
18th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. Könke (eds.)
Weimar, Germany, 07–09 July 2009

THE FOURIER-BESSEL TRANSFORM

F. Brackx, N. De Schepper∗ and F. Sommen

∗Clifford Research Group, Department of Mathematical Analysis, Ghent University
Galglaan 2, B-9000 Ghent, Belgium

E-mail: nds@cage.ugent.be

Keywords: multi-dimensional Fourier transform, Clifford analysis.

Abstract. In this paper we devise a new multi-dimensional integral transform within the Clifford
analysis setting, the so-called Fourier-Bessel transform. It appears that in the two-dimensional
case, it coincides with the Clifford-Fourier and cylindrical Fourier transforms introduced ear-
lier. We show that this new integral transform satisfies operational formulae which are similar
to those of the classical tensorial Fourier transform. Moreover the L2-basis elements consis-
ting of generalized Clifford-Hermite functions appear to be eigenfunctions of the Fourier-Bessel
transform.
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1 INTRODUCTION

The Fourier transform is by far the most important integral transform. In m-dimensional
Euclidean space Rm it is given by

F [f ](ξ) =
1

(2π)m/2

∫
Rm

exp (−i < ξ, x >) f(x) dV (x) ,

where dV (x) stands for the Lebesgue measure on Rm, ξ for (ξ1, . . . , ξm), x for (x1, . . . , xm) and
< ξ, x > for the traditional scalar product in Euclidean space: < ξ, x >=

∑m
j=1 ξjxj . Since

its introduction by Fourier in the early 1800s, it has remained an indispensable and stimulating
mathematical concept that is at the core of the highly evolved branch of mathematics called
Fourier analysis. It has found use in innumerable applications and has become a fundamental
tool in engineering sciences, thanks to the generalizations extending the class of Fourier trans-
formable functions and to the development of efficient algorithms for computing the discrete
version of it.

The second player in this paper is Clifford analysis. It is a function theory for functions de-
fined in Euclidean space Rm and taking values in the real Clifford algebra R0,m, constructed over
Rm. A Clifford algebra is an associative but non-commutative algebra with zero divisors, which
combines the algebraic properties of the reals, the complex numbers and the quaternions with
the geometric properties of a Grassmann algebra.
During the past 50 years, Clifford analysis has gradually developed into a comprehensive the-
ory offering a direct, elegant and powerful generalization to higher dimension of the theory of
holomorphic functions in the complex plane. In its most simple but still useful setting, flat
m-dimensional Euclidean space, Clifford analysis focuses on monogenic functions, i.e. null so-
lutions of the Clifford vector-valued Dirac operator ∂x =

∑m
j=1 ej∂xj

, where (e1, . . . , em) forms
an orthogonal basis for the quadratic space R0,m underlying the construction of the real Clif-
ford algebra R0,m. Monogenic functions have a special relationship with harmonic functions
of several variables in that they are refining their properties. The reason is that, as does the
Cauchy-Riemann operator in the complex plane, the rotation-invariant Dirac operator factorizes
the m-dimensional Laplace operator. At the same time, Clifford analysis offers the possibility of
generalizing one-dimensional mathematical analysis to higher dimension in a rather natural way
by encompassing all dimensions at once, in contrast to the traditional approach, where tensor
products of one-dimensional phenomena are taken.

It is precisely this last qualification of Clifford analysis which has been exploited in [2] and
[3] to construct a genuine multi-dimensional Fourier transform within the context of Clifford
analysis. This so-called Clifford-Fourier transform is given in terms of an operator exponential
or, alternatively, by a series representation.
Particular attention is directed to the two-dimensional case, since then the Clifford-Fourier kernel
can be written in a closed form. Indeed, the two-dimensional Clifford-Fourier transform may be
expressed as

FH± [f ](ξ) =
1

2π

∫
R2

exp
(
±(ξ ∧ x)

)
f(x) dV (x)
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with exp (ξ ∧ x) =
∑∞

r=0

(ξ∧x)r

r!
and ξ ∧ x the so-called outer or wedge product (see Section 2)

of the Clifford vector variables ξ = ξ1e1 + ξ2e2 and x = x1e1 + x2e2. Note that we have not
succeeded yet in obtaining such a closed form in arbitrary dimension.

In recent research (see [4], [5] and [6]) we devised a so-called cylindrical Fourier transform
within the Clifford analysis setting, by taking as a new integral kernel the multi-dimensional
generalization of the two-dimensional Clifford-Fourier kernel:

Fcyl[f ](ξ) =
1

(2π)m/2

∫
Rm

exp (x ∧ ξ) f(x) dV (x) .

For a fixed vector ξ in the image space, its phase is constant on co-axial cylinders w.r.t. that fixed
vector, explaining the name ”cylindrical” for this Fourier transform.
Although the cylindrical Fourier transform has a ”simple” integral kernel, it satisfies calculation
formulae which are substantially more complicated than those of the Clifford-Fourier transform.
A similar conclusion holds for the spectrum of an L2-basis consisting of generalized Clifford-
Hermite functions: in case of the Clifford-Fourier transform these basis functions are simply
eigenfunctions, while their cylindrical Fourier spectrum is expressed as a sum of generalized
hypergeometric series.

In this paper we introduce another promising multi-dimensional integral transform within the
language of Clifford analysis, the so-called Fourier-Bessel transform (see Section 3). It appears
that in the two-dimensional case, it coincides with the above mentioned Clifford-Fourier and
cylindrical Fourier transforms. In Section 4 we will also show that the Fourier-Bessel trans-
form satisfies operational formulae which are similar to those of the classical multi-dimensional
Fourier transform. Moreover, the L2-basis elements consisting of generalized Clifford-Hermite
functions appear to be eigenfunctions of the Fourier-Bessel transform (see Section 5). To make
the paper self-contained a section on definitions and basic properties of Clifford algebra and Clif-
ford analysis is included (Section 2).
In a forthcoming paper [7] we will in the even dimensional case express the Clifford-Fourier
transform in terms of the Fourier-Bessel transform, which leads to a closed form of the Clifford-
Fourier integral kernel.

2 THE CLIFFORD ANALYSIS TOOLKIT

Clifford analysis (see e.g. [1, 8, 9, 11]) offers a function theory which is a higher dimensional
analogue of the theory of the holomorphic functions of one complex variable.

The functions considered are defined in Rm (m > 1) and take their values in the Clifford
algebra R0,m or its complexification Cm = R0,m ⊗ C. If (e1, . . . , em) is an orthonormal basis of
Rm, then a basis for the Clifford algebra R0,m or Cm is given by all possible products of basis
vectors (eA : A ⊂ {1, . . . ,m}) where e∅ = 1 is the identity element. The non-commutative
multiplication in the Clifford algebra is governed by the rules: ejek + ekej = −2δj,k (j, k =
1, . . . ,m).

Conjugation is defined as the anti-involution for which ej = −ej (j = 1, . . . ,m). In case
of Cm, the Hermitean conjugate of an element λ =

∑
A λAeA (λA ∈ C) is defined by λ† =

3



∑
A λc

A eA, where λc
A denotes the complex conjugate of λA. This Hermitean conjugation leads

to a Hermitean inner product and its associated norm on Cm given respectively by

(λ, µ) = [λ†µ]0 and |λ|2 = [λ†λ]0 =
∑

A

|λA|2 ,

where [λ]0 denotes the scalar part of the Clifford element λ.
The Euclidean space Rm is embedded in the Clifford algebras R0,m and Cm by identifying

the point (x1, . . . , xm) with the vector variable x given by x =
∑m

j=1 ejxj . The product of two
vectors splits up into a scalar part (the inner product up to a minus sign) and a so-called bivector
part (the wedge product):

x y = x . y + x ∧ y ,

where

x . y = − < x, y > = −
m∑

j=1

xjyj and x ∧ y =
m∑

i=1

m∑
j=i+1

eiej(xiyj − xjyi) .

Note that the square of a vector variable x is scalar-valued and equals the norm squared up to a
minus sign: x2 = − < x, x > = −|x|2.
Moreover, one can verify (see [4]) that for all x, t ∈ Rm the following formula holds:

(x ∧ t)2 = −|x ∧ t|2 = (< x, t >)2 − |x|2|t|2 . (1)

The spin group SpinR(m) of the Clifford algebra consists of all products of an even number
of unit vectors

SpinR(m) =
{
s = ω1 . . . ω2` ; ωj ∈ Sm−1 , j = 1, . . . , 2`, ` ∈ N

}
,

with Sm−1 the unit sphere in Rm. The spin group doubly covers the rotation group SOR(m):
for T ∈ SOR(m), there exists s ∈ SpinR(m) such that T (x) = sxs. But then also T (x) =
(−s)x(−s), explaining the double character of this covering. Note that each spin-element s
satisfies: ss = ss = 1.

The central notion in Clifford analysis is the notion of monogenicity, a notion which is
the multi-dimensional counterpart to that of holomorphy in the complex plane. A function
F (x1, . . . , xm) defined and continuously differentiable in an open region of Rm and taking val-
ues in R0,m or Cm, is called left monogenic in that region if ∂x[F ] = 0. Here ∂x is the Dirac
operator in Rm : ∂x =

∑m
j=1 ej∂xj

, an elliptic, rotation-invariant, vector differential operator of
the first order, which may be looked upon as the ”square root” of the Laplace operator in Rm:
∆x = −∂2

x. This factorization of the Laplace operator establishes a special relationship between
Clifford analysis and harmonic analysis in that monogenic functions refine the properties of har-
monic functions. The notion of right monogenicity is defined in a similar manner by letting act
the Dirac operator from the right.

In the sequel the monogenic homogeneous polynomials will play an important role. A left
monogenic homogeneous polynomial Pk of degree k (k ≥ 0) in Rm is called a left solid inner
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spherical monogenic of order k. The set of all left solid inner spherical monogenics of order k
will be denoted by M+

` (k). The dimension of M+
` (k) is given by

dim
(
M+

` (k)
)

=

(
m + k − 2

m− 2

)
=

(m + k − 2)!

(m− 2)! k!
.

The set
φs,k,j(x) =

2m/4

(γs,k)1/2
Hs,k(

√
2x) P

(j)
k (

√
2x) exp

(
−|x|

2

2

)
(2)

s, k ∈ N, j ≤ dim
(
M+

` (k)
)

, constitutes an orthonormal basis for the space L2(Rm) of square
integrable functions. Here

{
P

(j)
k (x); j ≤ dim

(
M+

` (k)
)}

denotes an orthonormal basis of
M+

` (k) and γs,k a real constant depending on the parity of s. The polynomials Hs,k(x) are
the so-called generalized Clifford-Hermite polynomials introduced by Sommen in [14]; they are
a multi-dimensional generalization to Clifford analysis of the classical Hermite polynomials on
the real line. Note that Hs,k(x) is a polynomial of degree s in the variable x with real coefficients
depending on k. More precisely, H2s,k(x) only contains even powers of x and hence is scalar-
valued, while H2s+1,k(x) only contains odd ones and thus is vector-valued. Furthermore, these
polynomials can be expressed in terms of the generalized Laguerre polynomials Lα

` on the real
line:

H2p,k(x) = 2p p! Lm/2+k−1
p

(
|x|2

2

)
and H2p+1,k(x) = 2p p! Lm/2+k

p

(
|x|2

2

)
x ,

confirming that H2p,k is scalar-valued, while H2p+1,k is vector-valued.
A result which will be frequently used in Section 5 is the following generalization of the

classical Funk-Hecke theorem (see [12]).

Theorem 1 [Funk-Hecke theorem in space] Let Sk be a spherical harmonic of degree k and
η a fixed point on the unit sphere Sm−1 in Rm. Denoting < ω, η > = cos (ω̂, η) = tη for
ω ∈ Sm−1, Pk,m(t) the Legendre polynomial of degree k in m-dimensional Euclidean space and
Am−1 = 2 π(m−1)/2

Γ(m−1
2 )

the surface area of the unit sphere Sm−2 in Rm−1, one has∫
Rm

g(r) f(tη) Sk(ω) dV (x)

= Am−1

(∫ +∞

0

g(r) rm−1 dr

) (∫ 1

−1

f(t) (1− t2)(m−3)/2 Pk,m(t) dt

)
Sk(η) .

As the Legendre polynomials Pk,m(t) are even or odd according to the parity of k, we can also
state the following corollary.

Corollary 1 Let Sk be a spherical harmonic of degree k and η a fixed point on the unit sphere
Sm−1. Denoting < ω, η > = tη for ω ∈ Sm−1, the 3D-integral∫

Rm

g(r) f(tη) Sk(ω) dV (x)

is zero whenever either f is an odd function and k is even, or f is an even function and k is odd.
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3 DEFINITION OF THE FOURIER-BESSEL TRANSFORM

Starting point is the axial exponential function, also called Clifford-Bessel function, given by
(see [14]):

E(x0, x) = exp (x0) E(x)

with
E(x) = 2m/2−1 Γ

(m

2

)
|x|1−m/2

(
Jm/2−1(|x|) +

x

|x|
Jm/2(|x|)

)
,

where Jν denotes the Bessel function of the first kind:

Jν(z) =
(z

2

)ν
∞∑

`=0

(
iz
2

)2`

`! Γ(ν + ` + 1)
(3)

and x0 stands for an extra real variable.
It is left monogenic in Rm+1, i.e. (∂x0 + ∂x)[E(x0, x)] = 0.
Now replacing formally x0 by < x, ξ >, x by x ∧ ξ and m by m − 1 with x =

∑m
j=1 xjej and

ξ =
∑m

j=1 ξjej , we get

E(< x, ξ >, x ∧ ξ) = exp (< x, ξ >) 2(m−3)/2 Γ

(
m− 1

2

)
|x ∧ ξ|(3−m)/2(

J(m−3)/2(|x ∧ ξ|) +
x ∧ ξ

|x ∧ ξ|
J(m−1)/2(|x ∧ ξ|)

)
.

This so-called ”Bessel-exponential” function is left monogenic in x and right monogenic in ξ :

∂x[E(< x, ξ >, x ∧ ξ)] = [E(< x, ξ >, x ∧ ξ)]∂ξ = 0 . (4)

The left monogenicity in x for example, is proved as follows. First, we have that

∂x[x ∧ ξ] = ∂x[xξ+ < x, ξ >] = −mξ + ξ = (1−m)ξ . (5)

Furthermore, in view of (1) we also find that

∂x[|x ∧ ξ|2] = ∂x[|x|2|ξ|2 − (< x, ξ >)2] = 2x |ξ|2 − 2 < x, ξ > ξ

= −2ξ (ξx+ < x, ξ >) = −2ξ (ξ ∧ x) = 2ξ (x ∧ ξ) .

Combining the above result with

∂x[|x ∧ ξ|2] = 2|x ∧ ξ| ∂x[|x ∧ ξ|] ,

we obtain
∂x[|x ∧ ξ|] =

ξ(x ∧ ξ)

|x ∧ ξ|
. (6)
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Taking into account (5) and (6), we arrive at

∂x

[
exp (< x, ξ >)

(
|x ∧ ξ|(3−m)/2 J(m−3)/2(|x ∧ ξ|) + (x ∧ ξ) |x ∧ ξ|(1−m)/2

J(m−1)/2(|x ∧ ξ|)
)]

= exp (< x, ξ >) ξ

(
|x ∧ ξ|(3−m)/2 J(m−3)/2(|x ∧ ξ|) + (x ∧ ξ)

|x ∧ ξ|(1−m)/2 J(m−1)/2(|x ∧ ξ|) +

(
3−m

2

)
|x ∧ ξ|(−1−m)/2 (x ∧ ξ) J(m−3)/2(|x ∧ ξ|)

+ |x ∧ ξ|(1−m)/2 J ′(m−3)/2(|x ∧ ξ|) (x ∧ ξ)− |x ∧ ξ|(3−m)/2 J ′(m−1)/2(|x ∧ ξ|)

+
(1−m)

2
|x ∧ ξ|(1−m)/2 J(m−1)/2(|x ∧ ξ|)

)
.

Using the recurrence relations (see for e.g. [13])

J ′ν(z) = −Jν+1(z) +
ν

z
Jν(z) and zJ ′ν(z) = zJν−1(z)− νJν(z) ,

indeed yields:

∂x

[
exp (< x, ξ >)

(
|x ∧ ξ|(3−m)/2 J(m−3)/2(|x ∧ ξ|) + (x ∧ ξ)

|x ∧ ξ|(1−m)/2 J(m−1)/2(|x ∧ ξ|)
)]

= 0 .

In a similar way, we can also show that

[E(< x, ξ >, x ∧ ξ)]∂x = 2 E(< x, ξ >, x ∧ ξ) ξ

and
∂ξ[E(< x, ξ >, x ∧ ξ)] = 2x E(< x, ξ >, x ∧ ξ) . (7)

It has been used recently by Sommen to introduce Clifford generalizations of the classical
Fourier-Borel transform (see [15]).

The Fourier-Bessel kernel is now defined by leaving out the exponential factor exp (< x, ξ >)
from the Bessel-exponential function.

Definition 1 The Fourier-Bessel kernel takes the form

J(x∧ξ) = 2(m−3)/2 Γ

(
m− 1

2

)
|x∧ξ|(3−m)/2

(
J(m−3)/2(|x ∧ ξ|) +

x ∧ ξ

|x ∧ ξ|
J(m−1)/2(|x ∧ ξ|)

)
.

The corresponding Fourier-Bessel transform is given by

Fbes[f ](ξ) =
1

(2π)m/2

∫
Rm

J(x ∧ ξ) f(x) dV (x) .
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4 PROPERTIES

4.1 The Fourier-Bessel kernel

We now collect some properties of the Fourier-Bessel kernel.

Property 1 The Fourier-Bessel kernel J(x ∧ ξ) has the following series representation:

J(x ∧ ξ) = Γ

(
m− 1

2

) ∞∑
`=0

(−1)`

`! Γ
(

m−1
2

+ `
) ( |x ∧ ξ|

2

)2` (
1 +

x ∧ ξ

m− 1 + 2`

)
. (8)

Proof. This result follows from the series expansion (3) of the Bessel function. �

Property 2 Similar to the cylindrical Fourier kernel exp (x ∧ ξ) = cos (|x ∧ ξ|) + (x ∧ ξ)
sinc(|x ∧ ξ|), the Fourier-Bessel kernel takes the form K1 + (x ∧ ξ) K2 with K1 and K2 scalar-
valued functions of the variable |x ∧ ξ|2. It hence takes the form of a so-called parabivector, i.e.
a scalar plus a bivector.

Property 3 The Fourier-Bessel kernel J(x ∧ ξ) satisfies the Helmholtz equations

(∆x + |ξ|2)[J(x ∧ ξ)] = 0 and (∆ξ + |x|2)[J(x ∧ ξ)] = 0 .

Proof. Starting from (4) we have consecutively

∂x[exp (< x, ξ >) J(x ∧ ξ)] = 0

⇐⇒ ξ exp (< x, ξ >) J(x ∧ ξ) + exp (< x, ξ >) ∂x[J(x ∧ ξ)] = 0

⇐⇒ (ξ + ∂x)[J(x ∧ ξ)] = 0

⇐⇒ (ξ + ∂x)
2[J(x ∧ ξ)] = 0

⇐⇒ (−|ξ|2 − 2 < ξ, ∂x > −∆x)[J(x ∧ ξ)] = 0

⇐⇒ (∆x + |ξ|2)[J(x ∧ ξ)] = 0 ,

since
< ξ, ∂x > [x ∧ ξ] = 0 and < ξ, ∂x > [|x ∧ ξ|2] = 0 .

The other equation is proved similarly. �

Remark 1

1. The traditional tensorial Fourier kernel exp (−i < x, ξ >) also satisfies the Helmholtz
equation:

(∆x + |ξ|2)[exp (−i < x, ξ >)] = 0 ,

the cylindrical Fourier kernel exp (x ∧ ξ) however not.
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2. The kernel J(x ∧ ξ) also satisfies the refined equation:
(
−(ξ ∧ ∂x) + |ξ|2

)
[J(x ∧ ξ)] = 0.

Indeed, from the foregoing proof we know that (ξ + ∂x)[J(x∧ ξ)] = 0. Let us now decom-
pose x into components parallel with and orthogonal to ξ:

x = x// + x⊥ =
< x, ξ >

|ξ|2
ξ −

x ∧ ξ

|ξ|2
ξ .

Similarly we can put

∂x = ∂x// + ∂x⊥ =
< ∂x, ξ >

|ξ|2
ξ −

∂x ∧ ξ

|ξ|2
ξ .

As ∂x//[J(x ∧ ξ)] = 0, we thus obtain that(
ξ −

ξ

|ξ|2
(ξ ∧ ∂x)

)
[J(x ∧ ξ)] = 0

or (
|ξ|2 − (ξ ∧ ∂x)

)
[J(x ∧ ξ)] = 0 .

Property 4 The Hermitean conjugate of the Fourier-Bessel kernel takes the form(
J(x ∧ ξ)

)†
= J(ξ ∧ x) = J(x ∧ (−ξ)) .

Proof. This property follows from (x ∧ ξ)† = ξ ∧ x. �

Property 5 For x parallel to ξ one has J(x ∧ ξ) = 1.

Proof. If x is parallel to ξ, then x ∧ ξ = 0. Taking into account the series representation (8) the
result follows. �

4.2 The Fourier-Bessel transform

First of all, it is observed that in the special case of dimension two, the Clifford-Fourier trans-
form and the cylindrical Fourier transform coincide with the newly introduced Fourier-Bessel
transform.

Proposition 1 In the special case where m = 2, one has

Fbes[f ](ξ) = Fcyl[f ](ξ) = FH− [f ](ξ) = FH+ [f ](−ξ) .

Proof. Taking into account that (see e.g. [13])

J1/2(z) =
(π

2
z
)−1/2

sin (z) and J−1/2(z) =
(π

2
z
)−1/2

cos (z) ,
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we find that for m = 2 :

J(x ∧ ξ) =

√
π

2
|x ∧ ξ|1/2

(
J−1/2(|x ∧ ξ|) +

x ∧ ξ

|x ∧ ξ|
J1/2(|x ∧ ξ|)

)
= cos (|x ∧ ξ|) +

x ∧ ξ

|x ∧ ξ|
sin (|x ∧ ξ|)

= exp (x ∧ ξ) ,

which proves the statement. �
Let us now take a look at the operational formulae satisfied by the Fourier-Bessel transform.

Proposition 2 The Fourier-Bessel transform satisfies
(i) the linearity property

Fbes[fλ + gµ] = Fbes[f ] λ + Fbes[g] µ ; λ, µ ∈ Cm

(ii) the reflection property
Fbes[f(−x)](ξ) = Fbes[f(x)](−ξ)

(iii) Hermitean conjugation(
Fbes[f(x)](ξ)

)†
=

1

(2π)m/2

∫
Rm

f †(x) J(ξ ∧ x) dV (x)

(iv) the change of scale property

Fbes[f(ax)](ξ) =
1

am
Fbes[f(x)]

(
ξ

a

)
for a ∈ R+

(v) the differentiation rule

Fbes

[
∂x[f(x)]

]
(ξ) = −ξ Fbes[f(x)](−ξ)

(vi) the multiplication rule

Fbes[xf(x)](ξ) = −∂ξ

[
Fbes[f(x)](−ξ)

]
(vii) the transfer formula∫

Rm

(
Fbes[f ](ξ)

)†
g(ξ) dV (ξ) =

∫
Rm

f †(ξ) Fbes[g](ξ) dV (ξ)

(viii) the rotation rule

Fbes[f(sxs)](ξ) = s Fbes[sf(x)](sξs)

= s Fbes[sf(x)s](sξs)s

with s ∈ SpinR(m).
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Proof.
(i)-(iv) Straightforward.
(v) First, by means of the Clifford-Stokes theorem (see e.g. [1]) we obtain

Fbes [∂x[f(x)]] (ξ) =
1

(2π)m/2

∫
Rm

J(x ∧ ξ) ∂x[f(x)] dV (x)

=
1

(2π)m/2

∫
∂Rm

J(x ∧ ξ) dσx f(x)

− 1

(2π)m/2

∫
Rm

[J(x ∧ ξ)]∂x f(x) dV (x)

= − 1

(2π)m/2

∫
Rm

[J(x ∧ ξ)]∂x f(x) dV (x) .

Furthermore inserting in the above equation the following formula

[J(x ∧ ξ)]∂x = J(x ∧ ξ) ξ = ξ J(ξ ∧ x) = ξ J(x ∧ (−ξ)) ,

we find

Fbes

[
∂x[f(x)]

]
(ξ) = −ξ

1

(2π)m/2

∫
Rm

J
(
x ∧ (−ξ)

)
f(x) dV (x) = −ξ Fbes[f(x)](−ξ) .

(vi) From (7) we derive
J(x ∧ ξ) x = −∂ξ[J

(
x ∧ (−ξ)

)
] ,

which yields

Fbes[x f(x)](ξ) =
1

(2π)m/2

∫
Rm

J(x ∧ ξ) x f(x) dV (x)

= −∂ξ

[
1

(2π)m/2

∫
Rm

J
(
x ∧ (−ξ)

)
f(x) dV (x)

]
= −∂ξ

[
Fbes[f(x)]

]
(−ξ) .

(vii) Using property (iii) and changing the order of integration, we obtain∫
Rm

(
Fbes[f ](ξ)

)†
g(ξ) dV (ξ)

=
1

(2π)m/2

∫
Rm

(∫
Rm

f †(x) J(ξ ∧ x) dV (x)

)
g(ξ) dV (ξ)

=
1

(2π)m/2

∫
Rm

f †(x)

(∫
Rm

J(ξ ∧ x) g(ξ) dV (ξ)

)
dV (x)

=

∫
Rm

f †(x) Fbes[g](x) dV (x) .
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(viii) By means of the substitution u = sxs for which it holds that dV (u) = dV (x) and x = sus,
we obtain

Fbes[f(sxs)](ξ) =
1

(2π)m/2

∫
Rm

J(x ∧ ξ) f(sxs) dV (x)

=
1

(2π)m/2

∫
Rm

J(sus ∧ ξ) f(u) dV (u)

=
1

(2π)m/2

∫
Rm

J
(
s(u ∧ sξs)s

)
f(u) dV (u) .

Moreover, as (s(x ∧ t)s)` = s(x ∧ t)`s for ` ∈ N, we arrive at

Fbes[f(sxs)](ξ) = s
1

(2π)m/2

∫
Rm

J(u ∧ sξs) s f(u) dV (u)

= s Fbes[s f(x)](sξs) .

Note that we also have the more symmetric form

Fbes[f(sxs)](ξ) = s
1

(2π)m/2

∫
Rm

J(u ∧ sξs) s f(u) s dV (u) s

= s Fbes[sf(x)s](sξs) s . �

5 FOURIER-BESSEL SPECTRUM OF THE L2-BASIS CONSISTING OF GENERA-
LIZED CLIFFORD-HERMITE FUNCTIONS

Now we will calculate the Fourier-Bessel spectrum of the L2-basis (2) consisting of genera-
lized Clifford-Hermite functions. The calculation method is based on the Funk-Hecke theorem
in space (see Theorem 1).

5.1 The Fourier-Bessel spectrum of φ2p,k,j

Let us first calculate the Fourier-Bessel transform of a general basis element φ2p,k,j which is
given, up to constants, by

H2p,k(
√

2x) Pk(x) exp

(
−|x|

2

2

)
.

From Corollary 1 it is clear that we have to make a distinction between k even and k odd.

5.1.1 k even

Expressing the generalized Clifford-Hermite polynomial of even degree in terms of the clas-
sical Laguerre polynomial on the real line, introducing spherical co-ordinates

x = rω , ξ = ρη , r = |x| , ρ = |ξ| , ω, η ∈ Sm−1 ,

12



using formula (1) and denoting tη =< ω, η >, we find consecutively

Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

= 2p p! Fbes

[
Lm/2+k−1

p (r2) exp

(
−r2

2

)
Pk(x)

]
(ξ)

=
2p p! 2(m−3)/2 Γ

(
m−1

2

)
(2π)m/2

∫
Rm

|x ∧ ξ|(3−m)/2

(
J(m−3)/2(|x ∧ ξ|) +

x ∧ ξ

|x ∧ ξ|

J(m−1)/2(|x ∧ ξ|)
)

Lm/2+k−1
p (r2) exp

(
−r2

2

)
Pk(x) dV (x)

=
2p p! 2(m−3)/2 Γ

(
m−1

2

)
(2π)m/2

{∫
Rm

Lm/2+k−1
p (r2) exp

(
−r2

2

)
rk

(
rρ

√
1− t2η

)(3−m)/2

J(m−3)/2

(
rρ

√
1− t2η

)
Pk(ω) dV (x)

− ρ

∫
Rm

Lm/2+k−1
p (r2) exp

(
−r2

2

)
rk+1

(
rρ

√
1− t2η

)(1−m)/2

tη

J(m−1)/2

(
rρ

√
1− t2η

)
Pk(ω) dV (x)

− ξ

∫
Rm

Lm/2+k−1
p (r2) exp

(
−r2

2

)
rk+1

(
rρ

√
1− t2η

)(1−m)/2

J(m−1)/2

(
rρ

√
1− t2η

)
ω Pk(ω) dV (x)

}
. (9)

Furthermore, as k is even, Corollary 1 implies that both the second and third integral vanish.
Moreover, applying the Funk-Hecke theorem in space and expressing the Legendre polynomial
in terms of the Gegenbauer polynomial

Pk,m(t) =
k! (m− 3)!

(k + m− 3)!
C

(m−2)/2
k (t) ,

we obtain

Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ) =

2p p! 2(m−3)/2 Γ
(

m−1
2

)
(2π)m/2

k! (m− 3)!

(k + m− 3)!
Am−1 Pk(η)

(∫ +∞

0

Lm/2+k−1
p (r2) exp

(
−r2

2

)
rk+m−1 dr

)
(∫ 1

−1

(rρ
√

1− t2)(3−m)/2J(m−3)/2(rρ
√

1− t2) (1− t2)(m−3)/2 C
(m−2)/2
k (t) dt

)
. (10)
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By means of the substitution t = cos (x), the second integral is turned into∫ 1

−1

(rρ
√

1− t2)(3−m)/2 J(m−3)/2(rρ
√

1− t2) (1− t2)(m−3)/2 C
(m−2)/2
k (t) dt

= (rρ)(3−m)/2

∫ π

0

J(m−3)/2(rρ sin (x)) C
(m−2)/2
k (cos (x)) sin (x)(m−1)/2 dx . (11)

Taking into account the integral formula (see [10], p. 832, 7.333, formula 1 with θ = π
2
):∫ π

0

(
sin (x)

)ν+1
Cν+1/2

n (cos (x)) Jν

(
a sin (x)

)
dx

= (−1)n/2

(
2π

a

)1/2

Cν+1/2
n (0) Jν+1/2+n(a) , n = 0, 2, 4, . . . (12)

equation (11) becomes∫ 1

−1

(rρ
√

1− t2)(3−m)/2 J(m−3)/2(rρ
√

1− t2) (1− t2)(m−3)/2 C
(m−2)/2
k (t) dt

= (rρ)(3−m)/2 (−1)k/2

(
2π

rρ

)1/2

C
(m−2)/2
k (0) J(m−2)/2+k(rρ)

=

√
2π Γ

(
m−2+k

2

)
Γ

(
m−2

2

)
Γ

(
k
2

+ 1
) (rρ)1−m/2 J(m−2)/2+k(rρ) ,

where we have also used the fact that (see e.g. [13])

Cλ
n(0) = (−1)n/2 Γ

(
λ + n

2

)
Γ(λ) Γ

(
n
2

+ 1
)

for n even.
Hence, the Fourier-Bessel spectrum (10) becomes

Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ) = 2p p!

k! (m− 3)!

(k + m− 3)!

Γ
(

m−2+k
2

)
Γ

(
m−2

2

)
Γ

(
k
2

+ 1
)

ρ1−m/2−k Pk(ξ)

∫ +∞

0

rk+m/2 Lm/2+k−1
p (r2) exp

(
−r2

2

)
J(m−2)/2+k(rρ) dr .

Substituting r2 for y in the integral formula (see e.g. [13], p. 244)∫ +∞

0

exp
(
−y

2

)
yα/2 L(α)

n (y) Jα(
√

xy) dy = 2 (−1)n xα/2 exp
(
−x

2

)
L(α)

n (x)

yields∫ +∞

0

exp

(
−r2

2

)
rα+1 L(α)

n (r2) Jα(r
√

x) dr = (−1)n xα/2 exp
(
−x

2

)
L(α)

n (x) . (13)
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Using the above result, we finally arrive at

Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

= 2p p!
k! (m− 3)!

(k + m− 3)!

Γ
(

m−2+k
2

)
Γ

(
m−2

2

)
Γ

(
k
2

+ 1
) Pk(ξ) (−1)p exp

(
−
|ξ|2

2

)
L(m−2+2k)/2

p (|ξ|2)

= (−1)p k! (m− 3)!

(k + m− 3)!

Γ
(

m−2+k
2

)
Γ

(
m−2

2

)
Γ

(
k
2

+ 1
) H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
=

(−1)k/2
√

π Γ
(

m−1
2

)
Γ

(−k+1
2

)
Γ

(
k+m−1

2

) (−1)p H2p,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
,

where in the last line we have used the formulae (see e.g. [13]):

Γ(2z) = π−1/2 22z−1 Γ(z) Γ

(
1

2
+ z

)
and Γ

(
1

2
+ z

)
Γ

(
1

2
− z

)
=

π

cos (πz)
.

5.1.2 k odd

In case where k is odd, the first integral in (9) vanishes.
By means of the Funk-Hecke theorem in space we obtain

Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
2p p! 2(m−3)/2Γ

(
m−1

2

)
(2π)m/2

Am−1 ρ Pk(η)

(∫ +∞

0

Lm/2+k−1
p (r2) rk+m exp

(
−r2

2

)
dr

)
(∫ 1

−1

(rρ
√

1− t2)(1−m)/2 J(m−1)/2(rρ
√

1− t2) (1− t2)(m−3)/2
(
Pk+1,m(t)− tPk,m(t)

)
dt

)
.

Next, taking into account the Gegenbauer recurrence relation (see e.g. [13])

(k + 2λ) tCλ
k (t)− (k + 1) Cλ

k+1(t) = 2λ (1− t2) Cλ+1
k−1 (t) ,

we have that
Pk+1,m(t)− tPk,m(t) = − k! (m− 2)!

(k + m− 2)!
(1− t2) C

m/2
k−1 (t) ,

which in its turn yields

Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ) = −

2p p! 2(m−3)/2 Γ
(

m−1
2

)
(2π)m/2

k! (m− 2)!

(k + m− 2)!

Am−1 ρ Pk(η)

(∫ +∞

0

Lm/2+k−1
p (r2) rk+m exp

(
−r2

2

)
dr

)
(∫ 1

−1

(rρ
√

1− t2)(1−m)/2 J(m−1)/2(rρ
√

1− t2) (1− t2)(m−1)/2 C
m/2
k−1 (t) dt

)
.
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In a similar way as before, by applying the integral formulae (12) and (13), we find the following
Fourier-Bessel image in case of k odd:

Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)(k−1)/2

√
π Γ

(
m−1

2

)
Γ

(
−k

2

)
Γ

(
k+m

2

) (−1)p H2p,k(
√

2ξ) exp

(
−
|ξ|2

2

)
Pk(ξ) .

5.2 The Fourier-Bessel spectrum of φ2p+1,k,j

Seen the calculations of the Fourier-Bessel spectrum of the basis function φ2p+1,k,j given, up
to constants, by

H2p+1,k(
√

2x) Pk(x) exp

(
−|x|

2

2

)
are very similar to the ones of the previous subsection, we restrict ourselves to giving the results.

5.2.1 k even

Fbes

[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)k/2

√
π Γ

(
m−1

2

)
Γ

(
1−k
2

)
Γ

(
k+m−1

2

) (−1)p H2p+1,k(
√

2ξ) exp

(
−
|ξ|2

2

)
Pk(ξ) .

5.2.2 k odd

Fbes

[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)(k+1)/2

√
π Γ

(
m−1

2

)
Γ

(−k
2

)
Γ

(
k+m

2

) (−1)p H2p+1,k(
√

2ξ) exp

(
−
|ξ|2

2

)
Pk(ξ) .

6 CONCLUSION

In this paper we introduced a new multi-dimensional integral transform within the Clifford
analysis framework, the so-called Fourier-Bessel transform. We have shown that in the two-
dimensional case it coincides with the Clifford-Fourier and cylindrical Fourier transforms intro-
duced earlier and that it satisfies similar operational formulae to those of the classical tensorial
Fourier transform. Moreover, in the last section we have proved that the L2-basis elements
consisting of generalized Clifford-Hermite functions are eigenfunctions of the Fourier-Bessel
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transform, which is also the case for the Clifford-Fourier transform. The fact that these L2-basis
elements are simultaneous eigenfunctions of the Clifford-Fourier and Fourier-Bessel transform,
will allow us in [7] to express in the even dimensional case the Clifford-Fourier transform in
terms of the Fourier-Bessel transform. The latter will then lead to a closed form of the Clifford-
Fourier kernel in case of even dimension. Note that, apart from the special two-dimensional case,
we had not succeeded yet in obtaining such a closed form.
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