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Abstract. In the present article we will construct wavelets on an arbitrary dimensional
sphere Sn due the approach of approximate Identities. There are two equivalently approaches
to wavelets. The group theoretical approach formulates a square integrability condition for a
group acting via unitary, irreducible representation on the sphere. The connection to the group
theoretical approach will be sketched. The concept of approximate identities uses the same con-
structions in the background, here we select an appropriate section of dilations and translations
in the group acting on the sphere in two steps. At First we will formulate dilations in terms of
approximate identities and than we call in translations on the sphere as rotations. This leads to
the construction of an orthogonal polynomial system in L2(SO(n+ 1)).
That approach is convenient to construct concrete wavelets, since the appropriate kernels can be
constructed form the heat kernel leading to the approximate Identity of Gauss-Weierstraß. We
will work out conditions to functions forming a family of wavelets, subsequently we formulate
how we can construct zonal wavelets from a approximate Identity and the relation to admissibility
of nonzonal wavelets. Eventually we will give an example of a nonzonal Wavelet on Sn, which
we obtain from the approximate identity of Gauss-Weierstraß.
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1 INTRODUCTION

During the decades the theory of wavelets became more and more important and is increasingly
well investigated. The task of analyzing data, reconstructing functions from measurement data
or to save data in an economical way counts to the daily ones.
Hereby, the occurring functions can be very complicated and contain sometimes errors in the
high frequency part. This is especially the case if the data came from measurements. Wavelets
help us to investigate those functions by splitting it in simpler parts by a wavelet transform.
During the reconstruction of the transformed function we can chose the scale (frequency) and
can cut the error contained in the high frequency parts. Further we can zoom (change the scale)
at arbitrary position, so as well as select the locus of observing a function.
In this setting the concept of dilations and translations in the case of R has shown to be very
useful. The group theoretical approach developed the fact, that dilations, parameterized by a ∈
R+ (f(x) 7→ 1√

a
f
(
x
a

)
) and translations, parameterized by b ∈ R (f(x) 7→ f(x − b)) in R are

nothing but a regular representation of the affine linear group G, also called (ax + b)-group in
Hilbert space L2(R). The admissibility condition of a wavelet is understood to represent the
square integrability of the representation U , i.e.

∫
G
|〈U(f)(g), f〉L2(R)|2 dµ(g) <∞, where dµ

denotes the left Haar measure on G.
In the case of the sphere is investigated by J-P. Antoine, P. Vandergheynst, M. Ferreira and
others. The appropriate group acting on Sn and containing dilations and translations on the
sphere turned out to be the Lorentz group SO(n+1, 1). Translations are represented as rotations
T g ∈ SO(n + 1) and dilations as Lorentz boosts Da ∈ SO(1, 1) (see[1]-[2]). But the set of
possible dilations is larger than just taking the Lorentz boosts. All of them are constructed in [8].
However, the dilations on Sn form a one parameter subgroup of SO(n+ 1, 1)
In these approach the translation operator on the sphere Sn is given by the rotation group SO(n+
1), forming the maximal compact subgroup of SO(n+ 1, 1).
Another approach is based on so-called approximate identities. The basic idea is to consider
a family of bounded operators {Dρ, ρ > 0} in L2(Sn), with a reconstruction property for ρ
tending to 0. It is coming from the related construction of diffusion wavelets. Here, the family
of operators is given as convolution operator with an appropriate kernel. We want to recall that
the heat kernel is forming an approximate identity with the time t as dilation parameter. Simul-
taneously, these operators form a diffusion semigroup and so they are nothing but (continuous)
diffusion wavelets on the sphere.
Due the approach of approximate Identities the dilation operator reduces to the choice of the
parameter value of a family of wavelets.
This second concept was extensively used by Freeden and others (see e.g. [9]) to construct zonal
wavelets, i.e. a type of radial basis functions.
In the preliminaries we will introduce the tools for function spaces on the sphere, will list the or-
thogonal system of spherical harmonics and that Gegenbauer polynomials in L2-space for zonal
functions on the sphere, of special importance are the connections between them. In the section
about approximate identities we call in the reconstruction property of these object and formulate
a equivalent condition to corresponding Gegenbauer coefficients of the approximate Identity.
This will form the basis of reconstructing functions from there wavelet transformed. As example
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we introduce the fundamental solution of the heat equation on the sphere. Since we will construct
also nonzonal wavelets, we need a quasi regular representation of SO(n + 1). The introduction
of an orthogonal systems of polynomials in L2(SO(n+1)) forms the central in that section. The
name Wigner polynomials, comes from the well known case of SO(3). We define a Wavelet by
certain admissibility conditions. The first task is than the formula of Wavelet transformed and the
reconstruction formula. After the proof of them we show the connection to the group theoretical
square integrability condition. Continuing we show the construction of a zonal wavelet from a
approximate identity and the connection to nonzonal wavelets. The construction of a nonzonal
wavelet from a approximate identity with the help of a weight function will be applied to the
heat kernel on S2. In the weight function we have much freedom and can adapted the wavelet to
special requirements.

2 GROUP THEORETICAL BACKGROUND- WAVELETS

Before we start to investigate spherical wavelets with the approach of singular integral operators
as special diffusion operators, we will recall the group theoretical approach to wavelet theory.
During the Paper we will keep the connection to the group theoretical point of view and the
corresponding admissibility condition.

2.1 Group theoretical admissibility

The group theoretical approach is investigated J-P. Antoine and P. Vandergheynst. The wavelet
admissibility conditions are obtained in the following way.
Classically one forms a frame in L2(M) by the collection of all dilated and translated versions of
a mother wavelet. The mother wavelet has to satisfy an admissibility condition, that guarantees
that the operator, which we obtain as wavelet transformation is bounded. Dilations and trans-
lations are modeled as actions of a group G on M or more precise are given ar representation
unitary U of G in L2(M). The representation has to be irreducible, so that we obtain a frame
in the mentioned way. The irreducibility ensures further that the wavelet transform is invertible.
Over and above that the wavelet transform has to be a bounded operator. This is satisfied, if the
representation U is square integrable, i.e. there is an admissible vector. In general there is not a
irreducible, representation does not need to be square integrable. For instance this is the situation
on the sphere. In that case one can choose a subgroupH ⊂ G and restrict toG/H =: X together
with a section σ : X → G. A section is a right inverse of the projection π : G → X given by
π(g) = [g], where [g] denotes the restclass of g ∈ G under factorization with respect to H . The
wavelet frame forming dilations and translations in that case are parameterized by X .
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Definition 2.1 (Group theoretical admissibility condition). Let U be a irreducible, square inte-
grable modulo a subgroup H representation of G in L2(M). A nonzero vector Ψ ∈ L2(M) is
admissible, if it satisfies∫

X

∣∣〈f, U(σ(x))[Ψ]〉L2(M)

∣∣2 dν(x) <∞ ∀f ∈ L2(M) . (2.1)

The Orbit of Ψ under σ, {U(σ(x))ψ|x ∈ X} is called a coherent state.

2.2 SO(n+ 1, 1) acting on Sn

On Sn ⊂ Rn+1 the appropriate group, acting on it is the Spherical conformal group. It can be
identified by the Lorentz group SO(n+ 1, 1) [5].
Easy to see is the identification of Sn with the light cone C in Rn+1,1, where Rn+1,1 denotes
Rn+2 equipped the norm, which is induced from bilinearform of signature (n + 1, 1). The light
cone are all vectors of norm 0 C = {x ∈ Rn+1,1| ‖x‖n+1,1 = 0} and it can be identified with Sn

by

Sn 3 ξ 7→
{(

λ
λξ

)
, λ ∈ R

}
. (2.2)

The action of the lorentz group SO(n+1, 1) on C is obvious and gives the action on Sn, together
with the identification 2.2
The Iwasawa decomposition partitions SO0(n+ 1, 1), the subgroup of SO(n+ 1, 1) which leavs
the future light cone invariant, into

• K ∼ SO(n+ 1) rotations around the xn+2-axis.

• A ∼ SO0(1, 1), the one-dimensional subgroup of Lorentz boosts. (Hyperbolic rotations)

• N ∼ Rn−2,1 the n− 1-dimensional Abelian subgroup.

SO0(n+1, 1)/N = K A =: X is the parameter space of dilations and translations on the sphere.
All possible sections σ : X → SO0(n+ 1, 1) are developed by M. Ferreira in [8].
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We choose σ in that way, that our translations are given as rotations. And Dilations are given as
action of Lorentz boosts. Geometrically these action can be identified with the dilation on the
sphere, which we obtain by stereographic projection of the dilations in the tangent space at the
north pole of Sn [7]. The action of the abelian subgroup can be obtained in the same way by
stereographic projection of the translations in the tangent space.

2.3 Wavelet transformation on the Sphere Sn

In general as well as on the sphere, the wavelets transform is defined as L2-scalar product of the
dilated and translated wavelet and the function f ∈ L2(Sn), which we want to transform.

Definition 2.2. If Ψ is an admissible vector inL2(Sn), the wavelet transformWT (f) : L2(Sn)→
L2(X) is defined by

WT (f)(x) :=

∫
Sn
U(σ(x))[Ψ](ξ) f(ξ) dµ(ξ), ∀f ∈ L2(Sn).

The Reconstruction formula, holds in L2-sense:

f(ξ) :=

∫
X

WT (f)(x) U(σ(x))[Ψ](ξ) dν(σ(x)),

where ν(x) is a quasi invariant measure on G/H [4].

3 PRELIMINARY DEFINITIONS AND THEOREMS

3.1 Diffusion semigroups

During the construction of diffusion wavelets we separate the investigations about dilations and
translations into the action of an diffusion operator and that of a space operator. Naturally trans-
lation on Sn is given by regular representation of SO(n+ 1) in L2(Sn).
Let us introduce the diffusion way of dilations:

Definition 3.1. Let {Dρ, ρ > 0} be a family of operators, mapping L2(M) into itself and form-
ing a semigroup

lim
ρ→0

Dρ = Id (3.1)

Dρ1Dρ1 = Dρ1+ρ2 (3.2)
‖Dρ‖Lp ≤ C, independent of ρ (3.3)

Further positivity Dρf ≥ 0 for all f ≥ 0 in L2(Sn) is required. Then {Dρ, ρ > 0} is called
diffusion semigroup.

The dilation operator is given as action of a diffusion semigroup. The concept is introduced for
discrete wavelets by R. Coifman in [6]
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3.2 Functions on Sn

For integrations on Sn we use polar coordinates, where the euler angles (θ1, . . . , θn) satisfy
θ1 ∈ [0, 2π), θi ∈ [0, π], i = 2, . . . , n and the usual rotation invariant measure. The measure of
the surface of Sn is given by

Ωn =

∫
Sn

1 dµ(ξ) =
2πλ+1

Γ(λ+ 1)
, λ :=

n− 1

2
. (3.4)

In L2(Sn) we have the orthonaormal system {Y i
k , i = 1, . . . , dk(n)}, of spherical harmonics.

Hereby, one has

dk(n) = (2k + n− 1)
(k + n− 2)!

k!(n− 1)!

linearly independent spherical harmonics of degree k. For f ∈ L2(Sn) we have the series expan-
sion

f(ξ) =
∞∑
k=0

dk(n)∑
i=1

f̂(k, i)Y i
k (ξ),

the Fourier coefficients given by f̂(k, i) =
∫
Sn
f(ξ)Y i

k (ξ) dµ(ξ).
Of particular importance is the notion of a zonal function.

Definition 3.2. A function f ∈ Lp(Sn) is called to be zonal with respect to ξ ∈ Sn if η · ξ = ζ · ξ
implies f(η) = f(ζ).

Zonal functions depends only on the angle between the argument η and the point to which they
are zonal. In other words, they are constant on the intersection of the sphere with a hyperplane,
which is orthogonal to the one dimensional subspace in Rn+1 containing ξ. These sections are
spheres of dimension n − 1 with radius sin(arccos ξ · η) = sin θ, so they have a measure of
Ωn−1 (sin θ)2λ, where θ denotes the angle between ξ and η. Therefore, a function f ∈ Lp(Sn)
being zonal with respect to ξ has Lp-norm

‖f‖pLp(Sn) = Ωn−1

∫ π

0

|f(θ)|p (sin θ)2λ dθ,

where f(θ) := f(η) with η · ξ = cos θ. Without loss of generality, if nothing else is said, we will
consider zonal functions to be zonal with respect to the north pole N .

Definition 3.3. The space of p-integrable zonal functions on Sn is denoted by Lpλ. We say f ∈ Lpλ
if the following norm is finite:

‖f‖p,λ :=

(
Ωn−1

Ωn

∫ π

0

|f(θ)|p (sin θ)2λ dθ

) 1
p
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In L2([0, π], sin2λ dθ) we have the orthogonal system of Gegenbauer polynomials of order λ.
This provides us with a useful connection between L2([0, π]) and L2

λ, since the norms with re-
spect to the measures sin2λ dθ and dθ are equivalent. It is quit natural, that the weight function
is the relation between the radius of a sphere and the surface of a sphere in Rn.
In [3] one finds many useful tools about functions on Sn. We will just mention a few which will
be used later on.

Theorem 3.4 (Addition theorem).

Cλ
k (ξ · η) =

2πλ+1

(k + λ)Γ(λ)

dk∑
i=1

Y i
k (ξ)Y i

k (η) = Ωn
λ

(k + λ)

dk∑
i=1

Y i
k (ξ)Y i

k (η); ξ, η ∈ Sn, (3.5)

where Cλ
k denotes the Gegenbauer polynomial of degree k and order λ.

In [10] we find the normalization∫ π

0

Cλ
l (cos θ)Cλ

k (cos θ) (sin θ)2λ dθ =
π21−2λΓ(k + 2λ)

k!(λ+ k) (Γ(λ))2 δk,l, (3.6)

where δk,l denotes the Kroneka symbol.

Theorem 3.5 (Funk- Hecke formula). For a zonal function f ∈ L1
λ(S

n) it holds∫
Sn
f(ξ · η)Y i

k (η) dµ(η) = Y i
k (ξ)

(4π)λΓ(λ)Γ(k + 1)

Γ(k + 2λ)

∫ π

0

f(θ)Cλ
k (cos θ)(sin θ)2λ dθ. (3.7)

Using the theorem above, for Gegenbauer polynomials we have∫
Sn
f(ξ · η)Cλ

k (ζ · η) dµ(η) = Cλ
k (ζ · ξ)(4π)λΓ(λ)Γ(k + 1)

Γ(k + 2λ)

∫ π

0

f(θ)Cλ
k (cos θ)(sin θ)2λ dθ

(3.8)

With these two theorems we find immediately

Proposition 3.6. A zonal function f ∈ L2
λ(S

n) can be expanded in a series of Gegenbauer
polynomials

f(η) =
∞∑
K=0

dk∑
i=1

f̂(k, i)Y i
k (η) =

∞∑
k=0

f̃(k)Cλ
k (ξ · η),

where we denote by f̃(k) the Gegenbauer coefficient of degree k.

f̃(k) =
Ωn−1

Ωn

∫ π

0

f(θ)Cλ
k (cos θ)(sin θ)2λ dθ. (3.9)
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3.3 Approximate identities

In this section we take a closer look into approximate identities on function spaces over the
sphere. Hereby, we will make use of the fact, that convolution with a bounded L1

λ-function forms
a continuous, linear and bounded operator from Lp onto itself. This is easily seen by Young’s
inequality

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q,λ
(

1

r
=

1

p
+

1

q
− 1 ≥ 0

)
, (3.10)

using r = p.

Definition 3.7. For a family {Kρ, ρ > 0} ⊂ L1
λ(S

n) of integrable, zonal functions, with

‖Kρ ∗ f‖L2(Sn) ≤ M‖f‖L2(Sn) (3.11)
lim
ρ→0
‖Kρ ∗ f − f‖L2(Sn) = 0 (3.12)

the family of convolution operators {Kρ∗, ρ > 0} forms an approximate identity with kernel
{Kρ, ρ > 0}.

Theorem 3.8. If (3.11) is satisfied, the condition (3.12) is equivalent too

lim
ρ→0

K̃ρ(k) =
k + λ

λ
, ∀ k ∈ N (3.13)

Proof. Due to density argument it is enough to show the reconstruction property for the system
of spherical harmonics. Applying (3.7) and (3.9) one finds

(Φρ ∗ Y i
k )(ξ) =

1

Ωn

∫
Sn

Φρ(ξ · η)Y i
k (η) dµ(η) = Y i

k (ξ)
λ

k + λ
Φ̃ρ(k) ,

where the assertion now follows from ρ→ 0.

For us the most important example of an approximate identity is given as fundamental solution
of spherical heat equation (∆∗−∂t)u = 0 (where ∆∗ denotes the Laplace-Beltrami operator) the
spherical heat kernel (Gauss-Weierstrass kernel)

eheat(ξ, ρ) =
∞∑
k=0

e−k(k+2)ρk + λ

λ
Cλ
k (η · ξ),

which is zonal with respect to η.
Additionally it forms a diffusion semigroup, that is why we are calling the corresponding wavelets-
diffusion wavelets.
Variation of the Parameter ρ corresponds to the action of a dilation.
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4 WIGNER POLYNOMIALS ON SO(N + 1)

For zonal wavelets translations on the sphere are parameterised by Sn: This comes from the fact,
that zonal functions are invariant under some rotations in SO(n+ 1). Let f be a function, zonal
with respect to η ∈ Sn. For g ∈ SO(n+ 1), the regular representation T of SO(n+ 1) will map
it onto a function, zonal with respect to g−1(η). For all rotations g′ ∈ SO(n+ 1) with g′−1(η) =
g−1(η) this will give the same result. All these g′ form a so called great circle in SO(n + 1),
that is a subgroup, isomorphic to SO(n). We can factorize out all these g′ ∈ SO(n+ 1), which
leaves a zonal function invariant. SO(n+ 1)/SO(n) ' Sn.
If we are dealing with nonzonal wavelets we have to take into account the whole SO(n+ 1).

Definition 4.1. The Wigner polynomials {T ijk , i, j = 1, . . . , dk(n)} on SO(n + 1) are given by
the regular representation SO(n+ 1) in L2(Sn):

Y i
k (g−1(ξ)) =

dk(n)∑
j=1

T ijk (g)Y j
k (ξ). (4.1)

Remark 4.2. Invariant subspaces: Harmk := span{Y i
k , i = . . . , dk(n)}

Matrix
(
T ijk
)dk(n)

i,j=1
maps orthogonal systems to orthogonal ones, hence it is unitary and T ijk are

well defined and unique. Moreover, this implies

dk(n)∑
j=1

T ijk (g)T jlk (g) = δil (4.2)

for all g ∈ SO(n+ 1).
On SO(n+ 1) we use dν(g), the normalized Haar measure. In a first step we verify, that T ijk are
indeed polynomials.

Lemma 4.3. For all i, j = 1, . . . , dk(n), we have that T ijk is a polynomial of degree k.

Proof. Since we know that the rotation invariant measure on Sn and the Haar measure on SO(n+
1) coincides [12] we have

∂k+1
g Y i

k (g−1(ξ)) = 0.

By property (4.1) we have

∂k+1
g Y i

k (g−1(ξ)) =

dk(n)∑
j=1

(
∂k+1
g T ijk

)
(g)Y j

k (ξ).

Using the linear independence of Y j
k we get

∂k+1
g T ijk = 0, (4.3)

i.e. T ijk is a polynomial of degree k.
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Lemma 4.4 (Orthogonality). Wigner polynomials {T ijk , i, j = 1, . . . , dk(n), k ∈ Z} are orthog-
onal in L2(SO(n+ 1)).

To verify the orthogonality we recall the orthogonality relation for locally compact group (see [11]).
In terms of our group at hand, SO(n+ 1), we get the following theorem.

Theorem 4.5. The regular representation T (g) : f(ξ) 7→ f(g−1(ξ)) of the locally compact
group SO(n + 1) in Harmk is irreducible and square integrable. Therefore, there exists a self
adjoint operator C over the set of all admissible vectors in Harmk, such that for admissible
vectors v1, v2 ∈ Harmk and arbitrary u1, u2 ∈ Harmk it holds:∫

SO(n+1)

〈U(g)v1, u1〉L2(Sn)〈U(g)v1, u1〉L2(Sn) dν(g) = 〈Cv1, Cv2〉L2(Sn)〈u1, u2〉L2(Sn).

Because SO(n+ 1) is unimodular, C is the identity up to a constant, i.e. C = c ∗ Id, c ∈ R.

Since SO(n+1) is not only locally compact but compact, every f ∈ Harmk is square integrable
with respect to representation T , i.e.

∫
SO(n+1)

‖T (g)f‖L2(Sn) dν(g) < ∞. Let us choose v1 =

Y i
k , v2 = Y j

k , u1 = Y r
k , u2 = Y s

k . Our orthogonality relation leads to∫
SO(n+1)

〈T (g)Y i
k , Y

r
k 〉L2(Sn)〈T (g)Y j

k , Y
s
k 〉L2(Sn) dν(g) =

∫
SO(n+1)

T irk (g)T jsk (g) dν(g)

=c〈Y i
k , Y

j
k 〉L2(Sn)〈Y r

k , Y
s
k 〉L2(Sn) = cδij δrs with c ∈ R.

This implies∫
SO(n+1)

(
T ijk (g)

)2
dν(g) =

∫
SO(n+1)

(T rsk (g))2 dν(g), ∀1 ≤ i, j, r, s ≤ dk(n)

From (4.2) we know that
∑dk(n)

i=1

∫
SO(n+1)

(
T ijk (g)

)2
dν(g) = 1, and, hence,

‖T ijk ‖L2(SO(n+1)) =
1

dk(n)
. (4.4)

To obtain the orthogonality with respect to k, we extend the space of rotation representing matri-
ces g ∈ SO(n+ 1) to those of the form {λg, g ∈ SO(n+ 1), λ ∈ R+}. From the homogeneity
of degree k of Y i

k (x) and the definition of our Wigner functions (4.1) we deduce the homogeneity
with respect to g of T ijk

T ijk (λ g) =

(
1

λ

)k
T ijk (g).

So T ijk and T ijk (for k 6= l) are homogeneous of different degrees and hence orthogonal.
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Theorem 4.6. T ijk are polynomials of degree k. They are orthogonal in i, j, k and homogeneous
of degree −k. The norm is

‖T ijk ‖L2(SO(n+1)) =
1

dk(n)
,

where dk(n) is the number of spherical harmonics of degree k on Sn.

For the applications in the next section we have to introduce the notion of the zonal product.

Definition 4.7. For f, h ∈ L2(Sn) the zonal product is defined by

(f ∗̂g)(ξ · η) =

∫
SO(n+1)

f(g−1(ξ))h(g−1(η)) dν(g), ξ, η ∈ Sn . (4.5)

Corollary 4.8. Zonal product gives a zonal function on Sn for arbitrary f, h ∈ L2(Sn). This can
be seen by the characterization in terms of spherical harmonics and Gegenbauer polynomials

(f ∗̂h)(ξ · η) =
∞∑
k=0

dk(n)∑
i=1

∞∑
l=0

dl(n)∑
j

f̂(k, i)ĥ(l, j)

∫
SO(n+1)

Y i
k (g−1(ξ))Y j

l (g−1(η)) dν(g)

=
∞∑
k=0

dk(n)∑
i=1

∞∑
l=0

dl(n)∑
j=1

f̂(k, i)ĥ(l, j)

dk(n)∑
i′=1

dl(n)∑
j′=1

Y i′

l (ξ)Y j′

l (η)

∫
SO(n+1)

T ii
′

k (g) T jj
′

l (g) dν(g)

=
∞∑
k=0

dk(n)∑
i=1

f̂(k, i)ĥ(k, i)
1

dk(n)

dk(n)∑
i′=1

Y i′

k (ξ)Y i′

k (η)

=
∞∑
k=0

dk(n)∑
i=1

f̂(k, i)ĥ(k, i)
1

dk(n)Ωn

k + λ

λ
Cλ
k (ξ · η) . (4.6)

Notation: T (g)f(ξ) = f(g−1(ξ)) =: fg(ξ).

5 WAVELETS ON SN

5.1 General wavelets conditions

In this section we use the previous introduced tools to formulate the wavelet conditions in the
general case, that holds for nonzonal wavelet too. As well the simplification for zonal wavelets
well be given. Furthermore we give the connection between the group theoretical approach and
that one we used.

Definition 5.1. Let α(ρ) be a positive weight function. A family {Ψρ, ρ > 0} ⊂ L2(Sn) of
functions

Ψρ =
∞∑
k=0

dk(n)∑
i=1

Ψ̂ρ(k, i)Y
i
k ∈ L2(Sn),

11



satisfying the admissibility conditions
dk∑
i=1

∫ ∞
0

Ψ̂ρ(k, i)
2α(ρ) dρ = Ωn dk(n) (5.1)∫

Sn

∣∣∣∣∫ ∞
R

(Ψρ∗̂Ψρ) (ξ · η)α(ρ) dρ

∣∣∣∣ dµ(η) ≤M ∀ ξ ∈ Sn (5.2)

(M independent of R), forms a family of bilinear wavelets.

Definition 5.2. The corresponding Wavelet transform (WT )(f) : L2(Sn)→ L2(R×SO(n+1))
is defined by

(WT )(f)(ρ, g) :=
1

Ωn

∫
Sn

Ψρ(g
−1(η))f(η) dµ(η), f ∈ L2(Sn) (5.3)

Theorem 5.3. The following reconstruction formula holds in L2-sense:

f(ξ) =

∫
SO(n+1)

∫ ∞
0

(WT )(f)(ρ, g)Ψρ,g(ξ)α(ρ) dρ dν(g) (5.4)

Proof.

lim
R→0

∫
SO(n+1)

∫ ∞
R

Ψρ,g(ξ)WT (f)(ρ, g)α(ρ) dρ dν(g)

=
1

Ωn

lim
R→0

∫
SO(n+1)

∫ ∞
R

Ψρ,g(ξ)

∫
Sn

Ψρ,g(η)f(η) dµ(η)α(ρ) dρ dν(g)

=
1

Ωn

lim
R→0

∫
Sn

∫ ∞
R

∫
SO(n+1)

Ψρ(g
−1(ξ))Ψρ(g

−1(η)) dν(g)︸ ︷︷ ︸
=(Ψρ∗̂Ψρ)(ξ·η)

α(ρ) dρf(η) dµ(η)

We call in the result (4.6) of calculation of (Ψρ∗̂Ψρ)(ξ · η) and obtain

= lim
R→0

1

Ωn

∫
Sn

∞∑
k=0

k + λ

λ

1

Ωn dk(n)

dk∑
i=1

∫ ∞
R

(
Ψ̂ρ(k, i)

)2

α(ρ) dρCλ
k (ξ · η)︸ ︷︷ ︸

:=Ξρ(ξ·η)

f(η) dµ(η)

We have to identify {Ξρ, ρ > 0} as approximate identity. With ΞR(ξ · η) =
∫∞
R

(Ψρ∗̂Ψρ)(ξ ·
η)α(ρ) dρ from admissibility condition(5.2) we can deduce, that {Ξρ, ρ > 0} is uniformly
bounded in L1

λ(S
n). Admissibility condition (5.1) is ensured by

lim
R→0

Ξ̃R(k) =
k + λ

λ

1

Ωn dk(n)

dk∑
i=1

∫ ∞
R

(
Ψ̂ρ(k, i)

)2

α(ρ) dρ

=
k + λ

λ

12



5.2 Zonal wavelets

A Zonal function can be expanded in a Fourier series as well as in a Gegenbauer Series. Between
Frourier and Gegenbauer coefficients of a zonal function Φρ we have the relation

Φ̂ρ(k, i) = ΩnΦ̃ρ(k)
λ

k + λ
Y i
k (η). (5.5)

Applying that to the admissibility conditions in Definition 5.1, we obtain the following

Remark 5.4. Let α(ρ) be a positive weight function. A family {Φρ, ρ > 0} ⊂ L2
1(Sn) of zonal

functions Φρ =
∑∞

k=0 Φ̃ρ(k)Cλ
k , satisfying the admissibility conditions∫ ∞

0

Φ̃2
ρ(k)α(ρ) dρ =

(
k + λ

λ

)2

(5.6)∫
Sn

∣∣∣∣∫ ∞
R

(Φρ ∗ Φρ) (ξ · η)α(ρ) dρ

∣∣∣∣ dµ(η) ≤M ∀ ξ, η ∈ Sn (5.7)

(M independent of R), forms a family of zonal Wavelets.

Similar to the nonzonal case the corresponding Wavelet transform (WT )(f) : L2(Sn)→ L2(R×
Sn) is defined by

(WT )(f)(ρ, ξ) :=
1

Ωn

∫
Sn

Φρ(ξ · η))f(η) dµ(η), f ∈ L2(Sn), (5.8)

and is further invertible on its range:

f =
1

2π2

∫
Sn

∫ ∞
0

(WT )(f)(ρ, η)Ψρ,η(·)α(ρ) dρ dµ(η), ∀f ∈ L2(Sn).

5.3 Relation to group theoretical admissibility

As wavelet forming actions on Sn we have translations γ ∈ SO(n+ 1) and dilations, parameter-
ized by R+. The representation of the corresponding section over SO(n+ 1),R+ is:

U(σ(ρ, γ))[Ψ1](ξ) = (T (γ) ◦D(ρ))[Ψ1](ξ)

D(ρ)[Ψ1](ξ) = Ψρ(ξ)

T (γ)[Ψρ](ξ) = Ψρ,γ(ξ) = Ψρ(γ
−1(ξ)).

13



Assuming, that our admissibility conditions (5.1) and (5.2) are satisfied, in terms of square
integrability condition we write∫

X

∣∣〈f, U(σ(x))[Ψ1]〉L2(Sn)

∣∣2 dν(x)

=

∫
SO(n+1)

∞∫
0

∣∣〈f, Ψρ,g〉L2(Sn)

∣∣2 α(ρ) dρ dν(g)

=

∫
SO(n+1)

∞∫
0

∣∣∣∣∣∣
∞∑
k=0

dk(n)∑
i=1

f̂(k, i)

dk(n)∑
j=1

T jik (g)Ψ̂ρ(k, j)

∣∣∣∣∣∣
2

α(ρ) dρ dν(g)

=
∞∑
k=0

dk(n)∑
i=1

|f̂(k, i)|2
dk(n)∑
j=1

∞∫
0

Ψ̂2
ρ(k, j)α(ρ) dρ

∫
SO(n+1)

T jik (g)T jik (g) dν(g)

= Ωn

∞∑
k=m+1

dk(n)∑
i=1

|f̂(k, i)|2 = Ωn ‖f‖L2(Sn) <∞, ∀f ∈ L2(Sn).

6 CONSTRUCTION OF WAVELETS

6.1 Construction of zonal wavelets

Theorem 6.1. We suppose {Φρ, ρ > 0} to be a non negative kernel of an approximate identity.
Further the Gegenbauer coefficients Φ̃ρ shall be differentiable with respect to ρ and lim

ρ→∞
Φ̃ρ(k) =

0, for all k ≥ 1. The corresponding wavelet is defined due its Gegenbauer coefficients, which
are given by

Ψ̃ρ(k) =

(
−α(ρ)−1 d

dρ
Φ̃2
ρ(k)

) 1
2

, ∀ ρ ∈ (0, ∞) and k = 0, 1, ...

By the previous assumptions the Gegenbauer-coefficients are well-defined and non-negative.

The wavelet admissibility condition (5.6) is satisfied, since

lim
R→0

∫ ∞
R

−α(ρ)−1 d

dρ
Φ̃2
ρ(k)α(ρ) d(ρ) = lim

R→0
Φ̃2
R(k) =

(
k + λ

λ

)2

. (6.1)

As well the second condition (5.7) is satisfied: Expanding Ψρ in Gegenbauer series and applying
the orthogonality (3.6) of Gegenbauer polynomials under consideration of Fuck-Hecke theorem
we calculate ∫ ∞

R

(Ψρ ∗Ψρ)(η · ξ) dρ =
∞∑
k=0

Φ̃2
ρ(k)

λ

k + λ
Cλ
k (η · ξ).

14



Utilizing again Fuck-Hecke theorem and (3.6) we deduce that this is equal to

(ΦR ∗ ΦR)(ξ · η).

Because {Φρ, ρ > 0} as approximate identity is uniformly bounded in L1(Sn), by Young’s
inequality (3.10) we find∫

Sn
|(ΦR ∗ ΦR)(ξ · η)| dµ(η) ≤ ‖ΦR‖L1‖ΦR‖L1

1
< T ′, independent of R.

In the case of S3 the reader finds detailed calculations in [7], for Sn under consideration of (3.6)
the calculation are similar.
For our example of the heat kernel on Sn we obtain the following Gegenbauer coefficients for
the corresponding zonal wavelet:

Ψ̃ρ(k) =
√
α(ρ)−1 2 (k + n− 1)

2k + n− 1

n− 1
e−k(k+n−1)ρ.

The following animation shows the wavelet corresponding to the approximate identity of Gauss-
Weierstrßfor growing values of ρ. We can observe the localization property for ρ tending to 0.

6.2 Construction of nonzonal wavelets

A fundamental fact, that we utilize is(5.5). There occurs Y i
k (η) asweight to distribute the Gegen-

bauer coefficient of the zonalfunction to dk(n) Fourier coefficients of the same degree. Fornon-
zonal functions the weights can be changed.

Definition 6.2. Let wk be a vector in Rdk(n) with componentswk(i). wk is called to be an admis-
sible weight vector, if it satisfies

dk(n)∑
k=i

(wk(i))
2 =

dk(n)

Ωn

. (6.2)

15



We will see, that the concept of admissible weight vectors allows usto construct nonzonal wavelets
with a construction, adapted from thezonal case.

Theorem 6.3. Let {wk, k ∈ N} be a family of admissible weightvectors. Assuming an approx-
imate identity {Φρ, ρ > 0},satisfying the assumption of Theorem 6.1, the Fourier expansion of
anonzonal Wavelet Ψρ on Sn corresponding to thatapproximate identity has the form

Ψρ(η) =
∞∑
k=0

dk(n)∑
i=1

(
−α(ρ)−1 d

dρ
Φ̃2
ρ(k)

) 1
2 Ωn λ

k + λ
wk(i) Y

i
k (η). (6.3)

The zonal case is included as special case, wherewk(i) = Y i
k (η) for an η ∈ Sn.

Let us briefly verify, that the wavelet admissibilityconditions are satisfied. (5.1) weobtain by

straight calculation

lim
R→0

dk(n)∑
i=1

∫ ∞
R

− d

dρ
Φ̃2
ρ(k) dρ

(
Ωnλ

k + λ
wk(i)

)2

= lim
R→0

Φ̃2
ρ(k)

(
λ

k + λ

)2

Ωndk(n)

which is equal to Ωndk(n) because {Φρ, ρ}is the kernel of an approximate identity.The second
admissibility condition(5.2) follows like in the zonalcase, from the fact that

∫ ∞
R

(Ψρ∗̂Ψρ) (ξ · η)α(ρ) dρ =
∞∑
k=0

dk(n)∑
i=1

∫ ∞
R

− d

dρ
Φ̃2
ρ(k) dρ wk(i)

2 Ωn

dk(n)

λ

k + λ
Cλ
k (ξ · η)

=
∞∑
k=0

Φ̃2
R(k)

λ

k + λ
Cλ
k (ξ · η).

The simplest choice of wk(i) is the constant one, given bywk(i) = 1√
Ωn

. If we choose it in that
way, forthe example on S2 with α(ρ) = 1ρ3 we obtainthe following fourier expansion of the
wavelet corresponding to theWeierstraß kernel:

Ψρ(η) =
∞∑
k=0

2k+1∑
i=1

√
2k(k + 1)ρ32

√
πe−k(k+1)ρY i

k (η). (6.4)

In the following figures you find this wavelet visualized fordifferent values of for ρ.

ρ = 1 ρ = 0.7 ρ = 0.5 ρ = 0.3
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7 OUTLOOK

The concept of construction of diffusion wavelets from theheat kernel is a very powerful one. It
can be applied to manyother manifolds. For example to the torusLet us recall that the fundamen-
tal solution to the diffusionequation of the full space Rn ×R+ has the form

eHheat(x; t) =
H(t)

(2
√
πt)n

e−
‖x‖22
4t

where H(·) stands for the usual Heavy-side function.Let 1 ≤ k ≤ n. Let ω1, . . . , ωk be kR-
linearly independent vectors. The associated generatedk-dimensional lattice inRn then is the set
of points

Ωk = Zω1 + · · ·+ Zωk.

Theorem 7.1. The series

℘Hheat;k(x; t) :=
∑
ω∈Ωk

eHheat(x + ω; t) (7.1)

is normally convergent and represents a non-vanishing k-foldperiodic function in Rn ×R+ sat-
isfying in each point ofRn ×R+ the diffusion equation (∆x − ∂t)℘0,··· ,0(x; t) = 0.

This is the starting point to construct diffusionwavelets on conformally flat torus and cylinders
in athe same way we have done on Sn.
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