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Abstract. An introduction is given to Clifford Analysis (CA) over pseudo-Euclidean space En

of arbitrary signature. CA over En is regarded as a function theory of Clifford-valued functions
F satisfying an equation of the form ∂F = −S, for a given function S and with ∂ a first order
vector-valued differential (Dirac) operator. The formulation of CA over En presented here pays
special attention to its geometrical setting. This permits to identify tensors which qualify as
geometrical Dirac operators and to take a position on the naturalness of contravariant and
covariant versions of such a theory. In addition, a formal method is described to construct the
general solution to the aforementioned equation in the context of covariant CA over En.
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1 INTRODUCTION

The aim of this paper is to give an introduction to Clifford Analysis (CA) over pseudo-
Euclidean space En. CA over En, called Ultrahyperbolic Clifford Analysis (UCA) for short,
is a non-trivial extension of the more familiar Euclidean CA over Rn, [1], [2], [3]. UCA is the
proper mathematical setting for studying physics in Minkowski spaces with an arbitrary number
of time dimensions p and space dimensions q. The particular case of Hyperbolic Clifford Analy-
sis (HCA), corresponding to p = 1 and q > 1, has direct relevance to physics, with in particular
the case p = 1, q = 3 providing a tailor-made function theory, applicable to electromagnetism
and quantum physics, [4], [5].

Let Ω be an open region in En, Vp,q a real sesquilinear product space of signature (p, q),
m , p + q, and Cl (Vp,q) the universal Clifford algebra generated by Vp,q. UCA is the study
of (e.g., smooth) functions from Ω → Cl (Vp,q), acted upon by a first order Cl (Vp,q)-valued
vector differential operator ∂, called a Dirac operator. In particular, we want to derive integral
representations for functions F satisfying first order equations such as ∂F = −S, with S
smooth and of compact support. By choosing S = 0, a special subset of functions is singled
out, called (left) ultrahyperbolic Clifford holomorphic functions, and which can be thought of
as a generalization of the familiar complex holomorphic functions in Complex Analysis.

We here give a formulation of UCA which pays attention to its geometrical setting relative
to pseudo-Euclidean space En of signature (r, s), n , r + s. More precisely, we focus on
how a given abstract space Vp,q is related – or if possible can be unrelated – to the (common)
tangent space Er,s of En. To this end, we discuss the concept of soldering, relating a given
linear space to the tangent space of a given manifold. We start off with independent signatures
for Vp,q and Er,s and then investigate the feasibility of this choice along the way. Further, we
also show how to give an invariant meaning to the vector differential operator ∂, a matter which
is usually not addressed in CA. It is found that a Dirac operator in UCA acquires a natural
geometrical meaning if it is defined as an appropriate tensor. As a consequence of this, any
such Dirac operator itself defines a soldering, which implies that in a geometrical meaningful
UCA, the spaces Vp,q and Er,s can not be unrelated. In addition, we show that there exists a
natural asymmetry between covariant and contravariant Clifford Analysis over En. On the one
hand, it is found that no geometrical invariant contravariant Clifford Analysis with a first order
contravariant Dirac operator, taking values in Cl (Er,s), exists. On the other hand, a geometrical
invariant covariant Clifford Analysis with a first order covariant Dirac operator, taking values
in Cl (E∗r,s), arises naturally.

Based on the aforementioned geometrical setting, we then give a formal method to construct
an integral representation for covariant Clifford-valued functions F ∗ satisfying ∂∗F ∗ = −S∗,
with ∂∗ an anisotropic covariant Dirac operator, taking values in Cl (V∗p,q). It is found that, in
order to completely characterize this representation, it is necessary to calculate the restriction
C∗

x0
|δc of an ultrahyperbolic covariant Cauchy kernel C∗

x0
to the boundary δc of a chosen region

c. Any Cauchy kernel C∗
x0

in turn is obtained by operating with ∂∗ on a fundamental solution
of the ultrahyperbolic wave equation. The details of this calculation however lead far into
distribution theory and are outside the scope of this introduction.
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2 CLIFFORD ALGEBRAS OVER PSEUDO-EUCLIDEAN SPACE

We only consider real Clifford Algebras of finite dimension, which we wish to situate in a
pseudo-Euclidean setting.

2.1 Preliminaries

Let Rm denote m-dimensional coordinate space over R. Let p, q ∈ N with m = p + q
and h a real sesquilinear product structure, of signature (p, q), and given by a nondegenerate
symmetric bilinear function h : Rm × Rm → R such that (v,w) 7→ h (v,w). Introduce the
sesquilinear product space Vp,q , (Rm, h) and its dual V∗p,q , (Rm, h−1).

Define (Vp,q)∧0 , R, (Vp,q)∧1 , Vp,q and denote by (Vp,q)∧k, ∀k ∈ Z[2,m], the linear space
of antisymmetric contravariant tensors of grade (i.e., order) k over R. Elements of (Vp,q)∧k

are called k-vectors (0-vectors and 1-vectors are also called scalars and vectors, respectively)
and elements of the graded linear space M , ⊕m

k=0 (Vp,q)∧k over R are called multivectors. A
k-vector vk ∈ (Vp,q)∧k has strict components (vi1...ik , 1 ≤ i1 < . . . < ik ≤ m) with respect to
a basis Bk , {εi1...ik , 1 ≤ i1 < . . . < ik ≤ m} for (Vp,q)∧k (B0 , {1}) and can be represented
as (using the summation convention over unordered indices)

vk =
1

k!
vi1...ikεi1...ik . (1)

Define (V∗p,q)∧0 , R, (V∗p,q)∧1 , V∗p,q and denote by (V∗p,q)∧k, ∀k ∈ Z[2,m], the linear
space of antisymmetric covariant tensors of grade k over R. Elements of (V∗p,q)∧k are called
k-covectors (0-vectors and 1-covectors are also called scalars and covectors, respectively) and
elements of the graded linear space M∗ , ⊕m

k=0 (V∗p,q)∧k over R are called multicovectors. A
k-covector v∗k ∈ (V∗p,q)∧k has strict components (vj1...jk

, 1 ≤ j1 < . . . < jk ≤ m) with respect
to a cobasis B∗

k ,
{
θj1...jk , 1 ≤ j1 < . . . < jk ≤ m

}
for (V∗p,q)∧k (B∗

0 , {1}) and can be
represented as

v∗k =
1

k!
vj1...jk

θj1...jk . (2)

Endow (Vp,q)∧k with a real sesquilinear product · : (Vp,q)∧k× (Vp,q)∧k → R such that, with
respect to a basis Bk for (Vp,q)∧k, ∀k ∈ Z[1,m],

(vk,wk) 7→ vk ·wk , 1

k!

1

k!
vi1...ikwj1...jk det [h (εia , εjb

)] ,

=
1

k!

1

k!
vi1...ikwj1...jkδl1...lk

i1...ik
h (εl1 , εj1) . . . h (εlk , εjk

) ,

=
1

k!
vl1...lkwj1...jkh (εl1 , εj1) . . . h (εlk , εjk

) . (3)

Herein is δ the k-covariant, k-contravariant generalized Kronecker tensor, [6, p. 142].
Similarly, we endow (V∗p,q)∧k with the induced real sesquilinear product · : (V∗p,q)∧k ×

(V∗p,q)∧k → R such that, with respect to a basis B∗
k for (V∗p,q)∧k, ∀k ∈ Z[1,m],

(v∗k,w
∗
k) 7→ v∗k ·w∗

k , 1

k!

1

k!
vi1...ikwj1...jk

det
[
h−1

(
θia ,θjb

)]
,

=
1

k!

1

k!
vi1...ikwj1...jk

δi1...ik
l1...lk

h−1
(
θl1 , θj1

)
. . . h−1

(
θlk ,θjk

)
,

=
1

k!
vl1...lkwj1...jk

h−1
(
θl1 , θj1

)
. . . h−1

(
θlk ,θjk

)
. (4)

3



For a fixed contravariant vector u ∈ Vp,q, the map from Vp,q → R such that v 7→ h (u,v) =
u · v, defines a canonical isomorphism between Vp,q and its dual V∗p,q. This canonical iso-
morphism is the map [ : Vp,q → V∗p,q such that u 7→ u∗ , h (u, .). Its inverse is the map
] : V∗p,q → Vp,q such that u∗ 7→ u , h−1 (u∗, .). The sesquilinear products (3) and (4) allow
to naturally extend the domain of the canonical isomorphism to higher order tensors. The maps
[ and ] allow to “raise or lower the indices” of the components of tensors.

The map [ or the map ] generates in a canonical way the bilinear binary function 〈., .〉 :
(V∗p,q)∧k × (Vp,q)∧k → R such that

(u∗k,vk) 7→ 〈u∗k,vk〉 , u∗k (vk) = ]u∗k · vk = u∗k · [vk. (5)

The function 〈., .〉 may serve to uniquely determine the canonically associated cobasis B∗
k of a

given basis Bk, using the relations
〈
θj1...jk , εi1...ik

〉
= δj1...jk

i1...ik
, ∀k ∈ Z[1,m].

2.2 Clifford Algebra over Vp,q

Define the bilinear associative exterior product ∧ : (Vp,q)∧k × (Vp,q)∧l → (Vp,q)∧(k+l),
∀k, l ∈ Z[0,m], such that: (i) for k + l ≤ m,

(vk,wl) 7→ vk ∧wl , 1

k!

1

l!
vi1...ikwik+1...ik+lδ

j1...jk+l

i1...ik+l
εj1...jk+l

, (6)

and (ii) for m < k + l, vk ∧ wl , 0. The exterior product extends to ∧ : M ×M → M by
distributivity over the direct sum. The exterior product is independent of any choice of bases.

Define a (left) contraction product y : Vp,q × (Vp,q)∧k → (Vp,q)∧k−1 such that (i) for
∀k ∈ Z[1,m],

(v,wk) 7→ v y wk , 1

k!

k∑

l=1

(−1)l−1 viwj1...jkh (εi, εjl
) εj1...ĵl...jk

, (7)

wherein ĵl denotes the absence of jl, and (ii) for k = 0, v y wk , 0. The contraction product
extends to y : Vp,q×M → M by distributivity over the direct sum and reduces for k = 1 to the
sesquilinear product of Vp,q. The contraction product is independent of any choice of bases.

Define a Clifford product, denoted by juxtaposition, first between a vector v and a k-vector
wk as

vwk , +v y wk + v ∧wk, (8)
(−1)k wkv , −v y wk + v ∧wk, (9)

and then extend it, by distributivity over the direct sum and associativity, to M×M → M. The
linear space M together with the Clifford product defined on M is the contravariant universal
real Clifford Algebra Cl (Vp,q) generated by Vp,q.

Practical calculations are considerably simplified by choosing orthonormal bases Bk ,
{ei1...ik ,∀i1 < . . . < ik}, with respect to h, for each (Vp,q)∧k, as then ei1...ik = ei1 . . . eik =
ei1∧ . . . ∧ eik and eiei = ±1.

2.3 Clifford Algebra over V∗p,q

Define the bilinear associative exterior product ∧ : (V∗p,q)∧k × (V∗p,q)∧l → (V∗p,q)∧(k+l),
∀k, l ∈ Z[0,m], such that: (i) for k + l ≤ m,

(v∗k,w
∗
l ) 7→ v∗k ∧w∗

l , 1

k!

1

l!
vi1...ikwik+1...ik+l

δ
i1...ik+l

j1...jk+l
θj1...jk+l , (10)

4



and (ii) for m < k + l, v∗k ∧w∗
l , 0. The exterior product extends to ∧ : M∗ ×M∗ → M∗ by

distributivity over the direct sum. The exterior product is independent of any choice of cobases.
Define a (left) contraction product y : V∗p,q × (V∗p,q)∧k → (V∗p,q)∧k−1 such that (i) for

∀k ∈ Z[1,m],

(v∗,w∗
k) 7→ v∗y w∗

k , 1

k!

k∑

l=1

(−1)l−1 viwj1...jk
h−1

(
θi,θjl

)
θj1...ĵl...jk (11)

and (ii) for k = 0, v∗y w∗
k , 0. The contraction product extends to y : V∗p,q ×M∗ → M∗

by distributivity over the direct sum and reduces for k = 1 to the sesquilinear product of V∗p,q.
The contraction product is independent of any choice of cobases.

Define a Clifford product, denoted by juxtaposition, first between a covector v∗ and a k-
covector w∗

k as

v∗w∗
k , +v∗y w∗

k + v∗ ∧w∗
k, (12)

(−1)k w∗
kv

∗ , −v∗y w∗
k + v∗ ∧w∗

k, (13)

and then extend it, by distributivity over the direct sum and associativity, to M∗ ×M∗ → M∗.
The linear space M∗ together with the Clifford product defined on M∗ is the covariant universal
real Clifford Algebra Cl (V∗p,q) generated by V∗p,q.

Practical calculations are considerably simplified by choosing orthonormal cobases B∗
k ,

{tj1...jk ,∀j1 < . . . < jk}, with respect to h−1, for each (V∗p,q)∧k, as then tj1...jk = tj1 . . . tjk =
tj1∧ . . . ∧ tjk and tjtj = ±1.

2.4 Real pseudo-Euclidean space En

Recall that the differential manifold of real n-dimensional pseudo-Euclidean space En is an
affine space over R, i.e., a principal homogeneous space with automorphism group the affine
group, given by the semi-direct product Tn (R) o GLn (R). At any point x ∈ En, the tangent
space Vx , TxE and the dual cotangent space V ∗

x , T ∗
xE are isomorphic (as linear spaces)

to Rn. Further, En comes with a real sesquilinear product structure, given by a nondegenerate
symmetric bilinear function g : Vx × Vx → R, ∀x ∈ En, such that (v,w) 7→ g (v,w), with
g of signature (r, s) and independent of x. The space En is in addition tacitly endowed with a
trivial flat connection, i.e., the standard rule for parallel transport. The latter property and the
independence of g of x make that all Vx, ∀x ∈ En, can be identified with a common single
sesquilinear product space Er,s , (Rn, g). Similarly, all V ∗

x , ∀x ∈ En, can be identified with
E∗r,s , (Rn, g−1).

Although it is possible to also impose an independent Clifford structure on E∗r,s, we will
refrain from doing so at this point. We will see further how E∗r,s may inherit a Clifford struc-
ture from V∗p,q in a natural way (then requiring (r, s) = (p, q)). One could also impose an
independent Clifford structure on Er,s, but such structure appears to be uninteresting. It will be
shown in the next section that the algebra Cl (Er,s) does not generate a natural Cl (Er,s)-valued
Clifford Analysis.

2.5 Rings

We will make use of the following rings.
(i) F∞ , (C∞ (Ω,R) , +, ): the unital ring of smooth real-valued functions from Ω → R,

together with pointwise addition + and pointwise multiplication (denoted by juxtaposition).
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(ii) D , (C∞
c (En,R) , +, ): the ring of smooth real-valued functions with compact support

from En → R. Denote by D′ the linear space of distributions as the continuous dual of D.
We will also use the multiplication between a smooth function ψ ∈ F∞ and a distribution

f ∈ D′, which is defined as the distribution ψf = fψ given by, ∀ϕ ∈ D,

〈ψf, ϕ〉 , 〈f, ψϕ〉 , (14)

which is legitimate since ψϕ ∈ D.

3 CLIFFORD ANALYSIS OVER EN

3.1 Definition

Contravariant Clifford Analysis (CA) over pseudo-Euclidean space En is the study of func-
tions from Ω → Cl (Vp,q), together with a first order vector differential operator ∂. Covari-
ant Clifford Analysis (CA*) over pseudo-Euclidean space En is the study of functions from
Ω → Cl (V∗p,q), together with a first order covector differential operator ∂∗.

Within CA over En, we want in particular derive an integral representation for functions
F ∈ C∞ (Ω, Cl (Vp,q)) satisfying

∂F = −S, (15)

with S ∈ C∞
c (En, Cl (Vp,q)). Similarly, within CA* over En, we want to derive an integral

representation for functions F ∗ ∈ C∞ (Ω, Cl (V∗p,q)) satisfying

∂∗F ∗ = −S∗, (16)

with S∗ ∈ C∞
c (En, Cl (V∗p,q)).

From a mathematical point of view, it is not necessary to relate the space Vp,q to Er,s (or
V∗p,q to E∗r,s) any further. Their only connection so far is through the functions that we study,
which: (i) have as domain a subset of the affine space En underlying Er,s and E∗r,s and (ii) have
as codomain the Clifford algebra generated by either Vp,q or V∗p,q.

For further convenience, we denote by {εi} a general basis for Vp,q and by
{
θj

}
the canon-

ically associated cobasis for V∗p,q with respect to h. Similarly, let {εµ} be a general basis for
Er,s and {ϑν} the canonically associated cobasis for E∗r,s with respect to g.

3.2 Solderings

Sometimes a physics application might require that an additional relation between the spaces
Vp,q and Er,s is to be imposed and that m = n. Such a relation is commonly defined in the
literature by a smooth bijective map Er,s → Vp,q such that u 7→ v , 〈χ, u〉 with either (a)
χ ∈ Vp,q ⊗ E∗r,s or (b) χ ∈ E∗r,s ⊗Vp,q. With respect to the above bases, 〈χ, u〉 is defined in
terms of the bilinear binary function (5), relative to g, as for (a) and (b) respectively,

〈χ, u〉 =
〈
χi

ν (εi ⊗ ϑν) , uµεµ

〉
, χi

νu
µεi ⊗ 〈ϑν , εµ〉 = χi

κu
κεi. (17)

〈χ, u〉 =
〈
χ j

ν (ϑν ⊗ εj) , uµεµ

〉
, uµχ j

ν 〈ϑν , εµ〉 ⊗ εj = uκχ j
κ εj. (18)

In the physics literature, this map is usually called a soldering as it “solders” Vp,q to En by
establishing a bijective relation between the linear space Vp,q and the common tangent space
Er,s. We assume here that χ is independent of x ∈ En.

6



soldering type (a) type (b)
1 Ep,q → Vp,q χ ∈ Vp,q ⊗ E∗p,q χ ∈ E∗p,q ⊗Vp,q

2 Ep,q → V∗p,q χ ∈ V∗p,q ⊗ E∗p,q χ ∈ E∗p,q ⊗V∗p,q

3 E∗p,q → Vp,q χ ∈ Vp,q ⊗ Ep,q χ ∈ Ep,q ⊗Vp,q

4 E∗p,q → V∗p,q χ ∈ V∗p,q ⊗ Ep,q χ ∈ Ep,q ⊗V∗p,q

Table 1: All possible solderings relating Vp,q to En.

The inverse soldering is the map Vp,q → Er,s such that v 7→ u , 〈χ−1, v〉 with (a) χ−1 ∈
V∗p,q ⊗ Er,s or (b) χ−1 ∈ Er,s ⊗V∗p,q. With respect to the above bases, 〈χ−1, v〉 is defined in
terms of the bilinear binary function (5) now relative to h, as for (a) and (b) respectively,

〈
χ−1, v

〉
=

〈(
χ−1

) ν

j

(
θj ⊗ εν

)
, viεi

〉
, vi

(
χ−1

) ν

j

〈
θj, εi

〉⊗ εν = vk
(
χ−1

) ν

k
εν ,(19)

〈
χ−1, v

〉
=

〈(
χ−1

)µ

j

(
εµ ⊗ θj

)
, viεi

〉
,

(
χ−1

)µ

j
viεµ ⊗

〈
θj, εi

〉
=

(
χ−1

)µ

k
vkεµ ,(20)

wherein

χi
κ

(
χ−1

) κ

j
= δi

j and χk
µ

(
χ−1

) ν

k
= δν

µ, (21)

χ i
κ

(
χ−1

)κ

j
= δi

j and χ k
µ

(
χ−1

)ν

k
= δν

µ. (22)

A soldering χ also relates higher tensor spaces in a natural way. In particular, the sesquilinear
product structures g and h become related by

gµν = hijχ
i
µχ

j
ν . (23)

Hence, if a soldering χ is present, then only two members of the triple (g, χ, h) can be chosen
freely. The earlier requirement that m = n avoids that either g or h becomes degenerated.
Further, by Sylvester’s law of inertia, both sesquilinear product structures must have the same
signature. Hence, once a soldering is present, we will write (r, s) = (p, q).

More generally, a soldering can be specified by any of the eight smooth bijective maps given
in Table 1. We will use this observation in the next subsection.

3.3 Dirac operators

We want here introduce a Dirac operator as a geometrical invariant object, rather than as an
ad hoc operator.

I.a Let dV E ∈ Vp,q ⊗ Ep,q and dV ∗E ∈ V∗p,q ⊗ Ep,q be nondegenerate (i.e., maximal rank)
tensors. The tensors dV E and dV ∗E have representatives,

dV E , diκ (εi ⊗ εκ) , (24)
dV ∗E , d κ

j

(
θj ⊗ εκ

)
. (25)

Since tangent vectors at a point of a manifold, such as εκ, are defined as derivations on F∞,
they are partial differential operators, [6, p. 117]. Hence the tensors (24)–(25) are also first
order partial derivative operators, acting on F∞ through the Pfaff derivatives εκ, [6, p.138].
This becomes even more apparent if we choose a natural (i.e., a coordinate) basis {∂/∂xκ} in
Ep,q. Therefore, the tensors dV E and dV ∗E can be identified as anisotropic Dirac operators,
taking values in Vp,q and V∗p,q, respectively.

7



In the presence of a soldering χ of type 1.a (Table 1), the tensors dV E and dV ∗E are mapped
to the respective tensors dS

EE ∈ Ep,q ⊗ Ep,q and dS
E∗E ∈ E∗p,q ⊗ Ep,q, having representatives

dS
EE =

(
χ−1

) λ

i
diκ (ελ ⊗ εκ) , (26)

dS
E∗E = χj

νd
κ

j (ϑν ⊗ εκ) . (27)

Eq. (26) shows that dS
EE is a second order differential operator acting on F∞ and hence does

not qualify as a Dirac operator, taking values in Ep,q. Moreover, the tensor dV E itself defines a
soldering of type 3.a, which corresponds to a type 1.a soldering χ = [gdV E , having representa-
tive χi

ν = diκgκν . Under its own soldering, dV E is mapped to dS
EE = (g−1)

λκ
(ελ ⊗ εκ), which

is the Laplacian for scalar functions (since the connection coefficients are zero on En).
Eq. (27) shows that dS

E∗E is a first order differential operator acting on F∞. Hence, the
covector operator dS

E∗E qualifies as a natural anisotropic Dirac operator, taking values in E∗p,q.
Also, any covector Dirac operator dV ∗E defines itself a soldering of type 4.a, which corresponds
to a type 1.a inverse soldering χ−1 = dV ∗E , having representative (χ−1)

ν
i = d ν

i . Under its
own soldering, dV ∗E is thus mapped to dS

E∗E = ϑκ⊗εκ, which is the standard isotropic covector
Dirac operator. In this special case,

dS
E∗E = δ, (28)

which shows that the isotropic covector Dirac operator, taking values in E∗p,q, is just the 1-
covariant, 1-contravariant Kronecker tensor δ ∈ (Ep,q ⊗ E∗p,q) ∩ (E∗p,q ⊗ Ep,q).

I.b Let dEV ∈ Ep,q ⊗Vp,q and dEV ∗ ∈ Ep,q ⊗V∗p,q be nondegenerate tensors, with repre-
sentatives

dEV , dκi (εκ ⊗ εi) , (29)
dEV ∗ , dκ

j

(
εκ ⊗ θj

)
. (30)

Similarly, the tensors dEV and dEV ∗ can be identified as anisotropic Dirac type operators, taking
values in Vp,q and V∗p,q, respectively.

In the presence of a soldering χ of type 1.b, the tensors dEV and dEV ∗ are mapped to the
respective tensors dS

EE ∈ Ep,q ⊗ Ep,q and dS
EE∗ ∈ Ep,q ⊗ E∗p,q, having representatives

dS
EE = dκi

(
χ−1

)λ

i
(εκ ⊗ ελ) , (31)

dS
EE∗ = dκ

jχ
j

ν (εκ ⊗ ϑν) . (32)

Again, the vector operator dS
EE is not a Dirac operator, while the covariant operator dS

EE∗

qualifies as an anisotropic Dirac operator. Under its own soldering, dEV ∗ is also mapped to
εκ ⊗ ϑκ = δ.

II.a Let dV E∗ ∈ Vp,q ⊗ E∗p,q and dV ∗E∗ ∈ V∗p,q ⊗ E∗p,q be nondegenerate tensors, with
representatives

dV E∗ , di
κ (εi ⊗ ϑκ) , (33)

dV ∗E∗ , djκ

(
θj ⊗ ϑκ

)
. (34)

Since cotangent vectors at a point of a manifold, such as ϑκ, are not derivations on F∞, they
are not partial differential operators [6, p. 135]. Hence the tensors dV E∗ and dV ∗E∗ can not be
identified as Dirac operators.
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In the presence of a soldering χ of type 1.a, the tensors dV E∗ and dV ∗E∗ are mapped to the
respective tensors dS

EE∗ ∈ Ep,q ⊗ E∗p,q and dS
E∗E∗ ∈ E∗p,q ⊗ E∗p,q, having representatives

dS
EE∗ =

(
χ−1

) λ

i
di

κ (ελ ⊗ ϑκ) , (35)

dS
E∗E∗ = χj

νdjκ (ϑν ⊗ ϑκ) . (36)

Eq. (35) shows that dS
EE∗ is a first order differential operator acting on F∞. Hence, the

covector operator dS
EE∗ qualifies as an anisotropic Dirac operator, taking values in E∗p,q. Under

its own soldering, dV E∗ is also mapped to εκ ⊗ ϑκ = δ.
Eqs. (34) and (36) show that dS

E∗E∗ is not a differential operator. Any tensor dV ∗E∗ defines
a soldering of type 2.a, which corresponds to a type 1.a soldering χ = ]hdV ∗E∗ , having repre-
sentative χi

ν = hikdkν . Under its own soldering, dV ∗E∗ is mapped to dS
E∗E∗ = gλκ

(
ϑλ ⊗ ϑκ

)
,

which is the “dual Laplacian” (with respect to a natural basis, dS
E∗E∗ = ds2, the square of the

infinitesimal line element in En).
II.b Let dE∗V ∈ E∗p,q ⊗ Vp,q and dE∗V ∗ ∈ E∗p,q ⊗ V∗p,q be nondegenerate tensors, with

representatives

dE∗V , d i
κ (ϑκ ⊗ εi) , (37)

dE∗V ∗ , dκj

(
ϑκ ⊗ θj

)
. (38)

In the presence of a soldering χ of type 1.b, the tensors dE∗V and dE∗V ∗ are mapped to the
respective tensors dS

E∗E ∈ E∗p,q ⊗ Ep,q and dS
E∗E∗ ∈ E∗p,q ⊗ E∗p,q, having representatives

dS
E∗E = d i

κ

(
χ−1

)µ

i
(ϑκ ⊗ εµ) , (39)

dS
E∗E∗ = dκjχ

j
ν (ϑκ ⊗ ϑν) . (40)

Again, the covector operator dS
E∗E qualifies as an anisotropic Dirac operator, taking values

in E∗p,q. The tensor dS
E∗E∗ is not a Dirac operator.

In summary, we have the following geometrical Dirac operators:
(i) taking values in V∗p,q, and irrespective of the presence of a soldering χ,

∂V ∗E , dV ∗E = d κ
j

(
θj ⊗ εκ

)
, (41)

∂EV ∗ , dEV ∗ = dκ
j

(
εκ ⊗ θj

)
; (42)

(ii) taking values in E∗p,q, and in the presence of an inverse soldering χ−1,
(a) of type 1.a,

∂
(1a)
EE∗ ,

〈
χ−1, dE∗V

〉
=

〈(
χ−1

) ν

i

(
θi ⊗ εν

)
, d j

µ (ϑµ ⊗ εj)
〉

,
(
χ−1

)ν

i
d j

µ

〈
θi, εj

〉
(εν ⊗ ϑµ) =

(
χ−1

)ν

k
d k

µ (εν ⊗ ϑµ) , (43)

∂
(2a)
EE∗ ,

〈
χ−1, dV E∗

〉
=

〈(
χ−1

) ν

i

(
θi ⊗ εν

)
, (εj ⊗ ϑµ) dj

µ

〉

,
(
χ−1

) ν

i
dj

µ

〈
θi, εj

〉
(εν ⊗ ϑµ) =

(
χ−1

) ν

k
dk

µ (εν ⊗ ϑµ) ; (44)

(b) of type 1.b,

∂
(1b)
EE∗ ,

〈
χ−1, dE∗V

〉
=

〈(
χ−1

)ν

i

(
εν ⊗ θi

)
, d j

µ (ϑµ ⊗ εj)
〉

,
(
χ−1

)ν

i
d j

µ

〈
θi, εj

〉
(εν ⊗ ϑµ) =

(
χ−1

) ν

k
d k

µ (εν ⊗ ϑµ) , (45)
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∂
(2b)
EE∗ ,

〈
χ−1, dV E∗

〉
=

〈(
χ−1

)ν

i

(
εν ⊗ θi

)
, (εj ⊗ ϑµ) dj

µ

〉

,
(
χ−1

)ν

i
dj

µ

〈
θi, εj

〉
(εν ⊗ ϑµ) =

(
χ−1

)ν

k
dk

µ (εν ⊗ ϑµ) . (46)

Remarks.
(i) Since geometrical Dirac operators themselves define a soldering, solderings cannot be

avoided in a geometrical Clifford Analysis.
(ii) In contrast to tangent vectors at a point of a manifold, cotangent vectors at a point of

a manifold are not differential operators. This fundamental difference in the analytic nature
of vectors and covectors is the origin of an essential asymmetry between contravariant and
covariant Clifford Analysis.

(iii) Contravariant Clifford Analysis over En together with a first order vector Dirac operator,
taking values in Cl (Vp,q), can always be defined. Also, covariant Clifford Analysis over En

together with a first order covector Dirac operator, taking values in Cl (V∗p,q), can always be
defined.

(iv) Contravariant Clifford Analysis over En together with a first order vector Dirac operator,
taking values in Cl (Ep,q), can not be defined. Covariant Clifford Analysis over En with a first
order covector Dirac operator, taking values in Cl (E∗p,q), can naturally be defined based on the
image of Cl (V∗p,q) under a soldering.

3.4 Reproducing kernels

Let x0 ∈ En and ∂∗ an anisotropic covariant Dirac operator, given by (41). We use a super-
script * to indicate the covector character of the Dirac operator and the functions and distribu-
tions involved.

Let C∗
x0
∈ D′ ⊗ Cl (V∗p,q) be of grade 1, i.e., C∗

x0
is a Cl (V∗p,q)-valued distribution such

that
〈
C∗

x0
, ϕ

〉 ∈ V∗p,q, ∀ϕ ∈ D, satisfying (with ∂∗ acting on the left)

C∗
x0

∂∗ = δx0 , (47)

and wherein δx0 is the delta distribution with support the calculation point {x0}. The distribution
C∗

x0
is called a reproducing or Cauchy kernel, [1, p. 50].

The grade 2 component of (47) together with the fact that δx0 is scalar yields that C∗
x0
∧∂∗ =

0. From Poincaré’s lemma follows that C∗
x0

can be generated from a scalar distribution fx0 ∈ D′

as
C∗

x0
= fx0∂

∗. (48)

Substituting (48) in (47) shows that fx0 must satisfy

(fx0∂
∗) ∂∗ = δx0 . (49)

The left-hand side of (49) is a triple convolution product of distributions of which only one
(fx0) is of non-compact support. Therefore, associativity holds for the convolution product.
Moreover, associativity also holds for the Clifford product. Since (i) ∂∗∂∗ is scalar, due to the
commutativity of the composition εκ ◦ ελ, and (ii) after a suitable change of coordinates, (49)
is equivalent to

¤p,qfx0 = δx0 , (50)

with ¤p,q , ∆p−∆q, the canonical d’Alembertian of signature (p, q). Eq. (50) is known as the
ultrahyperbolic wave equation of En.
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A (real) fundamental solution of (50) is, with P , g (x− x0, x− x0) and An−1 , 2πn/2

Γ(n/2)
,

[7, p. 280],
(i) for n > 2,

fx0 = − 1

(n− 2) An−1

1

2

(
eiq π

2 (P + i0)1−n
2 + e−iq π

2 (P − i0)1−n
2

)
, (51)

(ii) for n = 2,

fx0 =
cos

(
q π

2

)

4

1

π
ln |P | − sin

(
q π

2

)

4
1−(P ). (52)

The Cauchy kernel C∗
x0

then follows from (48). Its explicit calculation however, involves
distributional technicalities, on the one hand related to the non-applicability of the generalized
chain rule, [8, p. 83], and on the other hand related to the singularities of the distributions
(P ± i0)z at z = −n/2, both of which are outside the scope of this article.

3.5 Solution

We now derive an integral representation for functions satisfying (16) within the framework
of covariant Clifford Analysis with an anisotropic covariant Dirac operator ∂∗, given by (41).

3.5.1 Local reciprocity

Start from

∂−→
∗F ∗ = −S∗, (53)

C∗
x0

∂←−
∗ = δx0 . (54)

Multiply (53) on the left by C∗
x0

and (54) on the right by F ∗ and add, giving
(
C∗

x0
∂←−
∗
)

F ∗ + C∗
x0

(
∂−→
∗F ∗

)
= δx0F

∗ − C∗
x0

S∗. (55)

The under arrow indicates the acting direction of the Dirac operator. The products in (55) exist
since they are based on the multiplication between a distribution and a smooth function, as
defined in (14). Eq. (55) relates Cl (V∗p,q)-valued distributions with support in the base space
En. Using Leibniz’ rule and preserving the order of the cobasis elements, eq. (55) can be
written as

εκ

(
C∗

x0
θjd κ

j F ∗) = δx0F
∗ − C∗

x0
S∗. (56)

This is a local reciprocity relation between the Cl (V∗p,q)-valued function F ∗ and distribution
C∗

x0
.

Tensor multiply (56) by the volume form ωV on En (with respect to a general cobasis),

ωV =
√
|det g| (ϑ1 ∧ . . . ∧ ϑn

)
, (57)

to turn it into an equation of n-covectors over Cl (V∗p,q)-valued distributions,
(
εκ

(
C∗

x0
θjd κ

j F ∗))⊗ ωV = (δx0F
∗)⊗ ωV −

(
C∗

x0
S∗

)⊗ ωV . (58)

The objects appearing in (58) are of quite an advanced nature, being elements of

(D′ ⊗ Cl (V∗p,q))⊗ (F∞ ⊗ Λ (E∗p,q)) , (59)
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with Λ (E∗p,q) the exterior Grassmann algebra generated by E∗p,q. They can be regarded as gen-
eralized (in the distributional sense) Clifford-algebra-valued differential forms, with the latter
sometimes called clifforms, [9]. We need form (58) of the reciprocity relation in order to be
able to integrate it later on.

Rewrite (58) as
(
εκ

(
C∗

x0
θjd λ

j F ∗))⊗
√
|det g|δκ

λ

(
ϑ1 ∧ . . . ∧ ϑn

)

= (δx0F
∗)⊗ ωV −

(
C∗

x0
S∗

)⊗ ωV . (60)

We now need the identity
δκ

λωV = ϑκ ∧ ωλ, (61)

holding for ωV and the (n− 1)-covectors

ωλ ,
√
|det g| 1

(n− 1)!
δ1...n

λµ2...µn
(ϑµ2 ∧ . . . ∧ ϑµn) .

Also, introduce the following definition, ∀v∗ ∈ D′ ⊗ Cl (V∗p,q) and ∀ω ∈ F∞ ⊗ Λ (E∗p,q),

d (v∗ ⊗ ω) , (εκv
∗)⊗ (ϑκ ∧ ω) (62)

for the (left) covariant exterior derivation d acting on the objects in (60). In (62), the action of
εκ involves generalized derivation. Now, eq. (60) can be brought in the form

(δx0F
∗)⊗ ωV =

(
C∗

x0
S∗

)⊗ ωV + d
((

C∗
x0

θjd λ
j F ∗)⊗ ωλ

)
. (63)

3.5.2 Smoothing

We want to convert (63) to integral form. Eq. (63) is a distributional equation, so we can
not (definite) integrate it right away. A possible way to proceed is to convert it to a smoothed
version. Smoothing of a distribution is usually done by convolving it with a test function λ ∈ D,
called a mollifier. Such an operation, applied to a distribution f ∈ D′, is called a regularization
of f and the resulting smooth function, f ∗λ, is regarded as an approximation to f , [10, p. 132].
Convolution ∗ on En is defined as, ∀f ∈ D′ and ∀ϕ ∈ D,

(f ∗ ϕ) (x) ,
〈
f(y), ϕ (x− y)

〉
. (64)

Herein, the subscript (y) denotes that y is a dummy variable with scope the Schwartz pairing
〈, 〉. An essential property, enjoyed by convolution on En, is, ∀f ∈ D′ and ∀ϕ ∈ D,

(df) ∗ ϕ = d (f ∗ ϕ) , (65)

wherein d denotes generalized exterior derivation in the left-hand side and ordinary exterior
derivation in the right-hand side. We further extend the definition of convolution to our objects
as

((D′ ⊗ Cl (V∗p,q))⊗ (F∞ ⊗ Λ (E∗p,q))) ∗ ϕ

, ((D′ ∗ ϕ)⊗ Cl (V∗p,q))⊗ (F∞ ⊗ Λ (E∗p,q)) . (66)

The smoothed version of (63) becomes

((δx0F
∗)⊗ ωV ) ∗ λ =

((
C∗

x0
S∗

)⊗ ωV

) ∗ λ +
(
d

((
C∗

x0
θkd κ

k F ∗)⊗ ωκ

)) ∗ λ,
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or, with definition (66) and property (65),

((δx0F
∗) ∗ λ)⊗ ωV =

((
C∗

x0
S∗

) ∗ λ
)⊗ ωV + d

(((
C∗

x0
θkd κ

k F ∗) ∗ λ
)⊗ ωκ

)
,

or, with definition (64) and explicitly denoting the Schwartz pairing with a subscript S,
〈
(δx0F

∗)(y) , λ (x− y)
〉

S
⊗ ωV

=
〈(

C∗
x0

S∗
)
(y)

, λ (x− y)
〉

S
⊗ ωV + d

(〈(
C∗

x0
θkd κ

k F ∗)
(y)

, λ (x− y)
〉

S
⊗ ωκ

)
. (67)

We will now choose our mollifier λ as follows. Define, ∀y ∈ En,

µ (y) , 〈c, λ (x− y)⊗ ωV (x)〉dR , (68)

so µ ∈ D. In (68) and further on, the subscript dR denotes de Rham pairing between a chain
and a form. Let U ⊂ c such that the calculation point x0 ∈ U and supp (S) ⊂ U . Choose λ
such that µ (y) = 1, ∀y ∈ U . In particular,

µ (x0) = 1, (69)
µ (y) = 1,∀y ∈ supp (S) . (70)

For instance, we can use for λ a test function such that (i) supp (λ) ⊂ c and (ii) λ integrates
over c to 1.

3.5.3 Integration

Integration of (67) over a chain c, with boundary δc and interior c, such that supp (S) ⊂ c ⊂ c
and with x0 ∈ c, is actually a de Rham pairing, between a de Rham current (here in particular a
chain) and a smooth form. To emphasize this, we denote each integral as 〈, 〉dR, and thus get for
the integrated eq. (67),

〈
c,

〈
(δx0F

∗)(y) , λ (x− y)
〉

S
⊗ ωV (x)

〉
dR

=
〈
c,

〈(
C∗

x0
S∗

)
(y)

, λ (x− y)
〉

S
⊗ ωV (x)

〉
dR

+
〈
c, d

(〈(
C∗

x0
θkd κ

k F ∗)
(y)

, λ (x− y)
〉

S
⊗ ωκ (x)

)〉
dR

. (71)

(L1) The left-hand side term Since λ (x− y) is jointly continuous in x and y, we can ex-
change the order of pairings and get

L1 ,
〈
c,

〈
(δx0F

∗)(y) , λ (x− y)
〉

S
⊗ ωV (x)

〉
dR

,

=
〈
(δx0F

∗)(y) , 〈c, λ (x− y)⊗ ωV (x)〉dR

〉
S
.

Using definition (68) this is
L1 = 〈δx0F

∗, µ〉S .

Since F ∗ is smooth, this equals
L1 = 〈δx0 , F

∗µ〉S .

Using the sifting property of the delta distribution δx0 and invoking condition (69), we get

L1 = F ∗ (x0) . (72)
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(R1) The first right-hand side term Again exchanging the order of pairings and using defi-
nition (68) gives

R1 ,
〈
c,

〈(
C∗

x0
S∗

)
(y)

, λ (x− y)
〉

S
⊗ ωV (x)

〉
dR

,

=
〈
C∗

x0
S∗, µ

〉
S .

Since S is assumed smooth and by condition (70), we get

R1 =
〈
C∗

x0
, S∗

〉
S . (73)

(R2) The second right-hand side term The second term in the right-hand side of eq. (71) is,
due to the pseudo-Euclidean version of the Clifford-valued Stokes’ theorem for smooth forms,
[1, p. 52],

R2 ,
〈
c, d

(〈(
C∗

x0
θkd κ

k F ∗)
(y)

, λ (x− y)
〉

S
⊗ ωκ (x)

)〉
dR

=
〈
δc,

〈(
C∗

x0
θkd κ

k F ∗)
(y)

, λ (x− y)
〉

S
⊗ ωκ (x)

〉
dR

. (74)

We now make the following assumptions.
(i) The region c with boundary δc satisfies the conditions of [11, Lemma 4.2].
(ii) The Cauchy kernel C∗

x0
depends smoothly on the coordinate y1 ∈ I normal to δc.

(iii) The choice of our mollifier λ is further restricted so that it satisfies condition [11, Eq.
(4.67)], 〈

fb, λ
(
x1 − b, xδ − yδ

)〉
S, δc

=
〈
f |δc, λ

(
x1 − a, xδ − yδ

)〉
S, δc

, (75)

with f = C∗
x0

θkd κ
k F ∗, f |δc the restriction of f to the boundary δc [12, p. 263], a and b defined

as in [11, Eqs. (4.65) and (4.66)], and yδ coordinates on δc. We do not need to construct such a
mollifier λ, all that is required is that it exists.

Applying [11, Lemma 4.2] to the Schwartz pairing in the right-hand side of (74), we get

R2 =

〈
δc,

〈((
C∗

x0
θkd κ

k F ∗) |δc

)
(z)

, (λ (x− y))I (z)
〉

S, δc
⊗ ωκ (x)

〉

dR
.

Exchanging the order of pairings gives

R2 =
〈((

C∗
x0

θkd κ
k F ∗) |δc

)
(z)

, 〈δc, (λ (x− y))I (z)⊗ ωκ (x)〉dR

〉
S, δc

.

Substitution of the result (83) obtained in the Appendix for the covector η∗I , having as compo-
nents the de Rham pairing in the right-hand side (see (81)), yields

R2 =
〈(

C∗
x0

θkd κ
k F ∗) |δc, nκ

〉
S, δc

,

with n∗κ the κ-component of the (outward to c) unit normal covector n∗ , nκϑ
κ ∈ E∗p,q, defined

on δc. Since F ∗ is smooth and nκ are scalar quantities, this equals

R2 =
〈
C∗

x0
|δc, n

∗ (F ∗|δc)
〉

S, δc
. (76)

This is the boundary term of our solution. It involves the restriction, to the boundary δc, of the
Cauchy kernel C∗

x0
, C∗

x0
|δc, and of the function F ∗, F ∗|δc.

Collecting results (72), (73) and (76), we have obtained the general solution of (16) as

F ∗ (x0) =
〈
C∗

x0
, S∗

〉
S +

〈
C∗

x0
|δc, n

∗ (F ∗|δc)
〉

S, δc
. (77)

In order to evaluate this expression, a precise characterization of the distribution C∗
x0
|δc must be

given. This is currently a subject of further study.
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4 APPENDIX

4.1 Calculation of the quantity η∗I

A. First, define the covector, ∀y ∈ En,

η∗ (y) ,
〈
δc, λ (x− y) ϑβ ⊗ ωβ (x)

〉
dR . (78)

Applying Stokes’ theorem to (78) gives

η∗ (y) =
〈
c, dx

(
λ (x− y) ϑβ ⊗ ωβ (x)

)〉
dR .

After expanding the exterior derivation with respect to x, dx, and using property (61), this
becomes

η∗ (χ) =
〈
c, (εαλ (x− y)) ϑβ ⊗ (ϑα ∧ ωβ (x))

〉
dR ,

or
η∗ (χ) =

〈
c, (εβλ (x− y)) ϑβ ⊗ ωV (x)

〉
dR . (79)

Since the Pfaff derivative εβ with respect to x of λ (x− y) equals minus the Pfaff derivative εβ

with respect to y, we get

η∗ (y) = −〈c, (dyλ (x− y))⊗ ωV (x)〉dR .

Using the continuity of de Rham currents, this becomes

η∗ (y) = −dy 〈c, λ (x− y)⊗ ωV (x)〉dR .

Substituting definition (68), we arrive at

η∗ = −dµ. (80)

B. We now calculate the following covector, with y = (y1 ∈ I, yδ ∈ δc),

η∗I (yδ) ,
〈
δc, (λ (x− y))I (x, yδ) ϑβ ⊗ ωβ (x)

〉
dR . (81)

Using [11, Eq. (4.64)] in (81), we get

η∗I (yδ) =
〈
δc,

〈
I, λ

(
x1 − y1, xδ − yδ

)
ωI

(
y1

)〉
dR ϑβ ⊗ ωβ

(
x1, xδ

)〉
dR

.

Herein is I an interval, non tangential to δc, starting in the region where µ is 0 and ending in
the region where µ is 1. Since λ (x− y) is jointly continuous in x and y, we can exchange the
order of pairings and get

η∗I (yδ) =
〈
I,

〈
δc, λ

(
x1 − y1, xδ − yδ

)
ϑβ ⊗ ωβ

(
x1, xδ

)〉
dR ωI

(
y1

)〉
dR

,

=
〈
I,

〈
δc, λ (x− y) ϑβ ⊗ ωβ (x)

〉
dR ωI

(
y1

)〉
dR

,

or, in terms of definition (78),

η∗I (yδ) =
〈
I, η∗

(
y1, yδ

)
ωI

(
y1

)〉
dR . (82)

Substituting (80) in (82) we finally get

η∗I (yδ) = − 〈
I, (dµ)

(
y1, yδ

)
ωI

(
y1

)〉
dR ,
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or
η∗I (yδ) = n∗ (yδ) , (83)

with n∗ the (outward to c) unit normal covector, defined on δc, due to the chosen normalization
of µ.

Thus, η∗ is the differential of µ and µ is the integral over c of our shifted mollifier λ. If
λ (x− y) is a narrow smooth pulse concentrated at y that integrates to 1, then µ will be equal
to 1 almost everywhere inside c and equal to 0 almost everywhere outside c (since we integrate
over c in the definition of µ). Hence, µ will be a steep smooth function that rises from 0 to 1
across δc. Thus, η∗ = −dµ is a smoothed version of the (outward to c) unit normal covector n∗,
existing in a small neighborhood around the boundary δc. The actual unit normal covector n∗,
defined only on δc, is obtained as η∗I from η∗ under the transformation (82).
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