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Abstract. The evident advances of the computational power of the digital computers enable the
modeling of the total system of structures. Such modeling demands compatible representations
of the couplings of different structural subsystems. Therefore, models of dynamic interaction
between the vehicle and the bridge and models of a bridge bearing, a coupling element between
the bridge’s superstructure and substructure, are of interest.
This paper discusses some models for the coupling possibilities in bridge engineering. The
emphasis is on modeling the coupling functionality rather than modeling the vehicle or the
bridge bearing as individual entities.
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1 INTRODUCTION

Models of structural systems are created to describe and/or explain observations of pre-
existed structures, or to visualize and design new ones. There is no fix method or manual to
steer the creation of a model, it is usually a subjective process controlled by the modeler himself.

Structures of interest in this paper are bridges. A bridge can be modeled through making
different assumptions about its subsystems, the way they function, and how they react to envi-
ronmental effects. Moreover, the area of interest is the effect of transient loads (moving heavy
vehicles) on the bridge response. Under current design practice, separate models for the bridge’s
superstructure and substructure are used. The analyzed responses of the superstructure are ap-
plied as boundary conditions to the substructure which is analyzed accordingly. The feedback
mechanism of the structural behavior between the different subsystems (loading, superstructure,
bearing system, and substructure) is ignored. Such separation in modeling and analyses means
that little attention is given to the load-structure interaction and the special structural compo-
nents (e.g. the bridge bearings). However, if these interactions and components are not treated
cautiously the bridge service life may be influenced and even failure may occur.

The study of vehicle-bridge interaction and its dynamic effect on bridge’s superstructure
have been studied and included in the design practice. For non-swinging bridges (e.g. beam
bridges), the dynamic effects are taken into account by increasing the normal static design
loads by a dynamic amplification factor [7]. However, new materials and improved design
methods are introduced in the last years that may result in higher and more flexible bridges,
thus highway bridges may become increasingly susceptible to vibration. Such dynamic loads
on bridges continually degrade them and increase the necessity of regular maintenance [3].

In this paper, the concept of coupling in bridges and their varying modeling description is
of interest. In order to assess the amount of dynamic loading transferred to the subsystems,
or whether the different couplings may give different answers to the dynamic problem, a fun-
damental understanding of couplings and their parameters is required. Equally important, a
systematic study is needed to ascertain the use and the compatibility of the bridge’s couplings
when modeling. The vehicle-bridge interaction and the bridge bearing models are presented
within the paper. The emphasis is given to their functionality as bridge’s couplings and the
parameters influencing them.

2 COUPLING I: VEHICLE BRIDGE INTERACTION

The vertical load applied to the road surface by each tire of a heavy vehicle can be separated
into two components: the static load due to weight, and a fluctuating component known as the
dynamic tire load. The static load depends on the geometry and mass distribution of the vehicle.
Dynamic tire loads are caused by vibration of the vehicle when it is excited by roughness of the
road surface. Such loads generate additional dynamic stresses and strains in the road surface
which are thought to accelerate its deterioration [2]. The loading model of a moving vehicle
could be represented as a moving constant load, a harmonic moving load, or a system of moving
masses.
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The simplest way to tackle the problem involving the calculation of dynamic responses is
to consider a simply supported beam. Although a simply supported beam model is not repre-
sentative of bridges, but it embodies many of the important dynamic characteristics of a beam
bridge [2].

In the following sections a description of these different models and their parameters and
effects on the bridge’s dynamic responses are presented. The solutions for the moving loads on
a simply supported beam are adopted from the work of [5].

2.1 Transient Load Models

2.1.1 Constant Moving Load

The easiest way to model vehicle load is as a constant force moving at uniform speed. As
mentioned before the solutions of [5] are presented. The main assumption of this model is
that the mass of the moving load is small compared to the mass of the beam, as a result, only
the gravitational effect of the load is considered. The following is the solution of the vertical
deformation of a simply supported beam, υ(x, t),

υ(x, t) = υ0

∞∑
j=1

1

j2[j2(j2 − α2)2 + 4α2β2][
j2(j2 − α2) sin jωt− jα[j2(j2 − α2)− 2β2]

(j4 − β2)0.5

e−ωbt sinω′jt− 2jαβ(cos jωt− e−ωbt cosω′jt)

]
sin

jπx

l
, (1)

where υ0 is the static deflection at mid-span of the beam, α is the speed parameter, ω is the
circular frequency of the beam, ωb is the circular frequency of damping of the beam, ωj is the
circular frequency of j-th mode of vibration of the undamped beam, ω′j is the circular frequency
of j-th mode of vibration of the damped beam, l is the span of the beam, t is the time coordinate,
and x is the length coordinate.
From the solution above, it is noticed that the main parameters affecting this model is the speed
of the vehicle, the damping of the bridge, and the modal characteristics of the beam.

2.1.2 Harmonic Moving Load

The simplest way in considering the interaction between the irregularities of the road surface
and the vehicle is to describe the gravitational load of the vehicle with a harmonic component.
The harmonic load is described by [5],

P (t) = Q sin Ωt, (2)

where Q is the amplitude of harmonic function and Ω is the circular frequency of a harmonic
function.

This load is a fraction of the total gravitational load, consequently the solution of the beam re-
sponse is combined with the derived solution, (1), of the previous section. Hence the additional
parameter influencing this model is the frequency ratio between the bridge and the harmonic
component of the applied load. This parameter embodies the coupling between the road surface
and the load, which would be apparent in the local vibrational behavior of the bridge’s dynamic
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response. The solution due to the harmonic component for a simply supported beam is the
following [5]

υ(x, t) = υ0
Q
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where ω1 is the circular frequency of the first mode of vibration and tanϕ = − 2ωb/Ω

ω2
1/Ω2−1

.

2.1.3 Moving System of Masses

In this model the vehicle is treated as a single mass point. However, such idealization is not
sufficient for modern vehicles, a differentiation of unsprung (m1) and sprung masses (m1) is
needed. In this case, the structure is excited by a system of masses moving along it, Fig. 1.

Figure 1: Moving mass model

The road surface irregularities, r̄(x), are assumed to vary harmonically along the span, Fig. 2,
and are described by the following equation,

r̄(x) =
1

2
ā(1− cos

2πx

la
), (4)

where ā is the maximum depth of track unevenness and la is the length of road surface irregu-
larities.

Figure 2: The road surface irregularities
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Figure 3: Effect of speed parameter (α) on the maximum dynamic deflection (δ) [5]

The force, R̄, by which a moving system acts on a beam at the point of contact x1 is found
by [5]

R̄ = K[υ1(t)− υ(x1, t)− r̄(x1)], (5)

where K is the spring stiffness of tires, υ1(t) is the displacement of unsprung mass at time t,
υ(x1, t) is the beam vertical displacement at point x1 at time t, and r̄(x1) is the road surface
irregularities at point x1.

The solution of this problem is fairly difficult compared to the previous models. A closed
form solution is hard to find, therefore, numerical solutions are suggested for the vibrational
differential equations of the system [5]. In introducing these solutions dimensionless parameters
are of importance in defining the problem. These parameters are used later to understand the
behavior of such models.

2.1.4 Influence of Different Parameters

In order to understand the importance of the dynamic tire forces on the bridge deck, it is
necessary to predict accurately the primary responses of roads caused by fluctuating and mov-
ing axle loads. These responses of the bridge deck are known to depend on the speed of the
vehicle as well as on the magnitude and frequency content of the loads. This section reviews
the important parameters that influence the response of the bridge deck to vehicle loads.

• The effect of speed: At subcritical speeds, the maximum deflection at mid-span occurs
during the passing of the load over the beam. Whereas at supercritical speeds, it is not no-
ticed till the moving load leaves the beam, and the dynamic deflection is soon damped out
by damped free vibration. Therefore, the cases of supercritical speeds are not of interest.
Fig. 3 shows the effect of the speed parameter on the maximum dynamic deflection.

• The effect of frequency parameter of sprung mass: The frequency parameter is defined
by the ratio of the sprung mass frequency and the bridge’s natural frequency. In general
the dynamic effects have a tendency to grow with the growing ratio, Fig. 4.
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Figure 4: Effect of frequency parameter (γ) of sprung mass on the maximum dynamic deflection (δ) [5]

• The effect of the ratio between the weights of vehicle and beam: The dependency of the
maximum dynamic deflection on this ratio is complicated, but generally it can be said that
dynamic deflection grows with the growing ratio. This is noticed at high speeds, Fig. 5.

• The effect of beam damping: The dynamic deflection gradually falls away with growing
damping values.

• The effect of vehicle damping: In general the dynamic deflection falls away with growing
damping values.

2.2 Comparison Between the Different Models

The more complicated the model the more parameters included in defining the interaction
problem. The point to be assessed here is whether the response of these models is influenced by
the complexity. Fig. 6 shows a comparison between sprung mass model described in Sec. 2.1.3
and a combination between constant load model and harmonic load model in Sec. 2.1.2. The
comparison is carried out using the maximum dynamic deflection with respect to the speed
parameter, as it is valid for both models. A difference is noticed between both models within
a certain range of speeds. This is a motivation to systematize when to use the simple or the
complicated models, which is of significance in modeling.

2.3 Bridges are More Complicated

The solutions presented in the previous sections are for a simply supported beam. However,
simply supported beam models are not representative for all beam bridges. On the whole, to
study the dynamic response of bridges due to vehicular loading, more complicated configura-
tions of beam bridges are considered and numerical models are used. These analytical solutions
can be used as a basic step to validate a simple numerical model, and afterwards more detailed
numerical models can be used for evaluation and assessment.
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Figure 5: Effect of the ratio between the weights of the vehicle and the beam (κ) on the maximum dynamic
deflection (δ) [5]

Figure 6: The maximum dynamic deflection in relation to the speed [5], (a) the sprung mass model and (b) the
constant load model added to it a harmonic component
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3 COUPLING II: BRIDGE BEARINGS- ELASTOMERIC BEARINGS

Elastomeric bearings are deformation bearings that consist of alternating elastomeric (rub-
ber) layers bonded to intermediate steel plates.

3.1 Elastomeric Bearings Behavior

Elastomeric bearings are in general vertically stiff and horizontally flexible, which may
lengthen the structure’s period of vibration, thereby reducing the inertia forces that develop
in the superstructure when considering dynamic analysis. The horizontal flexibility (shear stiff-
ness) of an elastomeric bearing is detected by the total thickness of the elastomer, whereas
the close spacing of the intermediate steel plates provides a large vertical stiffness (relative to
shear). Therefore, elastomeric bearings are usually assumed rigid in the vertical direction. Ac-
cordingly the distribution of the bearing loads depends on the supported system and not on the
bearing; vertical as well as horizontal bearing loads are assumed to be static, which means that
the dynamic properties of the bearings become irrelevant. Nevertheless, elastomeric bearings
provide some vertical elasticity and the elastomers provide some internal material damping that
may be significant to consider in modeling.

3.2 Modeling Elastomeric Bearings

Elastomeric bearings are typically represented by a linear spring with constant stiffness con-
sidering only their axial degree of freedom, ignoring the fact that translational and rotational
deformations are accommodated by elastomeric bearings and that such deformations interact
with each other. The followings are some of the representations of the elastomeric bearings:

• Elastomeric bearing is represented numerically by independent linear springs in the direc-
tions of degrees of freedom (vertical, horizontal, and rotational). The interaction between
the deformations and forces in the different directions of the elastomeric bearing is not
accounted for in this model.

• A refined model considering such interaction between the components of the forces of
the elastomeric bearing is presented by [8]. The followings are the relations to describe
the additional forces corresponding to the deformations of the elastomeric bearings.

– Horizontal restoring forces caused by shear deformation produces bending [8],

M = FH · d/2 = G · A · tan γ′ · d/2, (6)

where FH is the horizontal restoring forces, d is the total thickness of the elastomeric
bearing, G is the shear modulus of elastomeric bearing, γ′ is the shear deformation,
and A is the overall area of elastomeric bearing.

– Eccentricities combined with vertical forces cause additional bending [8],

M = FV · e = FV · tan γ · te, (7)

where FV is the vertical force, e is the load eccentricity from vertical axis, and te is
the effective thickness of elastomer.

– Horizontal force resulting from the vertical load following the rotation of the bear-
ing [8],

FH = FV · θ/2, (8)
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where θ is the rotational deformation of the elastomer.

A two node finite element is used to represent the elastomeric bearing, Fig. 7. This two
dimensional finite element is described by a stiffness matrix relating nodal displacements
and rotations to forces and moments considering the interaction of vertical, horizontal,
and rotational loading [8].

Figure 7: A two node element used in describing elastomeric bearing
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The diagonal terms of the stiffness matrix describes the stiffness of the bearing in vertical,
horizontal, and rotational directions (kxx, kyy, and cmz, respectively). Whereas the off-
diagonal term k32 is derived by [8] to take into account the interaction between the loading
directions as explained previously

k32 =
1

2
(kxx ·∆ux + kyy · T ), (10)

where T is the total thickness of the elastomer.

• A detailed model of the elastomer material behavior is of necessity when modeling elas-
tomeric bearing, especially in cases where complicated models for the vehicle-bridge
interaction (Sec. 2.1.2 & Sec. 2.1.3) are used for the bridge’s overall numerical model.
Many material models have been suggested to model the elastomer that take into account
the kinematic nonlinearity, the material nonlinearity, and the material inherent damp-
ing [10]. A general representation consists of parallel models for the hyperelastic, vis-
coelastic and elastoplastic behavior of the elastomer, Fig. 8.
The hyperelastic model describes the nonlinear elastic behavior of elastomer (rubber).
The elastoplastic model includes the non-reversible strains of the elastomer under load-
ing. The viscoelastic model describes the time dependent strain behavior of the elastomer,
with such model the hysteretic loop is enclosed in the stress-strain relationship. The area
of the hysteretic loop equals the energy loss during the loading cycle, which indicates the
damping in the elastomer, Fig. 9. The inherent damping of the elastomer material may
be of importance when transferring the dynamic effect of the moving vehicle from the
superstructure (e.g. bridge’s deck) to the substructure (e.g. bridge’s pier).
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Figure 8: Schematic outline of parallel model

Figure 9: Elastomer behavior under cyclic loading [9]

4 FUTURE WORK

The models of the vehicle-bridge interaction do not take into account the actual boundary
conditions offered by the bearings, therefore, an evaluation how the different parameters of
these models affect the dynamic response of the bridge when considering models of bearings is
to be done.

Another important aspect to consider is the performance of these couplings at high and
low temperatures. The elastomeric bearings and the vehicle tires are affected by temperature
changes. Considering their temperature dependent behaviors in assessing the dynamic loading
and response is a type of coupling and of interest in bridges.

The above coupling models transfer the dynamic load to the tip of the bridge piers. The
second step is to follow the transferred load and assess its dynamic component, its effect on the
substructure and the soil boundary conditions. Furthermore, the feedback of the dynamic re-
sponse of the soil to the substructure to the bearing to the deck is to be considered. Subsequently,
a strategy will be developed and adopted to assess the performance of the different couplings
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when considering the over-all bridge modeling in treating the dynamic response under transient
loading.

5 CONCLUSION

In this paper two couplings in bridge structures are discussed, the vehicle-bridge interaction
and the bridge bearing. The vehicle-bridge interaction may be described as a function connect-
ing two sets of behavior. In this case, the coupling is embodied by mutual parameters that affect
both systems. Whereas, the bridge bearings are elements used specifically to couple, in such
elements the deformation and the transferred loads are used in characterizing the coupling.

In conclusion, the nature of these couplings is different, the influence of considering them
is varying and the significance of using them is under study. However, the need to assess the
amount of dynamic response transferred by or within these couplings is a common argument.
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