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Abstract. In this paper we present some rudiments of a generalized Wiman-Valiron theory
in the context of polymonogenic functions. In particular, we analyze the relations between
different notions of growth orders and the Taylor coefficients. Our main intention is to look for
generalizations of the Lindelöf-Pringsheim theorem. In contrast to the classical holomorphic
and the monogenic setting we only obtain inequality relations in the polymonogenic setting.
This is due to the fact that the Almansi-Fischer decomposition of a polymonogenic function
consists of different monogenic component functions where each of them can have a totally
different kind of asymptotic growth behavior.
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1 THE CLASSICAL SETTING

Suppose that f(z) =
∞∑
n=0

anz
n is an entire holomorphic function, this means that its conver-

gence radius r is infinite. In the special case where f is a polynomial, there exists an N ∈ N
such that an = 0 for all n > N , and one has that |f(z)| ∼ |aN ||z|N for |z| large.

Now, to describe the growth behavior of general transcendential entire functions one defines
the growth order of f by

ρ(f) := lim sup
r→∞

log+ log+M(r, f)

log r

where M(r, f) := max{|f(z)| | |z| = r}. The classical Lindelöf-Pringsheim theorem provides
us with an explicit relation between the Taylor coefficients an and the growth order ρ:

ρ(f) = lim sup
n→∞

n log(n)

− log |an|
.

2 THE MONOGENIC CASE

In this section we briefly summarize the corresponding result for the higher dimensional
monogenic case where one considers a first order operator generalizing straightforwardly the
standard Cauchy-Riemann operator. For the general facts about Cliford algebras and Clifford
analysis we refer for instance to [1].

2.1 Basic notation

By Cln we denote the real Clifford algebra Cln over Rn defined by e0 := 1, e2i = −1,
i = 1, ..., n and eiej = −ejei for all i, j = 1, ..., n such that i 6= j.

A basis for Cln is given by the elements 1, e1, . . . , en, e1e2, . . . , en−1en, . . . , e1 · · · en.
A vector space basis for Cln is given by the set {eA : A ⊆ {1, · · · , n}} with eA = el1el2 · · · elr ,
where 1 ≤ l1 < · · · < lr ≤ n, e∅ = e0 = 1. Each element a ∈ Cln can be written in the form
a =

∑
A aAeA with aA ∈ R. The standard Clifford norm, defined by ‖a‖ = (

∑
A

|aA|2)1/2.
Next, each non-zero paravector z = x0 + x1e1 + · · · + xnen ∈ Rn+1\{0} has an inverse
z−1 = x0−x1e1−···xnen

x20+x
2
1+···+x2n

.

For simplicity we also apply the standard multi-index notation, namely for an index m =
(m1, . . . ,mn) ∈ Nn

0 we write:

xm := xm1
1 · · · xmn

n , m! := m1! · · ·mn!, |m| := m1 + · · ·+mn.

Further we denote by τ(i) the particular index (m1, . . . ,mn) with mj = δij for 1 ≤ j ≤ n
where δij stands for the Kronecker symbol.

2.2 Monogenic functions

Definition 1. (cf. [1]). A function f : Rn+1 → Cln is called entire (left) monogenic if Df(z) =

0 for all z ∈ Rn+1 where D := ∂
∂x0

+
n∑
i=1

ei
∂
∂xi

is the generalized Cauchy-Riemann operator.
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The null-solutions to this first order operator exhibit some nice analogies to complex holo-
morphic functions, for instance:

• the maximum principle holds

• we have a Cauchy integral formula

• we have an overal convergent Taylor series representation of the form

f(z) =
∞∑

|m|=0

Vm(z)am,

where Vm are the usual Fueter polynomials, for example: V0(z) := 1, Vτ(i)(z) = xi−eix0,
V2τ(i)(z) = Vτ(i)(z)2, Vτ(i),τ(j) = 1

2

(
Vτ(i)(z)Vτ(j)(z) + Vτ(j)(z)Vτ(i)(z)

)
.

In [2] we proved an analogous relation of the classical Lindelöf-Pringsheim theorem for entire
monogenic functions. For n > 1 one has exactly, that

ρ(f) = lim sup
|m|→∞

|m| log |m|
− log

∥∥∥ 1
c(n,m)

am

∥∥∥
,

where

c(n,m) :=
n(n+ 1) · · · (n+ |m| − 1)

m!
.

This constant c(n,m) does not appear in the complex case n = 1. It is a novelty in the higher
dimensional setting. The reason for the appearance of c(n,m) is that in the higher dimensional
case the sharp upper bound for the Taylor coefficients (Cauchy inequality) has the following
different form

‖am‖ ≤ c(n,m)
M(r, f)

r|m|
.

In the case n = 1 the constant c(n,m) simply equals 1 and thus turns out to be independent
from m.

3 THE GROWTH OF POLYMONOGENIC FUNCTIONS

Now we consider entire functions in Rn that are null-solutions to the higher dimensional
poly-Cauchy-Riemann equation Dkf(z) = 0 where k is an arbitrary positive integer. These
are called left polymonogenic functions, or k-monogenic for short. The starting point of our
consideration is the well-known Almansi-Fischer decomposition, cf. [1]: One can represent

every k-monogenic function f(z) in terms of f(z) =
k−1∑
j=0

xj0fj(z) where fj are monogenic

functions. Each entire k-monogenic function has the special Taylor series representation

f(z) =
+∞∑

|m|=0

k−1∑

j=0

xj0Vm(z)am,j. (1)

125



The Cauchy type estimate for the Taylor coefficients am,j is given by

‖am,j‖ =

∥∥∥∥
∂|m|

∂xm
fj

∥∥∥∥ ≤
c(n,m)

r|m|
M(r, fj). (2)

Problems of the polymonogenic setting:

• Polymonogenic functions do not obey a sharp maximum principle

• Each monogenic component function can have a totally different growth

• Consequence: There will be no direct analogue of the Lindelöf-Pringsheim theorem;
one only gets a series of inequality relations and lower and upper bound estimates.

3.1 Cauchy type estimates

In the following example one can see that polymonogenic functions do not obey a sharp
maximum principle:
The function f(x0, x1, x2) = 1 − x20 − x21 − x22 satisfies D3f = 0 but f(0, 0, 0) = 1 and
f(x0, x1, x2) = 0 for all x ∈ R3 with

∑2
i=0 x

2
i = 1. Therefore, we define M(r, f) :=

max{‖f(z)‖ | ‖z‖ = r} andM(r, f) := max{‖f(z)‖ | ‖z‖ ≤ r}.
To achieve our goal we need to set up relations between the maximum modulus of a k-

monogenic function and the monogenic component functions of the Almansi-Fischer decom-
position. We can prove the following lemmas, cf. [3]:

Lemma 1. Let f : Rn+1 → Cln be entire k-monogenic where the associated 1-monogenic
component functions are denoted by f0, f1, · · · , fk−1. Define M0(r, f) = max

0≤j≤k−1
{M(r, fj)} .

Then, for r ≥ 1 we have
M(r, f) ≤ krkM0(r, f). (3)

Lemma 2. LetM∗(r, f) = max
0≤q≤k−1

M(r,Dqf). Then, for r > 1 and l ∈ {0, · · · , k − 1} we

have
M(r, fl) ≤ krkM∗(r, f) (4)

and
M(r, f) ≤ k2r2kM∗(r, f). (5)

Proof. The monogenic components f0, · · · , fk−1 can be reconstructed from f by

xl0fl = Plf (6)

with

Pl =

(+∞)∑

q=l

(−1)l−q
1

l!(q − l)!x
q
0Dq. (7)

Therefore,

‖fl(z)‖ ≤
k−1∑

q=l

1

l!(q − l)! |x0|
q−l‖Dqf‖.
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Since 1
l!(q−l)! ≤ 1 we obtain

M(r, fl) ≤
k−1∑

q=l

1

l!(q − l)!r
q−lM(r,Dqf) ≤M∗(r, f)

k−1∑

q=l

1

l!(q − l)!r
q−l

≤ M∗(r, f)
k−1∑

q=l

rq−l.

Therefore, for r > 1 we have

M(r, fl) ≤ krk−2lM∗(r, f) ≤ krkM∗(r, f). (8)

Using (8) and applying the Almansi-Fischer decomposition of f , we may derive inequality (5)

M(r, f) ≤
k−1∑

j=0

rjM(r, fj) ≤ k2r2kM∗(r, f).

Using Lemma 2, we obtain for r > 1 the following Cauchy-type estimate

‖am,l‖ ≤ max
0≤l≤k−1

‖am,l‖ ≤
c(n,m)k

r|m|−k+1
M∗(r, f). (9)

Next we can prove

Lemma 3. Let M̃(r, f) := max
0≤q≤k−1

{
max
‖z‖≤r

{
rq‖Dqf(z)‖

}}
. Then, for any r > 1, we have

M(r, fl) ≤ M̃(r, f)r−lk, (10)

for l ∈ {0, · · · , k − 1} and
M(r, f) ≤ k2M̃(r, f). (11)

Summarizing we may formulate:

Lemma 4. For r > 1 we have

M(r, f) ≤ krkM0(r, f) ≤ k2rkM̃(r, f), (12)

and
M(r, f) ≤ krkM0(r, f) ≤ k2r2kM∗(r, f). (13)

3.2 Growth orders

Based on the previously introduced definitions it makes sense to introduce the following
slightly different notions of growth orders in the polymonogenic settings.

Definition 2. Let f : Rn+1 → Cln be an entire k-monogenic function. Then

ρ(f) := lim sup
r→∞

log+(log+M(r, f))

log(r)
, 0 ≤ ρ ≤ ∞ (14)

is called the order of growth of the function f .
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Theorem 1. Define ρ0(f) := lim sup
r→∞

log+(log+(M0(r,f)))
log(r)

. Then

ρ(f) ≤ ρ0(f). (15)

Note that in the monogenic case, one has: ρ(f) = ρ0(f). Using Lemma 1, 2 and Lemma 3
we may establish

Theorem 2. Let ρ̃(f) := lim sup
r→∞

log+(log+(M̃(r,f)))
log(r)

. Then

ρ(f) ≤ ρ0(f) ≤ ρ̃(f). (16)

Theorem 3. Let ρ∗(f) := lim sup
r→∞

log+(log+(M∗(r,f)))
log(r)

. Then

ρ(f) ≤ ρ0(f) ≤ ρ∗(f). (17)

3.3 Explicit relations between growth orders and Taylor coefficients

In contrast to the monogenic setting where one gets a direct analogue of the Lindelöf-
Pringsheim theorem in terms of an equality relation between the growth order and the Taylor
coefficients. In the polymonogenic one only gets inequality relations. In [3] we were able to
prove the following main results:

Theorem 4. For an entire k-monogenic function with Taylor series representation of the form
(1) let

Πj = lim sup
|m|→+∞

|m| log |m|
− log ‖ am,j

c(n,m)
‖ , 0 ≤ j ≤ k − 1. (18)

Then ρ̃(f) ≥ Πmin = min
0≤j≤k−1

Πj and Πmax = max
0≤j≤k−1

Πj ≥ ρ(f).

Theorem 5. For an entire k-monogenic function f : Rn+1 → Cln with a Taylor series repre-
sentation of the form (1) let

Πj = lim sup
|m|→+∞

|m| log |m|
− log ‖ 1

c(n,m)
am,j‖

, 0 ≤ j ≤ k − 1. (19)

Then ρ∗(f) ≥ Πmin = min
0≤j≤k−1

Πj and Πmax = max
0≤j≤k−1

Πj ≥ ρ(f).

In the monogenic case, one simply has Πmin = Πmax = Πj .
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