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Abstract. In many applications such as parameter identification of oscillating systems in civil
enginee-ring, speech processing, image processing and others we are interested in the frequency
con-tent of a signal locally in time. As a start wavelet analysis provides a time-scale decomposi-
tion of signals, but this wavelet transform can be connected with an appropriate time-frequency
decomposition. For instance in Matlab are defined pseudo-frequencies of wavelet scales as
frequency centers of the corresponding bands. This frequency bands overlap more or less which
depends on the choice of the biorthogonal wavelet system. Such a definition of frequency center
is possible and useful, because different frequencies predominate at different dyadic scales of
a wavelet decomposition or rather at different nodes of a wavelet packet decomposition tree.
The goal of this work is to offer better algorithms for characterising frequency band behaviour
and for calculating frequency centers of orthogonal and biorthogonal wavelet systems. This
will be done with some product formulas in frequency domain. Now the connecting procedu-res
are more analytical based, better connected with wavelet theory and more assessable. This
procedures doesn’t need any time approximation of the wavelet and scaling functions. The
method only works in the case of biorthogonal wavelet systems, where scaling functions and
wavelets are defined over discrete filters. But this is the practically essential case, because it
is connected with fast algorithms (FWT, Mallat Algorithm). At the end corresponding to the
wavelet transform some closed formulas of pure oscillations are given. They can generally used
to compare the application of different wavelets in the FWT regarding it’s frequency behaviour.
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1 INTRODUCTION

In many applications such as parameter identification of oscillating systems, speech pro-
cessing, atrial signal-averaged electrocardiograms and others we are interested in the frequency
content of a signal locally in time. Such applications are connected with so called non-stationary
signals, where essentiell parameters (frequency, phase etc.) evolve over time. This signals have
transitory characteristics like drifts, trends, abrupt changes, beginnings and ends of events. Spe-
cial cases are chirp signals, which can formulate with the help of harmonic functions. Chirp
signals with a linear or quadratic time-frequency pattern are used in [16] to test algorithms in
time frequency analysis, which are developed on the basis of wavelet or wavelet packet decom-
positions.

As a start wavelet analysis provides a time-scale decomposition of signals. How this is
connected with an appropriate time-frequency decomposition? In [16] for instance is given the
procedure scal2frq(a,’wname’,delta), which associates a pseudo-frequency to the scale a for
a given wavelet ’wname’. Of course this pseudo-frequency depends on the sampling period
delta. So especially one get a pseudo-period or pseudo-frequency for every discrete scale level
produced by FWT. FWT is the Fast Wavelet Transform realized by the Mallat-algorithm. It
decomposes the signal in a hierarchical set of approximations and details.

The procedure scal2frq needs freq = centfrq(’wname’,iter), which returns a frequency center
of a given wavelet in Hertz. Here the parameter iter is the number of iterations used by the
wavefun-algorithm to approximate the wavelet function. On this by ’wavefun’ produced time
array the algorithm ’centfrq’ applies the Fast Fourier-transform. So there is provided a basis
for producing the amplitude spectrum of the wavelet. Then there center frequency is simply
defined by the argument which maximizes this spectrum. Such procedures are possible because
different frequencies predominate at different dyadic scales of a wavelet decomposition or rather
at different nodes of a wavelet packet decomposition tree. Every scale or node can be interpreted
as a frequency band with a center. Dependent on the choice of the wavelet this frequency bands
overlap more or less.

The goal of this work is to offer better algorithms for characterising frequency band behavior
and calculating frequency centers of orthogonal and biorthogonal waveletssystems. This will
be done with some product formulas in frequency domain, cp.[12], [7]. Now the connecting
procedures are more analytical based, better connected with wavelet theory, more assessable
and quicker. This procedures doesn’t need any time approximation of the wavelet function. So
also in practice the necessary link between scale and frequency will be improved. The method
only works in the case of orthogonal or biorthogonal Wavelet systems, where scaling functions
and wavelets are defined over discrete filters. But this is the practically essential case, because
it is connected with fast algorithms (FWT, Mallat algorithm).

2 BASICS FROM WAVELET THEORY

Here finite discrete filters are defined as elements of RZ with finite many entries different
from 0. With appropriate indices s, u ∈ Z all used filters are assumed of the type

c =
( · · · , 0, 0, cs, · · · , cu, 0, 0, · · · )

. (1)
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A biorthogonal wavelet system is connected with four filters {h, h̃, g, g̃} which satisfy the
following properties

∑

k

hk h̃k+2l = δl0 ,
∑

k

gk g̃k+2l = δl0 , (2)

∑

k

h̃k gk+2l = 0 ,
∑

k

hk g̃k+2l = 0 , (3)

∑

k

hk =
∑

k

h̃k =
√

2 ,
∑

k

gk =
∑

k

g̃k = 0 . (4)

The two integers s, u are chosen such that all four filters can be written in the form (1) with the
same minimal [s, u] ⊂ Z. It follows

∑

k

(−1)khk = 0 and
∑

k

(−1)kh̃k = 0. (5)

Further conclusions and relations to other biorthogonal filter representations are given in [12],
cp. [7], [8], and for the special orthogonal case in [1], [9]. If this filters fulfill some further
properties, which are related to the eigenvalues of two Lawton matrices, then by

ϕ(t) =
√

2
∑

k

hk ϕ(2t− k) , ψ(t) =
√

2
∑

k

gk ϕ(2t− k) (6)

ϕ̃(t) =
√

2
∑

k

h̃k ϕ̃(2t− k) ψ̃(t) =
√

2
∑

k

g̃k ϕ̃(2t− k) (7)

∞∫

−∞

ϕ(t) dt =

∞∫

−∞

ϕ̃(t) dt = 1 . (8)

scaling functions ϕ, ϕ̃ ∈ L2(R) and wavelets ψ, ψ̃ ∈ L2(R) are determined uniquely. They
have compact support, such that with the above defined s, u

supp(ϕ) ⊂ [s, u] , supp(ϕ̃) ⊂ [s, u] (9)

is valid. For i, j, k, l ∈ Z the deduced variants

ϕj,k(t) =
√

2−j ϕ(2−j t− k), ψj,k(t) =
√

2−j ψ(2−j t− k), · · · , · · · , (10)

satisfy the biorthogonal relations

〈ϕj,k , ϕ̃j,l〉 = δk,l (11)
〈ϕi,k , ψ̃j,l〉 = 〈ϕ̃i,k , ψj,l〉 = 0 for i ≥ j (12)

〈ψi,k , ψ̃j,l〉 = δi,j · δk,l . (13)

In particular {ψi,k} and {ψ̃i,k} build a pair of biorthogonal Riesz bases in L2(R), cp.[7] and
[8]. Between different function levels filter equations of the type

ϕj+1,r =
u+2r∑

ν=s+2r

hν−2r ϕj,ν , ψj+1,r =
u+2r∑

ν=s+2r

gν−2r ϕj,ν (14)
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and

ϕ̃j+1,r =
u+2r∑

ν=s+2r

h̃ν−2r ϕ̃j,ν , ψ̃j+1,r =
u+2r∑

ν=s+2r

g̃ν−2r ϕ̃j,ν . (15)

are valid. Using here ϕ̃, ψ̃ as analysis functions and ϕ, ψ as synthesis functions we get for
the projection on the level J

(PJf)(t) =
∑

k

S̃Jk ϕJ,k(t) with S̃Jk = 〈f , ϕ̃J,k〉 . (16)

Let fs be a sampled signal. After suitable dilation it can be approximated by (16) on the level
J = 0 using wavelet sampling approximation or an preprocessing method for getting the basic
coefficients S̃0k, cp.[12].

P0(f)(t) =
∑

k

S̃0,k ϕ0,k(t) (17)

FWT results from successive applying of the decomposition formulas

S̃l+1,k =
∑

r

h̃r−2k S̃l,r , W̃l+1,k =
〈
f , ψ̃l+1,k

〉
=

∑
r

g̃r−2k S̃l,r. (18)

It gives the corresponding representation to (17) with the wavelet coefficients W̃lk of different
levels l and the scaling coefficients S̃Lk of the level L

(P0f)(t) =
∑

k

S̃Lk ϕ̃L,k +
L∑

l=1

{∑

k

W̃lk ψl,k

}
. (19)

With increasing l the frequency center of the inner sums

(Qlf)(t) =
∑

k

W̃lk ψl,k (20)

decreases step by step by the factor 0.5. Here every wavelet ψl,k has the same amplitude
spectrum.

Using wavelet packets induced by appropriate {h, h̃, g, g̃} you get trees with the possibility
of stronger locally frequency resolution, cp.[3], [18].
The inverse formula of (18) is known as

S̃l,k =
∑

r

hk−2r S̃l−1,r +
∑

r

gk−2r W̃l−1,r . (21)

3 FREQUENCY BAND DECOMPOSITIONS

With the Fourier-transform

f̂ (ξ) :=

∞∫

−∞

f (t) e−i 2 π ξt dt (22)

and the so called Fourier-filters

mo(ξ) =

√
2

2

∑

k

hk e−i2kπξ, m1(ξ) =

√
2

2

∑

k

gk e−i2kπξ (23)
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in frequency domain the scaling equations (6) become the size

ϕ̂(ξ) = mo

(
ξ

2

)
ϕ̂

(
ξ

2

)
and ψ̂(ξ) = m1

(
ξ

2

)
ϕ̂

(
ξ

2

)
. (24)

This are the corresponding frequency representations of the defining scaling equations (6). The
left equation in (24) yields to a formula for the Fourier-transform of the scaling function ϕ

ϕ̂(ξ) =
∞∏

j=1

mo

(
2−jξ

)
, (25)

if the requirements of Lemma 3.1 in [7] are fulfilled, cp. [12]. In the case of mostly used
wavelets, for instance those which are implemented in the Wavelet-Toolbox of Matlab, cp.([16]),
10 factors of the product (25) are enough to get a very good approximation of ϕ̂ in the normed
interval [0, 1]. This gives the possibility to improve considerably the wavelet procedures in
([16]), which are used for determining pseudofrequency centers for wavelet bands. Beyond it
the frequency bands of wavelet scales and the frequency overlapping of neighbored scales can
be sharper characterized. So time-frequency-analysis becomes more exactly. In many applica-
tions one can now better decide the question which wavelet systems are to choose.

Now further formulas will be derived and some tables will be established to realize the
above formulated goals. This formulas give also the possibility of a good visualization of the
corresponding coherences.

With the sequence of substitutions

t 7−→ t− k 7−→ 2−j t− k

and using standard formulas for Fourier-transform one get for (10) the equations

ϕ̂j,k(ξ) =
√

2j exp(−i · 2j+1k π ξ) · ϕ̂(2j ξ) (26)
ψ̂j,k(ξ) =

√
2j exp(−i · 2j+1k π ξ) · ψ̂(2j ξ). (27)

Now by
ϕ̂(2 ξ) = mo(ξ) ϕ̂(ξ), ψ̂(2 ξ) = m1(ξ) ϕ̂(ξ) (28)

and

ϕ̂(2L ξ) = ϕ̂(ξ)
L−1∏
j=0

m0(2
jξ), ψ̂(2L ξ) = ϕ̂(ξ) m1(2

L−1ξ)
L−2∏
j=0

m0(2
jξ) (29)

frequency representations of the dilation-translation variants (10) can be deduced

ψ̂1,k(ξ) = ϕ̂(ξ) · exp(−i · 4kπξ) ·
√

2 m1(ξ) (30)
ψ̂2,k(ξ) = ϕ̂(ξ) · exp(−i · 8kπξ) · 2 m1(2 ξ) m0(ξ) (31)

...

ψ̂L,k(ξ) = ϕ̂(ξ) · exp(−i · 2L+1kπξ) ·
√

2L m1(2
L−1ξ)

L−2∏
j=0

m0(2
jξ) (32)

ϕ̂L,k(ξ) = ϕ̂(ξ) · exp(−i · 2L+1kπξ) ·
√

2L

L−1∏
j=0

m0(2
jξ). (33)
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Thereby the product in (29)and (32) is taken as 1 in the case L = 1. Technical the represen-
tation (32) arises from (33) by substituting m1(2

L−1ξ) with m0(2
L−1ξ).

From (28) result with

ϕ̂1,k(ξ) =
√

2 ϕ̂(ξ) · exp(−i · 4kπξ) ·m0(ξ) (34)
ψ̂1,k(ξ) =

√
2 ϕ̂(ξ) · exp(−i · 4kπξ) ·m1(ξ) (35)

ψ̂2,k(ξ) =
√

2 ψ̂1,k(2 ξ) (36)
...

ψ̂L,k(ξ) =
√

2L−1 ψ̂1,k(2
L−1 ξ) (37)

ϕ̂L,k(ξ) =
√

2L−1 ϕ̂1,k(2
L−1 ξ) (38)

more simply representations of the above formulas. But the drawback of this simple structured
formulas is that ϕ̂ must be known and used in a relative great definition domain. So the work
with a great array becomes necessary. The functions in (30)-(33) must evaluate only on [0, 1].
The dilations of m0, m1 there can be realized simply, because this Fourier-filters are polyno-
mials in z = −i · 2 π ξ. With (34)-(35) are given the frequency contents to the functions of the
first decomposition level. If a deeper decomposition is done then with (37)-(38) are given the
corresponding frequency contents of the last level.

For calculation of frequency centers only amplitude spectra are of interest. In this case from
(35, (37) and (26) one get the simple equations

|ψ̂1,k(ξ)| = |ϕ̂(ξ)| ·
√

2 |m1(ξ)| (39)
|ψ̂(1+l),k(ξ)| =

√
2 |ψ̂l,k(2ξ)| for l = 1, 2, · · · (40)

|ϕ̂L,k(ξ)| =
√

2L |ϕ̂(2L ξ)| (41)

But if we want to avoid using a great definition array for the approximation of (25) its better to
derive from (31)-(33) the equations

|ψ̂2,k(ξ)| = |ϕ̂(ξ)| · 2 |m1(2 ξ)| |m0(ξ)| (42)
...

|ψ̂L,k(ξ)| = |ϕ̂(ξ)| ·
√

2L |m1(2
L−1ξ)|

L−2∏
j=0

|m0(2
jξ)| (43)

|ϕ̂L,k(ξ)| = |ϕ̂(ξ)| ·
√

2L

L−1∏
j=0

|m0(2
jξ)|. (44)

and use this for ξ ∈ [0, 1]. With an appropriate approximation of (25) this formulas pro-
vide a good possibility of characterizing the frequency band decomposition of different wavelet
systems. The frequency overlappings of neighboring wavelet scales and the sharpness of fre-
quency localization of a chosen scale can be very exactly approximated and visualized. The
above remark about the realization of the different dilations to m0 and m1 can be repeated.

The figures 1 - 7 are resulted from this foundation with a corresponding Matlab-program.
Based on the normed sampling frequency 1 there the frequency filter behavior of wavelet sys-
tems is described. The decompositions begin with first decomposition level {ψ1,k(ξ)} , the
chosen decomposition deepness is 4. Here the logarithmic scaling of the horizontal frequency
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axis and the resultant distortions are taken into consideration. In all figures the Nyquist fre-
quency is marked.

As essential examples the following wavelet systems are investigated particularly :

• Daubechies wavelets:
From figure 1 to 3 the frequency decomposition behavior of the Daubechies wavelets from
’db.1’ to db.12 (db.N is a definition in the Wavelet toolbox of Matlab) is shown. One can
see how with the increasing length of filters from 2 to 24 the frequency overlapping of
neighboring scales is decreasing. Practically beginning with order 5 or 6, where the length
of filters is 10 or 12, only directly neighbored Daubechies wavelet scales have common
frequency contents.
In the time domain the Daubechies wavelet ’db.N’ of order N has N moments equal to 0.
Generally a higher number of vanishing moments is useful for compression purposes, cp
[16].

• Symlets:
In the case of Symlet wavelets which are derived from Daubechies wavelets, and which
can be defined as the ”least asymmetric” Daubechies wavelets, we have the same situa-
tion. Until order 4 they coincide with the Daubechies wavelets. Remark that instability
may occur when the order N is too large.

• Coiflets:
In the time domain Coiflets of order N (coifN in Matlab) are characterized by the follow-
ing property:
The wavelet function has 2N moments equal to 0 and the scaling function has 2N-1 mo-
ments equal to 0.
Both functions have now a support of length 6N-1. The functions are much more symmet-
rical than the Daubechies. The first five filter pairs and first five function pairs (wavelet
and scaling function) are implemented in the toolbox, cp [16].
The figures 4 and 5 illustrate the frequency behavior in the case of decomposition deep-
ness 4. Again with increasing length of filters the frequency overlapping of neighboring
scales is decreasing. Practically with order N = 2 or N = 3 beginning, where the length
of filters is 12 or 18, only directly neighbored wavelet scales have common frequency
contents. This is arrived in the case of Daubechies wavelets with shorter filer lengths, but
the approximation properties and the symmetry behavior in time here are much better.

• Biorthogonal spline wavelets:
In [16] they are constructed on the foundation of B-splines and modified B-splines respec-
tively. Such a B-spline becomes the scaling function ϕ for synthesis and is connected with
the reconstruction low-pass filter.
For analysis (decomposition) and synthesis (reconstruction) you get here different func-
tions, cp. (6) and (7). In time domain one has now full symmetry behavior of the two
scaling functions and the two wavelets.
In [16] such a biorthogonal spline system, which consist in four functions and which is
characterized by four filters, is denoted by ’biorN.M’. The implementation is realized for
the indices N.M = 1.1, 1.3, ... 4.4, 5.5, 6.8 .
The figure 6 shows the frequency decomposition behavior of some representatives. It was
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developed on the basis of synthesis filters and functions in the system ’biorN.M’ , because
these functions determine the frequency contents in the FWT.

• Reverse biorthogonal spline wavelets:
You get them by taking a biorthogonal spline wavelet system and change it’s analysis
and synthesis filters as well as it’s corresponding functions. Now a (modified) B-spline
becomes the scaling function ϕ for analysis and is connected with the decomposition low-
pass filter.
In [16] the systems are designed by ReverseBior or ’rbioN.M’. They are implemented
also in the cases N.M = 1.1, 1.3, ... 4.4, 5.5, 6.8 .
Now the figure 7 shows the frequency decomposition behavior of some chosen repre-
sentatives. It was developed on the basis of synthesis filters and functions in the system
’biorN.M’.

Amongst others this figures show, that upside the Nyquist frequency by FWT the frequencies
only partially filtered out. In the cases from db1 to db3 also the second and third decomposition
level are influenced clearly yet. From db4 and coif2 on to the end of this classes as well as for
bior3.9, bior6.8 and rbio6.8 you can practically assume that only the first level of decomposition
is influenced by frequencies upside the Nyquist frequency. This means that by using here only
levels of FWT higher than 1 in signal analysis it becomes not necessary to apply additional
filters. So one can suggest to use a sample frequency which at least for times greater than the
highest dominating frequency of the researched system.
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Figure 1: Amplitude spectra of Daubechies-wavelets
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11



10−2 10−1 100
0

1

2

3

4
c
o
if
1

ψ−1
ψ−2
ψ−3
ψ−4
φ−4
fNyq

10−2 10−1 100
0

1

2

3

4

c
o
if
2

ψ−1
ψ−2
ψ−3
ψ−4
φ−4
fNyq

10−2 10−1 100
0

1

2

3

4

c
o
if
3

Frequenz f in Herz

ψ−1
ψ−2
ψ−3
ψ−4
φ−4
fNyq
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Figure 6: Amplitude spectra of synthesis wavelets of biorN.M
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Figure 8: Center Frequencies for some Wavelets

4 FREQUENCY CENTERS OF THE WAVELET BANDS

In [16], p. 6-68 the relationship between scale and frequency is considered. The notion fre-
quency is a little broad and it would be more correctly to speak about the frequency center cor-
responding to a chosen scale of the wavelet decomposition. Also the notion pseudo-frequency
of a wavelet scale is used in this context.

The figure 8 shows some examples generated using the frequency center approximation of
cp. [16]. Here are Daubechies wavelets of order 2 and 7, the coiflet of order 1, and the Gaussian
derivative of order 4 are chosen. The last wavelet has no scaling function and there exist no
discrete filters h and g. This means, that formula (25) can’t used in this case.

The above center frequency-based approximations comprehend the main wavelet oscilla-
tions. The frequency center is a convenient and simple characterization of the leading dominant
frequency of a given wavelet.

By [16] for a mother wavelet (basic wavelet) the center of frequency is computed applying
the Fast Fourier Transform (FFT) to an approximated time representation. This time domain
approximation is obtained with the help of the so called cascade algorithm, which there will be
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db1 db2 db3 db4 db5 db6 db7 db8 db9
0.371 0.359 0.354 0.35 0.346 0.344 0.342 0.342 0.34

sym4 sym5 sym6 sym7 sym8 sym9
0.35 0.346 0.344 0.342 0.342 0.34

coif1 coif2 coif3 coif4 coif5
0.359 0.348 0.344 0.342 0.34

bior2.6 rbio2.6 bior3.9 rbio3.9 bior6.8 rbio6.8
0.443 0.293 0.469 0.273 0.369 0.309

Table 1: Frequency center ξ1 to the decomposition level produced with product formula

db1 db2 db3 db4 db5 db6 db7 db8 db9
0.498 0.333 0.400 0.357 0.333 0.364 0.346 0.333 0.353

sym4 sym5 sym6 sym7 sym8 sym9
0.357 0.333 0.364 0.346 0.333 0.353

coif1 coif2 coif3 coif4 coif5
0.4000 0.3636 0.3529 0.3478 0.3448
bior2.6 rbio2.6 bior3.9 rbio3.9 bior6.8 rbio6.8
0.4617 0.3078 0.4738 0.2632 0.3824 0.3236

Table 2: Frequency center ξ1 to the first decomposition level produced with Matlab-wavefun

realized by
[phi, psi, xval] = wavefun(wavelet, N). (45)

The procedure wavefun in [16] uses the single-level inverse wavelet transform repeatedly N
times to approximate the scaling function on a grid of 2N points. The corresponding array of
the basic wavelet arises then from (6) with the decomposition synthesis filter g.

This procedure is possible because for the scaling function one has ϕ = ϕ0,0 and this corre-
sponds to P0(ϕ) = ϕ with interval and all other S̃0,k zero in (17). So (45) realizes the array
of ϕ with N steps of (21), whereby all W̃ν,r = 0 and at the starting level only S̃0,0 = 1 is to
regard. On a grid of length 2N the approximation values then are given by the S̃N,k. This all
is done in [16] by the procedure centfrq. The procedure scal2frq computes then the frequency
center of every implemented wavelet by taking into account the scale a and the sampling period
∆, cp. (48).

Contrary to the above treatment of [16], where first a piecewise linear approximation of the
wavelet with iterations of the cascade algorithm is produced followed by FFT and frequency
maximizing the modulus, here an other procedure is developed. This procedure works in the
case of orthogonal and biorthogonal Wavelet systems, for which scaling functions and wavelets
are defined over discrete filters. It uses the representation (39) with an appropriate approxima-
tion of (25) in the interval [0, 1]. Now the dominated frequency ξ1 like in the other method
can be found as the value, which maximizes the modulus (39). Note that with ξ1 the frequency
center of the first decomposition level is given, assumed sampling rate is 1 (normed case). If
you compare the results with [16] you must note that

ξ0 = 2 ξ1 for the center of the basic wavelet ψ = ψ0,0 (46)

which is of level 0. The entries in the tables 1 and 2 are done for the level 1, this means that there
are compared the centers ξ1 calculated by the different methods. If one accept this associated
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db1 db2 db3 db4 db5 db6 db7 db8 db9
0.297 0.286 0.279 0.275 0.272 0.270 0.269 0.268 0.267

sym4 sym5 sym6 sym7 sym8 sym9
0.275 0.272 0.270 0.269 0.268 0.267

coif1 coif2 coif3 coif4 coif5
0.2852 0.2739 0.2695 0.2666 0.2646
bior2.6 rbio2.6 bior3.9 rbio3.9 bior6.8 rbio6.8
0.3032 0.2280 0.3125 0.2065 0.2817 0.2534

Table 3: ξtp(1) - Frequency predominance transition point between 1. and 2. level

frequency ξ1, then with ξν(ψ) for the variants of the ν-th wavelet decomposition level and
with ξν(ψ, ∆) taking into consideration an underlying sampling period ∆

ξν(ψ) = ξ0(ψν,k) =
ξ0(ψ)

2ν
and ξν(ψ, ∆) =

ξ0(ψ)

∆ · 2ν
(47)

result. For (a,b)-variants which not always connected with the decomposition tree one has

1√
a

ψ

(
t− b

a

)
7−→ ξ0

a
(48)

On the ν-th decomposition level of the FFT is a = 2ν .

In the figures 1 to 7 you can recognize the transition points for frequency predominance
for neighbored decomposition levels. The points of transition between the 1. and 2. level are
calculated here with the help of product formula. They are noted by

ξtp(1) = ξtp(ψ, 1) - transition point between 1. and 2. level (49)

and shown in table 3. Between the 0. and 1. level you get

ξtp(0) = ξtp(ψ, 0) = 2 · ξtp(ψ, 1) (50)

which is not important for FWT-decomposition but gives with

ξtp(ν) = ξtp(ψ, ν) =
ξtp(ψ, 0)

2ν
(51)

a simpler formula for the consecutive transition points between the ν-th and (ν + 1)-th level.
Assuming an first asymmetric bulk of |ψ̂1,k| one could think it’s better to calculate the associ-
ated frequency center of the first decomposition level by one of the following formulas

ξp(ψ, 1) =

0.5∫
0

ξ · |ψ̂1,k(ξ)|pdξ

0.5∫
0

|ψ̂1,k(ξ)|pdξ

for p = 1, 2, · · · (52)

but the considerations of the next paragraph seem this to suggest not.
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At last a measure for frequency overlapping of the first and second scale can be calculated
by

overlap1,2 =

1∫
0

|ψ̂1,0(ξ)| · |ψ̂2,0(ξ)|dξ

√
1∫
0

|ψ̂1,0(ξ)|2dξ ·
1∫
0

|ψ̂2,0(ξ)|2dξ

(53)

=

1∫
0

|ψ̂1,0(ξ)| · |ψ̂1,0(2ξ)|dξ

√
1∫
0

|ψ̂1,0(ξ)|2dξ ·
1∫
0

|ψ̂1,0(2ξ)|2dξ

(54)

in a practical sense. If you define frequency overlapping of the j-th and (j + 1)-th scale analo-
gous by

overlapj,j+1 =

K(j)∫
0

|ψ̂j,0(ξ)| · |ψ̂j,0(2ξ)|dξ

√
K(j)∫
0

|ψ̂j,0(ξ)|2dξ ·
K(j)∫
0

|ψ̂j,0(2ξ)|2dξ

(55)

then by choosing K(j) = 21−j you get exactly

overlap1,2 = overlapj,j+1 for all j ∈ Z. (56)

By this formula only the first bulk of the corresponding |ψ̂j,0| has been borne in mind. If you
set K(j) = 21−j in (55) then you get an increasing sequence overlapj,j+1, which can also be
described substituting all upper integration limits in (53) by 2j−1. If this sequence increases
slowly, which would better proofed with (42)-(43), the simple formulas (56) can be taken.

The above considerations can be carried forward to the case of Wavelet Packet Transform
where more frequency bands are produced. There to every node exist one frequency band.
Especially the higher bands produced by FWT which are also broader can successive divided
in different smaller ones.

5 THE FWT OF PURE OSCILLATIONS

In the case of an orthogonal wavelet you can verify the above results also by interpretation
the Continuous Wavelet Transform (CWT) in its frequency representation

CWT (f, a, b) =
1√
a

∞∫

−∞

f(t) ψ

(
t− b

a

)
dt (57)

=
√

a

∞∫

−∞

f̂(ξ) ψ̂ (aξ) e−ib2πξdξ. (58)
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Now in particular for orthogonal wavelets the decomposition coefficients of (18) and (19) are
determined by

W̃j,k = Wj,k = CWT (f, 2j, k · 2j), j = 1, 2, · · · , L . (59)

For a biorthogonal wavelet system corresponding to the here made notation you must substitute
in (57)-(58) the wavelet ψ by ψ̃ and the corresponding Fourier-transform ψ̂ by ˆ̃ψ = F(ψ̃)
to get the coefficients W̃j,k of the FWT-analysis (18) and (19) with the integral transformation
(59).

To simplify matters in the next example let from now on the Fourier-transform of ψ̃ be
noted as ψ̂. With ψ̂ := F(ψ̃) let’s now use (58) to describe the principle behavior of the FWT
{W̃j,k} when applied on harmonic functions. The Fourier-transform of

f(t) = cos(2πξ∗ t + α) (60)

is
f̂(ξ) =

1

2
eiα δ (−ξ + ξ∗) +

1

2
e−iα δ (ξ + ξ∗) . (61)

Apply (58) and get

CWT (f, a, b) =
1

2

√
a

(
e−iα ψ̂ (a ξ∗) e−i2πξ∗ b + eiα ψ̂ (−a ξ∗) ei2πξ∗ b

)
. (62)

In the case of a real valued wavelet ψ̃ this transform can be written as

CWT (f, a, b) =
√

a<
(
ψ̂ (a ξ∗) e−i(2πξ∗ b+α)

)
(63)

with <(ψ̂) as the real part of ψ̂. So you get over

CWT (f, a, b) =
√

a
∣∣∣ψ̂ (a ξ∗)

∣∣∣ cos
(
2 π ξ∗ b + α− arg(ψ̂(ξ∗ a))

)
(64)

the coefficients of the FWT

W̃ j, k =
√

2j

∣∣∣ψ̂
(
2jξ∗

)∣∣∣ cos
(
2j+1 π ξ∗ k + α− arg(ψ̂(2jξ∗))

)

= |ψ̂j(ξ
∗)| cos

(
2π ξ∗ {2j k}+ α− arg(ψ̂(2jξ∗))

)
. (65)

This formulas are valid for every practical used analysing wavelet with compact support in time.
For this wavelets the conclusion

ψ̃ ∈ L2
0 (R) ∩ L1

0 (R) =⇒ ψ̂ ∈ Ck(R) ∀k ∈ N
is valid. The formula (65) is not difficult to deduce, but I didn’t find it anywhere. In the context
of analysing time-frequency behavior of signals with FWT the formula (65) becomes very use-
ful. Looking at (60) and it’s FWT (65) you can conclude that an oscillation with frequency ξ∗

provides in the range of FWT on every decomposition scale an oscillation with calculable shift-
ing and frequency 2j · ξ∗ if whole-numbered sampling {k} is assumed. In the wavelet-toolbox
of Matlab as generally with growing index scaling j (here connected with sinking frequency) is
growing dyadic sampling in the time-scale realized. This means that the sampling rate grows up
with factor 2 scale by scale and becomes 2j on scale j. So on every vertical line characterized
by constant k the FWT-values in all present nodes only differ by the factors |ψ̂j(ξ

∗)| in (65).
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