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Abstract. Within the scheduling of construction projects, different, partly conflicting objectives 
have to be considered. The specification of an efficient construction schedule is a challenging 
task, which leads to a NP-hard multi-criteria optimization problem. In the past decades, so-
called metaheuristics have been developed for scheduling problems to find near-optimal 
solutions in reasonable time. This paper presents a Simulated Annealing concept to determine 
near-optimal construction schedules. Simulated Annealing is a well-known metaheuristic 
optimization approach for solving complex combinatorial problems. To enable dealing with 
several optimization objectives the Pareto optimization concept is applied. Thus, the 
optimization result is a set of Pareto-optimal schedules, which can be analyzed for selecting 
exactly one practicable and reasonable schedule. A flexible constraint-based simulation 
approach is used to generate possible neighboring solutions very quickly during the 
optimization process. The essential aspects of the developed Pareto Simulated Annealing 
concept are presented in detail. 
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1    INTRODUCTION 
Construction projects consist of a multitude of construction tasks, which have to be 

scheduled efficiently in terms of different, partly conflicting project objectives such as time, 
cost, and quality. Therefore, several complex execution restrictions such as technological 
dependencies, safety aspects, and material availability have to be considered. This leads to a 
NP-hard multi-criteria optimization problem. Therefore, the analytical calculation of an optimal 
schedule with exact mathematical methods is computationally impractical. 

In the past decades, so-called metaheuristics have been developed to find good and near-
optimal solutions to scheduling problems in reasonable process time. Simulated Annealing is a 
well-known metaheuristic optimization approach for solving complex combinatorial problems 
such as scheduling construction projects. The concept of Simulated Annealing is inspired by 
the physical annealing process in metallurgy [1, 2]. It is a random search method that avoids 
getting trapped in local optima by accepting deteriorated neighboring solutions with a certain 
probability. Thereby, the probability of accepting a deteriorated solution decreases relative to 
the current temperature. In order to deal with several optimization objectives Czyzak and 
Jaszkiewicz [3] developed a modified Simulated Annealing algorithm based on the Pareto 
front. The Pareto Simulated Annealing (PSA) algorithm considers the complete Pareto front 
during the annealing process. Thus, the optimization result is a set of Pareto-optimal solutions 
based on the specified objectives. Afterwards, the Pareto-optimal solutions, in our case the 
Pareto-optimal schedules, can be analyzed to select exactly one practicable and reasonable 
schedule for the construction project. Of course, this selection depends on the individual 
preferences of the decision-makers with regard to the examined objectives. 

Within this paper, the Pareto Simulated Annealing Metaheuristic is applied and adapted to 
determine near-optimal construction schedules. In the course of the optimization process a 
constraint-based simulation approach is used to generate possible solutions very quickly [4]. 
The simulation approach is based on the well-known constraint satisfaction concept, which is a 
powerful paradigm for modeling complex combinatorial problems [5]. The application of 
Pareto Simulated Annealing for construction scheduling requires different problem-related 
specifications. In this paper different Pareto Simulated Annealing aspects are presented in 
detail. Important aspects are the generation of neighboring schedules and the rules of 
acceptance of those schedules. Other aspects that will be presented in detail are temperature-
based ones, the start temperature, decreasing rates, and determination criteria. 

Primarily, the applied constraint-based simulation approach is presented to generate valid 
construction schedules regarding different requirements and restrictions. The specification of 
efficient schedules leads to a multi-objective optimization problem. Thus, in Section 3the 
evaluation of solutions with more than two objectives is discussed and the Pareto approach is 
highlighted. Nowadays, the metaheuristic Simulated Annealing can be applied to find near-
optimal solutions for NP-hard scheduling problems. General aspects of the Simulated 
Annealing approach are described in Section 4. Construction scheduling is a NP-hard multi-
objective scheduling problem. An adopted Pareto Simulated Annealing approach is presented 
in detail to solve construction scheduling problems using constraint-based simulation. 

2    CONSTRAINT-BASED SIMULATION CONCEPT 
Within the SIMoFIT (Simulation of Outfitting Processes in Shipbuilding and Civil 

Engineering) joint venture, a constraint-based simulation approach has been developed to 
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improve execution planning [4]. Construction scheduling problems can be described by 
Constraint Satisfaction, which is a powerful paradigm for modeling complex combinatorial 
problems [5]. Classical constraint satisfaction problems are defined by sets of variables, 
domains, and constraints [6]. Accordingly, modeling the construction scheduling problems as 
constraint satisfaction problems, the construction tasks, materials, work force, equipment, and 
construction site layout are represented by variables. Different scheduling constraints can be 
specified between these variables. Typical stringent constraints of construction processes are 
technological dependencies between execution activities, certain equipment and manpower 
requirements, availability of materials, and safety aspects, such as specific working areas or 
maximum time allowances [4]. 

The solutions to constraint satisfaction problems are valid execution orders for the 
construction tasks, where all associated constraints are fulfilled. Usually, an analytical solution 
to complex constraint satisfaction problems is extremely time-consuming. However, simulation 
can be used to generate a possible solution, i.e., a valid execution order with fulfilled 
constraints, very quickly. Thus, the constraint satisfaction approach was integrated into a 
discrete event simulation application. 

The simulation concept enables the generation of different events during the discrete 
simulation by the procedures Starting Tasks and Stopping Tasks. A new event occurs each time 
a working task is finished, as well as each time a new task is ready to be executed, i.e., each 
time the order to start a new task is delivered. However, a task can only be executed if all its 
associated constraints are fulfilled. In Figure 1 the procedure of starting tasks is depicted. If a 
new event occurs, all not-started tasks are checked on fulfillment of their associated stringent 
constraints. This leads to a set of next executable tasks. In the next step, one of these executable 
tasks is selected for starting. The currently started task is consecutively numbered and stored in 
an ordered task execution list (TEL). Consequently, a starting index is determined for each 
task. The tasks’ presupposed objects like material, resources, or employees are locked during 
its execution and cannot be used by other tasks. This procedure is repeated until no more tasks 
can be started at that time. If the remaining time of a construction task has expired, the task is 
marked as finished. Its presupposed objects are unlocked and can be used by other construction 
tasks. 

 

 
 

Figure 1: UML-diagram of starting tasks 

 

The starting and stopping routines are carried out sequentially until all construction tasks are 
finished. All events, i.e., starting and finishing tasks and locking and unlocking resources, are 
recorded. Thus, one simulation run calculates one execution schedule with the respectively 
required material flow as well as the requirement for employees and equipment where all 
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stringent construction constraints are fulfilled. The determined execution schedule is stored in 
the above-mentioned list, where the number of every task is stored in chronological order 
according to their starting time. The constraint-based approach guarantees a high flexibility of 
modeling construction processes. If additions or new prerequisites occur, the model can easily 
be adapted by adding or removing certain constraints. 

3    MULTI-OBJECTIVE OPTIMIZATION 
When modeling real-world problems, such as construction projects, it is often not possible to 

reduce the optimization problem to one single objective function. Often several, partly contrary 
objectives have to be considered. Hence, several objective functions have to be optimized 
simultaneously. This leads to so-called multi-objective optimization problems. Today, different 
methods exist to model multi-objectives for optimization. For example, it is possible to use a 
weighted aggregation function and treat the problem like a single-objective optimization 
problem [7]. Alternatively, the most important objective can be optimized while all other 
objectives only fulfill certain constraints [7]. Both of these methods, as well as other scalar 
methods like Goal Programming, have in common that they determine one optimal solution in 
an a-priori way, i.e., an optimal solution will be determined through the consideration of pre-
defined input parameters. However, there are often situations where it is more favorable for the 
decision maker to choose a solution in hindsight, i.e., in an a posteriori way. First, a given 
number of good solutions are generated. Following this, one good solution is selected as the 
optimal solution based on subjective preferences. The a-posteriori Pareto approach is used in 
this paper [8]. 

During Pareto-Optimization good solutions are stored throughout the optimization process. 
To decide whether an identified solution will be saved or not, the concept of Pareto domination 
is applied. A solution is dominated by another solution if the solution does not outperform other 
solutions on all objectives and performs significantly worse for at least one objective. Thus, if 
the number of considered objective functions f is M, a solution A dominates a solution B, if 

 

 { }1≤ ∀ ∈i if ( A ) f ( B ) i ,...,M and 

 { }1∃ ∈ <j jj ,...,M : f ( A ) f ( B ) . (1) 
 

The domination relation is not a total order. Two solutions are mutually non-dominating if 
neither solution dominates the other. A solution that is non-dominated by any other solution is 
Pareto-optimal. All Pareto-optimal solutions that are detected during the optimization process 
specify a so-called Pareto-Front. Generally, all non-dominated solutions of the Pareto-Front are 
evaluated afterwards by decision makers. 

In Figure 2 the Pareto-Front of a certain amount of solutions for two objective functions is 
depicted. Additionally, some dominated solutions are shown that are not included in the Pareto-
Front. If a new solution is calculated and is not dominated by any other determined solution, 
the Pareto-Front must be updated. The new solution is added to the Pareto-Front and all prior 
non-dominated solutions have to be checked again. If a Pareto-Front solution is now dominated 
by the new solution, those solutions are removed from the Pareto-Front [8, 9]. 
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Figure 2: Pareto-Front of solutions based on two objective functions 

 

4    SIMULATED ANNEALING 
Simulated Annealing is a well-known local optimization approach for solving complex 

combinatorial problems. The general goal of local optimization methods is to find good 
solutions in an adequate amount of time. The concept of Simulated Annealing is inspired by the 
physical annealing process in metallurgy [1, 2]. In this context, annealing is known as the 
heating and controlled cooling of metal to bring the material structure from an arbitrary initial 
state to a state with the minimum possible energy. During heating, the metal atoms become 
unstuck from their current position and arrange themselves randomly. The slow cooling phase 
allows the atoms to find highly structured configurations with lower internal energy than in the 
initial configuration [10, 11, 12]. 

If this physical process is considered as an analogy for general optimization, the solutions of 
an optimization problem represent the possible configurations of the atoms. The objective value 
of a solution, the so-called cost factor, is equivalent to the internal energy state. Starting with a 
high temperature and a randomly selected initial solution, the Simulated Annealing heuristic 
calculates a new solution within a certain neighborhood of the current solution. If a new 
solution has a better cost factor than the current solution it will be always accepted as the new 
solution. If a new solution does not perform better than the current one, the acceptance of new 
solutions is based on a probability that depends on the difference between the corresponding 
costs and on the current temperature. Consequently, a high temperature allows the acceptance 
of a new solution, which causes higher costs. The probability of accepting higher costs 
decreases within the optimization process. Once accepted, the new solution is the new starting 
point for the next optimization step. In order to use the Simulated Annealing heuristic an 
appropriate neighborhood, a reasonable start-temperature, a good temperature-based 
probability, and an effective decreasing rate for the temperature have to be specified. The 
general Simulated Annealing procedure is depicted in Figure 3 accordingly to [10]. 
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Initialize temperature t

Generate neighboring solution sn,
calculate cost factor cn

Generate initial solution sc,
calculate cost factor cc

Update solution: 
sc := sn

Decrease temperature t

Stop Simulated Annealing

cn <  cc or 
expected probability based on 

temperature t

Termination
criterion fulfilled

yes

no

no

yes

 
 

Figure 3: Simulated Annealing algorithm accordingly to [10] 

 

5    CONSTRAINT-BASED PARETO SIMULATED ANNEALING 
Specifying efficient construction schedules is a challenging task. Many different and 

complex objectives have to be taken into account. In this paper, Simulated Annealing in 
combination with Pareto-Optimization is used to generate efficient or near-optimal construction 
task sequences by applying the aforementioned constraint-based simulation concept. Thereby, 
the non-dominated solutions of the Pareto-Front, in this case the construction schedules, are 
stored in a so-called Pareto-Archive. In other words, the Pareto-Archive contains the “best” 
valid solutions at a particular point in time. Decision-makers can choose one of these solutions 
in an a-posteriori decision-making process based on their preferences. The Pareto-Archive is 
also used to compare a current solution with other solutions, which are stored in the archive 
during the Simulated Annealing optimization process. Related approaches have been presented 
by Smith et al. [9], Bandyopadhay et al. [13], and Suppapitnarm et al. [14]. Contrary to these 
concepts, an adapted Pareto Simulated Annealing procedure has been developed for use within 
the constraint-based simulation. In the following paragraphs, the adapted Pareto Simulated 
Annealing approach is presented in detail. 

The generation of a neighboring solution is one of the main differences between this paper 
and the previously published and above-mentioned scholarly work on this topic. In contrast to 
other approaches, neighboring solutions are determined by using constraint-based simulation. 
This means that during the simulation several modification steps are performed reading the 
defined restrictions. The decision of whether a neighboring solution is chosen as the new 
current solution will be made in accordance with the standard rules of acceptance of the 
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Simulated Annealing algorithm. Thus, even deteriorated solutions may be accepted with a 
certain probability. This probability depends on the current temperature and the domination 
status of the current neighboring solution. 

In the following paragraphs, a more precise description of different specifications that were 
implemented in the algorithm is presented. Starting with the generation of neighboring 
solutions, which is based on the implemented constraint-based simulation concept, the 
acceptation criteria are described in detail. The acceptance criteria are based on the so-called 
dominance measures or amount of domination. Moreover, specific requirements concerning the 
temperature stipulations of the Simulated Annealing Heuristic are presented. 

5.1    Neighborhood 
The definition of an appropriate neighboring solution is very important. A neighboring 

solution is determined by using the constraint-based simulation approach. The generation of the 
neighboring solution is based on the current solution, which means that the neighboring 
solution differs only in a few aspects from the current solution. Each time an event occurs, for 
example when a certain construction task is finished, the set of next executable tasks is 
determined (cf. Figure 1). If the set of next executable tasks contains more than one task, 
execution order is analyzed according to the current task execution list TEL (cf. Chapter 2). 
The current task order is modified by swapping two tasks randomly. All other tasks are selected 
for execution in the same order as they are stored in the current list TEL. 

 

Task

Constraint

Resource constraints
A, R1
B, R2
C, R2
D, R3
E, R3
F, R4
G, R4

A B

C

D

E

F

G

 
 

Figure 4: Topological ordering of construction tasks 

 

Figure 4 shows the topological ordering of some construction tasks considering the depicted 
Hard Constraints for a simple scheduling problem. The problem consists of seven tasks {A, B, 
C, D, E, F, G} that have to be executed by four different resources {R1, R2, R3, R4}. Resource 
constraints are not considered when determining the topological ordering. Nonetheless, these 
constraints have a deep impact on the resulting schedules and therefore on the resulting 
objective function values. An initial solution can be generated based on the specified resource 
requirements (cf. Figure 5). In the presented case the initial task execution list is <A, B, C, D, F, 
E, G >. 
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Figure 5: Initial execution sequence 

 

Considering this current solution, a neighboring solution can be generated in the following 
manner. First, task A has to be executed. After task A is finished, an event occurs and all next-
executable tasks are determined. In this case, these are tasks B and C. The positions of these 
tasks in the current execution list (2, 3) will be swapped. Thus, the partial order of these two 
tasks in the neighboring solution is {C, B}. All substitutions are stored in a Tabu list and cannot 
be used within further optimization steps. However, the size of the Tabu list is restricted. 
Registered task substitutions are removed following the FIFO method, i.e., if a certain number 
of task pairs is registered, the oldest entries are removed. Hence, these substitutions become 
possible again. 

 

 
 

Figure 6: New neighboring execution sequence 

 

Continuing in this way a potential neighboring solution is {A, C, B, F, E, G, D}. This new 
solution also fulfills the defined constraints and leads to another correct resource allocation (cf. 
Figure 6). The decision of whether the determined neighboring solution will be accepted as 
new current solution will be justified in the next paragraph. 

5.2    Domination Status, Amount of Domination, and Acceptance Rules 
As described above, the non-dominated solutions, which are determined during the 

simulation process, are stored in the Pareto-Archive. However, during the Simulated Annealing 
process a differentiation will be made between the non-dominated solutions and the current 
solution, which is a valid execution order for the examined construction tasks, where all 
associated constraints are fulfilled. The current solution is the respective origin for the 
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generation of neighboring solutions. It may belong to the Pareto-Front, but doesn't necessarily 
have to. Based on this current solution, a neighboring solution is determined in the above-
described manner. If a valid neighboring solution is defined, its acceptance within the archive is 
examined. A new solution is added to the archive if it is not dominated by any other solution in 
the archive. However, if the neighboring solution itself dominates solutions from the archive, 
the dominated solution will be removed while the new solution will be added to the archive. 

The decision of whether the neighboring solution will be chosen as the new current solution 
is independent of its potential addition to the Pareto Archive. Three different cases are possible: 
the neighboring solution dominates the current solution, the neighboring and the current 
solution do not dominate each other, or the neighboring solution is dominated by the current 
one. 

In the first case, when the neighboring solution dominates the current solution, the 
neighboring solution will be chosen as the new current solution. The Simulated Annealing 
iteration starts again based on the new current solution. In the second case, where the 
neighboring solution and the current solution do not dominate each other, the neighboring 
solution will also be accepted as the new current solution. 

In the third case, when the neighboring solution is dominated by the current one, there is still 
a chance for the neighboring solution to be chosen as the new current solution. Based on the 
current temperature of the Simulated Annealing Algorithm, a probability is determined. If the 
probability is higher than a specified acceptance probability value the neighboring solution is 
chosen as new current solution. This probability also depends on the amount of domination 
between the neighboring solution and the current one. Given two solutions, the amount of 
domination is defined as 

 

 
1

dom
= ≠

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏

i i

M
j j

A,N
i , f ( A ) f ( N ) i

f ( A ) f ( N )
R

. (2) 

 

Where A is the current solution, M is the number of objectives and Ri is the range of the i-th 
objective. If the range is not known a-priori, Ri can be calculated by the difference of the 
greatest and the least observed values for the respective objective [13]. 

 

Objective 1

A

N

 
 

Figure 7: Amount of domination between the two solutions A and N 
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In figure 7, the amount of domination is illustrated for the case of two objectives. The 
probability of accepting the neighboring solution as new current solution is determined by 

 

 ( )prob = 1 exp dom *temp− − a,b .  (3) 
 

The algorithm’s positive probability of accepting a deteriorated solution avoids getting 
trapped in local optima. However, the temperature is decreasing during the simulation and thus 
the probability of accepting worse solutions decreases too. Obviously, the temperature 
specifications have a crucial influence on the performance and effectiveness of the algorithm. 
In the following paragraphs different temperature specification concepts are discussed in detail. 

5.3    Temperature Specifications 
Before starting a Simulated Annealing optimization the following temperature aspects have 

to be defined: the initial temperature, the decreasing rate, i.e., the rate at which the temperature 
decreases after a certain period, the number of iterations at one temperature level, and the 
termination criterion. 

At the beginning, the Simulated Annealing algorithm accepts nearly every neighboring 
solution, i.e., the probability of accepting deteriorations should be near 1. Thus, a 
corresponding start temperature has to be defined. In this paper the start or initial temperature is 
specified according to Kirkpatrick [15]. Starting with a low temperature (i.e., 10) and a 
predefined acceptance probability (i.e., 0.8), a certain number of test runs are performed. If 
fewer than 90% of dominated solutions are accepted, the temperature is doubled. The test runs 
are repeated until the predefined rate is reached. 

The number of iterations for the same temperature is increased over the course of the 
Simulated Annealing optimization. Starting with the iteration number 0 5=N , the number is 
increased by a constant factor ρ each time the temperature is decreased: 

 

 1+ = ρk k .N * N  (4) 
 

Within the constraint-based Pareto Simulated Annealing approach the increasing factor ρ is 
set to 1.15. After the described number of iterations at one temperature level, the current 
temperature will be decreased by  

 

 1+ = αk kT * T .  (5) 
 

Where α is a constant cooling rate. The cooling rate is defined as less than and close to 1.0. 
Typically the cooling rate is specified as between 0.8 and 0.99 [16]. In the presented algorithm 
a cooling rate of α= 0.9 is used. 

The termination criterion is defined in the following manner: the algorithm is performed 
until the temperature is less than 0.01. Furthermore, the Simulated Annealing optimization also 
stops if no neighboring solution is selected as the current solution during a certain amount of 
temperature reductions. The experience has shown that 10 temperature reductions without 
adaptation is a good termination criterion. 
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5.4    Constraint-based Pareto Simulated Annealing algorithm 
In Figure 8, the complete constraint-based Pareto Simulated Annealing algorithm is 

depicted. It becomes obvious how the constraint-based simulation concept is implemented to 
generate neighboring solutions in the Pareto Simulated Annealing algorithm. 

 

Generate initial solution 
randomly, 

calculate costs

N dominates A

A := N

Update number of iterations

Number of 
iterations
< maxIter

temperature > Tmin

Stop

Initialize values, 
Generate start temperature

Generate neighboring 
solution by workstep 

substitution 

Update 
temperature,

update maxIter

A dominates N

A := N 
with prob

A := N

N domi-
nates k solutions in 

the archive

N is added to 
the archive,

the dominated 
solutions are 

removed

N is 
non-dominating with 

all solutions in 
archive

N is added to 
the archive

N and A are 
non-dominating

to each other
yes

no no

no no

no

yes

yes yes

yes yes

no

 
 

Figure 8: Constraint-based Pareto Simulated Annealing algorithm 
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The decision of whether a generated neighboring solution is accepted as the current solution, 
and thus as the basis for generating the next neighboring solution, is abstracted from the 
Simulated Annealing algorithm. Depending on the current temperature and the amount of 
domination, even worse solutions will be accepted with a certain probability. Within the 
Simulated Annealing algorithm, the concept of Pareto optimality is used to evaluate multi-
objective solutions and store the not dominated ones in the Pareto Front. A certain number of 
iterations are run on each temperature level. Then the temperature is decreased and the number 
of iterations on the next temperature level is increased. The algorithm stops when a minimum 
temperature is reached or if there has been no improvement for a certain number of iterations. 

6    CONCLUSION AND OUTLOOK 
Within this paper a simulation-based optimization approach is presented to calculate near-

optimal construction schedules regarding different, partly conflicting objectives. The approach 
is based on Simulated Annealing and Pareto Optimization in combination with constraint-based 
simulation. Thereby, constraint-based simulation is used to generate valid schedules and their 
neighboring solutions in reasonable time. Neighboring schedules are generated by swapping the 
execution orders of certain construction tasks. During the Simulated Annealing each 
determined neighboring solution is compared to the current solution using the presented Pareto 
domination concept. Based on the current temperature and the amount of domination a decision 
is made whether to accept a neighboring solution as the new current solution. The accepted 
solutions so-called Pareto-optimal solutions are stored in a Pareto archive. Consequently, the 
optimization result is a set of Pareto-optimal schedules, which can be analyzed to select exactly 
one practicable and reasonable schedule. Essential aspects for determining neighboring 
solutions, to calculate the domination status of solutions and the accepting rules of dominated 
solutions with a certain probability as well as temperature specifications are presented in detail. 

The presented Pareto Simulated Annealing is still under development. Currently, generic 
software components for Pareto Simulated Annealing are implemented using a discrete event 
simulation framework [17]. First test cases in the area of construction finishing trades are set up 
to evaluate the presented optimization concept and its implementation. Furthermore, the 
integration of construction knowledge by using so-called soft constraints is projected [18]. 
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