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Abstract

The Bernstein polynomials are used for important applications in many branches of Mathematics
and the other sciences, for instance, approximation theory, probability theory, statistic theory, num-
ber theory, the solution of the di¤erential equations, numerical analysis, constructing Bezier curves,
q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are
used to construct Bezier curves. Bezier was an engineer with the Renault car company and set
out in the early 1960�s to develop a curve formulation which would lend itself to shape design.
Engineers may �nd it most understandable to think of Bezier curves in terms of the center of mass
of a set of point masses. Therefore, in this paper, we study on generating functions and functional
equations for these polynomials. By applying these functions, we investigate interpolation function
and many properties of these polynomials.
Key Words and Phrases. Bernstein polynomials, Bezier curve, Generating function, Interpo-
lation function, Mellin transformation, Gamma function, , Bernoulli polynomials of higher-order,
Stirling numbers of the second kind.
2000 Mathematics Subject Classi�cation. 14F10, 12D10, 26C05, 26C10, 30B40, 30C15,
11B68, 11M06, 33B15, 33B15, 65D17.

1. Introduction

In this section we can use the following notation:

[x : q] =
1� qx
1� q :

Observe that
lim
q!1

[x : q] = x:

If q 2 C, we assume that j q j< 1. If q 2 R, we assume that 0 < q < 1.
In this paper, we modify generating functions for the q-Bernstein polynomials, which are many

applications: in approximations of functions, in statistics, in numerical analysis, in p-adic analysis
and in the solution of di¤erential equations. Using the functional equations for the generating
functions and Laplace transform, we derive fundamental properties and some identities of the q-
Bernstein polynomials.
The remainder of this paper is summarized as follows:
Section 2: We construct generating function of the q-Bernstein basis functions. Using these

generating, some identities and properties of the q-Bernstein basis functions can be given.
Section 3: We give some properties for the q-Bernstein basis functions (Partition of unity, Alter-

nating sum, Subdivision property).
Section 4: We give recurrence retaliations and derivative of the q-Bernstein basis functions.
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Section 5: We give application related to the Laplace transform and generating function.
Section 6: We construct interpolation function for the q-Bernstein polynomials.
Section 7: We give further remarks on the q-Bezier curves and integral representation for the

q-Bernstein basis functions.

2. Modified the generating function for the q-Bernstein basis type functions

De�nition 1. Let x 2 [0; 1]. Let k and n be nonnegative integers with n � k. Then we de�ne

bnk(x; q) =

�
n
k

�
[x : q]kq(n�k)x [(1� x) : q]n�k ; (2.1)

where �
n
k

�
=

n!

k!(n� k)!
and k = 0; 1; 2; :::; n.

Generating functions for the q-Bernstein basis functions bnk(x; q) can be de�ned as follows:

De�nition 2. Let x 2 [0; 1] and t 2 C. Let k be nonnegative integers. Then we de�ne

Fk;q(t; x) =
1X
n=0

bnk(x; q)
tn

n!
: (2.2)

Observe that there is one generating function for each value of k.
We modify generating function for the q-Bernstein type basis functions as follows:

Theorem 1. Let x 2 [0; 1] and t 2 C. Then we have

Fk;q(t; x) =
1

k!
tk[x : q]k exp (qx [(1� x) : q] t) : (2.3)

Proof. By substituting (2.1) into the right hand side of (2.2), we obtain

Fk;q(t; x) =
1X
n=0

��
n
k

�
[x : q]kq(n�k)x [(1� x) : q]n�k

�
tn

n!

=
tk[x : q]k

k!

1X
n=k

(qx [(1� x) : q] t)n�k

(n� k)! :

The right hand side of the above equation is a Taylor series for

exp (qx [(1� x) : q] t) ;

thus we arrive at the desired result. �

3. Some properties for the q-Bernstein basis functions are given as follows

In [13] and [14], Simsek present much background material on computations functional equation
of the generating function for the Bernstein basis functions. We give some functional equations
which are used to �nd some new identities related to the q-Bernstein basis functions. Our method
is similar to that of Simsek�s [13].
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3.1. Partition of unity. The polynomials bnk(x; q) have partition of unity, which is given by
the following theorem.

Theorem 2. (Sum of the polynomials bnk(x; q))

nX
k=0

bnk(x; q) = 1:

Proof. By using (2.3), we have
1X
k=0

Fk;q(t; x) = exp (qx [1� x : q] t)
1X
k=0

1

k!
tk[x : q]k:

The right hand side of the above equation is a Taylor series for

exp ([x : q] t) ;

thus we obtain
1X
k=0

Fk;q(t; x) = exp ((qx [1� x : q] + [x : q]) t) : (3.1)

If we substitute the following identity

[a+ b : q] = [a : q] + qa [b : q] ;

into the right-hand side of (3.1), we �nd that
1X
k=0

Fk;q(t; x) = exp(t):

By using (2.2) and Taylor expansion of exp(t) in the above equation, we get

1X
n=0

 
nX
k=0

bnk(x; q)

!
tn

n!
=

1X
n=0

tn

n!
:

By comparing the coe¢cients of t
n

n! on both sides, we arrive at the desired result. �

Remark 1. Simsek and Acikgoz [15] de�ned the q-Bernstein type basis functions as follows:

Yn(k; x; q) =

�
n
k

�
[x : q]k [1� x : q]n�k : (3.2)

The polynomials Yn(k; x; q) have not partition of unity. That is
nX
k=0

Yn(k; x; q) = ([x : q] + [1� x : q])n 6= 1: (3.3)

By using (2.1) and (3.2), one can easily see that

bnk(x; q) = q
x(n�k)Yn(k; x; q):

Thus generating functions of the polynomials bnk(x; q) give us modi�cation that of the polynomials
Yn(k; x; q).
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Remark 2. In the special case when q ! 1, De�nition 1 immediately yields the corresponding well
known results concerning the classical Bernstein basis functions Bnk (x):

Bnk (x) =

�
n
k

�
xk(1� x)n�k; (3.4)

where k = 0; 1; � � � ; n and x 2 [0; 1] cf. ([1]-[15]).
Since

qx [(1� x) : q] = 1� [x : q] ;
we modify De�nition 1 as follows:

bnk(x; q) =

�
n
k

�
[x : q]k (1� [x : q])n�k

or
bnk(x; q) = B

n
k ([x : q]) :

3.2. Alternating sum. By using (2.3), we obtain the following functional equation:
1X
k=0

(�1)kFk;q(t; x) = exp ((qx [1� x : q]� [x : q]) t) : (3.5)

By using same method with the author [14] and (3.5), we derive a formula for the alternating
sum which is given the following Theorem:

Theorem 3. (Alternating sum)
nX
k=0

(�1)kbnk(x; q) = (1� 2 [x : q])
n : (3.6)

Remark 3. If we let q ! 1 in (3.6), then we arrive at the well-known Goldman�s results [4]-[3,
Chapter 5, pages 299-306] and see also [14]:

nX
k=0

(�1)kBnk (x) = (1� 2x)
n :

3.3. Subdivision property. By using similar method of Simsek�s [13], we de�ne the following
functional equation:

Fk;q(t; xy) = Fk;q(t [y : qx] ; x) exp (qxy [1� y : qx] t) : (3.7)

By using the above functional equation, we derive subdivision property for the q-Bernstein basis
functions by the following theorem:

Theorem 4. Then the following identity holds:

bnj (xy; q) =
nX
k=j

bkj (x; q)b
n
k(y; q

x):

Remark 4. If we let q ! 1 in Theorem 4, we have

Bnj (xy) =

nX
k=j

Bkj (x)B
n
k (y): (3.8)

The above identity is fundamental in subdivision property for the Bernstein basis functions cf.
([4]-[3, Chapter 5, pages 299-306], [14], [13]).
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4. Recurrence retaliations and derivative of the q-Bernstein basis functions:

In this section, we give higher order derivatives of the Bernstein basis functions. We de�ne

Fk;q(t; x) = gk;q(t; x)hq(t; x); (4.1)

where

gk;q(t; x) =
tk [x : q]k

k!
and

hq(t; x) = exp (q
x [1� x] t) :

In this section we are going to di¤erentiate (4.1) with respect to t to derive a recurrence relation
for the Bernstein basis functions.
Using Leibnitz�s formula for the vth derivative, with respect to t, we obtain the following higher

order partial di¤erential equation:

@vFk;q(t; x)
@tv

=

vX
j=0

�
v
j

��
@jgk;q(t; x)

@tj

��
@v�jhq(t; x)

@tv�j

�
: (4.2)

From the above equation, we have the following theorem:

Theorem 5.
@vFk;q(t; x)

@tv
=

vX
j=0

bvj (x; q)Fk�j;q(t; x): (4.3)

By same method in [14] and [13], Theorem 5 is proved by induction on v using (4.2).
Using (2.2) and (3.4) in Theorem 5, we obtain a recurrence relation for the Bernstein basis

functions:

Theorem 6.

bnk(x; q) =

vX
j=0

bvj (x; q)b
n�v
k�j (x; q): (4.4)

Proof. By substituting right hand side of (2.2) into (4.3), we get

@v

@tv

 1X
n=0

bnk(x; q)
tn

n!

!
=

1X
n=0

0@ vX
j=0

bvj (x; q)b
n�v
k�j (x; q)

1A tn

n!
:

Therefore
1X
n=v

bnk(x; q)
tn�v

(n� v)! =
1X
n=0

0@ vX
j=0

bvj (x; q)b
n�v
k�j (x; q)

1A tn

n!
:

From the above equation, we get

1X
n=v

bnk(x; q)
tn�v

(n� v)! =
1X
n=v

0@ vX
j=0

bvj (x; q)b
n�v
k�j (x; q)

1A tn�v

(n� v)! :

Comparing the coe¢cients of t
n

n! on the both sides of the above equation, we arrive at the desired
result. �
Remark 5. If we let q ! 1 in (4.5), then we arrive at Theorem 9 in [14].

By using (2.3), we derive derivative of the q-Bernstein basis functions for in the next theorem:
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Theorem 7. Let x 2 [0; 1]. Let k and n be nonnegative integers with n � k. Then we have

d

dx
bnk(x; q) =

qx log(qn)

q � 1
�
bn�1k�1(x; q)� b

n�1
k (x; q)

�
: (4.5)

Remark 6. If we let q ! 1 in (4.5), then we arrive at Corollary 1 in [14].

5. Applications

In this section we apply Laplace transform to the generating function for the q-Bernstein basis
function. We derive new identity.
From (2.3), we get the following generating functions:

e[x]t
1X
n=0

bnk(x; q)
tn

n!
=
[x : q]k

k!
tket: (5.1)

e�t
1X
n=0

bnk(x; q)
tn

n!
=
[x : q]k

k!
tke�[x]t: (5.2)

e�q
x[1�x]t

1X
n=0

bnk(x; q)
tn

n!
=
[x : q]k

k!
tk: (5.3)

Theorem 8.
1X
n=0

[x] bnk(x; q) = 1: (5.4)

Proof. Integrate equation (5.2) (by parts) with respect to t from zero to in�nity, we have

1X
n=0

bnk(x; q)

n!

Z 1

0
e�ttndt =

[x : q]k

k!

Z 1

0
tke�[x:q]tdt: (5.5)

We here assume that

x > 0:

of the following Laplace transform of the function f(t) = tk:

L(tk) = k!

[x : q]k+1
;

on the both sides of (5.5), we �nd that

1X
n=0

bnk(x; q) =
1

[x : q]
:

Thus we arrive at the desired result. �

Remark 7. If we let q ! 1 in (5.4), then we arrive at Theorem 15 in [14].
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6. Interpolation Function

In this section, we construct interpolation function for the q-Bernstein polynomials. This function
interpolates the q-Bernstein polynomials at negative integers.
Let s 2 C, and x 2 R with x 6= 1. By applying the Mellin transformation to (2.3), we give

integral representation of the interpolation function Iq(s; k;x) as follows:

Iq(s; k;x) =
1

�(s)

Z 1

0
ts�1Fk;q(�t; x)dt;

where �(s) denotes the Euler gamma function. By using the above integral representation, we are
now ready to de�ne interpolation function of the q-Bernstein polynomials.

De�nition 3. Let k be a nonnegative integer. Let s 2 C, and x 2 R with x 6= 1. The interpolation
function Iq(s; k;x) is de�ned by

Iq(s; k;x) = (�1)k
�(s+ k)

�(s)�(k + 1)

[x : q]k

qx(k+s) [1� x : q]k+s
:

Theorem 9. Let n be a positive integer. Then we have

Iq(�n; k;x) = bnk(x):

Proof of this theorem is same as that of Theorem 12 in [12]. So we omit it.

7. Further remarks

7.1. Bezier curve. The Bezier curves are constructed by the Bernstein polynomials and control
points. The Bezier curves are widely used in computer graphics to model smooth curves. The
history of the Bezier curves can be traced back to Pierre Bezier, who was an engineer with the
Renault car company and set out in the early 1960�s to develop a curve formulation which would
lend itself to shape design. Engineers may �nd it most understandable to think of the Bezier curves
in terms of the center of mass of a set of point masses.
q-Bezier curves B(x : q) with control points P0,� � � , Pn is de�ned by

B(x : q) =

nX
k=0

Pkb
n
k(x):

Observe that if q ! 1, we have the standard Bezier curves

B(x : 1) = B(x) =
nX
k=0

PkB
n
k (x) cf. [2].

If we substitute bnk(x; q) = B
n
k ([x : q]) into the above equation, then q-Bezier curves have same

properties as standard Bezier curves. Because the q-Bernstein basis functions are parametrization
of the standard Bernstein basis functions. The the q-Bernstein basis functions might be the a¤ect
of q on the shape of the curves.

7.2. Integral representation for the q-Bernstein basis functions. In this section we derive
very powerful result related to integral representation for the q-Bernstein basis functions, which
can be obtained from generating function.
Integral representation for the q-Bernstein basis functions is given as follows:

bnk(x; q) =
n!

2�i

Z
C
Fk;q(z; x)

dz

zn+1
; (7.1)
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where C is a circle around the origin and the integration is in positive direction, z 2 C, n 2 Z+ =
f1; 2; 3; � � � g and x 2 [0; 1].
In [12], we give integral representation for the q-Bernstein basis functions. Here we give in detail

about this representation as follows:
By substituting (2.3) into (7.1) and using Cauchy Residue Theorem, we obtain

n!

2�i

Z
C
Fk;q(z; x)

dz

zn+1
=
n!

2�i

�
2�iRes

�
Fk;q(t; x)
zn+1

; 0

��
:

We now compute residue of Fk;q(t;x)
zn+1

at z = 0 by Laurent series as follows:

bn0 (x; q)
1

zn+1
+ bnk(x; q)

1

zn
+ � � �+ b

n
k(x; q)

n!

1

z
+ bn+1k (x; q) + � � � :

By using the above Laurent series, we have

Res

�
Fk;q(t; x)
zn+1

; 0

�
=
bnk(x; q)

n!
:

Consequently, one can obtain easily arrive at (7.1).
We note that our method same as of that of Lopez and Temme� [9] and Kim et al [7].
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