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Abstract. It is well known that the precision of the output of any model simulation strongly
depends on the caliber of the model parameters. The detection of the model parameters requires
generally an adaption of the mathematical model output to certain experimental data. This pro-
cedure is referred to as parameter or system identification. Due to the fact that the input data
for the inversion has increased measurement inaccuracy, the parameter identification problem
needs to be considered as ill-posed and requires appropriate regularization techniques.

This work concentrates in particular on multi-field problems that occur in structural engineer-
ing, e.g. thermo-hydro-mechanical interactions in water dams, embankments or subsoils.
Eventhough the inverse modelling becomes more complex when dealing with multi-physical sys-
tems, we expect a better detection of the model parameters due to the correlation of the different
measurements.

For example, we consider localized cracks in water dams or fissures in the foundation rock, i.e.
irregular material distributions modelled by a smeared crack model. Due to the coupling of
different physical fields, the hydraulic head, for instance, influences the stress fields and con-
versely the mechanical problem affects the hydraulic head. In regions where cracks or fissures
are present, i.e. regions of reduced stiffness, the permeability changes, too. Furthermore in re-
gions where the permeability is increased one might expect localized damage zones. Due to the
correlation of the measurements, namely hydraulic pore pressure and mechanical displacement
at observable points, more information can be gathered compared to the case of considering
only single fields. The problem of inaccuracy in the data leads to ill-posed problems and is
addressed by appropriate regularizing iterative methods. These methods are used to solve the
nonlinear relation between model parameters and measurements in a stable manner. Morozov’s
discrepancy principle is applied in order to avoid an amplification of errors from the measured
data. The trade of between accuracy and stability can be guaranteed.

Numerical results show the effectiveness and convergence properties of the proposed method
for a synthetic hydro-mechanical example.



1 INTRODUCTION

In civil engineering construction processes are becoming increasingly supported by simu-
lation models. There are many among these models, where the solutions consist of different
physical quantities. For example, numerical models for water dams, embankments and sub-
soils include the mechanical, hydraulic and thermal fields. The precision of the output of these
models depends both on the correct choice of the model and the correct adaption of the model
parameters. This article is devoted to an inverse problem for a hydro-mechanical problem,
namely the identification of material irregularities within the structures by evaluating both hy-
draulic and mechanical measurements.

The system identification considered in this article can also be used as a method to monitor an

embankment’s condition. Undamaged systems have a homogeneous distribution of the material
properties according to the construction process. However, damaged systems consist of one or
more regions where the material properties differ remarkably within the structure due to partial
cracking and elution. Early detection of such damaged zones is essential in order to avoid
seepage or even piping.
The article is organized as follows: Section [2| describes a simple case of fluid-solid interaction
for small strain situations and a set of partial differential equations is derived. During the third
section a numerical scheme for the inverse problem is presented. There, we consider an iterative
regularizing scheme which evaluates an adjoint problem during each iteration step. In section 4
numerical results are given.

2 COUPLED FLOW AND SOLID DEFORMATION

Assuming that there is only one phase flow, there are no thermal effects and the system is
fully saturated, the simples case of fluid-solid interaction for isotropic materials is derived in
the following section. We are aware of the fact that the assumption of full saturation is not per-
fectly suitable for the simulation of water dams. However we want to keep the representation
in this paper as simple as possible and devote the consideration of the Van Genuchten’s empiric
functions [4] to future research. Since the task of this work is to develop a scheme which is
capable of identifying material inhomogeneities this simple approach serves the purpose suf-
ficiently. The hydro-mechanical system is then characterized by the deformation of the solid
together with the flow of the fluid through the pores. This kind of coupling is usually referred
to as primary consolidation in soil mechanics [10]. Setting up the mathematical model of fluid
flow-structure interactions involves considering a set of balance and constitutive equations. The
following balance equations, the mass balance of liquid (1) and the momentum conservation
equation (2), are considered
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Here, « is Biot’s constant (dimensionless), K, and K, are the bulk moduli (N/m?) of the solid
and water, respectively. Further u denotes the mechanical displacement vector (m), p liquid



phase pore pressure (N/m?), m” = [1,1,1,0,0,0]7, n is the porosity and
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denote the gradient and the strain-displacement differential operators, respectively, see e.g. [10,
7]. The average density p, := ((1 — n)ps + np,) is computed from the densities of solid p
and the fluid p,, (kg/m?). Further, o denotes the macroscopic total stress tensor (N/m?) and
g is the acceleration due to gravity (m/s?). The relative (to the solid) liquid flux q,., is given
by Darcy’s law [10, [13] stating that the relative mass flux of the liquid is proportional to the
negative gradient of the liquid pore pressure

Kk
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Qo = —pu— (VD = puB).- 3)
Here, q,., (kg/m?s) denotes the relative mass flux of the fluid. The isotropic intrinsic perme-
ability tensor is given by k := k;; = d,;k (m?). Further k,,, is the relative liquid permeability
and y1,, the liquid’s viscosity (N/m?s). The effective stress law for a fully saturated medium is
given by

o= 0" — amp, 4)

where ¢” denotes the effective stress tensor.

The latter is computed considering linear elasticity, i.e. ¢” = cBu where ¢ = c;ji; =
(001 + 6:10;5) + A0ij0p is the modulus of elasticity. The Lamé parameters \ := %
and p = ﬁ are themselves determined by Young’s modulus £ (N/m?) and Poisson’s ratio
v.

Expressing the theory given above solely in dependence of the unknowns, mechanical displace-

ment u and liquid pore pressure p, we obtain the following set of partial differential equations

BT (cBu—amp) +p,g = 0onQ x [0,7]
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and initial conditions
Ui—9 = ugonf()
Pii=o = poon {2 (7



Figure 1: Profile of gravity water dam. The Location of damaged zone is indicated and the boundaries I'; to I';
are labelled, respectively. At the point I'g additional measurements are taken as described in Section 3. The height
of the dam modelled is about 29 meters, the crest has a length of 166 meters and the radius of curvature is about
120 meters.

Solving the system in (5)) with (6) and (7) will be referred to as the direct problem.

In this work a situation of plain strain is considered. The picture in Figure [I] shows the
schematic shape of the computational domain €2, which represents a profile of a gravity water
dam. The upstream side is on the left. The decomposition of the boundary into five subbound-
aries, i.e. 090 = 'y UT, UT'3 U T’y U5 as indicated. The additionally sketched boundary
I'¢ consists of just one point and is regarded in Section [3] where an additional measurement is
taken. The inhomogeneous Dirichlet boundary condition A in (6) is linearly varying with the
water depth. A variation in h over time is modelling different filling levels of the water reservoir.

The numerical solution of the forward problem is done with the Finite Element Method. The
spatial discretization is performed using standard nodal finite elements. With n., the number of
nodes in the FE-mesh are indicated, on which no homogeneous Dirichlet boundary conditions
are defined. Then, the FE approximation for the unknowns is computed as follows

Neq
u = uhzg u® N*
k=1
Teq

p~ pn=> pkN} ®)
k=1

where N, and N, are elements of bases of (Sh)3 and T}, which then again are finite dimensional
subspaces of H}(f2). The nodal displacements and pore pressures u,, = (u},...un") and
Pm = (L, ..., pm®) are now obtained by solving

( H ) ( N ) ( VS ) . < N ) < i )
where

Q = [,(BN,)"amN,dS2 is the hydro-mechanical coupling matrix,
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K = [,(BN,)"cBN,d) the mechanical stiffness matrix,

H= fQ(VNp)T%VdiQ the permeability matrix and

S= [N (oi(;" + K%y) N,dS is the capacity matrix.

For the discretization in time the generalized trapezoidal method, an implicit time stepping
scheme is applied, see [10].

Figure [2] shows the pore pressure distribution and the horizontal and vertical component of the
mechanical displacement at the final time ¢ = 7.

3 SYSTEM IDENTIFICATION

This section deals with the inverse problem, i.e. the detection of the damaged zone within
the dam structure out of combined pore pressure and mechanical displacement measurements.
It is assumed that over time the evolution of the mechanical displacement at the tip of the dam
and on one point along the downstream side are recorded as follows

u(z,t) =a’(t)onT, ;=T UT. 9)
Additionally, there are hydraulic pore pressure measurements at the dam’s foot available
p(x,t) =p°(t)onT, := Ts. (10)

The actual discrete measurements given along the boundaries I'y and I's are linearly interpo-
lated. This is why we consider measurements along the boundaries and not only along discrete
points. I's consists only of one measurement point along I'y, see Figure[I] The hydraulic quan-
tities are recorded by porewater pressure transducers which are located at the dam’s foundation.
The values obtained from these transducers are used to determine the reduction of the hydraulic
potential in the water dam, see e.g. [1]. The mechanical displacements at the crest of the dam
and the downstream side are dictated either by plumb line or hanging pendulum (horizontal
displacement), geometrical precision differential levelling or geodetic positioning. The super-
scribed ¢ in (9) and denotes error components with which measurements are generally
contaminated. Whenever the identification is done with noiseless data, the superscribed ¢ is
dropped: y = y° for § = 0. The ¢ itself is an L? measure of the noise level, i.e. ||y — 3°|| < 4.

The measurements ©@° and p° are assumed to be functions in L2([0, T], L*(T;)), i € {u,p}.
The material inhomogeneities are described by a smeared crack model, i.e. the main parameters,
Young’s modulus and hydraulic conductivity, are described by spatially varying functions with
H! regularity, i.e.

E:=FE(x) € H'(RT) and k:=k(z)e H'(RT). (11)
We now define the parameter-to-solution mapping
F:DF)eV ={(Ek) e (H'R"))*} — L*[0,T],L*T,)) x L*([0,T], L*(T,))
(E(z),k(x)) — (ar,,pr,) (12)

The inverse problem with given measured data 3° := (i°, p°) requires a solution of , 1.e. an
inversion of the parameter-to-solution mapping £'. During this inversion one computes values
in H' out noisy measurements in L? which turns by the lack of smoothness in the measured
data into an ill-posed problem.
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Figure 2: Solution of the forward problem: The first picture shows the distribution of the pore pressure for a
fixed time ¢. The second and third picture plot the mechanical displacement in horizontal and vertical direction,
respectively.




For the solution of the inverse problem iterative and regularizing methods are well proven,
e.g. the nonlinear Landweber method [3]]

(B K™ = (B K™ — wF (B, k) (F(E.R)) — o) (13)

In order to guarantee convergence the relaxation parameter w in (I3) needs to be chosen such

that
1

Y P @)
forall (E, k) € Ba,((E, k)°), where Bs,((E, k)°) denotes a closed ball of radius 2p around the
initial guess (£, k)°.
Alternatively, one can implement the minimal error method which is a variant of Landweber’s
iteration with a flexible choice of the relaxation parameter w := w™° [11 [14] with

i IE((E. })™) — ]2
T EE Ry (F((E D) — )

i=1,2, (14)

where the additional index ¢ refers to the single parameter field updates. The adjoint of the
linearization of F' which occurs in applied on a vector (r,,7,) is formally given by

T
F'(E k) (ru,mp) = @7 </0 ( _VB;?UVZ@ > dt) ’ "

where (¢, 1)) are solutions of an adjoint system of partial differential equations

BT(cBgojLama—w) = 0onQ x[0,7]
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In the operator @ is the adjoint of the embedding operator from L? into H*, see e.g. [8].
For a detailed discussion on the computation of an adjoint problem for the identification of
the diffusion coefficient in a linear (non coupled) parabolic equation, see [6]. The numerical
solution of this adjoint system is also done with the Finite Element Method. Note however, that
this system has an end condition, i.e. for ¢ = 7" and is solved backwards in time.



We define the parameter vector p := (FE, k) and set p™ := (E,k)™°. In order to avoid
an amplification of the data error the iteration in (I3) is stopped by a generalized discrepancy
principle, i.e. when for the first time

1FE™) =yl <7d, n=12.. (17)
holds for 7 > 2, see [ [8]. It is shown that an early stopping according to renders the
Landweber method a regularizing method [3]].

In order to study convergence of the Landweber method, one needs to assume that F' is
Frechet-differentiable with || F”(+)|| < 1 and that Vp, p € B,(p°) :

[F(p) = F(p) = F'(p)(p =PIl < nllF(p) = F(p)ll, n< % (18)

holds in D(F). Then, for any solution p € D(F) of F(p) = y a sufficient condition for p"+1:
to be a better approximation of the exact solution denoted by p' is that

5 n,5 L+n
ly* = F(p™)|| > 21_277
which gives an estimate on the factor 7 in (I7). However the condition in (I8 can most probably
not shown rigorously for the coupled identification problem here. However it is proven to hold
for parameter estimation problem in an uncoupled elliptic problem [8] and an harmonic problem
in [9].
Convergence rates of Landweber iteration however can only be shown if additionally a source
condition of the following type

p =" = (FGN)F@h) w, withv>0 and w e NEE) (19

is fulfilled [5} [8]. The source condition implies a certain smoothness for the difference p! — p°
for many examples if v > 0. The rate of convergence can than be shown to be as follows

5 1o 2w
HPT _ pn*(é,y ),5H < col|wy||7FT ST (20)

where the stopping index n.(d,4°) is obtained by and which can be estimated in the fol-
lowing manner

0,

2
n.(0,y) < o1 (”le”) o @)
For the special case v = % in 1i the terms in and |i reduce to
[pf = p ¥ = O(Vo)
n.(0,4°) = O (%) : (22)

The condition in means that one has to know all rough parts of the sought-for quantities up
to a certain regularity in order to obtain the rate O(v/9). However the smoothness assumed on
the difference p" — p° will hardly be fulfilled in the application example given here. Therefore
a slower convergence is to expect during the numerical computations.

For the minimal error method convergence rates have only been proven in the case of exact
data, i.e. for & = 0. In this case, for the modified Landweber method with flexible relaxation
parameter according to (14}, one has

[p" = p'l] = O(n~7), (23)
see e.g. [L1].



4 NUMERICAL RESULTS

This section shows numerical results for the identification of the damaged zone in the dam
by regarding simultaneously mechanical and hydraulic input data. Synthetically generated data
are used as input for the inversion. These data are altered by different amounts of normally
distributed noise in order to avoid an inverse crime. The initial guess for the parameter distri-
butions of £(x) and k(z) are constant values and are assumed to hold for the undamaged case.
The Figures [3|and | show the spatial distribution of the reconstructed Young’s modulus and the
reconstructed permeability, respectively.

Reconstructed Young's Modulus

Figure 3: Distribution of Young’s modulus after the identification

Reconstructed Permeability Coefficient

Figure 4: Distribution of permeability after the identification

To this stage, the correlation of the sought-for quantities is not considered yet. Consequently,
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two slightly different parameter distributions (which are indicators for the location of the dam-
aged zone) for Young’s modulus and the hydraulic conductivity are computed. Looking care-
fully at Figure [3]it is found that the reconstructed Young’s modulus shows a second damaged
area close to the boundary I'; at the dam crest. Considering the information from the results of
both fields, allows one to mark this second damaged area as irrelevent, since it is not observed
for the conductivity, see Figure ]

Another strategy to combine the information from both field identification is to introduce the
following function

X(x) == vpE(x) — yk(z)

with appropriate weighting factors, 7z > 0 and v, > 0. These weighting factors are introduced
to handle the different orders in magnitude of £(x) and k(z). The function x(z) is a weighted
mean of information from both fields and provides improved information about the damaged
region, see Figure[5] The sharp boundaries around the damaged zone in Figure[6|are obtained by
projecting values which exceed (or fall below) a certain value to one (or zero). This threshhold
is found by indicating positions where the gradient of x becomes large, i.e. where a remarkable
change in the constitution of the dam is observed.

|dentified Damaged Zone

Figure 5: Distribution of the combined variable x(x)

Numerical computations reveal that the successful identification of material inhomogeneities
strongly depends on the location of the inhomogeneity and in particular on the distance between
damage and measurements. Obviously a crack close to the tip of the dam is only identified via
the mechanical quantities, see Figure[7]

The single mechanical measurement along the boundary I' turnes out to be indispensable for
the identification of the cracked zone considered in both examples. Cracks close to the upstream
are observed to be less satisfactorily identifiable than those on the downstream side. This is due
to the lack of mechanical measurements under the water. However, these partially discontenting
results for this academic example can give valuable hints for a proper placement of the differ-
ent sensors along or within real-world dam structures. As a consequence the example may be
further investigated to answer questions of optimal experiment design for hydro-mechanically
coupled problems in civil engineering problems.
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Identified Damaged Zone (sharpened)

Figure 6: Sharpened solution.

Location of Damage Identified Damaged Zone

Figure 7: Location and identification of a crack close the the dam’s tip.
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Finally, results concerning convergence of the implemented scheme in presence of data errors
in the measurements are given in Figure[§|and[9] In Figure §]the norm of the difference between
the identified and the exact parameters over an increasing noise level is plotted. Figure 9] shows
the decreasing number of iterations for increasing noise level (left). The linear relation between
the residual and noise level (right plot) is given by the stopping rule in (I7). The numerical
convergence results are in accordance with the theory given in equation (22).
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5 CONCLUSION AND OUTLOOK

This work presents a numerical scheme for the identification of irregular material distribu-
tions in coupled hydro-mechanical systems. The gain in information when evaluating data from
the two physical fields involved becomes obvious.



However, one has to be aware that by the small amount of measurements considered, the
identification results are not at all regions in the dam as convincing as in the examples shown
here. This holds in particular when one regards not only synthetically created data as input for
the inversion but in situ observations. In this case, e.g. thermal influences will have strong
impacts in particular on the mechanical behavior and need to be regarded in the model. Further,
the set of partial differential equations in (5)) needs to be extended to model partially saturated
media properly.

As already mentioned, the results of this work can further be explored for an optimal ex-
perimental design, in other words for answering the questions where to locate sensors and how
many sensors are required in order to reliably detect damages in all parts of the structure.
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