
17th International Conference on the Applications of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. Könke (eds.)
Weimar, Germany, 12–14 July 2006

ENGINEERING PROCESS MODEL SPECIFICATION AND
RESOURCE LEVELING

A.B. Eygelaar* and G.C. van Rooyen

*University of Stellenbosch
Stellenbosch, South Africa

E-mail: eygelaar@sun.ac.za

Keywords: Process Modeling, Model Specification, Tabu Search, Resource Leveling,
Logical Sequence of Tasks.

Abstract. The acceptance of process modeling in AEC industries do not exclusively depend
on the results it can provide, but the ease at which these results can be attained. Specifying a
complex AEC process model is a dynamic exercise that is characterized by many
modifications over the process model’s lifespan. This article looks at reducing specification
complexity, reducing the probability for erroneous input and allowing consistent model
modification.

Furthermore, the problem of resource leveling is discussed. Engineering projects are often
executed with limited resources and determining the impact of such restrictions on the
sequence of Tasks is important. Resource Leveling concerns itself with the restrictions caused
by limited resources. This article looks at using Task-shifting strategies to find a near-optimal
sequence of Tasks that guarantees consistent Dataset evolution while resolving resource
restrictions.

1 INTRODUCTION

The use of process models in the analysis, optimization and simulation of processes has
proven to be extremely beneficial in the instances where they could be applied appropriately.
However, the Architecture/Engineering/Construction (AEC) industries present unique
challenges that complicate the modeling of their processes. A simple Engineering process
model, based on the specification of Tasks, Datasets, Persons and Tools, and certain relations
between them, has been developed, and its advantages over conventional techniques have
been illustrated [1]. Graph theory is used as the mathematical foundation mapping Tasks,
Datasets, Persons and Tools to vertices and the relations between them to edges forming a
directed graph.

The acceptance of process modeling in AEC industries not only depends on the results it
can provide, but the ease at which these results can be attained. Specifying a complex AEC
process model is a dynamic exercise that is characterized by many modifications over the
process model’s lifespan. This article looks at reducing specification complexity, reducing the
probability for erroneous input and allowing consistent model modification.

Furthermore, the problem of resource leveling is discussed. Engineering projects are often
executed with limited resources and determining the impact of such restrictions on the
sequence of Tasks is important. Resource Leveling concerns itself with the restrictions caused
by limited resources. This article looks at using Task-shifting strategies to find a near-optimal
sequence of Tasks that guarantees consistent Dataset evolution while resolving resource
restrictions.

2 ENGINEERING PROCESS MODEL, COMPONENTS AND RELATIONS

Four sets of components have been identified as building blocks for the process model: set
of Tasks, set of Datasets, set of Persons and a set of Tools. Tasks represent operations on
Datasets, raising the Dataset’s status value in the process. Tasks are executed by Persons and
Datasets are operated upon using Tools. There are 16 possible binary relations between the
components, of which only 3 are user specified while the remaining 13 relations can be
derived mathematically. The 3 user specified heterogeneous binary relations are the relation
between the set of Tasks and the set of Datasets (Task-Dataset relation), the relation between
the set of Tasks and the set of Persons (Task-Person relation), and the relation between the set
of Datasets and the set of Tools (Dataset-Tool relation). Refer to figure 1 for an overview of
the heterogeneous binary relations and their semantics.

 2

Figure 1: Overview of heterogeneous binary relations

Of the four derived homogeneous binary relations, on the diagonal in figure 1, the relation
in the set of Tasks is the most important:

 Relation in the set of Tasks :=

 { (taskx, tasky) ∈ T x T | taskx ≠ tasky ∧ taskx “has to be executed before” tasky } (1)

 T Set of Tasks

The Task-Dataset relation and three predefined rules are used to determine the relation (1)
in the set of Tasks, called the Consistent Sequence of Tasks graph (CST-graph) [1, 2]. Every
edge in the CST-graph represents a relationship between its incident Tasks that must be
honored in order to guarantee consistent development of Datasets. The CST-graph is
topologically sorted to produce an optimal Logical Sequence of Tasks (LST). A graph and its
LST are known as a solution. The result of topological sorting is a list of logical steps and
each step contains Tasks that have to be executed before the Tasks in the following steps can
be executed. The CST-graph and its LST are considered an optimal solution, because the least
amount of logical steps is used and Tasks are assigned to the earliest possible logical step.

The remaining 3 homogenous binary relations, refer to table 1, can easily be derived using
the CST-solution together with the other heterogeneous binary relations. For example, the
relation in the set of Persons can be derived using the CST-graph and the user specified Task-
Person relation.

 3

Table 1: Overview of homogeneous binary relations

3 SPECIFICATION OF PROCESS MODEL

Although the amount of user specification has been significantly reduced to four
component sets and three heterogeneous binary relations, AEC processes’ inherent dynamic
and complex nature compel the Graphical User Interface (GUI) to reduce user interaction
complexity and erroneous input. The model should support easy and consistent model
modification.

3.1 Reducing user interaction complexity and erroneous user input
It is the responsibility of the user to specify the components and three heterogeneous

binary relations of the process model. Each type of component or relationship requires certain
attributes to be correctly specified before the component or relationship may be added to the
model. For example: during the specification of a Dataset component the user must specify a
unique name, a valid completion weight and one milestone class. How the user is prompted
and enters the information into the GUI should be intuitive and simple. Verification of the
user entered information is handled by the GUI, but some verification is delegated to the
model. The following Dataset oriented verifications have to be completed before the Dataset
component may be added to the model:

• Leading- and trailing whitespace are removed and the user specified name is
checked for uniqueness.

• Completion weight is checked whether it is a valid number.

• The GUI enforces the selection of one and only one milestone class.

Each component’s specification, may it be creating or modifying a component, is handled
in one popup focusing the user’s attention. If an extra popup is required, for example to
specify a Dataset’s attributes and milestone class in figure 2, the child popup is displayed
over the parent popup to reduce visual complexity. The use of modal popups forces a user to
complete a component’s specification before advancing to the next undertaking.

 4

Figure 2: Specifying a Dataset component

Binary relations consist of ordered pairs and the relationship between the pair’s two
components is directed with a beginning and end component. Figure 3 shows the relationships
a user must specify. The relation between the set of Tasks and the set of Datasets (Task-
Dataset relation) is used as an example to explain the specification process. When specifying
a Task-Dataset relationship for a specific Task (Current Task), any number of Datasets may
have relationships with the Current Task as long as the Datasets are different. The user can
specify three types of Task-Dataset relationships: read, modify or create. Only modify and
create type Task-Dataset relationships involve specifying the dataset’s status level after the
execution of the Current Task. After investigating different specification procedures the drag
and drop strategy performed the best.

Figure 3: User specified relationships

In figure 4 the user is busy specifying a Task-Data relationship. “Create architectural
design” is dragged from the Task-list and dropped into Current Task-list and automatically
“Create architectural design” is set as the Current Task. Now the user drags “Architectural
drawings” from the Dataset-list and drops it into the Create-list and automatically a Task-
Dataset relationship (of type Create) is created between “Create architectural design” and
“Architectural drawings”. When the user selects “Architectural drawings” the user can choose
a status level sourced from “Architectural drawings” milestone class.

Incorporating drag and drop functionality simplifies user interaction with the GUI as well
as preventing erroneous input. The drag and drop process can be customized to guide the user
while performing a drag and drop operation. For instance, the user’s intention to copy or
move the component being dragged is reflected in the shape of the cursor. Also, drop targets

 5

can be configured to only accept certain types of components and components originating
from certain drag sources reducing the probability for the user to specify inconsistent
relationships.

Figure 4: Drag and drop

3.2 Model modification
AEC projects can be extremely volatile undergoing constant modifications that complicate

the modeling of such processes. Compounding this volatility are high levels of referencing
between components caused by the use of graph structures. Therefore, model modification
must be embraced while consistent referencing is guaranteed.

Herding resident objects into one model map reduces consistency issues and increase
manageability of the resident objects. If a collection of objects of specific interest are
required, it can be extracted from the model map using customizable filters. Using a single
model map necessitates that all objects be uniquely identifiable. Each object has a persistent
String identifier (ID) that is mapped to the object’s reference inside the model map. Objects
are not referenced at object level, but at ID level. Changing and modifying objects are easily
facilitated with ID referencing. Two modification types have been identified:

 6

reName:

An object’s ID is modified from its old ID to a new ID (figure 5). The object’s reference is
not replaced with another object’s reference, in other words, the object itself stays the same.
The following steps explain how to execute this procedure to guarantee consistent ID
referencing:

• Iterate over all the objects in the model map.

• If an object’s ID matches old ID replace it with new ID.

• If an object references an ID that matches old ID, replace it with new ID.

• Remove map entry with Key = old ID.

• Insert map entry with Key = new ID and Value = old object reference.

Figure 5: reName
reReference:

An object’s ID is modified from its old ID to a new ID (figure 6). The object’s reference is
replaced with another object’s reference, in other words, the object itself is also replaced. The
following steps explain how to execute this procedure to guarantee consistent ID referencing:

• Iterate over all the objects in the model map.

• If an object’s ID matches old ID replace it with new ID.

• If an object references an ID that matches old ID, replace it with new ID.

• Remove map entry with Key = old ID.

• Insert map entry with Key = new ID and Value = new object reference.

Figure 6: reReference

 7

4 RESOURCE LEVELING

Resource leveling concerns itself with restrictions caused by limited resources.
Engineering projects are often executed with limited resources and determining the impact of
such restrictions is important. The focus here is to resolve resource conflicts in an optimal
way.

When deriving the CST-solution, as described in section 2, only the consistent evolution of
Datasets is taken into consideration. The impact of limited resources is not considered and
indirectly the assumption is made that resources have an unlimited availability. Ignoring the
impact of limited resources, the LST holds the least amount of logical steps to execute Tasks
as early as possible. Thus, the CST-solution is the unique optimum solution with unlimited
resources. Assuming there is a limit on the availability of resources creates the possibility that
resources may be overutilized. Resources are utilized when Tasks are executed which mean
that concurrent execution of Tasks requires concurrent utilization of resources. If the
concurrent utilization is greater than the availability of resources the problem of resource
overutilization is born. In theory, Tasks responsible for resource overutilization can only be
executed if the availability of resources is increased or the concurrent utilization of these
resources decreased sufficiently to resolve the resource overutilization. Increasing the
availability of overutilized resources is a simple strategy, but not always an efficient or even
possible strategy. This turns the focus to reducing resource overutilization by shifting the
Tasks responsible away from areas of concurrent execution. Two strategies are used to reduce
the concurrent utilization of resources namely shuffling and a tabu search technique.

4.1 Shuffling
The sequence of Tasks inside a logical step has thus far enjoyed no attention and there are

no restrictions on this sequence either. Shuffling, as graphically explained in figure 7, is the
shifting and stacking of Tasks inside the logical step’s boundaries with the aim of reducing
concurrent execution of Tasks. Shuffling does not change Tasks’ step numbers, because the
Tasks remain in the same logical step. Shuffling can only reduce or at its worst have no effect
on resource consumption; therefore shuffling will always be employed.

Figure 7: Shuffling

 8

By default a logical step’s duration will be set to the minimum and this lower bound is set
by the step’s longest Task duration. A logical step’s duration does not have an upper bound.
Longer step durations offer the opportunity for a higher degree of shuffling, but the increase in
step duration has to be weighed up against the reduction of resource utilization. Also,
shuffling is highly sensitive to the differences in a step’s Task durations. If a step’s Task
durations are equal, no shuffling is possible without increasing the step’s duration. However,
if adequate differences in a step’s Task durations are present shuffling is possible even with
the step’s duration set at its minimum.

4.2 Tabu Search
The shuffling strategy has limited impact and to achieve further reduction of concurrent

execution of Tasks responsible for overutilized resources necessitates the shifting of Tasks
across the boundaries of logical steps. This strategy’s inherent explosive complexity compels
the use of heuristic techniques to determine alternative solutions that account for resource
restrictions. Tabu search is investigated as a searching strategy.

Tabu search definition:

Tabu search is a form of local neighborhood search. The current solution (S) is used as a
starting point for the search. Its local neighborhood of solutions is explored and the best
solution (S*) is selected as the new current solution. S* is reached from S by an operation
called a move. Recent moves are recorded in a tabu list to force the search away from visited
solutions, because moves in the tabu list are not allowed to be executed. Moves are evaluated
to determine which move has the best value. The decision to choose the best move is based on
the assumption that good moves have a higher probability to lead to optimal or near-optimal
solutions. This does not necessarily mean that S* is an improvement over S, but it is this
feature that enables escaping from local optima.

Application of TS in process model:

The CST-solution is a unique optimum solution, but it is based on the assumption of
unlimited resources. This implies that the remaining solution space, including the solutions
that satisfy limited resources, consist only of solutions where combinations of Tasks are
delayed (shifted to or executed in later logical step). Thus, using the CST-solution as the
starting solution a move can only be defined as shifting a Task to a later logical step. Shifting
a Task is achieved by edge insertion into the current solution.

Edge insertion:

A move, and thereby shifting a Task to a later logical step, is realized by edge insertion.
The edge is inserted from the anchor Task to the chosen drifter Task. The anchor Task is
either a Task that is not responsible for resource overutilization or the Task least desirable to
shift. The drifter Task is the most desirable Task to shift. In figure 8 Task B is the anchor and
Task C the drifter. S* is reached from S by edge insertion and topological sorting S* reveals
the impact of the move.

 9

Figure 8: Edge insertion

Move evaluation:

During the execution of a tabu search, moves are only performed if it will shift Tasks
responsible for resource overutilization. Moves are evaluated, using a value function, before
the best move can be chosen. Two types of criteria are used namely value and disqualification
criteria. A value criterion is used by the value function to determine a move’s value while a
disqualification criterion determines if the move is acceptable or not. The value function (2)
consists of the summation of weighted value criteria where each criterion’s weight determines
the influence the criterion will have on the value function:

 Value of move = ∑ (criterion weight)i x (criterion value)i for all criteria I (2)

Task slack and Task resource utilization are used as value criteria and Minimum Task
resource utilization as a disqualification criterion:

Task slack:

Task slack is the number of logical steps a Task can be shifted without
increasing the overall number of logical steps. Tasks on the critical path will
have zero slack. A move with higher slack is more desirable.

Step 1: Step 2:

A B

Step 3: Step 4: Step 5:

C

Step 6: Step 7: Step 8:

D

Step 9:

E

Slack = 4 Slack = 4 Slack = 3 Slack = 1 Slack = 0

Figure 9: Task slack
Task resource utilization:

Shifting a Task that is responsible for k overutilized resources is more
attractive than shifting a Task that is responsible for j overutilized resource if
k > j.

Minimum Task resource utilization:

A Task utilizes a resource k times. The availability of the resource is j. If k > j
then the Task is responsible for k – j = w over utilizations of the resource.

 10

Shifting the Task to a subsequent logical step will not resolve the overutilization
of the resource, because the Task is still associated k times with the resource and
the availability of the resource remains j. A move where k > j is not useful and is
therefore disqualified.

Solution evaluation:

A Solution consists of a graph and the graph’s LST. Solutions must be comparable with
each other to be able to choose the best solution as the tabu seach explores the solution space.
A value function is used to evaluate a solution to determine a value. Any combination of a
solution’s properties can be incorporated. Chosen solution properties used in the value
function are weighed according to its importance. If a user decides that the number of logical
steps must be the dominant property the value function will assign high values to solutions
with a lower number of logical steps.

Solutions are evaluated, using a value function, before the best solution can be chosen.
Two types of criteria are used namely value and disqualification criteria. A value criterion is
used by the value function to determine a solution’s value while a disqualification criterion
determines if the solution is acceptable or not. The value function (3) consists of the
summation of weighted value criteria where the each criterion’s weight determines the
influence the criterion will have on the value function:

 Value of solution = ∑ (criterion weight)i x (criterion value)i for all criteria i (3)
Solution duration is used as value criterion and Overutilized resources as a disqualification

criterion:

Solution duration:

Refer to figure 10 for an explanation of a logical step’s contribution to the
Solution duration.

Figure 10: Logical step’s contribution to solution duration

Overutilized resources:

A limit can be specified on the number of overutilized resources that is
acceptable. Let this limit be k. If a solution contains j overutilized resources and
j ≤ k the solution is acceptable, otherwise it is not acceptable.

 11

Tabu list:

The major idea of the tabu list is to classify certain search directions as forbidden (tabu) to
prevent returning to previously visited solutions. The tabu list acts as short-term memory
forcing the search away from recently visited solutions. To reach S* from S the best move is
performed and placed into the tabu list. Only moves not present in the tabu list may be
performed.

Figure 11: Searching the solution space
To strictly enforce the tabu list can severely restrict the tabu search. To reach a solution

requires a unique combination of moves. Referring to figure 11 it is easy to see that to reach
any solution requires traversing a unique path (combination of moves). If the first move from
the current solution in figure 11 is placed in the tabu list and then strictly forbidden, only one
of the indicated stable solutions can be reached. That is clearly not a desirable situation.
Aspiration criteria allow moves in the tabu list to be performed.

One aspiration criterion is used that allows a tabu move to be performed m times before it
is strictly forbidden and is called the Tabu Redo Limit. Let tA be the number of times move A
has been performed and NA the set of neighborhood moves of move A. Then move A can only
be performed if:

 tA < m ∧ tA ≤ min{ ti ∀ i ∈ NA} (4)
Tabu search-algorithm:

Tabu search is a searching technique that is adapted to the particular characteristics of the
solution space being searched. In this case the tabu search algorithm has distinct steps it
follows while searching the solution space.

Tabu search-run:

A tabu search-run starts with a current solution S. Investigating the current solution’s LST
provide information like resource utilizations. While iterating over the LST’s logical steps
they are checked for resource overutilizations. If such a step is located an attempt is made to
perform a move and if the attempt fails the iteration continues. If the attempt is successful the
move is performed, S* is reached, and the iteration terminates. However, if the iteration ends
without performing a move the tabu search-run is terminated and S is considered a stable
solution. A stable solution is when no more moves can or should be performed and the
structure of the solution’s graph remains stable. Refer to figure 12 for a graphical
representation of the tabu search-run algorithm.

 12

start with current solution: S
(also know as starting solution)

determine LST of S:
topological sort

iterate over LST

next logical step: step i

step i contains no resource
overutilization

continue iteration

step i contains resource
overutilization

attempt to perform a move

successfulunsuccessful

continue iteration solution S* reached
terminate tabu run

no more steps

stable solution
terminate tabu run

Figure 12: Tabu Search-run diagram
Tabu Search-relay:

A tabu search-relay consists of several tabu search-runs, but the tabu search-runs always
start with the CST-solution as its starting solution. Each tabu search-relay will continue to
perform tabu searh-runs until a stable solution is reached. When a stable solution is reached
the tabu search-relay terminates. In figure 13 the highlighted path is a tabu search-relay.
Each segment of the path is a tabu search-run. When S* is reach from S another segment is
added to the path until S* is stable.

 Figure 13: Tabu Search-relay
Tabu Search-race:

A tabu search-race consists of several tabu search-relays. Each tabu search-relay
produces a stable solution that is evaluated and the best solution is stored. The best solution
may or may not be an optimum solution for the given resource availability, but it is the best
solution the tabu search-algorithm could find.

 13

5 APPLICATION AND RESULTS

A Java application is implemented and a small AEC project modeled. The project consist
of 22 Tasks, 8 Datasets, 6 Persons and 4 Tools. The Tools and Persons are the resources of
the project. The specified parameters for the tabu search-algorithm were:

• Step duration available: minimum (a logical step’s longest Task duration)

• Number of tabu search-runs: 100

• Solution value function criterion: based only total duration

• Solution disqualification criterion: only solutions with zero resource
overutilizations are eligible for best solution

• Move value function criteria: Task slack weighted at 0.8 and Task resource
utilization reduction weighted at 0.5

• Move disqualification criterion: Minimum Task resource utilization

The tabu search-algorithm searches for solutions by delaying Tasks from their original
positions in the CST-solution (starting solution). Since delaying Tasks are the only moves
allowed it explains why the best solution (best in terms of solution evaluation) found by tabu
search-algorithm has a longer duration compared to the CST-solution’s duration. This
increase in duration is reflected in the reduction of the overutilized resources.

The amount by which the solution’s duration increases depends on how much resource
overutilization and Task slack were present in the CST-solution. Shuffling thrives if a logical
step has many Tasks with a good spread in duration. As the tabu search algorithm performs
moves in an attempt to decrease the concurrent execution of Tasks, shuffling becomes less
successful.

Although the process being modeled only consists of 22 Tasks meaningful results could be
attained. Refer to table 2 for the tabu search results.

 14

Solution CST-
solution

Best tabu search
solution

Worst tabu search
solution

Steps 6 10 13

Duration 7460 9860 12335

Resource overutilizations 4 0 0

Shuffling: Concurrent task
execution reductions 9 3 2

Shuffling: Resource utilization
reductions 25 7 4

Specified step duration minimum minimum minimum

Moves n/a 11 19

Tabu search-runs n/a 1217 1217

Tabu search-relays n/a 100 100

Time to compute n/a 100 seconds 100 seconds
Table 2: Tabu Search results

Figure 14 shows how the best and worst solution’s moves affected the duration and
resource overutilization. It can be seen that performing a best move does not necessarily reach
an improved solution S* from S, in terms of resource overutilizations. This characteristic
allows the tabu search-algorithm to escape local optima.

-0.15

0.05

0.25

0.45

0.65

0.85

1.05

0 5 10 15 20

Moves

Ef
fe

ct
 o

f m
ov

es

Best solution: Effect on duration Worst solution: Effect on duration
Best solution: Effect on overutilization Worst solution: Effect on overutilization

Figure 14: Effects of moves on duration and resource overutilization

 15

Specifying step durations longer than the minimum step duration increases the efficiency
of shuffling and consequently reduces the starting solution’s resource overutilizations. Since
only Tasks responsible for overutilized resources are allowed to be shifted the amount of
moves available will also reduce. As the tabu search-algorithm search through the solution
space its reduced choice of moves does not allow it to reach the same best solution as with the
minimum specified step durations. That is why table 3 shows an increase in solution duration,
a decrease in moves, decrease computation time (direct result of decrease in moves) and
increase in shuffling efficiency as the specified step duration increases.

Best tabu search solution with following amounts available

for step duration: Solution
minimum 1500 2500 4000

Steps 10 7 7 6
Duration 9860 10010 11000 12250
Resource overutilizations 0 0 0 0
Shuffling: Concurrent task
execution reductions 3 12 12 14
Shuffling: Resource utilization
reductions 7 11 28 33

Specified step duration minimum 1500 2750 4000
Moves 11 8 4 3
Tabu search-runs 1217 1142 385 285
Tabu search-relays 100 100 100 100
Time to compute 100 seconds 95 38 30

Table 3: Influence of step duration specification

6 CONCLUSION

The implemented Graphical User Interface and model constitute a substantial
improvement over existing implementations. Implementing the GUI exposed several areas for
future development and improvement. For example, the drag and drop process can be
improved to provide stricter guidance and more feedback to the user. Essentially, however,
GUI development is an ongoing exercise.

A solution, especially its LST, encapsulates large amounts of information that the user need
to visualize in a rational manner. Apart from visualizing the LST the user also need to be able
to interact with the LST. Displaying a LST is graphically intensive and will require future
development. The development of a proper interactive graphical representation will introduce
new opportunities of user interaction with the LST like drag and drop.

The provisional results attained by the tabu search-algorithm are very encouraging and
future benchmarking will include larger AEC process models. Although the tested AEC
process model was relatively small in size, only twenty two Tasks, a human will most

 16

probably not have been capable of solving it in an efficient way. Larger models can only be
solved computationally.

Shuffling proved to be surprisingly efficient and justifies future development. Shuffling
Tasks is a combinatorial problem, but currently the algorithm only calculates one solution.
The drawbacks of shuffling are that it is sensitive to the number of Tasks present in a logical
step and the spread of the Tasks’ durations. Unfortunately the impact of these drawbacks
cannot be significantly reduced with improving shuffling algorithm.

Improving the tabu search-algorithm can be achieved on many fronts. The aspiration-,
move evaluation- and solution evaluation criteria can be expanded in order to increase the
level of complexity at which these evaluations operate. The quality of a decision is only as
good as its preceding evaluations. It may be assumed that for larger models computational
limitations will decrease the searchable area of the solution space. In this case the necessity of
performing the best move becomes more critical.

Currently a move is only associated with edge insertion, but future development may focus
on introducing removal of inserted edges as possible moves. Implementing such a strategy
will be more complex, but the resulting search may be more thorough.

The computational complexity of the tabu search-algorithm is high. Searching for one
hundred solutions in a solution space containing only twenty two Tasks already consumes
time of the order of a minute, using a Intel Pentium M 1.8GHz processor with 1GB of RAM.
Computational complexity was not the primary focus during the development of the pilot
implementation and future improvements are possible.

The biggest limitation this project has identified is the reliance on the Logical Sequence of
Tasks. Topologically sorting the CST-graph compartmentalizes the Tasks into logical steps,
which reduces the complexity of the problem, but in doing so introduce scheduling
limitations. Specifically, step logic enforces jumps in the starting times of Tasks, whereas the
CST-graph only enforces a Task’s starting time, as shown in figure 15. It is proposed that
future developments focus on using the CST-graph directly.

Figure 15: Proposed reliance on CST-graph

 17

REFERENCES
[1] Huhnt, W. (2004): Progress Measurement in Planning Processes on the Base of Process

Models, Xth International Conference on Computing in Civil and Building Engineering,
June 02-04. Weimar, Germany.

[2] Eygelaar, A. (2004): Modeling the Engineering Process. Final year project, University
of Stellenbosch, Stellenbosch, South Africa.

Pahl, P.J., Damrath, R. (2001): Mathematical Foundations of Computational Engineering.
Springer-Verlag Berlin HeidelBerg, Germany.

Sait, S.M., Youssef, H. (1999): Iterative Computer Algorithms in Engineering. Wiley - IEEE
Computer Society Press, California, USA.

 18

