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Abstract. The paper presents method of calculation of natural frequencies of the cracked 
reinforced concrete beams including discreet model of crack. The described method is based on 
the stiff finite elements method. It was modified in such a way as to take into account local 
discontinuities (ie. cracks). In addition, some theoretical studies as well as experimental tests of 
concrete mechanics based on discrete crack model were taken into consideration. The 
calculations were performed using the author’s own numerical algorithm. Moreover, other 
calculation methods of dynamic reinforced concrete beams presented in standards and 
guidelines are discussed. Calculations performed by using different methods are compared 
with the results obtained in experimental tests. 
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1    INTRODUCTION 

Calculation of reinforced concrete structures requires special attitude because it involves 
interaction of two materials, such as concrete and steel used in this type of structures. 
Furthermore, reinforced concrete elements are overloaded and that causes their cracking and 
stiffness degradation. 

There are many theories regarding displacement and redistribution of internal forces in the 
cracked reinforced concrete beams. The methods proposed describe performance of the 
reinforced concrete structures including cracks. Typically, the cracking effect and its influence 
on the distribution of internal forces and deformations is taken into account globally by means 
of introduction of substitutional stiffness of the cracked element. This kind of approach assures 
simplicity of calculations by analogy to homogenous structures without cracks. 

The experimental tests which were performed [1, 2, 3] proved that appearance of cracks has 
significant impact not only on deflection and redistribution of the internal forces, but also on 
the dynamic parameters, such as: natural frequencies and damping. Progressive cracking causes 
lowering of natural frequencies of the reinforced concrete beams (even by 50%). Moreover, 
such cracking increases damping properties of element. 

Most papers dealing with the dynamics of the cracked reinforced concrete structures try to 
describe it globally basing on the dynamic substitutional stiffness of the cracked element [1, 2, 
4]. Further, this sort of approach makes it possible to apply solutions concerning dynamics of 
homogenous structures and is characterized by the simplicity of calculations. Nevertheless, it 
limits observation of structure to the final, summary effects connected with the impact of the 
element overloading on the dynamic properties. In addition, there are no explicit relations 
connecting dynamic and static stiffness assumed to calculate deflections. Some experimental 
tests prove that it is less or equal to effective stiffness [3] while others confirm it is bigger [1,2]. 

The paper presents alternative approach based on discrete crack model. Calculations were 
performed using the author’s own numerical programme related to Mathematica®. In addition, 
the obtained records were compared with the existing results acquired in experimental tests. 
Discussion and comparison of the results was conducted according to the Polish Standard 
requirements for calculation of support structures for machines [5] and EC 2 directives [6]. 

2    STIFF FINITE ELEMENT METHOD 

2.1    Homogenous beams 
Dynamic calculations of most of the structures with continuous mass distribution are 

connected with discretization. Discretization methods can be divided into two groups : 
mathematical (with global approximation of displacement state – for ex. the Ritz method with 
local approximation of displacement state – elastic finite element method) and physical which 
refers to mass granulation that leads to classical discrete state. 

The second group includes stiff finite element method [7]. This method was first applied in 
naval industry. Later it was used by J. Langer [8] for calculation of bar structures. Beam model 
consists of stiff mass discs which represent  force of inertia of a structure. Discs are connected 
by elastic constraints (one rotation and two translation) responsible for elastic features of a 
structure. Movement of each mass discs is described by three general coordinates. In case of 
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transverse vibrations which are considered in this paper, elastic constraints and general 
coordinates are reduced to two. Example scheme and calculation model of a beam divided into 
four elements are shown in figure 1. 
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Figure 1: Scheme and numerical model of homogenous beam 

Stiffness of constraints connecting mass discs  is computed from the following equations 
(1), (2): 

 
el

EIk =ϕ , (1) 

 312
el

EIk =∆ , (2) 

where: EI – beam bending stiffness, le – length of finite element. 

Stiffnesses of constraints are grouped in diagonal matrix {k}, which for the case shown in 
Fig. 1 is given below: 

 . (3) } , , , , , , ,{}{ ∆∆∆∆= kkkkkkkkdiagk ϕϕϕϕ

Global stiffness matrix K is calculated from the following equation: 

 , (4) k
T
k AAK }{k=

where: Ak – transformation matrix. 

Transformation matrix Ak, transforms general coordinates vector q on mutual transposition 
vector r. It has repeatable character and it can be easily generated automatically for optional 
boundary conditions. 

Inertia matrix is a diagonal matrix. Masses of individual discs m correspond to translation 
coordinates while their mass inertia moments Jm correspond to rotational coordinates. For the 
model shown in Fig.1 inertia matrix is as follows: 

 . (5) } , , , , , , ,{ 12221 mmmmm JmJmJmJJdiag=B

Eigen values of matrix A being converse product of matrix B and matrix K are the square of 
circular frequency ω: 

 . (6) }{ 21 ωdiag== − KBA
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2.2    The reinforced concrete cracked beams 
The presented approach enables to include local discontinuities (among others cracks) in a 

discrete way. Adequate division into finite elements allows the introduction of cracks by means 
of reduction of stiff rotation constraints while calculations are performed as for the 
homogenous beam. 

Stiffnesses of constraints  kϕ, k∆  are commuted using the element stiffness in phase I EII. 
The stiffness of rotation constraints is reduced and has value in the place where the cracks 
appear. The scheme and calculation model is shown in figure 2. 
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Figure 2: Scheme and numerical model of the reinforced concrete beam with cracks 

Calculations are performed using tests and theoretical studies [9], describing work of a beam 
in phase II with the discrete crack model. According to the above mentioned theory, elastic 
crack opening can be commuted according to the following equation: 

 , (6) )( ii
e
i xMr=ϕ

where: ri – rotation susceptibility for ith – crack, M(xi) – bending moment in ith – crack 
occurence. 

Applying general assumptions for the strength of materials and mechanics of concrete 
structures rotation susceptibility of ri can be computed according to the following equation: 
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where: ψz – coefficient describing violation of interaction between steel and concrete calculated 
according to (8), srm – average crack spacing, Es – Young’s modulus for steel, As – 
reinforcement cross-sectional area, h – beam height, αII – relative height of the compressed 
zone in phase II, a – structural concrete cover. 

 
M

Ms cr
z −= 3.1ψ , (8) 

where: s – 1.0 in case of immediate loading and smooth bars, 1.1 in case of immediate loading 
and ribbed bars, 0.8 in case of long-term loading, Mcr – cracking moment, M – maximum 
moment up to which the cross-section was overloaded. 
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Assuming that the susceptibility of finite elements connections is a sum of susceptibilities 
resulting from the beam deformation (for phase II) and susceptibility resulting from the crack 
appearance the following relationship can be written: 

 , (9) icrIiII d)(kd −−− += ϕϕϕ
1

where:  – stiffness of rotation constraints calculated according (1) for the phase I. (EII). Ikϕ

Knowing susceptibility (9) stiffness of rotation constraints for the cracked cross-section can 
be computed: 

 . (10) 1−= )(dk II-icr-i
ϕϕ

3.    OTHER CALCULATION METHODS 

The approach proposed in Polish Standards [5] referring to the support structures for 
machines recommends calculation of global stiffness of the bended element according to the 
Young’s modulus for concrete and inertia moment for the whole concrete cross-section but 
does not take into consideration reinforcement. While this sort of approach seems to be quite 
correct in calculations performed for phase I, it is less convincing in case of the cracked beam. 
Assuming constant stiffness for the total scope of element work may cause errors. 

It is more reasonable to calculate frequency using the relationship given below which is 
recommended in EC2 [6]. 

 III αζζαα )1( −+= . (11) 

Parameter α is the one which is considered (for example cross-section deformation, 
curvature, rotation or deflection) and αI and αΙI are the values of this parameter calculated 
under the assumption that cracks do not occur and for the completely cracked objects 
respectively, while ζ is coefficient of distribution. It is assumed in the paper that the parameter 
to be considered is natural frequency. It should be noted that element overloading is 
accompanied by the decrease of  bending stiffness and resulting from this natural frequency. 

The approach based on calculation of dynamic stiffness different from the static one is 
presented in ACI Journal [1]. Dynamic stiffness is expressed by the following formula (12): 
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where: EC – Young’ modulus for concrete , α – constant parameter  (according to [1] α = 0.6 – 
0.8), II – inertia moment in phase I, III – inertia moment in phase II. 

Similarly as in case of the dependency (11) overloading is accompanied by the decrease of 
element stiffness. A draft character of the natural frequency change in the function of the 
overloading history is shown in figure 3. 

As literature studies proved, the final approach presented gained the most popularity. 
Empirical dependencies are drawn in order to include estimation of substitutional dynamic 
stiffness of element. Thus, application of closed solutions of the structure dynamics can be 
considered in calculations of the cracked reinforced concrete structures. 
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Figure 3: Change of natural frequency in function of overloading history 

4    NUMERICAL ANALYSIS – EXAMPLE AND COMPARISON 

4.1    Input data 

In order to verify numerical analysis some experimental results were applied [3]. 
Experimental tests were performed on the beam elements such as shown in figure 4. 
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Figure 4: Scheme of the analysed beam (dimensions in mm) 

The beam was loaded using force F in three stages. Each time sudden removal of the load 
caused the element to vibrate. Using the registered vibrogram the frequency of free vibrations 
was determined which approximately complies with the first natural frequency. Increasing 
loading caused degradation of the beam stiffness (progressive crack propagation). Other input 
data is included in the table 1. 

Table 1: Input data 

Analysed properties Value  Unit  
Element dimensions leff x b x h 2700x100x140 mm 
Average material density ρm 2452 kg/m3 
Cross-section area of reinforcement As1 = As2 1.00 cm2 
Young’s modulus for concrete Ec 29.8 GPa 
Tensile strength of concrete fct 2.33 MPa 
Young’s modulus for steel Es 200 GPa 
Yield point of steel fy 272 MPa 
Average spacing of cracks  100 mm 

Unfortunately not all the properties were measured or given in the paper [3] while some of 
them were assumed arbitrarily (for ex. spacing of cracks). The beam was divided into 27 finite 
elements (le = 270 mm). 
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4.2    Results of numerical analysis 
Numerical analysis were carried out for the data as In 4.1. Calculations were performed 

using three methods: 
- according to EC2, 
- according to ACI, 
- using author’s own algorithm based on stiff finite elements method related to 

Mathematica®. 

The obtained results are shown by means of diagram of natural frequency in function of 
loading history (figure 5). 
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Figure 5: Natural frequencies in function of loading history 

Horizontal axis illustrates relative overloading level of element. In addition , a number of 
cracks resulting from loading procedure is given. For simplicity reasons it was assumed that 
cracks appear symmetrically on both sides of a beam (when  M ≥ Mcr). 

4.3    Review of results 

Diagram 5 shows quite noticeable decrease of frequency depending on the level of beam 
overloading. The obtained curves have similar character and in more or less precise way they 
resemble actual element work. Curves calculated according to EC2 and ACI have continuous 
character. Effects connected with the crack occurrence and violence of interaction between 
concrete and steel are concurrent. Author’s own method separates these two effects.  

Quite visible abrupt value decreases can be noticed caused by appearance of successive 
cracks. Besides, there occurs continual decrease of frequency which is a result of violation of 
interaction between concrete and steel. 
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4.4    SUMMARY 

The experimental tests carried out so far prove that element overloading causes changes of 
dynamic characteristics (natural frequencies, damping parameters). Thus including this factor 
in calculations seems to be quite reasonable. 

The paper presents different methods of calculation of natural frequencies of the cracked 
reinforced concrete beams. It can be noticed according to some literature studies that the most 
popular approach is based on the global description of the effect (substitutional element 
stiffness). This sort of attitude makes it possible to use the closed solutions of the structure 
dynamics for simple static schemes. 

The author’s own method is the alternative approach which considers the crack morphology 
in a detailed way. It allows to follow processes connected with the influence of overloading on 
the natural frequencies of the cracked reinforced concrete beams. 

The results obtained so far can only prove that the assumptions made may be correct. At the 
moment the method is being developed. The authors planned their own experimental 
investigations to be carried out. 
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