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Abstract. In the paper, we shall discuss massless field equations in dimensions 4, their gen-
eralization to higher dimensions, and properties of their polynomial solutions. We shall relate
massless field equation to a one parameter family of Bernstein-Gel fand-Gel fand resolutions
and we shall use their property in a discussion of polynomial solutions of massless field equa-
tions. In dimension 4, we use spinorial language developed and used often in general relativity.
In higher dimensions, we shall need more tools from representation theory of orthogonal group
(tensor product decompositions) developed recently by P. Littlemann.



Classical Clifford analysis is studying properties of solutions of the Dirac operator 0 acting
on functions defined on R™ with values in the corresponding Clifford algebra R,,. But the
Dirac operator D (in mathematics, as well as in physics) should act on spinor fields. It was
shown (see [9]) that the corresponding equation for monogenic functions with values in Clifford
algebra decomposes into many copies of the equation for spinor valued fields. This is due to
the fact that the (complexified) Clifford algebra C,,, can be written (in even dimensions) as the
tensor product S ® S*, where S denotes the basic irreducible representation of C,,,. A similar
statement is true also in odd dimensions. Hence the classical Dirac operator 0 in Clifford
analysis should be interpreted as a twisted Dirac operator Dy acting on the product S ® V,
where V = S*. If we consider V with the trivial Spin(m) action (the so called L representation
based on the left multiplication of values of fields with an element of the spin group), we are
back in the traditional Clifford analysis. If we, however, consider the same space V with the
natural action of Spin(m) on the dual of S, (the so called H representation based on the both
sides multiplication of values of fields with an element of the spin group), we are identifying
the Clifford algebra with the exterior algebra (as Spin(m)-modules) and we get identification
of Dy with d 4+ d*. For more details on the second possibility, see [3].

It is also possible to investigate interesting operators and equations obtained by restricting
values of Dy to invariant subspaces (homogeneous components or their sums) under the H ac-
tion. In such a way, we get Hodge systems, Mosil-Theodorescu systems and their generalization
investigated, e.g., in [11, 1, 5, 6, 4, 2]. In particular, it was possible to treat (higher dimensional
analogues of) the Maxwell operator as a system arising from Dy by restricting values of fields
to n-forms with n equal to the half of dimension m.

The presented paper has two motivation. Firstly, we want to extend a study of twisted Dirac
operators to the case of more complicated Spin(m)-modules V. Secondly, we want to pay more
attention to higher dimensional versions of massless field equations for higher spin. Massless
field equation (on Minkowski space) form a key series of linear PDE’s for particle physics. This
is a series of equations for fields with spin %, where k is a non-negative integer. The spin 0 case
is just the wave equation, the spin % case is the Dirac equation, the spin 1 case is the Maxwell
equation, the spin % is the equation for the Rarita-Schwinger fields, and the spin 2 case describes
equation for linearized gravity.

Higher dimensional analogues of massless field equations were introduced and studied in the
framework of Clifford analysis in [21]. Here we return back to study of properties of solutions
of massless field equations. In particular, we are going to discuss properties of polynomial
solutions of massless field equations for a given homogeneity, i.e., we are looking for analogues
of spherical monogenics in higher spin case.

We start with the most important case of dimension 4 (Sect.2). Due to the fact that the tensor
algebra in dimension 4 is contained in the spinor algebra, it is efficient to use spinor language
and notation (see, e.g., [16]). In higher dimensions, the spinor language is no more appropriate
and we have to use various tools from representation theory of orthogonal group. In Sect. 3,
we recall the massless field equations in higher dimensions and review their basic properties.
In particular, we show that the massless field operator is given by a twisted Dirac operator
restricted to functions with values in a suitable invariant subspace. In Sect.4, we shall study
homogeneous solutions of the massless field equation. We shall describe the biggest irreducible
component of the kernel in a given homogeneity and we conjecture that it is the only component
in the kernel. In the paper, we shall restrict for simplicity to the case of even dimensions but
similar results holds also in odd dimensions. We shall return back to odd dimensions elsewhere.



1 MASSLESS FIELDS IN DIMENSION 4.

1.1 Quaternionic and Clifford analysis in dimension 4.

Massless fields of spin % on Minkowski space M* are basic examples of fields considered
in theoretical physics. The case £ = 0 (the wave equation for functions), £ = 1 (the Dirac
equation for fermions), £ = 2 (the Maxwell equations for electromagnetic fields), £ = 3 (the
Rarita-Schwinger equations) and £ = 4 (the equations for linearized gravity) are the most
common equations in particle physics. We shall describe the whole sequence (for any k) below.
We shall do that, however, in Euclidean version. It means that we shall consider these field on
the Euclidean space R*, instead of the Minkowski space M*.

Quaternionic analysis in dimension 4 is a well developed topic with a long history and many
applications (see, e.g. [12, 13]. It describes properties of solutions of the Fueter equation
for quaternionic valued functions on R*. It is very closely related to Clifford analysis, which
investigates properties of solutions of the Dirac equation for functions with values in the Clifford
algebra C,. To describe the relation between both, we have to consider on Fueter side functions
with values in the algebra of complex quaternions CH. (Complex) dimension of C, is 16 but
we can write is a sum of four spinor spaces, each of them having (complex) dimension 4. The
Dirac equation for spinor valued functions is then the same as the Fueter equation for functions
with values in CH.

1.2 Spinors in dimension 4.

To write the Dirac (Fueter) equation explicitely, we shall use (nowadays standard and often
used) spinor notation. There are two non-isomorphic irreducible basic Spin(4) modules, we
shall denote them by S, and S/. As vector spaces, they can be both identified with C,. The
basic factis that Sy 4 = S4®S 4 ~ C* as Spin(4)-modules. It gives an identification of vectors
in (complexified) Euclidean space with the product of both spinor modules. As a consequence,
the whole tensor algebra (in dimension 4) can be identified with the tensor algebra.

Any irreducible Spin(4)-module can be written as a symmetric power ©%(S4) of Sy, resp.
as a symmetric power ©F(S/,) of S/;. Elements in these symmetric powers will be denoted
by @wa.. g, resp. @as. p. Indices are used here as abstract indices (the Penrose abstract index
notation, see [16] for more details), but it can as well be used as ordinary (basis dependent)
indices A = 0,1; A’ = 0/, 1. Rising and lowering spinor indices is possible using elements
eap € A*(Sa) and 4 € A*(S'y) (again see [16]) for more details). We shall use also the stan-
dard notation - round brackets (. ..) around indices for symmetrisation and the square brackets
.. .] for anti-symmetrization. A (complex) vector z, € C* can be (and will be) identified with
Taa € Sa® Sy . Similar identification will be made for temsors with more indices. Euclidean
space R* can be identified with a (real) space of matrices of the form

. Toor T1o To + iIg il‘l + X2
Tq = (To, T1, T2, T3); Taa = =" ‘ :
Lo T11/ 11 — o Ty — 1T3

The Euclidean norm corresponds to the determinant of the corresponding matrix. Hence for

derivatives, we get
_ . _ 800/ 810/ o 80 + 263 281 + 82
va - (807 aly 827 83)a Vaar = (a(]l’ 811/) - (281 . 82 ao . 2(93> )
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32> etc. We shall rise and lower tensor indices by the metric g4, and spinor indices

where 0y =



by eap, resp. €4 . Contraction 1), means €450 1?. The Einstein summation convention
will be always used (including the case of abstract indices, as above).

The Spin group in dimension 4 is isomorphic to the direct sum SO(3) & SO(3). Hence any
decomposition of a tensor product of (complex) irreducible Spin(4)-modules reduces to a well
known decomposition of irreducible SL(2)-modules. We shall use such decomposition below
without further comments.

1.3 Massless field equations.

The Dirac equation for a spinor field ¢ 4 have then a form
Vﬁ/ YA = 0.

Higher spin massless field equations are written down for fields with values in a £-th symmetric
power ©*(S,4) of the basic spinor representation and they have the form

Vﬁl(PA...E = Oa

where 4 g is a field with k indices, which is symmetric in these indices. Dimension of ©F(S )
is equal to k£ + 1, the field ¢ 4. g has £ + 1 components. A similar equation is used for spinor
with primed indices.

Properties of massless field equations were carefully studied, many properties of them are
summarized in [17]. We shall now describe their relation with the (twisted) Dirac equation and
Clifford analysis.

1.4 Spinor version of Clifford analysis.

Let S = S4 & S be the full spinor space written as the sum of two half-spinor representa-
tions. It can be embedded in many ways into the Clifford algebra C,. In general, the Clifford
algebra C,, can be (in even dimensions) identified with the space End(S) ~ S ® S* of endo-
morphisms of S. If we consider S* as trivial Spin(4)-module, C; ~ S ® C* decomposes into
a direct sum of 4 spinor subspaces, isomorphic to S. In the language of Clifford analysis, it
means that we consider the Clifford algebra with the L-action of the spin group (given by left
mupltiplication). The Dirac equation for functions with values in C4 hence decomposes in this
case into a sum of 4 copies of the Dirac equation (the spin 1/2 case) for spinor fields with values
in S (which, in turn, can be decomposed into a sum of two Weyl equations for half-spinor fields
V4ga =0and V4, = 0).

1.5 Differential form version of Clifford analysis.

As was described in detail in [3], we can identify the Clifford algebra with the exterior
algebra (as vector spaces) and the Dirac operator D and the Hodge operator d + d* correspond
to each other under this identification. In spinor language, it can be described as follows. In the
standard language of Clifford analysis ([9]) the Clifford algebra C, can be considered with the
H-action (given by multiplication by elements of the spin group from both sides). In language
of Spin(4) representations, it can be expressed as the isomorphism

C4ZS®S7

where now both factors are considered as basic Spin(4) representation. Now again the Clifford
algebra C, decomposes into many irreducible pieces but in a different way. It can be shortly
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summarized by saying that we have identified it with the exterior algebra A*(C*) as Spin(4)-
modules. The exterior algebra decomposes into a sum of homogeneous forms A*(C?*) =
S5 A7(C*) and, in the middle dimension we have further splitting A%(C*) = A%(C*), ®A2 (C*)
into a sum of self-dual (SD) and anti-self-dual (ASD) two forms. All these spaces fits then to-
gether into the de Rham sequence with its de Rham operators d and their Hodge duals d*.

In spinor language, individual pieces can be described as follows. Using the decomposition
S =S4 @ Su/, we can decompose the full product as

S®S~(S4®S4) D (S ®Sa) © (SA®@Sa) D (Sar ®Sa).
The first two summand decomposes further as
Sa®Sa=0%(Sa) ®A*(Sa); Sa ®Sa = @*(Sar) ® A*(Sa).
The maps
paB € O°(Sa) — ¢up = papean € N*(C); pap € @*(S)) — day = pameas € A*(CY)

shows that these two pieces in the decomposition can be identified with SD, resp. ASD two
forms. The trivial representations A%(S4/), resp. A%(S,), can be identified with O-forms and
4-forms. As described above, the isomorphism

C428A®SA/ ESA/®SA.

can be used to describe 1-forms and 3-forms in spinor language.
For further use, we shall recall the typical shape of the de Rham sequence in dimension 4
with the splitting in the middle dimension. It looks as follows.

d+ A2 d+

Jr
MLM<@>MLM (1)
i A2

The identification of the (Clifford) Dirac operator D with d 4 d* is then a typical example of a
correspondence between an elliptic complex and an elliptic operator (rolling up the complex).
In fact, the Dirac operator D should be interpreted here as a twisted Dirac operator. If V is any
vector space (a bundle with a connection on manifolds), the Dirac operator D acting from the
space of spinors S to itself can be extended to the twisted Dirac operator d" acting from the
product S ® V to itself. Of course, in the flat case, it just means that we consider many copies
of the original Dirac equation. In our case, the twisting vector space is V = S.

It is well known that the Maxwell equations can be described in terms of two-forms. They
can be split into two equations (for SD, resp. ASD two-forms), each one being just spin-1
massles field equation

Vaeas =0; Vi oap =0, )

where p4p, resp. wap represent (in the way described above) SD, resp. ASD two forms. So
the massless field equations for spin-1 fields can be found as particular operators sitting in the
middle of the above de Rham sequence. We shall show now that quite similar scheme exists
also for higher spin cases.



1.6 Higher spin cases.

The Maxwell equations (2) have a natural generalization for higher spins. The massless field
equations for spin g looks as follows

VAea.r=0; V4ou. g =0, 3)

where 04 € OF(Sa), resp. par. p € OF(Sar).
Let us fix a positive integer £ > 2 and let us consider the twisted Dirac operator Dy with

V=0""(S4) ® 0" (Sa).

The twisted Dirac operator Dy is mapping the space S ® V into itself. We shall decompose this
space into irreducible pieces. We get

Sa® (0"71(84)) = ©(Sa) ® ©"7*(Sa)

and the corresponding primed version. Moreover, Sy ® ©F1(S,) and Sy ® ©F1(Sy) are
irreducible and cannot be decomposed further. Hence the whole product can be written as a
sum of 6 irreducible pieces.

If we denote

EO ~ ®k72<SA/), El ~ SA (024 (Dkil(SAJ7 E_Q,'_ ~ Qk(STA)

E? ~ ©"(Sa), B> =Sy @ 0" (Sa), E* = 0" *(S4)

we are getting the same scheme of spaces

B2
E° E! ® E3 E* 4)
E?

as above. A natural question is whether there is an exact sequence of operators similar to the
de Rham sequence acting among the spaces. In fact, there is such a sequence of conformally
invariant operators replacing the de Rham differentials. A substantial difference, however, is
that now not all operators are of first order.

The whole scheme looks as follows.

DWL 2 DU
(0] 3
o PR < ® > g3 PR e (5)
bt B2 piryz

All these sequences (for any k) are special cases of the so called Bernstein-Gel’ fand-Gel’ fand
(BGG) complexes (for more details, see, e.g., [19]). It is possible to say more about individual
operators. Most of them are of the first order, hence easy to describe. Using spinor language,
they look as follows (we shall use a shorter notation D(k)* = D).

D°(pcr. m) = Vpmeo . my; Dilepp. m) = VB(A'SOg/,,,E/) (6)

D*(pa.p) =Vaoap.p DX oap.p)= VA/(ASOSI...E) (7)
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All fields in the equations are symmetric in indices of the same type, round bracket around
indices indicates symmetrization in indices of the same type (for further details concerning
spinor notation, see [16]). Note that the operator D? is exactly the operator appearing in the
massless field equation for spin k/2 introduced above. It apears at exactly same place in the
diagram as ASD part of the Maxwell equations in the case of spin 1 field.

Now the other two operators are higher order differential operators, they have order £ — 1.
They can be described in the following way.

D' (ppar.p) =Viy.. .V 0. (8)

D2(par ) =Va .. . VEoup )
The exactness of the BGG complex described above is a very strong property, which can help
substantially in investigation of properties of massless fields.

It is important to realize that the solutions of massless field equations are, in fact, solutions
of a suitable (twisted) Dirac equation of a special type. Indeed, we can consider a suitable
subcomplex of the corresponding BGG complex defined as follows. Consider the representation
V = ©F1(S,) and the corresponding twisted Dirac operator Dy. It maps the space (S @
Sar) ® @F1(S4) to itself. As was described above, the product Sy ® ©*~1(S,) contains the
space ®F(S,) as an irreducible piece in the decomposition. If we consider fields with special
values in this subspace of the whole space, the twisted Dirac operator reduces to the massless
field operator.

Lemma 1. Let V = O 1(S,). The product S, ©® V decomposes into irreducible pieces as
(Sa®Sa) ® " (Sa) ~ B @ E* @ B, (10)
with
E? ~ 0%(Sy,), E? ~ Sy @ 0" 1(S,), E* ~ 0F%(S,).
These spaces, together with the corresponding maps from the BGG sequence form a complex

D(_k%z* E3 Dk’

E? = F*, (11)

which is a subcomplex of the BGG complex.

The twisted Dirac operator Dy restricted to E* coincides with the massless field operator.

Proof. The decomposition (10) was described above and it makes clear that (14) is indeed a
subcomplex of the BGG complex.
On the other hand, the twisted Dirac operator has the form

E2 D?

N N

° B (12)
E4 (D4)*

The form of the operator follows immediately from the classification of the first order operators
([10, 20]). The operator (D3)* is dual to the operator D? and can be written explicitely as

(D3>* (QOC...E) = V(BB/QOCH.E).

If we consider only fields with values in E?, we get clearly massless field operator. U

It is possible to show that this subcomplex is not exact at all places. In particular, Im D(k)?
is a proper subset of Ker D(k)? and the map D(k)? is not injective. We shall not discuss details
here.



2 MASSLESS FIELD EQUATIONS IN HIGHER DIMENSIONS

2.1 Tools from representation theory.

There is a natural generalization of massless fields equations from dimension 4 to higher
dimensions. From point of view of representation theory, there is always difference between
the case of even or odd dimension. For simplicity, we shall consider here only the case of even
dimensions. But the same questions and problems can be investigated in odd dimensions as well
and similar results should be expected. We shall return to the case of odd dimensions elsewhere.
Hence we shall suppose from now on that our fields are defined on R™ with m = 2n.

First we have to specify values for our fields. There are two basic Spin(m) modules, we
shall denote them S 4, resp., S 4. In higher dimensions, it is necessary to deal with more com-
plicated representation. They can be realized as tensor fields with a particular symmetry but
the symmetry needed is more complicated than symmetrization or antisymmetrization. More-
over, representations with highest weights with half-integral components can be realized only
inside the tensor algebra tensored with the basic spin module. Hence we need a language how
to described such more complicated representations.

All tools needed from representation theory for the group Spin(m), m = 2n can be found
in [14, 5.2.2]. The classification of irreducible Spin(m) modules is standardly given in term of
the highest weight of the module. In even dimension (m = 2n), a highest weight of an irre-
ducible Spin(m) module is a vector A\ = (A, ..., \,) of integers (or half-integers) satisfying
the relation \; > Ao > ... > X\,_1 > |\,|. Using the Weyl dimensional formula, we can
compute dimensions of all these spaces. We shall now extend the discussion of massless fields
in dimension 4 to higher dimensions.

We shall denote irreducible representations by their highest weights. So Sy ~ (%, ceey %)
The other basic spin module has the label S 4/ ~ (%, ceey %, —%) The space of harmonic polyno-
mials of homogeneity j forms an irreducible representation with the highest weight (7,0, ..., 0).

Hence the Fischer decomposition of the space P; of homogeneous polynomials of degree j has
the form
P; ~(4,0,...,00® (j —2,0,...,00®(j —4,0,...,0)& ...,

where the sum ends either with the trivial or the vector representation. The Cartan power
X7(S4) has the highest weight (4,...,2); similarly, 5 (S4/) has the highest weight equal to

(353 —3):
2.2 Decomposition of tensor products.
Let us now summarize a few facts on massless field equations in higher dimensions from
[21].
Lemma 2. Let us fix a positive integer k > 1. The weights

L o ST SR N 1
=(=,....—.——1,....——1,—=); j=0,....n—
u 27 7272 ) 72 ) 2’] ) b )
— > T
j n—j—

are highest weights of irreducible representations, which will be denoted by F’. The weight

wr = (%, ... 5 —%) will be the highest weight of the module denoted by F ~ KF(S /).



Similarly, the weights

—1); 7=n+1,...,2n,

are highest weights of irreducible representations, which will be denoted by F’. The weight
p" = (%, ..., %) will be the highest weight of the module denoted by F™ ~ K¥(S ).
We have the following tensor product decompositions.
(1)
SA@RFISH~Fra F' 2 ..

where the sum ends with F?", or with F?"~1

(2)
Sy @KFHSY) ~ FrHP o FP B g .
where the sum also ends with F?", or with F?"~1,
Similarly,
3)
Sa@RF LSy~ Fre F 2. ..,

where the sum ends with F°, or with F*.

4)
Sy @RSy~ Fr g 2. .,

where the sum also ends with F°, or with F*.

2.3 The BGG complex.

All spaces in the decompositions above are related by various operators in the corresponding
BGG complex (for details and proofs, see [19]). There is many parameter system of various
BGG complexes, the ones used here form a one-parameter subfamily. The complexes look as
follows.

Theorem 1. (4 family of BGG complexes)
Forany k > 1, we get the following exact complex

-1 .
DI pn DY

DO Dn+1

n—1 + 2n—1
FO = Fl o anZ D_) anl < D > F'I’L+1 paliN Fn+2 N .F2n71 D_} an. (13)
X T ooa
pr—t f— DU

All operators are of the first order with exception of D" and DY, which are of order k — 1.
All operators are conformally invariant (for a proper conformal weight, which depends on a
choice of an individual operator). The case k = 2 coincides with the de Rham sequence.

All needed facts concerning the family of the BGG complexes stated in the theorem above
are well known and can be found, e.g., at [19]. Note that the massless field operator forms a part
of the complex, it is just the operator D™ in the middle splitting of the sequence. Information
coming from the exactness of the sequence will help to understand polynomial solutions of the
massless field equation.

As before, we can show that the solutions of the massless field equations are solutions of the
a suitable twisted Dirac equation.



Lemma 3. Let k > 1. There is a subcomplex in the the BGG sequence of the form

25 pret D pr2 pont DL pon (14)

Let V := REL(Sy). The twisted Dirac operator Dy restricted to F™ coincides with the
massless field operator.

Proof. The first claim is clear from the description of the BGG complex.
On the other hand, the twisted Dirac operator has the form

(FreFe. )2 (Fr e rBe. ) (15)

From the classification of the first order operators ([10, 20]), it follows immediately that the
operator Dy restricted to fields with values in £ coincides with the massless field operator. [

It can be proved by methods used below that the subcomplex in the above lemma is not
exact at all places. In particular, Im D" is a proper subset of Ker D"*! and the map D" is not
injective. The complex is exact at all other places. We shall not go into details here.

3 POLYNOMIAL SOLUTIONS

We shall now concentrate on properties of homogeneous solutions of the massless field equa-
tion. Recall that the massless field operator is acting from the space of functions on R" with
values in the modules F™ into the space of functions on R" with values in F"*1. The operator
itself is conformally invariant (for a suitable conformal weight).

Values of the field ¢ itself, as well as values of its image D™ () are Spin(m)-modules, hence
the corresponding function spaces decompose under the Spin(m) action into (an infinite) sum
of finite dimensional irreducible representations. The action preserves homogeneity, hence the
subspaces of homogenous polynomials of a given degree (with appropriate values) are invariant
under the action and they have finite dimension. The space of homogeneous solutions of the
given degree is also invariant (due to the invariance of the operator). It is a finite dimensional
space and it decomposes hence into a sum of irreducible pieces. To understand basic proper-
ties of homogeneous solutions of the given degree, we have to characterize these irreducible
components. Note that for the classical Dirac operator (on spinor valued polynomials), the
corresponding space of polynomial solutions of homogeneity k (called usually spherical mono-

2k+1 1 1
).

genics of degree k) is an irreducible Spin(m)-module with the highest weight (=5, 5,..., 5

We propose the following conjecture for homogeneous solutions of the massless field equation.
Conjecture 1. Fix a positive integer k > 1 and consider the massless field operator
D™ : C®(R™, F™) = C®(R™, F™1)

The space of polynomial solutions of the equation D™ () = 0 of degree j is an irreducible
representation of the group Spin(m) with the highest weight (% + j, %, ..., £). Its dimension
can be computed from the Weyl dimension formula.

At the moment, it is possible to prove the following statement on homogeneous solutions of
the massless field equation.
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Theorem 2. Fix a positive integer k > 1 and consider the massless field operator
D™ : C®°(R™, F™) s C°(R™, F™)

The space of polynomial solutions of the equation D" (p) = 0 of degree j contains an irre-
ducible component with the highest weight (% + 7, g, ce %) Dimension of the component can
be computed by the Weyl dimensional formula.

To prove the theorem, we have to understand a Fischer decomposition of the spaces of poly-
nomials with values in £, resp. F!. Denoting P; the space of homogeneous polynomials on
R™ of degree j, we want to understand a decomposition of the product P; ® F™ and P; @ F" .
Note first that

P~ (4,0,...,0)® (j—2,0,...,0)& (j —4,0,...,0),...,

ending with either (1,0,...,0) or (0,...,0). Hence we have to understand behaviour of the
products(j’,O,...,O)@(’;,...,2) resp. (5,0, .. )®(§,...,§,§—1)forallg.Theresults
are given in the following lemma.
Lemma 4.
(1)
(i) for j = k,
k k k k k k
,0,...,0)® (.., o) @ gz +i—d,= oy o —d 16
(]7 ) ) )®(27 72) EB1—0(2 +j Z727 7272 Z) ( )
(ii) for k = j,
k k ok k k k
,0,. .. — =) 2@ (=t =t =, =, = —1). 17
(]707 70)®(27 72) G97,:0(2 +.] 1727 7272 Z) ( )
)
(i) for j > k, the decomposition of the product
k k k
,0, ... =, =—1
(3.0 0)® (G505~ 1)
contains three different groups of summands:
k k k k
k—1 . . .
F (= — =, == — 10— 1 18
®2:0(2+] 2727 7272 ¢ ) ( )
k k k k
k—1 . . .
F (= —i—1,=, ..., =, == 1
@220(2 +] ? 727 7272 Z) (9)
k k k k
k—2 - :
(= —i—1,=,...,=,==1,=—i—1 20
@120(2 +] ? 727 a272 72 ? ) ( )
(ii) for k > j > 1, the decomposition of the product
k k k
) — o, == =1
(]70 7O)®(27 7272 )



contains three different groups of summands:

-k k k k
] _ ._._ ___._
@i:0(2+g bigregeig 1) (21)
1k k k k
@1:0(2+j ? 727"'7272 Z) (22)
1k k k k k
S+ j—i—1,=,. . = =—1,——i—1) (23)

Proof. For the proof, it is sufficient to use theorems on the decomposition of the tensor product
of the group Spin(m) proved by P. Littlemann ([15]). Further information on the Littlemann
theorem can be found in the PhD thesis of M. Plechsmid ([18]), where they were used for the
same purpose as here. O
Proof of the theorem. To prove the theorem, we have to use the fact that the massless field
operator

D" :P; @ F" s P @ FH

is an intertwining operator for the action of Spin(m). Hence it can map (in a nontrivial way)
an irreducible component of a certain weight in the decomposition of the source only to an
irreducible component of the same weigth in the decomposition of the target. Now it is possible
to check the for a given homogeneity j > 1, a component with the weight (£ + j, %, ... %)
is contained in the decomposition of the product P; ® F"— while it is not contained in the
decomposition of the product P;_; ® F"*!. Hence these components belongs to the kernel of
the operator D™ on the space of polynomials of homogeneity j. For homogeneity j = 0, the
whole space of constant polynomials with values in /™ forms an irreducible component with

the highest weight (5, %, ..., %) and it belongs clearly to the kernel of the operator D™ O
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