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Abstract. Unconstrained models are very often found in the broad spectrum of different 
theories of traffic demand models. In these models there are none or only one-sided 
restrictions influencing the choice of the individual. However in the traffic demand different 
deciding dependencies of the traffic volume with regard to the specific conditions of the 
territory structure potentials exist. Kichhoff and Lohse introduced bi- and tri-linearly 
constrained models to show these dependencies. In principle, the dependencies are described 
as hard, elastic and open boundary sum criteria. In this article a model is formulated which 
gets away from these predefined boundary sum criteria and allows a free determination of 
minimal and maximal boundary sum criteria. The iterative solution algorithm is shown 
according to a FURNESS procedure at the same time. With the approach of freely selectable 
minimal and maximal boundary sum criteria the modeling transport planner gets the 
possibility to show the traffic event even better. Furthermore all common boundary sum 
criteria can be calculated with this model. Therewith the often necessary and sensible 
standard and special cases can also be modeled. 
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1 INTRODUCTION 

Traffic demand can be described as satisfaction of the need “locomotion”. This is caused 
by the spatial separation of different activities (e.g.: home, work etc.). Corresponding to this 
traffic demand models shall qualitatively and quantitatively describe the translocations 
realized according to the causes of the traffic. This means trip generation, distribution, mode 
choice and route choice under political, economic and traffic planning conditions. 

The models used for the calculation of traffic demand offer a broad spectrum of most 
different model theories. Nevertheless demand models almost exclusively used in the strategic 
transport planning are differentiated by spatial elements. Traffic analysis zones are origins and 
destinations of the traffic demand. They therefore require the analysis of traffic infrastructural 
uses. In high-quality models destination choice and mode choice (partly also route choice) are 
calculated simultaneously1 for every single demand segment (e.g.: Origin-Destination-
Groups). On the one hand, the simultaneity justifies itself because the destination choice and 
the mode choice in many cases are interdependent. On the other hand, the sequential model 
structures show model conditional deficiencies. 

Benefit maximizing approaches are frequently used in practice. These very often are 
unconstrained. A model, which only is subject to a restriction on the side of the origin is also 
an unconstrained model (e. g.: on the side of origin fixed Logit-Model). A constraint only 
results from a restriction on the side of the origin and on the side of destination. Therefore 
these model theories assume that none or only one sided restrictions influence the choice of 
the individuals. So the absence of constraints (also called side conditions or boundary sum 
criteria, the criteria refer to the boundary sums of the trip flow matrix) allows the benefit 
maximization of the traffic participants in the open decision space. But this does not 
correspond to the real traffic situation! Different decisive dependencies of traffic volume and 
the specific conditions of the territory structure potentials exist in the actual traffic situation 
(e. g.: number of accommodations, number of workplaces, size of shopping centers etc.). 

2 BOUNDARY SUM CRITERIA 

However, to show these different dependencies of the traffic volume with regard to 
different specific conditions, the mentioned boundary sum criteria must certainly enter the 
model theory. Corresponding to this the boundary sum criteria are complied in the doubly 
constrained model of destination choice of Kirchhoff (cp. [4]). 
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1 Whether it is a (pure) simultaneous model or (hierarchical) Nested-Logit-Model is not decisively. In these 
models only the scaling or the nest parameter is frequently different. 
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On this basis Lohse (cp. [6]) developed a three sided constrained model of destination choice 
and mode choice. 
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These models with boundary sum criteria have to be assigned to the econometric models. As 
choice-theoretical models of the discrete choice these assume that a person has a choice of a 
set of alternatives and this person tries to maximize the benefit through his choice. 

Besides the dependency of the traffic volume on the territory structure potentials further 
dependencies of the accessibility exist in the actual traffic situation. These must also be paid 
attention to. Specific restrictive conditions concerning the traffic participants competing for 
the potentials, however, have to be taken into account too. Authoritative territory structure 
sizes, accessibility as well as specific conditions of the traffic situation in the investigation 
area influence the actual traffic situation basically and therefore have to be included in traffic 
planning calculation procedures. Furthermore it has to be taken into account that depending 
on the activity the following different dependencies of the traffic volume on these influence 
sizes exists: 

- exclusively on the territory structure sizes 

- on the territory structure sizes and the accessibility 

- exclusively on the accessibility 

In principle, these dependencies can be divided up into hard, elastic and open boundary sum 
criteria. 

2.1 Hard boundary sum criteria 
Hard boundary sum criteria consider the spatially not substitutable compulsory activities2 

(e. g.: work, education). So the destination cannot be changed immediately. For example, 
normally it is not possible to change the place of work at short notice. The expected value of 
the corresponding volume of traffic therefore is exclusively calculated with the authoritative 
structure sizes. The accessibility does not play a role for the compliance with the boundary 
sum. This way a boundary sum criterion results that the traffic volume has to comply with in 
the later calculation of the distribution and mode choice. The mathematical formulation of the 
hard boundary sum criteria in the 3 dimensional model (origin, destination, mode) therefore 
is: 

                                                 
2 Destinations which have to be found and not (permanently) chosen or changed newly (e.g.: work, school) are 
described as not substitutable compulsory destinations. This is not the case at substitutable destinations. Here a 
new destination can be found (e.g: shopping) in dependence of the premises (permanently). 

Q origin traffic volume 
Z destination traffic volume 
A traffic volume of a mode (Modal Split) 
i Index of origin (i = 1,...,m) 
j Index of destination (j = 1,...,n) 
k Index of mode (k = 1,...,l) 
v traffic flow
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Of course these hard boundary sum criteria by Lohse can also be transferred to the model 
by Kirchhoff. Lohse enhanced these boundary sum criteria to elastic boundary sum criteria 
(cp. Lohse et al. [6], Schiller [8]). 

2.2 Elastic boundary sum criteria 
Unlike hard boundary sum criteria in the context of substitutable activities (e. g.: shopping, 

other) the expected value of the volume of traffic results no longer exclusively from the 
authoritative structure sizes. Besides that the accessibility also plays a decisive role in the 
choice of competitive activities. So traffic participants also estimate the translocation effort in 
their destination choice for different shopping centers, for example. If the shopping center 
reachable with the lowest effort is not yet occupied totally by "competitive" traffic 
participants, the traffic participants will select this shopping center with a greater probability. 
They change their destination choice as soon as the destination reaches overload. So the trip 
generation only calculates maximum potentials (capacities) which do not have to be fully 
utilised, though. The traffic flows are calculated proportionally to the potentials and the 
accessibility in the distribution and mode choice. However, it is necessary not to exceed the 
potentials of the traffic analysis zones. This also means that the potentials are not made full 
use of, as long as the competition of the supply potentials and their distribution in the area do 
not force them to. It is a general precondition with elastic boundary sum criteria, though, that 
a sufficient capacity must be available in the traffic analysis zones to offer a compensation in 
another place. The mathematical formulation of the elastic boundary sum criteria in the 3 
dimensional model therefore is: 
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2.3 Open boundary sum criteria 
In this (special-) case the traffic volume of substitutable activities results from accessibility 

of competitive destinations and the way of the authoritative structure sizes, whether a 
destination is available at all or not. In this case potential limits or capacity limits of the 
structure sizes do not have any effect. This case appears in traffic planning application cases 
rather seldomly, though. The mathematical formulation of the open boundary sum criteria in 
the 3 dimensional model would therefore appear as follows: 

Qi
max max. origin traffic volume 

Zj
max max. destination traffic volume 
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Thus combinations of boundary sum criteria arise depending on the examination object or 
on the considered demand segments, which can appear in numerous forms (cp. Table 1). If no 
open boundary sum criteria exists, the model is described as constrained. 

 

 origin traffic 
volume (Q) 

destination traffic 
volume (Z) 

complete traffic 
volume model constraints 

1 hard hard fix constrained 
2 hard elastic fix constrained 
3 hard open fix not constrained 
4 elastic elastic fix constrained 
5 open open fix not constrained 

Table 1: Possibilities of the combination of boundary sum criteria 

Caused by the fact that the boundary sum criteria must be adhered, a restrictive 
requirement is added to the benefit maximization unlike models without boundary sum 
criteria. The traffic participants still strive for the benefit maximum, but they can not achieve 
it in the same extent any more because of the limiting boundary sum criteria. So the traffic 
participants try to get close to the benefit maximum if possible and to minimize the arising 
loss of benefit. This means that because of the competing decision behaviors of the traffic 
participants, the matrix in the event space with boundary sum criteria differs least possible 
from the matrix in the event space without boundary sum criteria. 

3 INFORMATION PROFIT MINIMIZATION 

The assessment and decision process of the traffic participants represents a minimization of 
the benefit loss. Through this, that the traffic participants can not achieve the benefit 
maximum because of the limiting boundary sum criteria in the same extent any more and 
nevertheless try to get close to the benefit maximum if possible or try to minimize the arising 
benefit loss. This benefit loss can theoretically be modeled with the minimization of an 
interspace measure defined between two states (without and with boundary sum criteria). 
With the information profit minimization 

 I ln αα
β

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥= − ⋅ ⎟⎜ ⎟⎢ ⎥⎟⎜⎝ ⎠⎣ ⎦
∑  (6) 

the information theory provides an adequate method to keep the benefit loss least possible. 
The tri-linear model with boundary sum criteria can also be described as an extreme value 
model with side conditions, in which the minimization of the information profit from the 
given assessment matrix to the sought-after traffic flow matrix is the object function. 
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To calculate the minimization of the information profit, different optimization algorithms 
can be used. These are introduced in detail in Kirchhoff (cp. [4]), Lohse et al. (cp. [6]) and 
Schiller (cp. [8]). 

Together with the assessment probabilities3, the basically introduced boundary sum criteria 
and the mentioned optimization conditions concerning the information profit minimization, 
solution regulations and iterative procedures (e. g.: DETROIT, FRATAR, FURNESS, 
MULTI) can be described for a successive approximate solution of the tri-linear general 
model and its boundary sum criteria (cp. z. B.: [5], [6], [8]). 

4 FURTHER ANALYSIS OF THE BOUNDARY SUM CRITERIA 

Elastic boundary sum criteria are characterized by maximum potentials or maximum 
boundary sum criteria. These do not have to reach capacity, but may not be exceed it either. 
These maximum criteria were justified with the availabilities and restrictions of the real traffic 
situation. But there also are single (selective) destinations which always attract a minimum of 
traffic despite a bad accessibility. Even though these destinations show the same supply 
parameters as well as other destinations from the theoretical transport planning view. So these 
destinations have an attraction potential which can not or only very difficult be quantified. (Of 
course this minimal traffic volume can also increase up to a maximum which is dependent on 
the competition with other destinations.) This is only one of several reasons to generate 
minimal boundary sum criteria too. According to this, these minimal and maximal boundary 
sum criteria must be appropriately freely selectable, to be able to show the traffic situation as 
exactly as possible or necessary. 
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Furthermore the choice of the boundary sum criteria should not limit the possibilities of the 
modeling transport planner and also allow the often necessary and sensible standard and 
special cases besides the general. One of these standard or special cases is to describe the 
boundary sum criteria as "hard". 
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3 The explicit analysis of determination of the assessment probability shall be renounced here. The combination 
of the efforts (keyword: Generalized Costs) and the real assessment function form (keyword: e-function or EVA-
, Box Cox-, Box-Tuckey-fct. etc.) should always be taken into account. 
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Related to the approach of the minimal and maximal boundary sum criteria in fact the case 
occurs that the minimal boundary sum criteria are equal to the maximum boundary sum 
criteria. 
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The elastic boundary sum criteria 
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as well as the open boundary sum criteria 
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also represent a special case. It can be assumed that the not freely selectable minimal values 
of Lohse et al. are zero. The boundary sum criteria consequently have to be defined as follows 
relating to the approach of the freely selectable minimal and maximal boundary sum criteria: 
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and accordingly 
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The necessity or real existence of minimal boundary sum criteria is described in the 
preceding text, but no calculation approach for freely selectable minimal and maximal 
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boundary sum criteria exists to date. The developed approach shall be shown in greater detail 
in the following due to its complexity. 

5 SOLUTION METHODS WITH MINIMAL AND MAXIMAL BOUNDARY SUM 
CRITERIA 

For the simplification and clarity hard boundary sum criteria only are considered on the 
side of origin. This means Qi and not min max

i iQ Q= ! However minimal and maximal 
boundary sum criteria are considered on the destination side. Furthermore fixed mode quotas 
Ak are used. Herewith a model in the short notation of a tri-linear model  
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can be formulated. Since this task is obviously not solvable the solution with the smallest 
information profit from all possible solutions has to be chosen. The convex optimization 
problem has to be enlarged correspondingly to Bregmann (cp. [1]). 
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The following affine linear side criteria have to be applied: 
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In turn this convex optimization problem (16) with the side criteria (17) can be 
characterized as a generalization of the information profit minimization. For the solution of 
this problem the saddle point of the accompanying LAGRANGE-equation 
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has to be determined (cp. Ellinger et al. [2]). The calculation of the minimum is treated 
approximately analogously for the calculation of the maximum. This means that own 
additional factors have to be included in the Lagrange-function. These factors have an sign 
restriction, though, so the complementarity condition and the not negativity condition must be 
extended by these inequalities. The quality of the saddle point can be described with the 
authoritative Kuhn-Tucker-conditions. 
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The relation 
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corresponds with 
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By using (21) in (18) under consideration of (19) the following equivalent minimum 
problem arises in which only known sizes and the parameters may stand. 
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The partial derivations of the zero point consideration have to be formed for the dual object 
function. The Lagrange-function is going to reduce at a part of its domain and to maximize 
the restricted function. This restricted function only depends on the Lagrange -factors (dual 
variables). The only side criteria of the dual problem are the sign restrictions for the variables 
which are part of the inequalities of the primal problem. 
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In this place a simple coordinate descent method for Qi and Ak can be derived for the 
solution of the dual problem. Is for λi(p) in the p-th iteration step an approximation for the 

dual variables known and consequently for (-λi) the corresponding approximation factor fqi, 

arises of the way down in the λi-direction in the (p+1)-th iteration step as new approximation 
the clear solution of the equation: 

 ( )( ) ( )( )( )i ijk j j k i
j k

p 1exp BW exp Q 0λ υ μ ο− +− ⋅ ⋅ − − + + =∑∑  (24) 

Now the approach shown in equation (24) of a coordinate descent method can easily be 
transferred into a FURNESS-procedure, as the most popular iterative procedure4. But before 
this approach shall further be described, the common names have to be changed. The factors 
in the approach (e. g.: fzj) and in the approximations of the iterative procedure (e. g.: fzj(p)) 
should not correspond to each other in name. For example ( )j

p
fz p∏  is only an 

approximation to fzj, so ( )j j
p

fz p fz≅∏ . So the factors in the approach will be furthermore 

described as fzj but the factors in the iterative procedure as gzj(p), so ( )j j
p

gz p fz≅∏ . 

                                                 
4 The MULTI-procedure calculates all dimensions simultaneously and is consequently faster than the 
FURNESS-procedure. This iterative solution method was also adapted to minimal and maximum boundary sum 
criteria. The procedure shall not be further deepened in this place, though. 
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A modified procedure of the already mentioned FURNESS-procedure can be derived from 
equation (24): 
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At the following way down in μi- and νj-direction the not negativity conditions of (19) are 
taken into account. The new approximations of the equations 
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only then are certain if they lie in the permitted area of j 0μ ≥  or j 0υ ≥ . If this is not the 

case, so μi =0 or νj =0. 

Considering the minimal and maximal boundary sum criteria this means for the new 
(p+1)-approximation of gzj: 
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If the traffic volume Zj(p) exceeds the minimal or maximal restrictions min
jZ  or max

jZ , the 
algorithm corrects gzj(p+1) correspondingly. The factor gzj(p+1)=1 arises if Zj(p) lies within 
the minimal or maximal restrictions according to the information profit minimization where 
no further information shall be introduced in the matrix. This is realized with the factor 1. 
According to the gqi-factor the gak-factor can also be derived. 
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Start solution: ( ) ( ) ( ) ( )i j k ijk ijkgq gz ga 1;  v BW1 1 1 1= = = =  

So with this explanatory model it is not only possibly to choose minimal and maximal 
boundary sum criteria freely and consequently display the (traffic-) infrastructure relating to 
the conditions in a better way. Different boundary sum criteria on the side of the production 
and/or attraction within one demand segment can also be calculated. To this an example 
calculation is shown in Figure 1 where different combinations of boundary sum criteria are 
calculated mixedly. The TAN 1 lies very favorable, however the TAN 5 lies very unfavorable. 
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Corresponding the assessment probability BWijk is very high for the TAN 1, turned over 
correspondingly at TAN 5. This example shows the contrasts of the boundary sum criteria and 
the accessibility or assessment and the effects of the minimal and maximal boundary sum 
criteria very good. 

Figure 1: Traffic flow matrixes with minimal and maximal boundary sum criteria  

Figure 2: General parameters of Figure 1 

6 OBSERVANCE OF POTENTIALS WITHIN THE SOLUTION METHODS 

The derivation of the solution method should not be complicated unnecessarily, so the 
observance of the potentials should be carried out only in this place. The ability of a traffic 
analysis zone to take a (origin- or destination-) traffic volume up to a maximum potential 

Mode Modal-Split reference actual
Private Transport (PrT) 0,60 300,00 300,00
Public Transport (PuT) 0,25 125,00 125,00

Bicycle (B) 0,10 50,00 50,00
Pedestrian (P) 0,05 25,00 25,00

aggregate 1,00 500,00 500,00

Multi-Procedure:
i / j   PrT 1 2 3 4 5 Qi-actual

1 0,00 6,03 6,03 5,25 22,26 39,56
2 2,68 0,00 39,35 33,61 0,00 75,64
3 2,68 39,35 0,00 34,12 0,00 76,15
4 2,56 36,94 37,50 0,00 0,00 77,00
5 31,65 0,00 0,00 0,00 0,00 31,65

300,00
Zj-actual 39,56 82,32 82,88 72,98 22,26 300,00 300,00

i / j   PuT 1 2 3 4 5 Qi-actual
1 0,00 2,82 2,82 2,45 10,40 18,48
2 1,25 0,00 17,29 11,17 0,00 29,71
3 1,25 17,30 0,00 14,29 0,00 32,84
4 1,20 12,28 15,70 0,00 0,00 29,18
5 14,78 0,00 0,00 0,00 0,00 14,79

125,00
Zj-actual 18,48 32,39 35,81 27,91 10,40 125,00 125,00

i / j   B 1 2 3 4 5 Qi-actual
1 0,00 0,73 0,73 0,64 2,71 4,82
2 0,33 4,83 4,83 4,21 17,85 32,05
3 0,33 3,63 0,00 2,28 0,00 6,24
4 0,31 0,22 2,51 0,00 0,00 3,04
5 3,86 0,00 0,00 0,00 0,00 3,86

50,00
Zj-actual 4,82 9,42 8,07 7,13 20,56 50,00 50,00

i / j   P 1 2 3 4 5 Qi-actual
1 0,00 1,85 1,85 1,61 6,83 12,13
2 0,82 0,00 0,36 0,00 0,00 1,19
3 0,82 0,00 0,00 0,37 0,00 1,19
4 0,79 0,00 0,00 0,00 0,00 0,79
5 9,71 0,00 0,00 0,00 0,00 9,71

25,00
Zj-actual 12,13 1,85 2,21 1,98 6,83 25,00 25,00

Comparison sums:
Qi 75,00 138,58 116,42 110,00 60,00 500,00

bsc min 0,00 100,00 100,00 110,00 60,00 370,00
bsc max 75,00 150,00 150,00 110,00 150,00 635,00

Zj 75,00 125,98 128,97 110,00 60,05 500,00
bsc min 0,00 100,00 100,00 110,00 60,00 370,00
bsc max 75,00 150,00 150,00 110,00 150,00 635,00
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limit is indicated as potential. At example of the destination traffic potential meant this 
P max
j jZ Z≤ . Just at procedures where minimal and maximal boundary sum criteria do not 

agree with the potentials, the single structure sizes must also have influence on the assessment 
probability. This justifies itself by the fact that greater potentials are probability theoretically 
knowner and perform consequently a greater appeal than smaller potentials. These sizes 
(publicity by potential of the destination) consequently get involved in the calculation 
independently of the direct assessment probability (effort). The inclusion of the potentials is 
as a rule carried out in the first iteration step and also represents a part of the start solution. 

 ( ) P
ijk ijk jv BW Z⋅1 =  (29) 

At this exemplary start solution the destination potentials therefore have influence on the 
calculation of traffic flows (together with the assessment probability) of the first iteration step. 
The start solution can naturally contain only such factors which are also confessed at the 
beginning of the calculation, though. An explanatory model at the calculation of traffic flows 
therefore can be written down in the following form: 

 

P
ji k

ijk ijk i j kP

P
ji k

ijk i j kP

ZQ Av BW q z a V c
V VV

ZQ ABW q z a c
V V

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 (30) 

Since the factors qi, zj and ak have the value 1 in the first iteration step, the start solution 

 ( )
P
ji k

ijk ijk P
ZQ Av 1 BW V c

V VV
= ⋅ ⋅ ⋅ ⋅ ⋅  (31) 

for equation (16) can be formed as follows: 

 

P
ji k

ijk i j kP
ijk P

ji j k i k
ijk P

ZQ ABW q z a c
V VI v ln Min !

Z Q ABW c
VV

⎡ ⎤⎛ ⎞⋅ ⎟⎜⎢ ⎥⎟⎜ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥= ⋅ →⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⋅ ⎟⎜⎢ ⎥⋅ ⋅ ⋅ ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦

∑∑∑  (32) 

The (destination-) potentials P
jZ  will be justified involved in the calculation. By this step a 

consistent start solution arises containing the same terms in numerator and denominator 
except the increase- or correction factors. In turn these are the result of the compliance with 
the boundary sum criteria. 

 

7 DETERMINATION OF MINIMAL AND MAXIMAL BOUNDARY SUM 
CRITERIA AND THE POTENTIALS 

The legitimate question about the determination of minimal and maximal boundary sum 
criteria arises in this place if these are not known, for example by structure size specifications. 
In the simplest case the minimal and maximal boundary sum criteria could be chosen freely. 
An approach is also possible, which Lohse et al. (cp. [6] S. 16 ff.) use in their trip generation 
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model. Shown at a simplified example, at first the general (destination-) traffic volume will be 
calculated as follows 

 j j j jZ ER SG v= ⋅ ⋅  (33) 

The overload factor ue used for the determination of the elastic (only maximum) boundary 
sum criteria can also be used for the determination of the minimal and maximal boundary sum 
criteria. 

 
min min
j j j j j

max max
j j j j j

Z ER SG v ue

Z ER SG v ue

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅
 (34) 

At this a general problem of the transport planning gets visible, that none or only insufficient 
data are existing for the attraction side. 

The potentials still have to be determined if these are not given, though. In turn several 
possibilities are conceivable. Besides the free determination of the potentials P

jZ , these can 

also be decided on P max
j jZ Z= . Furthermore a calculation of the potentials (e.g. mean 

average values from upper and low limits) is possible under circumstances, too. 

 
min max
j jP

j min max
j j

j j

Z Z
Z V

Z Z
+

= ⋅
+∑ ∑

 (35) 

8 FURTHER CONSIDERATIONS 

The differences of the boundary sum criteria defined as hard, elastic and open up till now 
as well as the possibility of the mixture (cp. Figure 1) considerably complicate the renewed 
definition of the boundary sum criteria. The attempt of a definition shall not be made either, 
though. It is better to consider the real specifications of the minimal and maximal boundary 
sum criteria. 

As an expansion of the introduced model a reaction to the utilisation of destinations was 
also formulated. The overload of a destination is behavior specifically and consequently 
parameterisable. If at a high demand only one single destination exists, for example, this is 
made full use up to 100% of its capacity, although it is more unattractive than at a moderate 
utilisation. If, in contrast, several alternative attractive destinations exists and they are not 
fully occupied, they are already chosen at increasing utilisation of a destination (for example 
at 80 -90 % utilisation). All alternative destination can also be fully occupied till 100%, 
however, depending on necessity. 

The combination of the introduced model with other models is also possible. The faqik- and 
fazjk-factors described by Schiller in [8], which ones act for the restriction of single modes in 
traffic analysis zones, (e. g.: modeling of the resting traffic), be able to be introduced to the 
model theory of the minimal and maximal boundary sum criteria as follows: 

ER Generation rates or attraction rates 
SG Structure size 
v Internal travel quota 
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ijk ijk i j k ik jk

ijk i
j k

max
ijk ik

j

min
ijk j

i k

max
ijk j

i k

max
ijk jk

i

ijk k
i j

v BW fq fz fa faq faz

v Q

v Q

v Z

v Z

v Z

v A

= ⋅ ⋅ ⋅ ⋅ ⋅

=

≤

≥

≤

≤

=

∑∑

∑

∑∑

∑∑

∑

∑∑

 (36) 

A universal and consistent model for the simultaneous destination choice and mode choice 
of individuals results with that. With it moving and resting traffic can be calculated on the 
same homogeneous model theoretical basis. All boundary sum criteria can be free chosen. It 
is not relevant whether they related to the traffic analysis zone or to the traffic analysis zone in 
connection with a mode. 

In conclusion it can be noticed that with this explanatory model all to date known 
boundary sum criteria can be calculated. The solution algorithm iterates speedily and stably. 
The explanations shown here and restricted to 3 dimensions (i, j, k) can as well be extended to 
n-linear systems of equations. The advantages of the minimal and maximal boundary sum 
criteria can only be assessed to date and must prove themselves in the reality. First attempts 
show very good results, though. 
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