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Abstract. The Laguerre polynomials appear naturally in many branches of pure and applied
mathematics and mathematical physics. Debnath introduced the Laguerre transform and de-
rived some of its properties. He also discussed the applications in study of heat conduction and
to the oscillations of a very long and heavy chain with variable tension. An explicit boundedness
for some class of Laguerre integral transforms will be present.
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1 INTRODUCTION

The Laguerre polynomials appear naturally in many branches of pure and applied mathe-
matics and mathematical physics (see e.g. [2, 3, 4, 6]). Debnath [2] introduced the Laguerre
transform and derived some of its properties. He also discussed the applications in study of heat
conduction [4] and to the oscillations of a very long and heavy chain with variable tension [3].

This paper is devoted to the study of the generalized Laguerre transform and some opera-
tional properties. Here we present and prove of the results presented in [1]. In fact, for the
interested reader we refer [1], where it is presented a more detailed study of the generalized
Laguerre transform.

2 PRELIMINARIES

The Laguerre transform of a function f(x) is denoted by f̃α(n) and defined by the integral

L{f(x)} =f̃α(n) =

∫ ∞

0

e−xxαLα
n
(x)f(x)dx, n = 0, 1, 2, ... (1)

provided the integral exists in the sense of Lesbegue, where Lαn(x) is a generalized Laguerre
polynomial of degree n with order α > −1, and satisfies the following differential equation

d

dx

[
e−xxα+1 d

dx
Lα

n
(x)

]
+ ne−xxαLα

n
(x) = 0. (2)

The sequence of Laguerre polynomial (Lαn(x))∞n=0 have the following property:

∞∫

0

e−xxαLα
n
(x)Lα

m
(x)dx =

(
n+ α

n

)
Γ(α + 1)δnm, (3)

where δnm is Kronecker function defined by

δnm =

{
1, if n = m

0, if n 6= m

and

Γ(α + 1) =

∫ ∞

0

xαe−x.

The inverse of the Laguerre transformation is then

f(x) =
∞∑

n=0

(δn)−1f̃α(n)Lαn(x) (0 < x <∞),

where

δn =

(
n+ α

n

)
Γ(α + 1).

174



3 EXPLICIT BOUNDEDNESS FOR SOME CLASS OF LAGUERRE INTEGRAL TRANS-
FORMS

Here, we consider the generalized integral transform defined, for x ≥ 0, by

(
α,β,nI

δ
−f
)

(x) =

∫ ∞

x

(t− x)δ−1 e−β(x)t tα Lαn (c(t, x)) f(t) dt (4)

with β(x) a non-negative continuous function on ]0,+∞[. When δ = 1, β(x) ≡ 1, x = 0
and such that c(t, 0) ≡ t, the integral transform (4) coincide with (1), and when α = 0, n =
0, β(x) ≡ 0 the integral transform (4) multiplied by 1

Γ(δ)
coincide with the classical Riemann

Liouville fractional integral of order δ

1

Γ(δ)

(
α,β,nI

δ
−f
)

(x) ≡
(
Iδ−f

)
(x)

=
1

Γ(δ)

∫ ∞

x

(t− x)δ−1 f(t) dt, x > 0 (5)

with 0 < δ < 1 (see [8]).
Now, we will study the generalized fractional integral transforms (4), and two of their mod-

ifications in the space Lv,r of the complex value Lebesgue measurable functions f on R+ such
that for v ∈ R

‖f‖v,r =

(∫ ∞

0

|tvf(t)|r dt
t

)1/r

<∞, 1 ≤ r <∞, (6)

‖f‖v,∞ = ess sup
t>0

(tv|f(t)|) <∞. (7)

In what follows we obtain the boundedness of the fractional integral transform (4) as opera-
tors mapping the space Lv,r into the spaces Lv−δ−α,r.

Theorem 3.1 Let β(x) = 1
x
, c(t, x) = t

x
and 1 ≤ r ≤ ∞. The operator α,β,nI

δ
−f is bounded

from Lv,r into Lv−δ−α,r and

‖α,β,nIδ−f‖v−δ−α,r ≤ Cα,β,δ,v‖f‖v,r. (8)

Proof: Let 1 ≤ r <∞. Using (6) and making the change of variable t = xu, we obtain

‖α,β,nIδ−f‖v−δ−α,r =

(∫ ∞

0

∣∣xv−δ−α
(
α,β,nI

δ
−f
)

(x)
∣∣r dx

x

)1/r

=

(∫ ∞

0

∣∣∣∣xv−δ−α
∫ ∞

x

(t− x)δ−1 e−
t
x tαLαn

(
t

x

)
f(t) dt

∣∣∣∣
r
dx

x

)1/r

=

(∫ ∞

0

∣∣∣∣xv−
1
r

∫ ∞

1

(u− 1)δ−1 e−u uα Lαn(u) f(ux) du

∣∣∣∣
r

dx

)1/r
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≤
∫ ∞

1

(∫ ∞

0

∣∣∣xv− 1
r (u− 1)δ−1 e−u uα Lαn(u) f(ux)

∣∣∣
r

dx

)1/r

du

≤
∫ ∞

1

(u− 1)δ−1 e−u uα−v |Lαn(u)|
(∫ ∞

0

|tvf(t)|r dt
t

)1/r

du

= ‖f‖v,r
∫ ∞

1

(u− 1)δ−1 e−u uα−v |Lαn(u)| du.

From relation (2.19.3.8) in [7], we have

Cα,β,δ,v =

∫ ∞

1

(u− 1)δ−1 e−u uα−v Lαn(u)du

=
(1 + α)n

n!
B(δ,−α + v − δ)

× 2F2 (α− v + 1, 1 + α + n;α− v + 1 + δ, 1 + α;−1)

+
(1 + v − δ)n

n!
Γ(α− v + δ)

× 2F2 (1− δ, 1 + v − δ + n; 1− α + v − δ, 1 + v − δ;−1) , (9)

where (.)n denote the Pochhammer symbol and B(., .) denote the Beta function.
For r =∞ we have

∣∣xv−δ−α α,β,nI
δ
−f
∣∣ =

∣∣∣∣xv−δ−α
∫ ∞

x

(t− x)δ−1 e−
t
x tαLαn

(
t

x

)
f(t) dt

∣∣∣∣

≤
∫ ∞

1

(u− 1)δ−1 e−u uα−v|Lαn(u)|
∣∣t−v(tvf(t))

∣∣ du

≤ ‖f‖v,∞
∫ ∞

1

(u− 1)δ−1 e−u uα−v|Lαn(u)| du

= ‖f‖v,∞Cα,β,δ,v.

This completes the proof.
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