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Abstract. Using a quaternionic reformulation of the electrical impedance equation, we con-
sider a two-dimensional separable-variables conductivity function and, posing two different
techniques, we obtain a special class of Vekua equation, whose general solution can be ap-
proach by virtue of Taylor series in formal powers, for which is possible to introduce an explicit
Bers generating sequence.

1



1 INTRODUCTION

The study of the electrical impedance equation

div (σgradu) = 0, (1)

where σ is the conductivity function and u denotes the electric potential, is the base for well un-
derstanding the electrical impedance tomography problem, also known as the two-dimensional
Calderon’s problem [3]. It is remarkable that in many classical works fully dedicated to this
topic, the authors could even think that it was impossible to express the general solution of (1)
in analytic form (see e.g. [20, pag. 99]). But in 2006, K. Astala and L. Päivärinta [1] noticed
for the first time that the two-dimensional case of (1) was closely related with a Vekua equa-
tion [19], and indeed it was through this relation that they solved the Calderon’s problem in the
plane. As a consequence, in 2007 V. Kravchenko and H. Oviedo [11] used the theory devel-
oped by L. Bers [2] to express the general solution of a two-dimensional electrical impedance
equation with a certain class of conductivity functions σ. In this work we review two different
techniques that based onto a quaternionic differential equation completely equivalent to (1), al-
low us to obtain a Vekua equation when considering the two-dimensional case, and using recent
discoveries on the field of pseudoanalytic function theory [7], we show how to build the general
solution for this equation in terms of Taylor series in formal powers, when the conductivity
function σ is at least once differentiable in the plane, and it is separable-variables. This class
of conductivity functions constitute an useful and quite common approach for the electrical
impedance tomography problem [5].

2 PRELIMINARIES

2.1 Elements of quaternionic analysis

Let us denote the algebra of real quaternions by H (R) [6][10]. The elements belonging to
H (R) have the form q =

∑3
k=0 qkek, where qk, k = 0, 3 are real-valued functions, e0 = 1 and

ek, k = 1, 3 are the standard quaternionic units possessing the multiplication properties

e1e2e3 = −1;

e2k = −1, k = 1, 3.

We will use the notation q = q0 + −→q , where q0 is the scalar part of q and −→q =
∑3

k=1 qkek is
the vectorial part of q. Notice every purely-vectorial quaternionic-valued function q = −→q can
be identified with a three-dimensional vectorial-valued function −→q ∈ R

3, and that their relation
is one-to-one. In virtue of this isomorphism, we can write the multiplication q = q0 + −→q and
p = p0 + −→p as follows

q · p = q0p0 + q0
−→p + p0

−→q − 〈−→q ,−→p 〉 + [−→q ×−→p ] .

It is evident that, in general, q · p 6= p · q, thus we will use the notation

Mpq = p · q

for indicating the multiplication by the right-hand side of q by p. In the set of at least once-

2



differentiable quaternionic-valued functions, it is defined the Moisil-Theodoresco differential
operator D [6]:

D = e1
∂

∂x1

+ e2
∂

∂x2

+ e3
∂

∂x3

.

It acts onto a quaternionic-valued function q = q0 + −→q as follows

Dq = gradq0 − div−→q + rot−→q .

2.2 Elements of pseudoanalytic functions

According to [2], let us consider a pair of complex valued functions (F,G) such that

Im
(

FG
)

> 0, (2)

where F is the complex conjugation of F : F = ReF − iImF, and i is the standard imaginary
unit i2 = −1. Therefore, any complex-valued function W can be represented as

W = φF + ψG,

where φ and ψ are real-valued functions. A pair of functions satisfying (2) is called a Bers
generating pair. The derivative in the sense of Bers or (F,G)-derivative of W is introduced as

d(F,G)W

dz
= (∂zφ)F + (∂zψ)G, (3)

where ∂z = ∂
∂x

− i ∂
∂y

. This derivative will exist if and only if

(∂zφ)F + (∂zψ)G = 0, (4)

where ∂z = ∂
∂x

+ i ∂
∂y

. Let us introduce the the characteristic coefficients of the pair (F,G):

A(F,G) = −F∂zG−G∂zF

FG− FG
, B(F,G) =

F∂zG−G∂zF

FG− FG
, (5)

a(F,G) = −F∂zG−G∂zF

FG− FG
, b(F,G) =

F∂zG−G∂zF

FG− FG
.

Using these notations, the (F,G)-derivative of W (3) can be written as

d(F,G)W

dz
= ∂zW − A(F,G)W −B(F,G)W, (6)

and (4) becomes
∂zW − a(F,G)W − b(F,G)W = 0. (7)

This equation is called the Vekua equation [19]. The functions W fulfilling (7) are known as
(F,G)-pseudoanalytic functions.

The following statements were proposed in [2].

Remark 1 The functions F and G of the generating pair (F,G) are (F,G)-pseudoanalytic,
and their (F,G)-derivatives fulfill

d(F,G)F

dz
=
d(F,G)G

dz
= 0.
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Definition 2 Let (F,G) and (F1, G1) be two generating pairs. If their characteristic coeffi-
cients satisfy the relations

a(F,G) = a(F1,G1), B(F,G) = −b(F1,G1). (8)

(F1, G1) will be called the successor pair of (F,G), as well (F,G) will be the predecessor pair
of (F1, G1) .

Theorem 3 Let W be a (F,G)-pseudoanalytic function, and let (F1, G1) be a successor pair
of (F,G). Therefore the (F,G)-derivative of W will be a (F1, G1)-pseudoanalytic function.

Definition 4 Let (F,G) be a generating pair. Its adjoint pair (F ∗, G∗) is defined by the formulas

F ∗ = − 2F

FG− FG
, G∗ =

2G

FG− FG
.

It is also possible to introduced an (F,G)-integral of a complex-valued function W as
∫ z1

z0

Wd(F,G)z = F (z1) Re
∫ z1

z0

G∗Wdz +G (z1) Re
∫ z1

z0

F ∗Wdz,

such that if W = φF + ψG is (F,G)-pseudoanalytic, we will have that
∫ z

z0

d(F,G)W

dz
d(F,G)z = W (z) − φ (z0)F (z) − ψ (z0)G (z) .

The last integral expression represents the antiderivative in the sense of Bers of the complex-
valued function

d(F,G)W

dz

since the (F,G)-derivatives of F and G are zero.
The complex-valued function w will be (F,G)-integrable iff

Re
∮

G∗wdz + iRe
∮

F ∗wdz = 0.

Theorem 5 The (F,G)-derivative of a (F,G)-pseudoanalytic function W is (F,G)-integrable.

Theorem 6 Let the pair (F,G) be a predecessor of (F1, G1). A complex-valued function will
be (F1, G1)-pseudoanalytic iff it is (F,G)-integrable.

Definition 7 Let {(Fm, Gm)} , m = 0,±1,±2,±3, ... be a sequence of generating pairs, and
let (Fm+1, Gm+1) be a successor of (Fm, Gm) . Thus we call {(Fm, Gm)} a generating sequence.
If (F0, G0) = (F,G) we will say (F,G) to be embedded in {(Fm, Gm)} .

Definition 8 The formal power Z(0)
m (a, z0; z) with center at z0, coefficient a and exponent 0 is

defined as the linear combination of the elements of the generating pair Fm and Gm with real
constant coefficients λ and µ, satisfying the condition

λFm (z0) + µGm (z0) = a.

The higher exponents n = 1, 2, ...are defined by

Z(n)
m (a, z0; z) = n

∫ z

z0

Z
(n−1)
m+1 (a, z0; ς) d(Fm,Gm)ς.
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The formal powers possesses the following properties.

1. Z(n)
m (a, z0; z) is (Fm, Gm)-pseudoanalytic.

2. For a1 and a2 being real constants, we have

Z(n)
m (a1 + ia2, z0; z) = a1Z

(n)
m (1, z0; z) + a2Z

(n)
m (i, z0; z) .

3. The asymptotic formulas hold:

lim
z→z0

Z(n)
m (a, z0; z) = a (z − z0)

n
.

Remark 9 As shown in [2], any complex-valued function W, satisfying (7), accepts the expan-
sion

W =
∞

∑

n=0

Z(n) (an, z0; z) , (9)

where the missing subindex m means that all formal powers belong to the generating pair
(F,G). This is: expression (9) is an analytic representation of the general solution of (7).

Definition 10 [14] A function Φ = φ+iψ of a complex variable z = x+iy is called p -analytic
if

∂

∂x
φ =

1

p

∂

∂y
ψ and

∂

∂y
φ = −1

p

∂

∂x
ψ. (10)

Theorem 11 [8] The complex-valued function

W = φ · √p+ ψ · i√
p

will be a solution of the Vekua equation

∂zW − ∂z

√
p

√
p
W = 0 (11)

if and only if the real-valued functions φ and ψ satisfy (10).

Theorem 12 [7] Let (F,G) be a generating pair of the form

F =
√
p = U(x)V (y) ,

G =
i√
p

=
i

U(x)V (y)
.

Thus this generating pair is embedded in the generating sequence {(Fm, Gm)} , m = 0,±1,±2,±3, ...
defined as

Fm = 2mU(x)V (y) ,

Gm = i
2m

U(x)V (y)
;

for even m, and

Fm =
2m

U(x1)
V (x2) ,

Gm = i
2m

V (x2)
U(x1)

for odd m.
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3 FROM THE QUATERNIONIC ELECTRICAL IMPEDANCE EQUATION TO THE
VEKUA EQUATION

As it was shown in [13],[15],[17] and [18], when we introduce the notations
−→E =

√
σgradu, (12)

−→σ =
grad

√
σ√

σ
,

the equation (1) turns into
(

D +M
−→σ

)−→E = 0. (13)

Essentially, we will study two different paths to obtain the Vekua equation from (13). The first
one [16] is to consider at once

−→E = E1e1 + E2e2,

σ = σ (x1, x2)

then, introducing the notation

σ1 =
1√
σ

∂

∂x1

√
σ, σ2 =

1√
σ

∂

∂x2

√
σ, (14)

the function −→σ in (12) will take the form

−→σ = σ1e1 + σ2e2,

thus from (13) we will have

D (E1e1 + E2e2) + (E1e1 + E2e2) (σ1e1 + σ2e2) = 0,

from which the following system is obtained

∂

∂x1

E1 +
∂

∂x2

E2 = −E1σ1 − E2σ2,

∂

∂x1

E2 −
∂

∂x2

E1 = E3σ1 − E1σ2,

∂

∂x3

E1 =
∂

∂x3

E2 = 0.

Multiplying the second equation by −i and adding to the first, it follows
(

∂

∂x1

+ i
∂

∂x2

)

(E1 − iE2) + (σ1 − iσ2) (E1 − iE2) = 0,

but according to (14)

σ1 − iσ2 =
1√
σ

(

∂

∂x1

− i
∂

∂x2

)√
σ.
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Considering this, and introducing the notation

E = E1 − iE2, (15)

∂z1 =
∂

∂x1

− i
∂

∂x2

∂z1 =
∂

∂x1

+ i
∂

∂x2

we have
∂z1E +

∂z1

√
σ√
σ

E = 0. (16)

This is a Vekua equation for which we are able to build the general solution in terms of Taylor
series in formal powers, as we will show further, for the case when σ is a separable-variables
function. We must mention that a similar Vekua equation, but considering a bicomplex case,
had been already deduced in [4] from a quaternionic Dirac equation corresponding to a massive
particle under the influence of a special class of potentials. Let us study now a secund method
for obtaining a Vekua equation from (1).

In [12] is given the proof of the following statement.

Theorem 13 Let the purely-vectorial quaternionic-valued functions
−→E 1,

−→E 2 and
−→E 3 be linear

independent, and be all solutions of (13). Let the real scalar functions ϕ1, ϕ2 and ϕ3 be all
solutions of the equation

3
∑

k=1

(Dϕk)
−→E k = 0. (17)

Hence, the purely-vectorial quaternionic-valued function

−→E =
3

∑

k=1

ϕk

−→E k (18)

is the general solution of (13).

It is easy to check [15] that the following quaternionic-valued functions constitute a set of
three linear independent solutions for the equation (13).

−→E 1 = e1K1e
−

R

σ1dx1+
R

σ2dx2 ,
−→E 2 = e2K2e

R

σ1dx1−
R

σ2dx2 ,
−→E 3 = e3K3e

R

σ1dx1+
R

σ2dx2 ,

where K1, K2 and K3 are real constants, and σ1, σ2 have the form (14). Let us consider the case
when ϕ3 = 0 in (17), which precisely corresponds, as we will see, to the two-dimensional case
of (14). We have then

Dϕ1 ·
−→E 1 +Dϕ2 ·

−→E 2 = 0.

Expanding the expression, we obtain the following system of differential equations

∂ϕ1

∂x2

=
1

p1

∂ϕ2

∂x1

,
∂ϕ1

∂x1

= − 1

p1

∂ϕ2

∂x2

,

∂ϕ1

∂x3

=
∂ϕ2

∂x3

= 0;
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where p1 = Ke−2
R

σ1dx1+2
R

σ2dx2 and K is a real constant. The first pair of equations constitute
the differential system of the so called p-analytic functions, introduced in Definition 10, and by
Theorem 11, its equivalent Vekua equation will have the form

∂z2W − ∂z2

√
p1√
p1

W = 0, (19)

where ∂z2 = ∂
∂x2

+ i ∂
∂x1

and
W = ϕ1p1 + i

ϕ2

p1

,

that in fact we can also write as
W = W1 + iW2,

where W1 and W2 are real-valued functions.

An small but interesting detail that was not pointed out in [15] is that

∂z2

√
p1√
p1

= −i (σ1 + iσ2) .

Substituting this into (19) we have

∂z2W + i (σ1 + iσ2)W = 0,

but in fact
∂z2 = i

(

∂

∂x1

− i
∂

∂x2

)

,

therefore
(

∂

∂x1

− i
∂

∂x2

)

W + (σ1 + iσ2)W = 0.

Considering the complex conjugation of this expression we have
(

∂

∂x1

+ i
∂

∂x2

)

W + (σ1 − iσ2)W = 0,

and taking into account the notations (15), by simply identifying W1= E ′

1 and W2= E ′

2, the last
equation turns into

∂z1E ′ +
∂z1

√
σ√
σ

E ′ = 0, (20)

where E ′ = E ′

1 − iE ′

2, a completely equivalent equation to (16).

3.1 Building the general solution for the two-dimensional electrical impedance equation
when the conductivity function is separable-variables

First of all, we should notice when we select a generating pair [9] [11]

F =
√
σ, G =

i√
σ

; (21)
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the corresponding characteristic coefficients (6) become

A(F,G) = a(F,G) = 0,

B(F,G) =
∂z1

√
σ√
σ

,

b(F,G) =
∂z1

√
σ√
σ

.

Therefore the Vekua equation will have the form

∂z1W − ∂z1

√
σ√
σ

W = 0. (22)

According to Definition 2, the successor pair (F1, G1) of (21) must have characteristic coeffi-
cients

a(F1,G1) = 0,

b(F1,G1) = −∂z1

√
σ√
σ

,

and by virtue of Theorem 3, the derivative in the sense of Bers d(F,G)W

dz
of a (F,G)-pseudoanalytic

function W solution of (22) will be (F1, G1)-pseudoanalytic. This is, it will be a solution of the
Vekua equation

∂z1

(

d(F,G)W

dz

)

−B(F1,G1)

(

d(F,G)W

dz

)

= 0,

or more precisely

∂z1

(

d(F,G)W

dz

)

+
∂z1

√
σ√
σ

(

d(F,G)W

dz

)

= 0.

Considering (15), by simply denoting

E =
d(F,G)W

dz
,

the last Vekua equation becomes

∂z1E +
∂z1

√
σ√
σ

E = 0, (23)

which evidently coincides with the Vekua equations (16) and (20) corresponding to the two-
dimensional electrical impedance equation (1).

For the case when σ = U2 (x1)V
2 (x2) , a very important and general case in the field

of electrical impedance tomography, according to Theorem 12, we can introduce an explicit
generating sequence {(Fm, Gm)} , m = 0,±1,±2,±3, ... in which the generating pair

F =
√
σ = U (x1)V (x2) ,

G =
i√
σ

=
i

U (x1)V (x2)
,
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is embedded. Therefore, by Definitions, Theorems and Remarks 2-9, we are able to express the
general solution of (22) in term of Taylor series in formal powers

W =
∞

∑

n=0

Z(n) (a, z0, z) ,

where z = x1 + ix2, and by Theorem 3, the (F,G)-derivative of W will be the general solution
of (23). It follows, using (12), to obtain the electric potential u, which will be the general
solution of (1).
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