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Abstract. This paper describes the application of interval calculus to calculation of plate 
deflection, taking in account inevitable and acceptable tolerance of input data (input 
parameters). The simply supported reinforced concrete plate was taken as an example. The 
plate was loaded by uniformly distributed loads. Several parameters that influence the plate 
deflection are given as certain closed intervals. Accordingly, the results are obtained as  
intervals, so that it was possible to follow the direct influence of a change of one or more input  
parameters on output (in our example, deflection) values by using one model and one 
computing procedure.   

The described procedure could be applied to any FEM calculation in order to keep 
calculation tolerances, ISO-tolerances, and production tolerances in closed limits (acceptable 
limits).  The Wolfram Mathematica has been used as tool for interval calculation.   
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1    INTRODUCTION 

 While designing and calculating the structure elements, different parametres influence 
the final choice of systems, materials, and dimensions of a main structure. Optimal and rational 
solution is often the result of numerous iterations. When solving such a complex problem it is 
advisable to have a good review of input parametres’ influence on a final solution.  

 The work shows the problem of computing reinforced concrete simply supported square 
plate that is subjected to a load per unit area. There are parametres which directly influence the 
final values of plate deflection and the relationship between maximum and boundary deflection 
will depend on these parametres. By giving some input data in a form of closed interval      
[xmin, xmax], we get the results in the same form, so it is possible to make certain conclusions 
connected to final adoption of this structure element.  

 We used the estimation of deflection by solving Poisson’s partial differential equation 
(PDE) for the calculation of the model. The interval calculus is implemented through certain 
numerical examples.   

2    PROBLEM DEFINITION 

The simply supported square plate of side l, that is subjected to a load q per unit area, is 
given, as shown in Figure 1 (see ref. [1]). 

 
Figure 1. Simply supported square plate 

The deflection w in the z-direction is the solution of the biharmonic equation 
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The boundary conditions along its four edges are: 

 0/w,0w 22 =η∂∂= ,    (2) 
where η  denotes the normal to the boundary. 
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 The flexural rigidity of the plate is given by: 
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E  – Young’s modulus, 
t   – plate thickness, 
σ  – Poisson’s ratio, 
φ(t,to)  – creep coefficient, defining creep between times t and to,  

related to elastic deformation in 28 days. 

3    METHOD OF SOLUTION AND NOTATIONS 

By introducing the variable wu 2∇= , the problem amounts to solving Poisson’s equation 
twice in succession: 

 
d
qu2 =∇ ,  with u=0  along the four edges,    (4) 

 uw2 =∇ ,  with w=0  along the four edges.    (5) 

For this purpose we will use the programme, named Poisson, that uses Gauss-Seidel method 
to approximate the solution of Poisson’s equation (non-homogeneous Laplace’s equation): 
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The finite-difference approximation of equation (6) is: 

 
( ) ( ) j,i2

1j,ij,i1j,i
2

j,1ij,ij,1i

y

2

x

2
ψ=

Δ

φ+φ−φ
+

Δ

φ+φ−φ +−+− .    (7) 

Thus, for yx Δ=Δ , the Gauss-Seidel method is realised by repeated application of 
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at every interior grid point.  
  

The program is written for itmax applicatoins of (8) through all interior grid points (see ref. 
[1], [2]). 
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Notations, used to assigned program writing, are shown at Table 1. 

Program 
symbol Definition Unit of 

measurement 

d Flexural rigidity,  d kNm 

e Young’s modulus,  E kN/m2 

fi 
Creep coefficient, defining creep between 
times t and to, related to elastic deformation 
in 28 days,  φ(t,to) 

  

i, j Grid-point subscripts,  i, j  

itmax Number of Gauss-Seidel iterations,  itmax  

l Lenght of side of square,  l m 

n Number of grid spacings along a side of the 
plate,  n  

q Load per unit area of the plate,  q kN/m2 

qoverd Matrix with values   qoverd=q/d,   
at each grid point  

sigma Poisson’s ratio,  σ   

t Plate thickness,  t m 

u Matrix of intermediate variable   wu 2∇= , 
at each grid point 

 

w Matrix of downwards deflection   w,   
at each grid point  

iter Iteration counter,  it   

phi, psi 
Matrices of functions φ  and ψ , 

occurring in Poisson’s equation  ψ=φ∇2  
  

 Table 1. Wolfram Mathematica® -  List of principal variables 
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4    ESTIMATION OF SQUARE PLATE DEFLECTION 

4.1    Numerical example 1 

Number of grid spacings along a side of the plate (n) was taken in order to have a better 
review of final results. Maximum number of iteration (itmax) was chosen because for itmax≥25 
we get identical deflection values at certain grid points.  

 
Figure 2. Calculation model of simply supported square plate 

 Input data: 

n=4  - number of grid spacings along a side of the plate 
itmax=25  - number of Gauss-Seidel iterations 
q=10.00 kN/m2  - load per unit area 
t=0.20 m  - plate thickness 
l=6.00 m  - lenght of side of square 
σ=0.20  - Poisson’s ratio 
E=3.15×107 kN/m2  - Young’s modulus (taken for MB30) 
φ(t,to) =0 - creep coefficient, defining creep between times t and to,  

 related to elastic deformation in 28 days  
 (φ(t,to) =0  as elastic deformation) 

 Main program (Wolfram Mathematica®, see ref. [3]): 
Clear all 
Clear[n, u,w,qoverd,itmax] 
(* Procedure Poisson *) 
 
(* Number of grid spacings along a side of the plate *) 
  n=4 
(* Maximal number of iterations *) 
  itmax= 25 
(* Load per unit area of the plate *) 
  q = 10. 
(* Plate thickness *) 
  t=0.2 
(* Poisson’s ratio *) 
 sigma=0.2 
(* Length of side of square *) 
 l=6.0  
(* Young’s modulus *) 
 e=31500000. 
(* creep coefficient *) 
 fi=0. 
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  d=e  t^3/12/(1-sigma^2)/(1+fi); 
  rhs=q/d; 
Print["rhs=", rhs] 
np1=n+1 
w=Table[0.,{np1},{np1}] 
u=Table[0.,{np1},{np1}] 
qoverd=Table[rhs,{np1},{np1}] 
 
 Do[w[[i,j]]= 0. ; u[[i,j]]= 0. ; qoverd[[i,j]]= rhs,{i,1,np1},{j,1,np1}]; 
Print["Matrices w, u, qoverd"] 
                      MatrixForm[w] 
                      MatrixForm[u]    
                      MatrixForm[qoverd] 
(* Solving delsq(u) = q/d *) 
phi=u; 
psi=qoverd; 
Do[ 
  Do[     phi[[i,j]] =(phi[[i-1,j]]  +  phi[[i +1,j]] + 
       phi[[i,j-1]]  + phi[[i,j+1]] - (l/n)^2   psi[[i,j]] )/4 ,{i,2,n}, {j,2,n}],{iter, 1, itmax}];  
u=phi; 
qoverd=psi; 
 
(* Solving delsq(w) = u *) 
phi=w; 
psi=u; 
Do[ 
  Do[     phi[[i,j]] =(phi[[i-1,j]]  +  phi[[i +1,j]] + 
       phi[[i,j-1]]  + phi[[i,j+1]] - (l/n)^2   psi[[i,j]] )/4 ,{i,2,n}, {j,2,n}],{iter, 1, itmax}];  
u=psi; 
w=phi; 
 
Print["Matrices u  i  w = plate deflection "] 
                         MatrixForm[w] 
                         MatrixForm[u]    

 A part of computer output: 
Matrices u  i  w = plate deflection 
 
{0., 0.,         0.,         0.,         0.}, 
{0., 0.00126562, 0.00173571, 0.00126562, 0.}, 
{0., 0.00173571, 0.00238661, 0.00173571, 0.}, 
{0., 0.00126562, 0.00173571, 0.00126562, 0.}, 
{0., 0.,         0.,         0.,         0.} 

 
Figure 3. Diagram of maximal plate deflection (Numerical example 1) 
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4.2    Discussion of results 

The result in the matrix form even visually shows the expected symmetry of deflection grid 
points of a reinforced concrete plate model. The boundary conditions were despected and by 
comparing results with results of some standard softvere packages, we concluded the 
coincidence of numerical values of deflection (w) in certain grid points. On the other hand, the 
accuracy of results depends on the number of grid spacings along a side of the plate (n) and 
number of iteration  (itmax) applied to this model. 

5    THE APPLICATION OF INTERVAL CALCULUS TO ESTIMATION OF PLATE 
DEFLECTION 

5.1    Numerical example 2 

Calculation model was taken over from a Numerical example 1. One input data (creep 
coefficient) was given as a certain interval.  

 
Figure 4. Calculation model of simply supported square plate 

 Input data: 

n=4  - number of grid spacings along a side of the plate 
itmax=25  - number of Gauss-Seidel iterations 
q=10.00 kN/m2  - load per unit area 
t=0.20 m  - plate thickness 
l=6.00 m  - lenght of side of square 
σ=0.20  - Poisson’s ratio 
E=3.15×107 kN/m2  - Young’s modulus (taken for MB30) 
φ(t,to) =1.248÷2.158 - creep coefficient, defining creep between times t (given at 
 intervals: 90 days until 3 years under the load) and to,  

 related to elastic deformation in 28 days 
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 Main program (Wolfram Mathematica®): 
Clear all 
Clear[n, u,w,qoverd,itmax] 
(* Procedure Poisson *) 
 
(* Number of grid spacings along a side of the plate *) 
  n=4 
(* Maximal number of iterations *) 
  itmax= 25 
(* Load per unit area of the plate *) 
  q = 10. 
(* Plate thickness *) 
  t=0.2 
(* Poisson’s ratio *) 
 sigma=0.2 
(* Length of side of square *) 
 l=6.0  
(* Young’s modulus *) 
 e=31500000. 
(* creep coefficient *) 
   fi= Interval[{1.248,2.158}] 

  d=e  t^3/12/(1-sigma^2)/(1+fi); 
  rhs=q/d; 
Print["rhs=", rhs] 
np1=n+1 
w=Table[0.,{np1},{np1}] 
u=Table[0.,{np1},{np1}] 
qoverd=Table[rhs,{np1},{np1}] 

Do[w[[i,j]]= 0. ; u[[i,j]]= 0. ; qoverd[[i,j]]= rhs,{i,1,np1},{j,1,np1}]; 
Print["Matrices w, u, qoverd"] 
                      MatrixForm[w] 
                      MatrixForm[u]    
                      MatrixForm[qoverd] 
(* Solving delsq(u) = q/d *) 
phi=u; 
psi=qoverd; 
Do[ 
  Do[     phi[[i,j]] =(phi[[i-1,j]]  +  phi[[i +1,j]] + 
       phi[[i,j-1]]  + phi[[i,j+1]] - (l/n)^2   psi[[i,j]] )/4 ,{i,2,n}, {j,2,n}],{iter, 1, itmax}];  
u=phi; 
qoverd=psi; 
 
(* Solving delsq(w) = u *) 
phi=w; 
psi=u; 
Do[ 
  Do[     phi[[i,j]] =(phi[[i-1,j]]  +  phi[[i +1,j]] + 
       phi[[i,j-1]]  + phi[[i,j+1]] - (l/n)^2   psi[[i,j]] )/4 ,{i,2,n}, {j,2,n}],{iter, 1, itmax}];  
u=psi; 
w=phi; 
 
Print["Matrices u  and  w = plate deflection "] 
                         MatrixForm[w] 
                         MatrixForm[u]    

 A part of computer output: 
Matrices u  and  w = plate deflection 
 
{0.,           0.,                                0.,                                0.,                      0.}, 
{0., Interval[{0.00284512,0.00399684}], Interval[{0.00390189,0.00548139}], Interval[{0.00284512,0.00399684}], 0.}, 
{0., Interval[{0.00390189,0.00548139}], Interval[{0.00536509,0.0075369}],  Interval[{0.00390189,0.00548139}], 0.}, 
{0., Interval[{0.00284512,0.00399684}], Interval[{0.00390189,0.00548139}], Interval[{0.00284512,0.00399684}], 0.}, 
{0.,           0.,                                0.,                                0.,                      0.} 
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Figure 5. Diagram of maximal plate deflections (Numerical example 2) 
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Input data: 
 

q=10.00 kN/m2 
t=0.20 m 
σ=0.20 
l=6.0 m 

E=3.15×107 kN/m2 

1 Maximal deflection: 
0.00238661 m 

Input data: 
 

q=10.00 kN/m2 
t=0.20 m 
σ=0.20 
l=6.0 m 

E=3.15×107 kN/m2 
φ(t,to),MIN=1.248 

2 Maximal deflection: 
0.00536509 m 3 Maximal deflection: 

0.00753690 m 

Taken over from Num.ex. 1 

Input data: 
 

q=10.00 kN/m2 
t=0.20 m 
σ=0.20 
l=6.0 m 

E=3.15×107 kN/m2 
φ(t,to),MAX=2.158 
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5.2    Numerical example 3 

Calculation model was taken over from a Numerical example 1. Four input data (load per 
unit area, plate thickness, length of side of square, and creep coefficient) were given as a 
certain intervals.  

 Input data: 

n=4  - number of grid spacings along a side of the plate 
itmax=25  - number of Gauss-Seidel iterations 
q=7.50÷12.50 kN/m2  - load per unit area (given at intervals) 
t=0.15÷0.25 m  - plate thickness (given at intervals) 
l=5.75÷6.25 m  - lenght of side of square (given at intervals) 
σ=0.20  - Poisson’s ratio 
E=3.15×107 kN/m2  - Young’s modulus (taken for MB30) 
φ(t,to) =1.248÷2.158 - creep coefficient, defining creep between times t (given at 
 intervals: 90 days until 3 years under the load) and to,  

 related to elastic deformation in 28 days 

 Main program (Wolfram Mathematica®): 
Clear all 
Clear[n, u,w,qoverd,itmax] 
(* Procedure Poisson *) 
 
(* Number of grid spacings along a side of the plate *) 
  n=4 
(* Maximal number of iterations *) 
  itmax= 25 
(* Load per unit area of the plate *) 
   q= Interval[{9.0,11.0}] 
(* Plate thickness *) 
   t= Interval[{0.19,0.21}] 
(* Poisson’s ratio *) 
 sigma=0.2 
(* Length of side of square *) 
   l= Interval[{5.75,6.25}] 
(* Young’s modulus *) 
 e=31500000. 
(* creep coefficient *) 
   fi= Interval[{1.248,2.158}] 

  d=e  t^3/12/(1-sigma^2)/(1+fi); 
  rhs=q/d; 
Print["rhs=", rhs] 
np1=n+1 
w=Table[0.,{np1},{np1}] 
u=Table[0.,{np1},{np1}] 
qoverd=Table[rhs,{np1},{np1}] 
 
 Do[w[[i,j]]= 0. ; u[[i,j]]= 0. ; qoverd[[i,j]]= rhs,{i,1,np1},{j,1,np1}]; 
Print["Matrices w, u, qoverd"] 
                      MatrixForm[w] 
                      MatrixForm[u]    
                      MatrixForm[qoverd] 
(* Solving delsq(u) = q/d *) 
phi=u; 
psi=qoverd; 
Do[ 
  Do[     phi[[i,j]] =(phi[[i-1,j]]  +  phi[[i +1,j]] + 
       phi[[i,j-1]]  + phi[[i,j+1]] - (l/n)^2   psi[[i,j]] )/4 ,{i,2,n}, {j,2,n}],{iter, 1, itmax}];  
u=phi; 
qoverd=psi; 
 
(* Solving delsq(w) = u *) 
phi=w; 
psi=u; 

Do[ 
  Do[     phi[[i,j]] =(phi[[i-1,j]]  +  phi[[i +1,j]] + 
       phi[[i,j-1]]  + phi[[i,j+1]] - (l/n)^2   psi[[i,j]] )/4 ,{i,2,n}, {j,2,n}],{iter, 1, itmax}];  
u=psi; 
w=phi; 
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Print["Matrices u  and  w = plate deflection "] 
                         MatrixForm[w] 
                         MatrixForm[u]    

 A part of computer output: 
Matrices u  and  w = plate deflection 
 
{0.,           0.,                                0.,                                0.,                      0.}, 
{0., Interval[{0.0018657,0.00603746}],  Interval[{0.00255868,0.00827994}], Interval[{0.0018657,0.00603746}],  0.}, 
{0., Interval[{0.00255868,0.00827994}], Interval[{0.00351818,0.0113849}],  Interval[{0.00255868,0.00827994}], 0.}, 
{0., Interval[{0.0018657,0.00603746}],  Interval[{0.00255868,0.00827994}], Interval[{0.0018657,0.00603746}],  0.}, 
{0.,           0.,                                0.,                                0.,                      0.} 

 
Figure 6. Diagram of maximal plate deflections (Numerical example 3) 

Input data: 
 

q=10.00 kN/m2 
t=0.20 m 
σ=0.20 
l=6.0 m 

E=3.15×107 kN/m2 

1 Maximal deflection: 
0.00238661 m 

Input data: 
 

qMIN=7.50 kN/m2 
tMAX=0.25 m 

σ=0.20 
lMIN=5.75 m 

E=3.15×107 kN/m2 
φ(t,to),MIN=1.248 

2 Maximal deflection: 
0.00351818 m 3 Maximal deflection: 

0.01138490 m 

Taken over from Num.ex. 1 

Input data: 
 

qMAX=12.50 kN/m2 
tMIN=0.15 m 
σ=0.20 

lMAX=6.25 m 
E=3.15×107 kN/m2 
φ(t,to),MAX=2.158 
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5.3    Discussion of results 

Interval calculus can be used when calculating deflection of a reinforced concrete plate, 
because the final results in a form of closed interval can give better review of some input data 
influences on a maximum deflection. The results can be compared to a boundary deflection and 
then make conclusions connected to taking of optimal and rational problem solution. The 
advantage of such a calculus is that we can see the influences of different input parametres to 
one computing model.   

Moreover, the given method for problem solving could be easily applied to a case of 
unequaly load per unit area by simple entering of suitable local values into matrix qoverd. 

The presented procedure could be applied to any FEM calculation in order to keep 
computation tolerances, production tolerances (quality tolerances), and risk tolerances in 
closed, admissible limits. 
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