich der einzelnen Simulator Sickness Symptome (Studie 3)

<table>
<thead>
<tr>
<th>Variable</th>
<th>$F(2, 85)$</th>
<th>p</th>
<th>η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleichgewichtsstörung</td>
<td>4.81</td>
<td>.004</td>
<td>.15</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>2.16</td>
<td>.099</td>
<td>.07</td>
</tr>
<tr>
<td>Konzentrationsschwierigkeiten</td>
<td>1.21</td>
<td>.313</td>
<td>.04</td>
</tr>
<tr>
<td>Allgemeines Unwohlsein</td>
<td>1.44</td>
<td>.237</td>
<td>.05</td>
</tr>
<tr>
<td>Magen macht sich bemerkbar</td>
<td>3.15</td>
<td>.029</td>
<td>.10</td>
</tr>
<tr>
<td>Überanstrengung der Augen</td>
<td>0.73</td>
<td>.535</td>
<td>.03</td>
</tr>
<tr>
<td>Schwitzen</td>
<td>0.53</td>
<td>.661</td>
<td>.02</td>
</tr>
<tr>
<td>Probleme scharf zu sehen</td>
<td>0.83</td>
<td>.482</td>
<td>.03</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>1.26</td>
<td>.293</td>
<td>.04</td>
</tr>
<tr>
<td>Schwindel bei offenen Augen</td>
<td>1.45</td>
<td>.236</td>
<td>.05</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td>2.54</td>
<td>.062</td>
<td>.09</td>
</tr>
<tr>
<td>Kopfdruck</td>
<td>0.39</td>
<td>.759</td>
<td>.01</td>
</tr>
<tr>
<td>Erhöhter Speichelfluss</td>
<td>0.87</td>
<td>.461</td>
<td>.03</td>
</tr>
<tr>
<td>Schwindel bei geschlossenen Augen</td>
<td>0.28</td>
<td>.838</td>
<td>.01</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>1.39</td>
<td>.253</td>
<td>.05</td>
</tr>
<tr>
<td>Aufstoßen</td>
<td>1.26</td>
<td>.293</td>
<td>.04</td>
</tr>
</tbody>
</table>

Anmerkung. Sortierung wie in Tabelle 56, absteigend nach der Höhe der Mittelwerte des ängstlichen Fahrertyps.