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Abstract. Long-span cable supported bridges are prone to aerodynamic instabilities caused by
wind and this phenomenon is usually a major design criterion. If the wind speed exceeds the
critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of
the flutter boundary therefore requires accurate and robust models. This paper aims at studying
various combinations of models to predict the flutter phenomenon.

Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, differ-
ent types and classes of models can be combined to study the interaction. Here, both numerical
approaches and analytical models are utilised and coupled in different ways to assess the pre-
diction quality of the hybrid model. Models for aerodynamic forces employed are the analytical
Theodorsen expressions for the motion-induced aerodynamic forces of a flat plate and Scanlan
derivatives as a Meta model. Further, Computational Fluid Dynamics (CFD) simulations using
the Vortex Particle Method (VPM) were used to cover numerical models.

The structural representations were dimensionally reduced to two degree of freedom sec-
tion models calibrated from global models as well as a fully three-dimensional Finite Element
(FE) model. A two degree of freedom system was analysed analytically as well as numerically.
Generally, all models were able to predict the flutter phenomenon and relatively close agree-
ment was found for the particular bridge. In conclusion, the model choice for a given practical
analysis scenario will be discussed in the context of the analysis findings.
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1 INTRODUCTION

Long-span bridges are highly flexible, light weight and have low structural damping. They
can be subjected to large dynamic motion due to wind actions. The assessment of aerodynamic
behaviour, therefore, plays very important role in the design of long-span bridges. For this
reason, flutter is also viewed as an essential aeroelastic phenomenon to be studied for these
structures. The aeroelastic stability of long-span bridges against flutter is checked by calculating
a wind speed at which flutter occurs which is known as the flutter limit. The required aeroelastic
properties of the bridge deck section are usually determined in wind tunnel tests.

Scanlan introduced mathematical treatment of flutter in 1960s whereas for the last couple of
decades, numerical methods are becoming more popular due to the increasing use of computers
in the field of Structural Engineering. In this paper, the study is made on the aerodynamic
phenomena, the methods available for flutter analysis for bridges, and to apply the analytical
and numerical based analysis on the Lillebælt suspension bridge to calculate ultimately its flutter
limit.

2 METHODS OF AERODYNAMIC ANALYSIS

Analytical approaches play very important role in Wind Engineering whereas numerical
methods are gaining more importance. All methods apply simplifications to a certain extent
such as assuming two-dimensionality of the flow or the shedding process like the wake oscilla-
tor model for the case of vortex induced vibration [?]. There are three main types of analysis to
deal with the aerodynamic problems:

• Experimental methods
• Analytical methods
• Numerical methods
The last two methods have been used in this study. Analytical solution based on potential

flow theory for the motion induced forces on a flat plate exerting sinusoidal heave and pitch
motion was given by Theodorsen [?]. In most cases, the empirical models are available which
are based on the results of experimental studies. These models are mostly for 2D situations
but in reality the 3D effects are present. Also in analytical models, the basic physical causes
are attended but the Fluid-structure Interaction is not addressed. The experimental methods
are considered relatively accurate compared to the other methods. Wind tunnel testing and full
scale models are the examples of experimental methods.

The wind tunnel testing is very expensive for parametric studies but the numerical approach
makes it relatively cheaper. With the advancement in the computer modelling and the processing
power and by using the principles of CFD, it is now possible to study wind effects on structures
in relatively less time. These methods are also efficient, repeatable and economical. Numerical
simulations can be used in place of wind tunnel investigation for the fundamental studies. The
accuracy of results from these methods not only depends on the quality of the solver but also on
the modelling itself. Therefore, the numerical method must be reliable and robust to be used in
place of wind tunnel tests.
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3 REFERENCE OBJECT

The Lillebælt suspension bridge, Denmark, has been used as a reference object to employ
the various model combinations. The data about the bridge is available in [?] and the structural
parameters used for this reference object are given in Table ??. For simplicity in the calculation,
the railing and other attachments on the deck are not considered in this study.
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Figure 1: Elevation of the Lillebælt suspension bridge, Denmark used as a reference object in this study.
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Figure 2: Simplified Lillebælt suspension bridge deck section geometry used in this study (Dimensions: [m]).

Figure 3: Physical model of the Lillebælt suspension bridge.

Table 1: Basic data and structural properties of the Lillebælt suspension bridge section used in this study.

Section width Mass Inertial mass Bending
Frequency

Torsional
Frequency

Damping ratio

B [m] m [kg/m] I [kgm2/m] fh [Hz] fα [Hz] ξ [-]
33 11667 1017778 0.156 0.500 0.01
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4 COUPLING OF MODELS

Flutter is a coupling of aerodynamic forcing with a structural dynamics problem. Therefore,
different types and classes of models can be combined to study the interaction. In this study,
both numerical approaches and analytical models are utilised and coupled in different ways to
assess the prediction quality of the hybrid model.

The structural representations were dimensionally reduced to two degree of freedom section
models calibrated from global models as well as a fully three-dimensional Finite Element (FE)
model. A two degree of freedom system was analysed analytically as well as numerically. The
following models were thus derived and analysed: Fully analytical, CFD Derivatives-Analytical
and Numerical 2D Structural, CFD Derivatives-Numerical 3D Structural, Fully coupled CFD
Numerical 2D Structural. This has allowed to investigate a very broad range of model combi-
nations and to study their merits and drawbacks.

Table 2: Model coupling for the flutter analysis used in this study.

Flat Plate Lillebӕlt Section

2D Ο • • •
VPM (CFD) 2D ΟΟ

2D • •
3D • •

Ο Simple/ Regular model • Meta model

Numerical

Numerical
FE Software

Aerodynamic

Structural

Analytical

Analytical

Flat Plate

-

-

-

4.1 Analytical Approach (Theodorsen Theory)

Theodorsen investigated the flutter phenomenon for aircraft wings and gave a very popular
approach for the flutter analysis. This approach is independent of the shape of the body but
on the other hand it neglects the effect originating from the simplification to the flat plate.
From the basic principle of potential flow theory, Theodorsen showed that for thin airfoils in
incompressible flow, the expressions for lift FL and moment FM are linear in displacement h
and rotation α and their first and second derivatives [?].

F

FB

M

L

hkα
k

U∞ h

α

Figure 4: Definition of degrees of freedom (heave h and pitch α) for flutter analysis.

where FL and FM are the lift and moment, kh and kα are the vertical and rotational spring
stiffness and h and α are the vertical displacement and rotation respectively. U∞ is the oncoming
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wind speed. The equations of motion can be written as

FL = mḧ+ 2mξhωhḣ+mω2
hh (1)

FM = Iα̈ + 2Iξαωαα̇ + Iω2
αα (2)

where ωh and ωα are the natural circular frequencies in heave and pitch degree of freedom
respectively. The theoretical expressions on a flat plate airfoil for sinusoidal oscillating lift FL
and moment FM are

FL = −ρb2U∞πα̇− ρb2πḧ− 2πρCU2
∞bα− 2πρCU∞bḣ− 2πρCU∞b

21

2
α̇ (3)

FM = −ρb2π1

2
U∞bα̇− ρb4π

1

8
α̈ + 2ρU∞b

2π
1

2
CU∞α + 2ρU∞b

2πCḣ+ 2ρ
1

2
U∞b

3πCα̇ (4)

where ρ is the air density, C(k) is the Theodorsens circulation function and b = B/2. The
system of differential equations (1), (2), (3) and (4) can be written as

ḣ

ḧ
α̇
α̈

 =


0 1 0 0
a21 a22 a23 a24
0 0 0 1
a41 a42 a43 a44



h

ḣ
α
α̇

 (5)

This is of the form

Ẋ = AX (6)

and assuming the response X is of the form

X = Reλt (7)

where R is real. This simplifies to Eigenvalue problem as follows:

[A− λI]Reλt = 0 (8)

The solution for h(t) and α(t) is of an exponential form. The Eigenvalues of λi of the matrix
A characterize the response of the system as follows:

• Positive real part: Increasing response
• Negative real part: Decaying response
• Imaginary part: Oscillating response
The system will become unstable when an Eigenvalue has a positive real part. When the

imaginary part goes towards zero, the oscillatory part vanishes and the phenomenon of static
divergence is observed. In this situation, there will be pure heave or pitch motion which can
be interpreted as loss of vertical stiffness. The system is solved successively for increasing
U∞ until at least one Eigenvalue becomes positive real. The code for solving the Theodorsens
equations was written in Matlab. Using the structural parameters for the Lillebælt bridge (see
Table ??), the flutter limit was found 93.8m/s.
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4.2 Meta Model (Scanlan Approach)

Scanlan proposed a set of expressions for the aerodynamic forces on a bridge cross section. It
assumes that the self-excited lift FL and moment FM for a bluff body may be treated as linear in
displacement h and rotation α and their first derivatives [?]. Below is commonly used linearised
form.

FL =
1

2
ρU2
∞B

[
KH∗1

ḣ

U∞
+KH∗2

Bα̇

U∞
+K2H∗3α +K2H∗4

h

B

]
(9)

FM =
1

2
ρU2
∞B

2

[
KA∗1

ḣ

U∞
+KA∗2

Bα̇

U∞
+K2A∗3α +K2A∗4

h

B

]
(10)

K =
Bω

U∞
(11)

where the non-dimensional coefficients H∗i and A∗i are known as aerodynamic or flutter
derivatives. The frequency of the bridge oscillation under aerodynamic forcing is known as
reduced frequency. As the aerodynamic derivatives are the function of this frequency therefore
they can only be measured when the bridge is in the oscillatory state. Normally these are
measured in special wind tunnel tests.
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Figure 5: Eigenvalue paths for increasing wind speed U∞.

The formulation to the Eigenvalue problem in this case is similar as described in Section ??.
The flutter limit is determined when the real part of at least one Eigenvalue becomes positive as
shown in Figure ??. The flutter limit was determined as 93.8m/s using the structural parameters
of the Lillebælt bridge given in Table ??.

4.3 Forced Vibration Simulation

Forced vibration simulations are used to determine motion-induced forces. The resulting lift
and moment time histories are used to compute the aerodynamic derivatives. A computer code,
VXFlow, based on VPM has been used here to compute these derivatives. Forced vibration
simulations were performed on the Lillebælt section and the flat plate (aspect ratio 1:100) in
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sinusoidal heave and pitch motion over a range of reduced frequencies. The reduced frequency
is controlled by changing the period of heave and pitch forcing motion.

vr =
2πU∞
bω

(12)

where vr is reduced frequency. These simulations are performed in heave and pitch motion
separately and the aerodynamic derivatives are computed from the resulting force time histories.
The simulation gives time histories for F̄ L and F̄M corresponding to known displacement traces
h. Equations (9) and (10) (with α=0) thus constitutes a system of equations as

F̄ L = CL
hH

∗
h (13)

F̄M = CM
h A∗h (14)

where
CL
h =

1

2
ρU2
∞BK

[
ḣ
U∞

K h
B

]
(15)

and
CM
h = BCL

h (16)

H∗
h =

[
H∗1
H∗4

]
,A∗h =

[
A∗1
A∗4

]
(17)

System (13) and (14) can be solved in the least-squares sense by left-multiplying with the C
matrix:

CLT

h F̄ L = CLT

h CL
hH

∗
h (18)

CMT

h F̄M = CMT

h CM
h A∗h (19)

This gives two sets of derivatives in lease-square sense. The procedure to calculate these aero-
dynamic derivatives can be found in [?] and is summarized as follows:

• perform forced vibration tests in either heave or pitch motion
• calculate a best-fit harmonic of the same forcing frequency to obtain lift coefficient and

phase shift
• calculate derivatives
The resulting aerodynamic derivatives can be used to calculate flutter limit of the bridge.

The forced vibration simulation was performed for the Lillebælt section shown in Figure ??
and the flat plate of the same width (with aspect ratio of 100). For both these cases, structural
parameters given in Table ?? were used. The flutter limit for the Lillebælt section was calculated
as 94.2m/s and for flat plate as 88.7m/s.

4.4 Fluid-structure Interaction Simulation

VXFlow has been used here for the coupled analysis of the vertical motion and rotation
of a two-degree of freedom spring supported section model. The coupling of fluid dynamics
solution and the structural dynamics is done at every time step. The pressure on the surface of
the body is integrated to get the resultant force in terms of lift and twisting moment. These are
associated with the two degrees of freedom of the structural system. The equations of motion
for the system are solved by time marching structural dynamics solution. A stiffness matrix is

7



0 4 8 12 16
−15

−10

−5

0

H
1* , H

2*

0 4 8 12 16
−3

0

3

6

0 4 8 12 16
−30

−20

−10

0

H
3* , H

4*

0 4 8 12 16
−6

−3

0

3

0 4 8 12 16
0

1

2

3

A
1* , A

2*

0 4 8 12 16
−3

−2

−1

0

0 4 8 12 16
0

3

6

9

v
r

A
3* , A

4*

0 4 8 12 16
−0.5

0

0.5

1

v
r

Figure 6: Aerodynamic derivatives (H∗i and A∗i where i =1, 2, 3, 4) w.r.t. the reduced speed (vr): flat plate by
Theodorsen theory (——), interpolated values from forced vibration analysis on the Lillebælt section (—•—) and
the flat plate (- -◦- -).
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then created and solution is performed. Rayleigh damping is used to model structural damping,
for which the damping matrix is proportional to the combination of mass and stiffness matrices.

Structural parameters, given in Table ?? for the Lillebælt suspension bridge, were used for
the bridge section (see Figure ??) and the flat plate of aspect ratio 100. The simulations were
performed at various wind speed to identify the flutter instability. It was observed that just
before the flutter limit, the section goes into the loss of vertical stiffness stage having extreme
heave condition. At 95m/s the bridge section becomes unstable after a few hundred time steps.
The flutter limit for the plate section was found as 98m/s.
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Figure 7: Lillebælt section in Fluid-structure Interaction, displacement time histories at U∞= 95m/s: leading edge
(——), trailing edge (——).

Figure 8: Instantaneous vortex pattern with streak lines for the Lillebælt section (Top) and the flat plate (Bottom).

4.5 Finite Element Model

The section of the Lillebælt suspension bridge deck was modelled as a two degree of freedom
beam element of unit length in a Finite Element software. The system was supported on springs
with vertical and rotational degrees of freedom. The reduced model was calibrated to represent
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the first bending and first torsional mode of the full bridge model. The dimensional reduction to
a two-degree of freedom system is a simplification but on the other hand it neglects the effects
coming from the higher modes. The aerodynamic derivatives obtained through forced vibration
analysis (see Section ??), for the Lillebælt section and the flat plate, were used to calculate the
aerodynamic forces. Dynamic wind history analysis was performed on the system. The flutter
limit both for the Lillebælt section and the flat plate was found to be 58.5m/s.

A 3D Finite Element model of the Lillebælt suspension bridge was made and calibrated to
represent the structural properties of the bridge given in Table ??. In the calibration process
some discrepancies were found and the target frequencies were not achieved exactly. The mode
shapes of first bending and first torsional mode with their achieved frequencies are shown in
Figure ??. The approach from the two degree of freedom model was implemented to the full
3D model of the bridge and the resulting flutter limits were calculated. The effect of higher
modes was observed in the deformed model of the bridge at flutter limit. The flutter limit
calculated was 49.0m/s both for the Lillebælt section and the flat plate.

Figure 9: View of full 3D Finite Element bridge model.
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Figure 10: First bending mode (——) (achieved frequency = 0.151 Hz) and first torsional mode (——) (achieved
frequency = 0.502 Hz) of full 3D Finite Element bridge model.

10



5 CONCLUSIONS

The flutter phenomenon was studied employing various combinations of analytical and nu-
merical prediction models. Lillebælt suspension bridge was used as a study object. Generally,
all models were able to predict the flutter phenomenon and relatively close agreement was found
for the particular bridge. Fully coupled CFD analyses have the advantage that no prior knowl-
edge as to the phenomenon needs to be inserted into the model. Three-dimensional structural
representations are superior over dimensionally reduced models in that no prior knowledge as
to the modes participating in the flutter coupling is required. Fully analytical models are more
direct models and allow a better insight into the force coupling. Simplified aerodynamic models
need to be critically assessed with respect to their ability to predict the aerodynamic behaviour
of the real cross section. The summary of the results is preseneted in Table ??.

Table 3: Summary of flutter limits from different model coupling (see Table ??).

Flat Plate Lillebӕlt Section

2D 93.8 93.8 88.7 94.2
VPM (CFD) 2D 98.0 95.0

2D 58.5 58.5
3D 49.0 49.0

Structural

Aerodynamic Numerical

Analytical

Analytical

Flat Plate

-

-

-
Numerical

FE Software
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