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Vorwort des Betreuers

Vorwort des Betreuers

Die Zusammensetzung von Boden ist hochgradig stochastischer Natur. Kein Korn gleicht dem
andern, keine zwei Bodenproben sind wirklich identisch. Dennoch gibt es Bodengruppen und
Bodenarten, denen eine kollektive Identität zugesprochen werden kann. Zuschreibungskriterien
können die Korngrößenverteilung, die plastischen Eigenschaften, die Wasserempfindlichkeit, die
Steifigkeit, die Scherfestigkeit, die Wasserdurchlässigkeit, die Frostempfindlichkeit oder auch an-
dere bodenmechanische Eigenschaften sein. Aber je nach Betrachtungsmaßstab findet man anstatt
vermeintlicher Homogenität eine streuende Zusammensetzung des Bodens vor und damit eine
gewisse räumliche Streuung der betrachteten physikalischen Eigenschaft. Das macht den Boden
so interessant und bietet selbst dem Experten immer wieder Überraschungen.

Geht man tiefer in die Materie, zeigt sich, dass das mechanische Verhalten des i. A. aus min-
eralischer Masse, Wasser und Luft zusammengesetzten Materials »Boden« maßgeblich durch
die Packung der Körner, die Struktur des Bodens sowie durch deren Komplement, die Struk-
tur des Porenraums bestimmt wird. Neben der Korngröße, Kornform und Mineralogie bestimmt
die Porosität das mechanische Verhalten der Packung. Möchte man die Streuung der mechanis-
chen Eigenschaften verstehen, sollte man bei der Streuung der die Eigenschaften bestimmenden
Grundlagen beginnen, der räumlichen Streuung der Struktur des Bodens. Einer physikalischen
Kenngröße dieser Grundlagen hat sich Pengtao Zhu im Detail gewidmet. Als Stipendiat an un-
serer Professur hat er die Analyse und physikalische Beschreibung der räumlichen Streuung der
Porenziffer zum Thema seiner Dissertation gemacht. Dabei hat er sich auf Sand beschränkt.

Herr Zhu hat eine klar formulierte wissenschaftliche Frage bearbeitet: Ob und wenn ja, wie die
statistischen und geostatistischen Kenngrößen einer streuenden Porenziffer eines Sandes tiefenab-
hängig sind. Und er hat nach der Analyse untersucht, welchen Einfluss dies auf zwei konkrete
makroskopische Eigenschaften hat, auf das Setzungsverhalten und auf die Standsicherheit einer
Böschung bei einem ebenen, böschungsparallelen Versagensmechanismus. Der Lösung hat er sich
baukastenmäßig angenähert. Randbedingungen und Gesetzmäßigkeiten hat er teilweise aus wis-
senschaftlichen Publikationen übernommen um darauf aufbauend mit einem selbst kreierten Zu-
fallsfeld Simulationen durchzuführen. Er konnte zeigen, dass die Tiefenabhängigkeit der Vari-
abilität durch den Spannungszustand beeinflusst wird. Einige Detailergebnisse sind erwartungs-
gemäß, andere überraschen und sind noch weiter auf Praxisrelevanz zu analysieren.

Bei der Entstehung der Arbeit und bei vielen Verzweigungen gab es immer wieder Anregung,
Kritik, Diskussion und wissenschaftlichen Input von Herrn Dr. Maximilian Huber, der während
der Initialphase dieser Promotion Postdoktorand am DFG-Graduiertenkolleg 1462 »Modellqual-
itäten« war. Hierfür meinen herzlichsten Dank. Die anregenden Diskussionen waren nicht nur
für das wissenschaftliche Weiterkommen von Herrn Zhu wichtig, sondern auch für mich stets
bereichernd. Schließlich möchte ich auch den beiden Ko-Referenten und meinem Nachfolger an
der Professur, den Professoren Ivo Herle, Tom Lahmer und Torsten Wichtmann für die Begutach-
tung, Prüfung und Kritik an der finalen Dissertation danken. Der differenzierte Blick aus unter-
schiedlichen Richtungen eröffnet doch immer wieder Horizonte und gibt wertvolle Anregungen
zur weiteren Forschung.

Weimar, März 2018 Karl Josef Witt
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Abstract

Abstract

The uncertainty of a soil property can significantly affect the physical behavior of soil, so as to
influence geotechnical practice. The uncertainty can be expressed by its stochastic parameters, in-
cluding the mean, the standard deviation, and the spatial correlation length. These stochastic pa-
rameters are regarded as constant value in most of the former studies. The main aim of this thesis
is to prove whether they are depth-dependent, and to evaluate the effect of this depth-dependent
character on both the settlement and the infinite slope stability during rainwater infiltration.

A stochastic one-dimensional settlement simulation is carried out using random finite element
method with the von Wolffersdorff hypoplastic model, so as to evaluate the effect of stress level on
the stochastic parameters of void ratio related parameters of sand. It is found that these stochastic
parameters are both stress-dependent and depth-dependent.

The non-stationary random field, considering the depth-dependent character of these stochastic
parameters, can be generated through the distortion of the stationary random field.

The one-dimensional settlement analysis is carried out to evaluation the effect of the depth-
dependent character of the stochastic parameters of void ratio on the strain. It is found that the
depth-dependent character has low effect on the strain.

The deterministic analysis of infinite slope stability during rainwater infiltration is simulated.
The transient seepage is carried out using finite difference method, while the steady state seepage
is simulated using the analytical solution. The saturated hydraulic conductivity (ks) is taken as
the only variable. The results show that the depth-dependent ks has a significant influence on the
stability of the slope when the negative flux is high. Without considering the depth-dependent
character, can overestimate the factor of safety of the slope. A slope can fail if the depth-dependent
character is considered, while it is stable if the depth-dependent character is neglected. The failure
time of the slope with a greater depth-dependent ks is earlier during transient infiltration.

Meanwhile, the stochastic infinite slope stability analysis during infiltration, is also carried out to
highlight the effect of the depth-dependent character of the stochastic parameters of ks. The results
show that: the probability of failure is significantly increased if the depth-dependent character
of mean is considered, while, it is moderately reduced if the depth-dependent character of the
standard deviation is accounted. If the depth-dependent character of both the mean and standard
deviation of ks is considered, the depth-dependent mean value plays a dominant influence on the
results. Furthermore, the depth-dependent character of the spatial correlation length can slightly
reduce the probability of failure.
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Problemstellung und Zielsetzung der Arbeit

Die Variabilität von unsicheren, räumlich streuenden Bodeneigenschaft kann durch die statistis-
chen Größen Mittelwert, Standardabweichung, Variationskoeffizient und durch deren räumliche
Korrelation beschrieben werden. Die Streuung der Bodeneigenschaften beeinflusst eine geotech-
nische Analyse der Baugrundeigenschaften wie auch die geotechnischen Nachweise wesentlich.
Die geotechnische Nachweise gehen jedoch von deterministischen Gesetzmäßigkeiten und meist
nicht von unsicheren Einwirkungen und Widerständen aus.

In der Ingenieurpraxis wird die Variabilität der Bodenkenngrößen dahingehend berücksichtigt,
dass der Baugrund in subjektiv definierte Homogenbereiche mit sicheren, bekannten Eigenschaften
unterteilt wird. Während bisher gelegentlich Trends hinsichtlich der Variation des Mittelwertes
im Baugrundmodell und in den darauf aufbauenden Nachweisen eingeführt wurden, blieb eine
tiefenabhängige Streuung der Standardabweichung und der Korrelationslänge sowohl in der Wis-
senschaft, als auch in praktischen Anwendungen vollkommen unberücksichtigt. Da sich der Span-
nungszustand im Boden bereits unabhängig von externen Einwirkungen durch den Überlagerungs-
druck mit der Tiefe ändert, liegt nahe, dass auch hinsichtlich der Variabilität der Kenngrößen ein
Tiefeneinfluss besteht.

Die vorliegende Dissertation setzt sich wissenschaftlich mit dem Phänomen der räumlichen
und spannungsabhängigen Streuung der Porosität in Sand und mit deren Folge auseinander. Die
Hauptziele sind die Klärung der Fragen:

· sind die stochastischen Größen der porenzahlbezogenen Kenngrößen von Sand spannungs-
und damit tiefenabhängig?

· wie lässt sich ein realitätsnahes Zufallsfeld der Tiefenabhängigkeit der streuenden Kenngrößen
modellieren und stochastisch beschreiben?

· Welchen Einfluss hat eine tiefenabhängige Streuung der porositätsbezogenen Kenngrößen
auf die exemplarisch ausgewählten geotechnischen Nachweise der eindimensionalen Kom-
pression und der Stabilität einer unendlich langen Böschung bei einer Infiltration von Nieder-
schlag?

Stand der Wissenschaft

Die Variabilität von Bodeneigenschaften, deren Beschreibung und der Einfluss auf die Sicherheit
von Bauwerken war in den letzten Dekaden immer wieder ein relevantes Forschungsthema. In
den Analysen und bei der Modellierung des Tiefeneinflusses der streuenden Kenngrößen wurden
der Mittelwert und die Standardabweichung entweder als konstant oder als trendbehaftet linear
tiefenabhängig angenommen. Die Tiefenabhängigkeit des Variationskoeffizienten wurde meinst
nicht untersucht, die räumliche Korrelationslänge der Kenngröße wurde bisher immer als konstant
angenommen.

Bei stochastischen Analysen zur Bewertung der Auswirkung der Variabilität einer Bodeneigen-
schaft in geotechnischen Nachweisen, wurden bisher die statistischen Kenngrößen wie auch die
räumliche Korrelationslänge der Bodeneigenschaft innerhalb eines Homogenbereiches als kon-
stant oder rein zufällig streuend betrachtet. Der Einfluss des Spannungszustandes und die daraus
zu erwartenden Effekte auf spezifische geotechnische Nachweise wurden bisher nicht untersucht.
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Eingesetzte Methoden

Die Beziehung zwischen dem Spannungsniveau und der Änderung der statistischen Größen der
porenzahlbezogenen Kenngrößen eines Sandes wurde mit einer stochastischen Analyse anhand
der der eindimensionalen Kompression untersucht. Dabei wurde ein Zufalls-Finite-Elemente-
Modell entwickelt. Dem Sand wurde ein hypoplastisches Stoffgesetzt zugeordnet. Mit diesen
Methoden konnte ein Zufallsfeld entwickelt werden, das den Einfluss des Spannungszustandes
und damit den der Tiefenabhängigkeit abbildet. Die tiefenabhängigen Phänomene wurden an-
hand der Dehnung bewertet, was einer Setzungsanalyse gleichkommt.

Der Einfluss einer tiefenabhängigen Streuung der bodenmechanischen Kenngrößen und deren
Korrelationslängen wurde exemplarisch für eine unendlich lange Böschungen (ebene Gleitfuge)
analysiert wobei auch die Infiltration von Niederschlagswasser als Einwirkung betrachtet wurde.
Die stationäre Infiltration wurde mit Hilfe der deterministischen Lösung simuliert, die instationäre
mit dem Finite-Differenzen-Verfahren nach dem Crank-Nicolson-Schema. Die globale Standsicher-
heit der Böschung mit unsicheren Kenngrößen wird während der Infiltration von Niederschlagswasser
maßgeblich durch die ungesättigte Wasserdurchlässigkeit des Bodens bestimmt und hängt damit
wesentlich von der Matrix-Spannung ab. Die Variabilität der gesättigten Wasserdurchlässigkeit bei
variablen Bodeneigenschaften konnte über empirische Korrelationen berücksichtigt werden. Für
die Änderung der in der ungesättigten Zone wesentlichen Einflussgröße Saugspannung wurde auf
bekannte Modellierungen und Gesetzmäßigkeiten zurückgegriffen, bei denen jedoch keine Vari-
abilität der räumlichen Strukturen berücksichtigt werden konnte.

Wesentliche Ergebnisse

Mit der systematischen Analyse zur Wirkung des Spannungsniveaus auf die stochastischen
Größen der porenzahlbezogenen Kenngrößen des Sandes konnte gezeigt werden, dass

· die statistischen Kennwerte der Porosität von Sand signifikant vom Spannungszustand bee-
influsst werden,

· der Mittelwert und die Standardabweichung der porenzahlbezogenen Kenngrößen von Sand
damit ebenfalls spannungsabhängig sind und sich auch die räumliche Korrelationslänge mit
einer Zunahme des Spannungsniveaus reduziert,

· damit auch die statistischen Kennwerte der porenzahlbezogenen bodenmechanischen Ken-
ngrößen von Sand tiefenabhängig sind.

Das nichtstationäre Zufallsfeld mit tiefenabhängigem Mittelwert und/oder tiefenabhängiger
Standardabweichung kann durch eine Verzerrung des stationären Zufallsfeldes erzeugt werden.
Das nichtstationäre Zufallsfeld mit einer tiefenabhängigen räumlichen Korrelationslänge kann auf
zwei verschiedene Weisen erzeugt werden: (i) durch eine Verzerrung des stationären zufälligen
Feldes oder (ii) vereinfacht durch ein geschichtetes zufälliges Feld mit unterschiedlichen räum-
lichen Korrelationslängen in verschiedenen Schichten.

Durch die stochastische Analyse der eindimensionalen Kompression wurde gezeigt, dass die
tiefenabhängigen Phänomene der statistischen Parameter der Porenzahl einen geringen Einfluss
auf die Dehnung ausüben.

Bei der deterministischen Analyse der Standsicherheit einer Böschung wurde für die Infiltration
von Niederschlag ein konstanter Fluss angenommen. Die Ergebnisse zeigen, dass die tiefenab-
hängige Wasserdurchlässigkeit einen wesentlichen Einfluss hat. Die Vernachlässigung der tiefen-
abhängige Variabilität und der damit verbundenen Phänomene ist nicht konservativ. Weiterhin
wurde festgestellt, dass die Böschung bei einer tiefenabhängigen Wasserdurchlässigkeit früher
versagt und die kritische Gleitfläche näher an der Oberfläche verläuft.
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Bei der numerischen Analyse der Standsicherheit und mit der Simulation der Infiltration wurde
ebenso ein konstanter Fluss betrachtet, jedoch wurde die Wasserdurchlässigkeit der Böschung als
log-normalverteilt angenommen. Die Ergebnisse zeigen, dass unter diesen Bedingungen

· die tiefenabhängigen Phänomene des streuenden Mittelwertes der Wasserdurchlässigkeit
einen signifikanten Einfluss auf die Stabilität der Böschung haben,

· bei einem mit der Tiefe linear abnehmenden Mittelwert eine stationäre Infiltration zu einer
signifikanten Erhöhung der Versagenswahrscheinlichkeit der Böschung führt, bei einer in-
stationären Infiltration die Effekte dagegen von der Dauer der Infiltration abhängen,

· die Phänomene der streuenden Standardabweichung der Wasserdurchlässigkeit mit der Tiefe
abnehmen und sich die Versagenswahrscheinlichkeit der Böschung bei stationärer Infiltra-
tion nur wenig reduziert,

· bei einer instationären Infiltration die Versagenswahrscheinlichkeit im frühen Stadium der
Infiltration unterschätzt, bei langer Infiltration jedoch überschätzt wird,

· bei gleichzeitiger Berücksichtigung der Tiefenabhängkeit von Mittelwert und Standardab-
weichung der Wasserdurchlässigkeit der Mittelwert den dominanten Einfluss besitzt,

· eine tiefenabhängig streuende räumliche Korrelationslänge der Wasserdurchlässigkeit nur
einen sehr geringen Einfluss auf die Versagenswahrscheinlichkeit hat und für praktische An-
wendungen vernachlässigt werden kann.

Der Einfluss einer streuenden Durchlässigkeitsanisotropie wurde im Rahmen dieser Arbeit nicht
untersucht. Jedoch lassen sich aus den Ergebnissen mögliche Effekte als Diskussionsgrundlage
ableiten.
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Symbol Unit Description
1d [-] one-dimensional
2d [-] two-dimensional
3d [-] three-dimensional

a [-] weighting factor
a1 [-] constant
a2 [-] constant
AIC [-] AKAIKE information criterion
ANN [-] artificial neural network
ASM [-] advanced second moment
b1 [-] constant
b2 [-] constant
b [-] vector of the parameters of the variogram
c′ [kN/m2] effective cohesion
C [1/m] specific water capacity
Cj

i [1/m] specific water capacity a space i and time j
Cov(.) [-] covariance function
cot [-] cotangent
CPT [-] cone penetration test
CV [-] coefficient of variation
CVks [-] coefficient of variation of saturated hydraulic conductivity
dz [m] discretization of the slope
dφ [◦] the range of variation of friction angle within the weathering zone
e [-] soil void ratio
ei [-] void ratio of ith element
ec0 [-] critical void ratio for zero inter-granular stress
ed0 [-] void ratio of minimum densification for zero inter-granular stress
ei0 [-] void ratio of maximum densification for zero inter-granular stress
err [-] residual error ratio
E[.] [-] expected value of the quantity in the square brackets
FOSM [-] first order second moment
FS [-] factor of safety
FSmin [] minimum factor of safety
h [m] (pore-water) pressure head
h0 [m] pressure head at z=0
hi [m] pressure head at elevation zi
hi−1 [m] pressure head at elevation zi−1
hs [kPa] granulate hardness
H [m] total head
dH [m] increment of total head
k [m/s] hydraulic conductivity
k0 [-] number of parameters in the statistical model
k1; k2 [-] the portion of each individual random field to the whole random field
kk [-] slope of vertical influence
ks [m/s] saturated hydraulic conductivity
ksi [m/s] saturated hydraulic conductivity of layer i
L [m] slope depth above the groundwater table
L0 [-] maximum value of the likelihood function for the estimated model
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L1;L2 [m] length of each individual random field
L [-] lower triangular matrix from LU decomposition
LRFD [-] load and resistance factor design
m [-] porosity
m0 [-] porosity at the ground surface
mw [-] slope of the SWCC
min [-] minimum
n [-] number or parameter
N [-] number of pairs
NSCL [-] normalized spatial correlation length
OLS [-] ordinary least square
PCEM [-] polynomial chaos expansion method
PDF [-] probability density function
PEM [-] point estimating method
P f [-] probability of failure
q [m/s] preset infiltration flux
qc [MPa] cone resistance
Q [kPa] all loads
R [- or kPa] reliability or total resistance
RFEM [-] random finite element method
RF [-] random field
RSM [-] response surface method
RSS [-] residual sum of squares
SLS [-] serviceability limit state
SCL [m] spatial correlation length
SCLlower [m] spatial correlation length in the lower layer
SCLupper [m] spatial correlation length in the upper layer
SPT [-] standard penetration test
SSE [-] sum of squared errors of prediction
SSR [-] sum of squared residuals
STD [-] standard deviation
STDe [-] standard deviation of void ratio
STDks [-] standard deviation of saturated hydraulic conductivity
SVM [-] support vector machine
SFEM [-] stochastic finite element method
SWCC [-] soil water characteristic curve
t [s] time
T [m] averaging domain
T(.) [-] trend function
tan [-] tangent
U [-] final Gaussian random field
U1 [-] normalized Gaussian random field
U2 [-] normalized spatially correlated Gaussian random field
Var[.] [-] variance of the quantity in the square brackets
VR [-] variance reduction
wi [-] weight given to the ith observation
WLS [-] weighted least square
X [-] final random field
xi [-] the ith sample
x [-] a set of random variables
Y [-] soil property
z [m] depth or elevation
zw [m] depth of the weathered zone
Z1 [-] stationary random field
Z2, Z3 [-] non-stationary random fields

α [kPa−1 or -] SWCC parameter or VW hypoplastic model parameter
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α1 [◦] slope angle measured from vertical
β [◦ or -] slope angle measured from horizontal or VW hypoplastic model parameter
γ(.) [-] theoretical (semi)variogram
γ̂(.) [-] sample variogram
γs [kN/m3] soil unit weight
γw [kN/m3] unit weight of water
Γ [-] variance reduction factor
δ [m] spatial correlation length
δC [m] calculated spatial correlation length
δh [m] horizontal spatial correlation length
δv [m] vertical spatial correlation length
δv_down [m] downside spatial correlation length
δv_up [m] upside spatial correlation length
δT [m] true spatial correlation length from GSTAT
∆ [-] dimensionless spatial correlation length
∆m [-] range of variation in porosity
∆φ [◦] range of variation in friction angle
ε(.) [-] residual to the trend
θ [-] volumetric water content
θr [-] residual water content
θs [-] saturated water content
µ [-] mean value
µe [-] mean of void ratio
µz [-] mean value at depth z
ξ [-] distorting ratio
ρ(τ) [-] theoretical autocorrelation function
ρ̂(.) [-] evaluated autocorrelation function
σ [-] standard deviation
σ2 [-] variance
σt [kPa] total stress
σ2

T [-] variance of a soil property after local averaging of an element
τ [m] distance between any two point
τ [m] lag vector
τf [kPa] shear strength of soil
τx [m] distance between any two point in the x coordinate
τy [m] distance between any two point in the y coordinate
φ [◦] effective friction angle
φ0 [◦] effective friction angle at ground surface
φc [◦] critical friction angle used in VW hypoplastic model
χ [-] degree of effective saturation

xvii





1 Introduction

1. Introduction

1.1. Background

It is inevitable to confront and handle with uncertainties in geotechnical engineering because soil
properties are highly variable. Catastrophic disasters can be found in geotechnical engineering
because of the underestimation of uncertainty. The uncertainties of soil properties have long been
appreciated in geotechnical engineering, and have never been ignored since the establishment of
soil mechanics. Studies about uncertainties can be categorized into two parts: (i) having a better
understanding of the uncertainty through field explorations and experiments, (ii) incorporating
the uncertainty into geotechnical design wisely, so as to make a geotechnical structure in a good
balance of both economics and safety.

The methods used in the geotechnical design can be classified into three generations, through
how to deal with uncertainties:

· The deterministic methods are used in the first generation through idealizing a soil layer
homogeneous, using the mean value only. A factor of safety and partial safety factors higher
than one are adopted to implicitly considerate uncertainties. These methods are commonly
adopted in national standards.

· In the second generation, the probabilistic methods are employed to highlight the effect of
uncertainties on geotechnical practice. Besides mean value, the standard deviation is also
taken into consideration. Some classical methods, e.g. First Order Second Moment (FOSM)
method, are in this generation.

· The probabilistic methods are improved in the third generation, in order to honor the impor-
tance of the spatial variation of soil properties, through considering the spatial correlation
structure using a correlation function together with a spatial correlation length. Some well-
known methods, like random finite element method and stochastic finite element method,
are in this generation.

Right now, the methods of the third generation are most popular to be employed, to evaluate the
effect of the uncertainty of a soil property on geotechnical practice. All the stochastic parameters,
including the mean, the standard deviation, and the spatial correlation length are considered to be
significant.

1.2. Motivation

It is a common sense that the stress level can significantly influence soil properties. Some works
have been carried out to find the relation between the stress level and the mean value of a soil
property. For example, using the odeometer test to find the relation between the change in stress
level and the mean void ratio. However, as mentioned before, the mean value is not enough to
conclude a rational decision. The standard deviation and the spatial correlation length are also
greatly required nowadays. However, little work can be found in how a change in stress level
affects the standard deviation and spatial correlation length of a soil property. So some questions
come up:
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· Can the change in stress level affect the standard deviation and the spatial correlation length
of a soil property?

· How does the change in stress level affect both the standard deviation and the spatial corre-
lation length?

Since soil suffers different stress of self-weight at different soil depth, the value of a soil property
(e.g. porosity) might be depth-dependent due to the mechanical compaction and consolidation.
Some of the former studies have confirmed that, the mean value of some soil properties is depth-
dependent. For example, the porosity and friction angle of sand (Lu and Godt, 2008), and the
cohesion of marine clay (Lumb, 1966). However, this depth-dependent mean trend is seldom con-
sidered during the stochastic analysis. It is worth to question:

· If this depth-dependent character of the mean trend affects the results?

· Is this effect significant enough to be considered?

When the standard deviation and the spatial correlation length are under consideration, some
questions also rise up:

· Are the standard deviation and spatial correlation length depth-dependent?

· If yes, how does the depth-dependent character of these stochastic parameters affect geotech-
nical practice? and is the influence significant enough to be considered?

Field exploration, like the cone penetration tests, supplies a lot of data to help us understand
the variation of some soil properties. When dealing with these data, we are too eager to obtain
the mean trend, the standard deviation and the spatial correlation length of a soil property, so
we directly assume both the standard deviation and the spatial correlation length are all constant
(or depth-independent). The assumption is taken for granted because it is not easy to find if the
standard deviation and the spatial correlation length are depth-dependent, unless there is a clear
difference in a soil property profile at a different depth. In this case, we normally assume the soil
is in different types (e.g. layered soil). In reality, the progressive change of stress level with soil
depth might cover the true relation between the stress level and both the standard deviation and
the spatial correlation length, makes us believe they are depth-independent. It is necessary to find
a way to uncover if the assumption is right.

This thesis gives some attempts to answer the questions mentioned above.

1.3. Study aim

The main aim of this research is to evaluate the effect of stress level on the variation of soil prop-
erties, and its effect on geotechnical practice, within the framework of both deterministic and
stochastic methods. To accomplish this aim, three main topics are carried out step by step:

Firstly, the stochastic simulation of one-dimensional compression test is carried out to evaluate
the effect of stress level on the uncertainty of void ratio related properties of sand, to find out if the
change in stress affects the mean, the standard deviation, and the spatial correlation length of void
ratio related properties of sand, and if these stochastic parameters are depth-dependent.

Then, some explorations are conducted to generate the related random fields, taking the depth-
dependent character of each stochastic parameter into consideration.

Finally, its consequences to geotechnical practice are discussed, including to the one-dimensional
settlement analysis, infiltration, and infinite slope stability analysis during infiltration.

All the analysis carried out in this thesis consider only one-dimensional effect.
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1.4. Thesis scope

Seven further chapters are arranged:

Chapter 2 describes the background information related to the present work, including (a) a
short description of the mathematical framework, (b) an extensive literature review of the soil un-
certainty, especially the inherent spatial variability, its quantification, and its effect on geotechnical
practice.

Chapter 3 focuses on the effect of stress level on the uncertainty of void ratio using the random
finite element method, with a hypoplastic model through the one-dimensional compression sim-
ulation. The effect of stress level on the stochastic parameters, including the mean, the standard
deviation, and the spatial correlation length, is analyzed in detail. Then this effect is extended into
the other void ratio related parameters of sand. Moreover, if these stochastic parameters depth-
dependent is also discussed.

Chapter 4 concentrates on the random field generation considering the depth-dependent char-
acter of each stochastic parameter. The mean spatial correlation length of layered random field
with different spatial correlation length in different layer is also calculated.

Chapter 5 is the stochastic one-dimensional settlement analysis. The effect of the depth-dependent
character of of the stochastic parameters of void ratio on the strain is analyzed.

Chapter 6 is the deterministic analysis of infinite slope stability with and without considering
the effect of the infiltration. Both steady and transient state infiltration are considered. The depth-
dependent character of saturated hydraulic conductivity is highlighted. Furthermore, some im-
portant parametric studies are also carried out.

Chapter 7 presents the stochastic analysis of infinite slope stability during rainwater infiltration.
The effect of the coefficient of variation of ks and the spatial correlation length of ln(ks) are carried
out. Moreover, the depth-dependent character of the mean and standard deviation of ks, and
the spatial correlation length of ln(ks) are highlighted during both steady state and transient state
infiltration.

Chapter 8 summarizes all major findings of this research, draws conclusions, and recommends
possible further researches.
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2 Literature review on soil variability and its effect on geotechnical practice

2. Literature review on soil variability and its
effect on geotechnical practice

2.1. Background of soil variability

Soil is a complex geotechnical material. Its properties vary from one location to another, because
it experienced complex and varied natural geological processes, such as weathering and erosion
processes, transportation, different kinds of sedimentation, various stress history, etc. (Chiasson
et al., 1995; Dasaka and Zhang, 2012; Huber, 2013; Jaksa, 1995; Kim et al., 1978; Lloret-Cabot et al.,
2014; Soga and Mitchell, 2005). The variation of soil properties can cause the uncertainty during
parameter estimation. Some parameters are directly related to the stiffness and strength, which
control the safety and performance of geotechnical structures (Srivastava and Babu, 2009). There-
fore, it is really important to consider the soil variation and uncertainty in geotechnical practice.
The uncertainty has long been appreciated. The past experience and judgements from experts are
taken into account in order to consider the soil uncertainties in conventional approaches. A factor
of safety (FS) higher than one is chosen in the safety design of a geotechnical structure in order to
implicitly consider the uncertainty. For example, Terzaghi et al. (1996) recommended the FS should
be between 1.5 and 3.0, so as to guarantee the stabilization of a structure in a long term. However,
this experience-based way in selecting representative parameters highly depends on personal pref-
erence (Schweiger et al., 2001), and it is not explicit and rational. As a result, the uncertainty-based
approaches are developed and widely used to take uncertainties into consideration in a more ra-
tional way. Uzielli et al. (2006) summarized the following advantages of the uncertainty-based
approaches:

(i) The approaches take the uncertainties of input parameters into consideration.

(ii) The approaches can provide complete and realistic information, which is related to the level
of safety of design.

(iii) The approaches can provide more rational results by explicitly declaring the uncertainty, and
this can help the designer make a better decision on a desired or required performance level
of a structure.

Since soil uncertainty is so important, it is very useful for us to understand soil uncertainty
and its effect on geotechnical engineering. Within this chapter, the author summarized the basic
information about soil variability, including, its sources, its quantification, its simulation, and its
effect on geotechnical practice.

2.2. Sources and scales of soil variability

The parameters used in both conventional approaches and reliability-based approaches during
geotechnical analysis come from in-situ and experimental tests. The estimation of these param-
eters is inevitably related to uncertainties. The uncertainty of an estimated soil property comes
from different sources: the inherent variability, the measurement errors, and the transformation
uncertainty (Phoon and Kulhawy, 1999a), as illustrated in Figure 2.1.
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Figure 2.1.: Uncertainty in soil property estimation (source: Phoon and Kulhawy 1999a, p. 613)

(i) The inherent soil variability (or inherent uncertainty): it is the primary source of geotechnical
uncertainty (Phoon and Kulhawy, 1999a). It originates from the mineral composition, the
environmental conditions during deposition, past stress history, and variations in moisture
content (Tang, 1984), which produce and continually modify the soil mass.

(ii) The measurement errors: it is caused by equipment, procedural-operators, and random test-
ing effects (Nobahar, 2003).

(iii) The transformation uncertainty: this uncertainty comes from the transformation between
the field or laboratory measurements and the design soil properties using empirical or other
models (Nobahar, 2003).

The inherent uncertainty is a natural character of soil. It is independent from the knowledge
of experts, and it cannot be decreased by more data. It is the physical uncertainty which is usu-
ally categorized as aleatory uncertainty, while the other uncertainties, such as the measurement
uncertainty and the model uncertainty are categorized as episdemic uncertainty. The episdemic
uncertainty is related to incomplete knowledge, and it can be reduced by more data, better instru-
ments, better models, and so on.

Many scientists have investigated the variability of soil properties in different fields, ranging
from hydrology, soil science, reservoir engineering, up to geotechnical engineering. Koltermann
and Gorelick (1996) pointed out that the variability of a soil property needs to be treated separately
at different scales. The variation of a soil property exists in all kinds of scales from the grain size
scale to the geological scale, and the variation differs from one scale to another, as is shown in
Figure 2.2. Therefore, it is important to be clear in the scale of our target before the evaluation of
soil variability. Herein, we focus on the variability in the geotechnical scale, which lies between
the specimen scale and the geological scale.

2.3. Quantification of soil variability

2.3.1. Description of soil variability

As is shown in Figure 2.3, the variation of a soil property can be presented as a sum of the trend
and residual (Phoon and Kulhawy, 1999a) by:

Y(z) = T(z) + ε(z) (2.1)
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Figure 2.2.: Illustration of the multi-scale nature of soil variation (source: Huber 2013, p. 10)

where Y(z) is the soil property, T(z) is the trend function giving the mean value of the soil property
at location z, and ε(z) is the residual off the trend.

Soil property Y

z

Scale of fluctuation

Trend T(z)

Soil property Y(z)

Figure 2.3.: Illustration of the variability of a soil property with depth

Herein, z is the vertical depth of the location under the ground surface. T(z) could be either
depth-dependent or depth-independent, and it is usually estimated by a regression analysis. The
residual ε(z) is usually spatial correlated, which can be expressed by the scale of fluctuation (or
range, spatial correlation length). The residual includes the inherent uncertainty and measurement
error. It is really difficult to separate them (Phoon and Kulhawy, 1999a,b). Since the key uncertainty
comes from inherent uncertainty, only inherent uncertainty is considered in this thesis.

The mean value µ at depth z can be obtained by,

µz =
1
n

n

∑
i=1

xi (2.2)

xi is the ith sample in the same depth, n is the total number of samples in the same depth.
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The residual ε(z) is usually expressed by the variance (or coefficient of variation), and a correla-
tion structure. The variance is a measure of the dispersion of data to the mean value, and it can be
evaluated by,

σ2
z =

1
n− 1

n

∑
i=1

(xi − µz)
2 (2.3)

Detail information about the correlation structure will be elaborated later.

2.3.2. Mathematical description of inherent spatial correlation

As pointed out before, the physical properties of natural soil vary from place to place. In classical
statistics, the residual is usually assumed to be uncorrelated, and only the mean and variance
are chosen to depict the uncertainty. However, site exploration shows that observations made at
different locations may not be independent. For example, measurements made at nearby locations
may be closer in value than measurements made at locations farther apart. This phenomenon
is called spatial correlation. It can be positive or negative. A positive spatial correlation means
similar values occur near one another, while a negative spatial correlation means dissimilar values
occur near one another. Therefore, the spatial correlation also needs to be included, besides the
mean and the variance.

The degree of spatial correlation of residuals can be expressed by (auto)covariance function Cov
as,

Cov(τ) = E[Y(x + τ)− µ(x + τ)][Y(x)− µ(x)] (2.4)

where τ is the separation distance or lag. E[] is the expected value of the quantity in the square
brackets. The covariance is high at a small lag, and it decays to zero as the lag increases. Besides the
lag τ, the covariance is also related to its direction. The domain is isotropic when the covariance
depends only on the lag, and it is anisotropic when the covariance depends on both the lag and
the direction. The soil domain is stationary when both the mean and the variance are constant,
meanwhile, the covariance function only depends on the separation distance. Otherwise, the soil
domain is non-stationary.

Besides the covariance function, the theoretical variogram is also used in geostatistics in quan-
tifying spatial variability. For a second-order stationary case, the theoretical variogram can be
expressed as,

γ(τ) =
1
2

Var[Y(x + τ)−Y(x)] (2.5)

where Var[] means the variance of the quantity in the square brackets. The variogram shows
the dissimilarity between Y(x) and Y(x+τ) related to the separation distance. γ(τ) is also called ’
semivariogram’, however, the term ’variogram’ is usually adopted because of its simplicity and
some theoretical arguments (Chiles and Delfiner, 2009). Empirically speaking, the variogram is
zero at lag=0, and it increases asymptotically to the variance, as the increase of lag τ.

For a second-order stationary case, the relation between the covariance function and the theo-
retical variogram is expressed as,

γ(τ) = Cov(0)− Cov(τ) (2.6)

For the stationary random field, it is equivalent to know γ(τ) or Cov(τ), as is shown in Figure
2.4, where the variance is one.
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τ

γ τ

τ

Figure 2.4.: Relation between the covariance function and the variogram for the stationary random
field

2.3.3. Estimation of the correlation structure

When dealing with real data, the underling variogram (or correlation function) and the variance
are unknown, estimators of these variables need to be used. The estimators of the variogram and
variance are sample variogram and sample variance, respectively. After the collection of data, e.g.
Cone Penetration Test (CPT) or Standard Penetration Test (SPT), the estimators will be evaluated.
The key to evaluate the correlation structure of a soil property is to estimate the trend and the
correlation function of the residuals (DeGroot and Baecher, 1993).

There are many methods to evaluate the correlation structure, such as method of moments,
maximum likelihood approach, amongst other approaches (DeGroot and Baecher, 1993). Here the
variogram approach and autocorrelation function approach in the moment of methods category
are elaborated since they are commonly used in geotechnical engineering.

(a) The variogram approach

The sample (also known as empirical or experimental) variogram γ̂(τ) is a moment estimator
of the variogram function. For one-dimensional stationary random domain measured at uniform
intervals of unit distance, the sample variogram of a soil property Y(x) can be calculated by,

γ̂(τ) =
1

2n(τ)

n(τ)

∑
i=1

[Y(xi + τ)− Y(xi)]
2 (2.7)

in which, n(τ) denotes the count pairs of points separated by the mutual distance τ between the
property values z(xi) at location xi. The maximum τ of the measurement should be at least less
than 1/5 or 1/4 of the correlation length. If the sampling distance is longer, the estimated spatial
correlation length is not right since not enough data are available to support a proper spatial cor-
relation length; if the sampling distance is very small, the correlation length may be at a smaller
scale level.

The sample variogram will be fitted by theoretical variogram models. We need to make a dis-
tinction between the sample variogram and the variogram model. The sample variogram is an
empirical estimate of the theoretical variogram of a Gaussian process. It is a visualization of a
possible spatial correlation, and is not directly usable in kriging without constraints or further pro-
cessing, while the variogram model is further used to define the weights of the kriging function.

Theoretical variogram models
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The sample variogram cannot be computed at any value of the distance, due to the constraint of
data exploration. However, it is necessary to obtain the variogram at all distance in geostatistical
simulation or interpolation. Detail processes of fulfilling the continuity of sample variogram are
elaborated in Chiles and Delfiner (2009). The sample variogram is used in the first step of spatial
prediction as tools that provide insight into the spatial continuity and structure of a random pro-
cess. However, the sample variogram cannot be used directly to describe the correlation structure,
because firstly, it may violate the required property of conditional negative definiteness; secondly,
for various purposes, i.e. kriging, we may require an estimate of the variogram at a lag not repre-
sented in the data; finally, the sample variogram may be quite bumpy. A smoothed version may
be helpful for understanding the nature of the spatial dependence. It is critical to note that the
sample variogram provides an estimate of the theoretical variogram only when the random field
is stationary. When the sample variogram is calculated, it is then necessary to choose a proper
theoretical variogram model based on the estimation so as to evaluate the correlation structure.

The shape of commonly used theoretical variograms rise monotonically as a function of distance.
It is typically characterized in terms of particular parameters. These parameters are the range, the
sill, and the nugget effect, as is shown in Figure 2.5. The sill is the upper bound of the variogram.
It is the summation of the nugget effect and the partial sill. The range (or the range of influence) is
defined as the distance at which samples become independent of one another. The range denotes
the distance at which the variogram reaches the sill. The nugget effect represents a discontinuity
of the variogram that can be present at the origin. It is typically attributed to microscale effects,
sampling or statistical errors, or measurement error (Jaksa, 1995). The variogram is always zero at
distance τ=0; hence, the nugget effect demonstrates itself as a jump in the variogram as soon as
τ>0.

Range

Sill

Distance (τ)

Variogram

γ(τ)

Partial

sill

Nugget

effect

0

Figure 2.5.: Illustration of the variogram

The theoretical variogram models are employed to describe the spatial structure of random pro-
cesses. A lot of information can be provided by the shape and characteristics of the theoretical
variogram model. The normally used theoretical models are spherical variogram model, exponen-
tial variogram model, and Gaussian variogram model, which are listed in Table 2.1. The shapes of
these three models are plotted in Figure 2.6. Figure 2.6a shows these three theoretical variogram
models with a0 =1 and sill c0=4. The range of spherical model is 1 because the variogram reaches
to the sill when the lag τ reaches to 1, then the variogram stops increasing as the increase of τ.
However, for the exponential and Gaussian variogram models, the variogram keeps approaching
to the sill asymptotically as the increase of τ, but never reaches to the sill. In these cases, the ’ef-
fective range’ is used. It is defined as the lag where the variogram is approximately 95% of its sill,
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or where the covariance is approximately 5% of its value at zero. Here in Figure 2.6a the effective
ranges are

√
3 and 3 for Gaussian and spherical models, respectively, and the effective range of

the spherical model can be regarded as the range. The shapes of these theoretical models with the
same sill and (effective) range are shown in Figure 2.6b. One should note that although the range
is defined as the distance at which the variogram reaches the sill, a0 is used in reality as the range,
and the effective range can truly denote as the distance of which the variogram reaches the sill.

Table 2.1.: Normally used theoretical variogram models

Model Theoretical variogram fuction

Spherical γ(τ) =

{
c0[

3
2

τ
a0
− 1

2 (
τ
a0
)3], if τ ≤ a0

c0, if τ > a0
Exponential γ(τ) = c0[1 − exp(− τ

a0
)]

Gaussian γ(τ) = c0[1 − exp(− τ2

a2
0
)]

τ

γ
τ

τ

γ
τ

Figure 2.6.: Theoretical variogram model comparison with c0=4 and (a) a0=1, (b) (effective) range=1

Variance and sill

One question needs to ask is if the variance and sill are same. If the separation distance is so
large that Z(x) and Z(x+τ) in Eq. 2.5 are uncorrelated (i.g. τ ≥ range), the variogram equals to
the population variance. That is, the sill of the underlying variogram equals to the variance of the
underlying population (Barnes, 1991), which means,

γ(τ|τ > range) = σ2 (2.8)

When dealing with real data, the underling variogram and the true population variance are un-
known. In this situation, Eq. 2.8 is not always useful. Some researchers in geostatistics suggested
using the sample variance, which is a good estimator of the population variance, to estimate the
sill of the variogram (David, 2012; Journel and Huijbregts, 1978), however, this suggestion has
been proved to be valid only if the N sample values are collected evenly distributed over a domain
many times larger than the variogram range (Barnes, 1991).

Variogram model fitting

There are many methods of fitting, such as, by visual assessment, ordinary least square (OLS)
methods, generalized least square methods (GLS), weighted least square (WLS) methods, maxi-
mum likelihood method, and so on. For OLS, GLS, WLS, the key is to calculted the residual sum
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of squares. Only the calculation of the residual sum of squares for OLS and WLS methods are
summarized here.

Residual Sum of Squares

The Residual Sum of Squares (RSS) is used in variogram model fitting. RSS is also known as the
Sum of Squared Residuals (SSR) or the Sum of Squared Errors of prediction (SSE). It is a measure
of the discrepancy between the data and an estimation model. A small RSS indicates a tight fit of
the model to the data. For ordinary least squares method, the RSS can be calculated as,

RRS =
n

∑
i=1

ε2
i =

n

∑
i=1

[γ̂(τi)− γ(τi; b)]2 (2.9)

in which, γ̂(τi) is the sample variogram at distance τi, γ(τi; b) is the theoretical variogram at τi,
and b is a vector of the parameters of the variogram, such as the range, sill, nugget effect and so
on.

For ordinary least square method, the estimated coefficients provide the regression equation

that minimizes RSS=
n

∑
i=1

ε2
i . One of the common assumptions underlying most process modeling

methods, including linear and nonlinear least squares regression, is that each data point provides
equally precise information about the deterministic part of the total process variation. In other
words, the standard deviation of the error term is constant over all values of the predictor or ex-
planatory variables. This assumption, however, clearly does not hold, even approximately, in ev-
ery modeling application. When it may not be reasonable to assume that every observation should
be treated equally, weighted least squares is often used to maximize the efficiency of parameter
estimation. This is done by attempting to give each data point its proper amount of influence over
the parameter estimates. A procedure that treats all of the data equally, would give less precisely
measured points more influence than they should have and would give highly precise points too
little influence.

For weighted least squares method , the estimated equation minimizes RSS=
n

∑
i=1

wiε
2
i , where wi

is a weight given to the ith observation. Weighted least squares can be used in the presence of
nonconstant variance, and be used as the basis for doing ’robust’ regression in which outliers are
given less weight than points that are not outliers.

The main advantage of the weighted least squares is the ability to handle regression situations in
which the data points are of varying quality, and it can also make good use of small data sets. The
biggest disadvantage of it, is probably the fact that the theory behind this method is based on the
assumption that the weights are known exactly. This is almost never the case in real applications, so
estimated weights must be used instead. The effect of using estimated weights is difficult to assess,
but experience indicates that small variations in the weights due to estimation do not usually affect
a regression analysis or its interpretation. However, when the weights are estimated from small
numbers of replicated observations, the results of an analysis can be very badly and unpredictably
affected. This is especially likely to be the case when the weights for extreme values of the predictor
or explanatory variables are estimated using only a few observations. It is important to remain
aware of this potential problem and to only use weighted least squares when the weights can be
estimated precisely relative to one another (Carroll et al., 1998).

Weighted least squares regression, like the other least squares method, is also sensitive to the
effects of outliers. If potential outliers are not investigated and dealt with appropriately, they
will likely have a negative impact on the parameter estimation and other aspects of a weighted
least squares analysis. If a weighted least squares regression actually increases the influence of an
outlier, the results of the analysis may be far inferior to an unweighted least squares analysis. The
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normally used weights are, N, N/(γ(τ))2, and N/τ2, where N is the number of pairs, γ is the
variogram, and τ is the distance.

(b) Autocorrelation function approach

Another way to evaluate the spatial structure is the autocorrelation function, besides the vari-
ogram method. The autocorrelation function approach, which comes from mathematicians, is also
adopted by engineers to evaluate the spatial variation of a soil property. For stationary random
function, it can be expressed as,

ρ̂(τ) =

n(τ)

∑
i=1

[Y(xi)− μ][Y(xi + τ)− μ]

[n(τ)− 1]σ̂2 (2.10)

in which n is the number of pairs separated by the distance τ.

Like variogram, the number of pairs reduces for calculating ρ̂(τ) as τ increases. Generally, the
number of pairs are regarded as insufficient to calculate ρ̂(τ) when τ exceeds a quarter of the sam-
pling space domain (Box et al., 2015; Lumb, 1975). For the random field with a depth-dependent
trend, a detrending process needs to be carried out so as to make sure the random field is sta-
tionary. The sample variogram (no-nugget effect) and sample autocorrelation function follows the
relation of Eq. 2.11 (Huber, 2013), as is shown in Figure 2.7, where the Var[z(x)]=1.

ρ̂(τ) = Var[z(x)][1 − ρ̂(τ)] (2.11)

τ

τ

τγ̂

ρ̂

Figure 2.7.: Relation between the variogram and the autocorrelation function with Var[z(x)]=1

Theoretical autocorrelation models

The theoretical autocorrelation models are needed in the sample autocorrelation fitting, so as
to find some essential properties during the evaluation of the spatial correlation. Here the only
property is the spatial correlation length. Two definitions need to be clarified, the scale of fluctua-
tion and the spatial correlation length. According to Fenton and Griffiths (2008): ” The correlation
length, also sometimes referred to as the scale of fluctuation. Loosely speaking the correlation length is the
distance within which points are significantly correlated (i.e., by more than about 10%). Conversely, two
points separated by a distance more than the correlation length will be largely uncorrelated.” This means
the scale of fluctuation and the spatial correlation length are the same. Some other researchers also
regarded them as the same thing (Phoon and Kulhawy, 2005). In this thesis, they are considered
the same. Here some normally used theoretical autocorrelation models are listed in Table 2.2 (Nie
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et al., 2015; Vanmarcke, 2010, 1977). The autocorrelation fitting methods are similar to the vari-
ogram fitting approaches. A detail procedure of fitting the best theoretical correlation model to the
sample correlation function is elaborated in Lloret-Cabot et al. (2014).

Table 2.2.: Some commonly used theoretical autocorrelation models

Model Autocorrelation models

Spherical ρ(τ) =

{
c0 − c0[

3
2

τ
δ −

1
2 (

τ
δ )

3], if τ ≤ δ
0, if τ > δ

Exponential ρ(τ) = c0exp(− 2|τ|
δ )

Gaussian ρ(τ) = c0exp(−π |τ|
2

δ )
Notes: τ is the separation distance and δ is the spatial correlation length.

Range VS. Scale of fluctuation

Two difference procedures are described above to evaluate the spatial dependency, the vari-
ogram approach and the autocorrelation approach. They result in the range and the scale of fluc-
tuation, respectively. Both of them are indications of distance within which the property values
show relatively strong correlation. Then one question comes up, are they the same or not? Eq.
2.11, as well as Figure 2.7, shows that the sample variogram and the sample autocorrelation follow
a linear relation for the stationary random field situation. Comparing the theoretical variogram
models with the autocorrelation models, we can conclude that, as long as the theoretical vari-
ogram model and the theoretical autocorrelation model follow Eq. 2.11, the range (a0) and the
scale of fluctuation (δ) should be the same. Jaksa (1995) compared the scale of fluctuation and the
range using in-situ CPT test data, and find they are positively correlated, but not the same. This
might be because the CPT data is a non-stationary random field and the existence of the nugget
effect.

Fitting the best variogram model

A number of methods for variogram fitting have been suggested, from statistical techniques such
as maximum likelihood and least squares (Huber, 2013), to techniques such as visual assessment
(Remy et al., 2009). During fitting the best variogram model to the sample variogram function,
there are some keynotes need to be aware:

(i) There is no best variogram model. The goodness character of a fitted model is elusive and
cannot be measured by rigorous tests. A combination of visual assessment and statistical
methods is suggested.

(ii) One should avoid overfitting the sample variogram (Goovaerts, 1997). The objective is to
capture major spatial features of the attributes, rather than to model any details of sample
variogram. When different models provide similar fits, one should select the simplest one.
The more complicated model usually does not lead to more accurate estimates. It is also
important to realize that the sample variogram is in itself just an estimate. Therefore, fitting
a theoretical variogram model as closely as possible to the sample variogram is also not
always reasonable. The key is to model the general spatial structure of the sample variogram.
It makes sense that the simplest theoretical variogram model that adequately captures the
spatial structure of the sample variogram should be used, and more complicated theoretical
variogram models would only be considered if simpler models cannot capture the major
spatial structure of the sample variogram to a satisfactory level.

(iii) ”the most important aspect of the fitted variogram model is the nugget-effect and the slope near the
origin” (Morgan, 2005). Armstrong (1998) also stated that the behavior of the variogram at
and near the origin has a significant influence on kriging results, as well as their stability.
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(iv) In the majority of cases, the sample variance and sample variogram sill should be approxi-
mately equal. When the experimental sill and sample variance of the spatial attribute do not
coincide, the number of samples used to calculate the sample variance and the number of
data pairs used to calculate the sample variogram lags might be the reason. A small num-
ber of samples or data pairs often imply poor sample variance and variogram lag estimates.
Generally, if certain lags of the sample variogram start behaving strangely, it is because the
number of samples used in calculating these lags is small. When the experimental variogram
sill and the sample variance are not coincided, one opinion is to force the modeled sill to
equal the sample variance, but Goovaerts (1997) disagrees. In general, the variogram sill
is from the fit to the sample variogram sill rather than to the sample variance, because the
sample variance is calculated assuming random, independent samples.

AKAIKE information criterion

In this thesis, the most appropriate model is selected via the AKAIKE information criterion
(AIC), which is defined for a finite sample set n:

AIC = 2k0 − 2ln(L0) (2.12)

where k0 is the number of parameters in the statistical model, and L0 is the maximum value of the
likelihood function for the estimated model. The first term is a penalty factor for the introduction of
additional parameters into the model, and it discourages overfitting. The second term is a measure
of the quality of fit of a model. AIC not only rewards goodness of fit, but also includes a penalty
that is an increasing function of the number of estimated parameters. AIC is a measure of the loss
of information incurred by fitting an incorrect model to the data. Therefore, given a set of different
models for the data, the preferred model is the one with the minimum AIC value. Assuming that
the model errors are normally and independently distributed, the AIC can be rewritten for a fitting
by least squares.

AIC = 2k0 − n[ln(2π
RSS

n
) + 1] (2.13)

RSS =


n

∑
i=1

e2
i , for OLS

n

∑
i=1

wie2
i , for WLS

(2.14)

Alternative criterions are described in detail in other literature (Akaike, 1998; Webster and Oliver,
2007).

An example of fitting the best variogram model

Take the qc (cone resistance) of the CPT data as an example, the basic steps of how to obtain the
best theoretical variogram model and to estimate the scale of fluctuation is:

(i) Find the trend of qc in each CPT test, and remove it from data.

(ii) Calculate the sample variogram using the residual data of each CPT.

(iii) Choose some possible theoretical variogram models and weights and fit them to the sample
variogram function

(iv) Calculate the mean AIC of each theoretical variogram model and weight, the best model and
weight are likely the case with the smallest mean AIC.

(v) Once the best theoretical variogram model is chosen, the scale of fluctuation can be obtained.
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2.3.4. Literature review of soil variability quantification

The importance of the soil variability is a big inspiration for researchers to quantify the variability
of soil properties using all kinds of experiments. In order to obtain maximum information at the
least expense, the site exploration usually follows some sampling schemes, such as systematic,
nested, stratified and random schemes, details of these methods can be found in DeGroot (1996).
The aim is to obtain the trend (or mean), the variance (or standard deviation), the distribution and
the correlation structure of a soil property.

Trend and standard deviation

Figure 2.8.: Types of soil variability

Lumb (1966) summarized three types of variation of a soil property as is shown in Figure 2.8,
where v is the variable, z is the depth. These three types are:

(i) Both the mean and standard deviation of the property v are depth-independent (i.e. tan(φ)
of silty sand).

(ii) The mean increases with soil depth linear while the standard deviation is depth-independent
(i.e. compression index of sandy clay),

(iii) The mean is linearly depth-dependent, while the standard deviation linearly increases with
depth (i.e. cohesion of marine clay).

The other trend, besides constant and linearly depth-dependent, can also be found: e.g. both the
cone tip resistance and the Sleeve Friction of Keswick Clay follow quadratic trends (Jaksa, 1995).

Coefficient of variation

The coefficient of variation (CV), which is the ratio of the sample standard deviation over the
sample mean. It is very commonly employed in quantifying the geotechnical uncertainty as a re-
placement of variance, because it is dimensionless and can provide a meaningful way to evaluate
the relative dispersion of data around the sample mean. Generally speaking, the CV of a soil prop-
erty is highly dependent on soil types, locations, and their geological environment. The strength
parameters have high variability, in terms of a high CV. The CV of undrained shear strength is
higher than the CV of (un)drained friction angle. Some selected CV of undrained shear strength
and void ratio are listed in Table 2.3 and Table 2.4, respectively; the CV of some other selected
geotechnical parameters are summarized in Table 2.5.
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Table 2.3.: Some selected CV of undrained shear strength

CV% range Sources Notes
12 -45 Cherubini et al. (1995) Medium to stiff soil
22 Soulie et al. (1990) clay deposit in James Bay area
28-96 Ejezie and Harrop-Williams (1984) -
13-40 Duncan (2000) base on the data from Kulhawy (1993), Lacasse

and Nadim (1997)
20-60 Meyerhof (1995) -
60-85 Lumb (1971) extremely variable clay
6-80 Phoon and Kulhawy (1999a), Phoon and

Kulhawy (1999b)
Clay, fine-grained soil

Table 2.4.: Some selected CV of void ratio (e)

CV% range Sources Notes
13-42 Baecher and Christian (2005) Data compiling from various sources
7-30 Lacasse and Nadim (1997) -
15-30 Lumb (1975) -
5-26 Deodatis et al. (2014) Various soil including glacial clays, sands, and chalks

Table 2.5.: CV for selected geotechnical parameters

Property CV% range Sources
Dry unit weight 2-13 (Srivastava and Babu, 2009)
Elastic modulus 15-70 (Srivastava and Babu, 2009)
Effective friction angle for clay 10-50 (Cherubini, 2000)
Effective friction angle for silt 5-25 (Cherubini, 2000)
Effective friction angle for sand 5-15 (Cherubini, 2000)
Coefficient of permeability 60-90 (Srivastava et al., 2010)
Unconfined compression strength of clay 30 -50 (Fredlund and Dahlman, 1972; Lumb, 1971;

Matsuo and Kuroda, 1974; Morse, 1971)

Distribution

Besides the mean and the standard deviation (or coefficient of variation), the distribution is very
necessary to be chosen so as to analyze the data and to simulate the uncertainty. This part still
has a big controversy. Popescu et al. (1998b) concluded that most soil properties exhibit skewed,
non-Gaussian distribution, and different soil properties follow different distributions (Harr, 1977;
Popescu et al., 1998b); El-Ramly et al. (2003) pointed out that no general distribution is available
for soil properties, and the distribution is site and parameter specific. However, the normally used
distributions are Gaussian (normal), lognormal, and beta distribution. The Gaussian distribution
is widely used (Hicks and Samy, 2002) because of its simplicity. However, its shortcoming is that
the variable contains negative value, which is unacceptable since most of the soil properties are
non-negative, e.g. porosity and friction angle. Another one commonly used is the log-normal dis-
tribution (Fenton and Griffiths, 2003; Griffiths and Fenton, 2004), to compensate the disadvantage
of the Gaussian distribution. Phoon and Kulhawy (1999b) recommended the Gaussian distribu-
tion for small CV situation, while the log-normal distribution is used when the CV is large. For
soil shear strength, some researchers (Ejezie and Harrop-Williams, 1984; Duncan, 2000; Al-Bittar
and Soubra, 2013; Harr, 1977), recommended a Beta distribution; the distribution of the permeabil-
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ity is usually assumed to follow a lognormal distribution (Fenton and Griffiths, 1994; Hoeksema
and Kitanidis, 1985; Sudicky, 1986).

Sometimes, a random variable follows a Gaussian distribution, but it is limited to a certain range
(e.g. the initial void ratio in Hypoplasticity). The truncated Gaussian distribution is used in this
situation. The truncated Gaussian probability density function is defined by a general Gaussian
probability density function by specifying parameters µ (mean) and σ (standard deviation), as
well as a truncation range [a, b]. The key is how to deal with the value outside the range. Two
normally used ways to deal with it are: (i) The probability density function (PDF) associated with
the general Gaussian distribution is modified by setting values outside the range to zero, and
uniformly scaling the values inside the range so that the total integral is 1 (Burkardt, 2014). (ii)
Numbers outside that range is cut-off to the minimum or maximum value (Roddeman, 2016). The
truncated Gaussian distribution with the second way to deal with the value outside the range is
chosen in Chapter 3 and 5 to simulate the random field of the void ratio.

Correlation structure and spatial correlation length

The correlation structure is required to describe the spatial variation of a soil property. It is
typically described by a correlation function, which expresses the relation between the variogram
(or the correlation function) and the distance. The correlation length is regarded as a parameter
in the variogram model (or correlation function). Vanmarcke (1977) published a classic work to
introduce the spatial correlation concept into the geotechnical profession, and this concept is fur-
ther utilized and summarized by some researchers, including DeGroot (1996), Fenton and Griffiths
(1996), Lacasse and Nadim (1997), Phoon and Kulhawy (1996), Uzielli et al. (2006).

The inherent spatial variability of a soil property is often characterized by a correlation model in
geotechnical practice, e.g.(Jaksa, 1995; Kim and Sitar, 2013; Li and Lumb, 1987; Lloret-Cabot et al.,
2014; Phoon et al., 2003; Uzielli et al., 2005). Theoretical correlation models such as exponential,
spherical, and Gaussian correlation functions are often adopted to fit the correlation structure of
soil properties, as pointed out by Kasama et al. (2012), Li and Lumb (1987). The exponential and
Gaussian models are usually adopted to describe the correlation of soil properties (Baecher and
Keeney, 1982; Vanmarcke, 1977); based on the CPT data, a nested spherical model is adopted by
Jaksa (1995) for the undrained shear strength of Keswick Clay.

The spatial correlation length is a stochastic parameter, which is the mean value of a number of
spatial correlation lengths calculated in the same domain. Take the CPT test as an example, a lot of
CPT tests need to be carried out in one domain, and the spatial correlation length of each CPT test
is calculated, then the final spatial correlation length of the domain is the mean of all these spatial
correlation lengths. Therefore, if we want to carry out a study about the spatial correlation length,
the stochastic method is required. The uncertainty of the spatial correlation length evaluation may
come from many sources, like the inherent uncertainty of the soil, the measure and transformation
error of the data, the detrending processes, the theoretical model chosen, and the modeling error
and so on.

As mentioned before, the correlation length describes the similarity of a soil property between
two points. If the distance between these two points is less than the correlation length, the two
points are strongly correlated, and the correlation needs to be considered, otherwise, if the distance
is longer than the correlation length, the two points are considered to have no correlation or have
very weak correlation which could be neglected. The normally used correlation length is spatial
correlation length (or range, or the scale of fluctuation). The spatial correlation length (δ) of soil
properties has been evaluated by many researchers, etc. (Jaksa et al., 1999; Li and Lee, 1991; Phoon
and Kulhawy, 1996) through both laboratory and field tests.

The vertical spatial correlation length (δv) is usually smaller than the horizontal spatial corre-
lation length (δh), and δh is more difficult to be obtained because it needs a larger area and more
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example points. Dasaka (2005) found that the variability of a design parameter in a 2d situation
could be underestimated, if the field is assumed to be isotropically correlated based on δv, simi-
lar results can be found in the other works (Hicks and Samy, 2002). Li and Lee (1991) found that
the vertical correlation distance of clay is in the range of 0.13-8.6m. For undrained shear strength,
Phoon and Kulhawy (1999b) summarized that the δv is between 0.5m and 6m, mostly in the range
of 1m-2m, and the δh is between 40m and 60m. Base on the cone penetration records from many
researcher’s works, Lacasse and Nadim (1997) believed that the δv and δh should be in the range
of 1m-3m and 5m-38m respectively. Popescu (1995) found that the δh is 12m for a sandy soil de-
posit, while Soulie et al. (1990) found the δ of 7m-30m and 3m in horizontal and vertical directions
respectively. Chiasson et al. (1995) found the δv is 2m for a clay deposit, and the δh found by
PrzewLócki (2000) is 5m for another clayey soil deposit. Pyrcz and Deutsch (2014) concluded that
the horizontal range of fluvial and eolian deposits is 10 to 100 times longer than its vertical range.
Huber (2013) summarized the correlation lengths after an extensive literature review.

Some researchers (DeGroot and Baecher, 1993; Fenton, 1999b) found that δ is related to the do-
main size and the sampling interval. Fenton (Fenton, 1999a,b) found that natural soil properties are
fractal through analyzing the in-situ data. He concluded that the correlation length is dependent
on the domain size. When the domain size is increased, the correlation length might be increased
too.

2.4. Fluctuation of the generated random field

2.4.1. Local averaging and variance reduction

The spatial variability of a soil property is usually simulated using random field theory (Vanmar-
cke, 1977). Three parameters are needed so as to generate the random field, (i) mean, (ii) variance
(or standard deviation or coefficient of variation) and (iii) the spatial correlation length. It is known
that the inherent spatial variability of a soil property is different in different random fields, even
all these three parameters in these random fields are the same, respectively. Therefore, the Monte
Carlo simulation is usually adopted to generate enough realizations of random fields. Detail in-
formation about random field generation is elaborated in chapter 4. The fluctuation of the random
field is controlled by the variance and the spatial correlation length.

The given variance σ2 of inherent spatial variability is at the point level, while what we needs in
the random field generation is the variance of an element size (σ2

T). The σ2
T can be obtained through

a local averaging process so as to take the sample size into account (Fenton and Griffiths, 2008). It
can be expressed as (Shen and Fu, 2011):

σ2
T = σ2Γ(T) (2.15)

where T is the averaging domain and Γ(T) is the variance reduction factor. Γ(T) measures the re-
duction of the point variance σ2 under local averaging. It is related to both the correlation function
ρ(τ) and the element size, the 1d form with the Markovian spatial correlation function which is
commonly used (Fenton and Griffiths, 2008; Shen and Fu, 2011) are as follows,

ρ(τ) = e(−
2
δ |τ|) (2.16)

Γ(T) =
2

T2

∫ T

0
(T − τ)ρ(τ)dτ (2.17)

where τ is the difference between any two points.
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the 2d form with the squared finite element is,

ρ = e(−
2
δ

√
τ2

x+τ2
y ) (2.18)

Γ(T) =
4

T4

∫ T

0

∫ T

0
(T − τx)(T − τy)ρdτxdτy (2.19)

where τx and τy are the differences between any two points in the x and y coordinates respectively.

The variance reduction function with other correlation functions can be found in Vanmarcke
(2010).

Sometimes, a dimensionless spatial correlation length ∆ is used,

∆ =
δ

T
(2.20)

Numerical integration of the function as represented by Eq.2.17 leads to the variance reduction
values plotted in Figure 2.9. It can be seen that Γ(T) increases with the increase of the dimension-
less correlation length.

Figure 2.9.: Variance reduction factor VS ∆ with a Markov correlation function

2.4.2. Effect of the dimensionless spatial correlation length on the fluctuation of a
random field

Taking the Gaussian random field generation using covariance matrix decomposition as an exam-
ple, the generated random field can be expressed as,

U = µ + σT ·U2 (2.21)

where U2 is the normalized spatially correlated Gaussian random field. It can be given as,

U2 = L ·U1 (2.22)

where L is the lower triangular of the covariance matrix decomposition; U1 is the normalized
Gaussian random field with zero mean, unit standard deviation.
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Substituting Eq.2.22 and Eq.2.15 into Eq.2.21 yields:

U = µ + σ
√

Γ · L ·U1 (2.23)

The dimensionless spatial correlation length is related to both the variance reduction factor (Γ)
and the correlation matrix (L) of the LU decomposition through the correlation function. Therefore,
the dimensionless spatial correlation length can influence the fluctuation of a random field in two
different ways:

(i) The dimensionless spatial correlation length influences the fluctuation of a random field
through the variance reduction factor. As it is shown in Figure 2.9, a decrease of the di-
mensionless spatial correlation length can reduce the variance reduction factor, which can
decrease the variance of an element size (σ2

T), so as to reduce the fluctuation of a random
field using Eq.2.15. If the dimensionless spatial correlation length is zero, the value of each
element in a generated random field equals to the mean value (µ).

(ii) The dimensionless spatial correlation length influences the fluctuation of a random field
through the correlation matrix (L). Comparing with a large dimensionless spatial correla-
tion length case, a small dimensionless spatial correlation length can make the normalized
spatially correlated Gaussian random field U2 in Eq.2.22 has a relatively large fluctuation.
Therefore, the final random field can have a big fluctuation. As is shown in Figure2.10, the
fluctuation of a random field decreases as the increase of the normalized spatial correlation
length. When the normalized spatial correlation length approaches to the definite infinity,
the random field has no fluctuation. However, the value of this random field may not equal
to the mean value.

Figure 2.10.: Effect of normalized spatial correlation length on a random field (µ=0, σ=1) through
L matrix

Therefore, the dimensionless spatial correlation length has two opposite ways to affect the fluc-
tuation of a random field. As the increase of the dimensionless spatial correlation length, the fluc-
tuation is reduced by the correlation matrix, meanwhile, it is increased by the variance reduction.
An example of the random field is shown in Figure 2.11 considering the effect of both the corre-
lation matrix and the variance reduction. It can be seen that the fluctuation of the random field is
the highest when the dimensionless spatial correlation length is at a moderate level. A higher or
lower dimensionless spatial correlation length can reduce the fluctuation of the random field.
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Figure 2.11.: Effect of normalized spatial correlation length on a random field (µ=0, σ=1) consider-
ing both the L matrix and the variance reduction

2.5. Methods of reliability analysis

The reliability of an engineering system is defined as its ability to fulfill its design purpose for
some time period and environmental conditions. The reliability of a component or system can be
assessed in the form of a probability of meeting satisfactory performance requirements according
to some performance functions under specific service and extreme conditions within a stated time
period. Reliability (R) is the probability that unsatisfactory performance or failure will not occur.

R = 1− P f (2.24)

where Pf is the probability of failure.

The state variables are the basic load and resistance parameters used to formulate the perfor-
mance function. If all loads (or load effects) are represented by the variable Q and total resistance
(or capacity) by R, then the space of the state variables is a 2d space as shown in Figure 2.12. Within
this space, we can separate the ’safe domain’ from the ’failure domain’; the boundary between the
two domains is described by the limit state function g(R, Q)=R-Q=0 (Nowak and Collins, 2012).

The structural reliability methods is usually categorized according to Levels (Madsen, 1992):

· Level I methods are deterministic reliability methods that use only one ’characteristic’ value
to describe each uncertain variable. The uncertainties of the problem are taken into account
by introducing the safety analysis suitable ’characteristic value’ of the random variables, as-
sociated with partial safety factors that should be deduced from probabilistic considerations
so as to ensure appropriate levels of reliability in the design. Level I methods correspond
to standard deterministic design methods used in the standards, e.g. Load and Resistance
Factor Design (LRFD) method.

· Level II methods are probabilistic reliability methods that use two values (i.e. mean and
variance) to describe each uncertain variable, supplemented with a measure of correlation
between variables, usually the covariance. The First Order Second Moment (FOSM) (Tylor
series) method and Point Estimating Method (PEM) are at this level.
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Figure 2.12.: Safe domain and failure domain in 2d state spaces (Source: Nowak and Collins 2012,
p. 115)

· Level III methods are probabilistic reliability methods that encompass complete analysis of
the problem, and use the multidimensional joint probability distribution of all the uncer-
tain variables to describe each uncertain variable. The reliability in this level is expressed
in terms of suitable safety indices, e.g. reliability index and the probability of failure (Pf).
The methods includes: (a) Advanced Second Moment (Hasofer-Lind index) Methods (ASM);
(b) Direct integration method (e.g. standardized integral region, Joint probability density
function, Multivariate integration, advanced method of integration); (c) simulation methods
( e.g. Random Finite Element Method (RFEM), Stochastic Finite Element Method (SFEM));
(d) Response Surface Methods (RSM) (i.e. Support Vector Machine (SVM), Artificial Neural
Network (ANN), Polynomial Chaos Expansion Method (PCEM)).

· Level IV methods are the reliability methods that compare a structural prospect with a ref-
erence prospect, according to the principles of engineering economic analysis under uncer-
tainty. They are appropriate for a structure that is of major economic importance, and con-
sider costs and benefits of construction, maintenance, repair, consequences of failure, and
interest on capital, etc. Foundations for sensitive projects like nuclear power projects, trans-
mission towers, highway bridges, are suitable objects of level IV design.

2.6. Effect of soil variability on geotechnical practice

2.6.1. Settlement

The modern methods to study the effect of uncertainty on the foundation settlement started in the
early 1980s. Beacher and Ingra (1981) carried out a 2d stochastic finite element analysis so as to
evaluate the uncertain of total and differential settlements. They took the soil elastic modulus as
the random variable with a Gaussian distribution using the exponential spatial correlation model.
They found that the total and differential settlements are normally distributed. Meanwhile, they
concluded that the CV of the total settlement increases with the increase of the autocorrelation
distance, they also pointed out that the maximum differential settlement happens when the ratio
between the autocorrelation distance and the footing width is 0.75 to 1. Moreover, the type of the
correlation structure has little effect on both the total and the differential settlement.
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Zeitoun and Baker (1992) evaluated the total and differential settlement of shallow foundations
using a modified Stochastic Finite Element Method (SFEM) proposed by themselves, taking soil
shear modulus as a random variable with a Gaussian distribution. The soil was assumed to be
linear elastic under both axial-symmetrical and plane strain situation. They found that the CV
of both the total and the differential settlements increase with the increase of the autocorrelation
distance of shear modulus. Meanwhile, they also found that the ratio of CV between the total
settlement and the shear modulus increase gradually till approaching an asymptotic value which
is smaller than 1. The results mean that the variability of the surface settlement is normally smaller
than that of the shear modulus.

Paice et al. (1994) investigated how the random soil stiffness affects the foundation settlement,
considering the elastic modulus as a spatially random variable with a lognormal distribution. The
CV of elastic modulus was assumed between 0.02 and 0.42, and the random field owns an expo-
nentially correlated structure. They used the influence coefficient (I = ρπE

ph ) which is proposed by
Poulos and Davis (1974). A moderate increase of both the mean and the CV of influence coefficient
can be found when the CV of elastic modulus is increased in the range of 0.02-0.42, for the unlikely
case where the CV of elastic modulus is larger than 0.42, the increase of both the mean and the CV
of the influence coefficient is dramatic. The scale of fluctuation of elastic modulus has little effect
on both the mean and the CV of influence coefficient when the CV of elastic modulus is smaller
than 0.42, and a high scale of fluctuation can considerably increase the expected settlement if the
CV of elastic modulus is above 0.42.

Fenton and Griffiths (2002) studied both the total settlement (s) and the differential settlement of
strip foundations in a probabilistic framework using random finite element method (RFEM). The
elastic modulus (E) was taken as a variable with a lognormal distribution, the soil is considered to
be isotropically correlated. They found that the total settlement can be represented by a lognormal
distribution for a single foot. The mean value of ln(s) is determined by both the mean and the vari-
ance of ln(E), and the variance of ln(s) can be approximately estimated by the variance of ln(E). For
the two footings case, the distribution of differential settlement is complex, because the histogram
is quite erratic, although it can be conservatively estimated by a Gaussian distribution. They con-
cluded that the scale of fluctuation can significantly influence the distribution of the differential
settlement, and recommended the scale of fluctuation is 10 times smaller than the distance between
footings so as to avoid a big mechanical interaction. In their another paper, Fenton and Griffiths
(2005) extended the work into the 3d situation, so as to estimate the uncertainty of settlements of
shallow foundations against the limit state. As the former work, they used RFEM to simulate the
foundation settlement taking the elastic modulus as a lognormally distributed random field with
an isotropic correlation structure. Similar results were found for the one-foot situation, further-
more, they found that: the footing settlement, for one footing case, could be approximated very
well through the geometric average of the elastic modulus field in the volume under the footing.
For the two footings case, they found the bivariate lognormal model is better than the Gaussian
distribution, which is recommended by the former paper, and the bivariate lognormal distribution
could closely predict the differential settlement of the two footings when they are away from each
other, however, when the footings are close to each other, this model could overestimate the joint
settlement. Later, they (Griffiths and Fenton, 2009) compared the 2d probabilistic settlement anal-
ysis results of stochastic finite element method (SFEM) and RFEM, and found the RFEM is better
than SFEM since SFEM had several shortcomings such as, it could neither simulate the influence
of soil spatial variability nor model the nonsymmetrical lognormal distribution, these drawbacks
could cause an unconservative result of the probability of failure.

Kuo et al. (2004) extended the work of Fenton and Griffiths (2005) into the multi-layered soil.
A three-dimensional two-layered soil was regarded as random soil field with Young’s modulus
a variable, and the probabilistic settlement of a square pad was investigated. It is found that the
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CV of settlement of the pad resting on a layered soil had a modest decrease comparing with the
settlement of a uniform single layered soil case, and the CV of footing settlement is affected by the
depth of the interface between soil layers, furthermore, the variation of soil near the foundation
has the most significant effect on the settlement.

Using Monte Carlo simulations combined with deterministic finite element method, Nour et al.
(2002) analyzed the variation of the settlement and differential settlement of a pair of foundations
on random heterogeneous medium, taking the elastic modulus, and the Poisson ratio as random
soil properties with lognormal and Beta distribution respectively. It is found that (a) for the elastic
modulus, the increase of its CV can significantly increase the settlement statistics (the mean, the
standard deviation, and the differential settlement); for isotropic correlation length case, as the in-
crease of the normalized correlation length (δ/L, where L is the foundation width), the settlement
statistics increase quickly to the maximum when δ/L is about 1 to 1.5, then the settlement statistics
decrease till they reach some constant levels; for the anisotropic correlation case, when the nor-
malized horizontal correlation length (δh/L) is large, both the mean and the CV of settlement are
independent to the horizontal correlation length δh; the differential settlement reduces to zero as
δh increases; when the normalized vertical correlation length (δv/L) is considered, the mean set-
tlement decrease quickly till it reaches to a certain value as the δv/L increases; both the standard
deviation of settlement and the differential settlement increase quickly as the δv/L increases from
zero to a certain level. (b) For the Poisson ratio, the increase of CV can moderately reduce both
the mean and the standard deviation of the settlement, and the reduction becomes more obviously
when the CV of elastic modulus is high; the variability the Poisson ratio has little influence on the
differential settlement. (c) Positive correlation between the elastic modulus and the Poisson ratio
can moderately increase the settlement statistics, while the negative correlation, on the other side,
can moderately decrease the settlement statistics.

Popescu et al. (2002) found that the CV and distribution of soil shear strength are the most
significant factors to the variation of the settlement, and increasing the soil variability can increase
the number of loose pockets in soil mass, which can strongly increase the differential settlement of
soil foundations.

Youssef Abdel Massih and Soubra (2008) carried out a reliability-based analysis of a strip foun-
dation subjected to a central vertical load. The footing displacement was evaluated using the
response surface methodology taking the elastic properties (Young’s modulus and Poisson ratio)
as random variables. They found that the partial safety factors of both elastic modulus and Pois-
son ratio decrease with the increase of the load for the uncorrelated soil case, till they approach
one when the load caused a maximal prescribed settlement. However, the partial safety factor of
Poisson ratio is always smaller than 1 for the soil with a negatively correlated elastic properties.
Furthermore, the probability of failure is found to be highly affected by the uncertainty of Young’s
modulus, which is in agreement with Nour et al. (2002).

Jimenez and Sitar (2009) studied the probabilistic settlement of a shallow foundation using
RFEM, considering the elastic modulus as a random variable. The effect of different distributions
(lognormal distribution, gamma distribution, and beta distribution) were investigated. It is found
that the type of distribution can significantly influence the settlement results, especially in the case
that the CV of elastic modulus is high, and the scale of fluctuation of Young’s modulus is large.

Al-Bittar and Soubra (2013) carried out a probabilistic analysis of both vertical and horizontal
displacements of strip footings founded on a spatially varying soil. Both isotropic and anisotropic
random fields were taking into account for the elastic properties. They found that a larger autocor-
relation distance can cause a bigger variability of the displacement of the footing for the vertical
load situation, and both the mean and the CV of footing displacement are higher when the CV of
elastic modulus is high.
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In summary, the elastic modulus is the most popular spatial correlated variable used to carry
out the effect of soil variability on the settlement. It is found that (a) both the CV and the spatial
correlation length of the elastic modulus can significantly affect both the mean and the CV of
differential settlement; (b) the distribution may have a big influence when both the CV and the
spatial correlation length are high; (c) the settlement follows a lognormal distribution, while the
differential settlement is quite erratic. The settlement is more sensitive to the elastic modulus than
to the Poisson ratio.

2.6.2. Bearing capacity

Early attempts combining the probabilistic analysis to the bearing capacity starts in the late 1960’s.
Wu and Kraft (1967) studied the uncertainty in soil bearing capacity taking the applied load and
soil strength as random variables without fully considering the spatially correlated structure. The
studies using modern probabilistic methods to evaluate the bearing capacity of shallow founda-
tions have been made over the past 3 decades (Al-Bittar and Soubra, 2013; Cherubini, 2000; Easa,
1992; Griffiths and Fenton, 2001; Jamshidi Chenari and Mahigir, 2014; Kasama and Whittle, 2011;
Popescu et al., 2005).

Easa (1992) evaluated the bearing capacity of a shallow strip foundation resting on cohesionless
soil using a probabilistic method. The effective friction angle and soil unit weight were considered
as random variables. It is found that the uncertainty of soil unit weight has a considerable effect
on the bearing capacity of the foundation.

Cherubini (2000) evaluated the reliability of shallow foundations considering their bearing ca-
pacity using a probabilistic method with reliability index. The soil shear strength parameters were
regarded as cross-correlated variables. An unconservative result is found without considering
the negative correlation between shear strength parameters. Also, the vertical spatial correlation
length is found to have a significant effect on the reliability of shallow foundations. Meanwhile,
the variance reduction has a remarkably strong effect on the reliability of the shallow foundation.
Furthermore, the reliability of shallow foundations is found to be high when the cross-correlation
between the shear strength parameters are negative and the fluctuation scale is small.

Nobahar and Popescu (2000) evaluated the bearing capacity of shallow foundations resting on
an over-consolidated clayey soil. It is found that the inherent spatial variability of soil strength
can significantly affect the shallow foundations with regard to both the mean and the CV of bear-
ing capacity. Comparing to the deterministic analysis results, the mean ultimate bearing capacity
is 25% lower in the case. In their another paper, Nobahar and Popescu (2001) pointed out that
the inherent spatial variability of soil strength affects soil behavior through changing the failure
mechanism. Then, Nobahar and Popescu (2002) found that the vertical scale of fluctuation has a
significant influence on the bearing capacity comparing to the effect of the horizontal scale of fluc-
tuation, which is in agreement with Cherubini (2000). Furthermore, It is found a longer horizontal
correlation distance can reduce the effect of local averaging, and so as to increase the variabilities
of the ultimate bearing capacity. Meanwhile, Popescu et al. (2002) studied the effect of soil hetero-
geneity on the bearing capacity of shallow strip foundations standing on an overconsolidated clay
layer under undrained conditions with a depth-independent shear strength. The nonlinear finite
element analysis with stochastic input generated by Monte Carlo simulation was used, and the
random field was two-dimensional non-Gaussian with an exponential decaying correlation struc-
ture in a certain range of the spatial correlation length. They found that the CV of shear strength
and the left tail of the probability distribution of the cohesion can significantly affect the bearing
capacity, because these two factors are the key in formulating the loose zones, which can cause
unsymmetrical displacement and soil failure. Nobahar (2003) evaluated how the soil heterogene-
ity affected the bearing capacity of strip foundations under undrained conditions. It is found that
both the CV and the distribution of soil shear strength are the most significant factors. Increasing
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the soil variability can increase the number of loose pockets in soil mass, which can strongly re-
duce the bearing capacity of soil. This result is in compliance with their former studies. Popescu
et al. (2005) pointed out that there is no average failure surface, because different random fields
have different weak paths. Meanwhile, the footing rotation is observed which is impossible in the
corresponding deterministic analysis of homogeneous soil. Homogeneous soil here means the soil
is uniform throughout in composition or properties.

Fenton and Griffiths did a lot of works in this part using RFEM. They (Fenton and Griffiths, 2003)
studied the bearing capacity of smooth rigid strip footing resting on the isotropic spatially corre-
lated random soil. The cohesion and friction angle were considered as stochastic variables with a
lognormal and a bounded distribution respectively. It is found that the mean value of bearing ca-
pacity increases to Prandtl solution when the CV of soil shear strength decreases to zero. The mean
value is reduced quickly with the increase of CV, especially for a small spatial correlation length
case. Furthermore, the CV of bearing capacity can be increased if the spatial correlation length is
increased. They also found that the CV is a major factor to influence the bearing capacity, while the
influence of the spatial correlation length is little, in the considered range. They concluded that, in
the isotropic case, a spatial correlation length equals to the footing width could result in the lowest
value for the foundation bearing capacity, and this phenomenon is confirmed by other studies (Al-
Bittar and Soubra, 2013; Soubra et al., 2008). In their another paper (Griffiths and Fenton, 2001),
the bearing capacity of the undrained clay was simulated with spatially varying strength. Similar
results are found. Meanwhile, they pointed out that the soil heterogeneity could cause the asym-
metric behavior of foundations which is in agreement with Popescu et al. (2005). Furthermore, it is
found that the mean value of bearing capacity becomes the minimum when the width of the foot-
ing is about 1.5 times as long as the spatial correlation length. They also compared both rigid and
smooth footing results. Despite little differences is found, the smooth footing causes marginally
higher probability of failure. Griffiths et al. (2002) studied the bearing capacity of a rough rigid
strip footing resting on a cohesive soil. Three parameters: Young’s modulus, Poisson ratio, and
undrained shear strength were considered as random variables. It is found that the mean bearing
capacity is always lower for the heterogeneous soil than for the homogenous soil, and the weak
element dominates the mean bearing capacity. Griffiths et al. (2006) evaluated the case of two-strip
footings. The undrained shear strength was regarded as the variale with a lognormal distribu-
tion. The mean absolute difference of the settlements between two footings is influenced by both
the CV and the normalized spatial correlation length of the undrained shear strength; a moder-
ate normalized spatial correlation length (approximate one) could be seen to result in a minimum
bearing capacity. The bearing capacity is increased for lower or higher normalized spatial correla-
tion length due to the effect of local averaging or the more uniform random field of the undrained
shear strength. The footing interference was highlighted and it could increase the mean bearing
capacity when the footings were regarded to support separate structure. However, the interface
could decrease the mean bearing capacity when the footings support a single structure, because
the failure of either footing is the failure of the whole structure. The interference between footings
is not so great for frictionless material.

Zekkos et al. (2004) studied the reliability of a shallow foundation using the standard penetration
test results considering all sources of uncertainties. It is found that the factor of safety approach
could cause conservative results, and the foundations with small factors of safety could have small
probabilities of failure in some cases.

Przewłócki (2005) studied the ultimate bearing capacity of a strip footing resting on the purely
cohesive random field using stochastic finite difference method. He found that the ultimate bear-
ing capacity is significantly effect by the spatial correlation length of the soil. Furthermore, he also
pointed out the CV of cohesion is extremely important.

Dasaka (2005) compared the results of both deterministic and probabilistic analysis of bearing
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capacities in both sand and cohesive soil. He found that, for sand, the allowable pressure is lower
in the probabilistic analysis result than in the deterministic analysis for the same reliability index.
Meanwhile, for cohesive soil in his case, the net ultimate bearing pressure needs to be reduced by
a factor of 2.7 so as to result in the target reliability index of 3.

Soubra et al. (2008) evaluated the ultimate bearing capacity of a shallow strip footing resting on a
spatially variable clayey soil. The shear strength parameters were considered as random variables.
It is found that the mean value of the ultimate bearing capacity is lower in the spatially random
field than in the homogeneous soil. The minimum value is found when the autocorrelation length
equals to the footing breadth, and the mean value of ultimate bearing capacity is easier effected
by the horizontal spatial correlation length than the vertical spatial correlation length. Youssef
Abdel Massih and Soubra (2008) carried out a reliability-based analysis of the ultimate bearing
capacity of a strip foundation subjected to a central vertical load considering the shear strength
parameters as variables using response surface method with Hasofer-Lind reliability index. They
found that the reliability of the foundation can be highly increased if the negative correlation be-
tween the cohesion and the friction angle are taken into consideration. Meanwhile, the probability
of failure can be significantly increased as the increase of the CV of friction angle. The Pf is slightly
increased when the CV of cohesion is increased. The serviceability limit state was investigated in
another paper (Youssef Abdel Massih and Soubra, 2008) using the same method, the soil elastic
properties are taken as variables. They found that increasing the CV of elastic modulus can sig-
nificantly increase the Pf, while increasing the CV of Poisson ratio can only slightly increase the
Pf.

Sivakumar Babu et al. (2006) evaluated the bearing capacity of a shallow foundation. The
undrained shear strength was taken as the variable with a lognormal distribution. Its mean and
variance are calculated from the cone tip resistance results from Static Cone Penetration Test (SCPT).
A conservative value of allowable bearing capacity is found with reliability-based approaches,
comparing with the results from factor of safety approach. Meanwhile, a decreasing trend of the
reliability index is found with the increase of both the applied pressure and the CV of undrained
shear strength. They also found that the point variance of undrained shear strength could cause
a low reliability index. A further study was carried out by Srivastava and Babu (2009) using fi-
nite difference code FLAC 5.0 with Monte Carlo simulation. They compared the situations with
and without the linear trend of soil parameters, and found that the linear trend could improve the
reliability of the shallow foundation.

Cho and Park (2010) studied the bearing capacity of a rough strip footing resting on the spatially
variable soil considering the cross-correlated shear strength parameters as variable. They com-
bined the commercial finite difference method with random field theory to generate the anisotropic
random field. They found that, a decrease of vertical autocorrelation length could reduce the CV
of bearing capacity, and an increase of the negative correlation coefficient could decrease the fail-
ure probability. They concluded that the horizontal autocorrelation range has insignificant effect
on the stochastic behavior of bearing capacity while the vertical autocorrelation length is found to
have a big influence on the statistical response, especially when the negative cross-correlation of
shear strength parameters are considered, and ignoring the negative cross-correlation could cause
unconservative results.

Kasama and Whittle (2011) carried out a probabilistic analysis of bearing capacity of a strip
footing suffering the vertical load. The Cholesky decomposition technique with midpoint method
was used to generate the isotropic random field. The undrained shear strength (cu) was taken
as a random variable with a lognormal distribution. They found that the spatial variability of
undrained shear strength could reduce the bearing capacity of the strip footing, comparing with
the homogeneous soil situation, and this reduction is found to be maximum when the CV is high
and the correlation length ratio (the correlation length of ln(cu) over the footing width) is low.
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Meanwhile, the results were compared with the former works of Griffiths et al. (2002). They found
that, both results has a good agreement, however, the method (Local Average Subdivision) could
overestimate the probability of failure when the correlation lengths are large.

Al-Bittar and Soubra (2013) presented a study of the ultimate bearing capacity of a strip footing
found on a spatially varying soil. They took the soil cohesion and friction angle as cross-correlated
variables, and the random field was anisotropic and non-Gaussian. It is found that the variability
of the ultimate bearing capacity is mainly effect by the soil cohesion. The Pf increases when the
increase of CV of the variable. Also, a smaller variation of the ultimate bearing capacity is found
when the autocorrelation length is smaller, which is in agreement with the results from Cho and
Park (2010). Furthermore, they found that the ultimate bearing capacity becomes the minimum
when the autocorrelation length and the footing breadth are nearly same for the isotropic case,
which is consistent with Griffiths’ results (Fenton and Griffiths, 2003). However, this minimum is
found to be related to the ratio between the horizontal and vertical spatial correlation lengths for
the anisotropic case.

In summary, the variability of the ultimate bearing capacity is usually evaluated taking the shear
strength as a variable with different reliability methods. The CV, left tail of the probability distribu-
tion, vertical spatial correlation length, together with the variance reduction can have significant
effect on the reliability of a foundation. When the cohesion and friction angle are treated separately
as variables, the variability of cohesion is far more important than the variability of the friction
angle in the effect on the reliability of a foundation. Meanwhile, the negative cross-correlation be-
tween the cohesion and the friction angle can increase the reliability of a shallow foundation. For
the serviceability bearing capacity case, the variability of elastic modulus is far more important
than the variability of Poisson ratio in the reliability analysis.

2.6.3. Slope stability

As an important branch of geotechnical practice, slope stability analysis is highly valuable to be
probabilistic treatment and it has caught great attention.

i. One-dimensional case

The infinite slope stability analysis is an oldest and simplest slope stability method used to eval-
uate the shallow landslides. The shallow landslides are usually induced by rainfall, because the
rainwater infiltration (both transient of steady state infiltration) can reduce the matric suction and
increase the groundwater table, so as to reduce the stability of a shallow slope.

Griffiths et al. (2011) carried out a probabilistic infinite slope stability analysis using both the
first order reliability method and the RFEM. In the case that the undrained shear strength (cu)
is considered as the variable with a lognormal distribution, the probability of failure decreases
with the increase of the spatial correlation length of ln(cu) and the failure surface is very likely
at the bottom of the slope, especially when the spatial correlation length is large. When both the
cohesion and the friction angle are considered as variables, it is found that the negative cross-
correlation could decrease the probability of failure. They concluded that the probability of failure
could be underestimated if the spatial variability of undrained shear strength of the cohesion is
ignored.

The effect of soil variability on the unsaturated slope during infiltration was studied by Santoso
et al. (2011), taking the saturated hydraulic conductivity (ks) as a stationary lognormal random
variable. The groundwater table is kept constant during the infiltration. They found that the Pf
decrease as the increase of the spatial correlation length during steady state infiltration.

Cho (2014) carried out a probabilistic slope stability analysis during rainfall infiltration. The
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shallow slope locates on the top of an impermeable bedrock in his case. RFEM is adopted and
the ks is a regarded as a variable with a lognormal distribution. It is found that the portion of
the critical failure surface located at the impermeable interface could be significantly increased as
the increase of the effect the CV of ks, especially in the early stage of the infiltration. The effect
of the spatial correlation length of ln(ks) is smaller than the CV of ks. In the early stage of the
infiltration, the portion is reduced as the increase of the spatial correlation length because the
infiltration at the upper part of the slope causes the positive pressure head in this area, and this
positive pressure head can increases the probability of the slope failure above the interface. As
the infiltration duration keeps increasing, the portion is increased as the increase of the spatial
correlation length, because the wetting front reaches the interface, and the positive pressure head
is generated at the interface.

Li et al. (2014) studied the reliability of an infinite slope considering the spatial variation of shear
strength parameters, their mean trend is assumed to increase linearly with depth. The random
field theory is employed to simulate the spatial variation of the shear strength parameters. It is
found that the reliability of a clayey slope could be significant effect by the mean trend of the
shear strength parameters, and ignoring this trend could overestimate the probability of slope
failure, which is against the results from Hicks and Samy (2002). Furthermore, the slip surface at
the slope bottom had a considerable reduction when the mean trend is included, which coincides
with the results from Hicks and Samy (2002). Meanwhile, the results show that the probability of
failure has a moderate reduction as the increase of the mean friction angle, and it is significantly
reduced with the increase of the spatial correlation length of friction angle. They also found that
the linearly increased mean trend of friction angle could considerably influence the distribution of
critical failure depths of sandy slopes.

ii. Two-dimensional cases

The two-dimensional (2d) slope model is widely used in slope stability analysis, and extensive
studies have been carried out. Two main type can be categorized in probabilistic slope stability
analysis: with and without the infiltration.

Case without the infiltration

Matsuo and Kuroda (1974) found that, if the variability of soil properties was taking into con-
sideration, the probability of slide failure of the embankment could suffer an unexpectedly high
value (15%-20%) when the design factor of safety is 1-1.5. He also recommended the Gaussian
distributions for both the moisture content and the strength parameters.

Using first-order probability analysis, Alonso (1976) evaluated the slope stability considering
soil heterogeneities. He found that the variability of the relevant parameters of soil, such as cohe-
sion, pore-pressure could strongly affect the uncertainty of slope safety.

El-Ramly et al. (2002) developed a simple spreadsheet way combining Microsoft Excel with
@Risk software based on Monte Carlo simulation technique to study the probabilistic slope sta-
bility. The approach is applied to handling several real slope problems (El-Ramly et al., 2002, 2003,
2005, 2006). The results show that the soil variability could have a substantial effect the reliability
of the slope design, and ignoring it could cause erroneous, misleading, or a big overestimate of the
probability of failure.

Griffiths and Fenton (2004) carried out a probabilistic slope stability analysis of an undrained
soil slope using RFEM. The undrained shear strength was considered as the variable, in a dimen-
sionless form C, where C = cu/γsatH, with H the slope height, and a range of both the CV (or
Vc) and the the spatial correlation length were performed. They also compared their results with
the results from the simplified probabilistic approach in which the spatial variability is neglected.
They found that the simplified probabilistic approach could cause an unconservative estimate of
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the probability of failure, especially when the CV is relatively high. The results from RFEM show
that the CV has a significant effect on the probability of failure slope (Figure 2.13a). As the CV
increases, the probability of slope failure increases quickly. The effect of the spatial correlation
length on the probability of slope failure is more complicated. Two branches are shown (Figure
2.13b). When the CV is smaller than 1, an increase of the spatial correlation length could increase
the probability of slope failure, while increasing the correlation length could decrease the probabil-
ity of slope failure when the CV is larger than 1. In a later work, Griffiths et al. (2009a) investigated
the probability of slope failure using both FEM combined with FORM without spatial variation
and RFEM so as to honor the effect of spatial variation. They found that, when the CV of shear
strength parameters are beyond a critical value, the probability of slope failure would be noncon-
servatively estimated if the spatial variation is ignored. However, the probability of slope failure
would be conservatively estimate ignoring the spatial variation for normal soil variability ranges,
especially when the CV is lower than the critical value.

δ
δ
δ
δ
δ

δ

Figure 2.13.: Effect of the (a) CV and (b) spatial correlation length, of C on the probability of slope
failure using RFEM. The mean=0.25 (Source: Griffiths and Fenton 2004)

Hicks and Samy (2002) studied the influence of soil heterogeneity on an undrained clay slope
using RFEM, highlighting the effect of the anisotropic random field. He took the undrained shear
strength a variable with a Gaussian distribution, and divided the spatial correlation length into
vertical and horizontal spatial correlation length. Meanwhile the linearly depth-dependent mean
of undrained shear strength was considered. They found that, for a given factor of safety, the re-
liability is the highest when the undrained shear strength is depth-independent, and the rupture
surfaces are usually originated from the slope toe (sometimes near the toe). When undrained shear
strength increases linearly with depth, the reliability is smaller, and a greater range of possible rup-
ture surface originated from the top to the toe of the slope can be found. Furthermore, a modest
change of reliability is found when the anisotropy phenomenon is considered, which differs from
results from Hicks and Onisiphorou (2005), in which case, they concluded that the soil anisotropy
can sometimes have a significant effect on the slope stability. Later, Hicks and Samy (2004) con-
tinued their research by comparing the results with the simple probabilistic analysis results. They
found that the results from the simple probabilistic model gives an over-conservative estimation
of the failure probability because of ignoring the spatial variation, which is in agreement with the
results from Griffiths and Fenton (2004). Furthermore, they recommended an infinite horizontal
spatial correlation length for many cases.

Dasaka (2005) found that the stability of a slope is increased with the decrease of the cross-
correlation between the cohesion and the angle of internal friction. He also pointed out that an
increase of CV of strength parameters would decrease the optimum slope angle.
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Cho (2007) developed a numerical method for a probabilistic slope stability analysis using the
Monte Carlo simulation considering the spatial variability of soil properties. The approach com-
bining Spencer’s limit equilibrium method with FORM so as to seek the reliability index, the
results confirmed the importance of the spatial variability of soil properties. Later, Cho (2009)
reinvestigated the effect of spatial variability of shear strength parameters considering the cross-
correlation between cohesion and friction angle. The procedure used in random field generation is
a Karhunen-Loève expansion with MCS. It is shown the probability of failure can be reduced with
the reduction of the negative correlation between cohesion and friction angle, which in consistency
with the former studies (Dasaka, 2005).

Bakhtiari (2011) carried out a stability analysis using stochastic finite element method with a
Monte Carlo simulation. It was found that the range of structural responses increases as the in-
crease of the degree of anisotropy; this range is smaller for isotropic case. He also found that the
increase of the vertical scale of fluctuation could increase the range of possible structural responses
and increase the probability of slope failure. Furthermore, he concluded that considering the soil
heterogeneity could closely predict the failed zones of the excavation project in his research.

Shen and Fu (2011) analyzed the slope reliability of layered slope considering the spatial vari-
ability of soil cohesion using elastoplastic finite difference method with random field theory. They
considered both stationary and non-stationary situations, as well as the local averaging domain (T).
In the stationary case, they found that the Pf reduces modestly as the T increases, and the increase
of spatial correlation length can greatly increase the Pf (case with a small CV of cohesion). In the
non-stationary case, they concluded that the Pf increased as the increase of the spatial correlation
length, when the mean cohesion was considered to increase linearly with depth.

Ji and Low (2012) carried out a slope reliability analysis considering the spatial variation using
stratified response surface method. It was found that the spatial variation has a big influence on the
slope stability, and the reliability index could be more vulnerable to vertical autocorrelation length
than to horizontal autocorrelation length, which is in agreement with the results from Bakhtiari
(2011). They concluded that the Pf could be significantly overestimated if the spatial variation is
neglected.

Calamak et al. (2014) carried out a probabilistic slope stability analysis for earth-fill dams con-
sidering the spatial variability of saturated hydraulic conductivity, unit weight, and soil strength
parameters. The Monte-Carlo simulation method with five different limit equilibrium methods
(Ordinary, Bishop, Janbu, Morgenstern-Price, Spencer) was used so as to compare the results. They
found that Janbu method is the most conservative one resulting in the lowest reliability indices,
while the Morgenstern-Price method is the most unconservative method since it giving highest
reliability indices. Furthermore, they found that the CV of FS varied in the range of 19%-25%, and
this needed to be seriously considered in order to avoid a high slope failure probability.

Case with infiltration

Bergado and Anderson (1985) developed a probabilistic slope stability analysis model consider-
ing the shear strength and pore pressure as random variables. It was found that the variabilities
of both the soil strength and the soil permeability have significant effects on the results of the
probabilistic analysis, and the pore pressure can strongly influence the probability of failure.

Gui et al. (2000) studied the effect of soil heterogeneity on the stability of an earth slope with an
undergoing internal water flow using FOSM analysis. The saturated hydraulic conductivity (ks)
was considered as a spatially correlated variable with a lognormal distribution. It was found that
the standard deviation (σ) of the factor of safety (FS) increases with the increase of the standard
deviation of the ln(ks) (σln(ks) ). They also found that the slope reliability is negatively correlated
with σln(ks), meanwhile, the FS follows a Gaussian or lognormal distribution when σln(ks) is less
than 0.5.
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Through simulating the transient infiltration processes, Sivakumar Babu and Murthy (2005)
found that the variability of ks can significantly affect the slope reliability. Meanwhile, the reli-
ability of the unsaturated slope above the wetting front reduces with the increase of the CV of ks,
which coincides with the results from Zhang et al. (2005). They also pointed out that the failure
zone can be better captured by the reliability index than by the factor of safety.

Srivastava et al. (2010) investigated the slope stability on steady state seepage condition, taking
the permeability parameter as a random variable with a lognormal distribution. They found that
the mean FS reduces gradually with either the increase of the CV or the decrease of the correlation
length of the permeability parameter.

Le et al. (2015) investigated the stability and the failure size of an unsaturated slope suffered from
the rainfall with a constant intensity. The void ratio was taken a random variable. The random
finite element method was used to evaluate both the factor of safety and the size of the sliding
mass. It was found that both the spatial correlation length and the CV of the void ratio could
significantly affect both the mean value and the variability of these two quantities. This effect is
more significant during the transient regime comparing with that during steady state situation.
Interestingly, it was found that the relevant sliding mass might be relatively small when the FS is
small in some case, while the corresponding sliding mass is rather big when the FS is large in some
other cases.

iii. Three-dimensional case

In three dimension situation, most works are about the comparison of the factor of safety be-
tween the two dimension situation and three dimension situation.

Several studies (Cavoundis, 1987; Duncan, 1996; Stark and Eid, 1998) have been carried out on
this issue, and it was found that in most cases, the factor of safety in three dimension situation is
larger than that in two dimension situation for rather uniform slopes. Some researchers (Hungr,
1987; Chen and Chameau, 1983) even concluded that the factor of safety in three-dimensional
situation is always larger than that in two-dimensional situation. However, it is not reasonable that
the FS in three dimension slope is always larger, since some unusual combination of geometry and
soil properties might happen. Jardine et al. (2004) found that the three-dimensional slope is more
critical when some slope has highly variable cross-sections. Some other researchers also found
the most critical factors of safety in the 3d slopes (Chen and Chameau, 1983; Seed et al., 1990).
Moreover, a ’high’ factor of safety cannot guarantee a low probability of failure (Chowdhury and
Xu, 1995; Christian et al., 1994; Duncan, 2000).

Griffiths et al. (2009b) carried a 3d slope stability simulation using RFEM, and concluded that:
the probability of 2d slope failure might be underestimated if the spatial correlation length in the
out-of-plane direction is infinite. They also found that, the ratio between the length in the out-of-
plane direction and the height of the slope is equal to or approximately equal to 3 as a boundary
between the conservative and unconservative results, and, generally speaking, the failure prob-
ability of the 2d slope would be underestimated if the length of the slope in the out-of-plane is
longer.

Spencer and Hicks (2007) performed a 3d slope stability analysis of a cohesive soil using RFEM,
and compared the results with that in the 2d situation. The undrained shear strength was consid-
ered as the random variable with a Gaussian distribution. In order to reduce the computational
time of the big slope, the parallel computation was adopted. They focused on the effect of the
slope length, the scale of fluctuation, and the degree of anisotropy on the slope stability. They
found three distinct failure mechanisms in the 3d slope stability analysis: one at single or multiple
discrete points along the length of the slope and two along the whole length of the slope. Compar-
ing with the 2d situation, the mean and variance of failure probability are increased and reduced
respectively in 3d slope stability analysis. Furthermore, they also concluded that the horizontal

32



2 Literature review on soil variability and its effect on geotechnical practice

scale of fluctuation has a big effect on the failure mode. This work was continued by their another
paper (Hicks and Spencer, 2010). They found that three failure modes could be observed, when
the ratio between the horizontal scale of fluctuation and the slope size is changed: Mode 1: the
failure path is through many high and low zones When the ratio is small (the horizontal spatial
correlation length is smaller than the slope height(H)), mode 2: through semi-continuous weak
zones when the horizontal spatial correlation length is between the slope height and slope length,
and mode 3: through continuous weak zones when the horizontal spatial correlation length is
longer than slope length, as is shown in Figure 2.14. Hicks et al. (2014) continued the work, they
concluded that the intermediated spatial correlation length is likely to cause the discrete 3d slope
failure. Furthermore, they also found that the potential slides might be in small volumes, when
the probability of failure is low.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 2.14.: Failure modes in 3d soil slope considering the variability of soil properties (Source:
Hicks and Spencer 2010)

In summary, the undrained shear strength is commonly used as the spatially correlated variable
to analyze its effect on the slope stability analysis. The probability of failure increases significantly
with the increase of CV of undrained shear strength; increasing the spatial correlation length could
increase the probability of failure when the CV of undrained shear strength is small, however, the
probability of failure reduces with the increase of spatial correlation length when CV of undrained
shear strength is larger than a certain value. For the anisotropic structure case, it is found that reli-
ability index could be more vulnerable to the vertical autocorrelation length than to the horizontal
autocorrelation length. The slip surface follows the weakest path through the material when the
variability is considered, rather than of a simple circular failure surface used in the deterministic
analysis. The negative correlation between the cohesion and friction angle can reduce the prob-
ability of failure. When the infiltration (or seepage) is taken into consideration: the ks is mainly
regarded to be the spatial correlated variable, which could significantly affect the slope stability
during both steady state and transient state infiltration. For steady state seepage, the slope relia-
bility reduces greatly with the increase of the CV of ks. Meanwhile, the mean FS reduces gradually
with both the increase of the CV and the decrease of the spatial correlation length. For transient
seepage case, the mean of FS reduces significantly, and the CV of FS increase slightly as the increase
of the infiltration duration of the 3d slope in the wetting zone.

2.6.4. Seepage

Studies on probabilistic analysis of seepage have been carried out in fifty years. In the first three
decades, the effect of the variability of hydrogeologic parameters (hydraulic conductivity, com-
pressibility and porosity) on the seepage was usually evaluated using the mean, and variance,
without considering the effect of spatial correlation (Bakr et al., 1978; Freeze, 1975; Smith and
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Freeze, 1979; Warren et al., 1961). The spatial correlation has been taken into consideration since
the mid-90s.

Fenton and Griffiths (1994) carried out a probabilistic analysis of flow through earth dams con-
sidering the permeability as a lognormally distributed variable. It is simulated by the spatially cor-
related random field with an isotropic structure. The random finite element method was adopted
with a gradually increasing element size as the decrease of the elevation of the dam. They found
that (a) the mean flow rate is smaller than the flow rate (q) in the deterministic analysis. This mean
flow rate reduces significantly as the increase of the standard deviation of permeability. This re-
duction is more pronounced at a small spatial correlation length situation. Meanwhile, the mean
flow rate increases with the increase of the spatial correlation length. (b) the standard deviation of
the flow rate increases dramatically with the increase of the variance of ks when the spatial cor-
relation is large, and it increases slightly with the increase of the variance of ks when the spatial
correlation is small. While, the increase of the spatial correlation length can increase the standard
deviation of the flow rate. Similar results were found by Srivastava et al. (2010). (c) the mean ele-
vation of the downstream exit point reduces considerably as the increase of the standard deviation
of ln(ks) when the spatial correlation length is small, and it reduces at first and then increases as
the increase of the standard deviation of ln(ks) when the spatial correlation length is large; the
standard deviation of the downstream exit point elevation increases significantly with the increase
of both the spatial correlation length and the variance of the ln(ks). Variable geometry of an earth
dam was considered in another paper (Fenton and Griffiths, 1996). For a given dam shape and
type of random field, they found that the stochastic seepage response of a dam depends on the
ratio between the spatial correlation length and the dam dimensions. Meanwhile, they found that
the mean of ln(q) is negatively correlated with the variance of ln(ks), and the standard deviation
of ln(q) is positively correlated with the variance of ln(ks).

Ahmed (2009) studied the unconfined flow through dams. The hydraulic conductivity was con-
sidered as the variable with a lognormal distribution. They found that (a) the free surface line
of the steady state seepage is ragged and the exit point was lower, comparing with that in the
deterministic seepage situation; (b) the flow through the dam is larger when the ratio between
the horizontal and vertical spatial correlation length is larger; (c) the smaller ks core inside a dam
might not be necessary when the CVks is large, because the flow is relatively small in this situation.

Cho (2012) carried out a probabilistic analysis of the steady state seepage through both one- and
two-layered embankment, taking the ks as a spatially correlated variable with a lognormal distri-
bution. They found that the mean normalized flow rate (mean flow rate over the deterministic flow
rate) is smaller than one if the variability of the ks is taken into account. The normalized mean flow
rate is found to reduce significantly as the increase of CVks, and it has a moderate increase as the
increase of the horizontal spatial correlation length. They pointed out that the horizontal spatial
correlation length, is more important than the vertical spatial correlation length because the domi-
nant flow is horizontal in their case. The standard deviation of the normalized flow rate increases,
with the increase of both the CV and the spatial correlation lengths (both vertical and horizontal).
The mean normalized flow rate is not affected by one layer or two layers, however, the two-layer
case resulted in a slightly smaller standard deviation of the normalized flow rate. In the case of
a two-layered embankment, the variation of flow rate is smaller than the variation of ks when
the field is completely correlated, because the variation of ks through the whole flow domain is
decreased.

Calamak et al. (2012) focused on the variability of ks to the heads along the free surface of a two-
dimensional earth-fill dam. They found that the uncertainty of heads of free surface is increased as
the increase of the variability of ks, and the distribution of the head may not follow the Gaussian
distribution.
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In summary, the variability of ks is usually taken as a spatially correlated variable with a log-
normal distribution to evaluate its effect on the seepage. The main outputs are: (a) the mean flow
rate of ks is smaller than the deterministic flow rate when the variability of ks is considered; (b) the
mean flow rate reduces significantly with the increase of the variance of ks and it increases remark-
ably with the increase of the spatial correlation length of ln(ks); (c) the standard deviation of the
flow rate increased dramatically with the increase of the variance of ks when the spatial correlation
length is large, and it increased slightly with the increase of the variance when the spatial corre-
lation length is small. Meanwhile, the increase of the spatial correlation length can increase the
standard deviation of the flow rate; (d) the mean elevation of the downstream exit point reduces
considerably as the increase of the standard deviation of ks when the spatial correlation length is
small.

2.6.5. Other geotechnical practice

Other studies are carried out about how the soil heterogeneity affecting the liquefaction (Baker and
Faber, 2008; Fenton and Vanmarcke, 1991; Hicks and Onisiphorou, 2005; Popescu et al., 1996, 1998a,
1997; Yegian and Whitman, 1978), the seismic response and wave propagation (Assimaki et al.,
2003; Dasaka, 2005; Elkateb, 2003; Popescu et al., 2004; Tantalla et al., 2001; Youssef Abdel Massih
and Soubra, 2008) , the lateral loading of buried pipelines (Elachachi et al., 2012; Nobahar, 2003),
the bearing capacity of piles (Kwak et al., 2010; Phoon et al., 1990; Robert, 1997; Zhang and Chen,
2012) , the pile settlement (Phoon et al., 1990) and the diffusion (Nishimura et al., 2002; Schiffman
and Gibson, 1963).
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3. Effect of stress level on the variability of
void ratio related properties of sand

3.1. Background and objective

Former studies have shown that some properties of sediments vary with soil depth because of
the influence of earth stress and self-weight. For example, soil porosity at the ground surface is
typically greater than the porosity at a deeper location (Lu and Godt, 2008). Another example is
that the friction angle for a given sand is inversely linearly proportional to its porosity (Cornforth,
1973, 2005; Marachi, 1969; Rowe, 1969). This means some soil properties are stress-dependent.
The effect of stress level on the properties of sediments is mostly carried out by laboratory tests
or deterministic simulations, so as to result in the relation between the mean trend and the stress
level. The effect of the stress level on the standard deviation and the spatial correlation length are
usually neglected, since only the trend is used during the deterministic analysis.

The uncertainty and its importance in geotechnical practice have long been appreciated. The
stochastic analysis (or probabilistic analysis) is usually carried out to evaluate the effect of the
uncertainty of a soil property on geotechnical practice. During the stochastic analysis, all stochastic
parameters, including the mean, the standard deviation, and the spatial correlation length, are
required. This gives us enough excuses to study how the stress level affects all the stochastic
parameters of a soil property.

To the knowledge of the author, all the stochastic analyses in geotechnical engineering are car-
ried out assuming both the standard deviation and the spatial correlation length constant. This
means that the standard deviation and the spatial correlation length are assumed to be stress-
independent. However, this assumption is not validated by proof. The mean trend is assumed to
be constant for most of these studies, e.g. Griffiths and Fenton (2004), while only a few researches
are carried out assuming the mean trend of some soil properties are linearly depth-dependent, e.g.
the study from Shen and Fu (2011). Here the question comes up: If the mean, the standard devia-
tion, and the spatial correlation length of soil properties are all depth-dependent? Therefore, it is
necessary to carry out a research about how the stress level affects the stochastic parameters of soil
properties.

The void ratio (e) is one of the key parameters, and it is related to some of the other important pa-
rameters, such as the friction angle (Cornforth, 1973, 2005; Marachi, 1969; Rowe, 1969) , saturated
hydraulic conductivity (Fredlund and Rahardjo, 1993), unit weight (Terzaghi et al., 1996), and oth-
ers. This parameter is chosen as a representative parameter to study the effect of stress level on
stochastic parameters (mean, standard deviation and spatial correlation length) using stochastic
methods. With knowledge of the variability of this key parameter, the results can be extended to
the other related parameters.

3.2. Methodology

The effect of stress level on the soil heterogeneities is carried out through one-dimensional settle-
ment simulation with vertical uniform load. The one-dimensional settlement simulation is similar
to the oedometer test, and the differences are (a) the sample used here considered the variability
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of the void ratio, rather than homogeneous soil, (b) the sample size used here is far larger. The
overall steps are:

Firstly, generate one-dimensional stationary random fields of initial void ratio with constant
mean, standard deviation, and spatial correlation length. Then, carry out the one-dimensional
settlement analysis with samples from the random fields. Finally, calculate the mean, the standard
deviation, and the spatial correlation length of the void ratio at each stress level, then compare
them with the original mean, standard deviation, and spatial correlation length, respectively.

Since the mean, the standard deviation, and the spatial correlation length are stochastic param-
eters, the stochastic method is adopted. Here different random fields are generated using Monte
Carlo simulation with LU decomposition, which is summarized in chapter 2 and 4.

The hypoplastic constitutive model from von Wolffersdorf (VW model) (von Wolffersdorff, 1996)
is employed to simulate the one-dimensional settlement process. Because, on the one hand, the
non-linearity behavior of sand can be simulated by the VW model, and on the other hand, the void
ratio is one of the state variables in hypoplastic model, makes it easier for us to analyze the results.

3.3. Simulation of the variability of void ratio

3.3.1. Model description

Figure 3.1.: Discretization of the one-dimensional FEM soil model

The physical model is a 200m deep weightless sand slice with a width of 1m as is shown in
Figure 3.1. It is equally divided into 200 square elements with a length of 1m; every square will be
assigned a void ratio (from e1 to e200) which is from a generated random field sequentially. Then
a uniform vertical load will be put on the top of the sand slice, and the VW hypoplastic model is
used to simulate the loading process. The parameters used in hypoplastic model are listed in Table
3.1.
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Table 3.1.: Input parameters of the hypoplastic model

φc(◦) hs(kPa) n α β ei0 ed0 ec0
35 8000 0.27 0.06 1.3 1.30 0.30 0.80

The stationary random field of void ratio is generated with the mean, the standard deviation
and the spatial correlation length 0.8, 0.1, 10m, respectively. The void ratio is assumed to follow
the truncated Gaussian distribution, because it is limited in a certain range between ed0 and ei0,
due to the requirement of initial void ratio of the hypoplastic model. If the generated void ratio is
larger than ei0, it is replaced by ei0. If the generated void ratio is smaller than ed0, it is replaced by
ed0.

3.3.2. Selected best variogram model and weight

Both the mean and the standard deviation of void ratio at each stress level can be easily calcu-
lated. Here only the evaluation of the spatial correlation length is elaborated. Before the spatial
correlation length is calcualted, the best variogram model and weight need to be selected.

Before the evaluation of the spatial correlation length, we need to calculate the sample vari-
ogram, and then fit theoretical variogram models to the sample variogram in order to find the most
appropriate theoretical model. The weighted least square, instead of the ordinary least square, is
chosen to fit different theoretical variogram models to the sample variogram. Because the values of
the sample variogram near the origin provide more important information than the other values,
and the precision of the variogram decreases with an increase of the distance (Armstrong, 1998;
Cressie, 2015). The commonly used weights in the variogram fitting are N, N/τ2, N/(γ(τ))2 with
N the number of point pairs, τ the distance and γ(τ) the variogram. The nugget is set to be zero
in the variogram fitting, in order to make sure the fittings are in the same initial situation.

The Akaike Information Criterion (AIC) (Akaike, 1998) and visualized assessment are used here
to find out the best weight and the most appropriate theoretical variogram model. 3000 original
void ratio data sets are used here in order to get the mean value of AIC. Table 3.2 is the result of
the mean AIC from different weights and theoretical variogram models.

Table 3.2.: Mean AIC values from different models and weights

Spherical Exponential Gaussian
N -147.7 -155.6 -137.9
N/(γ(τ))2 808.6 780.4 1043.8
N/τ2 -556.9 -560.7 -480.0

As it is shown in Table 3.2, the N/τ2 is the best weight, because the AIC value is the minimum
for each theoretical model. Meanwhile, Figure 3.2a also shows that this weight is the best since
it fits the slope near the origin the best. Both the spherical model and the exponential model can
be chosen, since both of the AIC value are very low. However, the spherical model with N/τ2

is adopted in this research because it fits the slope near the origin better as is shown in Figure
3.2b. Meanwhile, the AIC value from the spherical model with N/τ2 does not differ too much,
comparing with the least value which is from the exponential model with N/τ2.
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γ
τ

(a) Weights comparison in spherical model (b) Variogram model comparison

Figure 3.2.: Best weight and model chosen

3.3.3. Selected parameters in spatial correlation length calculation

The Gstat package in R language (Pebesma, 2001; Venables et al., 2004) is used here to calculate the
sample variogram and to fit the sample variogram automatically. The maximum distance of data
pairs, the initial sill, and the initial range need to be chosen in advance. Figure 3.3 shows the effect
of the maximum distance on the range. 20 random fields with a predefined range of 10m are used.
The true range of each random field is obtained using Gstat with different maximum distances
is shown in Figure 3.3. It can be seen that a smaller or larger maximum distance might cause a
higher fluctuation of the range (or the spatial correlation length). Although no principle is set in
the maximum distance selection, there is one restrict in sample variogram calculation: the sample
variogram is considered to be insufficient for the estimation of the range, if the distance between
data pairs is more than the length of a quarter of the sampling space domain (Box et al., 2015; Lumb,
1975). The total sample space domain here is 200m, so 50m is chosen to be the maximum distance.
The simulation indicates that the initial sill and range have little influence on the variogram fitting,
and the values are set to be 0.01m and 10m respectively here.

Since the results of this chapter are the foundation of the following chapters, it is necessary to
keep the results in a high level of accuracy. Only the accuracy of the spatial correlation length is
considered here. In order to achieve the high accuracy, we hope the error of the spatial correlation
length is less than 0.02m, which means that the sample mean value of the spatial correlation length
is in the interval of [9.98 10.02]. Since the true spatial correlation length and the preset spatial
correlation length might be different, the true spatial correlation length will be calculated, and
the random field is accepted only if the true spatial correlation length in the range of [9.9 10.1].
Normally speaking, if the 95% of the mean value is in the interval of [9.98 10.02], the sample size
is credible, and the result from mathematical calculation shows that, the sample size should be
more than 2401. 3000 are chosen here as the sample size. 5 different sample sets are used to verify
the sample size in Figure 3.4. Each of these colored lines represents one sample set to express the
relation between the mean spatial correlation length and the sample size. It can be seen that when
the sample size reaches to 3000, the spatial correlation lengths of all these 5 sets are in the range
of [9.98 10.02]. Therefore, 3000 random fields can make sure the mean spatial correlation length of
the void ratio in a high accuracy level.

In summary, the parameters used in variogram calculation and fitting are summarized in Table
3.3.
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Figure 3.3.: Effect of the maximum distance on the range of the random field

Figure 3.4.: Sample size chosen of the random field
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Table 3.3.: Parameters used in the variogram fitting and calculation

Intial sill(m) Intial range(m) Distance (m) model Weight Sample size
0.01 10 50 spherical N/τ2 3000

3.3.4. Results and discussion

Each of these 3000 random fields of void ratio can generate one mean void ratio (µe), one standard
deviation of void ratio (STDe), and one spatial correlation length (SCL) at each stress level. Here
µe means the mean void ratio of one random field. The mean, the standard deviation and the
distribution of µe, STDe and SCL can be finally obtained. The effect of stress level on the soil
heterogeneities can be evaluated through studying the changes of these parameters. The mean of
µe is the mean void ratio of the 3000 µe.

Effect of stress level on the mean and standard deviation of µe

Figure 3.5.: Effect of stress level on both the mean and the standard deviation of mean void ratio

The effect of stress level on the mean of µe is depicted in Figure 3.5 (solid line with circles). It
shows clearly that the mean of µe reduces with the increase of stress level, and the reduction ratio
keeps reducing. This result can prove that the mean void ratio is stress-dependent. Meanwhile, the
standard deviation of µe (solid line with crosses in Figure 3.5) also reduces with the increase of the
stress level. This means the range of µe is narrowed down as the increase of the stress level, which
can be seen through the histograms in Figure 3.6. It can be seen that the histogram moves towards
left and the span is reduced, as the increase of the stress level. The histogram and its fitted Gaussian
distribution at three selected stress levels in Figure 3.6 show that the Gaussian distribution fits the
µe very well at different stress levels.
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Figure 3.6.: Histogram and fitted Gaussian distribution of mean void ratio at different stress levels

The stress-dependent character of the mean void ratio results in the depth-dependent void ra-
tio, when the self-weight of soil is considered. This depth-dependent character of void ratio is
neglected in most of the studies, and the arithmetic mean is usually adopted to carry out the de-
terministic analysis. In order to evaluate if it is the right choice to use the arithmetic mean of void
ratio, a simple comparison is carried out with two cases using one-dimensional compression sim-
ulation: case A: the void ratio of the sample in a loose state is 0.8, Case B: the mean void ratio
is 0.8, however, the sample is equally divided into two part, the void ratio of the top half is 1.2
(very loose) while the other half is 0.4 (very dense). The results are shown in Figure 3.7. It can
be seen that the mean void ratio from Case B (blue solid line with crosses) is slightly lower than
the void ratio from Case A (red solid line with circles). In order to explain the difference, each
part in case B is used to carry out the one-dimensional compression simulation separately and the
changes of the void ratio with stress level are also shown in Figure 3.7 (dash lines). It can be seen
that, as the increase of the stress level, the black dash line (initial void ratio is 1.2) approaches to
the red solid line (results of Case A) quickly, while the blue dash line (initial void ratio is 0.4) is
further away from the red solid line slowly. This is because the void ratio has a larger reduction
at the same stress level, when the initial void ratio is higher due to the non-linearity nature of the
hypoplastic model. When both results are combined together, the mean void ratio from Case B is
lower than the void ratio from Case A. It implies that the arithmetic mean void ratio might not
be a good choice to carry out a deterministic simulation. For example, the reduction of the void
ratio can be underestimated if the depth-dependent character is neglected in the one-dimensional
compression analysis. Furthermore, this difference might have a high influence on the results if
a soil parameter is highly sensitive to the void ratio. In reality, the depth-dependent character of
the mean trend of void ratio does not change so sharply, and the difference is far smaller than the
results generated here. Therefore, whether the depth-dependent character is considered depends
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on the case. If the result is very sensitive to the void ratio, this depth-dependent character should
be considered, otherwise, it can be neglected.

Figure 3.7.: Results comparison with constant and depth-dependent initial void ratio

As shown in Figure 3.8, both the mean (solid line with circles) and the standard deviation (dot
line with crosses) of STDe reduce with the increase of the stress level, and the reduction ratio
decreases with the increase of stress level. This is reasonable because an increase of the stress level
could reduction the fluctuation of the void ratio. It can be clearly explained by the histogram of
the STDe at different stress levels in Figure 3.9. As the stress increases, the histogram of the STDe
shifts to the left side, and the width of the histogram becomes smaller and smaller. Meanwhile,
Figure 3.9 also shows that the STDe follows a Gaussian distribution at all stress levels.

Furthermore, since the self-weight of soil increases with depth, the results above can prove both
the mean and standard deviation of void ratio reduce with soil depth. Lumb (1966) summarized
3 cases of the relation between soil properties and depth. The standard deviation in each case
is constant or increases with soil depth, as is shown in chapter 2 (Figure 2.8). Our case can be
regarded as the fourth case or as one part of the case three, where both the mean and the standard
deviation of a soil property might decrease with depth. Moreover, the void ratio is either directly or
indirectly related to most of the other important soil parameters, such as the unit weight, saturated
hydraulic conductivity, friction angle and so on. Therefore, it is reasonable to conclude that, both
the mean and the standard deviation of these void ratio related parameters should be both stress-
dependent and depth-dependent. However, this does not mean the mean and standard deviation
of these parameters reduce with soil depth too, because some of these parameters are inversely
proportional to the void ratio (e.g. the friction angle).

Effect of stress level on the spatial correlation length of void ratio

It has been widely recognized that the stress level can affect the spatial correlation length (SCL).
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Figure 3.8.: Effect of stress level on both the mean and the standard deviation of STDe

Figure 3.9.: Histogram and fitted Gaussian distribution of STDe at different stress level
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However, to the knowledge of the authors, there is no study about the relation between the stress
level and the spatial correlation length of a soil property. In this part, taking the void ratio as an
example, the effect of stress level on the SCL of void ratio related properties of sand is evaluated
using stochastic one-dimensional compression test.

In order to acquire a general result, the SCL is normalized through dividing the SCL at a stress
level by the original SCL before any load is applied, as is shown in Eq. 3.1.

NSCL =
SCL at a stress level

Original SCL
(3.1)

Figure 3.10 shows the changes of both the mean and the standard deviation of the normalized
spatial correlation length (NSCL) of void ratio during the one-dimensional compression process. It
shows clearly that the mean NSCL of void ratio (solid line with circles) decreases with the increase
of the stress level, and the reduction ratio becomes smaller and smaller. The standard deviation
of NSCL (dot line with crosses) increases monotonically from 0 to 0.02 when the stress level in-
creases from zero to 400kPa. The development of both the mean and the standard deviation of
the NSCL with the increase of the stress level can be better explained using Figure 3.11. They are
the histograms of the NSCL of void ratio at several selected stress levels. It shows clearly that
the mean NSCL decreases with the increase of load, because the histogram shift to the left with
the increase of the stress level, and the standard deviation becomes larger because the span of the
NSCL becomes larger as the increase of the stress level. Figure 3.11 also shows that the Gaussian
distribution can fit the histogram of NSCL very well at all stress levels. It worth noting that some
of the NSCLs reduce quickly from 1 at 0kPa to less than 0.8 at 400kPa while some decrease slowly
from 1 to 0.94. This difference is caused by the unique inherent spatial structure of each random

Figure 3.10.: Effect of load on the mean and standard deviation of normalized spatial correlation
length (NSCL) of void ratio
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3 Effect of stress level on the variability of void ratio related properties of sand

field. Some spatial correlation lengths are stress-sensitive, while some are not.

Figure 3.11.: Histogram development and the fitted Gaussian distribution of NSCL of void ratio at
selected stress levels

In order to explain why the vertical spatial correlation length reduces with the increase of stress
level in a rather simple way, it is necessary to explain the evaluation of the vertical spatial correla-
tion length. The vertical spatial correlation length above, is calculated by fitting the best theoretical
variogram model to the sample variogram. However, the vertical spatial correlation length δv (or
the vertical scale of fluctuation) can also be approximated using a simple method given by Van-
marcke (1977) as,

δv ≈ 0.8d (3.2)

The detail explanation about Eq. 3.2 can be seen in Figure 3.12. The mean void ratio is assumed
to be depth-independent here. Before the compression, the real void ratio crosses with the mean
void ratio at point A, B, C, D, E, F and G, which separate the real void ratio into six segments,
the original δv can be calculated directly. After the compression, the mean void ratio is reduced,
and the cross-points shift to A’, B’, C’, D’, E’, F’, and G’, respectively, and each segment is reduced.
Therefore the δv is reduced too.

Moreover, considering the effect of self-weight of sand, the vertical spatial correlation length of
void ratio should reduce with soil depth, since soil at a lower depth subjects to a higher stress. The
distance, within which the void ratio have a relatively strong correlation of a point (point A in 3.13),
should be different in its upside and downside parts. Meanwhile, it is known that the horizontal
spatial correlation length is longer than the vertical spatial correlation length. If all of them are
taken into consideration, the distance with a relatively strong correlation around the point should
form a pseudo ellipsoidal, where the upside vertical correlation length (δv_up) is larger than the
downside vertical correlation length (δv_down), and smaller than the horizontal correlation length
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Figure 3.12.: Estimation of the vertical spatial correlation length (δv)

δv_up

δv_down

δh

A

Figure 3.13.: Strongly correlated distance of void ratio in one point
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(δh), as is shown in Figure 3.13. The horizontal spatial correlation length is kept constant in the left
and right side because the stress level is the same.

What is more, the void ratio is directly related to some other important soil parameters such as
the unit weight, the saturated hydraulic conductivity, the friction angle and so on. Therefore, it is
reasonable to conclude that the vertical spatial correlation lengths of these parameters reduce with
the increase of both the stress level and the soil depth.

3.4. Conclusion from this chapter

The effect of stress level on the stochastic parameters of void ratio related properties of sand is
studied in this chapter, and the following conclusions can be obtained:

· Both the mean and the standard deviation of void ratio reduce with the increase of the stress
level, and the reduction ratio becomes smaller and smaller. Both the mean and the standard
deviation of void ratio reduce with soil depth because of the self-weight.

· The spatial correlation length of void ratio is affected by the stress level. The mean spatial
correlation length reduces with the increase of stress, and this reduction becomes smaller and
smaller as the development of the loading process. The standard deviation of the normalized
spatial correlation length increases as the increase of load. The normalized spatial correlation
length at different load level follows a Gaussian distribution.

· As far as the geotechnical properties of natural layers are considered, the vertical spatial
correlation length of void ratio decreases with the level of overburden stress, i. e. with the
depth under the surface, which means it is depth-dependent.

· Since the void ratio is related to most of the important parameters used in geotechnical prac-
tice, the mean and standard deviation of these void ratio related parameters of sand should
be both stress-dependent and depth-dependent. Meanwhile, their vertical spatial correlation
lengths should reduce with the increase of both the stress level and the soil depth.

· The reduction of the void ratio could be underestimated if, the arithmetic mean void ratio is
chosen to carry out the deterministic one-dimensional compression analysis.

It is widely recognized that the stochastic parameters, including the mean, the standard devia-
tion, and the spatial correlation length, of some soil properties, can significantly influence geotech-
nical practice, i.e. settlement, bearing capacity, and slope stability, and a great number of studies
can be found in this part. However, most of the works were carried out without considering the
depth-dependent character. Therefore, it is necessary to evaluate the effect of the depth-dependent
character of these stochastic parameters on geotechnical practice.
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4. Relative random field generation

4.1. Objective

The results from chapter 3 have proved that the stochastic parameters, including the mean, the
standard deviation, and the spatial correlation length (SCL), of void ratio related properties of sand
are depth-dependent. Therefore, it is necessary to evaluation this depth-dependent character of
these stochastic parameters with view to geotechnical practice. Before carrying out the evaluation,
it is important to discuss the generation of the random field considering the depth-dependent
character.

Besides the mean, the standard deviation, and the spatial correlation length, the distribution is
also one important parameter used in the random field generation. During random field genera-
tion, the Gaussian and lognormal distributions are most commonly used. For the parameters with
a Gaussian distribution, the random field can be easily generated because of its simplicity, how-
ever, the limitation is negative value might be generated. This is unacceptable for most parameters
because they are non-negative, e.g. the void ratio or the saturated hydraulic conductivity. This can
be compensated by replacing the Gaussian distribution with the truncated Gaussian distribution
so as to avoid negative value. The lognormal distribution is preferred because of its non-negative
character.

In this thesis, only the void ratio and the saturated hydraulic conductivity are regarded as spa-
tially correlated variables. According to Kozeny-Carman equation, the saturated hydraulic con-
ductivity is positively related to the void ratio. So the mean, the standard deviation, and the spatial
correlation length of both the void ratio and the saturated hydraulic conductivity reduce with soil
depth. For the void ratio, the truncated Gaussian distribution is adopted to generate the random
field, because the hypoplastic model requires the initial void ratio in a certain range, and all value
in a random field cannot be smaller than the minimum value or larger than the maximum value.
For the saturated hydraulic conductivity, the lognormal distribution is used, since it is adopted
widely in the former studies.

Two different random fields are discussed separately in this chapter, (a) stationary random field
in which the mean, the standard deviation and the spatial correlation length are all kept constant
(depth-independent), and (b) non-stationary random field, in which, at least one of the mean, the
standard deviation, and the spatial correlation length is depth-dependent. In order to simplify
the non-stationary random field generation, the mean, the standard deviation, and the spatial
correlation length are assumed to reduce linearly with soil depth. The mean spatial correlation
length is also discussed when the spatial correlation length of the random field is depth-dependent.

Only one-dimensional random field generation is focused on in this chapter, because all random
fields used in this thesis are in the one-dimensional level. Some two-dimensional random fields
are referred so as to help to understand the non-stationary random field generation. Meanwhile,
only the random field with the Gaussian and lognormal distribution are discussed here.
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4.2. Stationary random field generation

The stationary random field generation of a variable with either a Gaussian or lognormal distri-
bution is well developed, and it is available in almost all the software used in the geostatistical
analysis, such as SGeMS, GSTAT package in R language, Tochnog, Matlab, and so on. The basic
steps are summarized as (Remy et al., 2009),

Step 1, transform the mean (µ) and the standard deviation (σ) of a variable (X) in the original
space Z(X) into a normal core space Y(U). If it follows the Gaussian distribution, then µU = µX,
σU = σX; if it follows a lognormal distribution, the transformed mean and standard deviation in a
normal core space are µU = µlnX and σU = σlnX, respectively.

If X follows a lognormal distribution, the Coefficient of Variation (CV) needs to be calculated at
first,

CVX =
σX

µX
(4.1)

CVX might be constant or change with soil depth, depending on σX, µX.

Then,

σU = σlnX =
√

ln(1 + CV2
X) (4.2)

µU = µlnX = ln(µX)−
1
2

σ2
lnX (4.3)

Step 2, generate a normalized random field (U1) with zero mean, unit standard deviation and
a Gaussian distribution. This normalized random field generation does not have a spatially corre-
lated structure.

Step 3, transform the normalized random field into normalized spatially correlated random field
(U2). In this step, the correlation length is introduced into the normalized random field, while the
mean, the standard deviation, and the distribution are same as in step 2. For example, if the LU
decomposition is adopted, then,

U2 = L ·U1 (4.4)

where U2 is the normalized spatially correlated random field, L is the Lower triangular matrix of
a covariance matrix after LU decomposition.

Step 4, transform the normalized spatially correlated random field (U2) into a final Gaussian
random field using,

U = µU + σU,T ·U2 (4.5)

where σU,T is the standard deviation after variance reduction. Both µU and σU,T are constant for
the stationary random field situation.

Step 5, back transform the Gaussian random field into the original random field. If the original
random field is a Gaussian random field, then X = U, if it follows a lognormal random field, then
X = exp(U).

Examples of the whole processes of the random field generation are shown in Figure 4.1a where
the random field follows a Gaussian distribution, and in Figure 4.1b where the random field fol-
lows a lognormal distribution.
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(a) (b)

Figure 4.1.: Illustration of the processes of the random field generation with (a) a Gaussian dis-
tribution (μ(x)=5, σ(X)=3, δX=10m) and (b) a lognormal distribution (μ(x)=5, σ(X)=3,
δlnX=10m)

4.3. Non-stationary random field generation

The non-stationary random field is regarded as a simple distortion of the stationary random field.
All the distortion can be carried out in the final step of random field generation.

4.3.1. With depth-dependent mean and/or standard deviation

Let’s assume the soil property is X. The random field generation of X is with constant spatial
correlation length, and at least one of the mean and standard deviation is/are linearly depth-
dependent. They are given as,

μX = a1 + b1z (4.6)

σX = a2 + b2z (4.7)

where a1, b1, a2, b2 are constants that control the linearly changes of the depth-dependent property
of the mean and standard deviation; z is the elevation.

In this situation, a detrending process is usually firstly carried out so as to get rid of the trend,
and then the residual will be analyzed separately. The residual is usually regarded as a Gaus-
sian distributed random field, because it contains both positive and negative value. This kind of
random field can be generated similar to the process of stationary random field generation. The
difference is in step 4, where the mean and standard deviation are no longer constant.

For example, the random fields with depth-dependent mean and/or standard deviation are
compared in Figure 4.2. The original normalized spatially correlated random field in Figure 4.2a
is the same. It follows a Gaussian distribution. Based on this random filed, the generated random
field Z1 is the stationary random field with μX=4, σX=2, δX=10m; Z2 is the non-stationary random
field with μX=1+0.06Z, σX=2, δX=10m; Z3 is the non-stationary random field with μX=1+0.12*Z,
σX=1+0.04*Z, δX=10m. If the final random field follows a truncated Gaussian distribution, the
values smaller than the minimum value and the values larger than the maximum value will be
replaced by the the minimum and maximum value, respectively.

When the random field is assigned to follow a lognormal distribution with depth-dependent
mean and/or standard deviation, the non-stationary random field generation is similar to the sta-
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tionary random field generation, the differences are (a) the CVX, μlnX, σlnX calculated from Step
1 are vectors, instead of constant values. (b) μlnX, σlnX used in step 4 are depth-dependent. This
kind of random field is chosen in chapter 5 and chapter 7 for the non-stationary random field with
depth-dependent mean and/or standard deviation.

Figure 4.2b shows an example of the non-stationary random field generation with a lognormal
distribution and depth-dependent mean and/or standard deviation. The original normalized spa-
tial correlated random field is the same. The spatial correlation length of ln(X) is 10m. The gener-
ated random field Z1 is the stationary random field with μX=4, σX=2, δlnX=10m; Z2 is the random
field with μX=1+0.06Z, σX=2, δlnX=10m; Z3 is the random field with μX=1+0.12*Z, σX=1+0.04*Z,
δlnX=10m.

(a) (b)

Figure 4.2.: Random field comparison with (a) a Gaussian distribution, (b) a lognormal distribution

4.3.2. With depth-dependent SCL

In order to evaluate the effect of the depth-dependent spatial correlation length of a soil property
on geotechnical practice, the random field with a depth-dependent spatial correlation length needs
to be generated, while both the mean and the standard deviation are kept constant. Here two
methods are given. One is based on the distortion used by Hicks and Samy (2002), the other one is
using conditional random field generation.

Hicks and Samy (2002) provided a distortion to generate an anisotropic random field with both
vertical spatial correlation length (δv) and horizontal spatial correlation length (δh) are constant,
and δv �= δh. The detail steps, its validation, and shortcoming are shown in A. Appendix. The
distortion can be further developed to generate the random field with depth-dependent spatial
correlation length. If the vertical spatial correlation length is depth-dependent, the value can be
distorted as is shown in Figure 4.3. The general step is similar to the distortion used by Prof.
Hicks. The differences are in step 2 and 3, where the depth-dependent ξ, rather than constant ξ,
is adopted during the distortion since the vertical spatial correlation length is depth-dependent,
makes the size of the averaging cells different at different soil depth.

Figure 4.4 includes two figures: (a) the δv is constant and (b) the δv decreases with soil depth.
All these two random fields are from one isotropic random field with its size 64*2048 (midpoint
method), and δh =100m. Comparing with δv=5m in Figure 4.4a, the δv reduces from 100 to about 2
from the top to the bottom in Figure 4.4b.

In this method, the reduction of the standard deviation is also included during the distortion,
which is an advantage if it is used properly. However, the size of the original isotropic random
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Figure 4.3.: Schematic diagram of normalized spatially correlated random field generation with
depth-dependent vertical spatial correlation length (δv)

(a) δv = 5(m) (b) δv = 100
depth (m)

Figure 4.4.: Comparison of random field generation with (a) constant and (b) depth-dependent
vertical spatial correlation length
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field must be far larger than the final random field. The other methods, e.g. local average subdi-
vision method, can be used in this situation, instead of covariance matrix decomposition method.
Because the covariance matrix decomposition method is not suitable for such a large random field
generation. Meanwhile, this method is valid only if the distortion ratio of each separated part is
an integer. If not, we can round the ratio to the nearest integer.

An alternative way, to generate the anisotropic random field with depth-dependent spatial cor-
relation length, is to divide the whole random field into several segments. Each segment can be
regarded as an stationary random field. The individual random field of each segment can be gen-
erated, then put them together segment by segment, as is shown in Figure 4.5. The random field
of Figure 4.5c is the combination of Figure 4.5a and Figure 4.5b. However, the shortcoming of this
method is the discontinuity of the interface between adjacent layers, as is shown in Figure 4.5c
where a clear boundary can be found in x=20, and the elements near to this line might affect the
correlation length and the other properties of the whole random field.

If the discontinuity does not affect the results, this method can be used; if it does affect the
results, we need to generate the layered random field with a smooth connection at the interface.
The layered random field is specifically defined here as the random field with at least two different
spatial correlation lengths. Generally speaking, two random fields layered together cannot be
considered as a unit, because the interface causes some chaos. For example: if the SCL=10m, then
the last 10m of the first random field, and the first 10m of the second random field at the interface
is the chaos area. Normally speaking, if the SCL is 10m, the random field should be at least 40m,
because if the length of the random field is too small, the SCL cannot be calculated correctly. In
this case, if two 40m random fields with 10m SCL are layered together, the chaos is about 25% of
the whole area. The calculation results show that the SCL of the whole area does not have a big
difference. Meanwhile, it is not so easy to evaluate the effect of the boundary on the SCL, since the
chaos area cannot be taken out separately to evaluate the SCL and the area is too small.

The discontinuous interface between two adjacent random fields could affect the consistency of
the whole random field, so as to affect the final results. There are plenty of software can be used
to fix the discontinuity of layered random field, such as SGeMS, GSTAT. The SGeMS software is
chosen here to illustrate the layered random field generation. The first half random field is gen-
erated by unconditional random field generation, then the second half random field is generated
by conditional random field generation taking the data of the first half random field as the hard
data. Detail information refers to SGeMS. The comparison of these two kinds of random fields
generated by SGeMS are shown in Figure 4.6. As we can see from Figure 4.6b, conditional random
field generation can smooth the boundary of two adjacent random fields, while two random fields
layered together in Figure 4.6a have a clear boundary between the top half and the bottom half
of the layered random field. The SGeMS will be adopted to generate the layered random field
in chapter 5 and chapter 7, so as to evaluate the effect of the depth-dependent spatial correlation
length on geotechnical practice.

4.4. Mean SCL evaluation of layered random field

In order to evaluation the effect of the depth-dependent spatial correlation length on the results,
both the stationary and non-stationary random field need to be used. In order to make the results
comparable, besides the mean and the standard deviation, the mean spatial correlation length of
the layered random field should equal to the spatial correlation length of the stationary random
field.

The consistency of the mean and the standard deviation of these two random fields can be easily
reached in the case that the mean and standard deviation of the random field are linearly related
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(a) Random field A (b) Random field B

(c) Random field A+B

Figure 4.5.: Visualization of layered random field
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(a) Unconditional layered random field (b) Conditional layered random field

Figure 4.6.: Comparison of layered random fields generated by SGeMS

to the depth, all we need to do is to make sure the mean and standard deviation at the middle
point of the random field equal to the mean and standard deviation of the stationary random field,
respectively. The only problem left is to make sure the mean spatial correlation length of a layered
random field equals to the spatial correlation length of the stationary random field.

If the random field has a depth-dependent spatial correlation length, two important questions
come up: what is the mean spatial correlation length of the random field? What factors would
affect the mean spatial correlation length? In order to find the answers of these questions, the
layered random fields are generated and analyzed.

4.4.1. Effect of the individual SCL on the mean SCL of the whole random field

Two sets of 2000 random fields with zero-mean, unit-variance, the spatial correlation length δ=10m
and 15m are generated respectively. The length of each one-dimensional random field is 150m, it is
equally divided into 150 elements. Then one random field with δ=10m is layered under the bottom
of the random field with δ=15m, so as to formulate a layered random field with a total length of
300m; Then the mean spatial correlation length of the whole random field is calculated. The results
is shown in Table 4.1. The mean spatial correlation lengths of some other kinds of layered random
fields are listed in Table 4.2, where 10-20-30 in the each δ column means the random field has three
layers with the correlation length of 10m, 20m, and 30m respectively. On the condition that each
individual random field has the same length, some conclusions can be made based on Table 4.1
and Table 4.2:

(i) the mean spatial correlation length of layered random field is between the highest and lowest
individual spatial correlation length,

(ii) the mean spatial correlation length increases as the increase of the individual correlation
length,

(iii) the mean spatial correlation length is not equal to the arithmetic mean of individual spatial
correlation length.
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Table 4.1.: The stochastic parameters of the spatial correlation length (δ) of the layered random field
(RF)

Mean(δ) STD(δ) CV(δ)
RF A 9.99 0.12 0.012
RF B 14.99 0.21 0.014
Layered RF (A+B) 11.92 1.014 0.085

Table 4.2.: Mean spatial correlation length calculation for layered random field with different indi-
vidual spatial correlation length (δ)

Mean(δ) CV(δ) Each δ Length of each layer
16.98 0.14 10-20-30 200
13.43 0.12 10-20 200
15.94 0.18 10-30 200
23.74 0.10 20-30 200

4.4.2. Effect of the length of individual random field on the mean SCL of the whole
random field

Three groups of data in Table 4.3 are listed in order to evaluate the effect of the length of each
individual random field (RF) on the mean spatial correlation length of the whole random field. For
example, in group 1, 10-15 in each δ column means the random field has two layers with the spatial
correlation length of 10m and 15m respectively, while 100-200 in the column of the length of each
layer means the length of each random field is 100m and 200m, corresponding to the correlation
lengths. The mean spatial correlation length of each group shows a reduction pattern, when the
length of the random field with a smaller spatial correlation length increases, while the length of
the random field with a greater spatial correlation length is fixed. This means the length of each
individual random field can affect the mean spatial correlation length of the whole random field.

Table 4.3.: Effect of the length of each individual random field on the mean spatial correlation
length of the whole random field

Mean(δ) Each δ Length of each layer

Group 1
12.62

10-15
100-200

12.30 150-200
12.00 200-200

Group 2
14.92

10-20
100-200

13.95 150-200
13.43 200-200

Group 3
19.00

10-20
100-200

17.25 150-200
15.94 200-200

4.4.3. Relation between the mean SCL of the whole random field and both the SCL
and the length of individual random field

The results above show that, both the spatial correlation length and length of the individual ran-
dom field have essential influence on the mean spatial correlation length of the whole random field
for one-dimensional layered random field simulation.
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The mean spatial correlation length of the layered random field can be calculated by,

µδ =
L1 + L2
L1
δ1
+ L2

δ2

(4.8)

where the L1 and L2 are the lengths of each individual random field, while δ1 and δ2 are the corre-
sponding spatial correlation length of each random field.

Eq. 4.8 can be rewritten as,

µδ =
1

k1
δ1
+ k2

δ2

(4.9)

where, k1 and k2 represent the portion of each individual random field to the whole random field,
with k1 = L1

L1+L2
, k2 = L2

L1+L2
.

Eq. 4.9 shows that the mean spatial correlation length of the whole random field can be repre-
sented by the harmonic mean of the spatial correlation length of each individual random field.

4.4.4. Validation of the relation

In order to testify the accuracy of Eq. 4.9, the layered random field with different spatial correlation
length and different length of the random field are generated. The calculated results δC from Eq.
4.9, and the true value δT calculated using GSTAT package, of the mean spatial correlation length,
together with the residual error ratio (err) are listed in Table 4.4.

Residual error ratio is defined here as,

err =
|δC − δT|

δT
(4.10)

Table 4.4.: Comparison of the calculated and true means of spatial correlation length (δ)

Each(δ) Length of each layer δT δC err

Group 1 10-15
100-200 12.62 12.88 0.020
150-200 12.30 12.37 0.006
200-200 12.62 12.88 0.001

Group 2 10-20
100-200 14.92 15.00 0.005
150-200 13.95 14.00 0.004
200-200 13.43 13.33 0.007

Group 3 10-30
100-200 19.00 17.96 0.055
150-200 17.25 16.13 0.065
200-200 15.94 14.98 0.060

Table 4.4 shows that the residual error ratio is very small (less than 6.5%), so Eq. 4.9 can be used
to calculate the mean spatial correlation length of the layered random field. The error is larger if
the difference of the individual spatial correlation length is larger.
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5. 1d compression analysis considering the
depth-dependent variation of void ratio

Since the stochastic parameters of void ratio, including the mean, the standard deviation, and
the spatial correlation length (SCL), have been proved to reduce with soil depth in chapter 3, it
is necessary to evaluate how the depth-dependent character affects the results. In this chapter,
the one-dimensional (1d) compression analysis is carried out, so as to find out the effect of the
depth-dependent character on the strain at different stress level. Like in chapter 3, the void ratio
is considered as the only variable, and the von Wolffersdorff (VW) hypoplastic model is used. In
order to simplify the problem, the stochastic parameters of void ratio are all considered to reduce
linearly with soil depth.

5.1. Deterministic compression analysis

5.1.1. Deterministic model description

Although the void ratio is depth-dependent, it is assumed to be constant, and the arithmetic mean
value is adopted in many cases. It is necessary to check if the results have a big difference. A two-
layered soil model is adopted here to evaluate the effect of the linearly depth-dependent void ratio
on the one-dimensional compression test results in this section, as is shown in Figure 5.1. The size
of both layers is the same. Three cases with different initial void ratio in each layer are assigned,
while keeping the arithmetic mean of the whole soil the same. The values of these three cases are
also shown in Figure 5.1. The parameters in VW hypoplastic model are listed in Table 5.1.

Figure 5.1.: Schematic figure and void ratio chosen in the deterministic 1d compression analysis

Table 5.1.: Parameters used in VW hypoplastic model

φc(◦) hs(kPa) n α β ei0 ed0 ec0
35 8000 0.27 0.06 1.3 1.30 0.3 0.85

5.1.2. Results analysis

Figure 5.2 is the comparison of 1d compression test results with both constant and depth-dependent
void ratio. The stress-strain relation is adopted here to neglect the effect of the sample size. Case
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1 is the constant void ratio case, while case 2 and 3 are the cases with the depth-dependent void
ratio. The mean void ratio of these three cases is the same while the difference between the two
layers is 0, 0.4 and 0.8 in Case 1, 2 and 3, respectively. It can be seen that the strain is smaller
in the depth-dependent void ratio case. Meanwhile, the strain becomes smaller as the difference
of the void ratio between the two layers increases. It is caused by the non-linearity nature of the
settlement simulated by the hypoplastic model. Therefore, the negative strain (or settlement) is
underestimated if the depth-dependent void ratio is simplified by the arithmetic mean void ratio.
However, normally speaking, the void ratio reduces with soil depth far slower than the ratio used
in case 2, therefore the effect of the depth-dependent character on the strain is far lower.

Figure 5.2.: Deterministic strain-stress relation comparison with both constant and depth-
dependent void ratio

5.2. Stochastic compression analysis

5.2.1. Stochastic model description

In this section, the variability of void ratio is taken into consideration. The depth-dependent char-
acter of the mean, the standard deviation, and the spatial correlation length of void ratio is con-
sidered separately during the stochastic one-dimensional compression analysis, so as to study the
effect of this depth-dependent character on the strain.

The one-dimensional physical model used here is similar to the model used in chapter 3. The
only difference is the size used here is a soil column of 60m, which is equally divided into 60
elements. The mean void ratio of the whole column is 0.8. The depth-dependent behavior of void
ratio is control by kk, which is the slope of vertical influence. As is shown in Figure 5.3, kk=0
means the void ratio is constant, while kk �=0 represents the depth-dependent void ratio. A high
kk means the void ratio is highly depth-dependent. 1500 realizations are simulated in each case.

5.2.2. Effect of the variance reduction

The variance reduction (VR) plays an important role in the random field generation, and it is
necessary to evaluation the effect of the variance reduction of void ratio on the results of the 1d
compression test. The generated random field of void ratio is stationary, without considering its
depth-dependent character in this section. The values of the parameters in Table 5.1 are adopted
here. The stochastic parameters of the initial void ratio are listed in Table 5.2.

60



5 1d compression analysis considering the depth-dependent variation of void ratio

Figure 5.3.: Schematic diagram of the depth-dependent void ratio

Table 5.2.: Stochastic parameters of void ratio for the effect of variance reduction

μ σ max min δ(m) Distribution
0.8 0.1 1.3 0.3 10 Truncated Gaussian

Figure 5.4.: Effect of variance reduction (VR) on the (a) mean, (b) standard deviation of strain

Figure 5.4 shows the effect of the variance reduction on the mean and standard deviation of
strain. As shown in Figure 5.4a, the lines with and without considering the variance reduction
coincide with each other. This means the variance reduction has little effect on the mean strain,
this is reasonable because, (a) the depth-dependent character is not so great, and (b) the variance
reduction does not affect the mean value of the void ratio with a truncated Gaussian distribution
in this case. However, the variance reduction can reduce the fluctuation of the void ratio, this is
why the standard deviation of the strain is smaller in Figure 5.4b when the variance reduction is
taken into consideration. A larger standard deviation does not always mean that the foundation
has a higher probability of failure. What we are interested in is the foundation which can have a
large settlement, because this kind of foundation is the failed part during the probabilistic settle-
ment analysis. The empirical PDF (Probability Density Function) of the strain at 400 kPa is shown
in Figure 5.5. Geotechnical limit state design for footings requires limiting excessive displacement
to meet serviceability limit state (SLS). If the displacement is over a prescribed value, the footing
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fails. In the reliability analysis of the footing, the performance function, defined with respect to a
prescribed admissible footing displacement at the SLS, is usually given to evaluate the reliability
of the footing. The Pf is the probability that the displacement is over the prescribed value. It is not
so proper to evaluate the reliability of the footing here, since it is the 1d compression simulation
carried out in this chapter, rather than 2d or 3d simulation, and our aim is about the strain. How-
ever, the left tail of the empirical PDF of the strain at a certain stress level can imply the Pf of the
footing. It can be seen in Figure 5.5 that the left tail of the empirical PDF is slightly lower when the
variance reduction is considered. This means the Pf is lower when the variance reduction is taken
into consideration during the reliability analysis of the footings with the SLS as a performance
function. However, the difference is very small and can be neglected in this case.

Figure 5.5.: Effect of the variance reduction (VR) on the empirical PDF of strain (stress=400kPa)

5.2.3. Effect of the depth-dependent mean

In order to evaluate the effect of the depth-dependent mean void ratio on the stochastic analysis
of 1d settlement, the random field with depth-dependent mean void ratio is generated while both
the standard deviation and the spatial correlation length of void ratio are kept constant. The basic
parameters used in random field generation are listed in Table 5.3. 1500 realizations of the random
field are used. The mean void ratio can be expressed using,

μe = ei ∗ (1 − kk ∗ (L/2 − z)) (5.1)

where ei is the initial void ratio, here it equals to 0.8; L is the total depth of the soil, z is the depth
of the center of each element in the soil column. kk controls the depth-dependent character, which
is already explained in Figure 5.3.

Table 5.3.: Parameters used in random field generation of void ratio with depth-dependent mean

σ Distribution max min kk L(m) Dz(m) z
0.1 Truncated Gaussian 1.3 0.3 0, 0.005, 0.01 60 1 0.5:Dz:L

Figure 5.6 illustrates one realization of the random field with different kk. The original normal-
ized spatially correlated random field is the same in all three cases. Comparing with the constant
void ratio case (the solid line where kk=0 in Figure 5.6), the void ratio with a higher kk is smaller
in the bottom half of the slope, and larger in the top half of the slope.
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Figure 5.6.: Representative random field of void ratio with depth-dependent mean

Figure 5.7 shows the effect of the depth-dependent mean of void ratio on the mean, and standard
deviation of the strain at different stress levels. Figure 5.7a shows that a highly depth-dependent
mean of the void ratio can slightly increase the mean of the negative strain, this result is in ac-
cordance with the results from the deterministic analysis. Figure 5.7b is the effect of the depth-
dependent mean void ratio on the standard deviation of the strain. It can be seen that the standard
deviation of strain is slightly decreased as the increase of kk. Figure 5.8 shows that the left tail of
the empirical PDF is slightly higher for the random field with a higher kk. This means the probabil-
ity of failure is slightly higher, when the depth-dependent character of the mean void ratio is taken
into consideration, during the reliability analysis of the footing with the SLS as a performance
function.

Figure 5.7.: Effect of the depth-dependent mean void ratio on the (a) mean, (b) standard deviation
of the strain

5.2.4. Effect of the depth-dependent standard deviation

In order to evaluate the effect of the depth-dependent standard deviation of void ratio on the 1d
compression test results, the random fields are generated with and without considering the depth-
dependent character of standard deviation while the other stochastic parameters (the mean and
the spatial correlation length of the void ratio) are kept constant. Then the random fields are used
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Figure 5.8.: Effect of the depth-dependent mean void ratio on the empirical PDF of one-
dimensional strain (stress=400kPa)

to carried out the 1d compression simulation. At last, the stress-strain relation is compared. In this
case, the standard deviation is assumed to reduce linearly as the increase of the soil depth. It can
be expressed using,

σe = σ ∗ (1 − kk ∗ (L/2 − z)) (5.2)

where σe is the depth-dependent standard deviation of void ratio; σ is the original standard de-
viation of void ratio, here it equals to 0.1. L is the total length of the soil column; kk controls the
depth-dependent trend of the standard deviation. The other parameters used in the random field
generation here are listed in Table 5.4. Three different kk are used: kk=0 means the standard de-
viation is constant, while kk=0.005 and 0.01 mean the standard deviations are lowly and highly
depth-dependent, respectively.

Table 5.4.: Parameters used in random field generation of void ratio with depth-dependent stan-
dard deviation

μ Distribution max min kk L(m) Dz(m) z
0.8 Truncated Gaussian 1.3 0.3 0, 0.005, 0.01 60 1 0.5:Dz:L

One realization of the random field is illustrated in Figure 5.9. Since the top half of the random
field has a larger standard deviation for the case with a higher kk, the value is further away from
the mean of void ratio, comparing with the stationary random field (solid line). The bottom half
shows an opposite trend. These three random field profiles do not have too much difference,
because the standard deviation is small, and the initial void ratio is limited to a certain range.

Figure 5.10 shows the effect of the depth-dependent standard deviation of void ratio on the
stress-strain relation. It can be seen in Figure 5.10a that, the depth-dependent character of the stan-
dard deviation of void ratio has little effect on the mean strain. However, the standard deviation
of strain can be slightly increased if the depth-dependent character of the standard deviation of
the void ratio is taken into consideration. It is interesting to see that the case with a higher kk
(kk=0.01) has a smaller standard deviation of strain, comparing to the case with kk=0.005. Figure
5.11 shows that the left tail of the empirical PDF is slightly higher when kk is larger. This means
the probability of failure is higher when the depth-dependent character of the standard deviation
of void ratio is taken into consideration, during the reliability analysis of the footing with the SLS
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Figure 5.9.: One random field of the void ratio with depth-dependent standard deviation

as a performance function. The difference is small and can be neglected. It can also prove that
a higher standard deviation does not always mean a high Pf through the comparison of both the
standard deviation and the empirical PDF.

Figure 5.10.: Effect of the depth-dependent standard deviation of void ratio on the (a) mean, (b)
standard deviation of strain

5.2.5. Effect of the depth-dependent spatial correlation length

In order to evaluate the effect of the depth-dependent spatial correlation length of void ratio on
the one-dimensional settlement, the layered random fields are generated using SGeMS. The spatial
correlation length in the top and bottom layers are 15m and 5m, respectively. The length of the top
and bottom layers are 75m and 25m, respectively, so as to make sure the mean spatial correlation
length of the layered random field is 10m. The generation of the layered random field has been
elaborated in chapter 4. Stationary random fields with a constant spatial correlation length of 10m
are also generated in order to compare the results. Both the mean and the standard deviation
of void ratio are kept constant, so as to present the effect of depth-dependent spatial correlation
length clearly. The truncated Gaussian distribution is adopted, and the element size is 1 m. The
parameters of void ratio used in random field generation are summarized in Table 5.5.
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Figure 5.11.: Effect of the depth-dependent standard deviation of void ratio on the empirical PDF
of one-dimensional strain (stress=400kPa)

Table 5.5.: Parameter comparison of void ratio between random field with layered and constant
spatial correlation length (δ)

RF with layered δ RF with constant δTop layer Bottom layer
μ 0.8 0.8 0.8
σ 0.1 0.1 0.1

δ(m) 15 5 10
L(m) 75 25 100

dL(m) 1 1 1
Distribution Truncated Gaussian Truncated Gaussian

Figure 5.12.: Illustration of the random field generation of void ratio with depth-dependent spatial
correlation length

Figure 5.12 illustrates 100 independent columns of the one-dimensional layered random field of
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void ratio. In each column, the spatial correlation length of the top 75 elements is 15m, and it is 5m
in the last 25 elements.

As is shown in Figure 5.13, the depth-dependent SCL has little effect on the mean strain of
the one-dimensional compression test (Figure 5.13a), since both lines coincides with each other
with and without considering the depth-dependent character of SCL. This is expected because the
depth-dependent SCL does not affect the mean of a normally distributed random field. Figure
5.13b shows that, comparing with the constant SCL case, the depth-dependent character of the
SCL can slightly reduce the standard deviation of strain. From the empirical PDF of the strain at
400kPa, Figure 5.14 shows that, the depth-dependent character of the SCL has little effect on the
left tail of the empirical PDF. This means the depth-dependent character of SCL has little effect on
the probability of failure.

Figure 5.13.: Effect of the depth-dependent spatial correlation length of void ratio on the (a) mean,
and (b) standard deviation, of strain

Figure 5.14.: Effect of the depth-dependent SCL of void ratio on the empirical PDF of one-
dimensional strain (stress=400kPa)

67



5 1d compression analysis considering the depth-dependent variation of void ratio

5.3. Concluding remarks

In this chapter, the effect of the depth-dependent character of the stochastic parameters of void
ratio on the strain is analyzed through the one-dimensional settlement analysis. The following
results can be concluded,

· The strain is slightly underestimated if the arithmetic mean void ratio is adopted in the one-
dimensional settlement analysis.

· Comparing with constant void ratio case, the depth-dependent mean, standard deviation,
and spatial correlation length of void ratio have little effect on the mean strain.

· When the mean void ratio is highly depth-dependent, the probability of failure can be slightly
increased, during the reliability analysis of the footing with the SLS as a performance func-
tion. The depth-dependent character of the standard deviation of void ratio can slightly in-
crease the probability of failure, and the depth-dependent character of the spatial correlation
length has little effect on the probability of failure.

In reality, the hs (granular hardness) is far larger, so the strain should be far smaller than the results
obtained in this chapter. Therefore, the effect of this depth-dependent character on the mean and
standard deviation of strain could be neglected. It is known that the weakest area of a random field
plays a key role on the probability of failure, and the area with high void ratios is very important
to the variation of the strain. However, the initial void ratio of sand can only fluctuate in a certain
range, because of the requirement of the hypoplastic model. Therefore, it is not surprising that the
depth-dependent character of the stochastic parameters has no effect on the mean strain and has
little effect on both the standard deviation of the strain and the probability of failure.
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6. Deterministic analysis of infinite slope
stability during infiltration

6.1. Background of infinite slope stability and objective

The failure of natural or engineered earth slope can be induced by many factors, such as weather-
ing, vegetation, topography, geological features. Researches (Lim et al., 1996; Gasmo et al., 2000;
Collins and Znidarcic, 2004; Rahardjo et al., 2007) have shown that the shallow slope failure is
usually induced by rainwater infiltration. In classical slope stability analysis, the shear strength
is calculated using Terzaghi’s effective stress principle, and the water pressure is calculated us-
ing saturated seepage theory, in which the negative pore-water pressure does not exist. However,
field cases have shown that the shallow slope failure might occur in the area above groundwater
level under partially saturated soil condition (Wolle and Hachich, 1989; De Campos et al., 1991;
Godt et al., 2007), makes the assumption of saturated condition invalid during slope stability anal-
ysis. Nowadays, it has been commonly recognized that the negative pore-water pressure, which
is also called as matric suction, is one part of the shear strength, and it helps to stabilize the slope
(Fredlund and Rahardjo, 1993). As the rainwater infiltrates into a soil slope, the negative pore-
water pressure becomes smaller, or even becomes zero when the rain intensity is large enough and
the rain lasts long enough. The reduction of negative pore-water pressure can reduce the shear
strength, so as to decrease the stability of a slope, then the slope might fails.

As one of the oldest and simplest slope stability model, the infinite slope model is usually
adopted to study the stability of a shallow slope, in which the length of the slope is significantly
larger than the thickness of the slope (Lu and Godt, 2008; Griffiths et al., 2011; Santoso et al., 2011;
Cho, 2014).

It has been proved that the stochastic parameters (mean, standard deviation and spatial correla-
tion length) of void ratio reduce with soil depth. The relation between the void ratio and saturated
hydraulic conductivity (ks) can be expressed using Kozeny-Carman equation (Taylor, 1948; Car-
rier III, 2003), in which the ks is positively related to the void ratio. So it is reasonable to conclude
that the stochastic parameters of ks are depth-dependent, and the stochastic parameters includ-
ing the mean, the standard deviation, and the spatial correlation length, reduce with soil depth
too. Somerton et al. (1975) has confirmed that the permeability of coal reduces with the increase
of stress. Some parametric studies are carried out in this chapter. However, the prime aim is to
figure out how the depth-dependent trend of ks affects the infiltration and the slope stability. In
order to make it simple, the ks is assumed to reduce linearly with soil depth when the effect of the
depth-dependent character is evaluated. The infinite slope stability model is used here to study the
one-dimensional slope stability during infiltration. Both steady state and transient state infiltration
are considered.

6.2. Relevant theory

6.2.1. One-dimensional unsaturated seepage

The fluid flow, which is assumed to follow Darcy’s law, can be expressed as:
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q = −k
dH
dz

(6.1)

where q is the flow flux (negative q indicates infiltration), k is the hydraulic conductivity (or coef-
ficient of permeability) in the direction of the flow, H is the total head, which is the summation of
pore-water pressure head h and the gravitational head, z is the elevation.

Combining Darcy’s law with the mass conservation law results in the governing equation of
one-dimensional flow of water through an unsaturated soil (Fredlund and Rahardjo, 1993) above
the groundwater level:

∂

∂z
(k

∂H
∂z

) = mwγw
∂H
∂t

(6.2)

where mw is the slope of the soil-water characteristic curve (SWCC), γw is the unit weight of water,
and t is the time.

6.2.2. Hydraulic characteristics

The hydraulic conductivity (k) depends on the effective saturation (χ) or the pore-water pressure in
unsaturated soil, which is different to the saturated seepage. Several empirical and semi-empirical
functions have been proposed to express the hydraulic conductivity function, however, here in
this study, the van Genuchten SWCC equation (Van Genuchten, 1980), which is commonly used in
infinite slope stability analysis, is adopted:

θ − θr

θs − θr
= (1 + |α(ua − uw)|n)1/n−1 (6.3)

where θ is the volumetric water content, θr and θs denote the residual and saturated volumetric
water contents, respectively, α is the curve-fitting parameter inversely related to the air-entry value
(kPa−1), n is the curve-fitting parameter related to the pore size distribution, ua and uw are the
pore-air pressure and pore-water pressure respectively, (ua − uw) represents the matric suction.

The (pore-water) pressure head (h) of unsaturated soil is expressed as,

h =
uw − ua

γw
(6.4)

A number of functions have been proposed to express the relation between the hydraulic con-
ductivity and the matric suction, the function adopted here is:

k =

{
ks · exp[−α(ua − uw)], if ua − uw ≥ 0

ks, if ua − uw < 0
(6.5)

herein Gardner’s model (Gardner, 1958) is adopted for the unsaturated seepage where the matric
suction is positive, and k equals to the ks when the pressure head is positive.

In steady state seepage, the flux q is kept constant, and the storage does not change with time,
so the right-hand side of Eq. 6.2 becomes zero. For unsaturated seepage, substituting Gardner’s
model into Eq. 6.2, the analytical solution of the pressure head in the steady state seepage for
homogeneous soil can be derived (Yeh, 1989; Lu and Griffiths, 2004) as,

h =
1

αγw
ln{exp(−αγwz)[exp(αγwh0) + q/ks]− q/ks}, −q ≤ ks (6.6)

in which z is the elevation, h0 is the prescribed pressure head at z=0, and h0 is non-positive.

If the negative flow flux is larger than ks, the infiltration domain is regarded as saturated area.
Therefore, the pressure head can be calculated by,

70



6 Deterministic analysis of infinite slope stability during infiltration

h = h0 − z(1 + q/ks), −q ≥ ks (6.7)

Eq. 6.6 is proved to be applicable to the multi-layered soil (Yeh 1989). The pressure head in the
steady state seepage for multi-layered soil can be expressed as:

hi =
1

αγw
ln{exp(−αγwdz)[exp(αγwhi−1) + q/ksi]− q/ksi}, −q ≤ ks (6.8)

where, hi−1 and hi are the pressure head at elevation zi−1 and zi respectively, and the pressure
head should not be positive; ksi is the saturated hydraulic conductivity of layer i. The constrain of
this equation is that the negative downward infiltration flux -q cannot be larger than the saturated
hydraulic conductivity (Lu and Griffiths, 2004).

For layered soil profile, the pressure head can be calculated using Eq. 6.8 recursively, starting
from the bottom layer of the soil profile. The physical constrain of Eq. 6.8 is that the pressure head
is not positive. However, it is possible that the positive pressure head is generated under layered
soil profile, and this case will be discussed in detail in section 6.4.1.

For transient infiltration, the analytical solution is available only for a few special cases with
simple initial and boundary conditions, for example, in the cases with homogeneous soil pro-
file and two-layered soil profile (Srivastava and Yeh, 1991). Numerical approximation with finite
element method (Cheng, 2008) or finite difference method is commonly adopted for general un-
saturated seepage analysis, and some programs are already available for the transient infiltration:
e.g. Seep/W, SWMS-2D, THFELA with finite element method, and Unsat-H with finite difference
method. The simulation of infiltration will be elaborated later.

6.2.3. Infinite slope stability analysis

If the matric suction is considered, the shear strength of soil can be expressed as (Lu and Griffiths,
2004):

τf = c′ + [(σt − ua) + χ(ua − uw)]tanφ′ (6.9)

where c′ is the effective cohesion of the soil, φ′ is the effective friction angle, σt is the total stress, and
χ is the coefficient of effective stress or the (degree of) effective saturation, which can be expressed
as:

χ =
θ − θr

θs − θr
(6.10)

The effective friction angle is usually assumed to be constant for a given soil in classical infi-
nite slope stability analysis. However, this assumption is rarely true taking the field condition into
consideration, because soil porosity (or void ratio) normally reduces with soil depth due to the me-
chanical compaction and consolidation under self-weight and/or external loading (Lu and Godt,
2008). The effective friction angle of sand is also proved to be inversely linearly proportional to the
porosity by experimental evidence (Marachi et al., 1900; Rowe, 1969; Cornforth, 1973, 2005). The
relation between the friction angle and the porosity (m) can be described as:

φ = φ0 +
∆φ

∆m
(m0 −m) (6.11)

where φ0 and m0 are respectively the friction angle and porosity at the ground surface, ∆φ and ∆m
are the range of variation in friction angle and porosity respectively within the weathering zone
zw. The porosity can be expressed as (Lu and Godt, 2008),
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m = m0 −
∆m

1 + zw
Hss

(6.12)

Substituting Eq. 6.12 into Eq. 6.11 leads to:

φ = φ0 +
∆φ

1 + zw
Hss

(6.13)

where the soil depth Hss = L− z, L is the total thickness of the slope, and z is the elevation from
the bottom of the slope, as is shown in Figure 6.1. Therefore, the depth-dependent friction angle
can also be expressed as (Santoso et al., 2011):

φ(z) = φ0 +
∆φ

1 + zw
L−z

(6.14)

Using Mohr-Coulomb failure criterion, the safety factor of the infinite slope in Figure 6.1 can be
written as:

FS(z) =
τf

γs(L− z)sinβcosβ
(6.15)

where γs is the total unit weight of soil, β is the slope angle. Eq. 6.15 can be rearranged as,

FS(z) =
2c′

γs(L− z)sin2β
+

tanφ′

tanβ
+

χ(ua − uw)(tanβ + cotβ)tanφ′

γs(L− z)
(6.16)

where the three terms on the right side show the resistance from cohesion, friction angle, and
matric suction, respectively.

6.3. Infinite slope description

An infinite slope model (Figure 6.1) from Santoso et al. (2011), together with the depth-dependent
ks, are adopted to study the effect of depth-dependent ks on the infiltration and infinite slope
stability. Like in chapter 5, kk (slope of vertical influence) is used to denote the depth-dependent
behavior of mean ks, as it is shown in Figure 6.1. In order to make it simple, the ks is assumed
to increase linearly with the elevation of the slope, while the mean of ks in the whole slope keeps
constant. During the simulation, it is assumed that: (a) the groundwater level keeps constant, (b)
no ponding in the ground surface, extra flux runs off.

6.4. Numerical simulation of infiltration

6.4.1. Numerical simulation of the steady state infiltration

Since the depth-dependent ks of the slope is considered during infiltration, the problems are how
to express the depth-dependent ks in the slope, and how to use the depth-dependent ks during
simulation. Here we equally divides the slope into several layers, and assumes the ks is constant
in each layer. The ks is calculated based on the elevation of the midpoint of each layer.

Given enough time, the infiltration will reach at steady state, where the volumetric water content
of the slope does not change with time. It is the lowest bound of a slope stability, since the factor
of safety of the slope is the lowest during steady state infiltration. Comparing with the simulation
of unsaturated infiltration in the transient state, the simulation of unsaturated infiltration in the
steady state is simple, because the right side of Eq. 6.2 becomes zero. In this condition, the pressure
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Figure 6.1.: Typical infinite slope model with a weathered mantle

head does not change with time, and only the conductivity function on the left side of the equation
is involved. Analytical solution (Eq. 6.8) is available and is commonly used in the steady state
infiltration in unsaturated soil. Eq. 6.8 can also be used in the multi-layered situation.

The limitation of Eq. 6.8 is that the pressure head cannot be positive. For homogenous soil,
the absolute infiltration flux |q| is kept less than the saturated hydraulic conductivity ks, so as
to make sure the pressure head is not positive. Excess flux is easily handled as run-off when the
negative flux is larger than ks. However, for layered soil situation, the infiltration becomes more
complex. |q| might be larger than the ks in one layer, and the positive pore-water pressure might
be generated when the infiltration flows from a high permeable layer to a low permeable layer. This
is a thorny problem, because Eq. 6.8 is not valid when the pressure head is positive. Some authors
(Cheng, 2008; Santoso et al., 2011) still adopted Eq. 6.8 in layered soil with positive pressure head
above the groundwater table, while some authors chose to neglect the positive pressure (Fayer,
2000). Here, an alternative method is proposed. Yeh (1989) has illustrated that Eq. 6.8 can be used
when hi ≤ 0, including the case that the absolute flux is larger than ks. When hi>0, Eq. 6.7 can
be adopted to calculate the pressure head above. Therefore, this thorny problem can be solved by
the switch between Eq. 6.7 and Eq. 6.8. It is inevitable that one layer contains both negative and
positive pressure head. In this situation, we can divide this layer into several very small segments,
especially when the layer is thick. Eq. 6.8 can be used for each segment from bottom to top, until
the positive pressure head is calculated. Since the segment size is very small, the positive pressure
head should be small too. This positive pressure head might not be correct, however, it is very
small, and the error should be acceptable. Then, this positive pressure head can be regarded as the
initial point to carry out the saturated seepage with positive pressure head using,

hi = hi−1 − dz(1 + q/ksi) (6.17)

Eq. 6.17 can be used to calculate the positive pressure head till the negative pressure head ap-
pears again in a certain segment or layer. Then Eq. 6.8 can be switched back. Finally, if the pressure
head is negative at the ground surface, it is all right. However, if the pressure head is positive at
the ground surface, the absolute flux will be reduced, and extra flux flows as run-off. Then, the
pressure head is recalculated from bottom to top using this new flux, till the pressure head at the
surface is about zero.
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6.4.2. Numerical simulation of the transient state infiltration

Eq. 6.2 can be rewritten as,

∂

∂z
[k(

∂h
∂z

+ 1)] =
∂θ

∂t
= C

∂h
∂t

(6.18)

where, k is the unsaturated hydraulic conductivity which is a function of the pressure head h
(negative for unsaturated flow), θ is the moisture content. C = dθ

dh , which is the specific water
capacity. It can be derived from Eq. 6.3.

As mentioned before, the most common methods to approximate the transient state infiltration
are finite element method and finite difference method. The finite difference method is adopted
here.

Let the entire flow domain be divided into a grid of equal intervals ∆z, and the time domain be
similarly divided into intervals ∆t, the partial differential equation of Eq. 6.18 can be approximated
by a finite difference equation replacing and respectively in the following way,

Cj+a
i

hj+1
i − hj

i
∆t

=
1

∆z
[kj+a

i+1/2(
hj+a

i+1 − hj+a
i

∆z
+ 1)− kj+a

i−1/2(
hj+a

i − hj+a
i−1

∆z
+ 1)] (6.19)

where i and j are the indices of space and time respectively. a is a weighting factor (0 ≤ a ≤ 1)
introduced in such a manner that by putting a=0, it is transformed into the explicit scheme, a=0.5
into Crank-Nicolson scheme, and a=1 into the implicit scheme, therefore:

hj+a
i = (1− a)hj

i + ahj+1
i

hj+a
i+1 = (1− a)hj

i+1 + ahj+1
i+1

hj+a
i−1 = (1− a)hj

i−1 + ahj+1
i−1

(6.20)

The value of Cj+a
i , kj+a

i+1/2, kj+a
i−1/2 can be approximated by:

Cj+a
i = F1 = (1− a)Cj

i + aCj+1
i

kj+a
i+1/2 = F2 = (1− a)kj
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√
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Substitution of Eq. 6.20 and Eq. 6.21 yields the following linear algebraic equation valid for each
nodal point:
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When Eq. 6.22 is applied at all nodes, the result is a system of simultaneous linear algebraic
equations with a tridiagonal coefficient matrix with zero elements outside the diagonals and un-
known value of h. In solving this system of equations, the so-called direct method can be used by
applying a tridiagonal algorithm of the kind discussed by Remson et al. (1971).

The major advantage of explicit finite difference method is that, it is relatively simple, and it
is computationally fast for each time step. However, the main drawback is that the solution is
unstable in some conditions and the time step size cannot be too big. The main advantage of
the implicit method is that there is no restrictions on time step, and the fully implicit scheme is
unconditionally stable, the disadvantages are, (a) an inaccurate solution might be generated when
the time step is large, (b) it is computationally slower for each time step. Both explicit and implicit
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scheme are only first order accurate. The main advantages of Crank-Nicolson scheme are, it is
unconditionally stable and it is second order accurate. Therefore, it is more accurate than both
explicit and implicit schemes. The main drawback is that the calculation is time-consuming for
each time step. The Crank-Nicolson scheme is used during the transient seepage in this and next
chapters. For the finite difference approximation with Crank-Nicolson scheme, Eq. 6.22 can be
rewritten as,
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6.4.3. Boundary condition

To model the infiltration of rainwater, a fixed flux is set on the slope surface (flux boundary condi-
tion). If the negative flux is greater than the infiltration capacity of the slope surface, a fix pressure
head (h1=0) is used at the slope surface (head boundary condition). Extra water runs off. The
groundwater table at the bottom of the slope is fixed.

The boundary conditions need to be specially treated. As is shown in Eq. 6.23, in order to obtain
the pressure head of point i=1 (the first grid point) at the second time step (Figure 6.2), we need
the pressure head at i=0, 1 and 2 at the first time step. However, the point 0 does not exit, so, it
is regarded as a fictitious boundary point. For the last grid point (i=n), the pressure head before
and after a time step is kept zero, because the last grid point situates at groundwater level, and the
groundwater level is assumed to be constant.

Flux boundary condition

Figure 6.2.: Discretization of the numerical domain with fictitious boundary points, which are em-
ployed to set flux boundary conditions

For the grid point 1 at the top of the slope with a flux boundary condition,

q1 = k1(
∂h1

∂z
+ 1) (6.24)

It can be approximated using the central finite difference method as,

q1 = k1(
h2 − h0

2∆z
+ 1) (6.25)
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Since the flux is constant, q1=q, the pressure head at the fictitious boundary point (i=0) can be
calculated through Eq. 6.26 as,

h0 = h2 − 2∆z(
q
k1
− 1) (6.26)

Head boundary condition

When the absolute flux is larger or equal to the saturated hydraulic conductivity of the top layer,
extra water is assumed as run-off. Then the top boundary condition is head boundary condition,
and it can be defined as,

h(z = L, t) = 0 (6.27)

where L is the length of the slope.

The bottom boundary condition is always,

h(z = 0, t) = 0 (6.28)

6.5. Case study

6.5.1. Deterministic analysis without considering the depth-dependent character

In this section, some parametric studies are carried out using homogeneous soil so as to study the
effect of the n, α, and the flux on the effective saturation profile, suction head profile, pressure head
profile, and factor of safety profile.

Case 1 description

The infinite slope and its coordinate system is shown in Figure 6.1. Unless pointed out directly,
the parameters and their value used in this case are summarized in Table 6.1.

Table 6.1.: Parameters and their value used in Case 1

Parameters Definition Value
ks (m/s) Saturated hydraulic conductivity 10−6

α (kPa−1) SWCC parameter 0.2
n Empirical fitting parameter 1.35, 3
γs (kN/m3) Soil unit weight 20
c’ (kN/m2) Effective cohesion 0
φ0 (°) Effective friction angle at ground surface 40
dφ (°) The range of variation of friction angle within the weathering zone 6
zw (m) Depth of the weathered zone 0.5
β (°) Slope angle measured from horizontal 45
dz (m) Discretization of the slope 0.05
L (m) Slope depth above the groundwater table 6

Effect of empirical fitting parameter n on the profiles

Figure 6.3 shows the effect of the empirical fitting parameter n on the effective saturation, pres-
sure head, and the factor of safety profiles under hydrostatic equilibrium (no infiltration). For the
case with a large n (n=7), the effective saturation reduces dramatically from fully saturated situa-
tion at the groundwater table to the residual state at about 1m above the groundwater table, then
it becomes stable. As the decrease of parameter n, the reduction becomes slower (Figure 6.3a),
and the location that the effective saturation reaches to residual state becomes higher, until this
location disappears. The pressure head profile in Figure 6.3b shows that when the parameter n is
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large (n=7), the pressure head reduces quickly from zero at groundwater table to the lowest point
(about -0.3m) at about 0.4m above groundwater table, then it increases toward zero again; the
point becomes vaguer when the parameter n is smaller; when the parameter n is smaller enough
(n=1.35), the pressure head would reduce monotonously from zero at the groundwater table to the
final value at the slope surface. Figure 6.3c is the factor of safety profile corresponding to the pres-
sure head profile in Figure 6.3b. The maximum factor of safety is corresponding to the minimum
pressure head in the case of n=7, and the factor of safety profile moves towards the right with the
decrease of parameter n. In all, parameter n controls the shape of these profiles, since the shape
of each profile (the effective saturation profile, the pressure head profile and the factor of safety
profile) is different with different n.

χ

Figure 6.3.: Effect of n on the (a) effective saturation (b) pressure head, and (c) factor of safety
profiles of the slope in the hydrostatic state (α=0.2)

Effect of SWCC parameter α on the profiles

Since the profiles show different patterns with small and large parameter n, it is necessary to
check the effect of the SWCC parameter α on the profiles with a small and a large parameter n
separately, which are depicted in Figure 6.4. It can be seen that, no matter the parameter n is large
or small, the parameter α can only affect the magnitude of the profiles, and it does not affect the
shape of the profiles. Meanwhile, as the parameter α increases, both the effective saturation profile
and the factor of safety profile move towards left, while the pressure head profile moves towards
right.

Effect of the flux on the profiles

Both n=1.35 and n=3 are used to study the effect of the infiltration flux on the homogenous soil
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χ

α
α
α

χ

(a) n=1.35 (b) n=3

Figure 6.4.: Effect of α on the effective saturation profile, pressure head profile, and factor of safety
profiles of a slope in the hydrostatic state
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slope during steady state infiltration. The results are shown in Figure 6.5. As is shown in Figure
6.5 (a1, a2), the effective saturation increases with the increase of the negative flux; Figure 6.5 (b1)
shows that the pressure head and the negative flux are positively correlated at the same elevation
above the groundwater table when parameter n is small. However, the relation becomes more
complex when parameter n is large, as is shown in Figure 6.5 (b2). When the negative flux is low,
the pressure head decreases quickly from zero at the groundwater table to a minimum value at
the location not far above the groundwater level, then it increases as the increase of the distance
above groundwater table. A slight increase of the negative flux could dramatically change the
pressure head above the location of the minimum value, and slightly move this location towards
the ground surface, while keeping the overall trend of the pressure profile the same. However,
as the negative flux increases to a high level (e.g. 5·10−7 m/s, 9.5·10−7 m/s), the pressure head

χ χ

Figure 6.5.: Effect of infiltration flux on the (a1, a2) effective saturation profile, (b1, b2) pressure
head profile, (c1, c2) factor of safety profile with different n (n=1.35 in a1-c1, n=3 in
a2-c2)
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decreases quickly from zero at the groundwater table to a certain value, then it nearly remains
constant as the increase of the distance above groundwater table. The corresponding factor of
safety profiles are depicted in Figure 6.5 (c1, c2). When n is small, an increase of the negative
flux can make the factor of safety profile move towards left, and the weakest location of the slope
remains at groundwater table, except for the situation that the negative flux is very large, e.g. q=-
9.5·10−7 m/s, in which case a failed zone can be observed in the zone between 0.1 m and 1.2m
under the ground surface, meaning that shallow landslides might be induced under heavy rainfall
condition. Figure 6.5 (c2) shows an interesting fact: when the parameter n is large, the factor of
safety profile above groundwater level moves towards right with a certain increase of the negative
flux, indicating that a proper rainfall can help stabilize the slope above the groundwater table when
the parameter n is large. However, as the negative flux keeps increasing, the factor of safety profile
moves towards left again. When the negative flux approaches to saturated hydraulic conductivity,
the factor of safety profile is similar to the profile with a small parameter n.

6.5.2. Deterministic analysis considering the depth-dependent character

i. Case 2 description

Table 6.2 summarizes the parameters and their value used in case 2. The total thickness of the
slope above the groundwater table is 6m, and it is equally divided into 120 layers. The layer is
thin enough to produce a reasonable result. The slope with depth-dependent ks is simplified as
layered slope with different ks in different layer, however, the ks is constant in each layer. The
infinite slope model and the depth-dependent character of ks are shown in Figure 6.1.

Table 6.2.: List of parameters and their value for case 2

Parameters Definition Value
ks(m/s) Saturated hydraulic conductivity 10−6

kk Slope of vertical influence 0, 0.05, 0.10, 0.15
θs Saturated water content 0.395
θr Residual water content 0
α (kPa−1) SWCC parameter 0.2
n Empirical fitting parameter 1.35
q (m/s) Infiltration flux -5 ·10−7

γs (kN/m3) Soil unit weight 20
c’ (kN/m2) Effective cohesion 0
φ0 (°) Effective friction angle at ground surface 29
dφ (°) The range of variation of friction angle within the weathering zone 4
zw (m) Depth of the weathered zone 0.5
β (°) Slope angle measured from horizontal 30
dz (m) Discretization of the slope 0.05
L (m) Slope depth above the groundwater table 6

ii. Zero pressure head situation

In order to have a basic understanding on the case, the factor of safety profile of the slope with
constant ks under saturated condition is plotted in Figure 6.6. The pressure head is zero all over
the slope above the groundwater table. Since the cohesion here is zero, the safety factor depends
only on the friction angle. It shows that the slope failure can only happen in the top 0.17m of the
slope, and the slope underneath is stable at the zero-pressure head situation. However, the slope
failure might be induced at a lower location when positive pressure head is generated above the
groundwater table, due to the fact that an increase of the pressure head can reduce the effective
stress and lead to a reduction of the shear strength. Therefore, two types of failure might exist:
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Figure 6.6.: Factor of safety profile of the saturated slope with zero pressure head above the
groundwater table

(a) losing matric suction in one layer of the top 0.17m, (b) the generation of positive pressure
head beneath the top 0.17m. It is necessary to separate these two types, because the generation
of a positive pressure head is crucial to assess the effect of the depth-dependent character of ks
on the slope stability analysis. Normally speaking, the top 0.3-0.5m of soil is covered by grass
which increases the strength, makes the slope difficult to fail in the top 0.3-0.5m. Therefore, some
researchers did not consider the slope failure of the top 0.5m. If we neglect this failure, the slope
can always be stable at zero pressure head situation. However, it might fail if the depth-dependent
character is considered, because the positive pressure head might be generated.

iii. Steady state infiltration and the infinite slope stability analysis

Effect of the depth-dependent ks on the pressure head profile under steady state infiltration

(a) q=-10−7 m/s (b) q=-5·10−7 m/s

Figure 6.7.: Effect of the depth-dependent ks on the steady-state infiltration with low negative flux

Figure 6.7 shows the effect of the depth-dependent ks on the steady state infiltration at low neg-
ative flux cases. It shows that the pressure head with constant ks (kk=0) reduced quickly from zero
at groundwater level (z=0m) to a certain value, then it remains constant. For the depth-dependent
case (kk �=0), the pressure head keeps reducing with the increase of the elevation. Meanwhile, the
pressure head profiles with different kk crossed at a certain depth (at Points A and B in Figure
6.7), divided the profile into the upper and lower segments. In the lower segment, the pressure
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head is higher for the slope with a larger kk. This means, comparing with the constant ks case, the
pressure head is higher at the same elevation for depth-dependent ks case at the same elevation.
In the upper part, the reductions of the pressure heads at all cases are almost linear, and a higher
kk can cause a lower pressure head, because the effective saturation is lower for a higher kk case.
Comparing these two figures, it can be seen that the amount of fluxes do not affect the overall trend
of the pressure head profile, and the differences of the pressure head with different kk at the same
elevation does not have a big change. For example, the difference of the pressure head at the sur-
face of the slope is kept to be about 0.15m between case kk=0 and kk=0.15 when the negative flux
increases from 10−7 m/s to 5·10−7 m/s. It can be concluded that the depth-dependent character of
ks has a moderate effect on the pressure head profile, when the negative flux is low.

Since the ks reduces with soil depth when the depth-dependent character is considered, it is
inevitable that the positive pressure head is generated when the negative flux is large enough.
Some steady state infiltration with high negative fluxes are simulated, as is shown in Figure 6.8.
When q=-7·10−7 m/s, the positive pressure head is firstly generated in the slope with the highest
kk (kk=0.15) in the bottom of the slope above the groundwater level, while the pressure head of
the slope with a smaller kk is still negative (Figure 6.8a). As the negative flux keeps increasing,
the positive pressure head area becomes larger and larger for the slope with the highest kk, and
the slope with a lower kk begins to own positive pressure head zone too (Figure 6.8b, c); when
the negative flux is large enough, the positive pressure head will be all over the slope for the
cases with depth-dependent ks, while the slope with constant ks owns a zero pressure head profile
(Figure 6.8d). The positive pressure head can only be generated if the depth-dependent character
is considered. Notes that extra flux runs off, so the highest pressure head is zero at the surface of
the slope. In all, the depth-dependent ks can significantly affect the pressure head profile when the
negative flux is large.

Effect of depth-dependent ks on the factor of safety profile under steady state infiltration

The effect of the depth-dependent character on the factor of safety profile is shown in Figure 6.9
for low negative flux cases. A cross-point (point A or B in Figure 6.9) divides the factor of safety
profile into two parts: for the lower part of the slope, a lower factor of safety can be found at the
same elevation when the kk of ks is higher. The upper part of the slope shows an opposite trend. A
higher negative flux can increase the difference of the factor of safety profiles. Note that, although
the factor of safety profile can be affected by the depth-dependent character, the weakest surface is
at the bottom of the slope and the factor of safety of the slope is still the same (equals to 1.11) when
the negative flux is low.

The factor of safety profile is depicted in Figure 6.10 for the cases with high negative fluxes.
When the negative flux is large (7·10−7 m/s), the weakest surface (point) is no longer at the ground-
water table for the case with the largest kk ( e.g. at point A for kk=0.15 in Figure 6.10a). However,
the slope is still safe because the factor of safety of the slope is still higher than one. As the negative
flux increases to 9·10−7 m/s, the slope with the largest kk fails (Figure 6.10b) firstly. Meanwhile,
the weakest surface is no longer at the groundwater table in the slope with kk=0.10 (at point B). If
the negative flux keeps increasing, the slope with a lower kk would fail too (e.g. kk=0.1 in Figure
6.10c). Finally, all slopes fail when the negative flux is large enough (Figure 6.10d). However, for
the constant ks case, the slope failure is induced by losing the negative pressure head, and the
failure surface is less than 0.17m under the slope surface, while the slope failure is caused by the
positive pressure head with a lower failure surface for the depth-dependent ks case. It should be
noted that the failure zone, where the safety factor is smaller than one, is longer for the slope with
a higher kk, as is shown in Figure 6.10d. It can be concluded that the depth-dependent character
of ks plays a key role on the slope failure, and has a significant influence on the factor of safety of
the slope when the negative flux is high.
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(a) q=-7·10−7 m/s (b) q=-9·10−7 m/s

(c) q=-9.5·10−7 m/s (d) q=-10−6 m/s

Figure 6.8.: Effect of depth-dependent ks on the steady-state infiltration with high negative flux

(a) q=-3·10−7 m/s (b) q=-5·10−7 m/s

Figure 6.9.: Factor of safety of an infinite slope during steady state infiltration with depth-
dependent ks and low negative flux
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In summary, when the negative flux is low, the depth-dependent character of ks has a moderate
effect on the pressure head profile, and has a low influence on the stability of the slope during
steady state infiltration. However, when the negative flux is high (near to the mean of ks), the
depth-dependent character has significant influences on both the pressure head profile and the
stability of the slope, because positive pressure head can be generated in the slope when the depth-
dependent character is considered. This positive pressure head can induce the slope failure with
a low failure surface. Without considering the depth-dependent character can overestimate the
stability of the slope during the steady state infiltration when the negative flux is high.

(a) q=-7·10−7 m/s (b) q=-9·10−7 m/s

(c) q=-9.5·10−7 m/s (d) q=-10−6 m/s

Figure 6.10.: Factor of safety profile of the infinite slope during steady state infiltration with depth-
dependent ks and high negative flux

iv. Transient state infiltration and infinite slope stability analysis

In order to have a basic understanding of the transient infiltration and the corresponding factor
of safety profile of the infinite slope during transient infiltration, the changes of the pressure head
profile and factor of safety (FS) profile during deterministic transient infiltration with constant ks
are simulated (|q|/ks=0.5), and the results are depicted in Figure 6.11. The depth-dependent
character is not considered in this case. It can be seen that, as the infiltration continues, the wetting
front goes deeper, and the FS decreases in the wetted zone. However, the minimum FS is at the
bottom of the slope. It can also be seen that the pressure head at 20 days approaches to the pressure
head at steady state. Meanwhile, this negative infiltration flux is not large enough to induce a slope
failure.

Effect of the depth-dependent ks on the pressure head profile during transient infiltration
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(a) (b)

Figure 6.11.: (a) Pressure head profile and (b) factor of safety profile during transient seepage from
deterministic analysis with constant ks

The pressure head profile under transient state infiltration with |q|/ks=0.5 is depicted in Figure
6.12, considering the effect of the depth-dependent character of ks. A cross-point (e.g. Point A) can
be found for the pressure head profile in the wetted zone with different kk, dividing the wetted
zone into the upper and lower parts. A higher kk can cause a slightly lower pressure head in the
upper part, and a higher pressure head in the lower part. Figure 6.12 also shows that the slope
with a higher kk has a lower wetting front during transient infiltration. The relative differences
of the wetting fronts become larger at the early stage (0-12 days) of the infiltration, and then the
difference becomes smaller as the infiltration continues. No positive pressure head is generated
because the negative flux is smaller than the minimum ks.

Figure 6.12.: Effect of the depth-dependent ks on the pressure head profile during transient state
infiltration

Figure 6.13 is the pressure head profile during transient infiltration with high negative fluxes. It
shows that, as the negative flux increases, the wetting front is lower in the same time span. While,
the pressure head profile with a high negative flux is similar to the profile with a low negative
flux when the pressure head profile is negative. However, as the infiltration duration increase, the
positive pressure head begins to be generated for the case with the highest kk (kk=0.15 at 20 days
in Figure 6.13a). As the negative flux increases, the positive pressure head begins to be generated
for the case with a lower kk, and the pressure head is higher at the same elevation for the case
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with a higher kk at the late stage of the transient infiltration. Notes that the wetting front of the
slope with kk=0 is the lowest when the negative flux equals to the mean ks (Figure 6.13d), which is
different from the other cases, because the initial boundary condition is different. In this situation,
the head boundary condition is used, while flux boundary condition is adopted for slopes with
kk>0. Moreover, it can be seen that the positive pressure head can only be generated at the late
stage of the infiltration. Note that, for the depth-dependent ks case, different depth has different
ks, which means the infiltration rates are different. Therefore, if the slope fails, the failure time
should be different, this will be discussed in detail later.

(a) q=-7·10−7 m/s (b) q=-9·10−7 m/s

(c) q=-9.5·10−7 m/s (d) q=-10−6 m/s

Figure 6.13.: Pressure head profile at transient infiltration from deterministic analysis

Effect of the depth-dependent character on the factor of safety profile during transient infil-
tration

The safety factor profiles during transient infiltration with high negative flux are depicted in
Figure 6.14. It shows that kk has a small effect on the factor of safety in the wetted zone, if the
infiltration duration is not too long (0-12 days), when the positive pressure head is not generated
(Figure 6.14a). Meanwhile, the weakest surface is always at the groundwater table. As the infiltra-
tion duration reaches to the late stage, the weakest surface rises up from the groundwater table for
the slope with the highest kk of ks, because of the effect of the positive pressure head (e.g. kk=0.15
at 20 days in Figure 6.14a). However, the slope is still safe because the safety factor of the slope is
larger than one. When the negative flux is high enough (close to the ks), the kk has a significant
influence on the factor of safety profile at the late stage of the transient infiltration, in which the
slope fails firstly for the case with the highest kk, as is shown in Figure 6.14b (kk=0.15 at 20 days).
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(a) q=-7·10−7 m/s (b) q=-9.5·10−7 m/s

Figure 6.14.: Safety factor profiles during transient infiltration from deterministic analysis

Failure time discussion of the slope with depth-dependent ks during transient infiltration

Figure 6.15a and b are the pressure head profiles and the factor of safety profiles of the slope at
the failure time respectively during transient infiltration with q=-10−6 m/s. The failure time here
means the duration from the beginning of the infiltration to the time that the slope fails. For depth-
dependent ks case (kk �=0), Figure 6.15b shows that the slope with a higher kk fails earlier during
transient infiltration, and the failure surface is lower. The reason is shown in Figure 6.15a. When
kk is large, the generated positive pressure head in a low elevation is high enough to induce the
slope failure. However, when kk is low, the generated positive pressure head is low, so the slope
failure needs to be assisted by the reduction of the friction angle. Since the friction angle decreases
with the increase of the elevation, the failure surface is higher. For the constant ks case (kk=0), the
slope failure is caused by the reduction of the negative pressure head, rather than the generation
of the positive pressure head. When the infiltration duration increases to a certain level, the soil
near the ground surface reaches to the saturated condition. Therefore, the negative pressure head
is reduced, and the slope failure is induced. When the failure of the top 0.5m is neglected, the
slope is always stable. However, the slope could be induced if the depth-dependent character is
considered. Therefore, the stability of the slope could be overestimated (slope failure in the top
0.5m is not considered) if the depth-dependent character is not taken into account.

(a) (b)

Figure 6.15.: (a) Pressure head profile, and (b) Factor of safety profile of the slope at the failure time
considering depth-dependent ks during transient infiltration (q=-10−6 m/s)
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6.6. Conclusion of this chapter

In this chapter, some parametric studies are carried out, meanwhile the effect of the depth-dependent
ks on the infiltration and the slope stability during the infiltration is highlighted. The key results
are:

· Through the parametric study, it is found that the empirical fitting parameter n of the SWCC
controls the shape of the effective saturation profile, the pressure head profile, and the fac-
tor of safety profile, while the SWCC parameter α controls the magnitude of these profiles.
Meanwhile, a low negative flux can help stabilize the slope above the groundwater table in
the case with a large n.

· When the negative flux is low, the depth-dependent ks has a moderate effect on the pres-
sure head profile and has a low influence on the stability of the slope during steady state
infiltration. However, when the negative flux is high (approaches to the mean of ks), the
depth-dependent ks has a significant influence on both the pressure head profile and the sta-
bility of the slope. This is because the positive pressure head can be generated in the slope
with a depth-dependent ks, which can cause the slope failure with a low failure surface. Ne-
glecting the depth-dependent character of ks can overestimate the factor of safety during the
steady state infiltration when the negative flux is high.

· During the transient state infiltration, a cross-point can be found dividing the pressure head
profile or factor of safety profile in the wetted zone into two parts. In the upper part, the
pressure head is smaller for the case with a higher kk. The lower part shows an opposite
trend. The corresponding factor of safety in the wetted zone is higher for a higher kk case in
the upper part, and the lower part shows an opposite trend too. If the negative flux is high,
the positive pressure head can be generated at the late stage of the transient infiltration when
the depth-dependent character is considered. The failure time of the slope is related to the
depth-dependent character of ks. For the case with a greater depth-dependent character, the
slope fails earlier and the failure surface is lower.
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7. Probabilistic infinite slope stability analysis
during infiltration considering the variation
of ks

In this chapter, the stochastic infinite slope stability analysis is carried out during infiltration, so as
to evaluate the effect of the variability of saturated hydraulic conductivity (ks) on the slope stability
analysis during both steady state and transient state infiltration. The ks is assumed to be the only
stochastic variable. According to former studies (Hydraulic, 2008; Freeze, 1975; Sudicky, 1986), it
follows a lognormal distribution. Both stationary and non-stationary random field are considered.
The stationary random fields are used to evaluate the effect of the standard deviation of ks and
the spatial correlation length (SCL) of ln(ks) on both the infiltration and the slope stability. The
non-stationary random fields are adopted to highlight the effect of the depth-dependent character
of the stochastic parameters of ks, including the mean and standard deviation of ks, and the spatial
correlation length of ln(ks), on both the infiltration and the slope stability. Detail information about
the generation of each random field is elaborated in chapter 4. The mean, the standard deviation,
and the spatial correlation length are all considered to reduce linearly with depth when the depth-
dependent character is considered.

7.1. Reliability estimation

The factor of safety profile FS(z) varies from one realization to another during stochastic infinite
slope stability analysis. Since the ks is the only variable, the limit state function can be formulated
as,

g(x) = FSmin(x)− 1.0 = min
x

(FS(z, x))− 1.0 (7.1)

in which, x represents a set of random variables used to simulate the random field of ks, and z is
the elevation (distance to the groundwater level) here. Two cases will be used later, 0 ≤ z < L, and
0 ≤ z ≤ L− 0.5m (L is the length of the slope). For most cases, only 0 ≤ z ≤ L-0.5m is considered
to calculate the probability of failure of the slope, since the failure unlikely happens within the top
0.5m of the slope, because of the vegetation effect or roots cohesion. 0 ≤ z ≤ L is also used in some
cases to compare the results.

7.2. Case description

The physical model of the infinite slope (Figure 7.1) adopted here is the same as is used in Chapter
6. The slope of vertical influence (kk) is also used to express the depth-dependent character. The
parameters and their values are listed in Table 7.1. The ks is assumed to be the only stochastic
variable. The mean of ks is set to be 10−6 m/s, while the preset (deterministic) flux is -5·10−7

m/s, where negative value means infiltration. Our interest is to check if the variation of ks has a
significant effect on the slope stability during both the steady state infiltration and the transient
state infiltration. 5000 realizations of the random field are used in each situation during the steady
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state infiltration, because 5000 realizations are enough to produce a stable result. Meanwhile, 1500
realizations are adopted in each situation during the transient infiltration, since the simulation
of transient infiltration is time-consuming. These two numbers of the realizations were used by
some former researchers (Santoso et al., 2011) to simulate the steady state and transient infiltration,
respectively. Remember that a higher negative pressure head leads to a higher shear strength, so as
to produce a higher factor of safety and lower probability of failure (Pf). The pressure head profile,
the factor of safety profile, the probability of failure, the location of the critical failure surface, and
the true flux flowing through the slope during infiltration are studied.
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Figure 7.1.: The infinite slope model with a weathered mantle

Table 7.1.: List of parameters and their value used in Chapter 7

Parameters Definition Value
ks (m/s) Saturated hydraulic conductivity 10−6

kk Slope of vertical influence 0, 0.05, 0.10, 0.15
θs Saturated water content 0.395
θr Residual water content 0
α (kPa−1) SWCC parameter 0.2
n Empirical fitting parameter 1.35
q (m/s) Preset infiltration flux -5·10−7

γs (kN/m3) Soil unit weight 20
c’ (kN/m2) Effective cohesion 0
φ0 (°) Effective friction angle at ground surface 29
dφ (°) The range of variation of friction angle within the weathering zone 4
zw (m) Depth of the weathered zone 0.5
β (°) Slope angle measured from horizontal 30
dz (m) Discretization of the slope 0.05
L (m) Slope depth above the groundwater table 6

According to Santoso et al. (2011), it is not sufficient to conclude that the variation of ks which
produces a higher mean of pressure head will always produce higher pressure heads. The quan-
tiles or the distribution of the pressure head profile is very helpful to understand the significance
of the variation of ks on a rainfall-induced landslide. Therefore, the quantile profiles of both the
pressure head and the factor of safety are adopted, rather than using the mean profiles, in the
following contents.
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7.3. Probabilistic infinite slope stability analysis during infiltration

without considering the depth-dependent character

In this section, the stationary random field without considering the depth-dependent character of
the stochastic parameters of ks is adopted so as to have a basic understanding of how the variation
of ks affects the infinite slope stability during infiltration. The effect of the coefficient of variation
(CV) of ks and the SCL of ln(ks) are highlighted.

7.3.1. Effect of the variation of ks on the slope stability under steady state
infiltration

In order to have a basic understanding about the effect of the variation of ks, on the infinite slope
stability analysis during steady state infiltration, the stochastic infinite slope stability analysis is
carried out with mean of ks -10−6 m/s, standard deviation of ks 10−6, and spatial correlation length
of ln(ks) 1m. The pressure head profile and factor of safety profile are plotted and, compared with
the deterministic situation respectively, without considering the variation of ks. The results are
shown in Figure 7.2. Q25%, Q50% (median) and Q75% profiles are obtained by taking respectively
the 25%, 50% and 75% quantiles of the pressure head profile and factor of safety profile at each
elevation. The factor of safety profile here means the relation between the factor of safety at the
bottom of each layer and the corresponding elevation. It can be seen that when the variation of ks
is taken into consideration, the pressure head profile of the infinite slope varies in a large range,
and a certain percentage of the pressure head profile is with positive pressure head. However, for
the deterministic case, the pressure head profile is a constant curve without any fluctuation, and
the pressure head is negative all over the slope above the groundwater level in this case (Figure
7.2a). Similarly, the factor of safety profile fluctuates in a certain range, and a certain percentage
of the factor of safety of the slope (FSmin) is lower than one when the variability of ks is taken
into consideration, e.g. Q25% factor of safety profile in Figure 7.2b. This means there is at least
25% probability that the slope fails in the stochastic analysis. However, the slope is stable during
the deterministic analysis when the variation of ks is not considered under steady state infiltration
(Figure 7.2b). Therefore, the variation of ks can significantly affect the slope stability under steady
state infiltration.

Figure 7.2.: Effect of the variation of ks on the quantiles of the (a) pressure head profile, and (b)
factor of safety profile, during steady state infiltration
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7.3.2. Effect of the CV of ks on the slope stability under steady state infiltration

The effect of the coefficient of variation (CV) of ks on both the steady state infiltration and slope
stability are evaluated in this section. According to Srivastava et al. (2010), the CV of ks is in the
range of 60%-90%. Here, it is assumed to be 0.5, 1.0, and 1.5 to represent a low, high, extremely
high variation of ks, respectively. The spatial correlation length (SCL) of ln(ks) is kept to be 1m.
The values of the other parameters are listed in Table 7.1.

Pressure head profile and factor of safety profile

Figure 7.3a is the quantile estimation of the pressure head profile with different CV of ks. The

(a) (b)

Figure 7.3.: Effect of the CV of ks on the quantiles of (a) pressure head profile and, (b) factor of
safety profile, during steady state infiltration
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Q25% profile of pressure head in Figure 7.3a shows that a higher CV can cause a higher pressure
head in the upper part of the slope, and a lower pressure head in the lower part of the slope.
Because a higher CV can cause a more dramatic variation of ks. Therefore, there is more chance
that the low permeable layer is generated in the upper part of the slope. These low permeable
layers can cause the generation of the positive pressure head at the top part of the slope, so as to
reduce water to infiltrating into the lower layer. Therefore, the lower part of Q25% pressure head
is smaller, and the upper part is higher for the case with a higher CV. As the quantile increases,
the upper part becomes larger and larger, until there is no lower part. Meanwhile, it can be seen at
Q50% profile of pressure head from Figure 7.3a that there is more chance that the positive pressure
head is generated for the slope with the highest CV (CV=1.5), since the positive pressure head is
shown at Q50% pressure head profile. As the quantile reaches to Q75%, all the slope above the
groundwater level is the positive pressure head zone for the cases with a high and an extremely
high CVs. This is because a higher CV of ks also means more chances that the low ks layers are
generated in the lower part of the slope. When the flux reaches to these layers, extra water can
perch on the top of the layer, causing the generation of positive pressure head, and the positive
pressure head zone can be accumulated. Therefore the positive pressure head zone becomes larger
as the quantile increases. However, the slope with a small CV does not have a positive pressure
head zone, because there is less chance for the generation of the low permeable layer.

Figure 7.3b is the quantile estimation of the factor of safety profile with different CV of ks. It
can be seen that, for Q25% and Q50% (median) profiles, a higher CV of ks can reduce the factor
of safety (FS) at all elevations above the groundwater table. For Q75% profile, a higher CV could
cause a smaller FS in the upper part of the slope, and a slightly higher FS in the lower part of
the slope. The reason can be easily concluded through the pressure head profiles from Figure 7.3a.
Meanwhile, it shows clearly in Q25% and Q50% profiles that the failure zone (area where the FS<1)
is longer for a higher CV case at the same quantile situation, which means the slope can fail in a
wider area. Therefore, there is more chance that the slope with a higher CV fails during the steady
state infiltration.

Probability of failure

Figure 7.4 shows the effect of the CV of ks on the probability of failure (Pf) of the slope. The
Pf is higher when the critical failure surface at the top 0.5m is taken into consideration, and the
difference becomes slightly larger as the increase of CV when the Pf is compared with and without
considering the top 0.5m. As mentioned before, the slope failure seldom locates in the top 0.5m of

Figure 7.4.: CV of ks VS Pf with and without considering the failure in top 0.5m of the slope
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a slope. Therefore, the slope failure without considering the top 0.5m is focused on for most of the
following works. It can be seen in Figure 7.4 that the probability of failure increases significantly
with the increase of CV of ks. The Pf is only 10% when the CV is 0.5, it increases quickly to about
80% when the CV reaches to 1.5. Therefore, an increase of the CV of ks can significantly increase
the probability of failure during steady state infiltration.

Crictical failure surface

Since 5000 realizations of the random field are used to investigate the stability of the infinite
slope, some slopes are stable, while some slopes fail. If it fails in one realization, where is the
critical failure surface? Does the CV affect the elevation of the critical failure surface? Here the
critical failure surface means the location with a minimum factor of safety of each failed slope. The
critical failure surface might be in several locations in one realization of the random field. In this
situation, the lowest location is taken into consideration. Figure 7.5 shows the effect of the CV on
the frequency of the elevation of the critical failure surface. It can be seen that the overall trends are
similar. Most of the critical failure surface locates at the top area of the slope (slope failure within
the top 0.5m is not considered) no matter the change of CV. However, as the increase of CV, the
probability of failure increases dramatically. Meanwhile, the failure zone becomes longer as the
increase of CV.

Figure 7.5.: Histograms of the elevation of the critical failure surface at (a) CV=0.5, (b) CV=1.0, (c)
CV=1.5

True flux

Figure 7.6.: Effect of the CV of ks on the mean of the true negative flux

Figure 7.6 shows the effect of the CV of ks on the true negative flux. Although the preset negative
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flux is 5·10−7 m/s, the true negative flux infiltrated into the slope is a little bit smaller when the
CV of ks is 0.5. As the CV of ks increases, the mean of the negative flux keeps reducing. This
is because, when the CV of ks is larger, there is more chance that the low permeable layers are
generated, and more water is blocked, and then runs off from the surface of the slope.

In summary, the CV of ks can significantly affect the steady state infiltration and the slope sta-
bility during infiltration. An increase of CV can increase the chance of the low permeable layer
generation, so as to: (i) increase the chance of the positive pressure head generation, (ii) reduce the
mean negative flux, (iii) increase the probability of failure, and (iv) increase both the failure zone
and the chance that the slip surface fails at each elevation.

7.3.3. Effect of the SCL of ln(ks) on the slope stability under steady state
infiltration

In this section, the effect of the spatial correlation length (SCL) of ln(ks) on the slope stability analy-
sis under steady state infiltration is evaluated without considering the depth-dependent character.
The CV of ks is kept to be 1.0.

Pressure head profile and factor of safety profile

The quantiles of the pressure head profile are depicted in Figure 7.7a, so as to evaluate the effect
of the SCL of ln(ks) on the pressure head profile of the slope during steady state infiltration. For the
Q25% profile, the pressure head is lower for a higher SCL case, except for the SCL=10000m case, in
which the slope in each realization can be regarded as a homogenous slope. For the Q50% profile,
the lower part of the pressure head profile follows the trend of Q25% profile, however, for the
upper part of the pressure head profile (rectangular area in Figure 7.7a), a moderate SCL (equals to
0.4m here) can cause the highest pressure head, while a higher or lower SCL would cause a lower
pressure head. For the Q75% profile, a moderate SCL of 1m can cause the highest pressure head all
over the slope. Note that the moderate SCL, which can cause the highest pressure head, is different
at different quantile situation.

However, what we are interested in is the situation when the positive pressure head is generated,
because this is the key reason that the slope fails. So the generation of the low permeable layers
is very important. As described in chapter 2, the SCL can influence the fluctuation of the random
field in two opposite ways through both the variance reduction and the correlation matrix. A
moderate SCL can make the random field have the greatest fluctuation, so as to help to generate
more low permeable layers. This is why a moderate SCL can produce the highest pressure head in
Q75% profile.

Figure 7.7b shows that the longest failure zone can be found when the SCL of ln(ks) is moderate
(equals to 1.0m here) in the case of Q25% factor of safety profile, and a higher or lower SCL could
reduce the size of the failure zone. Meanwhile, the smallest factor of safety can be found when
the SCL equals to 0.4m in the case of Q50% factor of safety profile. In the case of Q75% factor of
safety profile, the factor of safety is higher for a larger SCL case at the same elevation above the
groundwater table, and the weakest surfaces always lie on the groundwater table. This result can
be easily conducted through the pressure head profiles from Figure 7.7a.

Probability of failure

Figure 7.8 shows that, if the failure at the top 0.5m of the slope is not taken into consideration,
the probability of failure increases from about 0.5 to 0.65 when the SCL of ln(ks) increases from
0.1m to 0.4m, then the Pf keeps reducing as the SCL increases. If the SCL is large enough, the Pf
reduces to zero. When the slope failure of the top 0.5m is considered, the Pf increases to its peak
and then decreases till it reaches to a relatively stable level. The Pf is higher comparing with the

95



7 Probabilistic infinite slope stability analysis during infiltration considering the variation of ks

(a) (b)

Figure 7.7.: Effect of the spatial correlation length (SCL) of ln(ks) on the pressure head profile of
the slope during steady state infiltration
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Pf without considering the failure of the top 0.5m. Note that for the case with a very high SCL
case, all the failure surface is in the top 0.5m of the slope. This is reasonable, because when the
SCL is large enough, the slope approaches to a homogeneous slope without any variation in each
realization, so no positive pressure head zone could be generated in the slope, and the slope failure
is caused by the reduction of the negative pressure head. Note that, although the Q75% pressure
head profile in Figure 7.7a shows the slope with the SCL of 1m has the highest positive pressure
head, the highest Pf here is at the case with SCL=0.4m. One reason is that the true flux is the
lowest when SCL=1m (see Figure 7.10), and this low true flux can reduce the chance of the positive
pressure head generation.

Figure 7.8.: Effect of the spatial correlation length of ln(ks) on the probability of failure during
steady state infiltration

Depth of the critical failure surface

Figure 7.9 shows that most of the slope failure happens in the top area of the slope (the failure
within the top 0.5m is not considered) under different SCL cases. It can be seen that the slope with
a moderate SCL has the largest frequency that the failure happens in the top area of the slope,
meanwhile, it also owns the longest failure zone.

True flux

Figure 7.10 shows that the SCL of ln(ks) can significantly influence the true flux. Although the
preset negative flux is 5·10−7 m/s, the mean of true negative flux reduces quickly from 4.64·10−7

m/s to 4.04·10−7 m/s when the SCL increases from 0.1m to 1m, then, the mean of true negative flux
increases slowly as the SCL keeps increasing. This is because the random field owns the highest
fluctuation when the SCL is at the a moderate level.

In summary, the spatial correlation length of ln(ks) has a high effect on the infiltration and the
slope stability during the steady state infiltration. A moderate spatial correlation length can cause
the greatest fluctuation of the random field of the saturated hydraulic conductivity, so as to results
in the greatest variation of both the pressure head profile and the factor of safety profile, the highest
probability of failure, and the lowest true negative flux.
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Figure 7.9.: Effect of the SCL of ln(ks) on the elevation of the critical failure surface of the slope
during steady state infiltration

Figure 7.10.: Effect of the spatial correlation length (SCL) of ln(ks) on the true flux
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7.3.4. Effect of the variation of ks on the slope stability under transient state
infiltration

Steady state infiltration is the final stage of the infiltration. In reality, the rainfall may not last long
enough for the infiltration reaching at the steady state, and the slope may fail earlier. Therefore,
it is very important to simulate the transient infiltration, and to analyze the slope stability during
the transient infiltration.

In this section, the stochastic analysis is carried out to study the effect of the variation of the
saturated hydraulic conductivity (ks) on the transient infiltration and the infinite slope stability.
In order to have a clear understanding to the transient infiltration and slope stability during the
infiltration, the development of the pressure head profile, the factor of safety profile, the probability
of failure, and location of the critical failure surface are analyzed during transient infiltration. The
coefficient of variation of ks is set to be 1, and the spatial correlation length of ln(ks) is set to be
0.4m.

Pressure head profile and factor of safety profile

Some quantiles of both the pressure head and the factor of safety profiles at several selected
time steps are shown in Figure 7.11. A clear difference of the wetting fronts can be found (Fig-
ure 7.11a) for the pressure head profile with different quantiles at the same time step, due to the
unique structure of each random field. This difference becomes larger and larger as the infiltration
duration increases, because as the wetting front goes deeper, there is more chance that the rainwa-
ter is blocked by a low permeable layer, which can reduce the true infiltration rate. Figure 7.11b
shows the development of the corresponding factor of safety profile. As the infiltration duration
increases, the factor of safety of the slope in the wetting zone is reduced. The slope is stable, when
the duration is short (t=4 days); however, there is more than 25% probability that the slope fails as
the duration reaches to 12 days. Meanwhile, It is interesting to see that the elevation of the mini-
mum factor of safety is different for different quantiles at the same time step in the wetting zone,
and the elevation is higher for a lower quantile case.

Figure 7.11.: Development of (a) pressure head profile and (b) factor of safety profile during tran-
sient infiltration

Probability of failure

The development of the probability of failure during transient infiltration is shown in Figure
7.12. It can be seen that the probability of failure increases dramatically as the infiltration continues.
This is because, as the infiltration duration increases, there is more chance that the positive pressure
head is generated. Meanwhile, if the failure at the top 0.5m is included, there is 10% to 15% more
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chance that the slope failure is induced.

Figure 7.12.: Development of the probability of failure during transient infiltration

Critical failure surface

Figure 7.13 shows the development of the critical failure surface during transient infiltration.
When the infiltration duration comes to 4 days, only a small percentage (about 5%) of the slope
fails. Most of the slope failure is in the top half of the slope (top 0.5m is not taken into account),
and the elevation zone of all the slope failure lies between 5m and 5.5m. As the duration increase,
the frequency of the slope failure increases and the failure zone increases.

Figure 7.13.: Develop of the elevation of the critical failure surface during transient infiltration

In summary: As the infiltration duration increases, the wetting front goes deeper, the probability
of failure increases and the failure zone becomes longer.
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7.3.5. Effect of the CV of ks on the slope stability under transient state infiltration

Like in the case with steady state infiltration, three different CVs (0.5, 1.0, 1.5) of ks are used here
to analyze the effect of CV on the pressure head profile, the factor of safety profile, the probabil-
ity of failure, and location of the critical failure surface during transient infiltration. The spatial
correlation length of ln(ks) is set to be 0.4m.

Pressure head profile and factor of safety profile

The quantiles of the pressure head profile at several representative time steps are shown in Fig-
ure 7.14a. The wetting front is higher for the slope with a higher CV of ks at the same time step.
Meanwhile, the elevation difference of the wetting fronts with different CV becomes larger and

(a) (b)

Figure 7.14.: Effect of the CV of ks on the quantiles of (a) pressure head profile and (b) factor of
safety profile, during transient infiltration
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larger as the infiltration duration increases, and this difference is more dramatic for the small
quantile situation. When the CV is small, the ks fluctuates in a small range, so there is a lower
probability that a ks lower than the negative flux is generated, which means there is less chance
that the rainwater is perched in the wetting zone. Therefore, the wetting front goes deeper for a
smaller CV case and the difference becomes more dramatic for small quantile situation. It is worth
noting that the positive pressure head in the wetting zone is firstly generated in the slope with
the highest CV of ks. Because it is easier that a low permeable layer is generated, and this low
permeable layer can cause the generation of a positive pressure head zone.

The effect of the CV of ks on the factor of safety profile during transient infiltration at several
selected time steps is shown in Figure 7.14b. It can be seen that the CV of ks can significantly
influence the factor of safety profile in the wetting zone, especially in the quantile 25% and quantile
50% situations. The factor of safety of the slope is lower in the wetting zone for the case with
a higher CV. It is worth noting that, for the slope with a higher CV of ks, the elevation of the
minimum FS in the wetting zone is higher, and the failure zone is larger.

Probability of failure

Figure 7.15 shows the probability of failure at some selected time steps during transient infiltra-
tion. It can be seen that the Pf increases as the increase of CV at all time steps. Meanwhile, it can
also be seen that the Pf increases as the increase of the infiltration duration, because as the infil-
tration continues, the wetting front goes deeper, so there is more chance that the positive pressure
head is generated in the wetting zone. Moreover, it can be seen that the Pf is very small when the
infiltration duration reaches to 4 days because the slope failure of the top 0.5m is not considered,
and it increases quickly in the next 8 days. Although the low permeable layer is equally distributed
in the slope, the low permeable layer in a high elevation is more important, because while it can
cause the generation of the positive pressure head, it can also reduce the negative flux to flowing
into a lower layer, and this reduced negative flux can decrease the increasing ratio of Pf from 12
days to 20 days.

Figure 7.15.: Effect of the CV of ks on the probability of failure during transient infiltration

Critical failure surface

Figure 7.16 shows how the CV affect the location of the critical failure surface during transient
infiltration at different time steps. It can be seen that most of the slope failure happens at a shallow
location (top 0.5m is not considered). As CV of ks increases, the probability of failure of the slope

102



7 Probabilistic infinite slope stability analysis during infiltration considering the variation of ks

is increased and the zone of the critical failure location is longer at the same time step. Meanwhile,
as the increase of the transient infiltration duration, the zone of failure location becomes longer.

Figure 7.16.: Elevation of the critical failure surface during transient infiltration

In summary, the coefficient of variation of ks has significant influences on both the transient
infiltration and the infinite slope stability during transient infiltration. As the increase of the in-
filtration duration, the differences caused by increasing the coefficient of variation become larger
on both the pressure head profile and the factor of safety profile. The probability of failure is in-
creased as the increase of the infiltration duration, especially in the middle stage of the transient
infiltration, when the Pf is increased dramatically.
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7.3.6. Effect of the SCL on the slope stability analysis under transient state
infiltration

Several different SCLs of ln(ks) are used here to analyze its effect on the pressure head profile, the
factor of safety profile, and the probability of failure during transient infiltration. The coefficient
of variation of ks is set to be 1.

Pressure head profile and factor of safety profile

(a) (b)

Figure 7.17.: Effect of the spatial correlation length (SCL) of ln(ks) on the quantiles of (a) pressure
head profile (b) factor of safety profile, during transient infiltration

Figure 7.17a shows the effect of SCL of ln(ks) on the pressure head profile during the transient
infiltration at three different time steps. In the 4 days situation, the location of the wetting fronts
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show little difference. The difference becomes larger as the time duration increases. It can be seen
that different quantiles have different trends at different time duration, and there is no clear pattern
in the effect of SCL on the pressure head profile during transient infiltration. Like on the pressure
head profile, Figure 7.17b shows that there is no clear pattern in the effect of the SCL on the factor
of safety profile during transient infiltration.

Probability of failure

Figure 7.18 shows that the probability of failure decreases slightly with the increase of SCL at the
early stage of the transient infiltration (at t=4 days), and the Pf increases as the infiltration duration
increases. Meanwhile, the slope with a moderate SCL (SCL=0.4m here) has the highest probability
of failure, and a higher or lower SCL can reduce the probability of failure of the slope when the
infiltration duration is over 12 days. Because the variation of ks is related to both the variance
reduction and the correlation matrix. A moderate SCL can make a good balance between them,
so as to generate the random field with the greatest fluctuation in each random field. At the early
stage of the infiltration (t=4 days), this advantage does not appear clearly since the wetting zone is
small and the Pf at the top 0.5m is not taken into account. However, as the infiltration continues,
this advantage becomes more and more clearly.

Figure 7.18.: Effect of the SCL of ln(ks) on the Pf during transient infiltration

In summary, the probability of failure is the highest when the SCL of ln(ks) is at a moderate level.
A higher or lower SCL can reduce the probability of failure during the transient infiltration, except
for the early stage of the infiltration, when the Pf is the highest for the case with the lowest SCL.
There is no clear pattern for the effect of the SCL on either the pressure head profile or the factor of
safety profile, except that the relative difference of each profile in the wetting zone becomes larger
as the infiltration duration increases.

7.4. Probabilistic infinite slope stability analysis during infiltration

considering the depth-dependent character

In this section, the depth-dependent character of the stochastic parameters of ks is taken into ac-
count, so as to evaluate its effect on the infinite slope stability analysis under both steady state and
transient state infiltration.
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7.4.1. Effect of the depth-dependent mean of ks on the slope stability under steady
state infiltration

In order to evaluate the effect of depth-dependent mean ks on the slope stability analysis during
steady state infiltration, the mean of ks is assumed to reduce linearly with soil depth in this section,
while the mean ks of the whole slope is the same (10−6 m/s). The standard deviation of ks is 10−6,
and the spatial correlation length of ln(ks) is 0.4m. The case with constant mean of ks (kk=0) is also
used.

Pressure head profile and factor of safety profile

(a) (b)

Figure 7.19.: Effect of linearly depth-dependent μks on the (a) pressure head profile and (b) factor
of safety profile, during steady state infiltration

For the case that the mean of ks reduces linearly with depth, Figure 7.19a shows that the pressure
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head profile moves towards right as the increase of kk in almost all Q25%, Q50%, Q75% profiles.
Note that the pressure head is positive all over the slope for the case with the highest kk (kk=0.15)
in all quantiles, which means the slope is highly possible to be the saturated slope with positive
pressure head under steady state infiltration. This is because, for the largest kk case, the mean ks
is the smallest at the bottom of the slope, since the standard deviation is constant, there is more
chance that the low permeable layers are generated at the bottom. When the wetting front reaches
to the bottom, the low permeable layer can stop extra water infiltrating into a lower layer. This
perched water is accumulated, and the positive pressure head area becomes larger and larger as
the infiltration duration increases, until it covers the whole zone above the low permeable layer.

For the case that the mean of ks reduces linearly with the depth, Figure 7.19b shows that, as the
increase of kk, the factor of safety profile moves towards left in all the quantiles, which means the
factor of safety above the groundwater table is consistently lower for the slope with a higher kk.
Meanwhile, the failure zone is longer for the slope with a higher kk at the same quantile situation.
Note that the slope with kk=0.15 fails while the others are still safe in the 75% quantile situation.
This means it is very likely that the slope fails during the steady state infiltration when kk is large
enough.

Probability of failure

Figure 7.20.: Effect of linearly depth-dependent μks on the Pf during steady state infiltration

Figure 7.20 shows the relation between the probability of failure and the depth-dependent char-
acter of mean ks. It can be seen that the probability of failure of the slope, without considering the
slope failure of the top 0.5m, increases dramatically as the increase of kk. When kk=0 (constant
mean ks situation), the Pf is about 0.68. As the kk increases to 0.15, the Pf reaches at 0.93, which
means it is almost certain that the slope fails during steady state infiltration when kk is extremely
large. This is consistent with the results of the pressure head profile in Figure 7.19a and the factor
of safety profile in Figure 7.19b.

Elevation of the critical failure surface

Figure 7.21 shows the effect of the depth-dependent character of mean ks on the frequency of
the elevation of the critical failure surface during steady state infiltration. For a lower kk case,
the mean ks is smaller in the top half part of the slope, therefore, a lower ks could be generated
easier. This low ks layer could reduce the true negative flux. Then the negative flux flowing into
a lower part of the slope becomes smaller. Therefore, the frequency of the slope failure happened
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at a lower elevation becomes smaller, and most of the slope failure is at the top area of the slope
(without considering the top 0.5m). When the kk is larger, the low permeable layers are more likely
to be generated in the lower part of the slope, causing a larger area of positive pressure head, which
induces more slope failure at the lower part.

Figure 7.21.: Effect of the linearly depth-dependent μks on the elevation of the critical failure surface
during steady state infiltration

True flux

Figure 7.22.: Effect of linearly depth-dependent mean of ks on the real flux infiltrated through the
infinite slope during steady state infiltration

Figure 7.22 shows the effect of the depth-dependent character on the mean of true negative
flux. Although the preset negative flux is 5 ·10−7 m/s, the true negative flux is smaller because
the variability of ks can cause the generation of low permeable layers, which could reduce the
rainwater in infiltrating into a lower layer. It can be seen that, as the increase of kk, the mean of the
true negative flux increase at first and then decreases. Comparing to the case with constant mean
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ks (kk=0), low permeable layers can be generated harder in the top half of the slope with a higher
kk (kk=0.05), allowing more rainwater to infiltrate into a lower location. Although the mean ks
is slightly smaller at the bottom part of the slope, the generated positive pressure head can help
the negative flux flow towards the groundwater level. Therefore, the mean of the true negative
flux becomes larger as kk increases from 0 to 0.05. As kk increases to a higher level (kk=0.1), the
mean ks is smaller at the bottom half part, which means the generated ks is smaller in this area.
These lower permeable layers can reduce the rainwater infiltrating into the groundwater level,
extra water accumulates above the low permeable layer, till it reaches to the slope surface and runs
off. This is why the mean of the negative flux is reduced when kk increases from 0.05 to 0.1. The
run-off becomes larger when the kk increases to an extremely high level (kk=0.15). Therefore the
mean of negative flux is smaller.

In summary, When the depth-dependent character of the mean of ks is considered during steady
state infiltration, a higher kk can significantly increase the probability of failure of the slope. Mean-
while, more slope failure happens at a lower elevation. Moreover, as kk increases from zero to an
extremely high value, the true negative flux is increased at first, and then it is reduced.

7.4.2. Effect of the depth-dependent mean of ks on the slope stability under
transient state infiltration

Pressure head profile and factor of safety profile

Figure 7.23a shows how the depth-dependent mean ks affects the pressure head profiles during
transient infiltration at several selected time steps. As the kk increases, the wetting front goes
deeper. The difference of the locations of the wetting fronts caused by the linearly depth-dependent
mean ks can be divided into 3 stages. (a) The early stage, when the wetting front is in the top half
part of the slope (e.g. from the beginning to about 12 days). The difference becomes larger as the
infiltration duration increases, because the mean ks in the top half part of the slope is larger for
a higher kk case. (b) The middle stage, when the wetting front is in the bottom half part of the
slope (e.g. from 12 days to about 20 days). The difference is reduced as the infiltration duration
continues. This is because the mean ks of the bottom half part is smaller for a higher kk case. (c)
The late stage, when the positive pressure head is accumulated (e.g. 40 days). In this stage, the
wetting front is no longer changed. However, the positive pressure head is higher for the slope
with a higher kk. This is because its mean ks is smaller at the bottom of the slope, which means
there is more chance the low permeable layers are generated. So extra water would be perched
and accumulated in the slope, causing an increase of the positive pressure head zone. This is why
the positive pressure head is all over the slope in all these three quantiles for the largest kk case at
this stage.

Figure 7.23b shows the effect of the depth-dependent mean ks on the factor of safety profiles
during transient infiltration. It can be seen that the elevation of the minimum FS in the wetting
zone is slightly higher for the slope with a lower kk during transient infiltration, except for the 40
days condition, where the profile can be regarded as in the steady state. For the Q25% factor of
safety profile, the slope with a constant mean ks (kk=0) fails at 12 days, while the slopes with the
depth-dependent mean ks are still stable; as the infiltration duration increases to 20 days, the slope
with a low depth-dependent mean ks (kk=0.05) fails too; when the infiltration duration reaches to
40 days, all slopes fail. However, the failure zone is longer for the slope with a larger kk. This is be-
cause, for the slope with a larger kk, the mean ks of the top half of the slope is larger, therefore, the
probability that the positive pressure head is generated in this part is lower when the infiltration
duration is not long, and the probability of failure is lower. When the wetting front reaches to the
lower half part of the slope (t=20 days), where the mean ks is smaller for the slope with a larger kk,
the probability of positive pressure head generation is increased. However, the disadvantage of
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the smaller Pf it accumulated before, needs some time to be compensated, therefore, the difference
of the factor of safety profile is reduced. As the infiltration duration keeps increasing (t=40 days),
the advantage of a higher kk in the probability of failure shows up.

(a) (b)

Figure 7.23.: Effect of the depth-dependent mean ks on the (a) pressure head profile and (b) factor
of safety profile, during transient infiltration

Probability of failure

Figure 7.24 shows the effect of the depth-dependent mean ks on the probability of failure during
transient infiltration at several selected time steps, without considering the slope failure of the top
0.5m. It shows that the effect of the depth-dependent mean ks on the probability of failure can also
be divided into three stages: (a) the early stage of the transient infiltration when the wetting front
is in the top half of the slope. In this stage, the probability of failure is higher, and the probability of
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failure increases quicker for the slope with a lower kk. For instance, when kk=0, the probability of
failure equals to 0.05 at t=4 days, and it increase to 0.38 when t=12 days. However, the probability
of failure increases from 0.01 to 0.11 for the case with kk=0.15. (b) The middle stage of the transient
infiltration when the wetting front is in the bottom half of the slope. In this stage, the probability
of failure is higher for the slope with a smaller kk, however, the probability of failure increases
quicker for the slope with a higher kk. For instance, when the infiltration duration increase from
12 days to 20 days, the probability of failure increases from 0.38 to 0.55 for the case with kk=0, while
it increase from 0.11 to 0.44 for the case with kk=0.15. (c) The late stage of the transient infiltration
after the wetting front reaches the bottom the slope. In this stage, the probability of failure is lower
for the case with a smaller kk, and the probability of failure increases with the increase of kk.
Since the slope with a smaller kk has a smaller mean of ks in the top half part of the slope, the
probability of the generation of a low ks is relatively increased. Therefore, the probability of the
generation of positive pressure head in this part is relatively increased. This is why the probability
of failure is higher when the wetting front is in the top half part of the slope for the case with a
lower kk. Meanwhile, some water is blocked by the low permeable layers, therefore, the increase of
probability of failure slows down, when the wetting front goes to the bottom half part of the slope.
However, for the slope with a higher kk, the mean ks is larger in the top half part of the slope, and
less water is blocked. The probability of the generation of a low permeable layer increases with the
depth, so the increasing ratio of probability of failure becomes greater as the development of the
wetting front. Meanwhile, a smaller ks can cause the accumulation of the positive pressure head
area, this is why the probability of failure becomes higher for the slope with a higher kk of mean
ks as the infiltration reaches to the late stage.

It is interesting to note that this depth-dependent character can reduce the probability of failure
if the infiltration duration is not too long, otherwise, the probability of failure can be significantly
increased. Considering the rainfall duration is normally not so long, the probability of failure
might be overestimated if the depth-dependent character is not taking into consideration.

Figure 7.24.: Effect of the depth-dependent mean ks on the probability of failure (Pf) during tran-
sient infiltration

In summary, the depth-dependent mean ks can significantly affect the slope stability during
transient infiltration. Without considering it, the Pf can be overestimated in the early and middle
stage of the infiltration, and it can be underestimated if the infiltration lasts long enough.
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7.4.3. Effect of the depth-dependent STD of ks on the slope stability under steady
state infiltration

In order to evaluate the effect of depth-dependent standard deviation of ks (STDks) on the slope
stability during steady state infiltration, the standard deviation of ks is assumed to reduce linearly
with soil depth in this section, while the mean STDks of the slope is kept constant. The mean of ks
is 10−6 m/s, and the spatial correlation length of ln(ks) is 0.4m.

Pressure head profile and factor of safety profile

For the case that the standard deviation of ks reduces linearly with the depth, Figure 7.25a shows
that, as the increase of kk, the pressure head profile moves towards left at all quantile situations

(a) (b)

Figure 7.25.: Effect of linearly depth-dependent standard deviation (STD) of ks on the (a) pressure
head profile and (b) factor of safety profile, during steady state infiltration
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(except for the top 0.5m of the slope). When kk is larger, the standard deviation at the top half
part of the slope is higher, which means low permeable layers could be generated easier in this
part. These layers can help build positive pressure head and reduce the mean negative flux to
infiltrating into a lower layer. Therefore, the slope with a higher kk can consistently produce the
lower pressure head in a lower location.

Figure 7.25b shows that the slope with a higher kk consistently has a higher factor of safety
above the groundwater table (except for the top 0.5m of the slope). Because the pressure head is
lower for the slope with a higher kk in this area. From Q25% factor of safety profile, it can be
seen that the slope with a higher kk has a smaller failure zone, which means there is less chance
that the slope with a higher kk of STD fails. If the standard deviation is constant (kk=0), the low
permeable layers are equally generated in the slope. Therefore, the positive pressure head zone
might be easier generated in the lower part of the slope, comparing to the case with a higher kk.
This is why the failure zone is longer.

Probability of failure

Figure 7.26 shows that the probability of failure is moderately reduced as the increase of kk.
This is because a higher kk means the top half of the slope has a higher standard deviation of ks.
Therefore, there is more chance that low permeable layers are generated in the top of the slope.
These layers can reduce the mean negative flux, so as to decrease both the positive pressure head
generation and probability of failure.

Figure 7.26.: Effect of linearly depth-dependent standard deviation of ks on the Pf during steady
state infiltration

Elevation of the critical failure surface

Figure 7.27 shows the frequency of the elevation of the critical failure surface, when the linearly
depth-dependent character of STDks is considered. It can be seen that most of the slope failure is
in the top area of the slope (Top 0.5m is not considered). The frequency is slightly higher for the
critical failure surface in the top half of the slope with a higher kk. However, the slope with a lower
kk has a longer failure zone, and the frequency that the elevation of the critical failure surface at a
lower level is relatively higher.

True flux

For the case that the standard deviation of ks reduces linearly with depth, Figure 7.28 shows
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Figure 7.27.: Effect of the linearly depth-dependent standard deviation of ks on the elevation of the
critical failure surface during steady state infiltration

that an increase of kk can reduce the mean of negative flux, because the standard deviation of ks
is higher in the top half of the slope when kk is higher. The higher standard deviation can cause a
more dramatic fluctuation of ks in the top half of the slope, which can reduce the flux to flowing
into the slope.

Figure 7.28.: Effect of linearly depth-dependent standard deviation of ks on the true negative flux
infiltrated through the infinite slope during steady state infiltration

In summary, for the case that the standard deviation of ks reduces linearly with the depth, an
increase of the depth-dependent character of the standard deviation can increase the fluctuation
of the ks in the top half area of the slope during steady state infiltration, causing a reduction of
the mean negative flux. Therefore, as the depth-dependent character becomes greater, the pressure
head is lower, the factor of safety is higher, the probability of failure becomes lower, and the critical
failure surface at a lower elevation is decreased.
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7.4.4. Effect of the depth-dependent STD of ks on the slope stability under
transient state infiltration

Pressure head profile and factor of safety profile

(a) (b)

Figure 7.29.: Effect of the depth-dependent standard deviation of ks on the (a) pressure head pro-
files, (b) factor of safety profile, during transient infiltration

Figure 7.29a shows the effect of the depth-dependent standard deviation of ks on the quantiles
of the pressure head profile during transient infiltration at several selected time steps. It can be
seen that the location of the wetting front is higher for the slope with a higher kk at all time steps.
This is because the standard deviation at the top half part of the slope is larger for a higher kk
situation, so there is more chance that the low permeable layer is generated in this area, and this
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low permeable layer can reduce the mean negative flux infiltrated into the slope. Therefore, the
wetting front is higher.

From Q25% and Q50% factor of safety profiles in Figure 7.29b, it can be seen that the minimum
factor of safety is slightly lower in the wetting zone for the slope with a higher kk of the STDks,
which also means the slope fails earlier. Meanwhile, the elevation of its minimum factor of safety
is slightly higher in the wetting zone.

Probability of failure

Figure 7.30 shows the effect of the depth-dependent standard deviation of ks on the probability
of failure during transient infiltration, without considering the slope failure of the top 0.5m. It can
be seen that, for the slope with a higher kk, the Pf is higher if the infiltration duration is less than
20 days, however, the Pf is lower as the infiltration duration reaches to 30 days. The effect of the
depth-dependent STDks on the Pf during transient infiltration can be categorized into 2 stages: (a)
the early stage when the wetting front is in the top half part of the slope. In this stage, the Pf is
slightly higher for the slope with a higher kk, and the difference of Pf caused by kk becomes larger
as the infiltration duration increases. Because the standard deviation is larger for the upper part
of the slope with a higher kk, which means there is more chance that the low permeable layers
are generated. These layers are the key to generate the positive pressure head which can cause the
slope failure. While, they also cause the reduction of the true negative flux. (b) The late stage when
the wetting front is in the lower part of the slope. In this stage, the increasing ratio of Pf slows
down for the slope with a higher kk, because the standard deviation is smaller. However, for
the slope with a smaller kk, the increasing ratio of Pf becomes larger and larger as the infiltration
continues, till the total Pf is larger for the slope with a lower kk.

Figure 7.30.: Effect of the depth-dependent standard deviation (STD) of ks on the Pf during tran-
sient infiltration

In summary: the depth-dependent standard deviation of ks can moderately affect the infinite
slope stability during transient infiltration. A greater depth-dependent character of the standard
deviation can make the wetting front at a shallower location, and cause a slightly lower factor of
safety in the wetting zone. Without considering it, the Probability of failure can be underestimated
in the early stage of the infiltration, and it can be overestimated if the infiltration lasts long enough.
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7.4.5. Effect of the depth-dependent mean of ks with CV=1 on the slope stability
under steady state infiltration

Normally speaking, both the mean and standard deviation of ks change simultaneously. In this
section, the mean of ks is assumed to reduce linearly with soil depth, while its coefficient of vari-
ation is kept constant (equals to one in this case). The mean ks of the whole slope above the
groundwater table is kept 10−6 m/s. The spatial correlation length of ln(ks) is kept 0.4m.

Pressure head profile and factor of safety profile

For the case that both the mean and the standard deviation of ks reduce with soil depth, Figure
7.31a shows that a higher kk can help the slope build a higher pressure head for most cases during

(a) (b)

Figure 7.31.: Effect of kk(μks) on the (a) pressure head profile, (b) factor of safety profile during
steady state infiltration (CVks=1)
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steady state infiltration. It is a combined effect of the depth-dependent character of both the mean
and the standard deviation. A higher kk can significantly increase the pressure head for the case
with a depth-dependent mean ks (Figure 7.19a), and moderately decrease the pressure head for
the case with a depth-dependent standard deviation of ks (Figure 7.25a). When both of them
are considered simultaneously, the effect of the depth-dependent mean ks plays a dominant role.
Therefore the pressure head is still higher for the slope with a higher kk. The clearly difference of
the pressure head profile at the same quantile situation shows the depth-dependent character can
significantly affect the pressure head profile during steady state infiltration.

Figure 7.31b shows that the slope with a higher kk has a smaller factor of safety, and its failure
zone is longer. This is because the slope with a higher kk has a higher pressure head.

Probability of failure

Figure 7.32 shows that the probability of failure increase quickly with the increase of kk. There-
fore, the depth-dependent character can have a significant effect on the probability of failure of the
infinite slope during steady state infiltration. However, the Pf is lower in this case, comparing with
the Pf in the case considering the depth-dependent mean of ks only (Figure 7.20).

Figure 7.32.: Effect of kk on the Pf during steady state infiltration (CV=1)

Elevation of the critical failure surface

When the depth-dependent character of both the mean and standard deviation are considered,
Figure 7.33 shows a similar trend for different kk. However, it can be seen that as the increase of
kk, there is a relatively higher chance that the slope fails in a lower elevation of the slope. This
result is corresponding to the factor of safety profiles in Figure 7.31b.

True flux

Figure 7.34 shows that the mean of the true negative flux increases as the increase of kk. This
is because as kk increases, the mean ks of the top half part of the slope is higher, allowing more
flux to infiltrate into the slope. Although a higher standard deviation of the top part of the slope
can reduce the negative flux, the quantity is smaller. Because when the effect of both the mean and
standard deviation are considered, the effect of the mean ks plays a dominant role. The mean of the
negative flux is reduced when kk is increased from 0.05 to 0.15 in Figure 7.22, when only the mean
ks is considered to be depth-dependent. This reduction is not found here because the the standard
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Figure 7.33.: Effect of depth-dependent character of mean ks on the elevation of the critical failure
surface during steady state infiltration (CVks=1)

deviation of ks in the bottom half of the slope is smaller in this case, makes the ks fluctuate in a
smaller level in this area. Therefore, there is less chance that the low permeable layer is generated
in the bottom half of the slope, comparing with the case that only the depth-dependent mean ks is
considered. When the preset negative flux is not so high (e.g. 5·10−7 m/s used here), there is less
chance that the perched water reaches to the slope surface and runs off.

Figure 7.34.: Effect of depth-dependent character of mean ks on the true flux during steady state
infiltration (CVks=1)

In summary, the depth-dependent character of both the mean and standard deviation of ks with
constant CV has a significant effect on both the pressure head profile and the factor of safety profile.
Meanwhile, as the increase of kk, both the probability of failure and the mean of the true negative
flux are increased.
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7.4.6. Effect of the depth-dependent mean of ks with CV=1 on the slope stability
under transient state infiltration

In this section, the effect of the depth-dependent mean of ks with CV=1 on the slope stability under
transient state infiltration is investigated.

Pressure head profile and factor of safety profile

For the case that both the mean and standard deviation reduces with soil depth, Figure 7.35a
shows that the slope with a higher kk has a lower wetting front during the transient infiltration.
This is reasonable because the top half of the slope have a higher mean value of ks, which means

(a) (b)

Figure 7.35.: Effect of the depth-dependent mean of ks with CVks=1 on the (a) pressure head profile,
(b) factor of safety profile, during transient infiltration
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the water, infiltrated into the slope, is larger at the same quantile situation. As the infiltration dura-
tion increases from the beginning till the steady state, the differences of the wetting front becomes
larger, smaller, and larger again. This is reasonable because, although the depth-dependent char-
acter of both the mean and standard deviation is considered, the depth-dependent character of the
mean dominates the effect of the depth-dependent character on the infiltration. This whole tran-
sient infiltration can also be categorized into 3 stages, similar to the case in which only the mean
value is depth-dependent, and the explanation is similar. However, the difference of the wetting
fronts, caused by the depth-dependent character at the same time step, becomes smaller, because
the depth-dependent standard deviation can undermine this difference.

From the quantiles of the factor of safety profile in Figure 7.35b, it can be seen that the slope with
a lower kk has a lower minimum FS in the wetting zone, and the elevation of this minimum factor
of safety is slightly higher, when the infiltration duration is not too long (4-20 days here). However,
as the infiltration approaches to the steady state (40 days), the slope with a higher kk has a smaller
minimum factor of safety.

Probability of failure

Figure 7.36 shows the probability of failure is lower for the slope with a higher kk at the early
and middle stages of transient infiltration. In detail, about 2% of the Pf is reduced at 4 days when
kk increases from 0 to 0.15, if the failure of the top 0.5m is excluded. This reduction reaches to 15%
at 12 days, and reduces to 8% at 20 days. As the infiltration approaches to the steady state, the
probability of failure is higher for the slope with a higher kk. This is because the factor of safety of
the slope is smaller in the wetting zone for the slope with a lower kk when the infiltration duration
is not too long, however, it is larger when the infiltration approaches the steady state.

Figure 7.36.: Effect of the depth-dependent character of mean ks with CVks=1 on the Pf during
transient infiltration

In summary: the infinite slope stability during transient infiltration can be significantly affected,
if the depth-dependent character of both the mean and the standard deviation of ks are taken
into account. Without considering it, the Pf can be overestimated in the early and middle stages
of the infiltration, and the Pf can be underestimated if the infiltration approaches to the steady
state. Meanwhile, when the depth-dependent character of both the mean and standard deviation
is considered, the depth-dependent mean ks plays a dominant role.
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7.4.7. Effect of the depth-dependent SCL of ks on the slope stability under steady
state infiltration

The slope with depth-dependent spatial correlation lengths (SCL) is simplified as the slope with
two layers: the upper and lower layers, with different SCL in each part. This kind of random field
is generated by conditional sequential simulation using SGeMS. The situations with and without
variance reduction (VR) are also considered. The preset flux, the mean of ks, and the standard
deviation of ks is -5·10−7 m/s, 10−6 m/s, and 10−6 respectively in all cases. The SCLs in lay-
ered random field are different in different cases: Case A is the stationary random field case with
SCL=0.5m all over the slope; Case B and C are slopes with different SCLs in the upper and lower
parts, the SCL value and the length of each part in each case are listed in Table 7.2. The kk in the
last column of Table 7.2 denotes the deviation of the SCL, it can be expressed as,

kk(SCL) =
SCLupper − SCLlower

SCLupper + SCLlower
(7.2)

where the SCLupper and SCLlower are the spatial correlation lengths in the upper and lower layers
of the slopes, respectively.

Table 7.2.: Basic information of the slope in each case (layered random field situations)

Part of the slope SCL(m) Length(m) kk(SCL)
Case A All 0.5 6 0

Case B Upper 0.6 3.6 0.2Lower 0.4 2.4

Case C Upper 0.75 4.5 0.5Lower 0.25 1.5

Pressure head profile and factor of safety profile

Figure 7.37a shows the effect of the depth-dependent SCL on the quantiles of the pressure head
profile. For the Q25% and Q50% situations, the pressure head profiles in the upper and lower
parts of the slope show opposite trends. As kk increases, the upper part of the pressure head
profile moves towards left, while the lower part moves towards right. For the Q75% profile, the
pressure head moves towards left as the increase of kk. It can be seen that the difference of the
pressure head profile caused by the depth-dependent SCL is not great. Figure 7.37a also shows
that the variance reduction has little effect on the quantiles of the pressure head profiles in this
case.

Figure 7.37b shows that the factor of safety profile slightly moves towards right, as the increase
of kk at the upper part of the slope for Q50% and Q75% situations. Because the pressure head
profile moves towards left in the upper part of the slope for Q25% and Q50% situations. The factor
of safety profile in the lower part of the slope has little different. For the Q25% situation, the factor
of safety profiles have little differences in these three cases. Meanwhile, the variance reduction has
little effect on the factor of safety profile here.

Probability of failure

Figure 7.38 shows that the variance reduction can slightly reduce the probability of failure (about
1.5%), because variance reduction decreases the domain variance of ks. For the slope considering
the variance reduction, the probability of failure decreases from 0.686 by 0.643 (less than 5%) when
the kk increases from 0 to 0.5. In reality, the fluctuation of the SCL in one slope cannot change so
sharply, which means the effect of depth-dependent SCL can only slightly reduce the probability
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(a) (b)

Figure 7.37.: Effect of depth-dependent SCL and VR of ln(ks) on the (a) pressure head profile and
(b) factor of safety profile
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of failure. Since the probability of failure is slightly higher if the depth-dependent character is
neglected, which means the stability of the evaluated slope is a little conservative. It is reasonable
to conclude that this depth-dependent character of the SCL can be neglected.

Figure 7.38.: Effect of depth-dependent character of SCL and VR on the probability of failure of the
slope

True flux

Figure 7.39 shows that, as kk increases, the mean of true negative flux reduces slightly. Mean-
while, the variance reduction can slightly increase the mean of true negative flux, because the
variance reduction reduces the scale of the fluctuation of a random field.

Figure 7.39.: Effect of depth-dependent character of SCL and VR on the mean of true negative flux

In summary, an increase of the depth-dependent character of the spatial correlation length of
ln(ks) can slightly reduce both the probability of failure and the mean of true negative flux. This re-
duction is insignificant. Therefore, the depth-dependent character of the spatial correlation length

124



7 Probabilistic infinite slope stability analysis during infiltration considering the variation of ks

can be neglected.

7.5. Synopsis

In this chapter, a stochastic analysis is carried out to study the infinite slope stability during infil-
tration, taking ks as the only random variable with a lognormal distribution.

Through the study at stationary random field situation, it is found that:

· As the infiltration duration increases, the wetting front goes deeper, the probability of failure
increases significantly, and the failure zone becomes longer.

· An increase of coefficient of variation of ks can significantly increase the probability of failure
under both transient and steady state infiltration.

· The spatial correlation length of ln(ks) has a significant effect on the probability of failure.
When the spatial correlation length is at a moderate level, the probability of failure is the
highest. A higher or lower spatial correlation length can reduce the probability of failure
during both the steady state infiltration and late stage of the transient state infiltration, while
a small spatial correlation length can slightly increase the probability of failure at the early
stage of the transient infiltration.

Through the study at non-stationary random field situations, the depth-dependent character of
the stochastic parameters of ks is highlighted, it is found that:

· The depth-dependent character of mean ks has a significant effect on the probability of fail-
ure. For the case that the mean of ks reduces linearly with depth during steady state infiltra-
tion, an increase of the depth-dependent character can significantly increase the probability
of failure of the slope. If the transient infiltration is considered, three stages can be catego-
rized according to the infiltration duration. If the depth-dependent character of the mean ks
is not considered, the probability of failure is overestimated in the early and middle stages,
and it is highly underestimated in the later stage of the infiltration.

· For the case that the standard deviation of ks reduces linearly with depth, the probability of
failure is moderately reduced as the increase of the depth-dependent character during steady
state infiltration. If the transient infiltration is taken into consideration, the probability of
failure is underestimated in the early stage of the infiltration, and it is overestimated if the
infiltration lasts long enough, if the depth-dependent character is neglected.

· If the depth-dependent character of both the mean and the standard deviation are consid-
ered, the depth-dependent mean value plays the dominate effect on the results.

· The depth-dependent character of the spatial correlation length of ln(ks) can slightly reduce
the probability of failure. This reduction is very small and can be neglected.
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8. Conclusions and recommendations

The variability of a soil property and its influence can be studied through the quantification of
its stochastic parameters (the mean, the standard deviation, and the spatial correlation length),
and the evaluation that how these stochastic parameters affects geotechnical practice. Probabilistic
simulations have shown that these stochastic parameters of some soil properties can significantly
influence geotechnical practice. For all the stochastic studies, the standard deviation and the spa-
tial correlation length are assumed to be constant, while most of the studies are carried out assum-
ing the mean value is constant too. However, these assumptions are not validated. Since these
stochastic parameters are very important, the main aim of this thesis is to check whether these
assumptions are true, if not, what is the effect?

8.1. Summary and conclusions

Questions were proposed in chapter one as the motivation of this thesis. Some studies are carried
out from chapter 3 to chapter 7 based on these questions. In this section, these questions will be
answered while the main outcomes are summarized.

1. Does the stress level affect the stochastic parameters of void ratio related properties of sand?
How does the stress level affect these parameters? Are the stochastic parameters depth-dependent?

Taking the void ratio as a representative property, the effect of stress level on the stochastic
parameters of void ratio related properties of sand, is carried out through the simulation of the
one-dimensional compression test, using the VW hypoplastic model. The results show that:

· All the stochastic parameters of void ratio of sand reduce with the increase of the stress level.
Since the void ratio is directly related to some of the key properties, such as the saturated hy-
draulic conductivity, density, unit weight, friction angle, and so on, these parameters should
be affected by the stress level too.

· Because soil suffers different self-weight at different soil-depth, the stochastic parameters of
the void ratio related parameters of sand should be depth-dependent.

2. Since the stochastic parameters of void ratio related properties of sand are depth-dependent,
the following question comes up: How do we generate the random field considering the depth-
dependent character of these stochastic parameters? This question is discussed in detail in chapter
4. It is found that:

· The generation of the random field with depth-dependent mean or/and the standard devia-
tion is rather simple, it can be generated through a simple distortion of the stationary random
field.

· The generation of the random field with depth-dependent spatial correlation length is rel-
atively complex. Two different methods are proposed: the first one bases on the random
field distortion from Hicks (Hicks and Samy, 2002). However, the standard deviation needs
to be compensated when it is used. The second method is to layer the random fields with
different spatial correlation lengths using conditional random field generation. It is found
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that both the length and the spatial correlation length of each individual random field can
affect the mean spatial correlation length of the whole random field. The mean spatial corre-
lation length, can be evaluated by the harmonic mean of individual spatial correlation length
considering the length of each individual random field.

3. How does the depth-dependent character of the variability of void ratio related properties
affect the soil behavior with view to geotechnical practice? Is this effect significantly enough to be
considered?

Through the comparison of the strain at different stress level with and without considering the
depth-dependent character of the variation of void ratio during the one-dimensional settlement
analysis, it is found that:

· The depth-dependent character of these stochastic parameters has low effect on the mean
strain.

· If the serviceability limit state is taken as the performance function, the probability of failure
can be slightly increased when the mean void ratio is highly depth-dependent in the case.
The depth-dependent character of the standard deviation of void ratio can slightly increase
the probability of failure. The depth-dependent character of the spatial correlation length has
little effect on the probability of failure.

· In reality, the settlement is far smaller than the results simulated in chapter 3, because the real
hs is far larger. Therefore, the depth-dependent character has little effect on both the strain
and the probability of failure. This might be caused by the limitation of the hypoplastic
model. It is known that one of the tails of the distribution is the key to generate the week
path, however, the void ratio of hypoplasticity in this study follows a truncated Gaussian
distribution, and there is no tail.

The saturated hydraulic conductivity (ks) is positively related to the void ratio. Therefore, the
stochastic parameters of ks should be depth-dependent. Through the deterministic infinite slope
stability analysis, the effect of the depth-dependent mean trend of ks on both the infiltration of
rainwater and slope stability are analyzed. The results show that:

· During the steady state infiltration of rainwater, the depth-dependent ks has significant in-
fluences on both the pressure head profile and the slope stability when the negative flux is
high (near to the mean of ks). This is because the positive pressure head can be generated in
the slope with depth-dependent ks. This positive pressure head can cause the slope failure
in a lower critical failure surface. Neglecting the depth-dependent character of mean ks, the
positive pressure head can not be generated, and the factor of safety can be overestimated
during steady state infiltration, when the negative flux is high.

· During the transient state infiltration, the positive pressure head is generated earlier, and the
slope fails earlier in the soil with a greater depth-dependent ks, in the case that the negative
flux is high. The considered slope is always stable if the depth-dependent character is not
regarded.

· If the negative flux is not so high, the depth-dependent character can only moderately affect
the pressure head profile and slightly influence the factor of safety profile, during both the
steady state and transient state infiltration.

Some parametric studies are carried out. It is found that the SWCC parameter n controls the
shape of the degree of saturation profile, the pressure head profile, and the factor of safety profile,
while the empirical fitting parameter α controls the magnitude of these profiles. Moreover, when
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the flux is taken into consideration, it is found that, a small negative flux can help stabilize the
slope above the groundwater table in the case with a large n, which is surprising since rainwater
is responsible for the slope failure.

The stochastic infinite slope stability analysis during infiltration is also carried out considering
the variability of the saturated hydraulic conductivity. The depth-dependent character of these
stochastic parameters of ks can affect the slope stability. It can be summarized:

· The depth-dependent character of mean ks has a significant effect on the slope stability anal-
ysis. For the case that the mean of ks reduces linearly with depth during steady state infiltra-
tion, increasing the depth-dependent character can significantly increase the probability of
failure of the slope. If the transient infiltration is considered, three stages can be categorized
to describe the transient infiltration process. If the depth-dependent character of the mean ks
is not considered, the probability of failure is overestimated in the early and middle stages,
and it is highly underestimated in the late stage of the infiltration. This is because the mean
ks reduces with depth, which means there is more chance that the low permeable layer is
generated at a lower location of the slope. These low permeable layers are the key to the
positive pressure head generation, when the wetting front reaches at this area. The positive
pressure head is essential to the slope failure.

· In the case that the standard deviation of ks reduces linearly with depth, the probability of
failure is moderately reduced as the increase of the depth-dependent character, during steady
state infiltration. If a transient infiltration is taken into consideration, the probability of fail-
ure is underestimated in the early stage of the infiltration, and it is overestimated when the
infiltration lasts long enough, if the depth-dependent character is neglected. This is because,
when the linearly depth-dependent character of the standard deviation is taken into consid-
eration, the standard deviation of the top half of the slope is higher, which means the low
permeable layer in this area can be generated in a higher chance. These low permeable lay-
ers can reduce the true negative flux infiltrated into a lower area, so as to reduce the chance
of positive pressure head generation in the late stage of the infiltration.

· If the depth-dependent character of both the mean and the standard deviation of ks is con-
sidered, the depth-dependent mean value plays a dominate effect on the results.

· The depth-dependent character of the spatial correlation length of ln(ks) can slightly reduce
the probability of failure. This reduction is very small and can be neglected.

· Besides the probability of failure, the effect of the depth-dependent character on the pressure
head profile, the factor of safety profile, the elevation of the critical failure surface, and the
flux are also discussed.

An increase of the coefficient of variation of ks can significantly increase the probability of failure
in both transient and steady state infiltration.

Moreover, it is found that the spatial correlation length of ln(ks) has a significant effect on the
probability of failure. The probability of failure is the highest when the spatial correlation length of
ln(ks) is at a moderate level. A higher or lower spatial correlation length can reduce the probability
of failure during the infiltration. This is because the moderate spatial correlation length can make
the random field of ks has the greatest fluctuation.

It can be shown that the effect of the depth-dependent character is different for different cases of
geotechnical practice, since the depth-dependent character has little effect on the one-dimensional
settlement, while it has significant effects on both the infiltration and infinite slope stability analy-
sis.
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8.2. Recommendations for future study

To give a closure to this thesis, the following recommendations for future researches can be given:

· The effect of stress level on the properties of cohesive soil. This study focuses on the effect
of stress level on the stochastic parameters of void ratio related properties of sand. Since
there is a big difference between the sandy soil and cohesive soil, it is necessary to change
the material from sand into a cohesive soil and then to analyze the results. It can be expected
that the variability of water content and cohesion have a strong effect to all kinds of stability-
problems.

· How does the depth-dependent character of the stochastic parameters of the other void ratio
related parameters affect geotechnical practice? In this thesis, only the variation of void ratio
and saturated hydraulic conductivity are regarded to be depth-dependent. The effect of the
variability of other void ratio related parameters might be worthy of study.

· Only the settlement analysis and infinite slope stability analysis are carried out consider-
ing the depth-dependent character. Since the effect of the depth-dependent character is
different for different geotechnical applications, it is necessary to find out the effect of this
depth-dependent character on the other geotechnical applications. Meanwhile, only one-
dimensional simulations are carried out in this thesis, it is necessary to carry out the two-
dimensional and three-dimensional simulations, and to compare the results.

· The depth-dependent character of both the void ratio and the ks is assumed to reduce linearly
with soil depth in this thesis. However, the trend is non-linear in reality. It is necessary to
find the real trends of these stochastic parameters through experiments, and then to carry
out some simulations based on the real trends.

· In this thesis, only one variable is considered, the cross-correlation between void ratio related
variables of sand is neglected. Therefore, it might be a good topic to study the effect of
the depth-dependent character on geotechnical practice considering the cross-correlation of
variables.
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A. Appendix - Method of isotropic RF
generation, its validation and limitation

A.1. Isotropic RF generation

Hicks and Samy (2002) provided a way to generate an anisotropic random field with both δv and
δh constant, and δv 6= δh. The basic steps are:

Step 1. Generate an isotropic normalized spatial correlated random field based on δ=δh (step 1
in Figure A.1). Detail steps are already explained in chapter 4 (Step 2 - Step 3, stationary random
field generation).

Step 2. Distort the random field in the vertical direction by compressing the cells by a distor-
tion ratio ξ = δh/δv, as is shown in step 2 of Figure A.1. ξ is an integer here. After distortion,
the element size in the vertical direction is ξ times shorter, and the original element contains ξ
elements.

Step 3. Average cell values in the vertical direction so that new square cells are produced, as is
shown in step 3 of Figure A.1.

Step 4. Transfer the cell values directly onto the sampling points in the problem domain.

Step 5. Transform the sampling point values into the true value using the mean and variance.

Figure A.1.: Schematic diagram of the first 3 steps

For instance: as is shown in Figure A.2a, the isotropic normalized spatial correlated Gaussian
random field is generated, it contains 256*256 elements with both horizontal and vertical spatial
correlation length are 32. When the δh 6= δv, the random field needs to be distorted, as is shown
in Figure A.2b-d where the δv = 16, 8, 4, respectively. Then the distorted random field can be
transferred to the final random field base on its true mean, variance, and distribution.
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(a) δv=32

(b) δv=16

(c) δv=8

(d) δv=4

Figure A.2.: Anisotropic random field generation through distortion of an isotropic random field
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A.2. Validation and limitation

3000 one-dimensional random fields are generated so as to validate this method. The length of
a random field is 200m with each element 1m, and the original spatial correlation length of the
random field is 20m, with its mean and standard deviation zero and unit, respectively. Then these
random fields are distorted with ξ=2 using this method. The frequencies of the spatial correlation
length of the 3000 random fields before and after distortion are shown in Figure A.3. Figure A.3a
shows that, before the distortion, the mean spatial correlation length of each random field is about
20m. After distortion, most of the spatial correlation lengths are around 10m (Figure A.3b). So
the distortion can be used to reduce the spatial correlation length or to generate the anisotropic
random field.

ξ

δ

Figure A.3.: Spatial correlation length comparison (a) before and (b) after distortion

ξ

Figure A.4.: Distortion ratio (ξ) VS the standard deviation
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However, the standard deviation reduces linearly with the increase of the distortion ratio, as is
shown in Figure A.4. This reduction can be regarded as one part of the variance reduction. There-
fore, it is necessary to check the true standard deviation after the distortion. If the true standard
deviation is not correct, some compensation should be made.

In summary, the method used by Prof. Hicks can be used to reduce the spatial correlation length
through a distortion of the isotropic stationary random field. However, it should be noted that the
standard deviation can also be reduced during the distortion.
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