
1Chapter - Computation and Performance - eCAADe 31 |

Graphical Smalltalk with My Optimization System for Ur-
ban Planning Tasks

Reinhard Koenig1, Lukas Treyer2, Gerhard Schmitt
ETH Zurich, Chair of Information Architecture
http://www.ia.arch.ethz.ch/
1reinhard.koenig@arch.ethz.ch, 2lukastreyer@student.ethz.ch

Abstract. Based on the description of a conceptual framework for the representation of
planning problems on various scales, we introduce an evolutionary design optimization
system. This system is exemplified by means of the generation of street networks with
locally defined properties for centrality. We show three different scenarios for planning
requirements and evaluate the resulting structures with respect to the requirements of our
framework. Finally the potentials and challenges of the presented approach are discussed
in detail.
Keywords. Design optimization; interactive planning support system; generative system
integration; evolutionary multi-criteria optimization.

MOTIVATION
For many computer scientists the programming lan-
guage Smalltalk was the most pioneering human-
computer interaction language of the 1970s. It was
designed to be so simple that even children could
program. It is one of the first totally object oriented
languages – everything is an object. While today
many ideas from Smalltalk have since been adopted
by other languages, the visionary thinking of the
time when it was developed can still inspire us today
to strive for flawless human-computer interaction in
the development of design optimization systems for
architecture and urban planning.

PROBLEM STATEMENT
A number of promising generative algorithms are
available today, but none are currently employed to
enhance and simplify the day-to-day work of urban
planners. Computer support for urban planning pro-
jects is usually restricted to basic CAD drawing tools.
In the authors’ opinion, one reason for the lack of

integration of generative methods in planning pro-
cesses is their complicated handling. Typically they
require extensive input of abstract technical rules
and parameters that are unfamiliar and daunting for
planners.

The situation is further complicated by the fact
that planning projects typically consist of a mixture
of contradicting and non-contradicting criteria as
well as of directly measurable criteria and only in-
directly interpretable measures. The lack of suitable
optimization methods hinders a systematic evalua-
tion of possible compromises between contradict-
ing planning requirements.

STATE OF THE ART
In their seminal book, Radford and Gero (1988) show
various examples of how optimization strategies can
be used to solve design problems. Although today
we can use more flexible evolutionary optimization
methods (Deb, 2001), the concept for their applica-

2 | eCAADe 31 - Computation and Performance - Chapter

tion and the role of pareto-optimal fronts has not
changed a lot over the past few decades (Bentley
and Corne, 2002). A good example for state of the
art interactive generative planning systems is the
work of Derix (2009). Dillenburger et al. (2009) have
also presented an interesting system for creating
building designs using a weighted-sum optimiza-
tion algorithm.

Current commercial solutions for generative or
procedural modeling, for example Grasshopper [1],
GenerativeComponents [2], or CityEngine [3] exem-
plify the problems with such systems: they require
intensive training before they can be used efficiently
and though sometimes attractively designed, their
user interfaces are not intuitive for urban planners.
Furthermore it is not efficient to couple them with
optimization tools, because of the increased com-
puting time and restricted possibilities offered by
their corresponding APIs. Although Galapagos [4]
provides an optimization method for Grasshopper,
Rutton (2010) notice that it is only useful for simple
problems.

AIMS
Our main goal is to use graphical objects to repre-
sent a planning problem and to control an optimiza-
tion algorithm using primarily these objects. A fur-
ther challenge is to translate the planner’s partially
vague qualitative requirements into a precise quan-
tifiable problem representation for an algorithm.
Translation problems are one reason why planners
rarely embrace computer support. To improve this
situation we aim to develop an interactive system
for supporting the urban planning process with a
more constructive and intuitive interface for plan-
ners. The combination of well-designed interaction
strategies and planner-friendly problem representa-

tion as a basis for evolutionary optimization strate-
gies is as an issue that is yet to be resolved.

CONCEPTUAL FRAMEWORK
To address the aforementioned problems, our first
task is to develop a conceptual framework that in-
cludes a combination of various interaction strate-
gies for the user interface, different generative tech-
niques, and some optimization methods. We have
approached this concept from two perspectives:
from that of a planner and from that of a software
developer.

To meet the planner’s requirements we sepa-
rate the problem representation and the definition
of requirements by at least two levels of abstraction
(Figure 1): The first holds the topological relations
between various elements and basic properties (Fig-
ure 1 left). The graphical objects on this level can en-
code parameter values e.g. by their size, position or
colour, etc. The second abstraction level comprises
the geometric representation of possible planning
solutions (Figure 1 right). One can interact with all
the graphical objects of a current planning proposal
on each level to test different options and to refine
a planning iteratively. From the software developers
point of view we develop a framework for combin-
ing evolutionary optimization techniques. These in-
clude generative algorithms and evaluation mecha-
nisms to analyze the generated variations. As a basis
for this framework, we use state-of-the-art evolu-
tionary multi-criterion optimization methods. For
a comprehensive and easily understandable intro-
duction to evolutionary algorithms, see Bentley and
Corne (2002). In the following description, we focus
only on the essential aspects that are necessary for
our purposes. We take the AForge.Net Framework
[7] as the starting point for the implementation of

Figure 1

Planning scenario divided into

three levels of abstraction.

Left: Topological relations

between elements and basic

properties. Centre: Geometric

distribution of the elements.

Right: Geometric representa-

tion of a possible planning

solution [6].

3Chapter - Computation and Performance - eCAADe 31 |

our evolutionary algorithm (EA). The main argument
for EA is their flexibility in dealing with the problem
representation, which is crucial for the problems de-
scribed above.

From the user’s perspective we reverse the logic
of generative planning systems: instead of exploring
the results of different parameter settings or pro-
cedural rule sets, we allow a planner to graphically
define what performance a solution shall have and
the optimization system automatically generates a
set of best compromise solutions. This constellation
of deducing a solution from its desired properties is
called an inverse problem [5], which was used with
a different intention by Koltsova et al. (2012). Based
on this concept we develop a method that can be
called bi- or multi-directional planning, since one
can control a computer-based planning system from
any of the abstraction levels as shown in Figure 1.

IMPLEMENTATION
In this paper we present just one part of the afore-
mentioned framework: the optimization of a street
network inside a planning area with specific local
properties. The sub-areas can be defined by a user
with the help of graphical objects in a similar way as
shown in Figure 1.

Before we consider some example applications
of the optimization system, we first describe the im-
plementation of its basic generative and evaluation
mechanisms. Taking the AforgeNet Framework [7] as
our starting point, we extend it by a class for a chro-
mosome with mutation and crossover methods and
a class for a customized fitness function as described

below.

Generation Mechanism
The basic idea for the generative mechanism is to
use an instruction tree, which holds the instructions
on how to grow a street network (Figure 2). This
growth process can be denoted as embryogeny and
is responsible for unfolding the abstract information
stored in a genotype to the concrete structure of a
phenotype, which is why this process can also be
described as mapping from genotype to phenotype.
For the genotype representation we use a chromo-
some which in turn is represented in our case by an
instruction tree as shown in Figure 2. The rules to
create the street network (Figure 2 right) are adapt-
ed from the concept of self-sensitive L-Systems by
Parish and Müller (2001).

As a basic component of the instruction tree we
implement a class for an individual instruction node
which stores the information on how to add a new
street segment to an existing node of the network
(Figure 3). The instructions for a node are reduced
to three which is the minimum necessary for our
basic system: the range li for the length of a street
segment, the angle αi that indicates the angular
deviation from a regular division, and the range κi
of possible arms at a crossroad. Figure 3 illustrates
the mapping of the instructions of three instruction
nodes to a phenotype representation. We use the
additional parameter tree depth to restrict the size
of an instruction tree to a certain limit. The individu-
als of an initial generation of a population start with
randomly assigned instruction values.

Figure 2

Mapping process from an

instruction tree to a street

network. The grey dotted

street segments on the right

side illustrate the adaption of

instructions how to add a new

segment to a existing network.

4 | eCAADe 31 - Computation and Performance - Chapter

The instruction tree can be mutated and used
for crossover operations as illustrated in Figure 4.
Since the instructions of a node are always relative
to the existing street network, new combinations af-
ter the crossover always work. The main reason why
we use a tree structure for the chromosome is that
it ensures that after the crossover and mutation op-
erations, the corresponding street network remains
connected (if the initial network was connected).
The mutation operator simply takes (e.g. 1-10%) in-
dividual nodes of an instruction tree and assigns a
randomly generated value to one of its parameters.
The frequency of the execution of these operators at
one iteration (or generation) is defined by the cross-
over and mutation rate.

One of the most important properties of a gen-
erative mechanism, as part of an optimization pro-
cess, is its ability to generate very different network
topologies. It is this property that allows an optimi-
zation system to find interesting and surprising so-
lutions for a given set of restrictions and goal func-
tions.

Evaluation Mechanism
As a goal function (or fitness function) for the evalu-
ation of the generated street network we use the

betweenness centrality (choice) of a network. For
this we need to calculate the all-pair shortest paths
for the network, and compute this following the
concept elaborated by Hochberg [8] using a paral-
lel GPU implementation of the Floyd-Warshall algo-
rithm to calculate shortest paths. For the weight-
ings in the corresponding graph we use angular
distances instead of metric distances as introduced
by Turner (2001; 2007). The choice value for a spe-
cific street segment equals the number of shortest
paths from all street segments to all others that pass
through that segment. For the sake of simplicity, we
use only the choice value in the following examples
to characterize street networks, but other centrality
measures would be useful too.

EXAMPLE SCENARIO
As a starting situation for the following examples we
use an area with the dimensions 3000m × 2000m
that needs to be filled with streets (Figure 5). The po-
sitions of the existing street connections are marked
by nodes with underlined numbers. The areas de-
fined in the right-hand image in Figure 5 will be
used in later examples to define a central sub-area
(red, dashed) and a quiet sub-area (blue, checked).
The red center is placed near the coordinates

Figure 3

On the left, the tree shows

the main instructions of an

instruction node. In the box on

the right one can see how the

instructions are assigned to a

street network.

Figure 4

Creation of new child variants

(C and D) by a crossover op-

eration applied to two parent

instruction trees (A and B).

5Chapter - Computation and Performance - eCAADe 31 |

750m/1500m (coordinate origin in the left bottom
corner) while the blue quiet area fills the bottom
right-hand quarter of our planning area. For the fol-
lowing examples we use the following initial param-
eters: generations = 50, population size = 50, muta-
tion rate = 0.25, crossover rate = 0.75, tree depth = 8.
It is import to select a tree depth high enough to en-
sure that the complete area can be filled with streets
and that there is no indirect restriction for the opti-
mization algorithm. The values for the nodes of the
initial instruction trees were initialized with random
values with the intervals: αi =[-10, 10], li =[10, 40], κi
=[1, 4]

First we consider a simple basic example scenar-
io, where we use the aforementioned optimization
method to maximize the maximum choice value
(Figure 6) and the sum of all choice values of the
generated street network (Figure 7). We start with an
empty area as shown in Figure 5 on the left. Figure

6 and Figure 7 show three resulting street networks
with the corresponding diagram of the develop-
ment of the fitness values.

To achieve very high choice values, the most ob-
vious strategy is to design a network, that is separat-
ed into two parts which are connected by the most
used street, the one with the highest choice value. In
cities we find this situations, for example, in places
where a bridge crosses a river or a narrow valley di-
vides a settlement. If we consider the three street
networks in Figure 6 we can see this structure in the
network in the right-hand image. Of the three net-
works in Figure 6, however, the network in the mid-
dle has the best fitness value, although there are no
two separate parts. This results from the fact that for
the calculation of the trips we use the shortest an-
gular distance and not the shortest metric distance.
Because of this, there is one street segment at the
top-center which is used very often. If we look at the

Figure 5

Initial planning situation: The

border defines the planning

area, and connections to the

existing street network are

represented by the nodes with

underlined numbers. The col-

oured areas in the right-hand

image denote areas where the

new street network will have

defined properties.

Figure 6

First example scenario. For

each of the street networks

shown, the maximum choice

value is maximized. Red

represents street segments

with high choice values and

blue low choice values. The

diagrams in the bottom row

show the development of

the fitness values over 50

generations.

6 | eCAADe 31 - Computation and Performance - Chapter

left-hand network in Figure 6 we find that there is no
single bottleneck, and at least one other populated
route. As a result this network has the worst fitness
of the three.

The fact that the three best networks have differ-
ent maximal fitness values (diagrams in the bottom
row of Figures 6 and 7), indicates that the evolution-
ary optimization process explores different parts of
the search space each time it is run. But despite the
small differences in the maximum fitness values of
the variants, they all fulfill the requirements relative-
ly well. When we consider the random points (repre-
senting randomly generated variants) we can clearly
see the advantage of using the evolutionary search
process compared to randomly generated solutions.
The best variants are improved continuously over
the 50 generations and reach a level, which cannot
be achieved by a random generation process.

In our second example we use the same initial
scenario as in the first one, but we adapt the fitness
function to maximize the sum of all choice values of
the street network. The topologies of the resulting
networks in Figure 7 are clearly different to those
in Figure 6. Here we cannot see separate network
parts and the streets segments with the highest
choice values are not concentrated at one location
but distributed across the network. This difference
proves that our optimization system is working as
expected. The development of the fitness shown in

the diagrams in the bottom row in Figure 7 is similar
to that of the corresponding diagrams in Figure 6.
This indicates that both fitness functions direct the
search process in a similarly efficient way.

Our third example is based on the initial sce-
nario with two defined sub-areas as shown in the
right-hand image of Figure 5. In Figure 8 the central
sub-area is shown as a dotted ellipse and the quiet
sub-area as a dotted rectangle. To include the spatial
aspect in the fitness function, we have to define how
to represent the graphical objects that represent the
sub-areas with the corresponding specified proper-
ties.

First we consider the central sub-area. To
achieve a highly-populated center in the defined
sub-area we want to locate the street segment
with the maximized choice value in it. Therefore we
measure the distance dcmax of the street segment
with the maximum choice value cmax to the center.
This distance can be used as a weight so that we can
decrease the fitness of a network according to the
distance dcmax:

,	 (1)
where D is a constant which denotes the maxi-

mal possible distance. In our examples, this is the
diagonal of the border rectangle D = 3606m.

Secondly, we consider the quiet sub-area. To
achieve an area with as little traffic as possible, e.g.

Figure 7

Second example scenario: For

each of the street networks

shown, the sum of all choice

values is maximized. Red

represents street segments

with high choice values and

blue low choice values. The

diagrams in the bottom row

show the development of

the fitness values over 50

generations.

7Chapter - Computation and Performance - eCAADe 31 |

for residential usage, we want to have only streets
with low choice values in it. Therefore we sum all
differences of the choice values from the street seg-
ment ci that are located inside the quiet area A and
the maximum choice value of the network cmax.
The average of this sum is used as the second part of
our fitness function:

.	 (2)
From the two fitness values F1 and F2 we calculate
the final fitness value as the sum of both:
Fitness = F1 + F2.	 (3)

The street networks resulting from this optimi-
zation process are shown in the top row of Figure 8.
The results fulfill both of our requirements relatively
well: the red coloured street segments with maxi-
mum choice values are located close to or inside the
central sub-area, while we find primarily only blue
coloured street segments with low choice values in
the quiet sub-area. To evaluate the effect of the de-
fined sub-areas on the resulting street networks we
can compare the variants from Figure 6 and Figure 7
with the ones in Figure 8. We can observe very dif-
ferent structures in comparison to the second ex-
ample scenario in Figure 7 and similar structures to
our first example scenario in Figure 6 showing the
two separated network parts (Figure 8 in the mid-
dle). In general the results seems self-evident, but
nevertheless we can see some problems, e.g. at the

solution in the left-hand image of Figure 8. Here the
maximum choice value is at the edge of the central
area and there is a relatively populated road in the
quiet sub-area. Maybe the optimization algorithm
could have found a better solution with more gen-
erations. But the combined fitness function may be
hindering the improvement of this variant. We will
discuss this problem in the next section.

DISCUSSION
As outlined in the description of our framework, we
have demonstrated a method of representing plan-
ning requirements using graphical objects that can
be used by an optimization system (Figure 5). The
main challenge of the system is interacting with de-
sign variants, not because of the complicated user
interface – it is, for example, possible to change the
genotype and thus the later optimization process by
manipulating the graphical objects of the pheno-
type (street segments and crossroads). This makes
it possible to realise a multi-directional planning
method as described above.

The main problem of our system is that the op-
timization process is much too slow for use in an
interactive process. The computation of the above
examples needed 2030 minutes on an average mod-
ern notebook. One generation therefore needed
half a minute: half a second would be a more accept-
able timespan. Of course these times depend a lot

Figure 8

Third example scenario. For

each of the street networks

shown, we use a combined fit-

ness function: one factor is the

maximized maximum choice

value that is weighted with the

distance to the central area

(dotted ellipse), while the sec-

ond factor is the average sum

of all choice values which are

assigned to street segments

inside the quiet area (dotted

rectangle). Red represents

street segments with high

choice values and blue low

choice values. The diagrams

in the bottom row show the

development of the fitness

values over 50 generations.

8 | eCAADe 31 - Computation and Performance - Chapter

on the size of the street network, the population size
and other aspects. But the main time-critical aspect
is the computation of the all-pair shortest path. This
needs to be improved in future using an optimized
algorithm and more powerful hardware.

In addition we use a very inefficient method to
generate instruction trees. We use a random initial
process which produces a very huge tree from which
only a small fraction of nodes are needed to grow
the street network. In the examples above, in the
case of κi = 4, we have 3^depth instruction nodes for
each tree. For a tree depth of 8 this results in max.
3^8 = 6561 nodes, but we only have approximately
300 street segments. Alternatively one could create
random but meaningful street networks in the be-
ginning and encode them to make much more ef-
ficient instruction trees.

Variations of the angles and placement of the
initial street segments as shown in Figure 5 have a
relatively significant impact on the further growth
and thus on the final phenotype of the network.
Therefore, to search for optimal solutions it may also
be useful to vary the initial segment.

Another interesting aspect of the presented
examples is a product of the property of EAs to cre-
ate their own biotope for the artificial life forms – in
our case the street network. We can observe special
strategies for the EA to maximize their fitness (the
choice values): the first is to maximize the num-
ber of street segments to produce more trips and
thus higher maximal choice values. This could be
overcome by averaging the values i.e. dividing the
choice values by the number of streets. The second
is to generate street segments at strategically ben-
eficial places (e.g. top left corner in the left and right
networks in Figure 8). These segments can produce
more trips via certain segments with high choice
values to increase them further.

In our last example (Figure 8) we have used two
goal functions: one to achieve a center and one to
create a quiet area. Both are combined into one
fitness function. Here we run into the problem of
weighting both criteria against each other in a more
or less arbitrary way. This weighting, however, has a

significant effect on the optimization process und
thus on the quality of the results. For example the
optimization process can get stuck in local optima,
since one criterion is already very good, but the
other not. The improvement of poor criteria may be
hindered because it may negatively affect other very
good criteria, so that the resulting fitness value can-
not be improved. To avoid these kind of problems
we need to use evolutionary multi-criteria optimiza-
tion (EMO) methods (Deb, 2001).

CONCLUSION AND OUTLOOK
In this paper we have demonstrated the potentials
of using an optimization system for urban planning
tasks using a test scenario. In this scenario we have
generated street networks with defined local prop-
erties. The presented system is a first component of
an framework with basic functionality to efficiently
search compromise solutions for complex planning
problems. A first software prototype has been im-
plemented with an intuitive user interface to repre-
sent planning problems, to present various compro-
mise solutions, and to improve them interactively.

The differences in the examples presented in
Figures 6-8 show clearly that our system doesn’t
generate globally optimal solutions – e.g. one can
delete connections that enable ring trips around the
centre to increase the traffic through the centre (and
to increase the corresponding choice value). This is
an inherent aspect of EAs: they cannot guarantee
finding the globally best solutions, but they can
always offer good ones. This disadvantage can be
improved by running more generations or by using
separate populations in parallel and migrating the
best variants between them. In our context, this isn’t
a problem because planners are not usually looking
for global optima as goal functions represent only a
part of a planning problem. Thus the interactive and
adaptable search for variants is the main support for
the planning process.

The next step for the development of our frame-
work is to implement a more complex EMO sys-
tem which integrates algorithms for parceling and
building placement (Aliaga et al., 2008; Knecht and

9Chapter - Computation and Performance - eCAADe 31 |

Koenig, 2012). With this development we can achieve
the multi-level approach illustrated in Figure 1.

ACKNOWLEDGEMENT
Special thanks go to our colleague Christian Tonn
from the Bauhaus-Universität Weimar, who imple-
mented the fast graph calculations for GPU.

REFERENCES
Aliaga, D. G., Vanegas, C. A., and Beneš, B. (2008). Interactive

example-based urban layout synthesis. Acm Transac-
tions on Graphics, 27(5), 1-10.

Bentley, P. J., and Corne, D. W. (2002). An Introduction to
Creative Evolutionary Systems. In P. J. Bentley and D. W.
Corne (Eds.), Creative Evolutionary Systems (pp. 1-76).
San Francisco: Morgan Kaufmann.

Deb, K. (2001). Multi-objective optimization using evolution-
ary algorithms: John Wiley and Sons.

Derix, C. (2009). In-Between Architecture Computation. In-
ternational Journal of Architectural Computing, 7(4).

Dillenburger, B., Braach, M., and Hovestadt, L. (2009). Build-
ing design as an individual compromise between quali-
ties and costs: A general approach for automated build-
ing generation under permanent cost and quality control.
Paper presented at the CAADFutures 2009.

Knecht, K., and Koenig, R. (2012). Automatische Grundstück-
sumlegung mithilfe von Unterteilungsalgorithmen und
typenbasierte Generierung von Stadtstrukturen. Weimar:
Bauhaus-Universität Weimar.

Koltsova, A., Tuncer, B., Georgakopoulou, S., and Schmitt, G.
(2012). Parametric tools for conceptual design support
at the pedestrian urban scale. Paper presented at the
eCAADe.

Parish, Y. I. H., and Müller, P. (2001). Procedural Modeling of
Cities. Paper presented at the SIGGRAPH, Los Angeles,
CA.

Radford, A. D., and Gero, J. S. (1988). Design by optimization
in architecture, building, and construction. New York:
Van Nostrand Reinhold.

Rutton, D. (2010). Evolutionary Principles applied to Prob-
lem Solving. Retrieved 18.06.2011, from http://www.
grasshopper3d.com/profiles/blogs/evolutionary-prin-
ciples

Turner, A. (2001). Angular Analysis. Paper presented at the
3rd International Space Syntax Symposium, Atlanta.

Turner, A. (2007). From axial to road-centre lines: a new rep-
resentation for space syntax and a new model of route
choice for transport network analysis. Environment and
Planning B: Planning and Design, 34(3), 539 – 555.

[1] http://www.grasshopper3d.com/ (Retrieved 01.02.2013)
[2] http://www.bentley.com/en-US/Promo/Generative%20

Components/default.htm
[3] http://www.esri.com/software/cityengine (Retrieved

01.02.2013)
[4] Galapagos is a plugin for evolutionary optimization for

Grasshopper/Rhino3D: http://www.grasshopper3d.
com/group/galapagos (Retrieved 01.02.2013)

[5] http://en.wikipedia.org/wiki/Inverse_problem (Re-
trieved 01.02.2013)

[6] Bundesamt für Landestopografie, swisstopo (Art. 30
GeoIV), © 2011 swisstopo

[7] http://www.aforgenet.com/ (Retrieved 21.05.2013)
[8]http://www.shodor.org/petascale/materials/UPMod-

ules/dynamicProgrammingPartI

10 | eCAADe 31 - Computation and Performance - Chapter

