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Keywords: hypercomplex Szegö kernels, three-dimensional mapping problems, polynomial
approximation, Hardy spaces

Abstract. In this paper we present rudiments of a higher dimensional analogue of the Szegö
kernel method to compute 3D mappings from elementary domains onto the unit sphere. This
is a formal construction which provides us with a good substitution of the classical conformal
Riemann mapping. We give explicit numerical examples and discuss a comparison of the
results with those obtained alternatively by the Bergman kernel method.
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1 QUATERNIONIC HARDY SPACES AND SZEGÖ KERNELS

In this paper we present the rudiments for a hypercomplex Szegö kernel method to compute
3D mappings from elementary domains onto the unit sphere. This provides an extension to
the classical method in 2D described in [1] and elsewhere.

Let {e1, e2, e3} be the imaginary units of the quaternions satisfying the multiplication rules
e1e2 = e3 = −e2e1 and eje0 = e0ej and e2

j = −1 for all j = 1, 2, 3.
Each quaternion z ∈ H has the form z = z0e0 + z1e1 + z2e2 + z3e3. The conjugate of

z is defined by z = z0 − z1e1 − z2e2 − z3e3. In what follows we identify R3 with the set
{z ∈ H; z3 = 0} Real differentiable H-valued functions that satisfy in an open subset of R3

the Cauchy-Riemann system Df :=
∑2

i=0 ∂ieif(z) = 0 are often called left monogenic, cf.
[5]. In the sequel suppose that G is a domain with a strongly Lipschitz boundary in R3. Then,
following [5], the quaternionic Hardy space H2(∂G,H) of left monogenic functions in G can
be introduced as the closure of the set

A2(∂G,H) := {f ∈ C1(G) ∩ L2(∂G); | Df(z) = 0 ∀z ∈ G},

endowed with the inner product defined by

〈f, g〉 :=

∫

∂G

f(z)g(z)dS(z).

Here dS(z) is the scalar valued surface measure. It is well-known that H2(∂G,H) has a
uniquely reproducing kernel, the quaternionic Szegö kernel, cf. e.g. [5, 8]. If G is a bounded
domain, then the kernel can be approximated by applying the Gram-Schmidt algorithm to the
set of the Fueter polynomials. Following [5] and others, the Fueter polynomials are defined
by p0(z) := 1, Zi := zi− z0ei, i = 1, 2, 3 , and pl1,...,lk(z) := 1

k!

∑
π∈Sk

Zπ(l1) . . .Zπ(lk), where
Sk is the symmetric group on k elements. These polynomials form a basis for H2(∂G,H)
if G is a bounded domain containing the origin. The orthonormalization process of Gram-
Schmidt applied to the set of the Fueter polynomials then produces an orthonormal set (hj)j of
H2(∂G,H). In view of the non-commutativity the coefficients in the Gram-Schmidt algorithm
have to appear on the right hand side. The use of the Fueter polynomials up to degree N
corresponds to a total of n := (N+1)(N+2)

2
functions. The Szegö kernel is then approximated

by the finite Fourier sum

SN
G (0, z) =

(N+1)(N+2)/2∑
j=1

hj(z)hj(0), (N = 0, 1, . . .),

as the kernel can always be developed in such series for any given orthonormal system, see
[5]. Then we compute the line integral

fN(z) =

z∫

0

SN
G

2
(0, u)du, (N = 0, 1, . . .).
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Notice that in the three-dimensional case, this line integral is not independent from the choice
of the path. Here, we choose the direct line connection from 0 to z as integration path. In
view of the non-commutativity this still leads to two different choices of integration. Here we
choose the ansatz

fN := z 7→
1∫

0

zS2
GN (tz, 0)dt,

which lead so far to the best results. Notice here also that the orthonormalized functions hj

take in general values in H and not in R3. In order to obtain a map to R3, we cut off the
e3-component. In the classical two dimensional complex case, the complex analogue of the
function series (fN)N converges to the function that maps the given domain G conformally
onto the unit disc. In the higher dimensional case we cannot expect f to be conformal in
the classical sense of Gauss in general, because the set of conformal maps in the sense of
Gauss coincides with the set of Möbius transformations. However, with great astonishment,
in the case of 3D rectangular domains, L-pieces, circular cylinders and the double cone we
obtained numerically a very good mapping to the unit sphere. The use of MAPLE allowed us
to calculate symbolically and exactly, which is necessary due to the numerical instability of the
Gram-Schmidt procedure. In this talk we present and discuss the numerical experiments that
we obtained by using this hypercomplex Szegö kernel method. We compare our results with
the results obtained by the alternative 3D Bergman kernel method described in [4, 2, 3, 7].

In this paper, we will present the results for two domains, on which we gained a remarkable
outcome.

The L-piece

In order to make a better comparison of the two approaches, the same L-shaped domain as
in [2, 3, 7] was regarded.
Looking at the resulting images and considering the case of the unit cube (see [6]), the figures
are very similar to each other: As the regarded L-piece is produced by cutting a cuboid out of
the unit cube, the picture looks from all but one side the same as the picture for the unit cube.
Only on one side is a deep pit / hole instead of an half-ball-like indentation. This is presented
in the following series of pictures.
Comparing now the images with the images in [2, 3, 7], there is clearly a resemblance for the
higher grades of N . One notable effect is that when using the Bergman method, we get some
points sticking out from the boundary. These effects do not appear when using the Szegö
kernel method that we proposed here. So the Szegö method yields, judging from the plots,
images which are a bit “smoother”.
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Figure 1: N=2
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Figure 2: N=4

–4–2024

–4 –2 0 2 4

–4

–2

0

2

4

–4 –2 0 2 4

–4–2024

–4

–2

0

2

4

Figure 3: N=6
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Figure 4: N=144



Unfortunately, as exhibited quantitatively in tables in our forthcoming paper [6], the pic-
tures do not improve significantly any longer from a certain grade on. This phenomenon oc-
curred for all domains that we considered. In the case of the L-piece, the plot does not change
very significantly for values of N greater than 6. Since we applied the method for quite many
geometrically different domains, the results have to be interpreted as a strong indication that
the algorithm that indeed leads to a very ball like domain but does not yield a mapping onto a
perfect ball for N →∞. In [7] the same behavior was also observed when using the Bergman
kernel method. That indicates that we still have to incorporate a certain kind of smoothening
correcting effect in order to improve the mapping quality.

1.1 The cylinder with height 3 and radius 1

An excellent result was achieved for the cylinder with radius 1 and height 3. For this
domain, the resulting image is really very close to a ball. The only divergence is that the
figure is visibly flattened at the poles; carvings, which have approximately the shape of a
circle, can be seen.
The numerical evaluation also yielded very good results. The variance for the highest grade
which could be calculated (N=10) is in the size of 10−4, the variance of the fourth component
is the size of 10−23. So we really seem to get a mapping into the three-dimensional space here,
and the image also comes very close to an actual ball. Note also that the results for this domain
outdo the results of the Bergman method. This is quantitatively more explicated in [6].
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Figure 5: N=1
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Figure 6: N=2
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Figure 7: N=6
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Figure 8: N=10
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As in the previous case mentioned, the images stop getting closer to the shape of a ball
from a certain grade on. The astonishing thing for this cylindrical domain is that the image
for N = 2 equals, up to minor differences (the pits at the poles of the figure broaden a bit),
already the final image for the highest regarded grade, in this case N = 10, and is thus also
the best approximation to a ball we will probably get with the algorithm we used.
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[7] J. Rüsges. Bergmankerne und Abbildungen auf die Einheitskugel, Diplomarbeit, Lehrstuhl II für
Mathematik RWTH Aachen, Aachen, 2007.

[8] Shapiro, M. and N. Vasilevski: On the Bergmann kernel function in hyperholomorphic analysis.
Acta Appl. Math. 46 (1997) No. 1, 1 – 27.

7


