
 1

18th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. Könke (eds.)
Weimar, Germany, 07–09 July 2009

SIMULATION-BASED OPTIMIZATION OF CONSTRUCTION
SCHEDULES BY USING PARETO SIMULATED ANNEALING

Matthias Hamm*, Ulrike Beißert, Markus König

*Bauhaus-University Weimar
Marienstrasse 7, 99423 Weimar, Germany
E-mail: matthias.hamm@uni-weimar.de

Keywords: Construction Scheduling, Constraint Satisfaction, Multiobjective Optimization,
Simulated Annealing, Pareto-Optimal.

Abstract. Within the scheduling of construction projects, different, partly conflicting objectives
have to be considered. The specification of an efficient construction schedule is a challenging
task, which leads to a NP-hard multi-criteria optimization problem. In the past decades, so-
called metaheuristics have been developed for scheduling problems to find near-optimal
solutions in reasonable time. This paper presents a Simulated Annealing concept to determine
near-optimal construction schedules. Simulated Annealing is a well-known metaheuristic
optimization approach for solving complex combinatorial problems. To enable dealing with
several optimization objectives the Pareto optimization concept is applied. Thus, the
optimization result is a set of Pareto-optimal schedules, which can be analyzed for selecting
exactly one practicable and reasonable schedule. A flexible constraint-based simulation
approach is used to generate possible neighboring solutions very quickly during the
optimization process. The essential aspects of the developed Pareto Simulated Annealing
concept are presented in detail.

 2

1 INTRODUCTION
Construction projects consist of a multitude of construction tasks, which have to be

scheduled efficiently in terms of different, partly conflicting project objectives such as time,
cost, and quality. Therefore, several complex execution restrictions such as technological
dependencies, safety aspects, and material availability have to be considered. This leads to a
NP-hard multi-criteria optimization problem. Therefore, the analytical calculation of an optimal
schedule with exact mathematical methods is computationally impractical.

In the past decades, so-called metaheuristics have been developed to find good and near-
optimal solutions to scheduling problems in reasonable process time. Simulated Annealing is a
well-known metaheuristic optimization approach for solving complex combinatorial problems
such as scheduling construction projects. The concept of Simulated Annealing is inspired by
the physical annealing process in metallurgy [1, 2]. It is a random search method that avoids
getting trapped in local optima by accepting deteriorated neighboring solutions with a certain
probability. Thereby, the probability of accepting a deteriorated solution decreases relative to
the current temperature. In order to deal with several optimization objectives Czyzak and
Jaszkiewicz [3] developed a modified Simulated Annealing algorithm based on the Pareto
front. The Pareto Simulated Annealing (PSA) algorithm considers the complete Pareto front
during the annealing process. Thus, the optimization result is a set of Pareto-optimal solutions
based on the specified objectives. Afterwards, the Pareto-optimal solutions, in our case the
Pareto-optimal schedules, can be analyzed to select exactly one practicable and reasonable
schedule for the construction project. Of course, this selection depends on the individual
preferences of the decision-makers with regard to the examined objectives.

Within this paper, the Pareto Simulated Annealing Metaheuristic is applied and adapted to
determine near-optimal construction schedules. In the course of the optimization process a
constraint-based simulation approach is used to generate possible solutions very quickly [4].
The simulation approach is based on the well-known constraint satisfaction concept, which is a
powerful paradigm for modeling complex combinatorial problems [5]. The application of
Pareto Simulated Annealing for construction scheduling requires different problem-related
specifications. In this paper different Pareto Simulated Annealing aspects are presented in
detail. Important aspects are the generation of neighboring schedules and the rules of
acceptance of those schedules. Other aspects that will be presented in detail are temperature-
based ones, the start temperature, decreasing rates, and determination criteria.

Primarily, the applied constraint-based simulation approach is presented to generate valid
construction schedules regarding different requirements and restrictions. The specification of
efficient schedules leads to a multi-objective optimization problem. Thus, in Section 3the
evaluation of solutions with more than two objectives is discussed and the Pareto approach is
highlighted. Nowadays, the metaheuristic Simulated Annealing can be applied to find near-
optimal solutions for NP-hard scheduling problems. General aspects of the Simulated
Annealing approach are described in Section 4. Construction scheduling is a NP-hard multi-
objective scheduling problem. An adopted Pareto Simulated Annealing approach is presented
in detail to solve construction scheduling problems using constraint-based simulation.

2 CONSTRAINT-BASED SIMULATION CONCEPT
Within the SIMoFIT (Simulation of Outfitting Processes in Shipbuilding and Civil

Engineering) joint venture, a constraint-based simulation approach has been developed to

 3

improve execution planning [4]. Construction scheduling problems can be described by
Constraint Satisfaction, which is a powerful paradigm for modeling complex combinatorial
problems [5]. Classical constraint satisfaction problems are defined by sets of variables,
domains, and constraints [6]. Accordingly, modeling the construction scheduling problems as
constraint satisfaction problems, the construction tasks, materials, work force, equipment, and
construction site layout are represented by variables. Different scheduling constraints can be
specified between these variables. Typical stringent constraints of construction processes are
technological dependencies between execution activities, certain equipment and manpower
requirements, availability of materials, and safety aspects, such as specific working areas or
maximum time allowances [4].

The solutions to constraint satisfaction problems are valid execution orders for the
construction tasks, where all associated constraints are fulfilled. Usually, an analytical solution
to complex constraint satisfaction problems is extremely time-consuming. However, simulation
can be used to generate a possible solution, i.e., a valid execution order with fulfilled
constraints, very quickly. Thus, the constraint satisfaction approach was integrated into a
discrete event simulation application.

The simulation concept enables the generation of different events during the discrete
simulation by the procedures Starting Tasks and Stopping Tasks. A new event occurs each time
a working task is finished, as well as each time a new task is ready to be executed, i.e., each
time the order to start a new task is delivered. However, a task can only be executed if all its
associated constraints are fulfilled. In Figure 1 the procedure of starting tasks is depicted. If a
new event occurs, all not-started tasks are checked on fulfillment of their associated stringent
constraints. This leads to a set of next executable tasks. In the next step, one of these executable
tasks is selected for starting. The currently started task is consecutively numbered and stored in
an ordered task execution list (TEL). Consequently, a starting index is determined for each
task. The tasks’ presupposed objects like material, resources, or employees are locked during
its execution and cannot be used by other tasks. This procedure is repeated until no more tasks
can be started at that time. If the remaining time of a construction task has expired, the task is
marked as finished. Its presupposed objects are unlocked and can be used by other construction
tasks.

Figure 1: UML-diagram of starting tasks

The starting and stopping routines are carried out sequentially until all construction tasks are
finished. All events, i.e., starting and finishing tasks and locking and unlocking resources, are
recorded. Thus, one simulation run calculates one execution schedule with the respectively
required material flow as well as the requirement for employees and equipment where all

 4

stringent construction constraints are fulfilled. The determined execution schedule is stored in
the above-mentioned list, where the number of every task is stored in chronological order
according to their starting time. The constraint-based approach guarantees a high flexibility of
modeling construction processes. If additions or new prerequisites occur, the model can easily
be adapted by adding or removing certain constraints.

3 MULTI-OBJECTIVE OPTIMIZATION
When modeling real-world problems, such as construction projects, it is often not possible to

reduce the optimization problem to one single objective function. Often several, partly contrary
objectives have to be considered. Hence, several objective functions have to be optimized
simultaneously. This leads to so-called multi-objective optimization problems. Today, different
methods exist to model multi-objectives for optimization. For example, it is possible to use a
weighted aggregation function and treat the problem like a single-objective optimization
problem [7]. Alternatively, the most important objective can be optimized while all other
objectives only fulfill certain constraints [7]. Both of these methods, as well as other scalar
methods like Goal Programming, have in common that they determine one optimal solution in
an a-priori way, i.e., an optimal solution will be determined through the consideration of pre-
defined input parameters. However, there are often situations where it is more favorable for the
decision maker to choose a solution in hindsight, i.e., in an a posteriori way. First, a given
number of good solutions are generated. Following this, one good solution is selected as the
optimal solution based on subjective preferences. The a-posteriori Pareto approach is used in
this paper [8].

During Pareto-Optimization good solutions are stored throughout the optimization process.
To decide whether an identified solution will be saved or not, the concept of Pareto domination
is applied. A solution is dominated by another solution if the solution does not outperform other
solutions on all objectives and performs significantly worse for at least one objective. Thus, if
the number of considered objective functions f is M, a solution A dominates a solution B, if

 { }1≤ ∀ ∈i if (A) f (B) i ,...,M and

 { }1∃ ∈ <j jj ,...,M : f (A) f (B) . (1)

The domination relation is not a total order. Two solutions are mutually non-dominating if
neither solution dominates the other. A solution that is non-dominated by any other solution is
Pareto-optimal. All Pareto-optimal solutions that are detected during the optimization process
specify a so-called Pareto-Front. Generally, all non-dominated solutions of the Pareto-Front are
evaluated afterwards by decision makers.

In Figure 2 the Pareto-Front of a certain amount of solutions for two objective functions is
depicted. Additionally, some dominated solutions are shown that are not included in the Pareto-
Front. If a new solution is calculated and is not dominated by any other determined solution,
the Pareto-Front must be updated. The new solution is added to the Pareto-Front and all prior
non-dominated solutions have to be checked again. If a Pareto-Front solution is now dominated
by the new solution, those solutions are removed from the Pareto-Front [8, 9].

 5

Figure 2: Pareto-Front of solutions based on two objective functions

4 SIMULATED ANNEALING
Simulated Annealing is a well-known local optimization approach for solving complex

combinatorial problems. The general goal of local optimization methods is to find good
solutions in an adequate amount of time. The concept of Simulated Annealing is inspired by the
physical annealing process in metallurgy [1, 2]. In this context, annealing is known as the
heating and controlled cooling of metal to bring the material structure from an arbitrary initial
state to a state with the minimum possible energy. During heating, the metal atoms become
unstuck from their current position and arrange themselves randomly. The slow cooling phase
allows the atoms to find highly structured configurations with lower internal energy than in the
initial configuration [10, 11, 12].

If this physical process is considered as an analogy for general optimization, the solutions of
an optimization problem represent the possible configurations of the atoms. The objective value
of a solution, the so-called cost factor, is equivalent to the internal energy state. Starting with a
high temperature and a randomly selected initial solution, the Simulated Annealing heuristic
calculates a new solution within a certain neighborhood of the current solution. If a new
solution has a better cost factor than the current solution it will be always accepted as the new
solution. If a new solution does not perform better than the current one, the acceptance of new
solutions is based on a probability that depends on the difference between the corresponding
costs and on the current temperature. Consequently, a high temperature allows the acceptance
of a new solution, which causes higher costs. The probability of accepting higher costs
decreases within the optimization process. Once accepted, the new solution is the new starting
point for the next optimization step. In order to use the Simulated Annealing heuristic an
appropriate neighborhood, a reasonable start-temperature, a good temperature-based
probability, and an effective decreasing rate for the temperature have to be specified. The
general Simulated Annealing procedure is depicted in Figure 3 accordingly to [10].

 6

Initialize temperature t

Generate neighboring solution sn,
calculate cost factor cn

Generate initial solution sc,
calculate cost factor cc

Update solution:
sc := sn

Decrease temperature t

Stop Simulated Annealing

cn < cc or
expected probability based on

temperature t

Termination
criterion fulfilled

yes

no

no

yes

Figure 3: Simulated Annealing algorithm accordingly to [10]

5 CONSTRAINT-BASED PARETO SIMULATED ANNEALING
Specifying efficient construction schedules is a challenging task. Many different and

complex objectives have to be taken into account. In this paper, Simulated Annealing in
combination with Pareto-Optimization is used to generate efficient or near-optimal construction
task sequences by applying the aforementioned constraint-based simulation concept. Thereby,
the non-dominated solutions of the Pareto-Front, in this case the construction schedules, are
stored in a so-called Pareto-Archive. In other words, the Pareto-Archive contains the “best”
valid solutions at a particular point in time. Decision-makers can choose one of these solutions
in an a-posteriori decision-making process based on their preferences. The Pareto-Archive is
also used to compare a current solution with other solutions, which are stored in the archive
during the Simulated Annealing optimization process. Related approaches have been presented
by Smith et al. [9], Bandyopadhay et al. [13], and Suppapitnarm et al. [14]. Contrary to these
concepts, an adapted Pareto Simulated Annealing procedure has been developed for use within
the constraint-based simulation. In the following paragraphs, the adapted Pareto Simulated
Annealing approach is presented in detail.

The generation of a neighboring solution is one of the main differences between this paper
and the previously published and above-mentioned scholarly work on this topic. In contrast to
other approaches, neighboring solutions are determined by using constraint-based simulation.
This means that during the simulation several modification steps are performed reading the
defined restrictions. The decision of whether a neighboring solution is chosen as the new
current solution will be made in accordance with the standard rules of acceptance of the

 7

Simulated Annealing algorithm. Thus, even deteriorated solutions may be accepted with a
certain probability. This probability depends on the current temperature and the domination
status of the current neighboring solution.

In the following paragraphs, a more precise description of different specifications that were
implemented in the algorithm is presented. Starting with the generation of neighboring
solutions, which is based on the implemented constraint-based simulation concept, the
acceptation criteria are described in detail. The acceptance criteria are based on the so-called
dominance measures or amount of domination. Moreover, specific requirements concerning the
temperature stipulations of the Simulated Annealing Heuristic are presented.

5.1 Neighborhood
The definition of an appropriate neighboring solution is very important. A neighboring

solution is determined by using the constraint-based simulation approach. The generation of the
neighboring solution is based on the current solution, which means that the neighboring
solution differs only in a few aspects from the current solution. Each time an event occurs, for
example when a certain construction task is finished, the set of next executable tasks is
determined (cf. Figure 1). If the set of next executable tasks contains more than one task,
execution order is analyzed according to the current task execution list TEL (cf. Chapter 2).
The current task order is modified by swapping two tasks randomly. All other tasks are selected
for execution in the same order as they are stored in the current list TEL.

Task

Constraint

Resource constraints
A, R1
B, R2
C, R2
D, R3
E, R3
F, R4
G, R4

A B

C

D

E

F

G

Figure 4: Topological ordering of construction tasks

Figure 4 shows the topological ordering of some construction tasks considering the depicted
Hard Constraints for a simple scheduling problem. The problem consists of seven tasks {A, B,
C, D, E, F, G} that have to be executed by four different resources {R1, R2, R3, R4}. Resource
constraints are not considered when determining the topological ordering. Nonetheless, these
constraints have a deep impact on the resulting schedules and therefore on the resulting
objective function values. An initial solution can be generated based on the specified resource
requirements (cf. Figure 5). In the presented case the initial task execution list is <A, B, C, D, F,
E, G >.

 8

Figure 5: Initial execution sequence

Considering this current solution, a neighboring solution can be generated in the following
manner. First, task A has to be executed. After task A is finished, an event occurs and all next-
executable tasks are determined. In this case, these are tasks B and C. The positions of these
tasks in the current execution list (2, 3) will be swapped. Thus, the partial order of these two
tasks in the neighboring solution is {C, B}. All substitutions are stored in a Tabu list and cannot
be used within further optimization steps. However, the size of the Tabu list is restricted.
Registered task substitutions are removed following the FIFO method, i.e., if a certain number
of task pairs is registered, the oldest entries are removed. Hence, these substitutions become
possible again.

Figure 6: New neighboring execution sequence

Continuing in this way a potential neighboring solution is {A, C, B, F, E, G, D}. This new
solution also fulfills the defined constraints and leads to another correct resource allocation (cf.
Figure 6). The decision of whether the determined neighboring solution will be accepted as
new current solution will be justified in the next paragraph.

5.2 Domination Status, Amount of Domination, and Acceptance Rules
As described above, the non-dominated solutions, which are determined during the

simulation process, are stored in the Pareto-Archive. However, during the Simulated Annealing
process a differentiation will be made between the non-dominated solutions and the current
solution, which is a valid execution order for the examined construction tasks, where all
associated constraints are fulfilled. The current solution is the respective origin for the

 9

generation of neighboring solutions. It may belong to the Pareto-Front, but doesn't necessarily
have to. Based on this current solution, a neighboring solution is determined in the above-
described manner. If a valid neighboring solution is defined, its acceptance within the archive is
examined. A new solution is added to the archive if it is not dominated by any other solution in
the archive. However, if the neighboring solution itself dominates solutions from the archive,
the dominated solution will be removed while the new solution will be added to the archive.

The decision of whether the neighboring solution will be chosen as the new current solution
is independent of its potential addition to the Pareto Archive. Three different cases are possible:
the neighboring solution dominates the current solution, the neighboring and the current
solution do not dominate each other, or the neighboring solution is dominated by the current
one.

In the first case, when the neighboring solution dominates the current solution, the
neighboring solution will be chosen as the new current solution. The Simulated Annealing
iteration starts again based on the new current solution. In the second case, where the
neighboring solution and the current solution do not dominate each other, the neighboring
solution will also be accepted as the new current solution.

In the third case, when the neighboring solution is dominated by the current one, there is still
a chance for the neighboring solution to be chosen as the new current solution. Based on the
current temperature of the Simulated Annealing Algorithm, a probability is determined. If the
probability is higher than a specified acceptance probability value the neighboring solution is
chosen as new current solution. This probability also depends on the amount of domination
between the neighboring solution and the current one. Given two solutions, the amount of
domination is defined as

1

dom
= ≠

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏

i i

M
j j

A,N
i , f (A) f (N) i

f (A) f (N)
R

. (2)

Where A is the current solution, M is the number of objectives and Ri is the range of the i-th
objective. If the range is not known a-priori, Ri can be calculated by the difference of the
greatest and the least observed values for the respective objective [13].

Objective 1

A

N

Figure 7: Amount of domination between the two solutions A and N

 10

In figure 7, the amount of domination is illustrated for the case of two objectives. The
probability of accepting the neighboring solution as new current solution is determined by

 ()prob = 1 exp dom *temp− − a,b . (3)

The algorithm’s positive probability of accepting a deteriorated solution avoids getting
trapped in local optima. However, the temperature is decreasing during the simulation and thus
the probability of accepting worse solutions decreases too. Obviously, the temperature
specifications have a crucial influence on the performance and effectiveness of the algorithm.
In the following paragraphs different temperature specification concepts are discussed in detail.

5.3 Temperature Specifications
Before starting a Simulated Annealing optimization the following temperature aspects have

to be defined: the initial temperature, the decreasing rate, i.e., the rate at which the temperature
decreases after a certain period, the number of iterations at one temperature level, and the
termination criterion.

At the beginning, the Simulated Annealing algorithm accepts nearly every neighboring
solution, i.e., the probability of accepting deteriorations should be near 1. Thus, a
corresponding start temperature has to be defined. In this paper the start or initial temperature is
specified according to Kirkpatrick [15]. Starting with a low temperature (i.e., 10) and a
predefined acceptance probability (i.e., 0.8), a certain number of test runs are performed. If
fewer than 90% of dominated solutions are accepted, the temperature is doubled. The test runs
are repeated until the predefined rate is reached.

The number of iterations for the same temperature is increased over the course of the
Simulated Annealing optimization. Starting with the iteration number 0 5=N , the number is
increased by a constant factor ρ each time the temperature is decreased:

 1+ = ρk k .N * N (4)

Within the constraint-based Pareto Simulated Annealing approach the increasing factor ρ is
set to 1.15. After the described number of iterations at one temperature level, the current
temperature will be decreased by

 1+ = αk kT * T . (5)

Where α is a constant cooling rate. The cooling rate is defined as less than and close to 1.0.
Typically the cooling rate is specified as between 0.8 and 0.99 [16]. In the presented algorithm
a cooling rate of α= 0.9 is used.

The termination criterion is defined in the following manner: the algorithm is performed
until the temperature is less than 0.01. Furthermore, the Simulated Annealing optimization also
stops if no neighboring solution is selected as the current solution during a certain amount of
temperature reductions. The experience has shown that 10 temperature reductions without
adaptation is a good termination criterion.

 11

5.4 Constraint-based Pareto Simulated Annealing algorithm
In Figure 8, the complete constraint-based Pareto Simulated Annealing algorithm is

depicted. It becomes obvious how the constraint-based simulation concept is implemented to
generate neighboring solutions in the Pareto Simulated Annealing algorithm.

Generate initial solution
randomly,

calculate costs

N dominates A

A := N

Update number of iterations

Number of
iterations
< maxIter

temperature > Tmin

Stop

Initialize values,
Generate start temperature

Generate neighboring
solution by workstep

substitution

Update
temperature,

update maxIter

A dominates N

A := N
with prob

A := N

N domi-
nates k solutions in

the archive

N is added to
the archive,

the dominated
solutions are

removed

N is
non-dominating with

all solutions in
archive

N is added to
the archive

N and A are
non-dominating

to each other
yes

no no

no no

no

yes

yes yes

yes yes

no

Figure 8: Constraint-based Pareto Simulated Annealing algorithm

 12

The decision of whether a generated neighboring solution is accepted as the current solution,
and thus as the basis for generating the next neighboring solution, is abstracted from the
Simulated Annealing algorithm. Depending on the current temperature and the amount of
domination, even worse solutions will be accepted with a certain probability. Within the
Simulated Annealing algorithm, the concept of Pareto optimality is used to evaluate multi-
objective solutions and store the not dominated ones in the Pareto Front. A certain number of
iterations are run on each temperature level. Then the temperature is decreased and the number
of iterations on the next temperature level is increased. The algorithm stops when a minimum
temperature is reached or if there has been no improvement for a certain number of iterations.

6 CONCLUSION AND OUTLOOK
Within this paper a simulation-based optimization approach is presented to calculate near-

optimal construction schedules regarding different, partly conflicting objectives. The approach
is based on Simulated Annealing and Pareto Optimization in combination with constraint-based
simulation. Thereby, constraint-based simulation is used to generate valid schedules and their
neighboring solutions in reasonable time. Neighboring schedules are generated by swapping the
execution orders of certain construction tasks. During the Simulated Annealing each
determined neighboring solution is compared to the current solution using the presented Pareto
domination concept. Based on the current temperature and the amount of domination a decision
is made whether to accept a neighboring solution as the new current solution. The accepted
solutions so-called Pareto-optimal solutions are stored in a Pareto archive. Consequently, the
optimization result is a set of Pareto-optimal schedules, which can be analyzed to select exactly
one practicable and reasonable schedule. Essential aspects for determining neighboring
solutions, to calculate the domination status of solutions and the accepting rules of dominated
solutions with a certain probability as well as temperature specifications are presented in detail.

The presented Pareto Simulated Annealing is still under development. Currently, generic
software components for Pareto Simulated Annealing are implemented using a discrete event
simulation framework [17]. First test cases in the area of construction finishing trades are set up
to evaluate the presented optimization concept and its implementation. Furthermore, the
integration of construction knowledge by using so-called soft constraints is projected [18].

REFERENCES
[1] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing.

Science, 220, 1983.

[2] V. Cerny, A thermo dynamical approach to the travelling salesman problem. Journal of
Optimization Theory and Applications, Vol.15, 1985.

[3] P. Czyzak and A. Jaskiewicz, Pareto simulated annealing - a metaheuristic technique for
multiple objective combinatorial optimization. Journal of Multi-Criteria Decision
Analysis, Vol. 7, No. 1., pp. 34-47, 1998.

[4] U. Beißert, M. König and H.-J. Bargstädt, Constraint-based simulation of outfitting
processes in building engineering. 24th W78 Conference, 2007.

[5] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Handbook on scheduling:
from theory to applications. Springer, 2007.

 13

[6] F. Rossi, P. vanBeek and T. Walsh, Handbook of Constraint Programming. Elsevier,
2006.

[7] Y. Collette and P. Siarry, Multiobjective Optimization – Principles and Case Studies.
Springer, Berlin, 2003.

[8] M. Ehrgott. Multicriteria optimization. Springer, Berlin, 2005.

[9] K. I. Smith, R. M. Everson and J. E. Fieldsend, Dominance Measures for Multi-Objective
Simulated Annealing. Proceedings of Congress on Evolutionary Computation, CEC04,
23-30, 2004.

[10] E. Aarts, J. Korst and W. Michiels, Simulated Annealing in Search Methodologies -
Introductory Tutorials in Optimization and Decision Support Techniques edited by E. K.
Burk and G. Kandall, Springer, 2005.

[11] J. Dreo, P. Siarry, A. Petrowski and E. Taillard, Metaheuristics for Hard Optimization.
Springer, Berlin, 2006.

[12] K. Y. Lee and M. A. El-Sharkawi, Modern Heuristic Optimization Techniques. John
Wiley & Sons, Inc., Hoboken, 2008.

[13] S. Bandyopadhyay, S. Saha, U. Maulik and K. Deb, A Simulated Annealing-Based
Multiobjective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary
Computation, Vol.12, No.3, 269-283, 2008.

[14] A. Suppapitnarm, K.A. Seffen, G.T. Parks and P.J. Clarkson, A Simulated Annealing
Algorithm for Multiobjective Optimization, Eng. Opt. 33, 59-85, 2005.

[15] S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies. Journal of
Statistical Physics, Vol. 34, Numbers 5-6, 975-986, 1984.

[16] E. Aarts, J. Korst and P. van Laarhoven, Simulated annealing, in Local Search in
Combinatorial Optimization. E.H.L. Aarts and J.K. Lenstra (Eds.), John Wiley and Sons,
1997.

[17] M. König, U. Beißert, D. Steinhauer and H.-J. Bargstädt, Constraint-based simulation of
outfitting processes in shipbuilding and civil engineering. 6thEurosim Congress in
Modeling and Simulation, 2007.

[18] U. Beißert, M. König and H.-J. Bargstädt, Execution Strategy Investigation Using Soft
Constraint-Based Simulation; IABSE ICT Conference 2008, Helsinki, 2008.

