Hyperbolic Laplace Operator and the Weinstein Equation in \mathbb{R}^{3}

Sirkka-Liisa Eriksson
Department of Mathematics Tampere University of Technology
P.O.Box 553, FI-33101 Tampere, Finland email: Sirkka-Liisa.Eriksson@tut.fi
Heikki Orelma Department of Mathematics
Tampere University of Technology
P.O.Box 553, FI-33101 Tampere, Finland email:Heikki.Orelma@tut.fi

June 19, 2012

Abstract

We study the Weinstein equation $$
\Delta u-\frac{k}{x_{2}} \frac{\partial u}{\partial x_{n}}+\frac{l}{x_{2}^{2}} u=0,
$$ on the upper half space $\mathbb{R}_{+}^{3}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}\right\}$ for $4 l \leq(k+1)^{2}$. If $l=0$, the operator $x_{2}^{2 k}\left(\Delta u-\frac{k}{x_{2}} \frac{\partial u}{\partial x_{2}}\right)$ is the Laplace-Beltrami operator with respect to the Riemannian metric $d s^{2}=x_{2}^{-2 k}\left(\sum_{i=0}^{2} d x_{i}^{2}\right)$. In case $k=1$ the Riemannian metric is the hyperbolic distance of Poincaré upper half space. The Weinstein equation is connected to the axially symmetric potentials. We compute solutions of the Weinstein equation depending on the hyperbolic distance and x_{2}. These results imply the explicit mean value properties. We also compute the fundamental solution. The main tools are the hyperbolic metric and its invariance properties.

1 Introduction

Weinstein introduced axially symmetric potential theory in [12]. The idea was to consider the following simple elliptic differential equation with variable coefficients
in the neighborhood of the singular plane $x_{n}=0$

$$
x_{n} \triangle h+p \frac{\partial h}{\partial x_{n}}=0,
$$

where as usual

$$
\Delta h=\frac{\partial^{2} h}{\partial x_{0}^{2}}+\ldots+\frac{\partial^{2} h}{\partial x_{n}^{2}}
$$

Note that if p is an integer then a axially symmetric harmonic function in $p+2-$ dimensional space satisfies the preceding equation in the meridian plane (see for example [9])

We consider the solutions of the generalized Weinstein equation

$$
\begin{equation*}
x_{2}^{2} \triangle h-k x_{2} \frac{\partial h}{\partial x_{2}}+l h=0 \tag{1}
\end{equation*}
$$

in an open domain whose closer is contained in the upper half space

$$
\mathbb{R}_{+}^{3}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \mid x_{0}, x_{1}, x_{2} \in \mathbb{R}, x_{2}>0\right\}
$$

Our general technical assumption is that the constants $l, k \in \mathbb{R}$ satisfy $4 l \leq$ $(k+1)^{2}$. This equation has been researched for example by Leutwiler and Akin in [10] and in [1]. We transfer solutions of this equation to solutions of LaplaceBeltrami equation of the hyperbolic metric in the Poincaré upper half space. In the main result, we present the fundamental solution of the equation (1) in terms of the hyperbolic distance function.

We recall that the operator

$$
\Delta_{h} f=x_{2}^{2} \Delta f-x_{2} \frac{\partial f}{\partial x_{2}}
$$

is the hyperbolic Laplace-Beltrami operator with respect to the hyperbolic Riemannian metric

$$
d s^{2}=\frac{d x_{0}^{2}+d x_{1}^{2}+d x_{2}^{2}}{x_{2}^{2}}
$$

in the Poincaré upper half space model.
The hyperbolic distance may be computed as follows (see the proof for example in [11]).

Lemma 1 The hyperbolic distance $d_{h}(x, a)$ between the points $x=\left(x_{0}, x_{1}, x_{2}\right)$ and $a=\left(a_{0}, a_{1}, a_{2}\right)$ in \mathbb{R}_{+}^{3} is

$$
d_{h}(x, a)=\operatorname{arcosh} \lambda(x, a),
$$

where

$$
\lambda(x, a)=\frac{\left(x_{0}-a_{0}\right)^{2}+\left(x_{1}-a_{1}\right)^{2}+x_{2}^{2}+a_{2}^{2}}{2 x_{2} a_{2}}=\frac{|x-a|^{2}}{2 x_{2} a_{2}}+1
$$

and $|x-a|$ is the usual Euclidean distance between the points a and x.

We also apply the simple calculation rules of the hyperbolic distance stated next.

Lemma 2 If $x=\left(x_{0}, x_{1}, x_{2}\right)$ and $a=\left(a_{0}, a_{1}, a_{2}\right)$ are points in \mathbb{R}_{+}^{3} then

$$
\begin{align*}
& |x-a|^{2}=2 x_{2} a_{2}(\lambda(x, a)-1), \tag{2}\\
& |x-\hat{a}|^{2}=2 x_{2} a_{2}(\lambda(x, a)+1), \tag{3}\\
& \frac{|x-a|^{2}}{|x-\hat{a}|^{2}}=\frac{\lambda(x, a)-1}{\lambda(x, a)+1}=\tanh ^{2}\left(\frac{d_{h}(x, a)}{2}\right), \tag{4}
\end{align*}
$$

where $\widehat{a}=\left(a_{0}, a_{1},-a_{2}\right)$.
We also note the relation between the Euclidean and hyperbolic balls.
Proposition 3 The hyperbolic ball $B_{h}\left(a, r_{h}\right)$ with the center $a=\left(a_{0}, a_{1}, a_{2}\right)$ and the radius r_{h} is the same as the Euclidean ball with the Euclidean center ($a_{0}, a_{1}, a_{2} \cosh r_{h}$) and the Euclidean radius $r_{e}=a_{2} \sinh r_{h}$.

2 The hyperbolic Laplace operator depending on the hyperbolic distance in \mathbb{R}_{+}^{3}

We need the computations of the hyperbolic Laplace operator of functions depending on λ, computed in [2].

Lemma 4 If f is twice continuously differentiable depending only on $\lambda=\lambda\left(x, e_{n}\right)$ then

$$
\triangle_{h} f(x)=\left(\lambda^{2}-1\right) \frac{\partial^{2} f}{\partial \lambda^{2}}+3 \lambda \frac{\partial f}{\partial \lambda}
$$

Using this it is relatively easy to compute the result.
Lemma 5 If f is twice continuously differentiable depending only on $r_{h}=d_{h}\left(x, e_{n}\right)$ then the hyperbolic Laplace in \mathbb{R}_{+}^{3} is given by

$$
\triangle_{h} f\left(r_{h}\right)=\frac{\partial^{2} f}{\partial r_{h}^{2}}+2 \operatorname{coth} r_{h} \frac{\partial f}{\partial r_{h}} .
$$

Proof. Using $r_{h}=\operatorname{arcosh} \lambda\left(x, e_{n}\right)$, we compute

$$
\frac{\partial r_{h}}{\partial \lambda}=\frac{1}{\sinh r_{h}}
$$

and

$$
\frac{\partial^{2} r_{h}}{\partial \lambda^{2}}=-\frac{\cosh r_{h}}{\sinh ^{3} r_{h}} .
$$

Hence applying the chain rule we obtain

$$
\begin{aligned}
\frac{\partial f\left(r_{h}\right)}{\partial \lambda} & =\frac{\partial f}{\partial r_{h}} \frac{\partial r_{h}}{\partial \lambda}=\frac{\partial f}{\partial r_{h}} \frac{1}{\sinh r_{h}}, \\
\frac{\partial^{2} f(\lambda)}{\partial \lambda^{2}} & =\frac{\partial^{2} f}{\partial r_{h}^{2}}\left(\frac{\partial r_{h}}{\partial \lambda}\right)^{2}+\frac{\partial f}{\partial r_{h}} \frac{\partial^{2} r_{h}}{\partial \lambda^{2}} \\
& =\frac{\partial^{2} f}{\partial r_{h}^{2}} \frac{1}{\sinh ^{2} r_{h}}-\frac{\partial f}{\partial r_{h}} \frac{\cosh r_{h}}{\sinh ^{3} r_{h}},
\end{aligned}
$$

completing the proof by the preceding lemma.
If we know one strictly positive solution depending on r_{h}, we may compute all the solutions depending on r_{h}.

Theorem 6 If μ is a strictly positive solution of the equation

$$
\begin{equation*}
\triangle_{h} f+\gamma f=\frac{\partial^{2} f}{\partial r_{h}^{2}}+2 \frac{\partial f}{\partial r_{h}} \frac{\cosh r_{h}}{\sinh r_{h}}+\gamma f=0 \tag{5}
\end{equation*}
$$

depending on $r_{h}=d_{h}\left(x, e_{n}\right)$ then the general solution of this equation is

$$
f\left(r_{h}\right)=\left(C \int_{r_{0}}^{r_{h}} \sinh ^{-2} u \mu^{-2}(u) d u+C_{0}\right) \mu\left(r_{h}\right)
$$

for some real constants C and C_{0}.
Proof. Assume that $\mu\left(r_{h}\right)$ is a particular positive solution of (5). Setting $f\left(r_{h}\right)=$ $g\left(r_{h}\right) \mu\left(r_{h}\right)$ we obtain

$$
\begin{aligned}
0 & =\mu \frac{d^{2} g}{d r_{h}^{2}}+2 \frac{d \mu}{d r_{h}} \frac{d g}{d r_{h}}+g \frac{d^{2} \mu}{d r_{h}^{2}} \\
& +2 \frac{\cosh r_{h}}{\sinh r_{h}} g \frac{d \mu}{d r_{h}}+2 \frac{\cosh r_{h}}{\sinh r_{h}} \mu \frac{d g}{d r_{h}}+\gamma \mu g \\
& =\mu \frac{d^{2} g}{d r_{h}^{2}}+2 \frac{d \mu}{d r_{h}} \frac{d g}{d r_{h}}+2 \frac{\cosh r_{h}}{\sinh r_{h}} \mu \frac{d g}{d r_{h}} .
\end{aligned}
$$

Denoting $\frac{d g}{d r_{h}}=h$, we deduce

$$
\mu \frac{d h}{d r_{h}}+\left(2 \frac{d \mu}{d r_{h}}+2 \frac{\cosh r_{h}}{\sinh r_{h}} \mu\right) h=0 .
$$

Hence we solve

$$
\frac{d}{d r_{h}}\left(\log h+2 \log \mu+2 \log \left(\sinh r_{h}\right)\right)=0
$$

and therefore

$$
\frac{\partial g}{\partial r_{h}}=h=C \sinh ^{-2} r_{h} \mu^{-2}\left(r_{h}\right)
$$

Consequently, the general solution is $\frac{n^{2}-(k+1)^{2}}{4}$

$$
f\left(r_{h}\right)=\left(C \int_{r_{0}}^{r_{h}} \sinh ^{-2} u \mu^{-2}(u) d u+C_{0}\right) \mu\left(r_{h}\right) .
$$

We recall the relation between solutions of (1) and eigenfunctions of the hyperbolic Laplace-Beltrami operator.

Proposition $7([\mathbf{1 0}])$ Let $\Omega \subset \mathbb{R}_{+}^{3}$ be an open subset Ω of \mathbb{R}_{+}^{3}. If u is a solution of (1) in Ω, then $f(x)=x_{2}^{\frac{1-k}{2}} u(x)$ is an eigenfunction of the hyperbolic Laplace operator corresponding to the eigenvalue $\frac{1}{4}\left((k+1)^{2}-4 l-4\right)$. Conversely, if f is the an eigenfunction of the hyperbolic Laplace operator corresponding to the eigenvalue γ in Ω then $u(x)=x_{2}^{\frac{k-1}{2}} f(x)$ is the solution of the equation (1) in Ω with $l=\frac{1}{4}\left((k+1)^{2}-4 \gamma-4\right)$.

The mean value property for the solutions of (1) can be stated in terms of the hypergeometric functions. We recall their definition:

$$
{ }_{2} F_{1}(a, b ; c ; x)=\sum_{m=0}^{\infty} \frac{(a)_{m}(b)_{m}}{(c)_{m}} \frac{x^{m}}{m!},
$$

where $(a)_{m}=a(a+1) \ldots(a+m-1)$ and $(a)_{0}=1$. This series converges for x satisfying $|x|<1$. We recall also an important Euler's integral formula valid for $a, b, c \in \mathbb{C}$ satisfying $0<\operatorname{Re} b<\operatorname{Re} c$

$$
{ }_{2} F_{1}(a, b ; c ; z)=\frac{1}{B(b, c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t .
$$

where the Beta funtion has the representation

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} .
$$

The mean value property for solutions of (1) with respect to the hyperbolic surface measure was proved in [8].

Theorem 8 Let l and k be real numbers satisfying $4 l \leq(k+1)^{2}$ and $U \subset \mathbb{R}_{+}^{3}$ be open. If

$$
\psi_{2, k, l}\left(r_{h}\right)=e^{-\frac{1+\sqrt{(k+1)^{2}-4 l}}{2} r_{h}}{ }_{2} F_{1}\left(1+\frac{\sqrt{(k+1)^{2}-4 l}}{2}, 1 ; 2 ; 1-e^{-2 r_{h}}\right)
$$

then $\psi_{2, k, l}\left(r_{h}\right)$ is an eigenfunction of the hyperbolic Laplace operator corresponding to the eigenvalue $\frac{1}{4}\left((k+1)^{2}-4 l-4\right)$. Moreover, if $u: U \rightarrow \mathbb{R}$ is a solution of the Weinstein equation

$$
\Delta u-\frac{k}{x_{2}} \frac{\partial u}{\partial x_{2}}+\frac{l}{x_{2}^{2}} u=0
$$

in U then

$$
u(a)=\frac{a_{2}^{\frac{k-1}{2}}}{4 \pi \sinh ^{2}\left(r_{h}\right) \psi_{2, k, l}\left(r_{h}\right)} \int_{\partial B_{h}\left(a, r_{h}\right)} u(x) \frac{d \sigma}{x_{2}^{\frac{3+k}{2}}}
$$

for all hyperbolic balls satisfying $\overline{B_{h}}\left(a, r_{h}\right) \subset U$.
In our special case \mathbb{R}_{+}^{3}, we can give a simple formula for the function $\psi_{2, k, l}\left(r_{h}\right)$ as follows.

Theorem 9 Let l and k be real numbers satisfying $4 l \leq(k+1)^{2}$ and $U \subset \mathbb{R}_{+}^{3}$ be open. Denote

$$
a=1+\frac{\sqrt{(k+1)^{2}-4 l}}{2}
$$

and $r_{h}=d_{h}\left(x, e_{n}\right)$. Then

$$
\begin{aligned}
\psi_{2, k, l}\left(r_{h}\right) & =e^{-a r_{h}}{ }_{2} F_{1}\left(a, 1 ; 2 ; 1-e^{-2 r_{h}}\right) \\
& =\left\{\begin{array}{cl}
\frac{\sinh \left(r_{h}(a-1)\right)}{(a-1) \sinh r_{h}}, & \text { if } 4 l \neq(k+1)^{2}, \\
\frac{r_{h}}{\sinh r_{h}}, & \text { if } 4 l=(k+1)^{2},
\end{array}\right.
\end{aligned}
$$

is the eigenfunction of the hyperbolic Laplace operator corresponding to the eigenvalue $\frac{1}{4}\left((k+1)^{2}-4 l-4\right)$.

For the sake of completeness, we first prove the lemma.
Lemma 10 If $|x|<1$ then

$$
{ }_{2} F_{1}(a, 1 ; 2 ; x)=\left\{\begin{array}{cl}
\frac{1-(1-x)^{-a+1}}{x(-a+1)} & \text { if } a \neq 1, \\
-\frac{\log (1-x)}{x} & \text { if } a=1 .
\end{array}\right.
$$

Proof. If we replace t with $1-s$ in Euler's integral we obtain

$$
\begin{aligned}
{ }_{2} F_{1}(a, b ; c ; x) & =\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1}(1-x+x s)^{-a}(1-s)^{b-1} s^{c-b-1} d s \\
& =\frac{(1-x)^{-a} \Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1}\left(1+\frac{x s}{1-x}\right)^{-a}(1-s)^{b-1} s^{c-b-1} d s .
\end{aligned}
$$

In case $a \neq 1$ we infer

$$
\begin{aligned}
{ }_{2} F_{1}(a, 1 ; 2 ; x) & =(1-x)^{-a} \int_{0}^{1}\left(1+\frac{x s}{1-x}\right)^{-a} d t \\
& =(1-x)^{-a} \frac{1-x}{x(-a+1)}\left(\left(1+\frac{x}{1-x}\right)^{-a+1}-1\right) \\
& =(1-x)^{-a} \frac{x-1}{x(-a+1)}\left(\frac{1}{(1-x)^{-a+1}}-1\right) \\
& =\frac{1-(1-x)^{-a+1}}{x(-a+1)} .
\end{aligned}
$$

If $a=1$ we compute

$$
\begin{aligned}
{ }_{2} F_{1}(a, 1 ; 2 ; x) & =(1-x)^{-a} \int_{0}^{1}\left(1+\frac{x s}{1-x}\right)^{-1} d t \\
& =(1-x)^{-1} \frac{1-x}{x} \log \left(1+\frac{x}{1-x}\right) \\
& =-\frac{\log (1-x)}{x} .
\end{aligned}
$$

We are ready to verify the preceding theorem.
Proof. Setting $a=1+\frac{\sqrt{(k+1)^{2}-4 \ell}}{2} \neq 1$ we obtain

$$
\begin{aligned}
\psi_{2, k, l}\left(r_{h}\right) & =e^{-a r_{h}} F_{1}\left(1+\frac{\sqrt{(k+1)^{2}-4 \ell}}{2}, 1 ; 2 ; 1-e^{-2 r_{h}}\right) \\
& =e^{-a r_{h}}\left(\frac{e^{2 r_{h}(a-1)}-1}{\left(1-e^{\left.-2 r_{h}\right)(a-1)}\right.}\right) \\
& =e^{-a r_{h}} e^{r_{h}(a-1)} e^{r_{h}} \frac{e^{r_{h}(a-1)}-e^{-r_{h}(a-1)}}{2} \\
& =\frac{\sinh \left(r_{h}(a-1)\right)}{(a-1) \sinh r_{h}} .
\end{aligned}
$$

If $a=1$ then

$$
\psi_{2, k, l}\left(r_{h}\right)=-e^{-r_{h}} \frac{\log e^{-2 r_{h}}}{\left(1-e^{-2 r_{h}}\right)}=\frac{2 r_{h}}{\left(e^{r_{h}}-e^{-r_{h}}\right)}=\frac{r_{h}}{\sinh r_{h}} .
$$

Note also that

$$
\lim _{r_{h \rightarrow 0}} \psi_{2, k, l}\left(r_{h}\right)=1
$$

and with this extension $\psi_{2, k, l}$ is a continuously differential function.
Substituting the values of $\psi_{2, k, l}$ for the mean value theorem we immediately obtain the result.

Theorem 11 Let k be a real number and $U \subset \mathbb{R}_{+}^{3}$ be open. If $u: U \rightarrow \mathbb{R}$ is a solution of the Weinstein equation

$$
x_{2}^{2} \Delta u-k x_{2} \frac{\partial u}{\partial x_{n}}=0
$$

in U then

$$
u(a)=\frac{a_{n}^{\frac{k-1}{2}}|k+1|}{8 \pi \sinh \left(r_{h}\right) \sinh \left(\frac{r_{h}|k+1|}{2}\right)} \int_{\partial B_{h}\left(a, r_{h}\right)} x_{2}^{-\frac{k+3}{2}} u(x) d \sigma
$$

in case $k \neq-1$ and in case $k=-1$

$$
u(a)=\frac{1}{4 \pi a_{2} r_{h} \sinh \left(r_{h}\right)} \int_{\partial B_{h}\left(a, r_{h}\right)} x_{n}^{-1} u(x) d \sigma .
$$

Similarly, the general solution of the equation (5) has the representation.
Theorem 12 If $\gamma=\frac{1}{4}\left(4-(k+1)^{2}\right)$ and $k \neq-1$ the general solution of the equation (5) is

$$
f\left(r_{h}\right)=C_{1} \frac{\cosh \left(\frac{|k+1| r_{h}}{2}\right)}{\sinh r_{h}}+C_{0} \frac{\sinh \left(\frac{r_{h}|k+1|}{2}\right)}{\sinh r_{h}}
$$

for some real constants C_{1} and C_{0}. If $k=-1$ the general solution for $\gamma=1$ is

$$
f\left(r_{h}\right)=C_{1} \frac{1}{\sinh r_{h}}+C_{0} \frac{r_{h}}{\sinh r_{h}}
$$

Proof. Assuming $k \neq-1$ and substituting

$$
\mu\left(r_{h}\right)=\frac{\sinh \left(\frac{r_{h}|k+1|}{2}\right)}{\sinh r_{h}}
$$

in

$$
f\left(r_{h}\right)=\left(C \int_{r_{0}}^{r_{h}} \sinh ^{-2} u \mu^{-2}(u) d u+C_{0}\right) \mu\left(r_{h}\right)
$$

we obtain

$$
\begin{aligned}
f\left(r_{h}\right) & =\left(C \int_{r_{0}}^{r_{h}} \sinh ^{-2} u \frac{(k+1)^{2} \sinh ^{-2}\left(\frac{u|k+1|}{2}\right)}{4 \sinh ^{-2} u} d u+C_{0}\right) \frac{2 \sinh \left(\frac{r_{h}|k+1|}{2}\right)}{|k+1| \sinh r_{h}} \\
& =\left(C \int_{\frac{|k+1| r_{0}}{2}}^{\frac{|k+1| r_{h}}{2}} \sinh ^{-2}(s) d s+C_{0}\right) \frac{\sinh \left(\frac{r_{h}|k+1|}{2}\right)}{\sinh r_{h}} \\
& =\left(C \operatorname{coth}\left(\frac{|k+1| r_{0}}{2}\right)-C \operatorname{coth}\left(\frac{|k+1| r_{h}}{2}\right)+C_{0}\right) \frac{\sinh \left(\frac{r_{h}|k+1|}{2}\right)}{\sinh r_{h}} .
\end{aligned}
$$

completing the proof, if we choose the constants properly. The case $k=-1$ is proved similarly.

Corollary 13 The particular solution of (5) with $\gamma=\frac{1}{4}\left(4-(k+1)^{2}\right)$ outside the point e_{2} is

$$
F(x)=\frac{\cosh \left(\frac{|k+1| d_{h}\left(x, e_{2}\right)}{2}\right)}{\sinh d_{h}\left(x, e_{2}\right)}=\frac{\cosh \left(\frac{|k+1| d_{h}\left(x, e_{2}\right)}{2}\right)}{\left|x-\cosh d_{h}\left(x, e_{2}\right) e_{2}\right|}
$$

and $x_{2}^{\frac{k-1}{2}} F\left(r_{h}\right)$ is k-hyperbolic harmonic.
Denote

$$
F(x, a)=\frac{\cosh \left(\frac{|k+1| d_{h}(x, a)}{2}\right)}{\sinh d_{h}(x, a)} .
$$

We obtain this function by transforming the preceding function with the transformation $\tau(x)=a_{2} x+P a$.

Corollary 14 The function $F_{h}(x, a)$ satisfies the equation

$$
\frac{\partial^{2} f}{\partial r_{h}^{2}}+2 \frac{\partial f}{\partial r_{h}} \frac{\cosh r_{h}}{\sinh r_{h}}+\gamma f=0
$$

with $\gamma=\frac{1}{4}\left(4-(k+1)^{2}\right)$ outside $x=a$ and $x_{2}^{\frac{k-1}{2}} F_{h}(x, a)$ is k-hyperbolic harmonic outside $x=a$.

Proof. Since the hyperbolic distance is invariant under Möbius transformation mapping the upper half space onto itself, applying $\tau(x)=a_{2} x+P a$ we infer

$$
d_{h}(\tau(x), a)=d_{h}\left(x, e_{2}\right)
$$

and

$$
F(x)=\frac{\cosh \left(\frac{|k+1| d_{h}(\tau(x), a)}{2}\right)}{\sinh d_{h}(\tau(x), a)} .
$$

Since the hyperbolic Laplace operator is invariant under Möbius transformation mapping the upper half space onto itself the function

$$
F\left(\tau^{-1}(x)\right)=\frac{\cosh \left(\frac{|k+1| d_{h}(x, a)}{2}\right)}{\sinh d_{h}(x, a)}
$$

is the eigenfunction of the hyperbolic Laplace operator with the eigenvalue with $\gamma=\frac{1}{4}\left(4-(k+1)^{2}\right)$, completing the proof.

Lemma 15 The function $F_{h}(x, a)$ is Lebesgue integrable in the hyperbolic ball $B_{h}\left(a, r_{h}\right)$ and

$$
\int_{B_{h}\left(a, r_{h}\right)} x_{2}^{-\frac{5 k+1}{2}} F_{h}(x, a) d x \leq M\left(a, r_{h}\right)\left(\frac{\left(\cosh r_{h}-1\right)^{2}}{6}+\frac{\sinh ^{2} r_{h}}{2}\right)
$$

for some function $M\left(a, r_{h}\right)>0$ with a bounded limit when $r_{h} \rightarrow 0$.
Proof. It is enough to prove the statement for $a=e_{2}$. Note that

$$
\frac{|x|^{2}+1}{2 x_{2}}=\lambda\left(x, e_{2}\right)=\cosh d_{h}\left(x, e_{2}\right) .
$$

Since $e^{-r_{h}}<x_{2}<e^{r_{h}}$ in $B_{h}\left(e, r_{h}\right)=B\left(\cosh r_{h} e_{2}, \sinh r_{h}\right)$ we obtain

$$
\begin{aligned}
\frac{x_{2}^{-\frac{1+5 k}{2}} \cosh \left(\frac{|k+1| d_{h}(x, a)}{2}\right)}{\sinh d_{h}\left(x, e_{2}\right)} & =\frac{x_{2}^{-\frac{1+5 k}{2}} \cosh \left(\frac{|k+1| d_{h}(x, a)}{2}\right)}{\sqrt{\lambda-1} \sqrt{\lambda+1}} \\
& \leq \frac{x_{2}^{-\frac{1+5 k}{2}} \cosh \left(\frac{|k+1| r_{h}}{2}\right)}{\sqrt{\lambda-1}} \\
& \leq \frac{\sqrt{2} e^{\frac{5 k}{2} r_{h}} \cosh \left(\frac{|k+1| r_{h}}{2}\right)}{\sqrt{|x|^{2}+1-2 x_{2}}}
\end{aligned}
$$

in $B_{h}\left(a, r_{h}\right)$ it is enough to consider the integral

$$
\begin{aligned}
& \int_{B_{h}\left(e_{r}, r_{h}\right)} \frac{d x}{\sqrt{|x|^{2}+1-2 x_{2}}} \\
& \int_{B\left(\cosh r_{h} e_{2}, \sinh r_{h}\right)} \frac{d x}{\sqrt{|x|^{2}+1-2 x_{2}}}
\end{aligned}
$$

Denote $c=\cosh r_{h} e_{2}$. Changing the variables

$$
\begin{aligned}
& x_{0}=r \sin \theta \cos \phi, \\
& x_{1}=r \sin \theta \sin \phi, \\
& x_{2}=r \cos \theta+c,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \int_{B\left(\cosh r_{h} e_{2}, \sinh r_{h}\right)} \frac{d x}{\sqrt{|x|^{2}+1-2 x_{2}}} \\
& =\int_{0}^{\sinh r_{h}} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{r^{2} \sin \theta d \theta d \phi d r}{\sqrt{r^{2}+2 r(c-1) \cos \theta+(c-1)^{2}}} \\
& =2 \pi \int_{0}^{\sinh r_{h}}-\frac{1}{c-1}(r(|r-c+1|)-r(r+c-1)) d r \\
& =2 \pi \int_{0}^{c-1}-\frac{1}{c-1}(r(c-1-r)-r(r+c-1)) d r \\
& +2 \pi \int_{c-1}^{\sinh r_{h}}-\frac{1}{c-1}(r(r-c+1)-r(r+c-1)) d r \\
& =2 \pi \int_{0}^{c-1} \frac{2 r^{2}}{c-1} d r+2 \pi \int_{c-1}^{\sinh r_{h}} r d r \\
& =2 \pi\left(\frac{2}{3}(c-1)^{2}+\frac{\sinh ^{2} r_{h}}{2}-\frac{1}{2}(c-1)^{2}\right) \\
& =2 \pi\left(\frac{1}{6}(c-1)^{2}+\frac{\sinh ^{2} r_{h}}{2}\right),
\end{aligned}
$$

completing the proof.
We recall the Green formula in some Riemannian manifolds.
Proposition 16 ([1]) Let $R \subset \mathbb{R}_{+}^{3}$ be a bounded open set with the smooth boundary contained \mathbb{R}_{+}^{3} and denote the volume element corresponding to the Riemannian metric

$$
d s^{2}=\frac{d x_{0}^{2}+d x_{1}^{2}+d x_{2}^{2}}{x_{2}^{2 k}}
$$

by $d m_{(k)}=x_{2}^{-3 k} d m$, the surface elements by $d \sigma_{(k)}=x_{2}^{-2 k} d \sigma$ and the outer normal $\frac{\partial u}{\partial n_{(k)}}=x_{2}^{k} \frac{\partial u}{\partial n}$. where n is the outer normal to the the surface ∂R. Then the LaplaceBeltrami operator is

$$
\triangle_{k}=x_{2}^{2 k}\left(\triangle-\frac{k}{x_{2}} \frac{\partial}{\partial x_{2}}\right)
$$

and

$$
\int_{R}\left(u \triangle_{k} v d m_{(k)}-v \triangle_{k} u d m_{(k)}\right)=\int_{\partial R}\left(u \frac{\partial v}{\partial n_{k}}-v \frac{\partial u}{\partial n_{k}}\right) d \sigma_{(k)}
$$

for any functions u and v that are twice continuously differentiable functions in an open set containing the closure $\bar{\Omega}$ of Ω.

A function $f: \Omega \rightarrow \mathbb{R}$ is called k-hyperbolic harmonic if

$$
\triangle_{k} f=0
$$

in Ω. The theory of k-hyperbolic harmonic functions was developed in [3]. Denote

$$
H(x, y)=y_{2}^{\frac{k-1}{2}} x_{2}^{\frac{k-1}{2}} \frac{\cosh \left(\frac{|k+1| d_{h}(x, y)}{2}\right)}{\sinh d_{h}(x, y)} .
$$

We will show that $H(x, y)$ is the fundamental k-hyperbolic harmonic functions with a pole in x. We need following lemma.

Lemma 17 Let $\Omega \subset \mathbb{R}_{+}^{3}$ be open and x a point with $\overline{B_{h}\left(x, r_{h}\right)} \subset \Omega$. Then

$$
\lim _{r_{h} \rightarrow 0} \frac{\int_{\partial B_{h}\left(x, r_{h}\right)} u \frac{\partial H(x, y)}{\partial n_{k}} d \sigma_{(k)}(y)}{4 \pi}=-u(x)
$$

for any hyperbolic balls $B_{h}\left(x, r_{h}\right)$ satisfying $\overline{B_{h}\left(x, r_{h}\right)} \subset \Omega$.
Proof. Using Proposition 3 we infer that in $\partial B_{h}\left(x, r_{h}\right)$ the outer normal at y is

$$
n=\left(n_{0}, n_{1}, n_{2}\right)=\frac{\left(y_{0}-x_{0}, y_{1}-x_{1}, y_{2}-x_{2} \cosh r_{h}\right)}{x_{2} \sinh r_{h}} .
$$

Denote $r_{h}=d(x, y)$. We first compute

$$
\begin{aligned}
\frac{\partial H(x, y)}{\partial n_{k}} & =y_{2}^{k} \frac{\partial H(x, y)}{\partial n}=y_{2}^{k}(n, \operatorname{grad} v) . \\
& =y_{2}^{\frac{3 k-1}{2}} x_{2}^{\frac{k-1}{2}} \frac{\partial}{\partial r_{h}} \frac{\cosh \left(\frac{|k+1| r_{h}}{2}\right)}{\sinh r_{h}} \sum_{i=1}^{2} n_{i} \frac{\partial r_{h}}{\partial y_{i}}+\frac{k-1}{2} y_{2}^{k-1} n_{2} H(x, y) \\
& =y_{2}^{k} H(x, y)\left(\frac{|k+1|}{2} \tanh \left(\frac{|k+1| r_{h}}{2}\right)-\operatorname{coth} r_{h}\right) \sum_{i=1}^{2} n_{i} \frac{\partial r_{h}}{\partial y_{i}} \\
& +\frac{k-1}{2} y_{2}^{k-1} n_{2} H(x, y) .
\end{aligned}
$$

Applying Lemma 1 we infer

$$
\frac{\partial r_{h}}{\partial y_{i}}=\frac{\partial \operatorname{arcosh} \lambda(x, y)}{\partial y_{i}}=\frac{y_{i}-x_{i}-x_{2}\left(\cosh r_{h}-1\right) \delta_{i n}}{y_{2} x_{2} \sinh r_{h}},
$$

and therefore we conclude

$$
\sum_{i=1}^{2} n_{i} \frac{\partial r_{h}}{\partial y_{i}}=\frac{1}{y_{2}}
$$

Hence we have

$$
\frac{\partial H}{\partial n_{k}}(x, y)=y_{2}^{k-1} H(x, y)\left(\frac{|k+1|}{2} \tanh \left(\frac{|k+1| r_{h}}{2}\right)-\operatorname{coth} r_{h}+\frac{k-1}{2} n_{2}\right) .
$$

Since $B_{h}\left(x, r_{h}\right)=B\left(x_{e}, x_{2} \sinh r_{h}\right)$ for $x_{e}=\left(x_{0}, x_{1}, x_{2} \cosh r_{h}\right)$ and $u y_{2}^{\frac{3 k-3}{2}}$ is continuous we obtain

$$
\lim _{r_{h} \rightarrow 0} \frac{|k+1| x_{2}^{\frac{k-1}{2}}}{8 \pi} \frac{\sinh \left(\frac{|k+1| r_{h}}{2}\right)}{\sinh r_{h}} \int_{\partial B_{h}\left(x, r_{h}\right)} u(y) y_{2}^{\frac{3 k-3}{2}} d \sigma_{(k)}(y)=0
$$

Similarly we deduce that

$$
\begin{aligned}
& \lim _{r_{h} \rightarrow 0} \frac{k-1}{8 \pi} \int_{\partial B_{h}\left(x, r_{h}\right)} \frac{y_{2}^{k-1} u(y) n_{2} H(x, y)}{x_{2} \sinh r_{h}} d \sigma_{(k)}(y) \\
& =\lim _{r_{h} \rightarrow 0} \frac{(k-1) x_{2}^{\frac{k+1}{2}}}{8 \pi x_{2}^{2} \sinh ^{2} r_{h}} \int_{\partial B_{h}\left(x, r_{h}\right)} u(y) y_{2}^{\frac{3 k-1}{2}}\left(y_{2}-x_{2} \cosh r_{h}\right) \cosh \frac{|k+1| r_{h}}{2} d \sigma_{(k)}=0 .
\end{aligned}
$$

Lastly we infer

$$
\lim _{r_{h} \rightarrow 0}-\frac{x_{2}^{\frac{k+3}{2}} \cosh r_{h} \cosh \left(\frac{|k+1| r_{h}}{2}\right)}{4 \pi x_{2}^{2} \sinh ^{2} r_{h}} \int_{\partial B_{h}\left(x, r_{h}\right)} \frac{u(y)}{y_{2}^{\frac{k+3}{2}}} d \sigma(y)=-u(x)
$$

completing the proof.
Theorem 18 Let $\Omega \subset \mathbb{R}_{+}^{3}$ be open and R a bounded open set with a smooth boundary satisfying $\bar{R} \subset \Omega$. If u is twice continuously differentiable functions in Ω and $x \in R$ then

$$
u(x)=\frac{1}{4 \pi} \int_{\partial R}\left(u \frac{\partial H}{\partial n_{k}}-H \frac{\partial u}{\partial n_{k}}\right) d \sigma_{k}(y)-\frac{1}{4 \pi} \int_{R} H \triangle_{k} u d m_{(k)}
$$

where $d \sigma_{k}, d m_{(k)}$ and $\frac{\partial}{\partial n_{k}}$ are the same as in Lemma 16. Moreover, if $u \in \mathcal{C}_{0}^{2}(R)$ then

$$
u(x)=-\frac{1}{4 \pi} \int_{R} H \triangle_{k} u d m_{(k)} .
$$

Proof. Applying Green formula in the set $R \backslash B_{h}\left(x, r_{h}\right)$ we obtain

$$
\begin{aligned}
\int_{R \backslash B_{h}\left(x, r_{h}\right)}\left(H \triangle_{k} u-u \triangle_{k} H\right) d m_{(k)} & =\int_{\partial R \backslash B_{h}\left(x, r_{h}\right)}\left(H \frac{\partial u}{\partial n_{k}}-u \frac{\partial H}{\partial n_{k}}\right) d \sigma_{k} \\
& =\int_{\partial R}\left(H \frac{\partial u}{\partial n_{k}}-u \frac{\partial H}{\partial n_{k}}\right) d \sigma_{k} \\
& -\int_{\partial B_{h}\left(x, r_{h}\right)}\left(H \frac{\partial u}{\partial n_{k}}-u(y) \frac{\partial H}{\partial n_{k}}\right) d \sigma_{k}
\end{aligned}
$$

Since H is k-hyperbolic harmonic in $R \backslash B_{h}\left(x, r_{h}\right)$ we obtain

$$
\begin{aligned}
\int_{R \backslash B_{h}\left(x, r_{h}\right)} H(x, y) \triangle_{k} u(y) d m_{(k)}(y) & =\int_{\partial R}\left(H \frac{\partial u}{\partial n_{k}}-u \frac{\partial H}{\partial n_{k}}\right) d \sigma_{k}(y) \\
& -\int_{\partial B_{h}\left(x, r_{h}\right)}\left(H \frac{\partial u}{\partial n_{k}}-u \frac{\partial H}{\partial n_{k}}\right) d \sigma_{k}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{\partial B_{h}\left(x, r_{h}\right)} H \frac{\partial u}{\partial n_{k}} d \sigma_{k} \\
& =x_{2}^{\frac{k-1}{2}} \frac{\cosh \left(\frac{|k+1| r_{h}}{2}\right)}{\sinh r_{h}} \int_{\partial B_{h}\left(x, r_{h}\right)} \frac{\partial u}{\partial n_{k}} y_{2}^{-\frac{3 k+1}{2}} d \sigma
\end{aligned}
$$

and $\frac{\partial u}{\partial n_{k}} y_{2}^{-\frac{3 k+1}{2}}$ is bounded in $\partial B_{h}\left(x, r_{h}\right)$ we obtain

$$
\int_{\partial B_{h}\left(x, r_{h}\right)}\left|H \frac{\partial u}{\partial n_{k}}\right| d \sigma_{k} \leq m\left(x, r_{h}\right) x_{2}^{\frac{k-1}{2}} 4 \cosh \left(\frac{|k+1| r_{h}}{2}\right) \pi \sinh r_{h}
$$

for some founction $m>0$ with bounded limit when $r_{h} \rightarrow 0$ and therefore

$$
\lim _{r_{h} \rightarrow 0} \int_{\partial B_{h}\left(x, r_{h}\right)} H \frac{\partial u}{\partial n_{k}} d \sigma_{k}=0
$$

Since the function $\triangle_{k} u(y)$ is a continuous function and by Lemma $15 H(x, y)$ is integrable in a bounded set R we obtain

$$
\lim _{r_{h} \rightarrow 0} \int_{R \backslash B_{h}\left(x, r_{h}\right)} H \triangle_{k} u y d m_{(k)}=\int_{R} H \triangle_{k} u d m_{(k)} .
$$

Combining all the preceding steps and applying Lemma 17 we conclude the result.

Corollary 19 Let $\Omega \subset \mathbb{R}_{+}^{3}$ be open and R a bounded open set with a smooth boundary satisfying $\bar{R} \subset \Omega$. If u is k-hyperbolic harmonic in Ω and $x \in R$ then

$$
u(x)=\frac{1}{4 \pi} \int_{\partial R}\left(u \frac{\partial H}{\partial n_{k}}-H \frac{\partial u}{\partial n_{k}}\right) d \sigma_{k}(y)
$$

where $d \sigma_{k}, d m_{(k)}$ and $\frac{\partial}{\partial n_{k}}$ are the same as in Lemma 16.
Note that if $k=1$, then

$$
H(x, y)=\operatorname{coth}\left(d_{h}(x, y)\right)=\int_{d_{h}(x, y)}^{\infty}-\frac{d u}{\sinh ^{2} u}
$$

and if $k=-1$, then

$$
H(x, y)=\frac{1}{x_{2} y_{2} \sinh d_{h}(x, y)}=\frac{1}{x_{2} y_{2} \sqrt{\lambda^{2}-1}}=\frac{2}{|x-y||x-\widehat{y}|} .
$$

These kernels were already used in integral formulas for hypermonogenic functions, see for example in [2] and [6]. Mean value properties for hyperbolic harmonic functions were verified in [7].

We may prove also similar results for eigenfunctions of the hyperbolic Laplace operator.

Theorem 20 Let $\Omega \subset \mathbb{R}_{+}^{3}$ be open and R a bounded domain with a smooth boundary satisfying $\bar{R} \subset \Omega$. Denote $\gamma=\frac{1}{4}\left(4-(k+1)^{2}\right.$. If u is twice continuously differentiable functions in Ω and $x \in R$ then

$$
u(x)=\frac{1}{4 \pi} \int_{\partial R}\left(u \frac{\partial F}{\partial n_{h}}-F \frac{\partial u}{\partial n_{h}}\right) d \sigma_{h}(y)-\frac{1}{4 \pi} \int_{R} F\left(\triangle_{h} u-\gamma u\right) d m_{h},
$$

where $d \sigma_{h}=\frac{d \sigma}{y_{2}^{2}}, d m_{h}=\frac{d m}{y_{2}^{3}}$ and $\frac{\partial}{\partial n_{h}}=y_{2} \frac{\partial}{\partial n}$. Moreover. if $u \in \mathcal{C}_{0}^{2}(R)$ then

$$
u(x)=-\frac{1}{4 \pi} \int_{R} F\left(\triangle_{h} u-\gamma u\right) d m_{h} .
$$

Proof. Using Green formula in the set $R \backslash B_{h}\left(x, r_{h}\right)$ we obtain

$$
\begin{aligned}
\int_{R \backslash B_{h}\left(x, r_{h}\right)}\left(F\left(\triangle_{h} u-\gamma u\right)-u\left(\triangle_{h} F-\gamma F\right)\right) d m_{h} & =\int_{\partial R \backslash B_{h}\left(x, r_{h}\right)}\left(F \frac{\partial u}{\partial n_{h}}-u \frac{\partial F}{\partial n_{h}}\right) d \sigma_{h} \\
& =\int_{\partial R}\left(F \frac{\partial u}{\partial n_{h}}-u \frac{\partial F}{\partial n_{h}}\right) d \sigma_{h} \\
& -\int_{\partial B_{h}\left(x, r_{h}\right)}\left(F \frac{\partial u}{\partial n_{h}}-u \frac{\partial F}{\partial n_{h}}\right) d \sigma_{h}
\end{aligned}
$$

From $\triangle_{h} F(x, y)-\gamma F(x, y)=0$ in $R \backslash B_{h}\left(x, r_{h}\right)$, it follows that

$$
\begin{aligned}
\int_{R \backslash B_{h}\left(x, r_{h}\right)} F\left(\triangle_{h} u-\gamma u\right) d m_{h} & =\int_{\partial R}\left(F \frac{\partial u}{\partial n_{h}}-u \frac{\partial F}{\partial n_{h}}\right) d \sigma_{h} \\
& -\int_{\partial B_{h}\left(x, r_{h}\right)}\left(F \frac{\partial u}{\partial n_{h}}-u \frac{\partial F}{\partial n_{h}}\right) d \sigma_{h}
\end{aligned}
$$

Since $\frac{\partial u}{\partial n_{k}}$ is bounded in $\partial B_{h}\left(x, r_{h}\right)$ we obtain

$$
\int_{\partial B_{h}\left(x, r_{h}\right)}\left|F(x, y) \frac{\partial u(y)}{\partial n_{h}}\right| d \sigma_{h}(y) \leq 4 m\left(x, r_{h}\right) \cosh \frac{|k+1| r_{h}}{2} \pi x_{2} \sinh r_{h}
$$

for some function $m>0$ with a bounded limit when $r_{h} \rightarrow 0$ and therefore

$$
\lim _{r_{h} \rightarrow 0} \int_{\partial B_{h}\left(x, r_{h}\right)} F(x, y) \frac{\partial u(y)}{\partial n_{h}} d \sigma_{h}(y)=0 .
$$

Since the function $\triangle_{h} u-\gamma u$ is a continuous function and by Lemma $15 F(x, y)$ is integrable in a bounded set R we obtain

$$
\lim _{r_{h} \rightarrow 0} \int_{R \backslash B_{h}\left(x, r_{h}\right)} F(x, y)\left(\triangle_{h} u-\gamma u\right) d m_{h}(y)=\int_{R} F(x, y)\left(\triangle_{h} u-\gamma u\right) d m_{h}(y) .
$$

The proof is completed when we verify that

$$
\lim _{r_{h} \rightarrow 0} \frac{\int_{\partial B_{h}\left(x, R_{h}\right)} u \frac{\partial F(x, y)}{\partial n_{h}} d \sigma_{h}(y)}{4 \pi}=-u(x) .
$$

This follows from the preceding calculations similarly as earlier proof, since

$$
\frac{\partial F}{\partial n_{h}}=F(x, y)\left(\frac{|k+1|}{2} \tanh \left(\frac{|k+1| r_{h}}{2}\right)-\operatorname{coth} r_{h}\right)
$$

and

$$
\begin{aligned}
\lim _{r_{h} \rightarrow 0} \int_{\partial B_{h}\left(x, r_{h}\right)} u \frac{\partial F(x, y)}{\partial n_{h}} d \sigma_{h} & =-\lim _{r_{h} \rightarrow 0} \frac{\cosh \left(\frac{|k+1| r_{h}}{2}\right) \cosh r_{h}}{\sinh ^{2} r_{h}} \int_{\partial B_{h}\left(x, r_{h}\right)} \frac{u d \sigma}{y_{2}^{2}} \\
& =-4 \pi u(x) .
\end{aligned}
$$

Corollary 21 Let $\Omega \subset \mathbb{R}_{+}^{3}$ be open and R a bounded open set with a smooth boundary satisfying $\bar{R} \subset \Omega$. If u is an eigenfunction corresponding to the eigenvalue $\gamma=\frac{1}{4}\left(4-(k+1)^{2}\right.$ in Ω and $x \in R$ then

$$
u(x)=\frac{1}{4 \pi} \int_{\partial R}\left(u \frac{\partial F(x, y)}{\partial n_{h}}-F(x, y) \frac{\partial u}{\partial n_{h}}\right) d \sigma_{h} .
$$

References

[1] Akin, Ö., Leutwiler, H., On the invariance of the solutions of the Weinstein equation under Möbius transformations. In Classical and modern potential theory and applications (Chateau de Bonas, 1993), 19 - 29, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 430, Kluwer , Dordrecht, 1994.
[2] Eriksson, S.-L., Hyperbolic Extensions of Integral Formulas, Adv. appl. Clifford alg. 20, Numbers 3-4, (2010), 575-586.
[3] Eriksson-Bique, S.-L., k-hypermonogenic functions, In Progress in analysis: proceedings of the 3rd International ISAAC Congress (2003), 337-348.
[4] Eriksson, S-L. and H. Leutwiler, Hyperbolic harmonic functions and their function theory, in Potential theory and Stochatics in Albac, Theta 2009, 85-100.
[5] Eriksson,S.-L., H. Orelma, A Mean-Value Theorem for Some Eigenfunctions of the Laplace-Beltrami Operator on the Upper-Half Space, Ann. Acad. Sci. Fenn. 36, 2011, 101-110.
[6] Eriksson, S-L., Orelma, H., A Hyperbolic Interpretation of Cauchy-Type Kernels in Hyperbolic Function Theory, Hypercomplex Analysis and Applications Trends in Mathematics, 2011, 43-59.
[7] Eriksson,S.-L., H. Orelma, A Mean-Value Theorem for Some Eigenfunctions of the Laplace-Beltrami Operator on the Upper-Half Space, Ann. Acad. Sci. Fenn. 36, 2011, 101-110.
[8] Eriksson, S-L. and H. Orelma, Mean value properties for the Weinstein equation using the hyperbolic metric. Submitted for a publication.
[9] Huber, A., A Uniqueness of Generalized Axially Symmetric Potentials, Ann. of Math. 60, no 2, 1954, 351-368.
[10] Leutwiler, H., Best constants in the Harnack inequality for the Weinstein equation, Aequationes Math. 34, no. 2-3, 1987, $304-315$. .
[11] Leutwiler, H., Appendix: Lecture notes of the course "Hyperbolic harmonic functions and their function theory". Clifford algebras and potential theory, 85-109, Univ. Joensuu Dept. Math. Rep. Ser., 7, Univ. Joensuu, Joensuu, 2004.
[12] Weinstein, A., Generalized Axially Symmetric Potential Theory, Bul. Amer. Math. Soc. 59, 1953, 20-38.

