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Abstract.

Interval analysis extends the concept of computing with real numbers to computing with
real intervals. As a consequence, some interesting properties appear, such as the delivery of
guaranteed results or confirmed global values. The former property is given in the sense that
unknown numerical values are in known to lie in a certain interval. The latter property states
that the global minimum value of a given function is known to be contained in an interval (or
a finite set of intervals). Depending upon the amount of computational effort invested in the
calculation, arbitrarily tight bounds on these enclosing intervals can be found.

The downside of interval analysis is, however, that it is mathematically correct, but often
too pessimistic. This is in particularly due to the so-called dependency effect, where a single
variable is used multiple times in one calculation. When applying interval analysis to structural
analysis problems, the dependency effect has a great influence on the quality of numerical
results.

In this paper, a brief background of interval analysis is presented and shown how it can be
applied to the solution of structural analysis problems. A discussion of possible improvements
as well as an outlook to parallel computing is also given.



1 INTRODUCTION

Interval analysis has been a standard mathematical tool for decades since R. E. Moore pub-
lished his book Interval Analysis[4] in 1966. Interval analysis, in its simplest form, is an exten-
sion of real analysis where real numbers are replaced by real intervals or, more generally, points
in real space are represented by finite boxes. Arithmetic operators that commonly operate on
numbers are extended in a suitable fashion by operators that work with intervals. An important
consequence of using interval analysis is that numerical methods can guarantee results in the
sense that results are as precise as possible within explicitly defined ranges. Also, various types
of numerical errors can be handled in a uniform fashion, including rounding errors, truncation
errors and input errors, to name a few [2]].

In particular, numerically “hard” problems, such as finding all solution sets of non-linear
equations and inequalities or determining all global optimizers of multi-model criteria can be
solved exactly using interval analysis. In fact, algorithms based on interval analysis are not
only able to compute the values of mathematical quantities numerically, they are also able to
prove rigorously mathematical statements about quantities or sets of quantities because of the
bounding nature of numerical intervals. In contrast, standard numerical methods such as Monte
Carlo methods or even a systematic grid search cannot prove simple mathematical properties
such as the emptiness of a set of values or that a set is a disconnected union of sets.

Being able to produce guaranteed results for physical quantities is particular useful in en-
gineering problems. For example, depending on the type and topology of a structural system,
the results of a structural analysis can be very unreliable if large forces and/or displacements
are involved. Often, the only approach to check for numerical error is to switch from single to
double precision values and recalculate, observing any notable changes in the result.

2 MATHEMATICAL DEFINITION OF INTERVAL ANALYSIS

Interval analysis is based on the idea of substituting real numbers, which are often known
only approximately, by closed intervals, which can be considered as exact representations of
numerical values. In the case of multiple dimensions, that is, R", “intervals” are defined as
axis-aligned boxes.

2.1 Formal definitions

More formally, an interval [z] is a connected subset of R. It has a lower bound z defined as
z =sup{a € RU{—00,00} | Vz € [z], a < z}. (1)
Similarly, the upper bound 7 is defined as
T =inf{b € RU{—o0,00} | Vz € [z],x < b}. (2)
Excluding limit cases involving —oco or 400, which are not interesting in engineering problems,
the quantity [x] is simply the real interval [z, Z].

The width of a non-empty interval [z] is defined as

w([z]) =T — z, 3)
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and the midpoint of any bounded and non-empty interval is

mid([z]) = g;f 4)

2.2 Interval arithmetic

As with real numbers, we can do arithmetic with intervals. Extending the concept of addition,
subtraction, multiplication and division to the two intervals [z] and [y], we can define

@ yl={roy eR |z € [r],y €[y}l 5)

where the symbol @ stands for each of the above mentioned binary operators. In particular, we
can evaluate each arithmetic operator according to the rules

(2] + [y] = [x+y,x+y}, (6)
[zl =[] = [z-7.7 -yl (7)
(2] x [y] = [mln{xywy,xy,wy} max{zy, 27, Ty, Ty}, (8)
[=]/[y] 2]+ (1/[y]), 9)

where 1/[y] is defined as [1/7, 1/y] if 0 ¢ [y], undefined otherwise. Also, the multiplication of
the interval [z] by the scalar a € R is

alz] = [azx, aT]. (10)

To increase the range of allowable numerical computations, elementary functions, such as
exp, log, sin, cos, etc., can also be extended to interval functions expressed in terms of bounds.
For example, the monotonic function [exp] can be simply defined as

[exp]([z]) = [exp(z), exp(T)]. (11)

For non-monotonic functions such as sin, the computation is more complicated, because for
“small” intervals the function sin can be monotonic, for “large” intervals the range of the sin
function is restricted to [—1, 1].

2.3 Dependency effect

An important observation of interval arithmetic, which sets it apart from “ordinary” arith-
metic, is the problem of dependency, which can lead to very pessimistic results. For example,
in general the expression [z] — [z] # 0, because

2] = [z] = {21 — 22 |21 € [2], 22 € [a]}, (12)
and z; and x5 can be chosen independently. If, say, [z] = [10, 20], then [z] — [z] = [-10, 10] #
0. As a further example of dependency, the square of the interval [z] = [—2,3] computed

according to the basic multiplication rule is

which is meaningless if the square of a real interval, like a real number, should always be
positive. A more reasonable result is the interval [0, 9], which can be calculated by setting the
lower bound of the product to O if it is negative.
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In general, for any equation involving more than one occurrence of an interval variable, pes-
simistic results will be computed. If possible, expressions should be algebraically transformed
to reduce the number of occurrences of each variable. So, although the expressions (z + 1)?
and z° + 2x + 1 are algebraically equal, the width of the interval ([x] + 1)? will usually be less
than the width of [z]? + 2 % [z] + 1. If [z] = [—1, 1], then the first expression evaluates to [0, 4],
whereas the value of the second expression evaluates to the larger interval [—1, 4].

2.4 Interval vectors and matrixes

An interval vector [x] is a subset of R and can be defined as the Cartesian product of n
closed intervals,

[x] = [x1] X [x2] X ... X [24], (14)
with [z;] = [z;,T;] for i = 1,2, ..., n. The width of an interval vector is
w(lx]) = max wfz]), (15)

and the midpoint of an interval vector is
mid([x]) = (mid([z,]), mid([z]), ..., mid[z,])T. (16)

An n x m interval matrix [A] can be defined as

[an] [flm] [alm]
[A] = [a21 Dl ] = ([ai])1<i<ni<i<m, a7
[an] [ana] - [anm]

where similar rules defining the width and midpoint of an interval matrix apply as in the case
of interval vectors.

2.5 Inclusion functions

Given the definitions of arithmetic for manipulating intervals, it is natural to consider func-
tions that map intervals to intervals based on “ordinary” real functions. This leads to the defi-
nition of so-called inclusion functions: Consider a function f : R” — R™. Then the interval
function [f] is an inclusion function if

V[z] € R*, f([2]) < [f]([z]). (18)

Although the image f([x]) is not necessarily a box, the inclusion function [f]([z]) is a box
containing f([x]).

The simplest approach in constructing an inclusion function [f] for a given function f :
R™ — R™ is to substitute each variable z; of f by its interval counterpart [z;] and to substitute
each occurrence of +, —, *, /, or exp, log, sin, etc., by the corresponding interval operator or
interval function.

As an example, consider the two formal expressions

fi(z) = (x4 1)2, (19)
folz) = 22 4+22+1, (20)
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presented above. The corresponding natural inclusion functions are

A)([z]) = (2] + 1) (21)
[fl(2]) = ([=]*+2x[2] +1). (22)

Although the expressions for f; and f, are algebraically equivalent, the same variable [x] occurs
once in [f1] and twice in [f5], so the dependency effect gives different results, as shown above.

3 INTERVAL ANALYSIS IN STRUCTURAL ANALYSIS

If the parameters that define a structural system, such as nodal coordinates, material proper-
ties, forces and loads, cross sections, etc. are given as intervals, and we have interval methods
to analyze structural systems at our disposal, then we are able to describe the behavior of a
given structural system in terms of interval results. That is, given the range of precision of in-
put values as intervals, we can not only compute the numerical behavior of a structural system
numerically, but also state guaranteed, although possibly pessimistic, bounds on the results.

3.1 Solution of a system of linear equations

Since the behavior of structural systems can be computed using well-known methods of
structural analysis, such as the matrix displacement methods based on global equilibrium equa-
tions and stiffness matrices, a core step in the analysis of structural systems is ability to solve a
system of linear equations.

Using the principle of natural inclusion, we can extend standard solvers for systems of equa-
tions to interval solvers. For example, if A is n x m real matrix and b is an n real vector, the
solution vector x of the equation Ax = b can be found by the Gaussian elimination method
by elementary manipulations of A and b involving just arithmetic operations on matrix and
vector components. Thus, by substituting interval operations for arithmetic operations, an inter-

val Gaussian elimination method can be obtained to solve the corresponding interval equation
[A][x] = [b].

As examples show, the results of the interval Gaussian elimination method are often very
pessimistic. Results can be improved, however, using the technique of pre-conditioning: If A
is an invertible matrix, then the solution of A;'[A][x] = A;'[b] has the same solution set as
the original equation. If we chose Ay = mid([A]), then the product A, '[A] is approximately
equal to the interval identity matrix and it can be shown that the interval result improves.

Similarly, the Gauss-Seidel method of iteratively solving a system of linear equations and
the extension using pre-conditioning of the coefficient matrix can also be implemented in a
straightforward manner.

3.2 The sign accord method

The sign accord method was developed by J. Rohn ([5], [ll]) and is currently considered as
one of the best methods for solving systems of linear equations. In general, the exact solution
set X,

X,={xeR"|Ax=b, Ac[A], be [b]} (23)

is not an n—dimensional interval, in fact, it is usually not even convex.
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Figure 1: a cantilever

Among the elements in the set X, so-called corner solutions are of particular interest. The
subset X, C X, consists of the vectors A~'b where all the elements in A and b are chosen as
one of the end points of the corresponding interval element in [A] and [b], respectively. Because
of the combinational effects, there are a total of on*+n corner solutions, which is a large number
even for small n.

However, the set X, can be reduced even further to a set X, by considering only so-called
extreme solutions,

Xe={x eR"| mid([A])x — mid([b])| = r([A])[x] + r([b])}, (24)

where the radius 7(]x]) of an interval is defined as half its width w([x]). Since it can be shown
that the convex hulls of X, and X are equal, we basically get the same solution set. To find
solutions of X, this set can be reformulated as

Xe = {x € R" | mid([A])x — mid([b]) = D, (r([A])[x] + r([b])}, (25)
for some
yeS"={yeR" |y € {-1,1},i=1,..,n}, (26)
and the diagonal matrix

D, = diag(y1, Y2, .-, Yn)- 27)

Carrying through the analysis, it can be shown that the total number of elements in X is reduced
from 2"°*™ to only 2.

3.3 Cantilever example

As an example, in the structural system shown in Fig. [Il the force F, in member 2 can be
determined analytically as

SRS

If z = 2000 mm, A = 2000 mm and F' = —10000 N, then F5 = —28284.27 N. If, however, the
coordinates of nodes 1 to 3 are known only approximately, say to =1 mm, then the value of F5
will be an interval. In this case, [z] = [1998,2002] mm, [h] = [1998, 2002] mm and [F}] is

[P + [2]?
(1]

FB=2F (28)

[Fy] = 2[F] — [—28340.89, —28227.76] mm. (29)



Table 1: The force [F5] computed using various methods for systems of linear equations

Method [F5] w([F3])

Gauss elimination [-124293.02, 63295.17] 187588.19

Gauss elimination with pre-conditioning [ -83789.93, 24500.41] 108290.34
Gauss-Seidel with pre-conditioning [ -83814.24, 25069.10] 108883.34

The sign accord method  [- 78956.37, 20451.73]  99408.10

The width of [F5] is about 113 mm, or about 0.4% of the mean interval value. As noted above,
we can tighten the bounds of [F5] if we rearrange Eqn. 29 to remove dependency effects. We
can rewrite the equation for [F5] as

[2]?
E| =2[F]4/1 30
and get a better value of [Fy] = [—28312.60, —28256.03|, where the width w([F3]) is now

only half as wide as the previous interval. If we further assume that the cross sectional area
A = 5,000 mm? and the modulus of elasticity £ = 210, 000 N/mm?, then we can use a general
structural analysis program to calculate [F5]. Using the methods Gauss elimination, Gauss
elimination with pre-conditioning, Gauss-Seidel with pre-conditioning and sign accord to solve
the resulting system of linear equations, we get the results shown in Table [

As can be seen in the table, pre-conditioning in the Gauss elimination method improves it
considerably. The basic Gauss-Seidel method does not work very well, however, the precon-
ditioned Gauss-Seidel method compares to the preconditioned Gaussian elimination method.
Finally, this example seems to confirm the strength of the sign accord method for solving sys-
tems of linear equations as this method delivers the tightest bounds.

Although the results in Table [[] are mathematically rigorous and exact, from an engineering
point of view they are not very convincing. Basically, they imply that even a manufacturing
precision of only =1 mm in the geometry of nodal coordinates make the results meaningless,
because we can’t even determine if the force F5 is compressive or tensile. To further see the
degree of sensitivity in this interval analysis example, Table P shows the interval of [F3| and its
width in steps of =0.1 mm for all node positions. The method for solving linear equations is
restricted to sign accord, because it is expected that other methods will only be worse.

Table 2: The force [F»] computed with the sign accord method for various degrees of nodal coordinate errors.

node tol. [F] w([F3]) | node tol. [FY] w([F3])
+d [mm] +d [mm]
0.0 [-28284.27, -28284.27] 0.00 0.6 [-57680.34, 432.07] 58113.03

0.1 [-33069.25, -23517.90]  9551.30 0.7 [-62825.09, 5328.18] 68154.08
0.2 [-37884.23, -18758.81] 19125.41 0.8 [-68077.05, 10287.51] 78364.56
0.3 [-42740.78, -13995.72]  28745.07 0.9 [-73448.61, 15324.00] 88772.60
0.4 [-47650.76, -9217.02] 38433.56 1.0 [-78956.37, 20451.73]  99408.10
0.5 [-52626.38, -4411.68] 48214.70




4 GLOBAL OPTIMIZATION

Many engineering problems can be formulated as mathematical optimization problems, in
particular, finding the minimum value of a continuous function f : D — R", where D C R".
The function f, often called an objective or design function, may have many local minima, but
usually only the smallest one, the so-called global minimum f*, is of particular interest,

ff=inf{f(x) |z € D}. 3D

An iterative algorithm of the branch and bound type can find the global minimum value without
the use of any types of derivatives.

Let [f] be an interval extension of the function f and [x] be the initial domain. At each
stage of the iteration, there is a working set 11/ of intervals to be inspected and a result set R of
intervals which are known to contain the global minimum. In each iteration, the following steps
are carried out as long as the working set is not empty:

1. Get an interval entry [z] from the working set and split it into two pieces [z1] and [xs]. If
D C R, i.e. [z] is just a real interval, then [x;] and [x2] are just two halves of the interval
[z]. In the multi-dimensional case, [z] is split along one dimension, usually the one where
the width of the interval has the largest value.

2. For each interval [z4] and [x5], check to see if the width of the image of each interval is
less than some given bound e,

() <€ i=1,2. (32)
If so, put the interval [x;] into the result set.

3. If the width of the image is greater than ¢, add the interval to the working set.

Finally, reduce the result set by eliminating all those elements which do definitely not contain
the global minimum. This can be done in two steps: First, find the lowest upper bound f of all
images of the intervals in R,

f =min{[y] = [f]([z]), [z] € R}. (33)

Y

Then, remove all those elements of R where the lower bound of the image is greater than f ,

R=R\{yly>/} (34)

Note that it might be tempting to include a reduction step during the iteration to decrease
the size of the working set. However, due once again to the dependency effect, this can lead to
a loss of solution values, with a possible empty result set, even though the minimum value is
well-defined.

For example, the images of the intervals [10, 20] and [20, 30] might both possibly contain the
global minima. If the second interval is eliminated because all its values are larger than those in
the first interval, we can then iterate by splitting the first interval into the intervals [10, 15] and
[15,20] and processing both intervals. At this stage we can discover that, although the global
minimum is in the image of [10, 20], is not contained in the image of either the interval [10, 20]
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or [20, 30]. Now we are left with an empty result set. This can happen if the value of the global
minimum is, in fact, in the second interval, say, £ = 21. Because of the dependency effect, the
image of the “large” interval [10, 20] contains the global minimum, but each “smaller” image
[10,15] and [15, 20] does not.

Because we have to be careful about deleting “superfluous” intervals in the working set, the
size of the working set can increase rapidly. However, since each element of the working set
can (and should) be evaluated independently, this lends itself to a course grain parallelization
approach.

4.1 Cantilever optimization example

To give a brief example of a minimization problem in structural analysis, the cross section
of element 1 in the cantilever shown in Fig. [lis to be optimized. The constraint imposed on the
element is that the maximum compressive strength should not exceed 250 N/mm?. Since the
structure is statically determinate, the force F' in element 1 is 20,000 N, if we assume numerical
values are exact. Therefore, the cross sectional area A of element 1 is expected to be

F 20,000 mm

A:——72:80mm2. (35)
o 250 N/mm
For simplicity, we can chose the objective function to be equal to A. If a complete structural
analysis program is employed in the optimization, we get a final result of [A] = [79.84, 79.92] mm.

Here, the maximum width of a candidate interval image is set to € = 0.1 mm. The maximum
size of the working set is 130 elements.

Note that although 80 ¢ [79.84,79.92], this is the “lowest” interval of image width less than
0.1 that contains the global minimum: The interval of compressive strength corresponding to
this interval is, in fact, [250, 250.73], an interval which includes the value 250.

S CONCLUSION

Interval analysis can be extended to solve specific problems often found in engineering de-
sign, in particular calculations involving vectors and matrixes. However, the so-called depen-
dency effect can force the development of methods that must be more sophisticated than other-
wise necessary.

Given the response of a structural system defined with a parameter whose precise value is
unknown, we can find an interval for this parameter so that the calculated response of the system
agrees with the observed response.

Further, given an objective function for a structural system, we find the variant of the struc-
ture which minimizes the objective function. Because the search space can be highly irregular,
non-convex or even disconnected, finding a global minima in such cases can be very difficult.
Using interval analysis to “box in” allowable values can provide definite assertions on the exis-
tence and accuracy of possible minima.

Although solving for solutions using branch and bound interval search methods may lead to
exponential complexity in general, branch and bound methods do generate highly independent
subtasks which, in combination with well-chosen heuristics, can be solved efficiently in parallel
[3]]. Thus, interval analysis has the potential for developing highly parallel global optimization
methods.
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