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Abstract. The concrete is modeled as a material with damage and plasticity, whereat the
viscoplastic and the viscoelastic behaviour depends on the rate of the total strains.

Due to the damage behaviour the compliance tensor develops different properties in tension
and compression.

There have been tested various yield surfaces and flow rules, damage rules respectively to
their usability in a concrete model. One three–dimensional yield surface was developed from a
failure surface based on the Willam–Warnke five–parameter model by the author.

Only one general uni-axial σ − ε–curve is used for the numeric control of the yield surface.
From that curve all necessary parameters for different strengths of concrete and different strain
rates can be derived by affine transformations.

For the flow rule in the compression zone a non associated inelastic potential is used, in the
tension zone a Rankine potential. Conditional on the time-dependent formulation, the symmetry
of the system equations is maintained in spite of the usage of non-associated potentials for the
derivation of the inelastic strains.

In case of quasi statical computations a simple viscoplastic law is used that is rested on
an approach to Perzyna. The parameters of this law are selected such that there only exists a
pseudo dependence on the strain rate.

In contrast to many other authors, λ̇ is not only determined from the principle of equality of
dissipation power in the uni-axial and the three-axial state of stress. This equality is modified by
a factor that depends on the actual stress ratio and in comparison with the Kupfer experiments
it implicates strains that are more realistic.

The implementation of the concrete model is conducted in a mixed hybrid finite element.
An example in the structural level is introduced for verification of the concrete model.
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1 INTRODUCTION

In the last years the implementation of new norms for reinforced and non-reinforced concrete
constructions cooperating with much more computation power and more intensive economic
competition have induced greater demand and distribution of nonlinear arithmetic techniques.

Naturally, the usage of computational methods has great advantages. EC 2 and DIN 1045
allow calculating the stress resultants for design purposes by using theory of elasticity. Already
if it involves linear elastic problems there are two edges:

• the structural analyst is able to predict complicated structures and to size them much more
fast and with more safety in particular

• prior the engineer sometimes had to work with simple structural models, therefore he had
got section properties for the reinforcement, which were very uneconomically.

You can say, that most of the FEM programs for the upper purposes are working save and
solid nowadays, if they are operated by engineers with professional knowledge. If you speak
with practical working engineers often the question is formulated, whether nonlinear models for
materials like concrete will prevail in practise. Maybe, but should the solution of daily acting
problems the range of application of these models? To these themes some practical experiences
shall be discussed:

1. By means of elasticity theory it won’t be possible to verify the extrem high forces the
concrete in the zone of tendon anchorage assembly can resist. Even if the strength in-
crease that is allowed in DIN 1045 and EC 2 due to confinement is exploited, arithmetical
the values of the approval document normaly will not be reached.

2. By conventional procedures of analysis there is no way to declare the high shear forces,
the headed studs of a composite beam can transfer. For instance the German technical
rules for composite beams permit a shear force per stud for static load of 120 kN. If one
try to verify this load in a truss model the studs are overloaded. The determination of
the forces in compressive strut delivers no better result. For other means of establishing
bond action between slab and beam it is difficult to find a simple static system anyway,
thinking for Perfobond [28] strips.

3. A further problem is the determination of the punching resistance of nearly the edge or
the corner of a plate. In [5] you can find the proposal to increase the numerical value of
the forces from the column cab by 40 percent.

There are many other examples to be find where the three-dimensional behaviour of concrete
plays an important role [9].

To get economical solutions for these kinds of problem extensive and expensive test pro-
grams have to be carried out. Here one important task of nonlinear three–dimensional concrete
models is to settle:

1. in supporting test programs of civil engineering projects

2. investigation and explanation of phenomenons are occuring

3. in employment by finding reliable static models that can be handled simple enough and
which are able to describe complicated facts.
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2 MATERIAL PROPERTIES OF CONCRETE

Concrete is a heterogenous material that compounds from cement mortar and aggregate.
Even before the loads are applied, the state of concrete is of complex residual stress. That state
of stress is initiated by

• the temperature gradient due to flowing of hydration heat

• constraint stresses caused by prevention of strains from shrinking of the hardened cement
paste initiated by the grains of aggregate

• occuring of damage zones from nonequal and insufficient compaction.

The greatly different behaviour in regions of compression and tension is mainly due to the
brittle properties of the set cement paste. In the state of loading the concrete develops a highly
nonlinear behaviour. Besides anisotropic properties emerge. That are results of changes in the
texture of the material, like the formation of cracks in the structure of the cement mortar and
the growth of micro-cracks between the grains of aggregate and the hardened cement paste.

Considering an uniaxial compression test, the micro-cracks in existence keep stable at first.
Therefore approximately a linear elastic behaviour can be observed. Above the range of 30%
to 40% of the compressive strength, a spreading of micro-cracks along the boundaries of the
components of the material is recognized. The load-displacement-path begins to bend. By com-
pleting of macroscopic cracks the failure state in compression is reached. After that state the
load is sloping. Investigations of van Mier, Reinhardt an van der Vlugt [29] [23] show, that the
shape of the curve after collapse depends on the size of the specimen.

The tensile strength amounts about 10% of the compression strength. Here the dependence
on the size of the specimen is much more greater. Because of localization in the crack-zone,
it is not possible to find a general σ − ε–relationship. Therefore the fracture energy Gf (1) is
defined. The determination of the fracture energy is very much sensitive, it results from the
crack width w and the average tensile stress σ.

Gf =

∫ x

0

σ(w)dw (1)

In cyclic loading tests a degradation of the elastic properties can be detected. The effect of
degradation is much more greater if it is created by tensile stresses [23].

The Kupfer experiments [12], that were made to research biaxial stress states of concrete
showed that there are differences in the normalized failure stress in dependence on the stress ra-
tio. Moreover it is detected, that the dedicated failure strains are growing with the increasing of
the normalized failure stress. From all these facts could be deduced, that the three–dimensional
behaviour is coupled by contraction at first and by dilatancy when the failure of the specimen
is reached. In figure 2 results of the Kupfer-Experiments are compared to calculations with the
concrete model.
The experiments of van Mier [29] and of Schickert and Winkler [25] show that the ductility
of concrete is coupled with an increasing of the strength by influence of a triaxial stress state.
Under hydrostatic compressive stresses collapsing does not happen.
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Figure 1: cyclic loading tests

Concrete is a material, that responds highly to influences of the load velocity. Extensive
investigations have been published to this topic [3] [6]. It is a fact that the strength of concrete
increases by the strain rate. Beside you can detect that the stiffness increases depending on the
velocity of loading. Several authors disagree about the strain εp, when the failure strength is
reached. In the publications of Bazant [3] and Rasch [?] are propagated, that the failure strains
decrease with the growth of the strain rate, Dilger [6] means, that the εp increases.

3 FORMULATION OF THE THREE–DIMENSIONAL CONCRETE MODEL

3.1 general considerations

From the second law of thermodynamics the Clausius-Duhem inequality follows as the dis-
sipation power [14] [16] for an isothermal process:

D =
1

2
ε̇d

ijσij + σij ε̇p
ij −Xijα̇ij − Rṙ ≥ 0 (2)

In this inequality εd, εp, r and α are internal variables. The stress tensor σ, the isotropic
hardening, softening respectivelyR and the back stress tensorXij, that stands for the kinematic
hardening are called the associated variables.

The inelastic strain ε̇in rate composes of the damage strain rate and the plastic strain rate,
where β is a partitioning factor, that characterizes the ratio of damage and plasticity that is
derived from an uniaxial cyclic loading test.

ε̇in
ij = ε̇d

ij + ε̇p
ij = (1 − β)ε̇in

ij + βε̇in
ij (3)

It is postulated that the kinetic laws are derived from a potential of dissipation by introduction
of a scalar multiplier λ̇ .

ε̇in
ij =

∂Q

∂σij

, α̇ij = − ∂Q

∂Xij

, ṙ = −∂Q
∂R

(4)

The factor λ̇ is a lagrangian multiplier from solving an optimizing problem if an associated
flow-rule is used [8] [16].
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3.2 Viscoplasticity

There are different approaches in modeling viscoplastic materials. The rheological descrip-
tion of materials is based on pure mechanical imaginations. For example time–dependent phe-
nomenons like viscoelasticity can be explained with the well-known Maxwell-Model or the
Kelvin-Voigt-Model, one model for viscoplasticity is that from Bingham [11].

Another strategy was suggested by Perzyna [18]. He gave the material law for a visco-plastic
medium in the general form of 5.

ε̇p
ij = Ψ(F )

∂Q

∂σij

(5)

The function ψ(F ) can be determined from uniaxial experiments in connection with the yield
function F .

One expression for the viscous stress comes from metal plasticity:

σu = Kv〈ε̇v〉
1

N (6)

Later this equation is used in the concrete model to stabilize the numeric expressions in the
range of horizontal tangents. The yield condition, conditional on the occurrence of the viscous
stress, is read:

F (σ,X,R) > 0 (7)

.

3.3 Modeling concrete in compression

In this model only isotropic hardening in the compression zone is used. Therefore (2) reduces
in consideration of (4) and (3) to:

D =
1

2
λ̇−(1 − β−)

∂Q−

∂σij

σij + λ̇−β−∂Q
−

∂σij

σij − Rṙ ≥ 0 (8)

The multiplier λ̇− follows from equivalence in the dissipation power of the triaxial and the
uniaxial stress state. Here this equivalence is modified by a factor fm(σij) [17] [7].

λ̇ =
σ−

v fm

∂Q−

∂σij
σij

ε̇−v =
1

τ−
ε̇−v (9)

, Here ε̇−v is the uniaxial equivalent strain and σv is the effective stress in compression.
In contrast to other publications [4] [20] [1] the factor fm effects more realistic failure strains

on the local material level. In case of practical computations of systems with hyperstatic bearing
greater constraint stresses can be induced. The expression of fm in figure 2(b) was derived from
the Kupfer-Experiments. σ1 and σ2 are the stresses with the highest absolute values.

The inelastic strain rates
ε̇in−

ij = ε̇−v A
−
ij (10)

result from the definition:

A−
ij =

1

τ−
∂Q−

∂σij

(11)
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The effective stress can be written as:

σ−
v =

1

fm

A−
ijσij (12)

With the expression ε̇d
ij = Ḟijklσkl the rate of the compliance tensor follows to:

Ḟ−
ijkl = ε̇v

A−
ijA

−
kl

fmσ−
v

(13)
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3.4 Failure criterion and yield surface

Yield surfaces based on well-known von Mises-Criterion or the Drucker-Prager-Criterion are
not suitable for three–dimensional modeling of Concrete. The second one often is used for two–
dimensional theories. For a better approach in three-dimensional modeling here the Willam-
Warnke failure criterion is used. The mathematical definition is given in Haigh-Westergard-
coordinates [4], that are the hydrostatic stress σm = I1

3
with the first invariant I1 of the stress

tensor, the radius ρ =
√

2
√
J2 with the second invariant J2 of the deviator and the Lode-angle

θ comes from cos 3θ = 3
√

3
2

J3

J
3
2
2

, where J3 is the third invariant of the stress deviator. In figure

3(a) you can realize the meaning of the three coordinates. Willam-Warnke made a quadratic
approach for the hydrostatic stress addicted to the radius of the compression meridian ρc and
the radius of the tension meridian ρt.

σm = a0fc + a1ρt + a2ρ
2
t (14)

σm = b0fc + b1ρc + b2ρ
2
c (15)

The compression meridian and the tension meridian have the same point of intersection on
the hydrostatic axis, therefore a0 = b0 must be. The remaining coefficients follow from the
tests for uniaxial compression and tension, biaxial compression and at least from two tests for
combined biaxial compression. The radius ρf(θ) originate by connecting ρt and rhoc by the
fourth path of an ellipse. So the failure surface is continuous and convex.
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Now the yield surface can be constructed. The yield surface is controlled by the uniaxial
σ − ε−-curve, which is deduced from the general σ − ε-curve in a numerical way.

F (σij , σm, θ) = ρ(σij) − k(ε−v , σm, θ)ρf(σij , fc) (16)
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Figure 3:

Concluding [4] the hydrostatic axis is divided into three sections. In section one and two k is
approached by a quadratic formulation, in section three, the yield surface is closed by a cape. It
is distinguished between kt and kc, therefore k(ε−v , σm, θ) is a linear relation between kc and kt.
If the uniaxial failure strength is reached, the yield surface and the failure surface are identical.

For the stability of the numerical algorithm computation of the effective stress σ−
v is crucial.

This computation is made by affine contraction of the yield surface. In contrast to yield surfaces
based on von Mises or Drucker-Prager criterion, this problem must be solved by numerical tools.
The method of Regula-Falsi has been taken here. This method is not brilliant especially, but it
is very reliable.

3.5 Flow rule in compression

Based on the time–dependent formulation of the concrete model, there are no difficulties
with unsymmetrical matrices. Therefore it is no problem using different flow rules. At present
there are three flow rules implemented. The first one is derived from a von Mises potential,

ε̇in−
ij = λ̇

1

2J2

σD
ij (17)

here σD
ij is the second invariant of the stress tensor. If the flow rule is derived from a Drucker

potential, it remains
ε̇in−

ij = λ̇(αδij +
1

2J2

σD
ij ) (18)

The hydrostatic term α is a function of ε−v in the third flow rule. This flow rule creates the
best results on the material level, if it is recombined with the yield surface developed here.
Some results on the material level are shown in figure 2(a).
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3.6 Modeling concrete in tension zone

The crack initiation in the tension zone is represented here by a kinematic softening phe-
nomenon. This corresponds to a rotating smeared crack model. By means of the back stress
tensor X later the cracks can be illustrated very well. Using the equations (2) and (4) and the
principle of the equivalence of the dissipation power, simultaneous three multipliers for tension
can be computed at most (19).

λ̇+
(k) =

σ+
v(k)

∂Q+

k

∂σij
(σij −Xij)

ε̇+
v(k) (19)

σ+
v(k) = Λk(σ −X) (20)

The definition for the effective stress corresponds to the k–th eigenvalue of the tensor Mij =
σij −Xij. The criterion for cracking is read:

Ft(k) = Λk − ft > 0 (21)

For calculating the evolution of the back stress the assumption is made, that the rate Ẋij

of the back stress only depends on the diagonal components of the internal variable αij , if this
tensor is transformed to the system of coordinates, that results from the eigenvectors ofM . That
leads to the equation:

˙̃X
(k)

(ii) = λ̇+
(k)

∂X̃(ii)

∂α̃(ii)

M̃
(k)
(ii) (22)

Here ˜ means, that the components refer to the system of principle axis of the tensor M .
Normally, uniaxial softening laws are not derived from σ − ε-curves [17] [7], like in the

compression zone often is done. Here uniaxial softening laws shall be given, from there it
can be found the assigned σ − ε-curve, if it is needed. There are two parameters, affecting
the shape of the softening law. That are the fracture energy Gf and the tensile strength ft.
The fracture energy of concrete is very small, sometimes that causes numerical problems. For
exampleGf can be taken from CEB-FIP-Model Code. Within an FEM-computation a softening
law is constructed with help of the equivalent length (23) from these two parameters for every
element, where Vf and Af come from the dimensions of the volume element.

lc =
Vf

Af

(23)

There can be found an extensive analyze of several softening laws in [16]. Here only the
applied expressions shall be given.

Exponential softening law:

X(εv) = ft(exp (−ε
+
v

εu

) − 1) (24)
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pure plasticity (β+ = 1):

εu =
Gf

lcft(1 − 1
e
)

(25)

pure damage (β+ = 0):

εu =
2Gf

lcft(1 − 1
e
)

(26)

Hyperbolic softening law:

X(ε+
v ) = −ft

1

1 + ε+
v

εu

(27)

pure plasticity (β+ = 1):

εu =
Gf

2lcft

(28)

pure damage (β+ = 0):

εu =
Gf

lcft

(29)

In figure 1 the plot of an uniaxial cyclic loading test is drawn. The evolution of the com-
pliance tensor, that is to realize in the deterioration of stiffness, to an expression, similar to
(13).

3.7 Consideration of strain-rate effects

The most important assumption is the affinity of the σ − ε -curves for various total strain-
rates if strain-rate effects are considered. A general relation for the σ− ε –curve has been taken
from [15].

For transformation of the function from one to the other two values are necessary, the com-
pressive strength fc1 dependent on the strain-rate and the peak strain εcp1 assigned. The formula
for the compressive strength has been taken from [3].

fc1 = fc0(1.4 − 1.5
1 − ε̇

1

8

1.84 + 3.2ε̇
1

8

) (30)

Here, fc0 is the compressive strength from a compressive test with a total strain rate of
3.3ε̇10−5s−1 that corresponds to a statical test. The empirical expression for the assigned peak
strain is given by Dilger [6].

εcp1 = −(1.3 − 0.06 lg ε̇+ 0.01fc0, fc0[N/mm
2] (31)

In [26] it is shown, that the effective strain rate ε̇ in the equations (30) and (31) can be
composed from

ε̇ = 0.9
√

ε̇ij ε̇ij (32)

approximately.
Two curves are called affine, if they can be adjusted by horizontal and vertikal expanding

(see figure 4). By the definitions

βa =
fc1

fc0
(33)

αa =
εp0

εp1

(34)
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the transformation of the σ − ε -curve is deduced to:

σ(ε, ε̇) = βa(ε̇)σ0(αa(ε̇)ε) (35)

For a constant damage parameter β (not have to be mistaken for βa) the rate dependent
compliance tensor is derived from the uniaxial stiffness to:

Fijkl(ε̇) =
1

αa(ε̇)βa(ε̇)
Fijkl(0) (36)

The mathematical description for the uniaxial ultimate stress is deduced from the statical
σG − εv-expression.

σG(ε̇, εv) = βa(ε̇)σG0(αaεv) (37)

There is shown a comparison in figure 5 between the calculations of this theory and experimen-
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tal results of Dilger [6]. You can detect some differences in the peak stresses, that is why the
peak stresses are from other tests [3], but the peak strains are from [6]. In figure 5 it is indicated
well that in this theory the influence of the strain rate to the elastic stiffness is considered. .
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4 USAGE OF THE CONCRETE MODEL

4.1 Annotations to the finite element concept and reinforcement

The model is implemented to a hybrid finite element. That element works with 8 nodes. In
that concept, the material law can be interpreted as a constrained condition of a Lagrangian op-
timization problem [2] as opposed to the displacement method. Here the element matrices are
derived by usage of principle of virtual forces and principle of virtual displacements simultane-
ous. On the system level the degrees of freedom for the forces are eliminated. Further details
can be found in [10]

Dynamic equilibrium:
∫

(G)

(δvjρv̇j + δε̇klσkl − δvjfj)dV −
∫

(R)

δvjt0jdA = 0 (38)

Compatibility:

∫

G

[δσij(ε̇ij − (1 − 〈I1〉)F−
ijklσ̇kl − 〈I1〉F+

ijklσ̇kl − ε̇−v A
−
ij −

3
∑

m=1

ε̇+
v(m)A

+
ij(m))]dV = 0 (39)

Determination of the viscous stresses:
∫

(G)

δε̇−v (σ−
u − σ−

v + σ−
G)dV = 0 (40)

∫

(G)

δε̇+
v(m)(σ

+
u(m) − σ+

v(m) + ft)dV = 0, (m = 1, 2, 3) (41)

For time discretization an approach is made similar a predictor-corrector procedure. The for-
mulations for the element matrices are symmetrically, even if non associated flow rules are used.

The reinforcement is discretized with uniaxial hybrid strain elements. The geometrical proper-
ties are independent on the discretization of the volume elements. There has been implemented
an automatical generation of reinforcement elements. Every point of intersection between the
side faces of a volume element and a reinforcement bar causes three constraints of displace-
ment. For the description of kinematic and isotropic hardening the approaches from Chaboche
[14] are implemented.

X = X∞(1 − exp (−γεv)) (42)

R = R∞(1 − exp (−bεv)) (43)

WhereX∞, R∞, γ and b are material properties. The values for reinforcement of a usually
rebar are piced as follows:
R∞ = 4kN/cm2, b = 100, fyk = 50kN/cm2, fk0 = 48.5kN/cm2, E = 20000kN/cm2,
kinematic hardening is neglected here. Note, that fyk is not a mean value. A comparison to
DIN 1045 Abs. 9 is given in figure 6.
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5 EXAMPLE CALCULATIONS

For example calculations a slightly reinforced frame is presented. This frame is a current
project of our institute. During the next weeks tests for the statical and dynamical structural
behaviour shall be made. Therefore precalculations were made by using the introduced concrete
model. The material properties has been estimated.

In figure 8(b) the formation of cracks is indicated well. It is represented by the kinematic
softening of the concrete. The localization of the cracks is recognized very well in spite of the
usage of a smeared crack model.

The calculations had been carried out with different meshes, the results are similar. Figure 7
shows the path of the load-displacement relation. Here the charge of failure is to be seen clearly.
It shall be emphasized, that no points of elements are switched off, if a certain limit (of stress or
strains) is reached. The slope of the curve happens in a natural way, that is, if the softening of
material points in compression or in tension develops. There can be seen a good convergence
in computation of states that are nearly the theory of beams.
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Figure 7: predicted load displacement path for the upper right frame corner

The quality of the results referring to the reality will have to be proved, when the exper-
iments will be made. The predictions by a computer program, which disregards the tension
zone of concrete shows a lower failure load. One calculation, that was made by the theory of
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plastic hinges, where the resisting moments had been estimated from experiences from other
calculations with slightly reinforced beams gave the result of 13.6 kN for the resisting force.

X [kN/cm²]3

X

Y

Figure 8: Vierendeel frame, estimated material parameters: concrete: fc = 4.03 kN/cm
2

, εcp0 = 0.00217 ft =

0.403 kN/cm
2

, Gf = 0.08 · 10
−2 kN/cm, ν = 0.2 (Poisson’ratio), partioning factors β+

= 0.6, β−

= 0.0,
steel fyk = 50 kN/cm2

6 CLOSURE

A three–dimensional concrete model has been introduced. This model has viscoelastic and
viscoplastic properties. The results in the material level are very well. Computations in the
structural level show good convergence. For verification of the concrete model further calcula-
tions and adjustments in material parameters are required.
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