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Abstract. Based on the description of a conceptual framework for the representation of 
planning problems on various scales, we introduce an evolutionary design optimization 
system. This system is exemplified by means of the generation of street networks with 
locally defined properties for centrality. We show three different scenarios for planning 
requirements and evaluate the resulting structures with respect to the requirements of our 
framework. Finally the potentials and challenges of the presented approach are discussed 
in detail. 
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MOTIVATION
For many computer scientists the programming lan-
guage Smalltalk was the most pioneering human-
computer interaction language of the 1970s. It was 
designed to be so simple that even children could 
program. It is one of the first totally object oriented 
languages – everything is an object. While today 
many ideas from Smalltalk have since been adopted 
by other languages, the visionary thinking of the 
time when it was developed can still inspire us today 
to strive for flawless human-computer interaction in 
the development of design optimization systems for 
architecture and urban planning. 

PROBLEM STATEMENT
A number of promising generative algorithms are 
available today, but none are currently employed to 
enhance and simplify the day-to-day work of urban 
planners. Computer support for urban planning pro-
jects is usually restricted to basic CAD drawing tools. 
In the authors’ opinion, one reason for the lack of 

integration of generative methods in planning pro-
cesses is their complicated handling. Typically they 
require extensive input of abstract technical rules 
and parameters that are unfamiliar and daunting for 
planners. 

The situation is further complicated by the fact 
that planning projects typically consist of a mixture 
of contradicting and non-contradicting criteria as 
well as of directly measurable criteria and only in-
directly interpretable measures. The lack of suitable 
optimization methods hinders a systematic evalua-
tion of possible compromises between contradict-
ing planning requirements.

STATE OF THE ART
In their seminal book, Radford and Gero (1988) show 
various examples of how optimization strategies can 
be used to solve design problems. Although today 
we can use more flexible evolutionary optimization 
methods (Deb, 2001), the concept for their applica-
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tion and the role of pareto-optimal fronts has not 
changed a lot over the past few decades (Bentley 
and Corne, 2002). A good example for state of the 
art interactive generative planning systems is the 
work of Derix (2009). Dillenburger et al. (2009) have 
also presented an interesting system for creating 
building designs using a weighted-sum optimiza-
tion algorithm. 

Current commercial solutions for generative or 
procedural modeling, for example Grasshopper [1], 
GenerativeComponents [2], or CityEngine [3] exem-
plify the problems with such systems: they require 
intensive training before they can be used efficiently 
and though sometimes attractively designed, their 
user interfaces are not intuitive for urban planners. 
Furthermore it is not efficient to couple them with 
optimization tools, because of the increased com-
puting time and restricted possibilities offered by 
their corresponding APIs. Although Galapagos [4] 
provides an optimization method for Grasshopper, 
Rutton (2010) notice that it is only useful for simple 
problems. 

AIMS
Our main goal is to use graphical objects to repre-
sent a planning problem and to control an optimiza-
tion algorithm using primarily these objects. A fur-
ther challenge is to translate the planner’s partially 
vague qualitative requirements into a precise quan-
tifiable problem representation for an algorithm. 
Translation problems are one reason why planners 
rarely embrace computer support. To improve this 
situation we aim to develop an interactive system 
for supporting the urban planning process with a 
more constructive and intuitive interface for plan-
ners. The combination of well-designed interaction 
strategies and planner-friendly problem representa-

tion as a basis for evolutionary optimization strate-
gies is as an issue that is yet to be resolved.     

CONCEPTUAL FRAMEWORK
To address the aforementioned problems, our first 
task is to develop a conceptual framework that in-
cludes a combination of various interaction strate-
gies for the user interface, different generative tech-
niques, and some optimization methods. We have 
approached this concept from two perspectives: 
from that of a planner and from that of a software 
developer.

To meet the planner’s requirements we sepa-
rate the problem representation and the definition 
of requirements by at least two levels of abstraction 
(Figure 1): The first holds the topological relations 
between various elements and basic properties (Fig-
ure 1 left). The graphical objects on this level can en-
code parameter values e.g. by their size, position or 
colour, etc. The second abstraction level comprises 
the geometric representation of possible planning 
solutions (Figure 1 right). One can interact with all 
the graphical objects of a current planning proposal 
on each level to test different options and to refine 
a planning iteratively. From the software developers 
point of view we develop a framework for combin-
ing evolutionary optimization techniques. These in-
clude generative algorithms and evaluation mecha-
nisms to analyze the generated variations. As a basis 
for this framework, we use state-of-the-art evolu-
tionary multi-criterion optimization methods. For 
a comprehensive and easily understandable intro-
duction to evolutionary algorithms, see Bentley and 
Corne (2002). In the following description, we focus 
only on the essential aspects that are necessary for 
our purposes. We take the AForge.Net Framework 
[7] as the starting point for the implementation of 

Figure 1 

Planning scenario divided into 

three levels of abstraction. 

Left: Topological relations 

between elements and basic 

properties. Centre: Geometric 

distribution of the elements. 

Right: Geometric representa-

tion of a possible planning 

solution [6]. 
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our evolutionary algorithm (EA). The main argument 
for EA is their flexibility in dealing with the problem 
representation, which is crucial for the problems de-
scribed above.

From the user’s perspective we reverse the logic 
of generative planning systems: instead of exploring 
the results of different parameter settings or pro-
cedural rule sets, we allow a planner to graphically 
define what performance a solution shall have and 
the optimization system automatically generates a 
set of best compromise solutions. This constellation 
of deducing a solution from its desired properties is 
called an inverse problem [5], which was used with 
a different intention by Koltsova et al. (2012). Based 
on this concept we develop a method that can be 
called bi- or multi-directional planning, since one 
can control a computer-based planning system from 
any of the abstraction levels as shown in Figure 1. 

IMPLEMENTATION
In this paper we present just one part of the afore-
mentioned framework: the optimization of a street 
network inside a planning area with specific local 
properties. The sub-areas can be defined by a user 
with the help of graphical objects in a similar way as 
shown in Figure 1.

Before we consider some example applications 
of the optimization system, we first describe the im-
plementation of its basic generative and evaluation 
mechanisms. Taking the AforgeNet Framework [7] as 
our starting point, we extend it by a class for a chro-
mosome with mutation and crossover methods and 
a class for a customized fitness function as described 

below.

Generation Mechanism
The basic idea for the generative mechanism is to 
use an instruction tree, which holds the instructions 
on how to grow a street network (Figure 2). This 
growth process can be denoted as embryogeny and 
is responsible for unfolding the abstract information 
stored in a genotype to the concrete structure of a 
phenotype, which is why this process can also be 
described as mapping from genotype to phenotype. 
For the genotype representation we use a chromo-
some which in turn is represented in our case by an 
instruction tree as shown in Figure 2. The rules to 
create the street network (Figure 2 right) are adapt-
ed from the concept of self-sensitive L-Systems by 
Parish and Müller (2001). 

As a basic component of the instruction tree we 
implement a class for an individual instruction node 
which stores the information on how to add a new 
street segment to an existing node of the network 
(Figure 3). The instructions for a node are reduced 
to three which is the minimum necessary for our 
basic system: the range li for the length of a street 
segment, the angle αi that indicates the angular 
deviation from a regular division, and the range κi 
of possible arms at a crossroad. Figure 3 illustrates 
the mapping of the instructions of three instruction 
nodes to a phenotype representation. We use the 
additional parameter tree depth to restrict the size 
of an instruction tree to a certain limit. The individu-
als of an initial generation of a population start with 
randomly assigned instruction values. 

Figure 2 

Mapping process from an 

instruction tree to a street 

network. The grey dotted 

street segments on the right 

side illustrate the adaption of 

instructions how to add a new 

segment to a existing network.
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The instruction tree can be mutated and used 
for crossover operations as illustrated in Figure 4. 
Since the instructions of a node are always relative 
to the existing street network, new combinations af-
ter the crossover always work. The main reason why 
we use a tree structure for the chromosome is that 
it ensures that after the crossover and mutation op-
erations, the corresponding street network remains 
connected (if the initial network was connected). 
The mutation operator simply takes (e.g. 1-10%) in-
dividual nodes of an instruction tree and assigns a 
randomly generated value to one of its parameters. 
The frequency of the execution of these operators at 
one iteration (or generation) is defined by the cross-
over and mutation rate.

One of the most important properties of a gen-
erative mechanism, as part of an optimization pro-
cess, is its ability to generate very different network 
topologies. It is this property that allows an optimi-
zation system to find interesting and surprising so-
lutions for a given set of restrictions and goal func-
tions.

Evaluation Mechanism
As a goal function (or fitness function) for the evalu-
ation of the generated street network we use the 

betweenness centrality (choice) of a network. For 
this we need to calculate the all-pair shortest paths 
for the network, and compute this following the 
concept elaborated by Hochberg [8]  using a paral-
lel GPU implementation of the Floyd-Warshall algo-
rithm to calculate shortest paths. For the weight-
ings in the corresponding graph we use angular 
distances instead of metric distances as introduced 
by Turner (2001; 2007). The choice value for a spe-
cific street segment equals the number of shortest 
paths from all street segments to all others that pass 
through that segment. For the sake of simplicity, we 
use only the choice value in the following examples 
to characterize street networks, but other centrality 
measures would be useful too.

EXAMPLE SCENARIO
As a starting situation for the following examples we 
use an area with the dimensions 3000m  ×  2000m 
that needs to be filled with streets (Figure 5). The po-
sitions of the existing street connections are marked 
by nodes with underlined numbers. The areas de-
fined in the right-hand image in Figure 5 will be 
used in later examples to define a central sub-area 
(red, dashed) and a quiet sub-area (blue, checked). 
The red center is placed near the coordinates 

Figure 3 

On the left, the tree shows 

the main instructions of an 

instruction node. In the box on 

the right one can see how the 

instructions are assigned to a 

street network.

Figure 4 

Creation of new child variants 

(C and D) by a crossover op-

eration applied to two parent 

instruction trees (A and B).
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750m/1500m (coordinate origin in the left bottom 
corner) while the blue quiet area fills the bottom 
right-hand quarter of our planning area. For the fol-
lowing examples we use the following initial param-
eters: generations = 50, population size = 50, muta-
tion rate = 0.25, crossover rate = 0.75, tree depth = 8. 
It is import to select a tree depth high enough to en-
sure that the complete area can be filled with streets 
and that there is no indirect restriction for the opti-
mization algorithm. The values for the nodes of the 
initial instruction trees were initialized with random 
values with the intervals: αi =[-10, 10], li =[10, 40], κi 
=[1, 4]  

First we consider a simple basic example scenar-
io, where we use the aforementioned optimization 
method to maximize the maximum choice value 
(Figure 6) and the sum of all choice values of the 
generated street network (Figure 7). We start with an 
empty area as shown in Figure 5 on the left. Figure 

6 and Figure 7 show three resulting street networks 
with the corresponding diagram of the develop-
ment of the fitness values. 

To achieve very high choice values, the most ob-
vious strategy is to design a network, that is separat-
ed into two parts which are connected by the most 
used street, the one with the highest choice value. In 
cities we find this situations, for example, in places 
where a bridge crosses a river or a narrow valley di-
vides a settlement. If we consider the three street 
networks in Figure 6 we can see this structure in the 
network in the right-hand image. Of the three net-
works in Figure 6, however, the network in the mid-
dle has the best fitness value, although there are no 
two separate parts. This results from the fact that for 
the calculation of the trips we use the shortest an-
gular distance and not the shortest metric distance. 
Because of this, there is one street segment at the 
top-center which is used very often. If we look at the 

Figure 5 

Initial planning situation: The 

border defines the planning 

area, and connections to the 

existing street network are 

represented by the nodes with 

underlined numbers. The col-

oured areas in the right-hand 

image denote areas where the 

new street network will have 

defined properties.  

Figure 6  

First example scenario. For 

each of the street networks 

shown, the maximum choice 

value is maximized. Red 

represents street segments 

with high choice values and 

blue low choice values. The 

diagrams in the bottom row 

show the development of 

the fitness values over 50 

generations.
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left-hand network in Figure 6 we find that there is no 
single bottleneck, and at least one other populated 
route. As a result this network has the worst fitness 
of the three.

The fact that the three best networks have differ-
ent maximal fitness values (diagrams in the bottom 
row of Figures 6 and 7), indicates that the evolution-
ary optimization process explores different parts of 
the search space each time it is run. But despite the 
small differences in the maximum fitness values of 
the variants, they all fulfill the requirements relative-
ly well. When we consider the random points (repre-
senting randomly generated variants) we can clearly 
see the advantage of using the evolutionary search 
process compared to randomly generated solutions. 
The best variants are improved continuously over 
the 50 generations and reach a level, which cannot 
be achieved by a random generation process.

In our second example we use the same initial 
scenario as in the first one, but we adapt the fitness 
function to maximize the sum of all choice values of 
the street network. The topologies of the resulting 
networks in Figure 7 are clearly different to those 
in Figure 6. Here we cannot see separate network 
parts and the streets segments with the highest 
choice values are not concentrated at one location 
but distributed across the network. This difference 
proves that our optimization system is working as 
expected. The development of the fitness shown in 

the diagrams in the bottom row in Figure 7 is similar 
to that of the corresponding diagrams in Figure 6. 
This indicates that both fitness functions direct the 
search process in a similarly efficient way.

Our third example is based on the initial sce-
nario with two defined sub-areas as shown in the 
right-hand image of Figure 5. In Figure 8 the central 
sub-area is shown as a dotted ellipse and the quiet 
sub-area as a dotted rectangle. To include the spatial 
aspect in the fitness function, we have to define how 
to represent the graphical objects that represent the 
sub-areas with the corresponding specified proper-
ties.

First we consider the central sub-area. To 
achieve a highly-populated center in the defined 
sub-area we want to locate the street segment 
with the maximized choice value in it. Therefore we 
measure the distance dcmax of the street segment 
with the maximum choice value cmax to the center. 
This distance can be used as a weight so that we can 
decrease the fitness of a network according to the 
distance dcmax:

,	 (1)
where D is a constant which denotes the maxi-

mal possible distance. In our examples, this is the 
diagonal of the border rectangle D = 3606m.

Secondly, we consider the quiet sub-area. To 
achieve an area with as little traffic as possible, e.g. 

Figure 7  

Second example scenario: For 

each of the street networks 

shown, the sum of all choice 

values is maximized. Red 

represents street segments 

with high choice values and 

blue low choice values. The 

diagrams in the bottom row 

show the development of 

the fitness values over 50 

generations.
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for residential usage, we want to have only streets 
with low choice values in it. Therefore we sum all 
differences of the choice values from the street seg-
ment ci that are located inside the quiet area A and 
the maximum choice value of the network cmax. 
The average of this sum is used as the second part of 
our fitness function:

.	 (2)
From the two fitness values F1 and F2 we calculate 
the final fitness value as the sum of both: 
Fitness = F1 + F2.	 (3)

The street networks resulting from this optimi-
zation process are shown in the top row of Figure 8. 
The results fulfill both of our requirements relatively 
well: the red coloured street segments with maxi-
mum choice values are located close to or inside the 
central sub-area, while we find primarily only blue 
coloured street segments with low choice values in 
the quiet sub-area. To evaluate the effect of the de-
fined sub-areas on the resulting street networks we 
can compare the variants from Figure 6 and Figure 7 
with the ones in Figure 8. We can observe very dif-
ferent structures in comparison to the second ex-
ample scenario in Figure 7 and similar structures to 
our first example scenario in Figure 6 showing the 
two separated network parts (Figure 8 in the mid-
dle). In general the results seems self-evident, but 
nevertheless we can see some problems, e.g. at the 

solution in the left-hand image of Figure 8. Here the 
maximum choice value is at the edge of the central 
area and there is a relatively populated road in the 
quiet sub-area. Maybe the optimization algorithm 
could have found a better solution with more gen-
erations. But the combined fitness function may be 
hindering the improvement of this variant. We will 
discuss this problem in the next section.

DISCUSSION
As outlined in the description of our framework, we 
have demonstrated a method of representing plan-
ning requirements using graphical objects that can 
be used by an optimization system (Figure 5). The 
main challenge of the system is interacting with de-
sign variants, not because of the complicated user 
interface – it is, for example, possible to change the 
genotype and thus the later optimization process by 
manipulating the graphical objects of the pheno-
type (street segments and crossroads). This makes 
it possible to realise a multi-directional planning 
method as described above.

The main problem of our system is that the op-
timization process is much too slow for use in an 
interactive process. The computation of the above 
examples needed 2030 minutes on an average mod-
ern notebook. One generation therefore needed 
half a minute: half a second would be a more accept-
able timespan. Of course these times depend a lot 

Figure 8  

Third example scenario. For 

each of the street networks 

shown, we use a combined fit-

ness function: one factor is the 

maximized maximum choice 

value that is weighted with the 

distance to the central area 

(dotted ellipse), while the sec-

ond factor is the average sum 

of all choice values which are 

assigned to street segments 

inside the quiet area (dotted 

rectangle). Red represents 

street segments with high 

choice values and blue low 

choice values. The diagrams 

in the bottom row show the 

development of the fitness 

values over 50 generations.
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on the size of the street network, the population size 
and other aspects. But the main time-critical aspect 
is the computation of the all-pair shortest path. This 
needs to be improved in future using an optimized 
algorithm and more powerful hardware. 

In addition we use a very inefficient method to 
generate instruction trees. We use a random initial 
process which produces a very huge tree from which 
only a small fraction of nodes are needed to grow 
the street network. In the examples above, in the 
case of κi = 4, we have 3^depth instruction nodes for 
each tree. For a tree depth of 8 this results in max. 
3^8 = 6561 nodes, but we only have approximately 
300 street segments. Alternatively one could create 
random but meaningful street networks in the be-
ginning and encode them to make much more ef-
ficient instruction trees.

Variations of the angles and placement of the 
initial street segments as shown in Figure 5 have a 
relatively significant impact on the further growth 
and thus on the final phenotype of the network. 
Therefore, to search for optimal solutions it may also 
be useful to vary the initial segment.

Another interesting aspect of the presented 
examples is a product of the property of EAs to cre-
ate their own biotope for the artificial life forms – in 
our case the street network. We can observe special 
strategies for the EA to maximize their fitness (the 
choice values): the first is to maximize the num-
ber of street segments to produce more trips and 
thus higher maximal choice values. This could be 
overcome by averaging the values i.e. dividing the 
choice values by the number of streets. The second 
is to generate street segments at strategically ben-
eficial places (e.g. top left corner in the left and right 
networks in Figure 8). These segments can produce 
more trips via certain segments with high choice 
values to increase them further.   

In our last example (Figure 8) we have used two 
goal functions: one to achieve a center and one to 
create a quiet area. Both are combined into one 
fitness function. Here we run into the problem of 
weighting both criteria against each other in a more 
or less arbitrary way. This weighting, however, has a 

significant effect on the optimization process und 
thus on the quality of the results. For example the 
optimization process can get stuck in local optima, 
since one criterion is already very good, but the 
other not. The improvement of poor criteria may be 
hindered because it may negatively affect other very 
good criteria, so that the resulting fitness value can-
not be improved. To avoid these kind of problems 
we need to use evolutionary multi-criteria optimiza-
tion (EMO) methods (Deb, 2001).

CONCLUSION AND OUTLOOK 
In this paper we have demonstrated the potentials 
of using an optimization system for urban planning 
tasks using a test scenario. In this scenario we have 
generated street networks with defined local prop-
erties. The presented system is a first component of 
an framework with basic functionality to efficiently 
search compromise solutions for complex planning 
problems. A first software prototype has been im-
plemented with an intuitive user interface to repre-
sent planning problems, to present various compro-
mise solutions, and to improve them interactively. 

The differences in the examples presented in 
Figures 6-8 show clearly that our system doesn’t 
generate globally optimal solutions – e.g. one can 
delete connections that enable ring trips around the 
centre to increase the traffic through the centre (and 
to increase the corresponding choice value). This is 
an inherent aspect of EAs: they cannot guarantee 
finding the globally best solutions, but they can 
always offer good ones. This disadvantage can be 
improved by running more generations or by using 
separate populations in parallel and migrating the 
best variants between them. In our context, this isn’t 
a problem because planners are not usually looking 
for global optima as goal functions represent only a 
part of a planning problem. Thus the interactive and 
adaptable search for variants is the main support for 
the planning process.

The next step for the development of our frame-
work is to implement a more complex EMO sys-
tem which integrates algorithms for parceling and 
building placement (Aliaga et al., 2008; Knecht and 
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Koenig, 2012). With this development we can achieve 
the multi-level approach illustrated in Figure 1.
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