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Abstract. Building information modeling offers a huge potential for increasing both the pro-
ductivity and the quality of construction planning processes. However, this approach has not
found widespread use. One of the reasons is the insufficient coupling of the structural models
with the general building model. Instead, structural engineers usually set up a structural model
that is independent from the building model and consists of mechanical models of reduced di-
mension. An automatic generation of a structural model from a building model is therefore not
possible. However, especially this would be highly valuable considering the large number of
plan revisions in planning processes.

This can be overcome by a volumetric formulation of the problem. A recent approach employed
the p-version of the finite element method to this problem. This method, in conjunction with a
volumetric formulation is suited to simulate the structural behaviour of both ‘thick’ solid bodies
and thin-walled structures.

Besides other disadvantages of this combination, there remains a notable discretization error in
the numerical models. This paper therefore proposes a new approach for overcoming this situ-
ation. That approach combines the Isogeometric analysis together with the volumetric models.
The concept of the isogeometric analysis is, in short, the application of NURBS functions for
representing the geometry as well as for the shape functions of finite elements. These functions
possess some beneficial properties regarding numerical simulation. Their use, however, leads
to some intricacies related to the setup of the stiffness matrix. The key factor is, though, that it
allows the exact transfer of the geometry to the FE mesh, thereby increasing the quality of the
numerical models.

This paper highlights some effects that result from the application of NURBS functions in the
FEM and some necessary steps for integrating building models and structural design.



1 INTRODUCTION

Planning and construction of buildings can be considered as a distributed process: due to

the increasing complexity of construction projects the work has to be distributed among several
consultants. Each of these consultants is concerned with certain aspects of the building process,
for example with structural design, energy management, HVAC and cost planning. They all set
up their own particular models of the future building. Hence, these models are reproduce only
the field of the respective consultant.
All construction processes have in commmon that they are subject to a tremendous cost and
time pressure. Therefore, the participants have to work concurrently on their tasks. Some of
them even have to base their models on incomplete or preliminary plans. This necessitates large
efforts for coordinating different plan versions since some of the partial models affect each
other. As a result, the integration of the results from the different fields into the overall plan will
lead to inconsistencies. A well-known example for such conflicts is the intersection of the load
bearing structure with components of HVAC. In light of the aforementioned time pressure the
removal of such errors must be considered a waste of resources.

These problems can be lessened to a certain degree by Building Information Modeling (BIM).
This technology is a translation of the ‘Product Data Models’ of mechanical engineering to the
field of building construction. The idea behind these models is to incorporate all plans related
to a project into a central database. This is done by enriching a purely geometrical model with
additional semantic data. These reflect, in a sense, the different views of the consultants on the
building. The key factor is that these additional data are linked with the underlying geometric
model. This allows the automatic derivation of certain properties of the building (for instance
floor spaces) directly from the geometry. Furthermore, it allows a reduction of inconsistencies
for two reasons. Firstly, the central database provides every involved party at any time with the
most current plans of the project. As the building model contains the plans of all other fields
as well, possible conflicts can be determined easier. Secondly, changes of the geometry of the
building will lead to fewer revisions in the specific plans. As the data therein is mostly linked to
the underlying geometry it will be automatically updated during changes of the overall model.

The implementation of BIM is provided by the so-called Industry Foundation Classes (IFC)
that have been established as a standard (ISO 16739) by the Industry Alliance for Interoperabil-
ity (IAI). This standard provides a framework for representation and exchange of data regarding
buildings. Despite their promising concept, these classes have only been applied to single major
projects rather than having found widespread use. An overview of the reasons for this (with puts
the focus on product data models in general but also considers the IFC) is given in [1]]: on one
hand this is due to a low ‘motivation’ of the industry to adopt such general models and on the
other hand there are legal issues regarding the evidential value of digital documents. Concern-
ing the IFC in particular, one can identify another, more specific reason. It is the insufficient
coupling of the structural model with the building model. This fact is related to two features of
structural models and finite element discretizations:

1. Structural engineers decompose the actual structure into a set of structural elements like
beams, plates and shells. These sub-models are coupled by forces and displacement vari-
ables that are transmitted between them. This allows an independent treatment of the
structural elements. In addition, these models are often simplified by neglecting certain
physical effects or by assuming a particular displacement ‘behaviour’ [2]. An example
for the former is the neglection of time-dependent parameters from an otherwise station-
ary model.



The advantages of this approach are obvious: the simplified models need less effort for
evaluation and their results are easier to interpret. The dimensioning of structural parts is
usually based on such simplified models as well. However, this has the effect that some of
the structural elements cannot be combined without the definition of additional coupling
conditions. This definition must - to the knowledge of the author - still be done manually
as it requires insight on the actual problem.

2. The setup of the structural models is nowadays usually done with the FEM. The dis-
cretization that is part of this method is mostly done with linear elements. Apart from
simple geometries this leads to an approximation of the problem geometry. That is, the
numerical model is only neighbour to the original problem. This constitutes an bound on
the accuracy of the solution that can be obtained from the numerical model.
Furthermore, the approximation by elements does not allow the reconstruction of the
original geometry from the element mesh. This mesh does not convey any information of
the underlying, potentially curved geometry. Should adaptions of the FE mesh become
necessary, one would have to (at least partially) remesh the model. This includes the
definition of the coupling conditions.

A key feature of building processes is the iterative development of the plans. As a result, a large
number of revisions are common and large efforts have to be put into revising the structural
model. Hence it is understandable that structural engineers rely on simpler models which can
be adapted more easily.

1.1 Related Work

Two PhD theses have already been dealing with the integration of the structural planning
processes. They have in commmon that they employed the p-version of the FEM together with
a volumetric formulation of the mechanical model. The first of these theses focused on the
derivation of a suitable numerical models from the building model. Building models are at
first a semantic description of a building. Therefore they have to be converted into a geometric
model. In [3] the IFC model has been converted into a Boundary-representation model (BRep).
This model then had to be corrected, i.e. it contained gaps as well as intersections that had to
be removed. The BRep model was then decomposed into a so-called ‘connection model” which
consisted of difference objects connected by connection objects. These objects have a hexahe-
dral shape or can be created by sweeping a planar polygonal domain [4]]. Hence, they can then
be meshed easily using hexahedral elements.

In order to overcome the numerical problems that resulted from distorted elements, solid el-
ements with higher order ansatz functions were used. This combination is not only suitable
for simulating ‘thick’ solids but also for the representation of thin-walled structures [2[]. It is
obvious, though, that the use of a fully volumetric formulation of the problem leads to a higher
computational effort for the solution of the numerical model.

This problem has been treated in [5] by exploiting the connection model that is part of the
meshing stage. This connection model is actually a graph that represents the structural interde-
pendency of the components. It can also be used for controlling a recursive substructuring of the
model. That idea eventually allowed the evaluation of the stiffness properties on the component
level. These ‘partial stiffnessses’ were then combined into the system stiffness matrix by using
the hierarchical dependence between the components. This approach allowed for an efficient
treatment of local modifications of the structure. Instead of recomputing the stiffness matrices
of all parts, only the stiffness of the modified components had to be considered. The system
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stiffness matrix could then be assembled by reusing most of its values which lead to tremendous
time savings.

Furthermore, this hierarchical system of components has also been used to setup a framework
for concurrent work on a central building model. Using principles of relational databases as
well as a client-server-architecture, the author demonstrates the feasibility of concurrent access
to the overall model. These ideas are exemplified by two applications. The first application is a
building process simulation with an embedded numerical simulation. The second example is an
application that bases dimensioning of reinforced concrete parts on the results of a volumetric
analysis.

This proves the feasibility of a fully volumetric approach to building models. Still, these mod-
els contain a notable discretization error that must be reduced by suitably refining the element
mesh. The sole use of hexahedral elements based on the p-version of the FEM seems not to be
suffient as well [5]].

There is an alternative approach that promises to overcome these problems. It is based on the
Isogeometric analysis [6l7]. The idea behind this method is to base both the geometric descrip-
tion and the shape functions of the FEM on Non-uniform rational B-splines (NURBSﬂ They
are an ubiquitous tool in CAD and computer graphics and provide a general notation for rep-
resenting a broad range of geometries. This includes straight lines, curves and complex curved
surfaces and, most importantly, even allow the representation of solids. The key feature of the
isogeometric analysis is the exact transfer of an objects geometry to a finite element. A numer-
ical model based on NURBS would represent the actual problem geometry much better that the
piecewise linear or quadratic approximations that are ususal for finite element discretizations -
leading in principle to better results.

An outline of the properties of NURBS relevant to isogeometric analysis will be given in
section 2] For further details the reader is referred to the two standard books [[8,9] which deal
with NURBS from the view of computer graphics. A treatment of NURBS from the numerical
analysts view has so far only been done in a growing number of papers. A monograph on iso-
geometric analysis is scheduled to appear in autumn of this year.

Some of the intricacies that are implicated by the use NURBS as shape functions for the FEM
will be described in section [3| This includes for example the numerical integration of the ele-
ment stiffness matrices as well as the computation of the partial derivatives of these functions,
which are important for setting up the strain-displacement relationships for the elements.
Section [] then concludes the article with a summary of the steps that are necessary for a suc-
cessful coupling of building models with structural design.

I'This is not quite true: NURBS functions provide but one possibility. [6] mentions alternative functions that
seem also suitable for the isogeometric concept - NURBS were chosen because they represent the most mature of
these concepts



2 NURBS-BASED DESCRIPTION OF GEOMETRIES

An geometric description based on NURBS consists of a set of basis functions and cor-
responding control points. The actual geometry of a curve or surface then results from the
interpolation of the control points’ coordinates. In the one-dimensional case, these points form
a so-called control polygon, whereas in the two- and three-dimensional case they constitute (in
terms of topology) a grid of points.

The elements that determine this interpolation are the NURBS functions, which are piecewise

rational functions defined on a parametric domain 2y. By iterating over the domain, one

determines for each parametric coordinate the contribution of all control points to the curve.

NURBS-based geometry can therefore be interpreted as some sort of mapping G : 2y — R™.
A NURBS curve C is defined by

=> R, (9P (1)
=0

where ¢ is the current parametric coordinate in €2y, P; are the (n + 1) control points and R;
are the corresponding basis functions of degree p. A NURBS-based surface - a patch - is defined
in a similar way by the mapping from a two-dimensional parametric domain into R":
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with (£, 7) being the coordinates of a point in Q. The bivariate basis functions R;;,, =
R; ,R;, are computed by the product of the two univariate basis functions. This allows for a
different number of control points in each parametric direction as well as for different degrees
p, q of the basis functions.

A solid is defined accordingly as
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with the basis functions R;ji pqr resulting from the triple product of univariate bases. Again,
this formulation allows both different numbers of control points and degrees of the bases. The
disadvantage of this representation is the severe overhead that is induced for displaying simple
bodies, for example bodies having straight edges and/or planar surfaces. In order to describe,
for instance, a simple cube by basis functions of higher degree, one has to provide a full spatial
grid of control points instead of eight vertices for the corners of the cube.

2.1 Basis functions

The univariate basis functions R; , that are needed for the interpolations of the control points
are built from the combination of B-spline functions [V; , with a set of weighting factors:
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The weights w; affect the influence of the control points on the curve as can be seen in figure

[Il The geometrical motivation for the introduction of these weights as well as for the rational
form of the basis functions can be taken from [8,9].
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Figure 1: The influence of the weights on the NURBS basis functions. The images show the quadratic basis
functions that result from the knot vector 2 = {0,0,0,0.3,0.7,1,1,1}. For the image on the right-hand side, the
weight wo that is associated with R 5 has been increased

The B-Spline functions JV; , can then be evaluated very efficiently by employing the follow-
ing recurrence relation by Cox/de Boor
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Key element for the computation is the so-called knot vector =Z which is a set of parametric co-
ordinates. These coordinates denote the limits of the knot spans, i.e. segments in the parametric
domain that will be mapped to curve or surface segments. Depending on their degree each basis
function is nonzero only over certain knot spans. The dependence of the basis functions on the
length of the knot spans can be seen in figure [2]

As mentioned before, NURBS functions possess some properties being useful for an appli-

cation as shape functions. Only the most important properties are listed below. For the details
the reader is referred to [6,/8,9,(10].

1. They are non-negative:

2. They constitute a partition of unity:

Y Rip(§) =1 Vip ey (7

3. The basis functions are C°-continuous at the boundaries of the parametric space and
possess, in general, higher continuity within the domain. The continuity depends on the
multiplicity of the knots (i.e. the entries in the knot vector): multiple knots decrease the
continuity of the basis functions at the respective knot to C?~* where k is the multiplicity
of the considered knot.
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Figure 2: The influence of the knot spacing on the NURBS basis functions. The images show the quadratic (p = 2)
basis functions that result from the knot vector shown below the respective image. The influence of the knot spans
on the basis functions is demonstrated by the image on the right-hand side, where the knot at £ = 0.3 has been

shifted to £ = 0.6

4. The basis functions possess a local support: R;, () =0 for & ¢ [&,&1p+1). In any
given knot span at most (p + 1) basis functions are nonzero. It is especially this property
that enables an efficient evaluation of the basis functions. An algorithm exploiting this

property can be found in [§]].




3 NURBS-BASED ELEMENTS FOR ISOGEOMETRIC ANALYSIS

Finite elements based on NURBS functions possess some characteristic differences com-
pared to ‘classical’ finite elements. First of all, NURBS patches do not constitute single ele-
ments but rather subdomains. Depending on their parametrization (as given by the knot vectors)
they can include several ‘ordinary’ elements. The one-dimensional parametrizations shown in
figure 2| would, for example, constitute three elements over the respective knot spans [0, 0.3),
[0.3,0.7) and [0.7, 1). The higher continuity of the basis functions has a beneficial effect on the
numerical integration. The direct translation of the Gaussian quadrature onto NURBS-based
elements would lead to an application of the the common integration schemes not to each patch
but to each knot span. The integration over a panel element that is based on quadratic basis
functions and which has nine patch segements would need 2 x 2 x 9 = 36 integration points.
However, the actual number of integration points can be, as [[11]] suggests, much smaller. Ac-
cording to the findings therein the number of integraion points seems to be independent from
the degree of the functions. That means that the numerical integration does not need to be done
over each knot span but can be done on the patch level.

Besides the numerical integration, the nature of the basis functions has another impact on
the evaluation of the stiffness matrix. The stiffness matrix K. of a patch is, similar to classical
finite elements, computed by the integral

K, = / B"EB dA4, = / BTEB J d¢ dn )
Ap Y

with A, being the area of the patch, B being the strain-displacement-matrix, E being the mate-
rial matrix and with J as the Jacobian determinant. For this article the evaluation has been done
for panel elements. This leads to the following kinematic equation:

Uy e 0] 1,
L1

where [u,v]” = 3. Ry, (&,n) [ui,v;]" is the vector that describes the displacements at a given
point (£, 7). The Jacobian matrix can be computed as usual by deriving the patch coordinates
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with respect to the parametric coordinates (£,7) and inverting the resulting matrix of partial
derivatives. However, since NURBS are rational functions the computation of their derivatives
is more complicated than for polynomial functions. Higher derivatives become increasingly
unstable (in terms of numerical evaluation) due to the higher exponents in the denominator.
To the knowledge of the author, there are no algorithms for computing the derivatives of the
rational basis functions. There exist schemes for computing tangents to NURBS curves and
surfaces (c.f. [[8,9]]. Still, they seem not to be applicable for computing the derivatives of the
basis functions itself. This issue demands further research. However, the computation of the
derivatives using a central difference scheme appears to be a good approach since it relies on
the evaluation of the basis functions which can be done very efficiently.



coincident control points

3

Figure 3: Panel modelled by a single NURBS patch that consists of two elements and which is constituted by a
4 x 3-grid of control points. The knot vectors are given as 2 = {0,0,0,0.5,1,1,1} and H = {0,0,0,1,1,1}
which leads to biquadratic basis functions. The image on the right-hand side shows the parametric domain with the
(approximate) locations of the control points superimposed. This domain is then mapped onto the twodimensional
panel shown on the left-hand side. In order to obtain the corner in the upper left-hand side, two control points have
to be coincident. Example taken from [6]]

4 CONCLUSIONS AND FUTURE WORK

The Isogeometric analysis is a relatively new concept for the unification of geometric mod-

elling and numerical simulation. As a growing number of publications suggest, this method
possesses some advantegeous numerical properties. One of these is the exact transfer of a geo-
metrical model into a finite element mesh, thus reducing or eliminating the discretization error
of the numerical models. A number of mature algorithms like knot insertion or degree elevation,
that were developed for manipulating NURBS-based geometry, can be employed for refining
the patch meshes [6,8]]. The application of these algorithms on NURBS-based elements consti-
tutes the equivalents of both h- and p-refinement.
However, one point that has not been regarded is the source of the geometric models. These
must be based on NURBS, and although all professional CAD applications support NURBS,
they do not in general produce fully NURBS-based geometric models. The generation of a
patch model is not a trivial task, since the mapping of the parametric domain onto the geometry
is not always a one-to-one relation. A simple example for this is shown in figure 3| Given a
grid of control points together with weights and knot vectors, it is easy to obtain the geometry
and set up finite elements. The problem is the determination of the control grid along with the
related parameters (control weights and knot vectors) for a desired ‘target shape’. While this
can still be done manually for smaller models, it becomes increasingly difficult for larger, more
complex systems.

This model generation is the core task for establishing a coupling between the IFC and
structural design. The semantic descriptions of the building model must be translated into
complex, patch-based models. One may argue that usual buildings are only composed of simple
shapes like plates, walls and beams. The point, though, is the coupling of these structural
elements. The control grids of joining NURBS patches and solids have to be aligned along



the join and their basis functions of equal degree. In order to maintain continuous joints, i.e.
with no gaps or overlapping, one would need to introduce a lot of superfluous control points.
This hinders the possibilities for coupling as well as for local refinement of models, as inserted
control points in one patch of the model have to be regarded in the control grids of all other
patches as well.

Another important aspect is the coupling of the structural model with the building model. As
should have become clear now, the setup of a structural model is, in general, possible. What has
not been treated so far is the following issue: which results of the structural design have to be
incorporated into the building model?

It is this feedback that determines the success of the proposed approach.
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