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Abstract. A central issue for the autonomous navigation of mobile robots is to map unknown 
environments while simultaneously estimating its position within this map. This chicken-egg-
problem is known as simultaneous localization and mapping (SLAM). 
Asctec’s quadrotor Pelican is a powerful and flexible research UAS (unmanned aircraft 
system) which enables the development of new real-time on-board algorithms for SLAM as well 
as autonomous navigation. 
The relative UAS pose estimation for SLAM, usually based on low-cost sensors like inertial 
measurement units (IMU) and barometers, is known to be affected by high drift rates. In order 
to significantly reduce these effects, we incorporate additional independent pose estimation 
techniques using exteroceptive sensors. In this article we present first pose estimation results 
using a stereo camera setup as well as a laser range finder, individually. Even though these 
methods fail in few certain configurations we demonstrate their effectiveness and value for the 
reduction of IMU drift rates and give an outlook for further works towards SLAM.  

104



1    INTRODUCTION 
Light-weight unmanned aircraft systems (UAS) are small flying robots which can be used 

for many different civil-engineering applications like monitoring, assessment and inspection of 
built-up structures [1]. Besides a camera, standard out of the box UAS are often equipped with 
a GPS receiver and an inertial measurement unit (IMU) for navigation. Image acquisition is 
usually done by hand either during manual flights or automatically during pre-planned flights 
based on GPS waypoints. The latter approach requires prior knowledge about the on-site setting 
and is restricted to outdoor applications. 

Simultaneous localization and mapping (SLAM) [2, 3, 4] enables autonomous exploration of 
unknown indoor and outdoor environments without or few manual interaction as well as 
preliminary information. SLAM approaches solve the problem of mapping unknown 
environments while simultaneously estimating the UAS pose within the map. Pose estimation 
can be tackled by the fusion of measurements from GPS, IMU and further sensors, for example 
a compass or a barometer, based on Kalman filtering, extended Kalman filtering [5] or particle 
filters [6]. Especially in GPS-denied environments pose estimation based on the 
aforementioned sensors is known to be affected by high drift rates due to dead reckoning. 
Hence, several systems which additionally incorporate laser range finders and cameras were 
proposed [7, 8, 9, 10]. These exteroceptive sensors are often used in conjunction since they rely 
on different measurement principles and therefore offer complementary failure modes. 

As a first step in setting up an autonomous indoor UAS, we implemented and tested existing 
pose estimation approaches using a stereo camera setup as well as a laser range finder. 

2    SYSTEM OVERVIEW 
We use the off-the-shelf research quadrotor Pelican from Ascending Technologies GmbH 

since it is well suited to specific requirements in terms of size, payload, computational power 
and sensor integration. System implementation is here mainly reduced to method development 
and algorithm implementation. The stereo camera system consists of two forward looking 
BlueFox-MLC200wC cameras with a resolution of 752 480 pix , a field of view of 100  and a 
90 Hz  framerate. The Hokuyo laser range finder UST-20LX has a scanning range up to 
20 4m cm , an angular resolution of 0.25 , a horizontal scan coverage of 270  and a 
scanning frequency of 40 Hz . Since method optimization and system implementation is not 
finished yet, all experiments were conducted manually instead of using data from real test 
flights. 

3    VISUAL ODOMETRY 
The essential matrix E  describes the relative orientation of two calibrated cameras and can 

be estimated based on corresponding image points using for example the well-known 
normalized 8-point algorithm [11]. A singular value decomposition (SVD) of E  yields the 
relative 3D pose (6DOF: relative translation T  and rotation R ) of the cameras. Since E  is 
projectively invariant and independent from the chosen world coordinate system, T  can only 
be estimated up to an unknown scale factor. When a fixed stereo camera setup is used, the 
scaled T  can be computed without additional knowledge, for example ground control points. 
In a preliminary calibration step the camera intrinsics as well as the relative orientation between 
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the left and right camera, represented by the rotation matrix ,r lR  and the translation vector ,r lT , 
have to be estimated once. Since the relative pose estimation between consecutive stereo 
frames is based on the relative orientations 1,2

lE  and 1,2
rE , the scale factors   and   for the 

corresponding translations 1,2
lT  and 1,2

rT  of the left and right camera are in turn unknown. If 
temporally tracked points in two subsequent stereo frames are available, the factors can be 
computed according to the fixed camera pose of the stereo rig [12]: The 3D points 1

,r lX , 
triangulated from the stereo setup in the first frame, define a reference scale, whereas the 3D 
points 1,2

lX  and 1,2
rX , triangulated from two subsequent frames of the left and right camera, 

respectively, can be scaled to 1
,r lX . The authors of [12] propose to use the nearest five object 

points for a reliable computation of   and  : 
1 15 5
, ,

1,2 1,2
1 1

0.2 , 0.2l r l r
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Whereas this stereo approach (in the following denoted as SVO) is based on 3D 
correspondences, Perspective-n-Points methods (PnP) use 2D-to-3D correspondences [13]. For 
the solution of the P3P problem the unknown distances i id  X C  between 3D points and 

the camera position C , the inter-point distances ij i jd  X X  as well as the angle   between 
each pair of rays between C  and X  can be used to form 

 2 2 2 2 cosij i j i j ijd d d d d    ,       ( , ) 1,2 , 1,3 , 2,3i j  . (2) 

This system can be solved by eliminating the unknowns of one equation using the remaining 
equations, which finally leads to a quartic polynomial. 

In this work, the EPnP algorithm [14], which provides a non-linear solution within a linear 
time, is utilized, since it is known to provide good results compared to other iterative 
algorithms and is well suited for real-time systems. 

Using the aforementioned concepts, visual odometry (VO) consists of two main steps: 
Feature detection and motion estimation. As stated in [8, 9] an overall estimation frequency of 
at least 10 15 Hz  should be achieved due to the fast flight dynamics. Inspired by [15], we use 
the Harris-based Shi-Tomasi corner detector [16] along with the Lucas-Canade method [17] for 
a fast matching of features in all four images of two subsequent stereo frames. The essential 
matrices for the moving left and right camera are computed using the normalized 8-point 
algorithm with RANSAC [12] outlier detection. An SVD of 1,2

lE  and 1,2
rE  yields four possible 

stereo camera configurations each, where the wanted parameters are those who lead to 
triangulated points in front of both cameras.   and   can then be computed according to (1). 

The aforementioned essential matrices are also used for the PnP approach. Further inputs are 
the triangulated point cloud 1

,l rX , the corresponding image coordinates in the second frame, the 
camera intrinsics as well as an optional initial guess of the pose obtained by SVO. Based on 
homogeneous transforms the current pose currentP  can then be computed by 

0 1 1current t t previous tP P P P P P P       , with 
0 1

T TR R T
P

  
   
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where t  represents number of frames. 

The drawback of (3) is that each pose estimate solely depends on the previous pose as well 
as the previous and the current view. Therefore, in [9] the UAS motion is estimated across 
several frames using a bundle adjustment. However, in order to analyze the properties of the 
above described basic approach no further optimization is done here. 

4    LASER ODOMETRY 
For the laser scanner-based odometry the hector SLAM approach [18] is utilized, since it 

enables the processing of measurements acquired with a scan rate of up to 100 Hz . While a 
navigation filter is used for the 6DOF pose estimation, a 2D SLAM module provides a map as 
well as the positioning and heading of the UAV related to this map (see figure 1). Please note 
that for a full 3D pose estimation additional sensors, e.g. a downward looking sonar, is 
required. Since the used implementation1 solely uses scan data as well as optional additional 
IMU data, only 2D pose estimations are possible here. 

Figure 1: Workflow of hector SLAM [11]. Dashed lines represent optional interfaces. 

In order to ensure a real-time pose estimation, SLAM and pose estimation are loosely 
coupled, i.e., update delays of the SLAM are allowed but don’t affect the pose estimation. The 
motion of a rigid body can in general be described by a nonlinear equation system. Hence, for 
the pose estimation an extended Kalman filter (EKF) is used. Because IMU-based integrated 
velocities and positions are known to be affected by high drift rates, the 2D pose estimate from 
SLAM is used as additional information in EKF filtering. 

In the pre-processing step of the SLAM module the scanned point cloud can optionally be 
filtered or down-sampled. The environment is represented by a 2D occupancy grid map and 
scan matching aligns laser scans with this map. The scan-based estimation of the current 2D 
pose is based on a Gauss-Newton approach, where a 3DOF transform of the scanned world 
coordinates that fits best to the current map is obtained. In order to improve this step, the pose 
estimate of the EKF is projected to the ( , )x y -plane and is used to initialize the scan matching. 
For more detailed information the reader is kindly referred to [11]. 

5    EXPERIMENTS 
In order to securely test the quality and reliability of the approaches, all experiments were 

conducted manually, i.e., the UAS equipped with the sensors was carried by hand along pre-
defined paths. Since the paths are closed loops, the coordinate differences between the starting 
and end positions represent a quality measurement. Whereas the 2D/3D SVO and PnP 
trajectories are compared in the first experiment, the 2D trajectories obtained by hector SLAM 

1 http://wiki.ros.org/hector_slam (June 24, 2015) 
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with and without IMU fusion are compared. In figure 2 the corresponding results are 
visualized. 

Figure 2: Trajectories of the SVO and PnP method (left) and the hector SLAM approach with and without IMU 
fusion (right). 

For the VO experiment an outdoor path around a house with a size of approximately 
19 12 m  was chosen. As can be seen in figure 2 (left) SVO yielded very inaccurate results. 
Even though the rough moving directions are correct, the estimated path differs significantly 
from the expected result of a smooth rectangular path. Due to an unstable scale factor 
estimation according to (1), the resulting trajectory tends to be very jagged. Furthermore, the 
path is too short to circuit the building which implies that the factors tend to be underestimated. 
Nonetheless, the distances between the start- and endpoint are 4.13 m  (2D) and 6.51m  (3D). 
Based on the PnP approach a much smoother and realistic trajectory could be obtained, 
whereas a slight underestimation of the relative movements can also be observed here. The 
start-end differences with 2.97 m  (2D) and 5.20 m  are slightly but not significantly smaller 
than using VO. The results confirm the observation that the estimation of the rotation is more 
stable and precise than the translation [13]. 

Both approaches solely use point correspondences from two consecutive stereo-frames. 
Disadvantageous configurations, for example very small or zero translations, therefore lead to 
errors which accumulate over time. The Lukas-Canade feature matching approach in turn fails 
for large translations which suggests that another matching method should be used here.  

For the hector SLAM experiment a closed indoor trajectory along a straight corridor was 
chosen, since the laser range finder is sensitive to sunlight. The results solely using the 
mapping module of hector SLAM produced a smooth trajectory which is close to the true path. 
With a 2D start-end difference of 0.39 m , the estimated path intends to be a very good solution. 
Nonetheless, compared to the result with additionally incorporated IMU measurements, the red 
path is slightly curved, which indicates a drift caused by the scan matching. The start- to 
endpoint difference of 0.72 m  is surprisingly larger here. 

6    CONCLUSION 
In this work results of visual and laser scanner-based pose estimation techniques are 

presented. The PnP approach as well as the hector SLAM approach using additional IMU data 

108



yielded the best results in our experiments. Nonetheless, the loop closure test and other findings 
demonstrate that odometry estimates can rapidly exceed drift tolerances defined by the 
dimensions and richness of detail of the indoor environment to explore.  

A careful optimization of the single VO steps, especially the feature matching, will be part 
of the next works and these techniques will be implemented on our quadrotor. Even though the 
estimated poses can directly be used as additional input for Asctec’s on-board autopilot, the 
application and implementation of other data fusion methods is planned. 
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