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Abstract.Correct evaluation of wall displacements is a key matter when designing silos. This 
issue is important from both the standpoint of design engineer (load-bearing capacity of 
structures) and end-consumer (durability of structures). Commonplace methods of silo design 
mainly focus on satisfying limit states of load-bearing capacity. Current standards fail to 
specify methods of dynamic displacements analysis. 
Measurements of stressacting on silo walls prove that the actual stress is sum of static and 
dynamic stresses. Janssen came up with differential equation describing state of static 
equilibrium in cross-section of a silo. By solving the equation static stress of granular solid on 
silo walls can be determined. Equations of motion were determined from equilibrium equations 
of feature objects. General solution, describing dynamic stresses was presented as parametric 
model. 
This paper presents particular integrals of differential equation, which enable analysing 
displacements and vibrations for different rigidities of silo walls, types of granular solid and its 
flow rate. 
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1 INTRODUCTION - TECHNICAL PROBLEM STATEMENT 
Silos for storing grain or other granular solids, under normal operating conditions 

exhibit wall vibration caused by flow of material generating friction against silo wall. That 
vibration normally has quasi-harmonic waveform alternately increasing and decreasing. Its 
strength depends on various factors, however, observations made thus far prove that crucial 
parameters are wall flexibility and its decrement rate. 

Stresspeaks upon silo emptying are widely known phenomena. Since those greater 
stresses used to cause silo failures, it is currently a common practice to factor them in and 
compensate their impact through experimentally determined by increasing coefficients. 
Those coefficients usually enable satisfying limit states of structural capacity, however, they 
could not be used to: compute maximum amplitudes in walls, determine material fatigue 
hazards or potential resonance threats. 

The Authors set out to develop a computational model for describing fluctuation of 
vibration in silo walls during granular solid and grain flows. The model was devised based 
on analysis of continuous stress on silo walls. 

2.  ASSUMPTIONS TAKEN FOR MODELLING 
The following assumptions were taken to formulate the model: 

− Actual stress is superposition of static and dynamic stress (fig. 1): 
− Vibration has harmonic waveform alternately increasing and decreasing. 

− Conditions for static equilibrium defined by Janssen 

γδ =+
F
Uk tg p

dp
v

v

dx
                              (1.1) 

pv – vertical stress; F – silo cross-sectional area; U – silo circumference; δ - angle of 
wall friction; γ – bulk solid weight by volume; 

Solution to differential equation (1) in accordance with Janssen: 











−=

−
F

zUtgk
stat
h e

Utgk
Fp

δ

δ
γ 1

 
− The displacement equation should be a variable dependent on silo height z and time t, 

and other derivatives will enable solving for longitude of the nodal line ϕ(z,t), bending 
moment M(z,t) and transverse force V(z,t); 

− The model factors in wall give and decrement rate of the structure; 

Special assumption taken to describe self-excited vibration is proportionality of exciting 
force - stressph(x,t), with derivatives of perpendicular translations relative to silo wall  – 

w(x,t), ( )
dt

txdw , , ( )
2

2 ,
dt

txwd . 
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Fig. 2.1. Stress σn acting on cylindrical silo wall [Kmita, Ubysz]. 

Continuous recording silo wall stress measurement  
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3. FORMULATION OF THE MODEL 
According to Boroch [2] and Langer [7] physical objects are continuous systems with 

indefinite degrees of freedom. Mathematics normally tends to discretise tasks. An assumption 
can be made that desired effect is obtained through force acting as point mass (granular solid, 
physical discretisation). The mass, however, can be divided into regular partitions, and the state 
of displacements can be given by limited number of parameters (mathematical discretisation). 
The latter method was employed to develop model describing silo wall displacement under 
load of granular solid. 

The square one is equations of motion for uni-dimensional continuous arrangements and 
underlying dynamics assumptions. This model is justified by silo geometry. In many case this 
task could be approximately reduced to one dimension.  

An important part of every analysis is defining the right-hand side of the equation. In order 
to correctly describe effect of self-excited vibration, the exciting force has to be proportional to 
derivatives of perpendicular translations relative to silo wall. In order to more comprehensively 
analyse experimentally a given phenomenon and more accurately describe vibrations, adequate 
parameters have to be introduced into RHS of equation. In many cases, numerous parameters 
would prevent from obtaining a closed solution and that is the objective authors did set for 
themselves. 

Another issue important from viewpoint of modelling is rigidity of the silo wall. As far as 
dynamic parameters are concerned - frequency and amplitude - the wall is approximated by a 
beam of adequate flexural rigidity, or by membrane (string) whose flexural rigidity is ignored. 

3.1. Linear membrane model of self-excited system 
Base model was assumed as unit width membrane, fixed at both ends. The task was reduced 

down to unit width. In authors' view this is the most fundamental model taken from classic 
mechanics, which gives a good representation of self-excited vibration generated by dry 
friction. Figure 3.1 illustrates cut-out of wall under horizontal stress ph1(x) and quasi-harmonic 
stress ph2(x,t).  N(x,t), N(x+∆x,t) expresses local longitudinal force, α(x,t), α(x+∆x,t) – vertical 
tilt. The load applied to membrane ph2(x,t) is a transverse force per unit of length. From 
condition for equilibrium Σx (vertical axis) factoring in forces generated by motion and forces 
of inertia (D'Alembert's principle) we get: 

N(x+∆x,t) sin α (x+∆x,t) – N(x,t) sin α (x,t) = ∆x [m ( )
2

2 ,
dt

txwd  – ph (x,t)]  (3.1) 

m - mass per unit of length, ( )
2

2 ,
dt

txwd  - acceleration  

Formulation m is an inertial force inferred from II Newton's laws of motion. 
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Fig. 3.1. Cut-out of membrane and distribution of forces. 

By dividing both sides of equation 3.1 by ∆x we get difference quotient on LHS and given 
∆x� 0 we get derivative at dx (from definition of derivative). For constant x over segment ∆x 
at small angles sin α �dw/dx we get longitudinal force N: 

  N – m ( )
2

2 ,
dt

txwd  = – ph(w,t)    (3.2) 

This equation, however, has more a general nature. For the exciting force to generate 
self-excited vibration it has to depend on displacement and its derivatives. Here, on wall 
displacement, its speed and acceleration. Some authors take static friction fs as an auxiliary 
parameter. Forces occurring in the self-excited system, however, have to be explicitly 
separated from static and quasi-static stress generated through storage, filling and 
discharging the silo. Hence the general form of non-homogeneous equation can be written 
as:  

N ( )
2

2 ,
dx

txwd  – m ( )
2

2 ,
dt

txwd  = – ph1(w,t) – ph2(w, ( ) ( )
2

2 ,,,
dt

txwd
dt

txdw ,fs, t) (3.3) 

– ph1(w,t) – static component of stress;   ph2(w, ( ) ( )
2

2 ,,,
dt

txwd
dt

txdw ,fs, t) – dynamic 

component of stress. 
In similar fashion both the linear flexural model of self-excited system and the model of 
vibration along generatrix of silo's plating can be described. This will be discussed in 
dissertation currently in progress. Their final shape is presented in the following subsection. 

3.2. Linear flexural membrane model of self-excited system 
In case of silo wall with little give, its rigidity has to be factored in as well. Hence - similarly 

to flexible wall - the entire side surface is assumed to have the same rigidity. From general 
relationships from strength of materials, geometric relationships and by factoring in physical 
conditions, we get for small displacements: 

– m w&& (x,t) ∆x 

α (x+∆x,t) Ν (x+∆x,t) 

α (x,t) Ν (x,t) 

∆x 

h(x) 

w 
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M(x,t) = – EI (x) ( )
2

2 ,
dx

txwd      (3.4) 

 
Fig. 3.2. Cut-out of silo wall and distribution of forces. 

 

From conditions for equilibrium (fig. 3.2) we get:      
  – m w&& (x,t) ∆x + Q (x+∆x,t) – Q (x,t) + ph(x,t) ∆x = 0   (3.5) 

Similarly to equation 3.1, the equation 3.5 can be divided by ∆x, and given ∆x�0 we get:   

Q’(x,t) = m ( )
2

2 ,
dx

txwd  – ph(x,t)       (3.6) 

From equation 3.4 we get: 

 Q(x,t) = 
dx
d M(x,t) =

dx
d  [– EI (x) ( )

2

2 ,
dx

txwd ]    (3.7) 

After substituting (3.7) to (3.6) we get: 

 2

2

dx
d M(x,t) = 2

2

dx
d  [– EI (x) ( )

2

2 ,
dx

txwd ] = m ( )
2

2 ,
dx

txwd  – ph(x,t)   (3.8) 

In majority of cases, silos have high longitudinal rigidity constant across segments, hence 
EI(x) = const. and 3.8 is reduced to: 

 EI (x) [ ( )
4

4 ,
dx

txwd ] + m w&& (x,t) =  ph(x,t)      (3.9)  

Similarly to previous case, the component of excitation generated by vibration in self-
excited system can by isolated: 

– m w&& (x,t) ∆x 

M (x,t) 

Q (x+∆x,t) 

Q (x,t) 

M (x+∆x,t) 
  
h(x) 

 

w 

∆x 
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 EI (x) [ ( )
4

4 ,
dx

txwd ] + m w&& (x,t) = ph1(x,t) + ph2(x, 2

2
,

dt
xd

dt
dx ,fs, t)   (8.9)  

3.3. Model of vibration along generatrix of silo's plating 
In high silos elastic strain occurs along generatrix of the silo. Here, vibrations are excited 

longitudinally. System of forces along the wall is illustrated in figure 3.3 and equation 3.10 
shows equilibrium: 

 
Fig. 3.3. Cut-out of silo wall and distribution of forces.        

  N(x+∆x,t) – N(x,t) = m u&& (x,t) ∆x – pv(x,t) ∆x    (3.10) 
Similarly dividing by ∆x in line with definition of differential quotient, given ∆x�0, 

the differential equation is: 

  
dx
dN  = m u&& (x,t) – pv(x,t)      (3.11) 

Then in accordance with physical relationship (Hooke's law) we get: 

  σ = E ε        (3.12) 

  
A
N = Ε 

dx
du         (3.13) 

By substituting (3.13) to (3.11): 

  
dx
d  ( E A

dx
du

 ) = mu&& (x,t) – pv(x,t)     (3.14) 

and for quantities constant over segments EA = const.:          

   E A 2

2

dx
ud  =  mu&& (x,t) – pv(x,t)      (3.15) 

After rearranging equation 3.15 and singling out factor generating self-excited vibration it 
becomes: 

 mu&& (x,t) ∆x 

N (x,t) 

py (x+∆x,t) py (x,t) 

N (x+∆x,t) 
  
h(x) 

 

w 

∆x 

u(x,t) 



 8 

mu&& (x,t) – E A 2

2

dx
ud  =  pv1(x,t) + pv2(x, 2

2
,

dt
xd

dt
dx ,fs, t)   (3.16) 

However, terms pv are significantly lower than ph, are recorded longitudinal vibrations have 
amplitudes significantly lower than vibrations perpendicular to silo walls. Thus they are 
considerably less important for silo wall vibrations. 

4. SOLUTIONS TO SELECTED MODELS DESCRIBING SILO WALL VIBRATION 
Models of self-excited systems were based on equations of motion. Solutions were sought 

after for complete structure of mass and using approximated description of state of 
displacements with limited number of parameters expressing characteristics of silo wall 
stresses. 

4.1. Laminar flow stress 
Stress generated by granular solid acting on silo walls - provided there is no pulsation 

(laminar) - can be described by differential equation, which - since stress is assumed 
proportional to horizontal translation of silo wall - will take form of general equation of motion. 
If there is no pulsation upon bulk solid being discharged from the silo (laminar flow), the 
phenomenon can be expressed by the following differential equation:

 ( ) ( ) ( )txu
t

txut
t

txu n ,,,
2

2
−

∂
∂

−=
∂

∂ ; n X<½; 2>     (4.1) 

For initial conditions: 

u(x,t) = 0; u’(x,t) = 1      (4.2) 

we get relationship describing silo wall displacements over time. This is the case where there 
are no extra loads applied of oscillatory nature. By following up on the assumption wall 
displacements are proportional to wall stress, we get relationship expressing that stress over 
discharge time. Depending on assumed n, usually between <½; 2>, the stress will fade over 
various time. This corresponds to different readings of measurements taken at different heights. 
Due to sheer complexity of factors influencing actual stresses, the following models use 
theoretical normal stress 1=∗

hp , which for given silo has to be multiplied by static stress at 
given height determined through e.g. Janssen equations. The following figures show example 
stress over time charts. To better illustrate the function, waveforms of stress fluctuations were 
shown for three levels: upper, middle and lower part of the silo. According to the function, the 
highest stress occurs once the discharge process starts and is most intensive towards the hopper. 

Due to numerous factors influencing stress acting on different levels of silo, a parametric 
function is envisaged to describe the phenomenon. 

( ) πn
th

L
h etmtxp

−

=,  + c1t + c2    (4.3) 

This function is general integral of equation (4.2) expressed in real numbers. Initial and 
boundary conditions for determining parameters and constants of integration are determined 
based on results of experimental study. Parameters of "low vulnerability" to function 
fluctuation were taken for further deliberations as constants: 

m = coefficient describing initial discharge <0,7÷1,00> – assumed 0.8; 
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L = coefficient describing variability of the function fluctuation - assumed 0.1 

h = coefficient describing variability of the function fluctuation (convexity, concavity, 
inflection point) - assumed 0.005 

The solids discharge starts at t0. Hereunder the function is: 

( )






>

≤
= −

0

005,0
1,0

01
,

ttetm

tt
txp

n
th

π
                         (4.4) 

Both the function fluctuation and parameters were taken based on experimental data. 
Arriving at the solution enables adjusting (correcting) those parameters for flow of different 
substances  
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Fig. 4.1. Relationship between horizontal stress and time - upper silo section (n = ½). 

 

4.2. Stress at flow with self-excited vibration 
Solids discharge from silo is often distorted by dynamic factors occurring over the course of 

that process. The most important from the viewpoint of day-to-day operation are seemingly: 

− tumble of overburden material due to arching or doming; 

− vibration generated by turbulent flow; 

− vibration excited by "dry friction" as called in literature self-excited vibration. 

πn
h

H =
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The nature on impact stress exerts depends on multiple factors and can be vary both 
qualitatively and quantitatively. Some of the factors are:  

− caking (humidity, granulation, re-solidification),  

− angle of internal friction of bulk solid,  

− wall friction coefficient,  

− silo wall give,  

− flow rate of bulk solid,  

− boundary conditions (wall joints, silo supports, foundation),  

− mass flow problems (relief equipment, segregation); 

− other. 
Presented next is model built based on available to authors results of experimental study, 

where parameters of bulk solid (sand) can be assumed homogeneous, the silo is regular shape 
and discharge flow is consistent. Silo walls show some give, and the wall where wall stress 
measurements were taken had natural frequency ν = 33 Hz. 

For purposes of formulating the model, only tape sections where vibrations were the 
strongest were used. Based on continuous readings it was concluded that an important 
oscillatory factor is self-excited vibration. 

The equation describing silo wall strain over time was formulated using forecasting method. 
Presented was superposition function of carrier wave and function describing oscillation. The 
function describing carrier wave was described in detail in subsection 4.5.1. The function 
describing the oscillatory wave was introduced with - apart from conditions enabling 
modulation of frequency and amplitude - conditions enabling to describe excitation and 
extinction of vibration.  

The function describing horizontal displacement of silo wall in any given section is also 
given by: 

( ) ( ) ( )txutxutxu ,,, 21 += ,       (4.6) 

where: ( ) ( )DtCtAtetxu tB sinsin,1 −= − ,      (4.7) 

( ) tHL etMtxu −=,2 .       (4.8) 

Thus the full equation is: 

( ) ( ) tHLtB etMDtCtAtetxu −− +−= sinsin,    (4.9) 

or 

( ) tHLtBtB etMDtAteCtAtetxu −−− +−= sinsin,   (4.10) 

Next in this subsection presented is rearrangement of the function, leading to final differential 
equation describing silo wall vibration. To keep working outs concise, derivative symbol used 
for single-variable function ( )!was substituted into the RHS of equation.           
 

( ) ( ) ( ) ( )( ) ( ) ( )!!!!
sinsinsinsin, tHLtHLtBtB etMetMDtCtAteDtCtAte

t
txu −−−− ++−+−=

∂
∂   
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           (4.11) 

( ) ( ) tBtBtB teBAAeAte −−− −+=
!

 

( )( ) ( )DtDCtCDtCt coscossinsin ! −=−  

( ) ( ) ( ) ( ) tHLtHLtHLtHL etHMeMLtetMetM −−−−− −+=+ 1!!
 

 

( ) ( )( ) ( ) ( ) tHLtHLtBtBtB etMHetMLDtDCtCAteDtCtteABAe
t

txu −−−−−− −+−+−−=
∂

∂ 1coscossinsin,

 
( ) ( )

( ) ( ) tHLtHLtBtB

tBtBtBtB

etMHetMLDtDAteCtCAte

DtteABDtAeCtteABCtAe
t

txu

−−−−−

−−−−

−+−+

++−−=
∂

∂

1coscos

sinsinsinsin,

 

 

( ) ( )( ) ( ) ( )( )!1
2

2
coscossinsin, tHLtHLtBtBtB etMHetMLDtDCtCAteDtCtteABAe

t
txu −−−−−− −+−+−−=

∂
∂  

( )
( )

( ) ( )

!

1
2

2

coscos

sinsinsinsin
,

















−+−+

++−−
=

∂

∂

−−−−−

−−−−

tHLtHLtBtB

tBtBtBtB

etMHetMLDtDAteCtCAte

DtteABDtAeCtteABCtAe

t
txu  

 

( ) CtACeCtABeCtAe tBtBtB cossinsin
! −−− +−=  

 

( ) ( )( ) CtABCteCtteBABABeCtABte tBtBtBtB cossinsin
! −−−− +−+=  

( ) CtABCteCtteABCtABeCtABte tBtBtBtB cossinsinsin 2! −−−− +−=  
 

( ) DtACeDtABeDtAe tBtBtB cossinsin
! −−− +−=  

 

( ) ( )( ) DtABDteDtteBABABeDtABte tBtBtBtB cossinsin
! −−−− +−+=  

( ) DtABDteDtteABDtABeDtABte tBtBtBtB cossinsinsin 2! −−−− +−=  

 

( ) ( )( ) CtteACCtteBACACeCtACte tBtBtBtB sincoscos 2! −−−− −−+=  

( ) CtteACCtABCteCtACeCtACte tBtBtBtB sincoscoscos 2! −−−− −−=  
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( ) ( )( ) DtteADDtteBADADeDtADte tBtBtBtB sincoscos 2! −−−− −−+=  

( ) DtteADDtABDteDtADeDtADte tBtBtBtB sincoscoscos 2! −−−− −−=  
 

( )( ) ( ) ( ) ( ) ( ) tHLtHLtHL etHMLetLMLetML −−−−−− −+−= 12!1 1  

( )( ) ( ) ( ) ( ) tHLtHLtHL etMLHetLMLetML −−−−−− −−= 12!1 1  
 

( ) ( ) ( ) tHLtHLtHL etHMHeMHLtetMH −−−− −+= 1!
 

( ) ( ) tHLtHLtHL etMHeMHLtetMH −−−− −= 21!
 

 

( ) ( ) ( ) tHLtBtB etMDtAteCtAtetxutxutxu −−− +−=+= sinsin,,, 21  

 
( ) ( )

( ) ( ) tHLtHLtBtB

tBtBtBtB

etMHetMLDtDAteCtCAte

DtteABDtAeCtteABCtAe
t

txu

−−−−−

−−−−

−+−+

++−−=
∂

∂

1coscos

sinsinsinsin,

 

 

( ) CtACeCtABeCtAe tBtBtB cossinsin
! −−− +−=  

 

( ) CtABCteCtteABCtABeCtABte tBtBtBtB cossinsinsin 2! −−−− −+−=−  
 

( ) DtADeDtABeDtAe tBtBtB cossinsin
! −−− −=−  

 

( ) DtABDteDtteABDtABeDtABte tBtBtBtB cossinsinsin 2! −−−− +−=  
 

 

( ) CtteACCtABCteCtACeCtACte tBtBtBtB sincoscoscos 2! −−−− −−=  
 

( ) DtteADDtABDteDtADeDtADte tBtBtBtB sincoscoscos 2! −−−− ++−=−  
 

 

( )( ) ( ) ( ) ( ) tHLtHLtHL etMLHetLMLetML −−−−−− −−= 12!1 1  
 

( ) ( ) tHLtHLtHL etMHeMHLtetMH −−−− +−=− 21!
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After substitution: 

( ) ( ) ( ) ( )
)coscos(2)sin(sin

,
2,

, 1
1

22
2

1
2

DtDCtCAeDtCtteAB
t

txu
BtxuCB

t
txu BtBt −+−+

∂
∂

−−=
∂

∂ −−  

and 

( ) ( ) ( ) ( ) )22(21
, 22212

2
2

2
tHLtHLtHLtHLtHL etMHetMHetMHetMLHetLML

t
txu −−−−−−− −++−−=

∂

∂  

and after rearranging 

( ) ( ) ( ) ( ) ( )
12

11
1

22
2

1
2 2,2,

2,2
,

u
t
B

tt
txu

tt
txu

BtxuCBB
t

txu







 +−
∂

∂
+

∂
∂

−−−=
∂

∂  

 

( ) ( ) ( ) ( ) ( ) tHL etLMLtxu
t

txu
M

t
txu −−−+−

∂
∂

−=
∂

∂ 2
2

2
2

2
2

1,
,

2
,  

When considering complete solids discharge, the parameter of time might reach high values 
and last two equation components will tend to naught. Then the final equations of motion 
become: 

( ) ( ) ( ) ( ) ( )
12

11
1

22
2

1
2 2,2,

2,2
,

u
t
B

tt
txu

tt
txu

BtxuCBB
t

txu







 +−
∂

∂
=

∂
∂

+−−−
∂

∂    (4.12) 

( ) ( ) ( ) ( ) ( ) 01,
,

2
, 2

2
2

2
2

2

=−−+
∂

∂
+

∂

∂ −− tHL etLMLtxu
t

txu
M

t
txu      (4.13) 

In equation (4.12) the RHS is the function of displacement and first derivative of 
displacement - this is consistent with initial assumptions made for self-excited vibrations. The 
equation (4.13) can be interpreted as "main wave" −describing characteristics of stress on silo 
wall during solids discharge. 

Similarly to laminar flow, stress was assumed proportional to horizontal translations of silo 
walls, however, as opposed to that case, apart from regular stress upon solids discharge, also 
other loads occur with oscillatory waveform. Based on that assumption, we get the relationship 
between stress and solids discharge time. To make possible comparing graphs of functions, the 
parameter was assumed to fluctuate within n = <½; 2>. Hence, those stresses will be described 
for different levels of silo wall. These models also use the theoretical normal stress ph

* = 1, 
which for given silo has to be multiplied by actual stress at given height. The following figures 
show example stress over time charts. To better illustrate the function, waveforms of stress 
fluctuations were shown for three levels: upper, middle and lower part of the silo.  

The function describing stress acting on silo wall is given by superposition of main wave 
and oscillatory stresses. Introduced parameters enable experimentally describing the function 
both in terms of its graph and expected values. 

( ) ( ) 21sinsin, ctcetMDtCtAtetxp n
th

LBt
h +++−=

−
− π      (4.14) 

Similarly to solution for laminar flow, the function is general integral of equation () 
expressed in real numbers. Initial and boundary conditions for determining parameters and 
constants of integration are determined based on results of experimental study.  
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Parameters found in equations have the following physical representation: 

– A - vibration amplitude; when describing stress acting on silo wall where amplitude 
of oscillatory component to fixed component is 5 ÷ 20 %, the parameter fluctuates 
within <0,0005 ÷ 0,002>; 

– 
πn
bB = , b – range of damping; n X<½; 2>;  when self-excited vibrations extinct at 

0.7 ph acting on silo wall, b = 0.03, provided self-excited vibrations extinct at 0.2 ph, 
b = 0.07; 

– C, D - parameters describing frequency of resonant excitation; quantities closest to 
observed excitations are obtained for C/D=<0,85 ÷ 0,95>; 

 

and previously assumed for laminar flow 

– m = coefficient describing initial discharge <0,7÷1,00> – assumed 0.8; 

– L = coefficient describing variability of the function fluctuation - assumed 0.1; 

–  
h = coefficient describing variability of the function fluctuation (convexity, 
concavity, inflection point) - assumed 0.005 

The solids discharge starts at t0. Finally the formula became: 

( )
( )





>+−

≤
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  (4.15) 

In case of rigid silos with high decrement rate vibration has nature of short-term excitation, 
which causes temporary overload of the silo wall. For that eventuality silo overload was 
modelled for stresses beyond 1.2 ph. Because overload has short-term nature, silo overload has 
characteristics similar to random structural overload during solids discharge, where expected 
stresses are a band of expected loads as opposed to non-ambiguous values. 

In case of dynamically flexible walls with high decrement rate, higher amplitude 
vibrations might occur, but they who quickly extinct (fig. 4.2). 

Another example is dynamically susceptible wall with low decrement rate, where 
periodically excited are cyclical high-amplitude vibrations. Description of these vibrations is 
rather characteristic with explicit self-excited vibration (fig.4.3). 

Selected examples are seemingly the most representative based on available experimental 
studies as far as analysis of vibrations and stresses acting on silo walls are concerned.  
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Fig. 4.2.Horizontal stress acting on silo flexible wall to vibration with high decrement rate. 
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Fig. 4.3. Deformable wall with low decrement rate. 

5. SUMMARY, RESEARCH PROBLEMS AND SUPPLEMENTARY RESEARCH 
PLAN  

From designer's point of view, issues of stress acting on silo wall are synonymously related 
to wall displacements, strength of materials problems and fatigue problems. The proposed 
model is a tool intended for forecasting loads and some processes related to day-to-day silo 
operation. 
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This proposition of stress&strain model was devised to give original contribution to current 
state of arts in behaviour of silo wall during storage, filling and discharging. This particularly 
applies to subject area most extensively covered in specialist publications which seems crucial 
from standpoint of structural safety i.e. real stresses generated by granular solid acting on silo 
wall. The proposed model aims to make computational models more true to real structural 
behaviour. 

In this paper, authors attempted to compromise between universality of model and its 
practical applicability, hence it was limited to analyse variability of only selected elements. 
Taken assumptions are the square one in developing more complex models which would 
describe with greater accuracy existing cases or enable analysing new practical cases, which 
were not included in this paper. 

Practical applications for the model are: 

– Approximated description of vibration cycles (amplitude and frequency of 
vibrations), key for determining fatigue strength of material, 

– Estimation of expected stress acting on silo wall during granular solid flow. 

This model - based on research data - requires further verification against greater 
number of experimental data from natural-scale structures. Beyond doubt, however, it can serve 
well for purposes of experimental studies. 
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