HYPERMONOGENIC POLYNOMIALS
S.—L. Eriksson” and J. Kettunen"”

“Sirkka-Liisa Eriksson
Department of Mathematics
Tampere University of Technology
P.O. Box 553
FI-33101 Tampere
email: Sirkka-Liisa.Eriksson@tut.fi

“*Jarkko Kettunen
Department of Mathematics
Tampere University of Technology
P.O. Box 553
FI-33101 Tampere
email: Jarkko.Kettunen@tut.fi

Keywords: Monogenic, hypermonogenic, homogenous polynomial

Abstract. Let Cls be the (universal) Clifford algebra generated by e, es and
es satisfying e;e; + eje; = —20;5, 1,7 = 1,2,3. The Dirac operator in Cls is
defined by D = Z?:o eié%, where eg = 1. The modified Dirac operator is in-
troduced by M f = Df—0—2%—z, where ' is the main involution and Q f is given
by the decomposition f(x) = Pf(z) + Qf (x)es with Pf (x),Qf (v) € H.
A continuously differentiable function f : € — Cls is called hypermonogenic
in an open subset Q of R, if Mf (x) = 0 outside the hyperplane x3 = 0.
We consider homogenous polynomials in various function spaces. In partic-
ular we collect results concerning differentiation and linear independency of
the polynomials. We find a basis for homogeneous holomorphic Cliffordian
polynomials of degree m.



1 Introduction

It is well know that the power function 2™ is not monogenic. In C/¢3 there are
basically two ways to include the power function into the set of solutions: The
hypermonogenic functions satisfying the equation x3M f = 0 or holomorphic
Cliffordian functions satisfying the equation ADf = 0. Hypermonogenic
functions are notably studied by H. Leutwiler and the first author for example
in [2], [3], [4] and [5] while the holomorphic Cliffordian functions are studied
by G. Laville and I. Ramadanoff in [7]. In addition, holomorphic Cliffordian
function are in close connection with polyharmonic functions and iterated
Dirac operators studied by L. Pernas in [8] and in the complex case by R.
Ryan in [9].

L. Pernas has found out the dimension of the space of homogenous holo-
morphic Cliffordian polynomials of degree m in [8], but his approach did
not include a basis. It is known that the hypermonogenic functions are in-
cluded in the space of holomorphic Cliffordian functions. As our main result
we prove the surprising result that the polynomials L2, T and % form
a basis for the right module of homogeneous holomorphic Cliffordian poly-
nomials of degree m. For this task, we first recall the function spaces of
monogenic, hypermonogenic and holomorphic Cliffordian functions and give
the results needed in the proof of our main theorem. We list some basic
polynomials and their properties for the various function spaces. In particu-
lar, we consider recursive formulas, rules of differentiation and properties of
linear independency for the polynomials.

2 Notations

As general references for the chapter we give [2], [3] and [5]. We consider the
universal Clifford algebra C/3, that is the associative algebra over R generated
by the elements e, e5 and e3 satisfying the relations

2 _
e; =—1

and
€i€j = —€;€;, (1)

for 7,7 = 1,2, 3. Furthermore, we denote eg = 1. The general element of the
algebra C/l3 is of the form

a = ap + aie1 + agez + ases + aja€12 + a13€13 + A23€23 + A123€123,



where the coefficients a;, are real and the abbreviated notations are e;e; = e;;
and ejeses = eq93. In general, if o = {aq,...,a5} € {1,2,3} and a; < ay <
... < a; we denote e, = €4, * - €q;, With ey = eg, and get the presentation

a= E A0l

We call the elements x = xg + z1e1 + woes + x3e3, for x; € R, paravectors.
We identify the set of paravectors with the Euclidean space R*. By (1) it is
clear that C/3 is not a commutative algebra. The elements o + [Sej93 with
a, 3 € R commute with all elements of C/s.

In Cl5 we define three involutions. The main involution ' : Cls — Cls
is the algebra isomorphism defined by ¢ = 1 and e; = —e;, for i = 1,2, 3.
The reversion is an antiautomorphism * : Cf3 — C/l3 defined by e} = e,
for i = 0,...,3 and (ab)” = b*a*. The conjugation is the antiautomorphism
= : Cl3 — Cl3 defined by @ = (a*)' = (a')".

We can embed the division algebra of quaternions H into the algebra C/3
by identifying e; with ¢, es with j and e with k. Furthermore, we can
decompose the algebra C/3 into two copies of H by writing

a = Qo + aieq + a92€9 -+ a12€12 -+ (a3 + ai3éq + a93€2 -+ Cl123€12> €3
= Pa + Qaes.

The relation defines the operators P : Cl3 — H and @ : Cl3 — H with the
properties
P*=P,PQ=@Q, QP =0 and Q* = 0.

We define the involution * : Cl3 — Cl3 by é3 = —e3, &; = ¢;, for i = 0,1,2
and ab = ab. Using this involution we obtain for any a € Cl3 the following
formulas
a—e3des a+a
Pa = = 2
a 5 5 (2)
esa’ —aes a—a

Qa = 5 =5 (3)

In proving the formulas (2) and (3) we use the identities
CL/€3 = 636 and €3Cl/ = 211\637
for arbitrary a € Cl3 and

b,63 = €3b and €3b/ = b@g7



for any b € H. In addition we can show that

P(d) = (Pa) and Q () = - (Qa)' .

In order to abbreviate the notations we set (Pa) = P'a and (Qa) = Q'a.
For the P- and Q-parts of a product we have

P (ab) = (Pa) Pb+ (Qa) Q (V)
Q (ab) = (Pa) Qb+ (Qa) P (V') (4)
Q (ab) = aQb+ (Qa) V. (5)

For easy reference we recall some basic notations of multi-indexes. Let
No=1{0,1,2,...}. An element a = (ag, a1, a9, 3) € N§ is called a multi-
index. For a multi-index o = (g, a1, 9, 3) € Ni and a paravector zy +
r1€1 + xoe9 + T3e3 We have

r® = xga]t xy?ws?
al = aplaglaslas! (factorial)

la| = ap + a1 + as + a3 (length of )

m m) m! .
= =——— if o] =m.

« ol aglaglag!as!

We denote by ¢; the multi-index (o, o, ag, a3) , with o = 1 and |a| = 1.

3 Function spaces

Let ©Q be an open subset of R*. We define the left Dirac operator for a
mapping f : 2 — Cl3 with continuously differentiable components by

3
Dy f = Z €; of
i=0

8x,-

and the right Dirac operator by

3
af
DTf = Z a_xzel
1=0

The functions satisfying D;f = 0 are called left monogenic and the functions
satisfying D, f = 0 are called right monogenic.

Since the properties D;f = 0 and D, f* = 0 are equivalent, it is sufficient
to consider only the left operator, the properties of the right one being anal-
ogous. In particular this is true for paravector valued functions, since in this
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case [ = f*. In what follows, we abbreviate D; = D and call D the Dirac
operator. We define the operator D by

& of
D = ; 2 9z,
A simple calculation shows that we can decompose the Laplace-operator in
R* as
0? 0? 02 02
- 0zt * 0x? * O3 * Oz
and therefore monogenic functions are harmonic. However, there are func-
tions, for example f (x) = z that are harmonic but are not monogenic.
The fact that the power function F'(z) = z™ is not monogenic even if
m = 1 was the main reason for H. Leutwiler and S.-L. Eriksson to introduce
the modified Dirac operator M defined for functions f € C* (Q,Cl3) by

A = DD =DD

Mf:D+x%Q’f

and the operator M by
Mf=D-2qQf.
T3

Similarly as in the case of monogenic functions we study only the left oper-
ator.

A function f : Q — Cl3 is called hypermonogenic, if f € C!'(Q2) and
x3sMf = 0 for all x € Q. Paravector valued hypermonogenic functions are
called H-solutions. The hypermonogenic functions are closely related to the

hyperbolic metric ds? = z_lg (22 + 22 + 22 + z2) and therefore we consider the

hyperbolic Laplace operator Ay = A — :B%a% associated to this metric. The
functions satisfying Ay = 0 are called hyperbolic harmonic functions. The
definition of hypermonogenic functions can be written using the P- and Q-

parts.

Lemma 1 ([3, Proposition 3]) Let ) be an open subset of R* and f : Q —
Cls be a mapping with continuous partial derivatives. The equation M f =0
is equivalent with the system of equations

o (Da(Pr) - G2 ) 2 =0, )
oP'f
D.@n+ 5L =0 M)

2 8
where Dof =377 eia—;:.



The equations (6) and (7) have some immediate consequences (see [2,
Lemma 10]).

Lemma 2 Let f be hypermonogenic on Q C R* with w = QNR3 # 0. Then
on w we have

D.Pf (.0 = =2 (.0), o)
orf
o (0 =0. (10)

Proof. The proof of (8) is just to evaluate (6) at x3 = 0. Writing (6) as

0Qf  ,Q&f _

0
8.1'3 I3

DoPf —

and letting x5 — 0 yield

o+ oo

8333

D2pf<70) -

since f has continuous partial derivatives. Thus

0Q'f
81'3

(+,0) = Do Pf (-, 0)

and we have (9). Combining (9) and (7) we get (10). =

Lemma 3 The P- and Q-parts of a hypermonogenic function f satisfy the
equations

oPf
BAPS — 255 =0 (11)
Aaf -2, 58 vaar -0 (12)

Proof. Choose k =2 in [6, Lemma 2|. =

The previous Lemma states that the P-part of a hypermonogenic function
is a hyperbolic harmonic function and the )-component is an eigenfunction
of the Laplace-Beltrami operator z2A; corresponding to the eigenvalue —2.
Furthermore, we obtain for the derivative g—x}; of a hyperbolic harmonic func-
tion the following result.



Lemma 4 If h is a hyperbolic harmonic function then ahg s an eigenfunc-

tion of the Laplace—Beltrami operator z2A g corresponding to the eigenvalue
—2.

Proof. Suppose Ayh = 0. Differentiating with respect to the variable
x3 yields

Ah— = Zp)=nZt 2
0= 81‘3

T3 013 Ors x301% 23 0xs

8( 2 0 > oh 2 0*h 2 Oh

and the result follows by multiplying by 2. m

Hypermonogemc functlons form a right vectorspace over the quaternions
and the derivatives 2 o L of a hypermonogenic function f are hypermonogenic
for + = 0,1,2. But multlphcatlon by e3 and differentiation with respect to
the variable x5 do not preserve hypermonogenicity.

Lemma 5 If f is a hypermonogenic function, then the function fes is hy-
permonogenic if and only if f = 0.

Proof. Assume that f and fez are hypermonogenic. By definition
2
Df+—=Q'f=0 (13)
T3
and 5
D (fes) + x—Ql (fes) =0. (14)
3
Since D (fes) = (Df)es and by (4) Q (fes) = Pf multiplying (13) by —e;3
from the right and adding up with (14) yields
2 2
—— (@ fles+—P'f=0
T3 T3
and thus %Qf@g + %Pf = %f = 0. If f = 0 then trivially fes is hyper-
monogenic. ®

Lemma 6 If f is a hypermonogenic function, then the function 2 a 15 hy-
permonogenic if and only if Qf = 0.

Proof. If Qf = 0 and f is hypermonogenic then Df = 0 and thus

dmg (Df) = (% ) =0 and if is hypermonogenic, since @ (dm f) =0.

Assume that f and 5 f are hypermonogenic. Then 5 - (D f+ r3Q f )

0 and D (%f) + x—3Q’ (8—%f> = (0. Subtracting the equations gives I—QQ f=
3

0 and therefore Qf =0. m
Lemma 6 is an equivalent form of the following result.
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Lemma 7 ([2, Theorem 4]) If f is a hypermonogenic function then the

function g—xj; is hypermonogenic if and only if g—xfg =0.

Combining multiplication by e3 and differentiation with respect to the
variable x3 yields a hypermonogenic function.

Lemma 8 ([4, Theorem 3]) If f is a hypermonogenic function then the
function g defined by
of ., 20f

3x3 T3

1S hypermonogenic.

Another way to include the power function into the set of solutions is
to consider the holomorphic Cliffordian functions defined by the condition
DAf = 0. The holomorphic Cliffordian functions are studied for example in
[7]. The spaces of monogenic, harmonic and hypermonogenic functions are
included in the space of holomorphic Cliffordian functions.

4 Polynomial solutions

First we consider the monogenic polynomials. We note that Dz = —2 #
0 and therefore we cannot use the polynomials z* to construct monogenic
polynomial solutions. Therefore the homogeneous monogenic polynomials of
degree m denoted F¢ and called the Fueter-polynomials, (see for example [1],
[10] or [11]) are defined by

ng (IL‘) = 2201202"'20|a|7 (15)

where the sum is over all different permutations o = (01, ...,a|a‘) of |a]
elements containing o 1’s ap 2’s and g 3’s. The variables z; = (zge; — 1),
29 = (xpeg — x2) and z3 = (zpe3 — x3) in (15) are called the hypercomplex
variables. For the Fueter-polynomials it holds (see [11, Lemma 1.6]).

Theorem 9 ([11], Lemma 1.6) The polynomials F are monogenic and lin-
early independent over Cls.

The Fueter-polynomials satisfy the recursion relation
Fo(2) = 21 Fp "t (2) + 20 F0 %2 (x) + 23 F =2 ()
and the derivatives of the Fueter-polynomials are given by

oFc
8:(:k

= |af F75



(see for example [11] for the proofs).
Next we consider homogeneous hypermonogenic polynomials of degree m.
The definitions and results are from [5] if not otherwise stated.

Definition 10 Let o = (ay, ap) € N2, The elementary H-polynomial E is
defined by

Eg (z) = Z O0LOY * * * TOp,

(00;,0m)ET

where o is the set of all permutations of m~+1 elements containing o, elements
equal to ey and as elements equal to e; and the rest equal to 1. We set
E(()O’O) () =1.If |a| >m +1 or a; <0, we set ES, (z) = 0.

Definition 11 Let o = (ay, as) € N2. The elementary H-polynomial L2, is

defined by
Ly, (z) = Z Fo1%o " Fomal)

(00,....0m)€ET

where the sum is over all permutations of elements zy,, 2y, - - - 2ol CON

taining m elements equal to x, oy equal to ey and as equal to eo. We set
L(()O’O) () =1 and L%, (x), if on <0 or ay < 0.

The polynomials £2 and L2 satisfy the following recursion formulas (see
[11]).

Lemma 12 Let a € N3 and m be a non-negative integer. Then
Ey (z) = 2By (x) + erwERTY () + e ER7T (2) (16)

and
Lo (z) = 2Ly (x) + er Lo () + eo L8752 (x) . (17)

Since the mapping

al Oz~
satisfies the recursion formula (17) with the same initial values as L2 we
obtain the second definition for the polynomials L.

Definition 13 Let o € NZ and m be a non-negative integer. Then

1 glalgm+lal
S — (18)

mT ol Qxe

The polynomials L are explicitly known (see [5, Theorem 19]).
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Theorem 14 If a = (o, ) € N2 and m € N, then

=Y ("5 e o

a
|8|=m 2

where the coefficients c () for v = (70,7), 70 € No and ¥ = (71,72,73) € Ng
are given by

( <|7| /2>
#/2 (—1)F72) if 7 is even,
7
J
c(y) = <(|7| - 1)/2)
5\ /9 o -
o |f|l)/ (—1)((M D2 e ifi=1,2,3 and ¥ — ¢; is even,
5
()
0, otherwise.

\

Theorem 14 has an immediate consequence that we list as a Lemma for
the proof of our main result Theorem 26.

Lemma 15 Let o € N and m € N. Then

" QL

%
ox3

(7()) =0

for all even k € N.

Proof. By Theorem 14 e3 appears in ¢ (5 + «) only when (3 — 1 is
even. Thus ()L{, is odd with respect to the variable x3. Differentiating an
even number of times with respect to z3 yields terms with odd powers of x3,
which vanish when evaluated at z3 =0. m

The derivative of the polynomial E is given by

8Eﬁ§ ade; a—¢; a+e;—2¢
ox; (i + 1) EpTS = (2m — a; + 1) By =5 + (o + 1) Ep 57
OB . S
833'0 = <m+’a‘)En—1_(m_ ‘al—k?)ZEm_%l,

=1

for i € {1,2} and |a| > 2 (see [5]) while the derivatives of polynomial L
with |a| > 2 satisfy the equations
oLe,
8x0

= (m+|af) Ly,

10



and
oL,

= 1) Lot
al‘k (ak + )

m—1"

for k € {1,2} (see for example [5]). The derivatives of the polynomials L,
with respect to z3 can be found out differentiating the presentation (18). In
particular we get

Proposition 16 For polynomials L% with |a| =

oQLY, 1 ol & met [ 2m —
S 0= 5 (- <2l_1)x31 Va2

Proof. Since z is real we get by the binomial theorem

2m
2 2m 2m k 2m—k
¥ = (xg + 161 + To€o + T363)7 = E ( i )1’0 (x1€1 + X269 + T3€3)
k=0

2m 2m—1
2m—k
.170 1'161 + Toe9 + .17363 —|— 330 1'161 + Toe9 + 33363) .
Keven

k odd

Since (z1e1 + Taeg + w3e3)” = (—=1)" (22 + 22 + 22)" is real the Q part of 22™

comes out from the odd part of the previous sum. Thus writing k = 2] — 1
we obtain

“ 2m —
Ql'2m = Q (Z (2l _ 1) I’gl 1 (ZL‘1€1 + 2969 + 1’363)2 2l+1>

=1
S 2m 21-1 m—l [ 2 2 2ym—I
=@ Z 2] — 1 x5 (1) (5’31 + x5 + 353) (w1€1 + 205 + 23€3)
= 2m — m— m—I
= Z 2 (=)™ (e 42+ 2d)"
21 -1
and differentiating with respect to x3 yields

0Qz*" . 2m 211 m—l (2 2 2\ym—!

m—1
#3 (0 ) e ) (5 ) 2

11



and therefore

) 2m m . 9 B _
o= (M)A @

=1

[ |

Since R* is of even dimension, we need some additional polynomials,
called the T-polynomials, to construct a basis for the H-module of homo-
geneous polynomial H-solutions (see [5, Definition 4]). The homogeneous
polynomial 7 may be characterized as follows.

Lemma 17 ([6, Lemma 9]) Let a € N3, with |a| = m — 2. Then
o°T

T alries
and o
axé” (x) = 2x%e;3

for any x with x5 = 0.

The T} -polynomials are explicitly known (see [11, Theorem 2.14]). The
part PT has the explicit presentation

2 5]

PT =3 | (=) Do daa™ ™ e, (20)

i=0 B=0

for some real coefficients dg,; while Q7 has the explicit presentation

3]
QTo = dgz 22y "2, (21)
B=0

with some real coefficients dg. The above presentations give us the next
result for the proof of our main theorem.

Lemma 18 For any odd k € Ny

oFQT
m(.0)=0 22
g™ (-0 22)
and for any even | € Ny
o'PT::
= (-,0) = 0. 23
S (:0) (23)
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Proof. By (21) QT consists of terms containing only even powers of 3
with degree at least 2 and by (20) PT consists of terms containing only odd
powers of 3 with degree at least 3 thus after differentiation in both cases x3
remains in all which vanish evaluating at 3 =0. m

Holomorphic Cliffordian polynomials are defined for a multi-index o € Nj
by

P (z) = Z €o1TCe T o Ty (24)
c€o(a)
where the sum is over all distinguishable permutations ¢ = (01, 09, ... ,O"a|)

of || elements of the set {0, 1, 2,3} with o elements equal to k (k =0, ..., 3).
The polynomial P® (x) is a homogenous polynomial of degree || — 1. The
polynomials P* satisfy the same recursion formulas as the polynomials E.

Furthermore the differentiation rules are the same as in the case of the poly-
nomials E2 (see [7],[11]).

5 Linear independence of the homogenous poly-
nomials

In this chapter we state results concerning the linear independence of various
classes of polynomials. The main result is Theorem 26.

The monogenic polynomials F¢ are linearly independent over C/3 by The-
orem 9. We recall the result

Theorem 19 ([5, Theorem 25]) The basis of the right H-module gener-
ated by the homogeneous polynomial H-solutions of degree m is

{L2 | eNG, |a| <m}U{TS|BeN;, |B=m—2}.

By Theorem 19 the polynomials L% and T are right linearly independent
over H, but even stronger result holds. It is convenient to denote

A ={aeN| |a] <m},
AT ={aeN}| |a| =m -1},
A ={aeN}| |a| =m -2},
A} ={aeN}| |a| =m}.

Theorem 20 The polynomials L2,, with o € AT and T2, with 3 € A are
right linearly independent over Cls and form a basis of the right Clz-module

generated by the homogeneous polynomial H-solutions of degree m.

13



Proof. It suffices to show that the polynomials are right linearly inde-
pendent over C/3. Assume that

> Loa(e)+ > Thb(a)=0

agAy BeAR

for some coefficients a () ,b(8) € Cl3. Decomposing the coefficients into
their P- and Q)-parts yields

> LgPa(a)+> LQa(a)es+> THPb(B)+Y ToQb(B)es =0. (25)

Since > L% Pa (o) + Y. TP Pb(B) is a hypermonogenic function, also

D LaQa(a)es+ Y ToQb(B)es

must be hypermonogenic and by Lemma 5
Y LaQala) + Y THQb(B) =0.

By Theorem 19 we know that the polynomials L% and T? are right linearly
independent over H and therefore Qa (o) = 0 and Qb (5) = 0 for all a € AJ’
and 5 € AJ'. Substituting the zero coefficients into (25) yields Pa (a) =
0= Pb(5). Thus a(a) = 0 = b(B) for all @ € Ay* and § € A and the
polynomials L and T? are right linearly independent over C/;. m

From the previous proof we obtain a more general result.

Proposition 21 Any set of hypermonogenic polynomials that is right lin-
early independent over H is right linearly independent over Cls as well.

Laville and Ramadanoff have proved in [7] that the holomorphic Clif-
fordian polynomials P* in (24) form a generating set for the homogeneous
polynomials satisfying the equation DA f = 0. However, the polynomials P*
are not linearly independent (see for example [11, Example 3.4.]). The di-
mension of the space of homogeneous holomorphic Cliffordian polynomials
of degree m is
m(m+ 1)

2
as stated in [8, Theorem 14]. We know by Lemma 5 that the polynomials
L%es and TPes are not hypermonogenic, but they are holomorphic Cliffor-
dian. In addition they are linearly independent over C/3, when a € A" and
B e AY'. We try to extend the set

1+3 (26)

{Lo | e e AGYU{T, | B e AT

14



in order to find a basis for the homogeneous polynomials of degree m satis-
fying the equation DAf = 0.
For technical reasons we define a set of new polynomials S .

Lemma 22 For every a = (ag, aq, ) € N3 with |a| = m — 1 there exists
a homogeneous polynomial H-solution of degree m denoted by Sy, satisfying
the properties

0QS% oy _ o QS _

Proof. If S¢ is hypermonogenic, the function

Q5

€3

f=

is harmonic. Note that the harmonicity of the function f implies that f is
determined by the values f (+,0) and g—afg (+,0) (see for example [11, Lemma
1.3]). Since @SS, is odd and thus f even, we only need the values of f in the
plane x3 = 0. Since f is a polynomial f is smooth enough for us to obtain

QS oQSs, a
F(0) = Jim 0 () = S50 (,0) =,
we get
« [7"21] k..« 2k
QS o A 7
k=0

where As = amg + axg + 8 92 is the Laplacian in R3. By [3, Corollary 16] the
polynomial S% is determined by the Q-part

=2
QS,, = 1%xs + x3 Z
k=

) Abgog 2
(2%)!

Theorem 23 The polynomials S, T? and F. are right linearly independent
over Cls for o € AT', B € AY' and v € AS' and therefore form a basis of the
right Cls-module generated by the homogeneous polynomial H-solutions of
degree m.

15



Proof. By Prosition 21 it suffices to prove the linear independency over
H. To that end assume that

> Sa(a)+ Y TEL(B)+ Y Fle(y) =0 (27)

acA BeAy YEAT

for some coefficients in H. Differentiating (27) with respect to x3 and evalu-
ating at x3 = 0 yield ZaeA;" z% () = 0 and thus «a (o) = 0 for all « € AT".
Evaluating at x3 = 0 yields b (y) = 0 for all v € A}". Finally, since the poly-
nomials 72 with 3 € A} are linearly independent we obtain b (3) = 0 for all
B € A'. We are considering

m+1+m+m+1_m+2+m
2 2 1)\ 2 2
polynomials. Since by [3, Theorem 43| the dimension of the right Cl3-module
generated by the homogeneous polynomial H-solutions of degree m is

("27)+ ()

Proposition 24 The polynomial L, has a presentation

Ly =Y Sta(®)+ Y Flb(y).

BeAT YEAT

we have a basis. m

where a (f) € H and b(vy) € H.

Proof. The polynomial L, has a presentation in terms of the polynomials

S8 TP and F) for 6 € AT, 3 € AJ* and v € AP by Theorem 23. Since by
Lemma 15 82(%[2’% (+,0) = 0 and by Lemma 17 823?33% (-,0) = 227 # 0 the
3 3

presentation does not contain polynomials 7. m

Proposition 25 Let R, be a homogenous polynomial H -solution of degree

m € N. If
OQR,, P*QR,,

Ox3 3
then R,, is a homogenous monogenic polynomial H -solution independent of
ZIs3.

(+,0) =0 and (,0)=0

16



Proof. We can present R, in the basis S°, T? and F) for § € A", B €
A and v € AY. 8 Iy (-,0) = 22 # 0 by Lemma 17 and % (+,0) =
x® # 0 by Lemma 22 the presentation can contain only polynomials F) and

thus R,, is a homogenous monogenic polynomial H-solution independent of
r3. N

Theorem 26 Let a € AP ﬁ E AT, v € AP and 6 € AJTL. Then the

polynomzials S, TO, F and 3“ are right linearly independent over Cls
and form a basis for the right module of homogeneous holomorphic Cliffordian
polynomials of degree m.

Proof. Suppose that

D S%(a)+ Y Tab(B) + > Fle(y)+> 87;3*% =0

for some coefficients in C/3. Decomposing the coefficients yields

0=> S°Pa(a)+ Y TEPb(B)+ Y F'Pc(y)

29
0
£ Y05 Qa () et TRV (B) es + Y Qe (1) es + 3 LA (9),

where >~ S*Pa (o) + S TPPb(B) + > F7Pc(v) is a hypermonogenic func-
tion. Hence

hy = Z S*Qa (o) ez + Z TPQb (B) es + Z F7Qc () es (29)
oT?
m+1 m+1
* Z 8$3 Pd Z 8x3 “

for some hypermonogenic function h;. Since by Lemma 8 the function

S OTaQd0) | 5~20(1.1000) _

3
61’3 T3

is hypermonogenic, the function

—hy =Y S*Qa(a)es+ Y ThQb(B)es+ Y F'Qc(v)es

aTgH—l 2QTm+1
+y . —HL P (5) — Y . ZEomAl oV d ()
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is hypermonogenic. Applying (8) to
—hy) = ZPSaQa a) + ZPTﬁQb 3)
Yy m+1 /
+3 PFQc(y Z —gaPd (B)
we infer
0=> PS*(-0)Qa(a)+ ZPTB (-,0) Qb (B)
0QT?, P
+ZPF7(., Z o L (.0) Pc(B).
3
Using (22) and (23) we obtain

> PS(-,0)Qa(a) + Y PF(-,0)Qc(y) =0.

and thus
> DyPS*(-,0)Qa(a) + > DyPF(-,0)Qc(v) = 0. (30)

For hypermonogenic functions S® and F7 it holds by (9)

DaPS" (,0) = =75 = (0 1)
and 90 F
DQP-FV (70) = = (9[[’3 (70) = 07 (32)

where the last equality holds since F? does not depend on x3. Thus the
equation (30) becomes

Q' SO‘ .
Z 81‘3 7 Zx Qa

and we obtain
Qa(a) =0 (33)
for all a. Substituting (33) to (28) we infer

0=> S°Pa(a)+ > THPb(B +ZTﬁQb 63+ZF7PC)
+> FQc(y)es+ Y am“Pd +y am“cgd

18



Separating the P-part we find out the equation
0= PS*Pa(a)+ > PTEPb(B)— Y QTEQ'b(B) + Z PFYPc(v)

B ZQFWQ . Z 3PTm+1 T mtl pg (5 Z 3;:“ (6).

Hence we have

_ops OPT} 00T,
*PT) QT
+Za—x$Pd(5) P 922 Q'd(9),

since F7 is independent of x3. By (20) PT} has only terms with odd powers
of x5 with degree at least 3 and therefore

O*PTY OPT?
—m . = m . == . 35
a2 (-,0) =0 and o (,0)=0 (35)
Furthermore, by (10) and (22) we have
oPS~ 8@
. fr O - O-
81‘3 ( ’0) 0 an 81‘3 ( ’ )

The equation (34) evaluated at z3 = 0 reduces to
> X T L0y Q) = Y2t ) =

Qd(5) =0

and therefore

for all §.
Separating the @-part in (28) and setting Qd (6) = 0 we obtain

0=> QS“Pa(a)+> QTIPb(S)+ Z QF'P'c(v)
+3 PTIQb(B)+ > PF'Qc(y) Z 8m+1Pd 5).

T3
Differentiating twice with respect to the variable x3 and evaluating at z3 = 0
we infer using Lemma 15, (35) and (22)

02QS , QTP ,
0= 3 g O Pale) + 30 =55 (0 Po ()
92PT? PQT?
+3 a];fm(.,O)Qb(5)+z%(-,0)?d(5>
3 3




Thus Pb (8) = 0 for all 5.
Collecting all the previous information to (28) we have

0=> S*Pa(a)+» F'Pc(y)+ Z T2Qb(B) es (36)
+> T FQc(y)es+ Y a’;“ Pd (5
3

This means that the function
h=-Y S"Pa(a Z F7Pc (v
=3 ThQb(B)es+ > F'Qc(v)es+ a’;“ Pd (6
3

is hypermonogenic and the function

OPT?
=D QTIQH(B) =Y QFQc(y)+ ) (%3“ Pd (6

is hyperbolic harmonic. Since QT?, QF” and are eigenfunctions of

the Laplace-Beltrami operator, applying 22 Ay Ph = 0 we obtain
=253 8n (QT) Qb(B) = Y ai An (QF) Qe (v)
OPT?
+Zx§ JAN?, (8—“) Pd ()

€3

5
PT}, 4
3

== 2QTSQb(B)es — Y —2QFQc(v)+ Y 59 m“Pd(a)

= —2Ph.
Hence Ph = 0, which by (9) implies
8@ h
8333 =Y DyPh(:
On the other hand
8@ h OQSO‘ 8QF7
8x3 ( 70) B Z 8:103 + Z (‘%3 7 (7)
8@50‘ N
= Z 05 (-, Z x*Pa
and we deduce
Pa(a) =0 (37)



After (37) the sum (36) reduces to

Y FPe(y)+ ) ToQb(B)es+ > F'Qe(y)es+ Y a’;‘;lPd = 0.
(38)
Differentiating (38) with respect to the variable z3 and evaluating at x3 = 0
we infer

B B
0= 2L 0y ab(Byes — 3 298 oy )

O3 O3
2 0
30 E 0T ) pae) - 30 9T (0 P
3
P gy pras) = - Y 200Pd (9)

03

and Pd (§) = 0 for all . Since the polynomials F" are linearly independent
over Cl3 and do not depend on x5 when v € A%* evaluating at x3 = 0 we infer
c(y) =0 for all ¥ € AP Since the polynomials T/ are linearly independent
over Cls, the only coefficients remaining in (38) must vanish and therefore
Qb (B) = 0 for all 5. The number of polynomials

m 4+ 2 . m . m+1
2 2 2
is the same as the dimension in 26 completing the proof. =

Our main result, Theorem 26, can be written in an equivalent form using
Theorem 24.

Theorem 27 Let o € AT, B € AY, and v € A3, The polynomials L2, T

5
and Zm1 gre right linearly independent over Cls and form a basis for the

right module of homogeneous holomorphic Cliffordian polynomials of degree
m.
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