ON THE SOLUTIONS OF ELECTRICAL IMPEDANCE EQUATION: A PSEUDOANALYTIC APPROACH FOR SEPARABLE-VARIABLES CONDUCTIVITY FUNCTION

A. Gutierrez S., M.P. Ramirez T., O. Rodriguez T., V.D. Sanchez N.
Universidad La Salle
Benjamín Franklin 47, Col. Hipódromo Condesa, México D.F. 06140
E-mail: audreiev@gmail.com,mramirez@1ci.ulsa.mx

Keywords: Electrical impedance, quaternions, pseudoanalytic

Abstract

Using a quaternionic reformulation of the electrical impedance equation, we consider a two-dimensional separable-variables conductivity function and, posing two different techniques, we obtain a special class of Vekua equation, whose general solution can be approach by virtue of Taylor series in formal powers, for which is possible to introduce an explicit Bers generating sequence.

1 INTRODUCTION

The study of the electrical impedance equation

$$
\begin{equation*}
\operatorname{div}(\sigma \operatorname{grad} u)=0, \tag{1}
\end{equation*}
$$

where σ is the conductivity function and u denotes the electric potential, is the base for well understanding the electrical impedance tomography problem, also known as the two-dimensional Calderon's problem [3]. It is remarkable that in many classical works fully dedicated to this topic, the authors could even think that it was impossible to express the general solution of (1) in analytic form (see e.g. [20, pag. 99]). But in 2006, K. Astala and L. Päivärinta [1] noticed for the first time that the two-dimensional case of (1) was closely related with a Vekua equation [19], and indeed it was through this relation that they solved the Calderon's problem in the plane. As a consequence, in 2007 V. Kravchenko and H. Oviedo [11] used the theory developed by L. Bers [2] to express the general solution of a two-dimensional electrical impedance equation with a certain class of conductivity functions σ. In this work we review two different techniques that based onto a quaternionic differential equation completely equivalent to (1), allow us to obtain a Vekua equation when considering the two-dimensional case, and using recent discoveries on the field of pseudoanalytic function theory [7], we show how to build the general solution for this equation in terms of Taylor series in formal powers, when the conductivity function σ is at least once differentiable in the plane, and it is separable-variables. This class of conductivity functions constitute an useful and quite common approach for the electrical impedance tomography problem [5].

2 PRELIMINARIES

2.1 Elements of quaternionic analysis

Let us denote the algebra of real quaternions by $\mathbb{H}(\mathbb{R})[6][10]$. The elements belonging to $\mathbb{H}(\mathbb{R})$ have the form $q=\sum_{k=0}^{3} q_{k} e_{k}$, where $q_{k}, k=\overline{0,3}$ are real-valued functions, $e_{0}=1$ and $e_{k}, k=\overline{1,3}$ are the standard quaternionic units possessing the multiplication properties

$$
\begin{aligned}
e_{1} e_{2} e_{3} & =-1 ; \\
e_{k}^{2}=-1, k & =\overline{1,3} .
\end{aligned}
$$

We will use the notation $q=q_{0}+\vec{q}$, where q_{0} is the scalar part of q and $\vec{q}=\sum_{k=1}^{3} q_{k} e_{k}$ is the vectorial part of q. Notice every purely-vectorial quaternionic-valued function $q=\vec{q}$ can be identified with a three-dimensional vectorial-valued function $\vec{q} \in \mathbb{R}^{3}$, and that their relation is one-to-one. In virtue of this isomorphism, we can write the multiplication $q=q_{0}+\vec{q}$ and $p=p_{0}+\vec{p}$ as follows

$$
q \cdot p=q_{0} p_{0}+q_{0} \vec{p}+p_{0} \vec{q}-\langle\vec{q}, \vec{p}\rangle+[\vec{q} \times \vec{p}] .
$$

It is evident that, in general, $q \cdot p \neq p \cdot q$, thus we will use the notation

$$
M^{p} q=p \cdot q
$$

for indicating the multiplication by the right-hand side of q by p. In the set of at least once-
differentiable quaternionic-valued functions, it is defined the Moisil-Theodoresco differential operator D [6]:

$$
D=e_{1} \frac{\partial}{\partial x_{1}}+e_{2} \frac{\partial}{\partial x_{2}}+e_{3} \frac{\partial}{\partial x_{3}} .
$$

It acts onto a quaternionic-valued function $q=q_{0}+\vec{q}$ as follows

$$
D q=\operatorname{grad} q_{0}-\operatorname{div} \vec{q}+\operatorname{rot} \vec{q} .
$$

2.2 Elements of pseudoanalytic functions

According to [2], let us consider a pair of complex valued functions (F, G) such that

$$
\begin{equation*}
\operatorname{Im}(\bar{F} G)>0, \tag{2}
\end{equation*}
$$

where \bar{F} is the complex conjugation of $F: \bar{F}=\operatorname{Re} F-i \operatorname{Im} F$, and i is the standard imaginary unit $i^{2}=-1$. Therefore, any complex-valued function W can be represented as

$$
W=\phi F+\psi G
$$

where ϕ and ψ are real-valued functions. A pair of functions satisfying (2) is called a Bers generating pair. The derivative in the sense of Bers or (F, G)-derivative of W is introduced as

$$
\begin{equation*}
\frac{d_{(F, G)} W}{d z}=\left(\partial_{z} \phi\right) F+\left(\partial_{z} \psi\right) G, \tag{3}
\end{equation*}
$$

where $\partial_{z}=\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}$. This derivative will exist if and only if

$$
\begin{equation*}
\left(\partial_{\bar{z}} \phi\right) F+\left(\partial_{\bar{z}} \psi\right) G=0, \tag{4}
\end{equation*}
$$

where $\partial_{\bar{z}}=\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}$. Let us introduce the the characteristic coefficients of the pair (F, G) :

$$
\begin{align*}
& A_{(F, G)}=-\frac{\bar{F} \partial_{z} G-\bar{G} \partial_{z} F}{F \bar{G}-\bar{F} G}, B_{(F, G)}=\frac{F \partial_{z} G-G \partial_{z} F}{F \bar{G}-\bar{F} G} \tag{5}\\
& a_{(F, G)}=-\frac{\bar{F} \partial_{\bar{z}} G-\bar{G} \partial_{\bar{z}} F}{F \bar{G}-\bar{F} G}, b_{(F, G)}=\frac{F \partial_{\bar{z}} G-G \partial_{\bar{z}} F}{F \bar{G}-\bar{F} G}
\end{align*}
$$

Using these notations, the (F, G)-derivative of W (3) can be written as

$$
\begin{equation*}
\frac{d_{(F, G)} W}{d z}=\partial_{z} W-A_{(F, G)} W-B_{(F, G)} \bar{W} \tag{6}
\end{equation*}
$$

and (4) becomes

$$
\begin{equation*}
\partial_{\bar{z}} W-a_{(F, G)} W-b_{(F, G)} \bar{W}=0 . \tag{7}
\end{equation*}
$$

This equation is called the Vekua equation [19]. The functions W fulfilling (7) are known as (F, G)-pseudoanalytic functions.

The following statements were proposed in [2].
Remark 1 The functions F and G of the generating pair (F, G) are (F, G)-pseudoanalytic, and their (F, G)-derivatives fulfill

$$
\frac{d_{(F, G)} F}{d z}=\frac{d_{(F, G)} G}{d z}=0 .
$$

Definition 2 Let (F, G) and $\left(F_{1}, G_{1}\right)$ be two generating pairs. If their characteristic coefficients satisfy the relations

$$
\begin{equation*}
a_{(F, G)}=a_{\left(F_{1}, G_{1}\right)}, B_{(F, G)}=-b_{\left(F_{1}, G_{1}\right)} . \tag{8}
\end{equation*}
$$

(F_{1}, G_{1}) will be called the successor pair of (F, G), as well (F, G) will be the predecessor pair of $\left(F_{1}, G_{1}\right)$.

Theorem 3 Let W be a (F, G)-pseudoanalytic function, and let $\left(F_{1}, G_{1}\right)$ be a successor pair of (F, G). Therefore the (F, G)-derivative of W will be a $\left(F_{1}, G_{1}\right)$-pseudoanalytic function.

Definition 4 Let (F, G) be a generating pair. Its adjoint pair $\left(F^{*}, G^{*}\right)$ is defined by the formulas

$$
F^{*}=-\frac{2 \bar{F}}{F \bar{G}-\bar{F} G}, \quad G^{*}=\frac{2 \bar{G}}{F \bar{G}-\bar{F} G}
$$

It is also possible to introduced an (F, G)-integral of a complex-valued function W as

$$
\int_{z_{0}}^{z_{1}} W d_{(F, G)} z=F\left(z_{1}\right) \operatorname{Re} \int_{z_{0}}^{z_{1}} G^{*} W d z+G\left(z_{1}\right) \operatorname{Re} \int_{z_{0}}^{z_{1}} F^{*} W d z,
$$

such that if $W=\phi F+\psi G$ is (F, G)-pseudoanalytic, we will have that

$$
\int_{z_{0}}^{z} \frac{d_{(F, G)} W}{d z} d_{(F, G)} z=W(z)-\phi\left(z_{0}\right) F(z)-\psi\left(z_{0}\right) G(z) .
$$

The last integral expression represents the antiderivative in the sense of Bers of the complexvalued function

$$
\frac{d_{(F, G)} W}{d z}
$$

since the (F, G)-derivatives of F and G are zero.
The complex-valued function w will be (F, G)-integrable iff

$$
\operatorname{Re} \oint G^{*} w d z+i \operatorname{Re} \oint F^{*} w d z=0
$$

Theorem 5 The (F, G)-derivative of a (F, G)-pseudoanalytic function W is (F, G)-integrable.
Theorem 6 Let the pair (F, G) be a predecessor of $\left(F_{1}, G_{1}\right)$. A complex-valued function will be $\left(F_{1}, G_{1}\right)$-pseudoanalytic iff it is (F, G)-integrable.

Definition 7 Let $\left\{\left(F_{m}, G_{m}\right)\right\}$, $m=0, \pm 1, \pm 2, \pm 3, \ldots$ be a sequence of generating pairs, and let $\left(F_{m+1}, G_{m+1}\right)$ be a successor of $\left(F_{m}, G_{m}\right)$. Thus we call $\left\{\left(F_{m}, G_{m}\right)\right\}$ a generating sequence. If $\left(F_{0}, G_{0}\right)=(F, G)$ we will say (F, G) to be embedded in $\left\{\left(F_{m}, G_{m}\right)\right\}$.
Definition 8 The formal power $Z_{m}^{(0)}\left(a, z_{0} ; z\right)$ with center at z_{0}, coefficient a and exponent 0 is defined as the linear combination of the elements of the generating pair F_{m} and G_{m} with real constant coefficients λ and μ, satisfying the condition

$$
\lambda F_{m}\left(z_{0}\right)+\mu G_{m}\left(z_{0}\right)=a
$$

The higher exponents $n=1,2, \ldots$ are defined by

$$
Z_{m}^{(n)}\left(a, z_{0} ; z\right)=n \int_{z_{0}}^{z} Z_{m+1}^{(n-1)}\left(a, z_{0} ; \varsigma\right) d_{\left(F_{m}, G_{m}\right)} \varsigma .
$$

The formal powers possesses the following properties.

1. $Z_{m}^{(n)}\left(a, z_{0} ; z\right)$ is $\left(F_{m}, G_{m}\right)$-pseudoanalytic.
2. For a_{1} and a_{2} being real constants, we have

$$
Z_{m}^{(n)}\left(a_{1}+i a_{2}, z_{0} ; z\right)=a_{1} Z_{m}^{(n)}\left(1, z_{0} ; z\right)+a_{2} Z_{m}^{(n)}\left(i, z_{0} ; z\right) .
$$

3. The asymptotic formulas hold:

$$
\lim _{z \rightarrow z_{0}} Z_{m}^{(n)}\left(a, z_{0} ; z\right)=a\left(z-z_{0}\right)^{n}
$$

Remark 9 As shown in [2], any complex-valued function W, satisfying (7), accepts the expansion

$$
\begin{equation*}
W=\sum_{n=0}^{\infty} Z^{(n)}\left(a_{n}, z_{0} ; z\right) \tag{9}
\end{equation*}
$$

where the missing subindex m means that all formal powers belong to the generating pair (F, G). This is: expression (9) is an analytic representation of the general solution of (7).
Definition 10 [14] A function $\Phi=\phi+i \psi$ of a complex variable $z=x+i y$ is called p-analytic if

$$
\begin{equation*}
\frac{\partial}{\partial x} \phi=\frac{1}{p} \frac{\partial}{\partial y} \psi \text { and } \frac{\partial}{\partial y} \phi=-\frac{1}{p} \frac{\partial}{\partial x} \psi . \tag{10}
\end{equation*}
$$

Theorem 11 [8] The complex-valued function

$$
W=\phi \cdot \sqrt{p}+\psi \cdot \frac{i}{\sqrt{p}}
$$

will be a solution of the Vekua equation

$$
\begin{equation*}
\partial_{\bar{z}} W-\frac{\partial_{\bar{z}} \sqrt{p}}{\sqrt{p}} \bar{W}=0 \tag{11}
\end{equation*}
$$

if and only if the real-valued functions ϕ and ψ satisfy (10).
Theorem 12 [7] Let (F, G) be a generating pair of the form

$$
\begin{aligned}
F & =\sqrt{p}=U(x) V(y) \\
G & =\frac{i}{\sqrt{p}}=\frac{i}{U(x) V(y)}
\end{aligned}
$$

Thus this generating pair is embedded in the generating sequence $\left\{\left(F_{m}, G_{m}\right)\right\}, m=0, \pm 1, \pm 2, \pm 3, \ldots$ defined as

$$
\begin{aligned}
F_{m} & =2^{m} U(x) V(y) \\
G_{m} & =i \frac{2^{m}}{U(x) V(y)}
\end{aligned}
$$

for even m, and

$$
\begin{aligned}
F_{m} & =\frac{2^{m}}{U\left(x_{1}\right)} V\left(x_{2}\right) \\
G_{m} & =i \frac{2^{m}}{V\left(x_{2}\right)} U\left(x_{1}\right)
\end{aligned}
$$

for odd m.

3 FROM THE QUATERNIONIC ELECTRICAL IMPEDANCE EQUATION TO THE VEKUA EQUATION

As it was shown in [13],[15],[17] and [18], when we introduce the notations

$$
\begin{align*}
\overrightarrow{\mathcal{E}} & =\sqrt{\sigma} \operatorname{grad} u, \tag{12}\\
\vec{\sigma} & =\frac{\operatorname{grad} \sqrt{\sigma}}{\sqrt{\sigma}}
\end{align*}
$$

the equation (1) turns into

$$
\begin{equation*}
\left(D+M^{\vec{\sigma}}\right) \overrightarrow{\mathcal{E}}=0 \tag{13}
\end{equation*}
$$

Essentially, we will study two different paths to obtain the Vekua equation from (13). The first one [16] is to consider at once

$$
\begin{aligned}
\overrightarrow{\mathcal{E}} & =\mathcal{E}_{1} e_{1}+\mathcal{E}_{2} e_{2}, \\
\sigma & =\sigma\left(x_{1}, x_{2}\right)
\end{aligned}
$$

then, introducing the notation

$$
\begin{equation*}
\sigma_{1}=\frac{1}{\sqrt{\sigma}} \frac{\partial}{\partial x_{1}} \sqrt{\sigma}, \quad \sigma_{2}=\frac{1}{\sqrt{\sigma}} \frac{\partial}{\partial x_{2}} \sqrt{\sigma}, \tag{14}
\end{equation*}
$$

the function $\vec{\sigma}$ in (12) will take the form

$$
\vec{\sigma}=\sigma_{1} e_{1}+\sigma_{2} e_{2},
$$

thus from (13) we will have

$$
D\left(\mathcal{E}_{1} e_{1}+\mathcal{E}_{2} e_{2}\right)+\left(\mathcal{E}_{1} e_{1}+\mathcal{E}_{2} e_{2}\right)\left(\sigma_{1} e_{1}+\sigma_{2} e_{2}\right)=0
$$

from which the following system is obtained

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} \mathcal{E}_{1}+\frac{\partial}{\partial x_{2}} \mathcal{E}_{2} & =-\mathcal{E}_{1} \sigma_{1}-\mathcal{E}_{2} \sigma_{2} \\
\frac{\partial}{\partial x_{1}} \mathcal{E}_{2}-\frac{\partial}{\partial x_{2}} \mathcal{E}_{1} & =\mathcal{E}_{3} \sigma_{1}-\mathcal{E}_{1} \sigma_{2} \\
\frac{\partial}{\partial x_{3}} \mathcal{E}_{1} & =\frac{\partial}{\partial x_{3}} \mathcal{E}_{2}=0 .
\end{aligned}
$$

Multiplying the second equation by $-i$ and adding to the first, it follows

$$
\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}\right)\left(\mathcal{E}_{1}-i \mathcal{E}_{2}\right)+\left(\sigma_{1}-i \sigma_{2}\right)\left(\mathcal{E}_{1}-i \mathcal{E}_{2}\right)=0
$$

but according to (14)

$$
\sigma_{1}-i \sigma_{2}=\frac{1}{\sqrt{\sigma}}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right) \sqrt{\sigma} .
$$

Considering this, and introducing the notation

$$
\begin{align*}
\mathcal{E} & =\mathcal{E}_{1}-i \mathcal{E}_{2} \tag{15}\\
\partial_{z_{1}} & =\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}} \\
\partial_{\bar{z}_{1}} & =\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}
\end{align*}
$$

we have

$$
\begin{equation*}
\partial_{\bar{z}_{1}} \mathcal{E}+\frac{\partial_{z_{1}} \sqrt{\sigma}}{\sqrt{\sigma}} \overline{\mathcal{E}}=0 . \tag{16}
\end{equation*}
$$

This is a Vekua equation for which we are able to build the general solution in terms of Taylor series in formal powers, as we will show further, for the case when σ is a separable-variables function. We must mention that a similar Vekua equation, but considering a bicomplex case, had been already deduced in [4] from a quaternionic Dirac equation corresponding to a massive particle under the influence of a special class of potentials. Let us study now a secund method for obtaining a Vekua equation from (1).

In [12] is given the proof of the following statement.
Theorem 13 Let the purely-vectorial quaternionic-valued functions $\overrightarrow{\mathcal{E}}_{1}, \overrightarrow{\mathcal{E}}_{2}$ and $\overrightarrow{\mathcal{E}}_{3}$ be linear independent, and be all solutions of (13). Let the real scalar functions φ_{1}, φ_{2} and φ_{3} be all solutions of the equation

$$
\begin{equation*}
\sum_{k=1}^{3}\left(D \varphi_{k}\right) \overrightarrow{\mathcal{E}}_{k}=0 \tag{17}
\end{equation*}
$$

Hence, the purely-vectorial quaternionic-valued function

$$
\begin{equation*}
\overrightarrow{\mathcal{E}}=\sum_{k=1}^{3} \varphi_{k} \overrightarrow{\mathcal{E}}_{k} \tag{18}
\end{equation*}
$$

is the general solution of (13).
It is easy to check [15] that the following quaternionic-valued functions constitute a set of three linear independent solutions for the equation (13).

$$
\begin{aligned}
& \overrightarrow{\mathcal{E}}_{1}=e_{1} K_{1} e^{-\int \sigma_{1} d x_{1}+\int \sigma_{2} d x_{2}}, \\
& \overrightarrow{\mathcal{E}}_{2}=e_{2} K_{2} e^{\int \sigma_{1} d x_{1}-\int \sigma_{2} d x_{2}}, \\
& \overrightarrow{\mathcal{E}}_{3}=e_{3} K_{3} e^{\int \sigma_{1} d x_{1}+\int \sigma_{2} d x_{2}},
\end{aligned}
$$

where K_{1}, K_{2} and K_{3} are real constants, and σ_{1}, σ_{2} have the form (14). Let us consider the case when $\varphi_{3}=0$ in (17), which precisely corresponds, as we will see, to the two-dimensional case of (14). We have then

$$
D \varphi_{1} \cdot \overrightarrow{\mathcal{E}}_{1}+D \varphi_{2} \cdot \overrightarrow{\mathcal{E}}_{2}=0
$$

Expanding the expression, we obtain the following system of differential equations

$$
\begin{gathered}
\frac{\partial \varphi_{1}}{\partial x_{2}}=\frac{1}{p_{1}} \frac{\partial \varphi_{2}}{\partial x_{1}}, \frac{\partial \varphi_{1}}{\partial x_{1}}=-\frac{1}{p_{1}} \frac{\partial \varphi_{2}}{\partial x_{2}} \\
\frac{\partial \varphi_{1}}{\partial x_{3}}=\frac{\partial \varphi_{2}}{\partial x_{3}}=0
\end{gathered}
$$

where $p_{1}=K e^{-2 \int \sigma_{1} d x_{1}+2 \int \sigma_{2} d x_{2}}$ and K is a real constant. The first pair of equations constitute the differential system of the so called p-analytic functions, introduced in Definition 10, and by Theorem 11, its equivalent Vekua equation will have the form

$$
\begin{equation*}
\partial_{\bar{z}_{2}} \mathcal{W}-\frac{\partial_{\bar{z}_{2}} \sqrt{p_{1}}}{\sqrt{p_{1}}} \overline{\mathcal{W}}=0 \tag{19}
\end{equation*}
$$

where $\partial_{\bar{z}_{2}}=\frac{\partial}{\partial x_{2}}+i \frac{\partial}{\partial x_{1}}$ and

$$
\mathcal{W}=\varphi_{1} p_{1}+i \frac{\varphi_{2}}{p_{1}}
$$

that in fact we can also write as

$$
\mathcal{W}=\mathcal{W}_{1}+i \mathcal{W}_{2}
$$

where \mathcal{W}_{1} and \mathcal{W}_{2} are real-valued functions.
An small but interesting detail that was not pointed out in [15] is that

$$
\frac{\partial_{\bar{z}_{2}} \sqrt{p_{1}}}{\sqrt{p_{1}}}=-i\left(\sigma_{1}+i \sigma_{2}\right)
$$

Substituting this into (19) we have

$$
\partial_{\bar{z}_{2}} \mathcal{W}+i\left(\sigma_{1}+i \sigma_{2}\right) \overline{\mathcal{W}}=0
$$

but in fact

$$
\partial_{\bar{z}_{2}}=i\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right),
$$

therefore

$$
\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right) \mathcal{W}+\left(\sigma_{1}+i \sigma_{2}\right) \overline{\mathcal{W}}=0
$$

Considering the complex conjugation of this expression we have

$$
\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}\right) \overline{\mathcal{W}}+\left(\sigma_{1}-i \sigma_{2}\right) \mathcal{W}=0
$$

and taking into account the notations (15), by simply identifying $\mathcal{W}_{1}=\mathcal{E}_{1}^{\prime}$ and $\mathcal{W}_{2}=\mathcal{E}_{2}^{\prime}$, the last equation turns into

$$
\begin{equation*}
\partial_{\bar{z}_{1}} \mathcal{E}^{\prime}+\frac{\partial_{z_{1}} \sqrt{\sigma}}{\sqrt{\sigma}} \overline{\mathcal{E}}^{\prime}=0 \tag{20}
\end{equation*}
$$

where $\mathcal{E}^{\prime}=\mathcal{E}_{1}^{\prime}-i \mathcal{E}_{2}^{\prime}$, a completely equivalent equation to (16).

3.1 Building the general solution for the two-dimensional electrical impedance equation when the conductivity function is separable-variables

First of all, we should notice when we select a generating pair [9] [11]

$$
\begin{equation*}
F=\sqrt{\sigma}, G=\frac{i}{\sqrt{\sigma}} \tag{21}
\end{equation*}
$$

the corresponding characteristic coefficients (6) become

$$
\begin{gathered}
A_{(F, G)}=a_{(F, G)}=0, \\
B_{(F, G)}=\frac{\partial_{z_{1}} \sqrt{\sigma}}{\sqrt{\sigma}} \\
b_{(F, G)}=\frac{\partial_{\bar{z}_{1}} \sqrt{\sigma}}{\sqrt{\sigma}}
\end{gathered}
$$

Therefore the Vekua equation will have the form

$$
\begin{equation*}
\partial_{\bar{z}_{1}} W-\frac{\partial_{\bar{z}_{1}} \sqrt{\sigma}}{\sqrt{\sigma}} \bar{W}=0 . \tag{22}
\end{equation*}
$$

According to Definition 2, the successor pair $\left(F_{1}, G_{1}\right)$ of (21) must have characteristic coefficients

$$
\begin{gathered}
a_{\left(F_{1}, G_{1}\right)}=0, \\
b_{\left(F_{1}, G_{1}\right)}=-\frac{\partial_{z_{1}} \sqrt{\sigma}}{\sqrt{\sigma}},
\end{gathered}
$$

and by virtue of Theorem 3, the derivative in the sense of Bers $\frac{d_{(F, G)} W}{d z}$ of a (F, G)-pseudoanalytic function W solution of (22) will be $\left(F_{1}, G_{1}\right)$-pseudoanalytic. This is, it will be a solution of the Vekua equation

$$
\partial_{\bar{z}_{1}}\left(\frac{d_{(F, G)} W}{d z}\right)-B_{\left(F_{1}, G_{1}\right)} \overline{\left(\frac{d_{(F, G)} W}{d z}\right)}=0
$$

or more precisely

$$
\partial_{\bar{z}_{1}}\left(\frac{d_{(F, G)} W}{d z}\right)+\frac{\partial_{z_{1}} \sqrt{\sigma}}{\sqrt{\sigma}} \overline{\left(\frac{d_{(F, G)} W}{d z}\right)}=0
$$

Considering (15), by simply denoting

$$
\mathcal{E}=\frac{d_{(F, G)} W}{d z}
$$

the last Vekua equation becomes

$$
\begin{equation*}
\partial_{\bar{z}_{1}} \mathcal{E}+\frac{\partial_{z_{1}} \sqrt{\sigma}}{\sqrt{\sigma}} \overline{\mathcal{E}}=0 \tag{23}
\end{equation*}
$$

which evidently coincides with the Vekua equations (16) and (20) corresponding to the twodimensional electrical impedance equation (1).

For the case when $\sigma=U^{2}\left(x_{1}\right) V^{2}\left(x_{2}\right)$, a very important and general case in the field of electrical impedance tomography, according to Theorem 12, we can introduce an explicit generating sequence $\left\{\left(F_{m}, G_{m}\right)\right\}, m=0, \pm 1, \pm 2, \pm 3, \ldots$ in which the generating pair

$$
\begin{aligned}
F & =\sqrt{\sigma}=U\left(x_{1}\right) V\left(x_{2}\right) \\
G & =\frac{i}{\sqrt{\sigma}}=\frac{i}{U\left(x_{1}\right) V\left(x_{2}\right)}
\end{aligned}
$$

is embedded. Therefore, by Definitions, Theorems and Remarks 2-9, we are able to express the general solution of (22) in term of Taylor series in formal powers

$$
W=\sum_{n=0}^{\infty} Z^{(n)}\left(a, z_{0}, z\right),
$$

where $z=x_{1}+i x_{2}$, and by Theorem 3, the (F, G)-derivative of W will be the general solution of (23). It follows, using (12), to obtain the electric potential u, which will be the general solution of (1).

REFERENCES

[1] K. Astala, L. Päivärinta, Calderon's inverse conductivity problem in the plane, Annals of Mathematics, Vol. 163, pp. 265-299, 2006.
[2] L. Bers Theory of pseudoanalytic functions, IMM, New York University, 1953.
[3] A.P. Calderon, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasil. Mat., pp. 65-73, 1980.
[4] A. Castañeda, V. Kravchenko, New applications of pseudoanalytic function theory to Dirac equation, Journal of Physics A: Mathematical and General, Vol. 38, pp. 9207-9219, 2005.
[5] E. Demidenko, Separable Laplace equation, magic Toeplitz matrix, and generalized Ohm's law, Applied Mathematics and Computation, pp. 1313-1327, Elsevier, 2007.
[6] K. Gürlebeck, W. Sprössig, Quaternionic analysis and elliptic boundary value problems. Berlin: Akademie-Verlag, 1989.
[7] V. V. Kravchenko, Applied Pseudoanalytic Function Theory, Series: Frontiers in Mathematics, ISBN: 978-3-0346-0003-3, 2009.
[8] V. V. Kravchenko, Recent developments in applied pseudoanalytic function theory, Beijing: Science Press "Some topics on value distribution and differentiability in complex and p-adic analysis", eds. A. Escassut, W. Tutschke and C. C. Yang, 267-300, 2008.
[9] V.V. Kravchenko, On the relation of pseudoanalytic function theory to the twodimensional stationary Schrödinger equation and Taylor series in formal powers for its solutions, Journal of Physics A: Mathematical and General, Vol. 38, No. 18, pp. 39473964, 2005.
[10] V. Kravchenko, Applied Quaternionic Analysis, Researches and Exposition in Mathematics, Vol. 28, Heldermann Verlag, 2003.
[11] V. Kravchenko, H. Oviedo, On explicitly solvable Vekua equations and explicit solution of the stationary Schrödinger equation and of the equation $\operatorname{div}(\sigma \nabla u)=0$, Complex Variables and Elliptic Equations, Vol. 52, No. 5, pp. 353-366, 2007.
[12] V.V. Kravchenko, M. P. Ramirez, On Bers generating functions for first order differential equations of Mathematical Physics (in process of preparation).
[13] V. Kravchenko, M.P. Ramirez T., A quaternionic reformulation of Maxwell's equations in inhomogeneous media, First International Workshop on Mathematical Modeling on Physical Processes in Inhomogeneous Media, Universidad de Guanajuato, IEEE, 2001.
[14] G. N. Polozhy, Generalization of the theory of analytic functions of complex variables: panalytic and (p, q)-analytic functions and some applications. Kiev University Publishers (in Russian), 1965.
[15] M.P. Ramirez T., O. Rodriguez T., J. J. Gutierrez C., New Exact Solutions for the ThreeDimensional Electrical Impedance Equation with a Separable-Variables Conductivity Function, 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 2009 (in process of acceptation).
[16] M.P. Ramirez T., V.D. Sanchez Nava, O. Rodriguez Torres, A. Gutierrez S., On the general solution of the two-dimensional electrical impedance equation for a separable-variables conductivity function, Proceedings of World Congress on Engineering, IAENG ISBN: 978-988-17012-5-1, U.K., 2009 (to be published).
[17] M.P. Ramirez Tachiquin, V.D. Sanchez Nava, A. Fleiz Jaso, O. Rodriguez Torres, On the advances of two and three-dimensional Electrical Impedance Equation, 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), México City, Mexico, (2008), IEEE Catalog Number: CFP08827-CDR, ISBN: 978-1-4244-2499-3, Library of Congress: 2008903800, 978-1-4244-2499-3/08,IEEE.
[18] M.P. Ramirez T., V.D. Sanchez Nava, A. Fleiz Jaso, On the solutions of the Electrical Impedance Equation, applying Quaternionic Analysis and Pseudoanalytic Function Theory, 12-th International Conference on Mathematical Methods in Electromagnetic Theory, IEEE: CFP08761-PRT, ISBN: 978-1-4244-2284-5, pp. 190-192, Ukraine, 2008.
[19] I.N. Vekua, Generalized Analytic Functions, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, 1962.
[20] J.G. Webster, Electrical Impedance Tomography, Adam Hilger, Bristol and New York, 1990.

