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Abstract. A concept of non-commutative Galois extension is introduced and binary
and ternary extensions are chosen. Non-commutative Galois extensions of Nonion
algebra and su(3) are constructed. Then ternary and binary Clifford analysis are
introduced for non-commutative Galois extensions and the corresponding Dirac

operators are associated.

1. BINARY AND TERNARY NON-COMMUTATIVE GALOIS
EXTENSIONS

We introduce a concept of non-commutative Galois extension of binary type and
ternary type and state some basic facts on the extensions ([6]).

Basic notations on non-commutative Galois extensions
Let 4 bean algebraand A4' be a subalgebra of 4. We make the following definition:

DEFINITION 1
(1) We take an element r € 4 with the following condition 7* =1. The following
subalgebra 4'[r]of 4 is called non-commutative Galois extension of k-nary type:

A= 6,7 s, e 4}

The extension is called proper whenz” ¢ 4'(p =1,..,k—1) . In this paper we are
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concerned with only proper extensions without mentioning it.

(2)We assume that A = A4 [7,](i =12) are subalgebras in a common algebra 4,.
When the ismorphism is given by the following multiplication operator:
0: A[r,]—> A[r,], 0(E)=E(EeA"),01,=1,(0 4, ), it is calledd -equivalent.

(3) We assume the same condition in (2). When the isomorphism is given by the
Adjoint  operator: 4d, & (Jge ;) ,Ad,E=g&g ™, Ad =& (E'ed). it is called Ad-
equivalent.

(4) When 4'[z,]= A'[r,] holds, they are called identical each other. When 7, =7, then
we have the identical extension: A'[z,]= A'[z,].

REMARKS (1) To define the Galois extension structure, we put some additional
condition on the algebra: for example, & ¢’ :Zar“g‘a holds with some ¢, e 4for any
fedal=12.,k—1 . In this paper we are concerned with the algebra with this
condition.

(2) The Galois extension is not unique depending on the choice of 7. We are concerned
with the Galois extension which does not depend on the choice r(=1).

Examples of binary and ternary extensions

Next we proceed to examples of binary and ternary extensions. We obtain binary and
ternary Clifford algebras from Galois extensions A'4/1] (see S.4).

Example 1(Complex numbers)

The first one is the complex number field R[v/-1]:

R[N-11={0,1+6,4-1|6,,0, € R}

91 ‘92
= 16,,0, R
- 92 91

Example 2 (Quaternion number)
The quaternion number field can be obtained by the non-commutative Galios extension
of the complex number field RV-1]

C[\j_lz]:{gll"‘gz\/_lz 16,,0, € C}
6 0,
= |16,,6, eC
‘92 _‘91
0, o, 0, o,
-0, 0 0, -0
> ! °116,,0,.,6,,0, € R

o, o0, -0 -6,
0, -0, +0, -6,

Example 3 (Cubic root numbers)
We give a basic ternary Galois extension. The simplest example is the complex cubic
numbers R[3/1]



R[%ﬁ]:{9]1+92j+6’32j2 16,,0,,0, € R}

01 92 93
=316, 6 6,(16.6,.0,<R
6, 65 6

In the next section we give ternary extensions in Nonion algebra.

Successive extensions

We consider successive Galois extensions. We take an extension: 4 = 4,[r,] and
make an extension 4, = 4,[r,]. Then we have the successive extension A4, =(4,[z,])[z,]
as follows: 4, = {Z x, ;772 |x,; € 4.} .We can also make the tensor product extension.
Namely we can define 4, = 4,[r,®7,] by 4, ={> x,,71®z"2|x,,€4,} .The example

2 is the tensor product extension.

2. THE GALOIS EXTENSION STRUCTURE ON NONION
ALGEBRA

We introduce a concept of Nonion algebra N and discuss ternary Galois extension

structures on it. We begin with the definition of Nonion algebra ([1],[4]):

DEFINITION 2
(1)The matrix algebra which is generated by the following 3 matrices over R[3/1]

is called Nonion algebra:

0 j 0 0 0 010
0=[0 0 j| o=l0 0 j| ©=001
1 0 0 1 0 0 1 00

(2) The matrix algebra which is generated by the following 3 matrices over the real field

S}

R is called basic algebra B:

0 0 1 010 1 00
T,=/0 1 0 T,=[1 0 0 T,=|0 0 1
100 0 0 1 010

(3)The algebra generated by T,(or T;) is called cubic algebra and is denoted by B’:

010 00 1
7,=[0 0 1 T,=[1 0 0
- 100 010
(4) The algebra N generated by the following four elements over R[3/1] is called the

binary extension of N:

0 j 0 0 ;20 010 0 0 1
0,=l0 0 /2|0=|0 0 j|@=[0017,={0 1 0
1 0 O 1 0 0 1 00 1 0 O

Then we can prove the following proposition:



PROPOSITION 3

(1)The following 9 elements constitute linear basis of Nonion algebra:

0 0 0 j° 0 Lo
0,=0 0o j2| &=[0 0 0;=0 0 1
1 0 0 1 0 0 1 00
0 01 0 0 1 00
lejz 00 0,=|j 0 0 Q3:1 0
0 j O 0 ;2 0 0 1
1 00 1 00 1 0 0
R=[0 1 0| R,=|0j 0 R,=|0 j* 0
0 0 1 00 ;° 0 0
(2) The following 6 elements are linear basis of B:
00 010 00
T,=/0 1 0 T,=|0 0 1 T,=|1 0
00 00 0 0
0 0 1 010 1 00
T,=|0 1 0 T,=|1 0 0 T, =
00 0 0 1 010
(3) The following 3 elements are linear basis of B'
1 0 0 01 0 0 0 1
T,=[0 1 0 T,=0 0 1 T,=[1 0 0O
0 0 1 1 0 0 01 0

(4) B' isasubalgebraof N,and B isa subalgebra of N.

PROOF

The proofs are direct calculations by use of the following product tables.

Q Q: Qs Q Q2 Qs R: Rz Rs
Q | 0 jQ|R PRs jR @1 Q Qs
Q@ |iQ® Q@ jPQ|jRe R fRs Q@ Q @ T T T Ts Ts Te
Q: [i’Q2 j Q1 Qs Rs jRz R Q @ Q: Ty T T Ts Ty Ts Te
@ (B R R Q@ Qi@ 0 Te T2 T3 T1 Ts Te T4
?2 oo R R i@ .QZ Q& ?Z jzgl J ?3 Ts Ts T: T2 Te T4 Ts
Q: |R2 Rs Rt [i®Q jQ @ [Q Q@ jQ
Rt | Q Q |O: Q: Qs |R R: Rs T T4 Te Ts T: Ts T2
Rs |j"Qz i°Qs @ |Q @ Q |Rz Rs R Ts Ts T4 Te T2 T: Ts
Rs [iQs jQ jQ |Q Q@ Q@ |Rs R Re Ts Ts Ts Ta Ts T2 T:

The explicit construction of binary extension of Nonion algebra

The binary extension N of N is given as follows:
N={x+yT,|x,y e N}
Then we can give the linear basis of N as follows:




0 j 0 0 jz 0 [O 10
0 =0 0 0,=|0 J 0,=|10 0 1| (=75)
[1 0 0} 1 0 1 00
0 1 0 0 1 B 0 0 1
Ql[ﬁ 0 0 0,=j 00 Q=1 0 0/(=T)
o ;5 O 0 7 0 010
10 0) 10 0) 100
R =010 R,=|0 j 0 Ry=[0 ;% 0
0 01 00 j° 0 0
0O 0 1 0 0 1 01 0
Q,=|j> 0 0 o,=|j 0 0 o',=|1 0 0
0 0] 0 j* 0 0 0 1
0 j 0 0 ;2 0 B I 00
0\=[0 0 j*l 0,=0 0 j| ©Q5=0 01
{1 0 0 1 0 0 01 0
0O 0 1 0 0 j? 0O 0 j
R' =0 1 O R.,=l0 j o] R,=|0 ;> 0
1 0 0 1 0 0 1 0 0

As for the non-commutative Galois structure of Nonion algebra, we can prove the

following theorem:

THEOREM 1
(1) Nonion algebra is the Galois extension of the algebra B': N=B'[r] by
r=R(i=23),0,,0.(i=123)(z* =1).
(2) The Galois extension § = n[3/1] can be expressed as N = B[Z{/T] .
Hence we have the following commutative diagram:
"N\.
N B
NS
B
PROOF
(1)We notice that B’ is the commutative Galois extension: B'= R[3/1].
Choosing =& (i=23),0,0,(i=123) , we make the Galois extension B' [{/E 1. Then
we see that this is identical with N .
(2) We notice that B is the non-commutative Galois extension of B':B= B[] ,
where 3/1, =T,. Choosing 7 = R, , we make the Galois extension . Then we see that it is
identical with N : N = B[V/1].

THEOREM 11
We can prove the following assertions for N :



(1) We have the following ternary Galois extensions which are called basic extension:
A[R]= {xR, + yR, +zR; | x,y,z € R[]}
A[Q0]= (xR, + 0, +20; | X,z € R[j1}(i =12.3)
(A[Q,1= (xR, +y0, +20, | x, v,z € R[j1}(i=1,2.3))

We notice that the extension is unique . Namely we have

N =A[R]=A[Q,]= A[0,] = A0;]

(2) 0.0,G,j=123) give a part of generators of the Galois group of N:N= B3
Namely putting 4, [R]={xR, + yUR, +zUR, | x,y,z € R[j]}, where U=0,,0,(, j=123),

we have Galois extensions ( 8 -equivalent):

(1) AalR1=A(0,). 4, [F]= 410,).
AQ [R]=A4[0,], Agz [R]=4[0 ],

(2) ARZ [O]=4[0,], ARZ [0, ]1=A0;], AR2 [0,]=40,],
45 [R]= A[Qs], 4; [R]= A[Q,], 4; [R] = A0, ],

(3) The Ajoint operation gives a part of generators of Galois group of N = \/Z [B']
(Ad-equivalent):
AdgR =R, AdR, = jR,, Ady Ry = jR, (i=123),
4d,0,=0,,4d, 0, = jO,, 4dy 0, = j°0; (i=12.3),
4dy0,=0,, 4d, 0, = j°0;, 4dy 0, = jO; (i=12.3),

/ fr\ Ad

o A \
O /(o) f‘:w'&
N/ \
00 &)
Rl SN )

3.THE GALOIS EXTENSION STRUCTRE ON su(3)

In this section we discuss the structure of the Galois extension on su(3).
(1) At first we write up the basis of the algebra ([5]).

0 i 0 0 -1 0 i 0 0
fi=|i 00 f=l1 0 0 fi=l0 =i 0
{000} [ooo} [0 OJ
' 0
0
1

0
0 0 i 000 0 0 ! 1 0 0
fi=/0 0 0 f;=|0 0 0 fo=|0 0 i| f,=|0 -1 fx:ﬁo 1 0
i 00 0 i 0 0 0 00 -2

(3) We consider the linear subspace L, generated by the following 3 elements:

I~ N\
—_ S
(e} (==}
o |

—_



0 i 0 0 10
L. e =i 0 0} 1 0 OJ [o —i OJ
000 o 0 0 0 0 0
Also we introduce the following two linear subspaces L, and L,:
0 0 i 0 0 ,1 i 0 O
L,: e=10 0 0} ~lo 0o o e'3:[0 0 OJ
i 00 1 0 o 00 —i
0 0 0) 0 0 0} 00 0
L,: e, =|0 0 i e,=[0 0 1 e"s=10 i 0
0 0 -1 0 0 0 —i

i 0
REMARK We notice the following relation f, =1/3(¢,+¢",). Hence we see that

e, e,,.., €', constitute the basis of su(3) omitting one of e,,e';,e'"; .
Then we can prove the following theorem:

THEOREM III
We have the binary and ternary Galois extension structures on su(3):

(1) We have the following Adjoint strucutre on L ,(i = 1,2,3)

-1 _ -1 _ -1 _
HeH  =-e,, He,H =e, He;H =e,,
1 1 1
He H =-€,, He,H =-€,, HeH =e¢€,,

"

"on -1 _ von —1_ "on -1
He' H =e,, He"',H =¢e" ,He'H =é€",,

where 100 10 0
H=|0 i 0|, H=|0 1 0},
0 0 1 0 0 i
(2) We can obtain the following commutation relation:
{ e’=e’=e’=-1,
€16 =766 =€;,6,8; =766, =€,6,6, = —€,6; =&,

where 1, =diag[L,1,0]. After the central extension, we have the Clifford algebra which
is isomorphic to Quaternion algebra. For the case of ¢', and e";(i=1.2,3), we have the
same assertions. Hence we can define the binary non-commutative Galois structure
on L,(i=1,2,3) . We notice that we can introduce three Dirac operators . This is directly

connected the three quarks for the Gell-Mann quark model ([5]).
() {e,.€',€e", } (i=123) constitute the ternary Galois extensions by use of the
following Adjoint operators:
{ GG =e", (k=123), Ge', G~ =e (k=1273),
Ge" G =é, (k=12),Ge", G =—¢,

where

0 0 1
G, =|1 0 0|(=T,in Proposition 4)
010



(4) Hence su(3) has the following non-commutative Galois extension:

(1) su@B)=L VL, UL,
su (3)

‘ R (2) L =123) is isomorphic to su(2) and it is a binary Galois
su(2) extension L = B,[3/1,] over B, =R[e,]

2 [3
< ) (3) su(3) is a ternary Galois extension B[}/1,] over B=su(2)

© n, (@)
EY

Hl

g O - a Y L,
'Y G, “
e 50 (&

PROOF : The assertions follow from the direct calculations and may be omitted.

4. A METHOD OF NON-COMMUTATIVE GALOIS EXTENSION
TO BINARY AND TERNARY CLIFFORD ANALYSIS

In this section we introduce concepts of binary and ternary Clifford algebras and discuss
the relationship between the Clifford analysis and non-commutative Galois extensions.
We introduce Dirac operators and Klein-Gordon operators for the both Clifford

algebras.

(1) Binary Clifford algebras and Galois extensions
We show that a special class of binary Galois extensions introduces binary Clifford
algebras. We call the usual Clifford algebra as binary Clifford algebra. Namely we put

the following definition:

DEFINITION 4
An algebra with generators {7},7,,..,7,}(n=2") is called binary Clifford algebra,

when we have the following commutation relations:

TT,+T,T =4268,1(i,j =12,.,n) .

Then we can introduce the following operators on the n-dimensional Euclidean space:

D:Tli+T2i+....+Tn 9
Ox, Ox, Ox,
0 0 0 .
D"‘=T*la—+T*2 tot T*, —(T*, =-T,(j=12,.,n)

yl 6)/2 ayn
The operator is called Dirac operator and its conjugate operators when they satisfy the

following condition:



2 2 2
0 -+ 0 s+t 0 ) ®1
ox,~ 0Ox, Ox,

A=D*D=DD" A=%

n

The operator is called the binary Lapalce operator.

Next we proceed to the connections between non-commutative Galois extensions and
binary Clifford algebras. At first we notice that non-commutative Galois extensions do

not necessarily define a Clifford algebra (see example below). Hence we can make the
following definition:

DEFINITION 5
We take a successive binary non-commutative Galois extension : {7,,7,,...,T, }(n=2").

A pair {T,,T,}1s called Clifford pair, when they satisfy the following condition:
T, +T,T, =251,

EXAMPLE: We see that we have only one Clifford pair {e,e,}for CxC Also we
see that each pair {e,e }(i=1,j=1i= /) of H isa Clifford pair.

CxC=xe +xe,+x8; +x,€,

SO A

Then we can prove the following theorem:

THEOREM V
When a Clifford algebra 4 with generators {7,,7,....,7,}(n=2")1s given, then there
exists a sequence of successive non-commutative binary Galois extensions which

defines the Clifford algebra. Namely we have the following:
TT,+TT,=-26,1, = A =4 [}-1, 1(k=12,..m(A=4,, 4, = B)

i n

PROOF: We prove the assertion by the induction. The quaternion numbers are

obtained by the non-commutative Galois extension from the complex numbers. Next we
choose a Clifford algebra with generators: {7;,7,,...,T,}(n=2"). Putting

. Tz 0 - R 0 I 0 J
Ti = (l = 1929--97/1)5 Tn+1 = > L2 T §
0 -T -1 0 J 0

we can make a successive binary Galois extension:4,,, = 4,[7,.,1,4,., = 4,,,[7,.,1 which also

>

defines a Clifford algebra with the commutation relations: 7.7 +7,7 =-26,1,,

(2) Ternary Clifford algebras and Galois extensions

Next we proceed to the construction of the ternary Clifford analysis by Galois extensions.



DEFINITION 6
An algebra which is generated by {7;,7,,7,} is called ternary Clifford algebra when it

satisfies the following commutation relations:
LTI, +T,I.T, + T.T,T, = 3"E,
nabc — 77bca — ncab
77111 :’7222 :77333 — 1,77123 — 77231 — 77321 =j2,
77321 :77213 — 77132 — ]

Next we proceed to the derivation of field operators from a ternary Galois extension.

Choosing {7},7,,T;} , we introduce the following three operators on the 3-dimensional

Euclidean space:

D =T 2 + 7, 2 + 75 8
Ox, Ox, Ox,

D" =T, 4 + j°T, o +jT3i
Ox, x5 Ox,
prr=1, %y 1, Oy 1, °
ox, ox, Ox,

The operators are called Dirac operator and its conjugate operators when they satisfy the

following condition:
3 83 63 83

A=DD*D¥, p=( L L O O 4
ox;” 0Ox, 0Ox, 0x,0x,0x,

The operator is called the ternary Klein Gordon operator.

)®1,

(3) Binary and ternary Dirac operators for Nonion algebra:
We begin with introducing the following concept of ternary Clifford triple:

DEFINITION 7
We take a successive ternary non-commutative Galois extension : {7,,7,,...,T,} (n=3").

Atriple {T ,T,,T.}is called Clifford triple, when it generate the ternary Clifford algebra:

At first we are concerened with the binary and ternary Dirac operators on B.
PROPOSITION 8
From the linear basis {7;,7,,7,}of the algebra B’, we can introduce the binary and

ternary Dirac operators:

D,:TliJrQiJrT2 0
0y, 0y, 0y,

D, =T + T, 0 +j2Tz 0
0y, 0y, 0y,

D, =T, 0 +j2T3 0 +JT, 0
0y, 0y, 0y,

PROOF: The proof'is a direct calculation by use of the table and may be omitted.

10



We can prove the following theorem:
THEOREM V
(1) The ternary triples {X;,X,,X;} which are generated by the linear basis can be

listed as follows:

{0,0.0,} {0,.0,.0,} {0,,0,,0;} {0,,0,.0:} {R,.R,,R,}
{R,0,,0,} {R,0,,0,} {R,0:,0:} {R,R.R} {R.R,,R;}
{0,.0,.0,} {0,.0,.0,} {0,.0,,0,} {0,,0,.0,} {R,.R,.R,}

Hence the ternary Dirac operator is defined by the Clifford triple {X;,X,,X;}:

th)(li+)(3 0 +X, 9
oy, 0y, 0ys

D, =X, d + JX, d +j2X2 0
0y, 0y, 0y,

D, =X, d +j2X3 @ +J.X2i
oy, 0y, 0y,

(2) Binary and ternary Dirac operators on su(3)

Next we proceed to the Dirac operators for su(3). From the Clifford structure

N S N
{ € =€ =€ =—1L
€16, = 76,6 =€;,6,8; = —€38, = €,6;6 = —€,6; =€,

we can introduce the binary Dirac operators: Making the central extension by e, , we
have the Dirac operators for {e),e,e,,e;} :

0 0
D=e, +e,—+e,—.+te,—
X, X, ox, Ox,
5=Eoi+ai+.ézi+é3 0
ox, ox, ox, ox,

We can obtain the binary Dirac operators for{e,e,,e,,e;} in a similar manner.
Next we proceed to the introduction of the ternary Dirac operator for {e,,e,,e,,e;}.

D:Tli+G, 0 +Glzi
20, 20, 00,
e
26, 20, 00,
D**:Tli_,_jgli_,_szlz 0
20, 20, a0,
For {¢,,e,¢,,e;} and {e",,e",e",,e";}, we can define the ternary Dirac operator,

D*=T,

replacing G, with G,and G ; respectively:

0
J s
0

[

0 /> 0 0
G,=[0 0 j|, Gy=|0
1 0 0 1

S O

11



APPLICATION TO THE THEORY OF ELEMENTARY PARTICLE

We give two applications of a method of non-commutative Galois theory to the theory

of elementary particles. The details will be given in another paper.

(1) The generation of elementary particles can be described by use of the Galois
extensions. At the very beginning of the universe, there exists only one photon. This
can be given the identity matrix. Then particles and anti-particles are produced and
mesons are created. This process can be descried by binary extensions. Then the
quark-baryon phase transitions happened and baryons are born. This process can be
described by the successive binary and ternary Galois extensions . We notice that

the following corresponding between the binary and ternary extensions.

@ o (&

(2) The second application is the construction of quark models. We can realize the

Gell-Mann model by use of the Galois extension structure on su(3). In fact we can

introduce three quarks by {e,,e,,e,,e;}, {€,.€,.,¢,,¢,} and {e" " ,e",,e";}. Then
we can realize the Gell-Mann model by use of the binary and ternary Galois

extensions.
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