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Abstract

The thesis consists of inter-connected parts for modeling and analysis us-

ing newly developed isogeometric methods. The main parts are reproduc-

ing kernel triangular B-splines, extended isogeometric analysis for solving

weakly discontinuous problems, collocation methods using superconver-

gent points, and B-spline basis in image registration applications. Each

topic is oriented towards application of isogeometric analysis basis func-

tions to ease the process of integrating the modeling and analysis phases

of simulation.

First, we develop reproducing a kernel triangular B-spline-based FEM for

solving PDEs. We review the triangular B-splines and their properties.

By definition, the triangular basis function is very flexible in modeling

complicated domains. However, instability results when it is applied for

analysis. We modify the triangular B-spline by a reproducing kernel tech-

nique, calculating a correction term for the triangular kernel function from

the chosen surrounding basis. The improved triangular basis is capable to

obtain the results with higher accuracy and almost optimal convergence

rates.

Second, we propose an extended isogeometric analysis for dealing with

weakly discontinuous problems such as material interfaces. The origi-

nal IGA is combined with XFEM-like enrichments which are continuous

functions themselves but with discontinuous derivatives. Consequently,

the resulting solution space can approximate solutions with weak discon-

tinuities. The method is also applied to curved material interfaces, where

the inverse mapping and the curved triangular elements are considered.



Third, we develop an IGA collocation method using superconvergent points.

The collocation methods are efficient because no numerical integration is

needed. In particular when higher polynomial basis applied, the method

has a lower computational cost than Galerkin methods. However, the posi-

tions of the collocation points are crucial for the accuracy of the method, as

they affect the convergent rate significantly. The proposed IGA collocation

method uses superconvergent points instead of the traditional Greville ab-

scissae points. The numerical results show the proposed method can have

better accuracy and optimal convergence rates, while the traditional IGA

collocation has optimal convergence only for even polynomial degrees.

Lastly, we propose a novel dynamic multilevel technique for handling im-

age registration. It is application of the B-spline functions in image pro-

cessing. The procedure considered aims to align a target image from a

reference image by a spatial transformation. The method starts with an en-

ergy function which is the same as a FEM-based image registration. How-

ever, we simplify the solving procedure, working on the energy function

directly. We dynamically solve for control points which are coefficients

of B-spline basis functions. The new approach is more simple and fast.

Moreover, it is also enhanced by a multilevel technique in order to pre-

vent instabilities. The numerical testing consists of two artificial images,

four real bio-medical MRI brain and CT heart images, and they show our

registration method is accurate, fast and efficient, especially for large de-

formation problems.
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Nomenclature

Symbols and abbreviations used throughout most of the thesis are listed.

Symbols less frequently used, or that have different meanings in different

contexts, are defined where they are used.
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Ω An open domain with Lipschitz continuous boundary
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V An infinite-dimensional set

S
h A finite-dimensional set

V h A finite-dimensional set

∈ Set membership

/∈ Negation of set membership

E Elastic Young’s modulus

ν Poisson’s ration

σ Stress

ε Strain

ū Prescribed boundary displacement



t̄ Prescribed boundary traction

n Outward unit normal vector at the boundary

Ni,p The ith basis function with polynomial degree p

Nk
i,p The kth differential of the ith basis function with polynomial degree p

Ξ A knotvector

ξi The ith knot in Ξ

P Control Point

λ Barycentric coordinate

det(·) Determinant

[·] Convex hull

[·) Half open convex hull

δi, j Kronecker delta

L A differential operator

G A vector operator
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DOF Degree(s) of Freedom

FEM Finite Element Method

FEA Finite Element Analysis

IGA Isogeometric Analysis

IGA-C Isogeometric Analysis Collocation

IGA-G Isogeometric Analysis Galerkin

IGA-SC Isogeometric Analysis Superconvergent Collocation

MRI Magnetic Resonance Imaging

NURBS Non-uniform Rational B-splines

PU Partition of Unity
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RKPM Reproducing Kernel Approximation Method

XFEM Extended Finite Element Method
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Chapter 1

Introduction

1.1 Background, motivation, and challenges

Isogeometric analysis (IGA) is a numerical method introduced by Hughes et al.2,3 in

2005. The initial motivation of IGA is to bridge computer-aided design (CAD) and

finite element analysis (FEA), applying the same basis functions for both geometric

design and the PDEs analysis. IGA is usually based on NURBS (Non-uniform Ra-

tional B-splines) basis functions, since NURBS represent the standard geometries in

contemporary CAD. The high continuity (up to Cp−1 for a basis of polynomial degree

p) is the most distinct and important property of NURBS, thus NURBS can give a

very smooth geometry representation. IGA has been shown to be more accurate than

p-FEM on a degree of freedom basis4,5,6. In addition, it is possible to obtain more

accurate, even exact, geometry representations on very coarse meshes which facilitate

numerical analysis7. It has been proven that robustness of isogeometric elements is

increased with order8, while the high order Lagrange elements are sensitive to mesh

distortion. Furthermore, the smooth surface representation and the non-negative ba-

sis functions advantages of IGA make it superior to FEM when dealing with contact

problems9,10,11.

The method has been successfully used in a variety of applications such as plate and
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shell problems12,13,14,15,16, fluid mechanics17,18,19,20, structural analysis6,21, phase-

field analysis22,23,24,25, shape optimization26,27,28 and electromagnetism29. Another

approach to bridge the geometry generation and the analysis is T-splines based IGA

approaches30,31,32,33, since T-splines have shown prominent application on isogeo-

metric discretization34,35, and also developed in several commercial software such

as Rhino36. So far, NURBS-based IGA has been mostly used in the framework of

the Galerkin method (2,3,6,21) which handles weak forms of PDEs, but recently col-

location approaches (37,38,39,40) which deal with strong forms of PDEs are receiving

growing attention. Moreover, the traditional IGA methods have been augmented by

many other techniques. For example, the enrichment functions from the extended fi-

nite element method (XFEM)41,42,43,44,45,46 have been successfully applied in IGA,

the resulting method is commonly called the extended isogeometric analysis (XIGA)

47,48,49. It has shown good performance in modeling discontinuous problems such

as fracture and material interface. Recently, considering the computing efficiency is-

sue, reduced quadrature techniques50,51 have also been used in IGA and can apply to

solve large computation problems. Despite many achievements made by IGA in recent

years, several still open questions or topics related to IGA should be pursued. In this

dissertation, we try to answer the four following questions:

• Could some triangular elements be suitable for IGA?

• How can IGA be modified to maintain the optimal convergence rate when deal-

ing with discontinuous problems?

• How to choose the position of the collocation points to maximize accuracy?

• What are some potential applications of IGA in image processing?

In the following paragraphs, we would like to address each question, explaining the

background, motivation and challenges.
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1.1.1 Could some triangular elements be suitable for IGA?

Until now, almost all the IGA studies are based on quadrilateral and hexahedral ele-

ments. This is because the most commonly used basis functions of IGA are NURBS

or B-splines which are based on the tensor product definition and require rectangular

elements. However, it is still a challenge to model complex geometries that do not fit

in a tensor product simulation. This limitation could be overcome by introducing tri-

angular elements into IGA. Triangular B-splines are a novel type of B-splines, which

were first proposed in52. They are derived from simplex splines and B-patches, and

inherit many of their features and nice properties. This kind of B-spline has been de-

veloped for applications in computer graphics53. Compared to NURBS and T-splines,

triangular B-splines can model arbitrary features due to their special triangular mesh

structure. This is a very important advantage which can extend the use of IGA in a lot

of applications. However, the standard triangular B-spline is difficult to use in analysis.

1.1.2 How can IGA be modified to maintain the optimal conver-

gence rate when dealing with weak discontinuous problems?

Problems with material interfaces where the solution is only C0-continuous solutions

are common in both computational and material engineering. The discontinuity in the

gradient field occurs because of the different material properties on the two sides of

the material interface. These are also known as weak discontinuities, and they are

not accurately modeled by the standard FEM without a conforming mesh. Matching

the material geometry at the interface as closely as possible would improve the accu-

racy of the solution. However, it has been widely accepted that creating an adequate

conforming mesh is difficult or cumbersome for problems where the material inter-

face is curved. To solve this class of problems, several advanced methods have been

proposed in the past few years. A straight forward approach is to extend the FEM,

i.e the Extended Finite Element Method (XFEM)41,54, which has been developed to

model discontinuities without remeshing or with minimum mesh construction. The
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basic idea of this method is to add local enrichment functions into the approxima-

tion space similar to Partition of Unity (PU)55 methods. Other PU methods employ

meshless shape functions (see56,57,58,59) and take advantage of their higher continuity

60,61,62. More recently, several researchers have developed the Extended Isogeometric

Analysis (XIGA)47,48. The XIGA methods developed so far were aimed at solving

problems with strong discontinuities, such as fracture. To the best of our knowledge,

there has been no XIGA implementation for weakly discontinuous problems. There

are also some special techniques needed to obtain optimal convergence rates in the

context of XIGA.

1.1.3 How to choose the position of the collocation points for max-

imize accuracy?

Most of the commonly used PDE solvers are based on the so-called weak (or varia-

tional form) of the PDE. Gaussian quadrature rules are most commonly used, however,

as the polynomial degree of the approximation increases, more Gauss points are needed

to accurately evaluate the resulting integrals. For the IGA method in particular, Gauss

quadrature does not fully take into account the higher continuity of the basis functions

which has led to the development of reduced-quadrature methods50 and other cus-

tomized quadrature rules63,64,65,66,67. A more promising approach, which eliminates

integration, is to work directly with the strong form of the PDE. The IGA collocation

method37,38,39,68,69 has been studied since 2010 and, to a large extent, it is combining

the accuracy and the smoothness advantages of the IGA method with the computa-

tional efficiency of the collocation method. Since there are no volume integrals in the

IGA collocation, the method is considerably cheaper from a computational point of

view. It is also relatively easy to implement, since it only requires point evaluation

of the shape functions and the right-hand side at the chosen collocation points. The

boundary conditions are imposed as additional constraints in the linear system, which

is typically non-symmetric even for self-adjoint problem but more sparse compared to

4



1.1 Background, motivation, and challenges

the Galerkin method. Until now, the mathematical theory of collocation has not been

very well developed. It has been shown only in 1-dimension that the isogeometric

collocation method has optimal convergence of O(hp−1) for the 2nd derivative norms,

where p is the polynomial degree and h is the maximum element length. However,

in the existing numerical studies37,39, it has been observed that the convergence rate

for the first derivative norms when p is odd is also of the order O(hp−1), which is

suboptimal compared to the IGA Galerkin.

1.1.4 What are some potential applications of IGA in image pro-

cessing?

Image registration techniques, developed in recent years, aim to align two images by

finding a spatial transformation70,71,72 between them. These methods fall mainly into

three basic categories, the landmark-based registration73,74,75, the segmentation-based

registration76,77,78 and the image intensity-based registration79,80. They have many ap-

plications such as medical imaging81,82, remoting sensing83,84 and computer vision85.

In addition to various types of spatial transformations, image registration approaches

can be divided into rigid registration and non-rigid (or deformable) registration. From

a theoretical point of view, the intensity-based registration methods are the most flex-

ible because they use all the available information throughout the registration process.

Recently, an intensity-based registration method using FEM was proposed1, and it has

shown promising performance, demonstrating more accurate results than a traditional

linear interpolation method and an optical flow-based method. But the computational

requirements for the proposed method1 are more intensive than the others. This is

because the matrix assembly and solving the resulting large system are expensive.
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1.2 Contributions of this work

Since 2005 when IGA was first proposed, there have been many researchers who added

contributions to this advanced numerical method. According to the motivations pre-

sented in Section 1.1, we have made some advancements. We briefly summarize our

contributions as follows:

• We develop a novel way to deal with the instabilities of the triangular B-spline

based on the reproducing kernel approximation methods86,87,88,89. Adopting the

compact support property of the triangular B-spline, we choose the non-zero

subset basis functions and apply the reproducing kernel technique to calculate

the correction term for the triangular kernel function. In addition, we further

study the reproducing kernel triangular B-spline in solving the Poisson’s equa-

tion, and is also compared with the original triangular B-spline. The results show

an improvement of the triangular B-spline performance with an almost optimal

convergence rate.

• We develop an optimal XIGA method to solve material interface problems, by

combining the advantages between XFEM and IGA. We show that the XIGA

achieves optimal convergence rates while the IGA only converges at subopti-

mal rates for the Poisson’s equation with weakly discontinuous solutions. The

method is implemented for solving three numerical test problems including bi-

material and curved material interface problems, and is also compared with the

traditional IGA. The results show much better approximation properties and an

optimal convergence rate.

• We improve the accuracy and the convergence rate of the existing IGA colloca-

tion by selecting the collocation point at the zeros of a polynomial defined on

a reference interval and scaled to each knot-span. This method is similar to the

orthogonal collocation method for B-splines developed by90,91, where the collo-

cation points are chosen at the Gauss points (or the roots of the Legendre poly-
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nomials). However, this requires that each knot is repeated p− 1 times which

means that more degrees of freedom are required and the approximation scheme

is only C1 continuous. To preserve the smoothness of the computed solution, we

choose instead the collocation points at the so-called “superconvergent points”

for the 2nd derivative in the Galerkin method. This allows an approximation

that is close in accuracy to the Galerkin approximation, but at the cost of extra

basis function evaluations compared to the standard collocation. An efficiency

analysis indicates the added cost of the method (in terms of computational time)

is offset by the increased accuracy for odd polynomial degrees. Therefore, this

method can be used to complement standard collocation, which has optimal con-

vergence only for even degrees of the polynomial basis.

• We present a relatively simple approach to deal with image registration prob-

lems. It does not require the assembly and solution of a large matrix system be-

cause we are working on the energy functional directly. Therefore, the method

performs much faster. A novel multilevel technique is first combined with a

dynamic model, making the model more flexible, and the presented technique

handles large deformable registration very well, while at the same time being

more stable and efficient. The large deformations are interpreted as large differ-

ences between the target image and reference image in our current study.

1.3 Organization of this thesis

Chapter 2 will introduce the idea of IGA, using the basic equations of Poisson’s and

linear elasticity examples. We also interpret the B-spline, NURBS basis functions and

their properties. Knot insertion and order elevation techniques are also reviewed in the

chapter.

Chapter 3 presents a particular triangular B-spline and its application on dealing

with PDEs. The triangular B-spline is very flexible for analysis applications because

of its particular definition. However, this property also results in less accuracy and
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there are no specific and optimal ways of countering it. This drawback makes it un-

suitable for analysis. We apply the reproducing kernel approximation method to the

triangular B-spline, choosing the surrounding basis and calculating a correction term

for the triangular kernel function. The enhanced basis has been tested on three nu-

merical examples for solving the Poisson’s equation, and the results show significant

improvement with almost optimal convergence rate.

Chapter 4 proposes a XIGA method for solving the material interface problems.

The original IGA basis space is augmented by special functions such as the ramp and

Moës enrichment functions. We present several techniques to solve curved material in-

terface problems. Three numerical examples show the proposed XIGA method obtains

optimal convergence rates and outperforms the pure IGA method.

Chapter 5 focuses on IGA collocation (IGA-C), a “strong form”-based method,

which is different from the general “weak form”-based IGA Galerkin (IGA-G) method.

It is simple to implement, and it has been shown to be more efficient than IGA-G in

terms of computational time. However, the accuracy is a drawback of the standard

collocation method is less accuracy compared with strong form methods. One rea-

son is that the position of collocation points is needs to be carefully chosen. Different

from the Greville abscissae collocation normally used, we apply IGA collocation to the

superconvergent points (IGA-SC) for the Galerkin method. This allows the approxi-

mation results of IGA-SC to be close to those of IGA-G. The numerical examples

show that IGA-SC is much more accurate than IGA-C, especially for odd polynomial

degrees whereas IGA-C has optimal convergence only for even cases.

Chapter 6 explores the B-spline basis in image registration applications. The aim

is to align a reference image to a target image through a spatial transformation. We

develop a dynamic multilevel technique to search for the control points which are

the to-be-determined coefficients of the spatial transformation. The method uses the

same energy function applied in a FEM-based image registration, but works on the

energy function directly, saving the assembly and solving of a large linear system. The

simplified method is relatively simple and fast. In addition, a multilevel technique
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is used to deal with the stability. Several artificial images and real bio-medical MRI

brain and CT heart image examples show the method is stable, accurate and efficient,

especially in handling large deformation problems.

Chapter 7 contains the conclusions of the dissertation. We will briefly review the

contents and summarize the main achievements, ending with some discussions of the

future work.
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Chapter 2

Isogeometric Analysis

2.1 Introduction

IGA is a recently developed computational approach to integrate the design and mod-

eling phase of product development. The basis functions in IGA are B-splines or

NURBS (Non-uniform rational B-splines). The basis functions are used for an isopara-

metric mapping between the parametric space (unit square) and the physical space

(which may have complex geometry). In this chapter, we will review the basics of

IGA, including the commonly used B-splines and NURBS basis functions and the

isoparametric mapping. We will also show two example problems to illustrate IGA

in analysis. The chapter will end by a review of h-refinement (knot insertion) and

p-refinement (order elevation) of IGA.

2.2 B-spline and NURBS

Non-uniform rational B-splines (NURBS) are the basis functions widely used in CAD

and also used for analysis in IGA2. They are weighted rational B-spline functions.

Let Ξ = {ξ1,ξ2, . . . ,ξn+p+1} be a non-decreasing sequence of real numbers. p is the

polynomial degree of the basis and n is the number of basis functions. The ξi for
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i = 1, . . . ,n + p + 1 are called knots, and Ξ is the knot vector. Then an univariate

B-spline basis function can be defined using a recurrence relation. We start with:

Ni,0(ξ ) =







1, if ξi ≤ ξ < ξi+1

0, otherwise

(2.1)

which is a basis of piecewise constant (p = 0) functions. If ξi = ξi+1, then Ni,0 = 0.

For p > 0,

Ni,p(ξ ) =
ξ −ξi

ξi+p −ξi

Ni,p−1(ξ )+
ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ ). (2.2)

In Equation (2.2) and subsequent discussion, the denominators could be zero, in which

case, the quotient term is defined to be zero.

The derivative of a B-spline function is given by

dNi,p(ξ )

dξ
=

p

ξi+p −ξi

Ni,p−1(ξ )−
p

ξi+p+1 −ξi+1
Ni+1,p−1(ξ ). (2.3)

For the kth-derivative of Ni,p(ξ ), by repeatedly differentiating Equation (2.3) we get

the general formula

N
(k)
i,p (ξ ) = p




N
(k−1)
i,p−1 (ξ )

ξi+p−ξi
−

N
(k−1)
i+1,p−1(ξ )

ξi+p+1 −ξi+1



 . (2.4)

The derivative order k should not exceed the polynomial order p since all higher deriva-

tives are zero. A 1D cubic B-spline basis and their corresponding derivatives are plot-

ted in Figure 2.1.
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(a) B-spline basis functions (b) the first order derivatives

(c) the second order derivatives

Figure 2.1: (a) Cubic B-spline basis functions, (b) the first order derivatives of cubic

basis functions, and (c) the second order derivatives of cubic basis functions in an open

knot vector Ξ = {0,0,0,0,1,2,3,4,5,6,7,7,7,7}.

We now list several important properties of the B-spline basis functions. Suppose

we have a basis of B-spline functions of polynomial degree p, defined by a knotvector

Ξ = {ξ1,ξ2, · · · ,ξn+p+1}.

• Local support property: Ni,p = 0 if ξ /∈ [ξi,ξi+p+1). For example, in Figure 2.2

N1,4(ξ ) has only zero functional value when ξ are chosen out of the interval
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[ξ1,ξ6) where ξ1 = 0 and ξ6 = 1 in this example.

• Nonnegativity: Ni,p ≥ 0 for all i, p and ξ .

• Partition of unity: ∑n
i=1 Ni,p(ξ ) = 1 for all ξ ∈ [ξ1,ξn].

• In any given knot span [ξi,ξi+1), at most p+1 of {Ni,p(ξ )} are nonzero.

• Ni,p(ξ ) is p− k times continuously differentiable at a knot of multiplicity k. For

example, in Figure 2.2 N1,4(ξ ) has C−1 continuity at ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = 0.

N5,4(ξ ) has C2 continuity at ξ7 = ξ8 = 2. N7,4(ξ ) has C1 continuity at ξ9 = ξ10 =

ξ11 = 3. N12,4(ξ ) has C0 continuity at ξ13 = ξ14 = ξ15 = ξ16 = 5.

• For p > 0, Ni,p(ξ ) attains exactly one maximum value.

Figure 2.2: Quartic (p = 4) basis functions for open, non-uniform knot vector Ξ =

{0,0,0,0,0,1,2,2,3,3,3,4,5,5,5,5,6,7,7,7,7,7}.

Based on B-spline basis functions, we can build B-spline curves. A pth-degree

B-spline curve is defined by

C(ξ ) = ∑
i

N(ξi,p)Pi a ≤ ξ ≤ b, (2.5)

where the {Pi} are the control points, and the {Ni,p(ξ )} are the pth degree B-spline ba-

sis function (2.2), which are defined on an open knot vector Ξ= {a, · · · ,a,
︸ ︷︷ ︸

p+1

· · · ,b, · · · ,b
︸ ︷︷ ︸

p+1

}.
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2.2 B-spline and NURBS

An example plots of a B-spline curve and their corresponding basis functions are given

in Figure 2.3. Notice that besides the beginning and ending control points being inter-

polated, the third control point is also interpolated (Figure 2.3 (a)) because of the third

basis function has C0 continuity at knot 1/4 (Figure 2.3 (b)).

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) B-spline curve

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) B-spline basis functions

Figure 2.3: A quadritic B-spline curve (a) and its corresponding B-spline basis func-

tions (b) are defined on a given knotvector Ξ = {0, 0, 0, 1/4, 1/4, 2/4, 3/4, 1, 1, 1}.

The coordinates of the control points are {(1,0.5), (0.5,2), (2.5,5), (4,3.5), (3,2),

(5,2.5), (4,0.5)}.

The NURBS basis is defined as:

R
p
i (ξ ) =

Ni,p(ξ )wi

W (ξ )
=

Ni,p(ξ )wi

∑n
î=1

Nî,p(ξ )wî

, (2.6)

where wi is the weight corresponding to the ith B-spline function Ni,p(ξ ). The 2D and

3D NURBS basis can be defined analogously, for the parametric coordinates η , ζ , and

associated polynomial degrees q and r:

R
p,q
i, j (ξ ,η) =

Ni,p(ξ )M j,q(η)wi, j

∑n
î=1

∑m
ĵ=1

Nî,p(ξ )M ĵ,qwî, ĵ

, (2.7)
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2.2 B-spline and NURBS

R
p,q,r
i, j,k (ξ ,η,ζ ) =

Ni,p(ξ )M j,q(η)Lk,r(ζ )wi, j,k

∑n
î=1

∑m
ĵ=1

∑l

k̂=1
Nî,p(ξ )M ĵ,q(η)Lk̂,r(ζ )wî, ĵ,k̂

, (2.8)

where M j,q(η) and Lk,r(ζ ) are the B-spline basis defined in the η and ζ directions.

Note that B-splines are NURBS where all the weights are equal to 1. Two example

plots of 2D B-spline basis are shown in Figure 2.4. NURBS basis functions have some

desirable properties inherited from B-splines, such as nonnegativity, completeness, lo-

cal support, strong convex hull, etc. Readers interested in more details are referred to

92,93.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Linear B−splines (same as in FEM)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Quadratic B−splines

Figure 2.4: Linear B-splines basis functions (left) and Quadratic B-splines basis func-

tions (right). The knots vectors for the linear B-splines basis functions are given by

Ξ1 = H1 = {0,0,1/3,2/3,1,1}. The knots vectors for the quadratic B-splines basis

functions are given by Ξ2 = H2 = {0,0,0,1/3,2/3,1,1,1}.

The NURBS shape functions are used for an isoparametric mapping between a

parametric space (unit square) and a physical space (which may have a complex geom-

etry). The physical space is the space in which the actual model exists. The parametric

space of IGA is different from that of FEM. The elements in the parametric space of

FEM are usually called parent elements or reference elements which are mapped to

each single element in the physical space, and each element in the physical space has

its own mapping. Conversely, the parametric space in IGA is identified with patches
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2.2 B-spline and NURBS

which are made up of multiple elements. Each element in the physical space is the im-

age of a corresponding element in the parametric space, but the mapping is carried out

between a whole patch and a group of physical elements together. For a given paramet-

ric space defined by the coordinates (ξ ,η,ζ ) and a physical space given by the usual

(x,y,z) coordinates, then the isoparametric mapping can be written as (in 3D):

F(ξ ,η,ζ ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

R
p,q,r
i, j,k (ξ ,η,ζ )Ci, j,k = [x,y,z]T , (2.9)

where R
p,q,r
i, j,k are the NURBS basis functions and Ci, j,k are the corresponding control

points defined in the physical space. We give an example of isoparametric mapping

in Figure 2.5. There a 4× 4 patch in the parametric space is mapped to a disk in the

physical space. The knots vectors and control points used in the mapping are given in

Table 2.1. The red colored control points in Table 2.1 are repeated control points.

Parametric Space Physical Space

Figure 2.5: Isoparametric mapping between the parametric space (left) and physical

domain (right). The corresponding knots vectors and the control points are shown in

Table 2.1
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2.2 B-spline and NURBS

Table 2.1: Knots vectors and control points for the example of Figure 2.5

knots vectors

Ξ {0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1}
H {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}

control points and weights

x-coord y-coord weight x-coord y-coord weight x-coord y-coord weight

0 -1 1 0 -0.875 1 0 -0.625 1

1 -1

√
2

2
0.875 -0.875

√
2

2
0.625 -0.625

√
2

2

1 0 1 0.875 0 1 0.625 0 1

1 1

√
2

2
0.875 0.875

√
2

2
0.625 0.625

√
2

2

0 1 1 0 0.875 1 0 0.625 1

-1 1

√
2

2
-0.875 0.875

√
2

2
-0.625 0.625

√
2

2

-1 0 1 -0.875 0 1 -0.625 0 1

-1 -1

√
2

2
-0.875 -0.875

√
2

2
-0.625 -0.625

√
2

2

0 -1 1 0 -0.875 1 0 -0.625 1

0 -0.375 1 0 -0.125 1 0 0 1

0.375 -0.375

√
2

2
0.125 -0.125

√
2

2
0 0

√
2

2

0.375 0 1 0.125 0 1 0 0 1

0.375 0.375

√
2

2
0.125 0.125

√
2

2
0 0

√
2

2

0 0.375 1 0 0.125 1 0 0 1

-0.375 0.375

√
2

2
-0.125 0.125

√
2

2
0 0

√
2

2

-0.375 0 1 -0.125 0 1 0 0 1

-0.375 -0.375

√
2

2
-0.125 -0.125

√
2

2
0 0

√
2

2

0 -0.375 1 0 -0.125 1 0 0 1

In the following sections, we will use IGA approximations of the form

uh(x,y) = ∑
i∈S

Ni(x,y)ui , (2.10)

where Ni are the NURBS or B-splines basis functions, ui are the field variables ob-

tained by solving a linear matrix system, and S contains the indices of all global basis

functions.
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2.3 Strong and Weak Form of Poisson’s Equations

2.3 Strong and Weak Form of Poisson’s Equations

The Poisson’s equation in d dimensions is given by:







−∇ · (K(∇u)T ) = f in Ω

u = ū on Γe

∂u

∂n
= q̄ on Γn ,

(2.11)

where the d-dimensional domain Ω is an open set with a Lipschitz continuous bound-

ary ∂Ω. K ⊂R
d×R

d is a symmetric positive definitive matrix. When K is the identity

matrix, (2.11) is identical to the classical Poisson’s model problem. In other numerical

examples, K describes different material properties in different regions of the domain.

f : Ω → R is a given function. ū and q̄ are known variables which denote the bound-

ary conditions. n is the outward normal unit vector on the boundary Γn. The normal

derivative
∂u

∂n
can also be represented as

∂u

∂n
=∇u ·n. Γe and Γn are called the Dirichlet

boundary and Neumann boundary, respectively. Γn

⋂
Γe = /0 and Γn

⋃
Γe = ∂Ω.

Let us define two sets S and V :

S = {u | u ∈ H1,u |Γe
= ū} , (2.12)

V = {v | v ∈ H1,v |Γe
= 0} , (2.13)

where H1 is the Sobolev space of functions with square integrable first derivatives.

H1 = H1(Ω) = {w | w ∈ L2;D1w ∈ L2}, (2.14)

where

L2 = L2(Ω) = {w |
∫

Ω
w2 dΩ < ∞}. (2.15)

The functions in S satisfy the Drichlet boundary condition of the problem (2.11).
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2.3 Strong and Weak Form of Poisson’s Equations

The homogeneous counterpart of the Dirichlet boundary condition is satisfied by the

functions in V .

In this thesis, the error is estimated by various norms. In the following, we use the

usual notation for function norms and seminorms, namely for the L∞-norm, and W 1,∞,

W 2,∞ seminorms, L2-norm , H1 and H2 seminorms, which are defined as:

‖ · ‖L∞ = sup | · |,

| · |W 1,∞ = sup|D1 · |,

| · |W 2,∞ = sup|D2 · |,

‖ · ‖2
L2 =

∫

Ω
| · |2,

| · |2H1 =
∫

Ω
|D1 · |2,

| · |2H2 =

∫

Ω
|D2 · |2,

where D1, D2 are the first and second derivative operators, and the sum of the squares

of each component is taken for the square norms and seminorms in higher dimensions.

The weak form of (2.11) is obtained by multiplying a test function v (v ∈ V ), and

integrating over the domain Ω,

−
∫

Ω
v∇ · (K(∇u)T ) dΩ =

∫

Ω
v f dΩ , (2.16)

(2.17)

−
∮

Γ
vK(∇u)T ·n dΓ+

∫

Ω
∇vK(∇u)T dΩ =

∫

Ω
v f dΩ . (2.18)

The weak form reads: find u ∈ S , such that for all v ∈ V

∫

Ω
∇vK(∇u)T dΩ =

∫

Ω
v f dΩ+

∫

Γn

vK(∇u)T ·n dΓn . (2.19)

Galerkin projection is to replace the above infinite-dimensional sets S and V by

their finite-dimensional subsets S
h and V

h. Similar to the infinite dimensional sets
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2.3 Strong and Weak Form of Poisson’s Equations

S (2.12) and V (2.13), the finite dimensional sets S h and V h are defined by

S
h = {uh | uh ∈ H1,uh|Γe

= ū} (2.20)

and

V
h = {vh | vh ∈ H1,vh|Γe

= 0}. (2.21)

After applying the Galerkin projection, the problem reads: find uh ∈ S
h, such that for

all vh ∈ V h

∫

Ω
∇vhK(∇uh)T dΩ =

∫

Ω
vh f dΩ+

∫

Γn

vhK(∇uh)T ·n dΓn . (2.22)

In (2.22), ∇ are applied respect to the physical coordinates. For a two-dimensional

problem (d = 2), we also explicitly this by ∇(x,y). The NURBS basis functions are

defined in the parametric space. Using the chain rule, (2.23) can be written as:

∇(x,y)u
h(x,y) = J(ξ ,η)−1∇T

(ξ ,η)u
h(ξ ,η) , (2.23)

where J is 2×2 Jacobian matrix,

J(ξ ,η) =









∂F1

∂ξ

∂F1

∂η

∂F2

∂ξ

∂F2

∂η









, (2.24)

and F(ξ ,η) = (F1,F2) is a transformation from the parametric coordinates (ξ ,η) into

the physical coordinates (x,y):

F(ξ ,η) = ∑
i∈S

Ni(ξ ,η)Ci , (2.25)

where Ci are control points defined in the physical space. This transformation F plays

an important role in IGA. Because the same basis functions are used in the geometry
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2.3 Strong and Weak Form of Poisson’s Equations

description as in analysis, the method is called “isogeometric”.

Substituting (2.23) into (2.22), we obtain the following identities:

∫

Ω
∇vhK∇uh dxdy=

∫

Ω0

(J−1(ξ ,η)∇vh(ξ ,η))K(J−1(ξ ,η)∇uh(ξ ,η)) | detJ(ξ ,η) | dξ dη ,

(2.26)

∫

Ω
vh f dxdy =

∫

Ω0

(vh f )(J(ξ ,η)) | detJ(ξ ,η) | dξ dη , (2.27)

∫

Γn

vhK∇uh ·n dΓn =

∫

Γn0

(vhK∇uh ·n(J(ξ ,η)) | detJ(ξ ,η) | dΓ . (2.28)

For n-dimensional space with n basis functions N= {N1, N2 , · · · , Nn }, we choose

vh = Ni, i = 1 . . .n, and uh = ∑n
i=1 Nici, as in the standard Galerkin method approxima-

tion. We are looking for n unknown coefficients ci, with i = 1 . . .n for following linear

problem:
n

∑
j=1

c ja(N j,Ni) = ( f ,Ni)+(Ni, q̄)Γn
, (2.29)

where

a(N j,Ni) =

∫

Ω0

∇N jK(∇Ni)
T dΩ , (2.30)

( f ,Ni) =
∫

Ω0

f Ni dΩ , (2.31)

(Ni, q̄)Γn
=

∫

Γn0

Niq̄ dΓn . (2.32)

We will now give a standard error estimate for the computed solution uh. Suppose

the exact solution u possesses r square integrable generalized derivatives94, i.e. u ∈
Hr(Ω) where

Hr(Ω) = {u | Dαu ∈ L2(Ω), | α |≤ r}. (2.33)
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2.4 Linear Elasticity

Then, the norm associated with Hr(Ω) is given by

‖ u ‖2
r = ∑

|α|≤r

∫

Ω
(Dαu) · (Dαu) dΩ. (2.34)

An a priori error estimator is given by the formula:

‖ u−uh ‖m ≤Chβ‖ u ‖r , (2.35)

where ‖ · ‖m and ‖ · ‖r are the norms defined in Sobolev spaces Hm and Hr 95. h is

a characteristic length scale related to the size of the elements in the mesh. p is the

polynomial degree of the basis. β = min( p+1−m , r−m ) is the convergence rate.

C is a constant, which is independent of u and h. This fundamental FEM error estimate

has been extended to IGA2.

2.4 Linear Elasticity

→

→

→

�� 

��
� 

� Ω 

� �  
→ → 

Figure 2.6:

Another example presented here is the linear elastic plane stress problem. Consider

a homogeneous isotropic elastic body shown in Figure 2.6 occupying the boundary

domain Ω ⊂ R
2 with boundary ∂Ω. The boundary ∂Ω is decomposed into Γe and
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2.4 Linear Elasticity

Γn which are the Dirichlet boundary and Neumann boundary, respectively. Let the

body be acted upon by a body force load f : R2 → R
2 and a boundary load t :~tn → R

2

on Γn. Suppose that the displacement ~u is prescribed along the boundary Γe. We

derive some basic equations of linear elasticity. For the plane stress problem, there

are two components of the~u, denoted by displacement, u and v with respect to global

coordinates~x = (x,y) respectively. This can be written as

~u(x,y) =




u(x,y)

v(x,y)



 . (2.36)

Strains are obtained from the partial derivatives of the displacements. The equations

are called the kinematic equations, which are written as

{ε}=







εx

εy

γxy







=
















∂u

∂x

∂v

∂y

∂u

∂y
+

∂v

∂x
















, (2.37)

where {ε} = (εx,εy,γxy)
T stands for the strains. The constitutive equations state the

relationship between the stresses and strains. For an isotropic material and the plane

stress problem, the constitutive equations become

{σ}=













σx

σy

τxy













= [K]{ε}=















E

1−ν2

νE

1−ν2
0

νE

1−ν

E

1−ν2
0

0 0
E

2(1+ν)



























εx

εy

γxy













, (2.38)
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2.4 Linear Elasticity

where σ = (σx,σy,τxy)
T denotes the stresses. [K] is the material property matrix and E

and ν are the elastic modulus and Poisson’s ratio, respectively. Finally, the equilibrium

equations are defined as

∂σx

∂x
+

∂τxy

∂y
+ fx = 0 (2.39)

∂τxy

∂x
+

∂σy

∂y
+ fy = 0, (2.40)

where~f = ( fx, fy) is the body force. Combining Equations (2.37) (2.38) (2.39) and

(2.40), we have eight unknowns (three stresses, three strains and two displacements)

and eight equations (two equilibrium, three constitutive and three kinematic equations).

We shall assume that ∂Ω admits decomposition

Γe ∪Γn = ∂Ω, Γe ∩Γn = /0, Γe 6= /0. (2.41)

Essential or displacement boundary conditions are applied on the boundary displace-

ment part Γe, as

u = ū, (2.42)

where ū is given. Different from Equation (2.11), u and ū are vector-valued rather

than scalar-valued. Natural or traction boundary conditions are applied on the traction

boundary displacement part Γn, so that

σxnx + τxyny = t̄x (2.43)

τxynx +σyny = t̄y, (2.44)

where ~n = (nx,ny) is the outward unit normal vector at Γn, t̄ = (tx, ty) is given. The

equilibrium Equations (2.39) and (2.40) are also called the strong form of the boundary-

value problem.

To derive the weak form, we define the trial solution set S ×S similarly to (2.12)

and also the variational set V ×V similarly to (2.13). The weak form of (2.37) is
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2.4 Linear Elasticity

obtained by multiplying the test functions wx (wx ∈ V ), wy (wy ∈ V ), and integrating

over the region Ω,

∫

Ω







wx

(
∂σx

∂x
+

∂τxy

∂y

)

wy

(
∂τxy

∂x
+

∂σy

∂y

)







dΩ+
∫

Ω







wx fx

wy fy






dΩ = 0. (2.45)

Then using integration by parts and Gaussian divergence theorem on the first terms of

Equation (2.45) yields

−
∫

Ω







∂wx

∂x
σx +

∂wx

∂y
τxy

∂wy

∂x
τxy +

∂wy

∂y
σy







dΩ+
∫

Ω







wx fx

wy fy






dΩ+

∫

Γt







wxt̄x

vyt̄y






dΓt = 0. (2.46)

Substituting the constitutive Equation (2.38) and the kinematic Equation (2.37) results

in

∫

Ω







∂wx

∂x
0

∂wx

∂y

0
∂wy

∂y

∂wy

∂x






[K]











∂u

∂x
∂v

∂y

∂u

∂y
+

∂v

∂x











dΩ =
∫

Ω







wx fx

wy fy






dΩ+

∫

Γt







wxt̄x

wyt̄y






dΓt .

(2.47)

After applying Galerkin projection, the problem reads: find uh = (uh
x,u

h
y) ∈ S h ×S h,

for all vh
x ∈ V h, vh

y ∈ V h such that

∫

Ω







∂wh
x

∂x
0

∂wh
x

∂y

0
∂wh

y

∂y

∂wh
y

∂x






[K]












∂uh

∂x

∂vh

∂y

∂uh

∂y
+

∂vh

∂x












dΩ =
∫

Ω







wh
x fx

wh
y fy






dΩ+

∫

Γt







wh
x t̄x

wh
y t̄y






dΓt .

(2.48)

S h and V h are finite dimensional subsets S and V . For n-dimensional space with
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2.4 Linear Elasticity

n basis functions, N= {N1,N2, · · · ,Nn}, u and v are interpolated using the same basis

functions, such that

uh =
n

∑
i=1

Niui, vh =
n

∑
i=1

Nivi. (2.49)

The displacements can also be expressed as







uh

vh






=




N1 0 N2 0 · · · Nn 0

0 N1 0 N2 · · · 0 Nn











u1

v1

u2

v2

...

un

vn







= [N]{d}. (2.50)

Use of this expression for strains yields







∂uh

∂x

∂vh

∂y

∂uh

∂y
+

∂vh

∂x







=










∂N1

∂x
0

∂N2

∂x
0 · · · 0

∂Nn

∂x
0

0
∂N1

∂y
0

∂N2

∂y
· · · ∂Nn−1

∂y
0

∂Nn

∂y
∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x
· · · ∂Nn−1

∂x

∂Nn

∂y

∂Nn

∂x










{d}= [B]{d}.

(2.51)

To compute the Galerkin projection, we let successively wh
x = Ni, i = 1, · · · ,n, wh

y = Ni,

i= 1, · · · ,n. Then plugging Equations (2.51) into the first terms of Equation (2.48). For

the two terms on the righthand side of Equation (2.48), following a similar procedure,

we obtain

[D]{d}= {F}+{Φ} (2.52)
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2.5 Knot insertion and order elevation

where

[D]{d}=
∫

Ω0

[B]T K[B]dΩ{d}. (2.53)

{F}=
∫

Ω0

[N]T{f}dΩ (2.54)

and

{Φ}=
∫

Γt0

[N]T{t}dΓt . (2.55)

Here, Equation (2.53), (2.54) and (2.55) are the element stiffness matrix, body force

vector and boundary traction vector, respectively.

2.5 Knot insertion and order elevation

2.5.1 Knot insertion

Given a particular NURBS discretization of degree p in terms of knot vectors, con-

trol points, weights, we will discuss some refinement strategies. Suppose the initial

knot vector Ξ = {ξ1,ξ2, · · · ,ξn+p+1} and the corresponding control points {Pn
A=1} are

given. We insert a new knot vector ξ̄k into Ξ. The new knot vector is written as

Ξ̄ = {ξ1,ξ2, · · · , ξ̄k, · · · ,ξm+p+1} with m+ p+ 1 knots and m = n+ 1. It requires m

new basis functions defined using Equations (2.1) and (2.2) based on Ξ̄. The m new

control points represented by {P̄A}m
A=1 are calculated by

P̄A =







P1 A = 1

αAPA +(1−αA)PA−1 1 < A < m

Pn m = A
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2.5 Knot insertion and order elevation

where

αA =







1 1 ≤ A ≤ k− p

ξ̄ −ξA

ξA+p −ξA

k− p+1 ≤ A ≤ k

0 A ≥ k+1

.

The knot values may be inserted multiple times. But the continuity of the basis is

reduced by one for each repetition of insertion knot value. However, the B-spline

curve generated by the new knot vector and the resulting control points is geometrically

identical to the original one. An example of knot insertion is shown in Figure 2.7 which

of the initial knot vector and the control points are given by Figure 2.3. The new curves

in Figures 2.3 (a) and (c) are identical to the unrefined curve in Figure 2.3 (a), however

more control points and basis functions are introduced.

2.5.2 Order elevation

Here, given a geometry parametrization of degree p, we want to increase the poly-

nomial degree of the discretization to p+ 1. Comparing to the knot insertion, order

elevation is more complicated and needs three main steps. The first step is Bézier de-

composition, which represents a piecewise polynomial curve by Bézier segments. The

process follows the knot insertion in section 2.5.1, repeating the interior knots p times.

Then second step is order elevation for each Bézier segment. We present a well-

known formula92,96 to elevate from degree p to degree p+1. A Bézier segment curve

is written as

Cp(ξ ) =
p

∑
i=0

Bi,p(ξ )Pi 0 ≤ ξ ≤ 1, (2.56)

where {Pi} are the control points generated after the Bézier decomposition step. Bi,p(ξ )

are Bernstein basis functions92,97 given by

Bi,p(ξ ) =
p!

i!(p− i)!
ξ i(1−ξ )p−i. (2.57)
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2.5 Knot insertion and order elevation

The continuity of the (p+1)th degree Bézier curve has to be the same as that of the pth

degree Bézier curve. This reduced continuity property is obtained by increasing the

multiplicities of all knots by one. Then the (p+1)th degree curve is represented as

Cp+1(ξ ) =
p+1

∑
i=0

Bi,p+1(ξ )Qi, (2.58)

where {Qi}p+1
i=0 are the new control points which are unknown. Since the pth degree

curve is identical to the (p+1)th degree curve, we have

p+1

∑
i=0

Bi,p+1Qi =
p

∑
i=0

Bi,pPi. (2.59)

The final formula for calculating Qi is written as

Qi = (1−αi)Pi +αiPi−1 (2.60)

where

αi =
i

p+1
i = 0, · · · , p+1. (2.61)

Note the complete derivation from Equation (2.59) to Equation (2.61) can be found in

literature92.

Finally the third step is to remove the repeated knots. A general formula for un-

necessary knot removal are given by







r− p ≤ A ≤ 1

2
(2r− p− s−1)

P̄A =
PA − (1−αA)P̄A−1

αA

αA =
ξ̄ −ξA

ξA+P−1 −ξA

, (2.62)
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1

2
(2r− p− s+2)≤ B ≤ r− s

P̄B =
PB −αBP̄B+1

1−α

αB =
ξ̄ −ξB

ξB+p+1 −ξB

, (2.63)

where {P} is initially given. ξ̄ = ξr 6= ξr+1 stands for the removing knot. A = r− p,

B = r− s and B > A are required. For detail implementation of the knot removal, we

refer to92. An example of order elevation is shown in Figure 2.8 which of the initial

knot vector and the control points are given by Figure 2.3. The new curves in Figure

2.8 (a), (c) and (e) are identical to the unrefined curve in Figure 2.3 (a). Some excellent

and useful open source IGA tools written in MATLAB are given in98.

2.6 Conclusions

In this section, we gave an overview of IGA and introduced the main ideas through

the Poisson’s equation and linear elasticity examples. We discuss the B-spline and

NURBS basis functions and their common properties. At the end we summarize two

refinement techniques, the knot insertion and the order elevation, respectively. The

original contributions of this dissertation are divided into four topics and presented in

following chapters. Some particular notations, formulas and properties are only given

in the chapter where they are applied.
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(a) B-spline curve p = 2
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(b) B-spline basis functions p = 2
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(c) B-spline curve p = 2
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(d) B-spline basis functions p = 2

Figure 2.7: Knot insertion. Based on the initial knot vector and the control

points given by Figure 2.3, the newly inserted knots are {1/8, 3/8, 5/8, 7/8}
and the corresponding B-spline curve and the basis functions are shown in (a)

and (b). Keeping the current knot vector, we insert a new sequence of knots

{1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16, 15/16} and obtain the B-spline curve

(c) and the basis functions ploted in (d).
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(a) B-spline curve p = 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) B-spline basis functions p = 3
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(c) B-spline curve p = 4
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(d) B-spline basis functions p = 4
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(e) B-spline curve p = 5
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(f) B-spline basis functions p = 5

Figure 2.8: Based on the intial knot vector and the control points given by Figure

2.3, we apply the order elevation technique and obtain the identical B-spline curves of

p = 3 (a), p = 4 (c) and p = 5 (e). Subfigures (b), (d) and (f) are their corresponding

basis functions.
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Chapter 3

Reproducing Kernel Triangular

B-spline-based FEM for Solving PDEs

3.1 Introduction

We propose a reproducing kernel triangular B-spline-based finite element method (FEM)

as an improvement to the conventional triangular B-spline element for solving partial

differential equations (PDEs). In the latter, unexpected errors can occur throughout

the analysis domain mainly due to the excessive flexibility in defining the triangular

B-splines. The performance therefore becomes unstable and cannot be controlled in a

desirable way. To address this issue, the proposed improvement adopts the reproduc-

ing kernel approximation in the calculation of B-spline kernel function. Three types

of PDE problems are tested to validate the present element and compare against the

conventional triangular B-splines. It has been shown that the improved triangular B-

splines satisfy the partition of unity condition even for extreme conditions including

corners and holes.
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3.2 Reproducing Kernel Triangular B-spline

3.2.1 Simplex Splines

We start from the simplex splines discussion, since a lot of concepts and properties

of the simplex splines can be extended to the triangular B-splines directly. Let V =

{t0, t1, . . . , tn+2} be a finite set of points in R
2. These points in V are called knots and

the set V itself is called the knot-set of a simplex spline. A simplex spline defined over

V is a piecewise polynomial of degrees n. The definition of a simplex spline is given

by a recursive equation

M(x | V) =







0 x /∈ [V),

1

| det(V) | | V |= 3 x ∈ [V),

∑2
i=0 λi(x | W)M(x | V\{wi}) | V |> 3,

(3.1)

where det(V) is the determinant of points. When V = (v0,v1,v2) is a triple of points

in R
2, the determinant of V is defined as

det(V) = det







1 1 1

v0x v1x v2x

v0y v1y v2y






, (3.2)

where v0 = (v0x,v0y), v1 = (v1x,v1y), and v2 = (v2x,v2y).

λi(x | W) are the barycentric coordinates of x with respect to the three knots in a

subset W = {w0,w1,w2}. The barycentric coordinates for the planar case have the

following properties:

• The sum of barycentric coordinates equals to 1;
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3.2 Reproducing Kernel Triangular B-spline

• The barycentric coordinates relation expression is an affine mapping, which

means the barycentric coordinates do not change after the linear transformation;

• If x lies on one edge of the triangle, at least one barycentric coordinate equals to

zero;

• If x lies on one vertex of the triangle, two of barycentric coordinates equal to

zero; and

• If x lies outside of the triangle, then at least one barycentric coordinate is nega-

tive.

If the three points w0, w1 and w2 in W and x point are known, we can determine the

barycentric coordinates by the Cramer’s rule

λ0 =
area(x,w1,w2)

area(w0,w1,w2)
,λ1 =

area(w0,x,w2)

area(w0,w1,w2)
,λ2 =

area(w0,w1,x)

area(w0,w1,w2)
, (3.3)

where area(w0,w1,w2) =
1

2

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1

w0x w1x w2x

w0y w1y w2y

∣
∣
∣
∣
∣
∣
∣
∣

, w0 = (w0x,w0y), w1 = (w1x,w1y), and

w2 = (w2x,w2y). [V) stands for the half open convex hull. Its definition is defined as

[V) = {x ∈ [V] | ∃ε0,ε1 > 0(∀0 ≤ α1 ≤ α0 ≤ 1(x+α0ε0e0 +α1ε1e1 ∈ [V]))},

where [V] denotes the convex hull of V. e1 and e2 are the unit vectors for x-direction

and y-direction, respectively. Figures 3.1 and 3.2 sketch the half open convex hull

and a few examples, respectively. Constant, linear and quadratic simplex B-splines

examples are shown in Figure 3.3.

35



3.2 Reproducing Kernel Triangular B-spline

Figure 3.1: Sketch to illustrate the half-open convex hull.

Figure 3.2: Examples to illustrate the half-open convex hull [V0,V1,V2). The solid

points belong to the half-open convex hull, the empty ones do not.
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3.2 Reproducing Kernel Triangular B-spline

(a) simplex spline of degree zero (b) linear simplex spline

(c) quadratic simplex spline

Figure 3.3: Simplex splines examples. (a) is a simplex spline of degree zero whose

knots are t0 = (0.2,0.2), t1 = (0.7,0.2) and t2 = (0.5,0.6); (b) is a linear simplex spline

whose knots are t0 = (0.2,0.2), t1 = (0.6,0.7), t2 = (0.3,0.6) and t3 = (0.7,0.1);

and (c) is a quadratic simplex spline whose knots are t0 = (0.2,0.2), t1 = (0.6,0.1),

t2 = (0.9,0.3), t3 = (0.7,0.7) and t4 = (0.4,0.6).

3.2.2 Triangular B-splines

Triangular B-splines, also well-known as DMS-splines, were first developed by Dah-

men, Micchelli and Seidal52. It was derived from simplex splines and B-patches. A lot

of concepts and theorems of B-patches can be extended to triangular B-splines directly.

More information of the B-patches discussion can be found in93.

Compared with the knots set V defined earlier, the knot set for defining trian-

gular B-splines is larger and more complicated. Following the definition given in

99, we use knot net instead of knot set in the triangular B-splines study area. Let
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3.2 Reproducing Kernel Triangular B-spline

K = {t0,0, . . . , t0,n, . . . , t1,n, . . . , t2,n} be a knot net associated with the triangle △ =

[t0, t1, t2] = [t0,0, t1,0, t2,0]. For each root knot ti = ti,0 (i = 0,1,2), there are n extra

knots connecting to the root knot. The set of points Ci = {ti,0, . . . , ti,n} is called the

knot cloud associated with the root knot ti = ti,0. n is also the polynomial order of trian-

gular B-splines. For one knot net K, we can define
(n+1)(n+2)

2
triangular B-spline

basis functions. For each triangular B-spline basis, we need to define a certain knot set

VK
i jk ⊆ K. VK

i jk = {t0,0, . . . , t0,i, t1,0, . . . , t1, j, t2,0, . . . , t2,k} is a subset of the knot net K,

and it requires i+ j+ k = n. There are n+3 knots in VK
i jk. The normalized triangular

B-spline basis are defined by

NK
i jk(x) =| det(t0,i, t1, j, t2,k) | M(x | VK

i jk), (3.4)

where M(x |VK
i jk) is the simplex spline among the knot set VK

i jk at point x. | det(t0,i, t1, j, t2,k) |
is the normalizing factor. For the sake of simplicity and uniformity, the notation NK

i jk(x)

will henceforth be used for the triangular B-spline basis function evaluated at point x.

Figures 3.4 and 3.5 show the distribution of the quadratic triangular B-spline and the

examples of the quadratic triangular B-spline basis, respectively.

The triangular B-spline basis NK
i jk(x) are linearly independent, and they also sat-

isfy the partition of unity property, i.e., ∑i+ j+k=n NK
i jk(x) = 1. The proof of the two

properties can be referred to99.

Figure 3.4: Distribution of triangular B-spline basis for quadratic case.
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3.2 Reproducing Kernel Triangular B-spline

(a) N002 (b) N011

(c) N020 (d) N101

(e) N110 (f) N200

Figure 3.5: Normalized quadratic triangular B-spline basis functions.

The application of triangular B-splines here is for solving PDEs. The main idea

follows FEM by solving the weak form which is equivalent to the strong form. We

need to find the derivative of the basis function. There could be several ways to define

it. Here we follow one efficient way proposed in100. The derivative of one triangular

B-spline is given by

∇wNK
i jk(x | VK

i jk) = | det(t0,i, t1, j, t2,k) | ∇wM(x | VK
i jk) (3.5)

= | det(t0,i, t1, j, t2,k) | n
2

∑
i=0

µiM(x | VK
i jk \{wi}),
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3.2 Reproducing Kernel Triangular B-spline

where n is the order of the triangular B-spline. The coefficients µi require ∑2
i=0 µi = 0

and ∑2
i=0 µiti = w. From Equation 3.5, taking the derivative with respect to the trian-

gular B-splines is transferred by taking the derivative with respect to the coefficients of

the simplex splines λi, i.e., µi = ∇wλi. Here the operator ∇w stands for the directional

derivative.

The directional derivative is a special case of the Gâteaux derivative. λi(x | W)

is a scalar function. According to the definition of the directional derivative, ∇wλi is

calculated by

∇wλi(x | W) = lim
h→0

λi(x+hw | W)−λi(x | W)

h
, (3.6)

and two important relation expressions for calculating the derivative of the triangular

B-spline basis function in our case are given by

∇wλi(x | W) |w=(1,0)⇐⇒ ∇xλi(x | W), (3.7)

and

∇wλi(x | W) |w=(0,1)⇐⇒ ∇yλi(x | W). (3.8)

Then, we can obtain

∇λ0(x | W) = (
w1y −w2y

det(W)
,

w2x −w1x

det(W )
), (3.9)

∇λ1(x | W) = (
w2y −w0y

det(W)
,

w0x −w2x

det(W )
), (3.10)

and

∇λ2(x | W) = (
w0y −w1y

det(W)
,

w1x −w0x

det(W )
). (3.11)

Remark: We need to derive the derivatives of triangular B-splines because they

are required to calculate the variational form in FEM. Although there are many papers

studying triangular B-splines101,102,103, only a few104,105 mentioned their derivatives

with some constrains. This gives us some difficulty to calculate the coefficients µi.
100
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3.2 Reproducing Kernel Triangular B-spline

is the first paper providing us the idea to get µi by calculating the directional derivative

of λi. Herein, we derive our own mathematical formulation as above for the derivatives

of triangular B-splines in 2D case. Its proof is a little bit long but it is not difficult to

obtain, so we do not provide here.

For a problem domain, we need a large knot net including many extra knot cloud

points. One example of knot net distribution for a problem domain is shown in Figure

3.6.

Figure 3.6: Distribution of knot net for a problem domain. The red dots are the root

knot-nodes. The blue squares are the additional knot-nodes associated to each root

knot-node.

3.2.3 Reproducing Kernel Triangular B-spline

The triangular B-spline has been named for around two decades, and it has also been

studied by many people. The triangular B-spline is well-known for its triangular struc-

ture. However, till now there is no explicit rule or criteria showing how to construct
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3.2 Reproducing Kernel Triangular B-spline

analysis-suitable triangular B-splines. The challenge is due to the flexibilities of the

function itself. In analysis, the performance of the triangular B-spline is influenced by

the quality of triangulation and also depends on the distribution of knot clouds. Nowa-

days both of them still need a lot of study and development106. In our study, due to

such unstable nature of the triangular B-spline, there could be many unexpected error

occurring if we apply it as the basis function directly. So we follow the reproducing

kernel approximation technique to improve the triangular B-spline basis. This idea was

originally derived from RKPM86,87,88,89, which is one of the most popular meshfree

methods. It improves the first generation of the SPH meshfree method by multiplying

the original basis function by some correction term.

The classical FEM approximation is written as

uh(x,y) = ∑
i∈S

Ni(x,y)ui, (3.12)

where Ni are the triangular B-spline basis functions, ui are the field variables obtained

by solving a linear matrix system, and S contains the indices of all global basis func-

tions. The improved approximation is defined in a similar way,

uh(x,y) = ∑
i∈S

Φi(x,y)ai, (3.13)

where Φi are the improved triangular B-splines containing correction parts. ai are the

field variables obtained by solving a linear matrix system corresponding to the new

basis functions, and S contains the indices of all global basis functions with the same

number as in Equation 3.12.

In the above Equations 3.12 and 3.13, Ni are called kernel/weight/smoothing basis

functions in SPH, and Φi are called the corrected kernel basis functions in RKPM.

They satisfy the following three properties:

• Compact support, i.e., Φi(x) = 0 if x /∈ Ωe where Ωe is the support of the basis

Φi;
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• Partition of unity, i.e., ∑i∈S Φi(x) = 1; and

• Polynomial reproducing constraint, i.e., ∑i∈S Φixi = x .

Following the pioneer work in86,87,88,89, we should emphasize the procedure of

defining those basis functions107,108. For very detailed mathematical theorems and

completed proofs please refer to109,110. The reproducing kernel particle theorems also

promoted the development of RKEM111,112,113,114 and the moving particle finite ele-

ment method115. Some related partition of unity (PU) properties are described in116.

Here, we define the reproducing kernel triangular B-spline by

Φi(x,y) = HT (x− xi,y− yi)b(x,y)Ni(x,y), (3.14)

where HT is a set of polynomial basis {xαyβ}|α+β |≤n (n is the order of the triangular

B-spline basis), b(x,y) are the coefficients of the polynomial basis in HT , Ni(x,y) is

the traditional triangular B-spline, and (xi,yi) are the coordinates of the triangle node

point i associated to the global basis.

In Equation 3.14, HT (x− xi,y− yi)b(x,y) are called the correction terms for the

kernel functions, which can be obtained via polynomial reproducing condtions. Actu-

ally the traditional triangular B-splines already satisfy the partition of unity property,

but in some situations this property may be influenced by the unstable nature of the

function itself. For example, when the calculated points are quite close to the bound-

ary of the triangular element, this property may not be guaranteed. This is the main

reason why we apply the reproducing kernel approximation technique to reproduce the

basis functions. In this way, the improved basis can always maintain the partition of

unity property even for some hard situations.

In Equation 3.14, the coefficients are determined by the following conditions

∑
i∈S

Φi(x,y) = 1, (3.15)
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∑
i∈S

Φi(x,y)(x
α
i ,y

β
i ) = xαyβ , (3.16)

and

∑
i∈S

Φi(x,y)((x− xi)
α ,(y− yi)

β ) = δ|α‖β |,0, | α +β |≤ n. (3.17)

Equation 3.17 provides the way to calculate the coefficients vector b(x,y), but it is

not efficient. For one certain point in the problem domain, we do not need to consider

the values of all the basis functions in the set S at that point. Since there are only a

few global basis functions having supports containing that point, and many others do

not contain that point. The value of one point for a basis is considered when we use

the Gaussian quadrature rules66,117 to calculate the variational form. For each basis

function, if we loop all the basis to find the coefficients for the correction part, it will

be a very laborious calculation.

In107,108, the reproducing kernel approximation technique was applied for the ker-

nel correction term globally with all the basis and node points in the domain consid-

ered. It is certainly not a desirable way. Here we carry out the reproducing approxima-

tion technique locally for the kernel correction term calculation. The compact support

property of the triangular B-spline gives Ni(x) = 0 if x is outside the half open convex

hull. We can take the advantage of this property, and use a few set of basis related

to the studied triangle element instead of the large set S. This technique is tested in

solving three numerical examples in section 3.3.

For one triangle element, if the order of the triangular B-spline basis is n, there will

be N =
(n+1)(n+2)

2
basis functions related to it. St stands for the set of Triangular

B-spline basis in this triangle. Then we rewrite Equations 3.15, 3.16 and 3.17 by

∑
i∈St

Φi(x,y) = 1, (3.18)

∑
i∈St

Φi(x,y)(x
α
i ,y

β
i ) = xαyβ , (3.19)
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and

∑
i∈St

Φi(x,y)((x− xi)
α ,(y− yi)

β ) = δ|α‖β |,0, | α +β |≤ n. (3.20)

Continuing our calculation, we have

∑
i∈St

HT (x− xi,y− yi)b(x,y)Ni(x,y)H(x− xi,y− yi) = H(0), (3.21)

and

bM = H(0), (3.22)

where

M = ∑
i∈St

HT (x− xi,y− yi)Ni(x,y)H(x− xi,y− yi). (3.23)

By solving this linear matrix system, we get

b = H(0)M−1. (3.24)

Finally, we substitute Equation 3.24 into Equation 3.14 and add the correction part,

then we obtain

Φi(x,y) = HT (x− xi,y− yi)H(0)M−1Ni(x,y) (3.25)

for our newly improved triangular B-spline basis.

On the other hand, it is also important to know the derivative of the basis function

Φi, since it is used to calculate the stiffness matrix. We follow the proposed method by

88,89,115, continuing to use the small basis set St to find the coefficients vector d(x,y)

in the following equation,

∇Φi(x,y) = HT (x− xi,y− yi)d(x,y)Ni(x,y). (3.26)

After solving the coefficient vector d(x,y) which are similar to Equations 3.21 and
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3.24, we get

∑
i∈St

∇Φi(x,y)H(x− xi,y− yi) = (−1)∇H(0). (3.27)

Plugging the results d(x,y) into Equation 3.27, we finally have the derivative of the

improved triangular B-spline basis function

∇Φi(x,y) = HT (x− xi,y− yi)(−1)∇H(0)M−1(x,y)Ni(x,y). (3.28)

Remark: We have studied in detail about how to construct our reproducing ker-

nel triangular B-spline basis function and its derivative. We combine the reproducing

kernel approximation technique with the definition of the triangular B-spline, defining

different variables for the kernel correction part and the triangular B-spline. In addi-

tion, we locally calculate the kernel correction term with a small set of the triangular

B-spline according to its compact support property, and thus to improve the compu-

tational efficiency. The basis function has been improved. Meanwhile, the derivative

of the basis function has also been changed without considering the derivative of the

triangular B-spline itself, which is different from the study in subsection 3.2.2.

3.3 Numerical Examples

In the previous section, we have introduced the reproducing kernel triangular B-spline-

based FEM method. In this section, this method is applied to solve three Poisson’s

problems.
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3.3.1 Example I (Triangular Domain)
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(d) the distance error produced by the reproduc-
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Figure 3.7: The numerical example I with a triangular domain. (a) is a triangula-

tion of the triangular domain defined by Equation 3.29; (b) is the exact solution de-

fined by Equation 3.31 in the triangular domain; (c) is the distance error produced

by the triangular B-spline-based FEM without the reproducing kernel approximation

improvement; and (d) is the distance error from the reproducing kernel triangular B-

spline-based FEM.
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3.3 Numerical Examples

The first example is a triangular domain as shown in Figure 3.7, and the open set

domain Ω is defined as

Ω := {(x,y) |
(
(0< x≤ 1

2
)&(0< y< 2x)

)
∪
(
(
1

2
< x< 1)&(0< y< 2−2x)

)
}. (3.29)

The problem has homogeneous boundary condition. The body force is

f (x,y) = 2y+4, (3.30)

and the exact solution is given by

u(x,y) =−y(2x− y)(2x+ y−2). (3.31)

We compare the L2 norm errors from the triangular B-spline-based FEM and the

reproducing kernel triangular B-spline-based FEM, see the third column in Tables 3.1

and 3.2. It is obvious that the latter is much more accurate numerically. We also take

the uniform discretizations with quadratic elements to study the convergence rate, and

compare our numerical results with the theoretical ones. In Tables 3.1 and 3.2, the

first two columns show the same uniform discretizing conditions for the two methods.

h is called the characteristic length scale. Here we choose the longest edge length of

all the triangle elements in the whole problem domain. DOFs stand for the degrees

of freedom. As we can see, after each refinement step, the characteristic length scale

decreases around by half and the DOFs are increased by around four times. The the-

oretical optimal convergence rate for L2 norm errors is 3. For our reproducing kernel

triangular B-spline-based FEM, the convergence rate is 2.86, see the last column in

Table 3.2. The convergence rate of numerical solutions almost matches with the theo-

retical result. While for the triangular B-spline-based FEM, the numerical convergence

rate is not that good, see in Table 3.1. All the comparison results show that the effect

of the reproducing kernel technique applying to the triangular B-spline is tremendous,

see Figure 3.8.
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Figure 3.8: Comparison of the convergence rates of the L2 norms between the tradi-

tional triangular B-spline-based FEM and the reproducing kernel triangular B-spline-

based FEM.

Table 3.1: L2 norm of the error by the triangular B-spline

h DOFs error(L2) convergence rate

L2

0.251010779343374 82 0.003395238639438

0.108696480900126 323 0.001254946562305 1.189195476850933

0.053424097825847 1283 9.499643140926e-04 0.391982020410419

0.027371900088744 5138 4.266453566335e-04 1.196975427770624

0.015102025840206 20533 2.775213782497e-04 0.723160916313839
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Table 3.2: L2 norm of the error by the reproducing kernel triangular B-spline

h DOFs error(L2) convergence rate

L2

0.251010779343374 82 0.003531520139462

0.108696480900126 323 4.246381997186e-04 2.530952192422002

0.053424097825847 1283 5.315703381318e-05 2.925516508831231

0.027371900088744 5138 6.090211957827e-06 3.239751538120817

0.015102025840206 20533 1.109591893481e-06 2.863166009635878

3.3.2 Example II (L-shaped Domain)

The second example is an L-shaped domain as shown in Figure 3.9, and the open set

domain Ω is defined as

Ω := {(x,y) |
(
(−1 < x < 1)&(−1 < y < 1)

)
\
(
(0 ≤ x ≤ 1)&(−1 ≤ y ≤ 0)

)
}. (3.32)

In the Example II, we consider homogeneous boundary condition. The body force is

f (x,y) = 2π2sin(πx)sin(πy), (3.33)

and the exact solution is given by

u(x,y) = sin(πx)sin(πy). (3.34)
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Figure 3.9: The numerical example II with an L-shaped domain. (a) is a triangulation

of the L-shaped define by Equation 3.32; (b) is the exact solution defined by Equation

3.34 bounded by this L-shaped domain; (c) is the distance error from the triangular

B-spline based-FEM without the reproducing kernel approximation improvement; and

(d) is the distance error from the reproducing kernel triangular B-spline-based FEM.

For comparison, the numerical results of the triangular B-spline-based FEM and

the reproducing kernel triangular B-spline-based FEM are shown in Tables 3.3 and

3.4 (third column). After each refinement procedure, the L2 norm errors from the

former method are not reduced much. Compared to the efforts that we put into each

refinement work, the triangular B-spline-based FEM does not perform well in solving
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3.3 Numerical Examples

PDEs. However, for the reproducing kernel approximation technique, the errors are

reduced significantly by each refinement step and it works in a very good situation.

In addition, from the distance error plot in Figures 3.9(c) and 3.9(d), the reproducing

kernel approximation technique adjusts the triangular B-spline basis, reducing many

unexpected error from its instability. It is also interesting to point out that the L2

numerical convergence rate of our improved method is 2.77, see the fourth column in

Table 3.4. Compared to the triangular B-spline-based FEM (the fourth column in Table

3.3), our improved numerical convergence rate almost recovers the theoretical optimal

convergence rate. Based on the numerical error comparison, the approximation of

the reproducing kernel triangular B-splined-based FEM is much more accurate and

efficient than that of the triangular B-spline-based FEM, see Figure 3.10.
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Figure 3.10: Comparison of the convergence rates of the L2 norms between the tradi-

tional triangular B-spline-based FEM and the reproducing kernel triangular B-spline-

based FEM.
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Table 3.3: L2 norm of the error by the triangular B-spline

h DOFs error(L2) convergence rate

L2

0.799159180421800 61 0.293033363538699

0.360513549037688 199 0.034229492552127 2.697382255541688

0.185904692351987 712 0.011073158023197 1.704018534183580

0.093089256218647 2860 0.007337114913702 0.595045459934525

0.045997931931117 11387 0.005649054917630 0.370881431738639

Table 3.4: L2 norm of the error by the reproducing kernel triangular B-spline

h DOFs error(L2) convergence rate

L2

0.799159180421800 61 0.318970987027548

0.360513549037688 199 0.038910165397480 2.642919233912530

0.185904692351987 712 0.002621118697456 4.073188957089076

0.093089256218647 2860 5.710786472836e-04 2.203099379560828

0.045997931931117 11387 8.113501389344e-05 2.768108622317826

3.3.3 Example III (Triangle with A Hole)

The last example is a triangle with a hole shaped domain as shown in Figure 3.11, and

the open set domain Ω is defined as

Ω := {(x,y) | [(0 < x ≤ 1

2
)&(0 < y <

√
3x)∪

(
1

2
< x < 1)&(0 < y <

√
3−

√
3x)]\

[(
3

8
≤ x ≤ 1

2
)&(

√
3

8
≤ y ≤

√
3x−

√
3

4
)∪

(
1

2
< x ≤ 5

8
)&(

√
3

8
≤ y ≤ 3

√
3

4
−
√

3x)]}. (3.35)
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Figure 3.11: The numerical example III governed by a triangle with a hole shaped

domain. (a) is a triangulation of the triangle with a hole shaped domain defined in

Equation 3.35; (b) is the exact solution defined by Equation 3.37 in this triangle with

a hole shaped domain; (c) is the distance error produced by the triangular B-spline-

based FEM without the reproducing kernel approximation improvement; and (d) is the

distance error from the reproducing kernel triangular B-spline-based FEM.

In Example III, we consider homogeneous boundary condition. The body force is

f (x,y) = 18x4 +36x3 +36x2y2 +18
√

3x2y−18x2 −36xy2

−18
√

3xy+18y4 −22
√

3y3 +36y2 − 27

64
, (3.36)
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and the exact solution is given by

u(x,y) =−y(
√

3x− y)(
√

3x+ y−
√

3)(y−
√

3

8
)

(
√

3x−
√

3

4
− y)(y+

√
3x− 3

√
3

4
). (3.37)

As the refinement procedure goes on, the reproducing kernel triangular B-spline-

based FEM becomes more accurate. In addition, the numerical convergence rate of

the reproducing kernel B-spline-based FEM is 2.78 (see the last column in Table 3.6),

which is close to the theoretical optimal convergence rate 3. Similarly to the previous

two examples, Figure 3.12 shows the log-log plot, comparing the convergence rates

between the triangular B-spline-based FEM and the reproducing kernel triangular B-

spline-based FEM. The slopes of the two segments represent the convergence rates of

these two methods. The comparison verifies that the reproducing kernel approximation

technique significantly improves the triangular B-spline in solving PDEs.

Table 3.5: L2 norm of the error by the triangular B-spline

h DOFs error(L2) convergence rate

L2

0.051514399020636 1350 6.668310558137732e-06

0.025080509709024 5235 3.596384903833970e-06 0.857825575052465

0.012808319353125 20904 2.173145634612668e-06 0.749637395571607

0.006213076467145 83809 1.546039483984449e-06 0.470640035412379

Table 3.6: L2 norm of the error by the reproducing kernel triangular B-spline

h DOFs error(L2) convergence rate

L2

0.051514399020636 1350 2.741116610044200e-06

0.025080509709024 5235 3.874866803318393e-07 2.718143694859875

0.012808319353125 20904 5.213907020582597e-08 2.984789362245809

0.006213076467145 83809 6.969382234436867e-09 2.781697884926696
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Figure 3.12: Comparison of the convergence rates of the L2 norms between the tradi-

tional triangular B-spline-based FEM and the reproducing kernel triangular B-spline-

based FEM.

Discussion: In this section, we have numerically studied the reproducing kernel

triangular B-spline-based FEM, solving three different problems based on the Pois-

son’s equation over a triangular domain, an L-shaped domain and a triangle with a

hole shaped domain, respectively. We also applied the triangular B-spline-based FEM

to solve the same problems, and compared their results. We found that the two methods

have quite different effects in terms of the L2 norm errors and the numerical conver-

gence rates. This is mainly due to the instability of the triangular B-spline functions.

For our proposed method, the errors are tremendously reduced, and the numerical con-

vergence rates are also very close to the optimal convergence rate. These comparisons

verify that the reproducing kernel approximation technique plays an important role in

controlling the performance of the triangular B-spline and preventing many unexpected

errors occurring.
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3.4 Conclusions

In addition, we also compared our work with NURBS-based methods. In general,

the performance of NURBS outperforms the triangular B-splines. However, NURBS

and T-splines need a lot of work on local refinement to handle complicated geome-

try with sharp feature along arbitrary directions. While due to their special triangular

shape structure, triangular B-splines can easily preserve arbitrary features. This is a

very important advantage for triangular B-splines compared to NURBS-based meth-

ods.

3.4 Conclusions

In summary, we developed an improved reproducing kernel triangular B-spline-based

FEM to solve PDE problems. Nowadays applying the triangular B-spline to solve

PDEs is still staying at the beginning stage. Besides, the performance of triangular

B-splines is quite unstable which leads to many uncontrolled errors occurring almost

everywhere. To overcome its instability, we take the reproducing kernel approximation

technique and calculate the kernel correction term locally to construct general unity

shape functions. The numerical results show the tremendous improvement.

As part of the future work in this part, we plan to apply our algorithm to compli-

cated problems, study singular and locking problems. In addition, we would also like

to extend our technique to 3D based on tetrahedral meshes and the trivariate triangular

B-spline.
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Chapter 4

Extended Isogeometric Analysis for

Material Interface Problems

4.1 Introduction

We propose an approach to extend the IGA (Isogeometric Analysis) method to solve

material interface problems. The development is carried out through incorporating the

advantages of the extended finite element method into the standard IGA approach for

solving problems with discontinuities. By applying both the XIGA and IGA methods

to solve the Poisson’s equation problem containing weak discontinuities, we demon-

strate that the XIGA achieves the optimal convergence rate while the IGA only con-

verges suboptimally. The proposed method is then successfully applied to solve bima-

terial and curved material interface problems.

4.2 Extended Isogeometric Analysis

4.2.1 Enriched Basis Functions Selection

The enrichment means to expand the traditional continuous approximation space of

IGA by adding particular functions which have non-smooth characteristics. There are
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two types of enrichments. The first one contains the discontinuities in the displacement

field, which is suitable for modeling strong discontinuous problems. The second type

includes the discontinuities in the gradient field, which is used for modeling weak

discontinuous problems. Our study will focus on this latter category.

In XIGA, only a subset of the original NURBS basis functions needs to be enriched.

The first step is thus to distinguish which functions should be enriched. We only enrich

the basis functions that have support in the elements containing the discontinuity.

The coordinates of all nodes of the element are found and compared with the ma-

terial interface, by using the Signed-Distance Function as follows

ξ (x) = min ‖ x−xΓ ‖
︸ ︷︷ ︸

xΓ∈Γ

sign(n · (x−xΓ)) , (4.1)

where x can be any point in the domain. Here x stands for one node of an element. xΓ

is the normal projection of x onto the material interface Γ. n is a normal unit vector.

If all nodes of one element are on one side of the material interface, they are given the

same sign. Otherwise some nodes will have the different signs with the others in the

same element.

After applying the signed-distance function (4.1), there will be three possible sit-

uations as shown in Figure 4.1. It shows that these points can have zero distance (o),

positive distance (+) or negative distance (-). In subsection 4.3.1 Example I and sub-

section 4.3.2 Example II, we will apply Signed-Distance Function (4.1) to distinguish

the types of elements.

Remark: The signed-distance function can be applied to both parametric and phys-

ical domains. In our study, we define the enriched basis functions in the parametric

domain, because all the basis functions of IGA are originally defined in the parametric

domain. The supports of each basis function are cut by straight lines within a square.

The parametric space is also used for integration, where normally each integration cell

is a quadrilateral. It is easier to map just the discontinuities in the parametric space and

construct enrichment based on the image of the interface segment than to construct
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the enrichment functions in the physical space and map them back to the parametric

space. The method needed to find the parametric coordinates of the discontinuities is

discussed in the Section 4.2.5.

Figure 4.1: Applying the signed-distance function to distinguish the types of elements.

The XIGA method47,48 follows the PU framework of55,118. The main idea is to

extend the classical solution space through multiplying the enrichment functions by

the subset of these same basis functions which can ensure a conforming approximation.

We define one set N = { N1, N2 , · · · , Nn }, Ni are the original IGA basis functions.

The basis set of XIGA (represented by N⋆) is the union of two sets, N⋆ = N
⋃

M,

where M is the new enriched basis functions set, M = { M1 , M2 , · · · , Mm }. M j are

constructed by multiplying Ni with a certain enrichment function ψ , i.e M1 = N1̂ ·ψ ,

M2 = N2̂ ·ψ , · · · , Mm = Nm̂ ·ψ . We use a different subscript notation of Nî from that of

Ni, since Nî are the basis functions needed to be enriched. The approximation of XIGA

can be expressed by:

uh = ∑
i∈N

Niui

︸ ︷︷ ︸

ust

+ ∑
j∈M

N jψa j

︸ ︷︷ ︸

uenr

. (4.2)

In the above, we have introduced the framework of IGA and XIGA. In the rest of

Section 4.2, we will present some details and techniques applied in our XIGA method.
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4.2 Extended Isogeometric Analysis

4.2.2 Enrichment Functions

4.2.2.1 Ramp Enrichment Function

One kind of the enrichment functions is called ramp enrichment functions. More de-

tails about the ramp enrichment function can be found in119. We will apply it in our

numerical Example I. The ramp enrichment functions are formed by two independent

parts φ1 and φ2:

φ1 =







x−1/2 if x ≥ 1/2

0 otherwise ,
(4.3)

φ2 =







−x+1/2 if x < 1/2

0 otherwise .
(4.4)

If Ni stand for the standard basis functions, then Ni · φ1 and Ni · φ2 are two new

enriched basis functions. The extended approximation can be written as:

uh = ∑
i∈S

Niui

︸ ︷︷ ︸

ust

+ ∑
j∈Se1

N jφ1a j

︸ ︷︷ ︸

uenr1

+ ∑
k∈Se2

Nkφ2bk

︸ ︷︷ ︸

uenr2

,

where S contains the indices of all global basis functions. Se1 and Se2 contain the

indices of the enriched basis functions. We define another two ramp enrichment func-

tions ϕ1 and ϕ2 for Example III:

ϕ1(x,y) =







√

x2 + y2 − 1

2
if

1

4
≤ x2 + y2

0 otherwise ,
(4.5)

ϕ2(x,y) =







−
√

x2 + y2 +
1

2
if x2 + y2 ≤ 1

4

0 otherwise .
(4.6)
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4.2.2.2 Moës Enrichment Function

Another type of enrichment function is called the Moës enrichment function. The

detailed discussion about Moës enrichment functions can be seen in120. We will apply

it for solving numerical Example II. It is defined by:

ψ1(x,y) =







√

x2 + y2 −
√

x1
2 + y1

2

1/2−
√

x1
2 + y1

2
if

√

x1
2 + y1

2 ≤
√

x2 + y2 ≤ 1

2

√

x2
2 + y2

2 −
√

x2 + y2

√

x2
2 + y2

2 −1/2
if

1

2
<
√

x2 + y2 ≤
√

x2
2 + y2

2 ,

(4.7)

where (x1,y1) and (x2,y2) are two neighbor points of material interface shown in Fig-

ure 4.2.
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Figure 4.2: the enrichment function ψ1(x,y)

4.2.3 Greville Abscissae

In this subsection, we will introduce a way of selecting control points using Greville

abscissae. This technique will be applied in our following numerical examples, its
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effects can be seen clearly in Figure 4.7. For quadratic and higher orders, if control

points are uniformly spaced, the mapping from the parameter space to the physical

space is no longer identity. However, the Greville Abscissae can ensure this mapping

to be an identity mapping. For more details, readers are referred to93.

In the Greville Abscissae, the control points C = (Cx,Cy) are calculated by:

Cx(i) =
∑

i+p
j=i+1 ξ u

j

p
Cy(i) =

∑
i+q
j=i+1 ξ v

j

q
, (4.8)

where { ξ u
k | k = 1, · · · ,nu } and { ξ v

k | k = 1, · · · ,nv } are the knots in u and v

directions respectively. nu and nv represent the numbers of NURBS basis functions in

each direction.

4.2.4 Repeating Middle Neighbour Knots

Repeating middle neighbour knots uses a unique property of NURBS functions. Recall

that the pth order NURBS function has support over p+1 elements. We can repeat the

neighbor knots of the material interface so that we can reduce the support of some

NURBS functions.

Figure 4.3 illustrates how the repeating neighbor knots works. On the left plot of

Figure 4.3, we want to enrich the elements in yellow color. All the basis functions

that have supports in these elements will be enriched. A basis function has support in

several elements, since each element is not isolated from others. As a result, some extra

elements may be enriched, when these yellow elements are enriched. These elements

are called blending elements in XFEM. In these blending elements, only part of the

global basis functions will be enriched. The accuracy of the approximation is lower in

these blending elements, as is discussed in42.
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Figure 4.3: the basis functions distribution before repeating middle neighbour knots

(left) after repeating middle neighbour knots (right)

The distribution of the global basis functions is shown in the right panel of Fig-

ure 4.3 after applying the repeating middle neighbor knots. The repeating middle

neighbor knots decreases the spans for the basis functions in blending elements. How-

ever an obvious disadvantage is that a larger number of degrees-of-freedom is needed,

which leads to more expensive calculation cost.

4.2.5 Inverse Mapping

The basis functions are defined in the parametric space, and the numerical integration

is also done in the parametric space. However usually the problems are described in the

physical space. The material interface can have different shapes in the parametric and

physical spaces. Hence, an inverse mapping needs to relate these two different shapes.

The inverse mapping is set up by finding a pair of parametric coordinates (u,v) and

satisfying the distance equation:

r(u,v) = S(u,v)−P = 0 , (4.9)
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where P stands for the coordinates of the material interface. S stands for the coordi-

nates of the NURBS surface point. Both points are defined in the physical space.

The Newton-Raphson method is applied to solve the nonlinear system (4.9). Here

the function r(u,v) is continuous and has a continuous derivative ∇r(u,v). (4.9) can

be expanded in the Taylor series:

r(u,v)+δu∇r(u,v) = 0 ,

δu∇S(u,v) =−(S(u,v)−P) . (4.10)

The solution of this linear system is of the form:

δu =




un+1 −un

vn+1 − vn





T

, (4.11)

un+1 = un +δu,

vn+1 = vn +δv.

Remark: We note that it is important to choose proper initial values u0 and v0,

the tolerance ε > 0, and the maximum number of iterations N. The inverse mapping

is done iteratively using the gradient values which gives good results in many appli-

cations. Finding good initial values usually depends on the scale and the shape of the

problem domain studied. For example, in our third numerical example, we initially

choose u0 = 0 and v0 = 0. Then in each iterative step, we check the stopping criteria

‖ S(u,v)−P ‖≤ ε with the tolerance ε = 10−7 in our implementation.

4.2.6 Curve Fitting

The inverse mapping is needed for finding the points in the parametric space corre-

sponding to the material interface. These points are discrete, so they need to be re-
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computed for each curved material interface problem. In Example III, we introduce

normal triangular elements and curved triangular elements for solving the numerical

integration properly. Finding two intersection points in each enriched elements is very

important, so it is better computing the path of this curve in the parametric space in

the pre-processing stage. The reference92 introduces several methods for curve fitting,

here we apply the least squares curve approximation method to calculate the control

points of the B-spline curve of the material interface in the parametric space.

All weights of the control points are set to 1. p stands for the polynomial order of

the basis functions. n is the number of the control points. Q0,Q1, . . . ,Qm−1,Qm are

data points from the inverse mapping. We look for a pth degree non-rational curve:

C(λ ) =
n

∑
i=1

Ni,p(λ )Pi λ ∈ [0,1] . (4.12)

These data points Qk, with k = 1,2, . . . ,m−1,m, are approximated in the least squares

sense :

f =
m

∑
k=1

| Qk −C(ûk) |2

=
m

∑
k=1

(Qk −C(ûk))(Qk −C(ûk))

=
m

∑
k=1

[QkQk −2QkC(ûk)+C(ûk)C(ûk)]

=
m

∑
k=1

[QkQk −2
n

∑
i=1

Ni,p(ûk)(Qk ·Pi)+(
n

∑
i=1

Ni,p(ûk)Pi)(
n

∑
i=1

Ni,p(ûk)Pi)] .(4.13)

The standard technique for least squares curve fitting is to minimize f by setting the

derivatives of f with respect to the n points equal to zeros :

∂ f

∂Pl

=
m

∑
k=1

[−2Nl,p(ûk)Qk +2Nl,p(ûk)
n

∑
i=1

Ni,p(ûk)Pi] , (4.14)
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which yields
n

∑
i=1

(
m

∑
k=1

Nl,p(ûk)Ni,p(ûk))Pi =
m

∑
k=1

Nl,p(ûk)Qk , (4.15)

(NT N)P = NT Q , (4.16)

N is the m×n matrix

N =







N1,p(û1) N2,p(û1) · · · Nn,p(û1)
...

...
. . .

...

N1,p(ûm) N2,p(ûm) · · · Nn,p(ûm)







, (4.17)

Q = [Q1 Q2 · · · Qm]

P = [P1 P2 · · · Pn] , (4.18)

with P = (NT N)−1NT Q .

Before solving the least square system, we should build a parametric coordinates

consequence {û1, û2, · · · , ûm} corresponding to the data points Qk, k = 1,2, · · ·m. There

are several ways to get this set. A good way is to calculate the chord length. d is the

total chord length defined by

d =
m

∑
k=2

| Qk −Qk−1 | . (4.19)

We have û1 = 0, ûm = 1

ûk = ûk−1 +
| Qk −Qk−1 |

d
, k = 1,2, · · · ,m−1 (4.20)

We now find the knots vector, which can be obtained by the equally spaced method or

the averaging technique. We will use the averaging technique, which is recommended
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by reference92. Following this technique, we state by calculating,

u1 = · · ·= up+1 = 0 ,

u j+p =
1

p

j+p

∑
i= j

ûi j = 1,2, · · · ,n− p+1 ,

um+1−p = · · ·= um+2 = 1 .

4.2.7 Intersection Points

Now we can rebuild the material interface in the parametric space by using the results

of the curve fitting. The curved material interface has its own knots vector and the

control points, so the parametric space mesh is independent of the material interface. In

this section, we are going to apply the Newton-Raphson method to find the intersection

points between the material interface and the parametric mesh. We have,

r(λ ) =C(λ )−ξ , (4.21)

An illustration is shown in Figure 4.4. We loop the edges of the element for each

quadrilateral enriched element. For a horizontal edge, we take ξ to be the v coordinate

value of the edge. We take ξ to be the u coordinate value of the edge for a vertical

edge.
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V
  

U

V
  

U

1

3

4

Figure 4.4: The element is crossed by the curved material interface (left). The enriched

element is divided by triangulation (right).

As mentioned in the inverse mapping, we always have to consider and pick some

proper initial values for starting the iteration procedure. Here, we use the previous

calculation of the fitted curve. We pick the first knot of the curve as the initial value

of λ0. We could also reinitialize the value of λ0 by replacing with sequences of known

knots inside the knots vector of the curve. After picking the values for λ0, we iterate

using the standard Newton - Raphson iteration:

λn+1 = λn −
r(λn)

r
′
(λn)

. (4.22)

Finally we find the parametric value corresponding to the intersection points on the

material interface. In our case, after the loop for each enriched element, we should get

two parametric value λ1 and λ2. We do not need to calculate λ for the special case,

where the curve has only one intersection point in the corner of the element.

4.2.8 Triangular Integration

In the Example III, we need to consider more details for the numerical integration.

Because of the curved shape material interface, curved integration elements are needed

to improve the quality of the domain discretization. The curved element development is
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derived from introducing isoparametric elements for handling curved boundaries in121.

The triangular element with one curved edge is analyzed mathematically in122,123,124,

etc.125 also introduced transfinite elements which consist of a reference square mapped

to a subdomain with curved boundaries. Our curved triangular elements construction

is based on the study in126,127,128. We calculate the coordinates of the intersection

points for each enriched element that is crossed by the material interface. We use

the two intersection points together with the four nodes of the quadrilateral element

for constructing a Delaunay triangulation. Since the material interface is curved in

the parametric space, we have two triangles containing curved edges for matching it.

For each quadrilateral element, there are two kinds of triangles, i.e normal straight

side triangles and curved edge triangles. For the normal triangle, we do the standard

triangle transformation T1 which is shown in Figure 4.5.

T1 : ξ → (1− ξ̂ 1 − ξ̂ 2)ξ1 + ξ̂ 1ξ2 + ξ̂ 2ξ3 , (4.23)

where ξ1, ξ2 and ξ3 are the coordinates of the standard parent triangular element.

(ξ̂ 1, ξ̂ 2) are the coordinates of the Gaussian point. ξ is the new coordinates of the

Gaussian point after transformation. For a curved triangle, we apply the transforma-

tion T2 for constructing a curved edge triangle. This transformation is also shown in

Figure 4.5.

T2 : ξ → 1− ξ̂ 1 − ξ̂ 2

1− ξ̂ 1
C(λ (ξ̂ 1))+

ξ̂ 1ξ̂ 2

1− ξ̂ 1
ξ2 + ξ̂ 2ξ3 , (4.24)

where C(λ (ξ̂ 1)) is the B-spline curve at point λ (ξ̂ 1) and λ (ξ̂ 1) = λ1 +(λ2 −λ1)ξ̂ 1

, λ1 and λ2 are the parametric coordinates of the two intersection points ξ1 and ξ2.

Using T1 and T2 allows us to consider the exact geometry in the integration process.
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T1

T2

C(λ)

ξ1

ξ2 

ξ3

ξ1

ξ2 

ξ3

ξ

η

(0,0)

(0,1)

(1,0)

Figure 4.5: Triangle transformation

Remark: Carrying out the integration efficiently and accurately needs particular

attention, especially for the basis functions which contain discontinuities in the ap-

proximation space, since the Gaussian quadrature is not exact there. For example, for

model III in section 3.3 with a curved material interface in parametric space, the curved

triangles are really necessary for obtaining accurate approximation. The first reason is

that the curved triangle are needed to maintain all the Gaussian points which are in-

side the triangle on one side of the discontinuity. Once the curved edge matches the

discontinuity, accurate integration is guaranteed. On the other side, if we do not use

curved triangles, the integration is not accurate anymore, and the optimal convergence

rate will be lost. When the discontinuity passes through the integration triangle, the ac-

curacy is completely lost. For more systematical curved elements studies with a plenty

of numerical examples, we refer to the works of128,129 for the interested readers.

4.3 Numerical Examples

In previous section, we have introduced the XIGA method. In this section, the XIGA

method will be applied to solve three material interface problems. There are mainly
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two kinds of discontinuities, i.e the strong and weak discontinuities. The strong dis-

continuities are jumps in the displacement field; while the weak discontinuities are

for problems with a jump in the gradient field. The following discussion is restricted

to the weakly discontinuous problems. In XFEM, special enrichment functions are

added into the FEM approximation space, which play an important role in describ-

ing these discontinuities. The enrichment functions should be continuous themselves,

but discontinuous in their derivatives42,130 for describing weak discontinuities. In the

following, we are going to solve the bimaterial interface problem (subsection 4.3.1),

the curved material interface problem (subsection 4.3.2), and one more general curved

material interface problem (subsection 4.3.3).

4.3.1 Example I (Bimaterial Interface on a Square)

The open set domain Ω is chosen by:

Ω := { (x,y) | 0 < x < 1 , 0 < y < 1 } ,

and the boundary ∂Ω := { (x,y) | x = 0 , x = 1 , y = 0 , y = 1 }.

The body force and the exact solution are given by:

f (x,y) = 6x− 9

5
, (4.25)

u =







u1 = 2x3 − 9

5
x2 if 0 ≤ x ≤ 1

2

u2 = x3 − 9

10
x2 − 1

10
if

1

2
≤ x ≤ 1 .

(4.26)
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the exact solution
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x−derivative of the exact solution

discontinuity along the material interface

Figure 4.6: The function u is continuous, but ∇xu is discontinuous along the middle

axis.

The problem has homogeneous boundary conditions: u = 0 if x = 0 or x = 1;

∂u/∂n = 0 if y = 0 or y = 1. The material properties are given by:

K =







K1 =






1

2
0

0
1

2




 if 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ 1

K2 =






1 0

0 1




 if

1

2
≤ x ≤ 1 , 0 ≤ y ≤ 1 .

(4.27)
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It is easy to check that ∇ · (K1∇u1) = f = ∇ · (K2∇u2). From Figure 4.6, u is contin-

uous function inside Ω, including the interface x =
1

2
. However, ∇u has discontinuity

along the interface:

∇xu1(
1

2
) =− 3

10
6=−21

20
= ∇xu2(

1

2
) .

A comparison of error plots is shown in Figure 4.7. First, Figure 4.7(a) shows the

x-derivative approximation errors from the traditional IGA. Then after applying ramp

enrichment function φ1 and φ2 defined in Sec. 4.2.2.1, the errors that occur in the area

of the discontinuity part are reduced significantly as shown in Figure 4.7(b). Another

improvement is for the accuracy near the boundaries by using control points located at

the Greville abssissae, which is shown in Figure 4.7(c). The last step is to reduce the

error in the so-called “blending elements” by repeating middle neighbor knots strategy.

It is obvious that the final results in Figure 4.7(d) are much more accurate numerically.

Table 4.1: Energy Norm of the Errors (Ramp Enrichment + Repeating Middle Neigh-

bour Knots + Greville Abscissae)

element convergence rate convergence rate

mesh h DOFs errors(energy) repect to repect to

DOFs h

5 × 5 1/5 105 8.152394645841e-003

7 × 7 1/7 153 4.628136404195e-003 -1.503827761202 1.682627454730

9 × 9 1/9 209 2.939321629442e-003 -1.455533206509 1.806404308904

11 × 11 1/11 273 2.024635329808e-003 -1.395495412781 1.857716271361

21 × 21 1/21 713 5.876083130807e-004 -1.288616546179 1.913133803627

31 × 31 1/31 1353 2.746882059737e-004 -1.187052858616 1.952484534261

41 × 41 1/41 2193 1.584892270868e-004 -1.138739937679 1.967023645371

51 × 51 1/51 3233 1.029971849244e-004 -1.110385256692 1.974698392950

61 × 61 1/61 4473 7.226087499876e-005 -1.091699073833 1.979460056531

We also collect all the detailed final results of the XIGA in Table 4.1. Inside the

table, h denotes the characteristic length scale and DOFs stand for the degrees of free-

dom. As it can be seen, after each refinement step, the characteristic length scale
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decreases and the DOFs are increased. The theoretical optimal convergence rate for

energy norm errors is 2. For our XIGA, the convergence rate is 1.979, see the last

column in Table 4.1. The convergence rate of numerical solutions matches with the

theoretical result. Figure 4.8 compares the energy norm convergence rates from IGA

and XIGA with several different techniques. All the comparison results show that the

effect of the XIGA is obvious compared to the standard IGA.

0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Error in the x−derivative

(a)

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06
Error in the x−derivative

(b)

0 0.2 0.4 0.6 0.8 1
−6
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6
x 10−3 Error in the x−derivative

(c)

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6
x 10−3 Error in the x−derivative

(d)

Figure 4.7: Comparison of the x-derivative approximation between two methods.

p = 2 and q = 2. (a) is the error producing by IGA. (b) is the error producing by

XIGA with Ramp enrichment functions φ1 and φ2 . (c) is considered Ramp enrichment

function and Greville Abscissae but without repeating middle neighbor knots. (d) is

considered Ramp enrichment function, Greville Abscissae and also repeating middle

neighbor knots.
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Ramp Enrichment + Greville Abscissae + Repeating Middle Neighbour Knots

Figure 4.8: Comparison of the convergence rates of the energy norms between IGA

and XIGA with different techniques.

4.3.2 Example II (Bimaterial Interface on a Disc)

The open set domain Ω is chosen by:

Ω := { (x,y) | x2 + y2 < 1 } ,

and the boundary ∂Ω := { (x,y) | x2 + y2 = 1 } .

The body force and the exact solution are given by:

f (x,y) = 16x2 +16y2 −9 , (4.28)
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u(x,y)=







u1 = 2(−x2 − y2 +
1

4
)(−x2 − y2 +1)−2x2 −2y2 +

5

4
if x2 + y2 ≤ 1

4

u2 = (−x2 − y2 +
1

4
)(−x2 − y2 +1)− x2 − y2 +1 if

1

4
≤ x2 + y2 ≤ 1 .

(4.29)

In the Example II, we consider homogeneous boundary condition u|∂Ω = 0. The ma-

terial interface is defined by I := { (x,y) | x2 + y2 =
1

4
}, and the material properties

are given by:

K =







K1 =






1

2
0

0
1

2




 if x2 + y2 ≤ 1

4

K2 =






1 0

0 1




 if

1

4
< x2 + y2 ≤ 1 .

(4.30)

Inside Ω, u(x,y) ∈C0, but u(x,y) /∈C1, since ∇u1(x,y)|I 6= ∇u2(x,y)|I . The disconti-

nuity is illustrated in Figure 4.9.

In u and v directions, the order of basis functions are quadratic and the initial knots

vectors are given by:

Ξ = { 0 , 0 , 0 , 1/4 , 1/4 , 1/2 , 1/2 , 3/4 , 3/4 , 1 , 1 , 1}

H = { 0 , 0 , 0 , 1 , 1 , 1 }

Since the knots vectors are open knots vectors, the end knots are repeated for three

times. According to the initial knots vectors, there are 9 basis functions in the u-

direction and 3 basis functions in the v-direction. Table 4.2 shows the initial control

points applied for constructing the circular physical domain.
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Table 4.2: The Initial Control Points (the third coordinates are weights)
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,1) (0,-1,1)

Table 4.3 shows the final numerical results of the XIGA in terms of L2 norm errors.

The L2 norm errors on the third column are reduced dramatically in each refinement

step. In addition, from the x-derivative errors plot in Figure 4.10, the XIGA is further

enhanced by the repeating middle neighbor knots technique, improving the approx-

imation around the material interface. It is also interesting to point out that the L2

norm numerical convergence rate of our proposed method is 2.979, see the fifth col-

umn in Table 4.3, which is very close to the theoretical optimal convergence rate 3.

Figure 4.11 compares the convergence rates of the L2 norm errors between IGA and

XIGA, and it is obvious the performance of XIGA outperforms the traditional IGA in

modeling discontinuous problems.

Table 4.3: L2 Norm of the Errors (Moës Enrichment + Repeating Middle Neighbor

Knots)

convergence rate convergence rate

DOFs h errors(L2) respect to respect to

DOFs h

170 0.5305002849268 2.649329880e-003

656 0.1887891241413 1.219080760e-004 -2.2799767199322 2.9798925443626

3842 0.0637964594038 4.642324369e-006 -1.8488770727607 3.0122157258419

29610 0.0213459577589 1.744186487e-007 -1.6069151209544 2.9972654453068
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Figure 4.9: the curved material interface model
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Figure 4.10: Comparison of the x-derivative approximation errors between the XIGA

enriched by Moës enrichment function but without repeating the middle neighbor knots

(left) and the XIGA enriched by Moës enrichment function with repeating the middle

neighbor knots.
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Figure 4.11: Compare the convergence rates of the L2 norm errors between IGA and

XIGA.

4.3.3 Example III (More Gerneral Interface Problem on a Disc )

The exact solution is given by:

f (x,y) = 16x2 +16y2 −4− 1

16
, (4.31)

u(x,y) =







u1 = 2(−x2 − y2 +
1

64
)(−x2 − y2 +1) if x2 + y2 ≤ 1

64

u2 = (−x2 − y2 +
1

64
)(−x2 − y2 +1) if

1

64
≤ x2 + y2 ≤ 1 .

(4.32)

In Example III, we consider the same boundary condition as Example II. The ma-

terial interface is defined by I := { (x,y) | x2 + y2 =
1

64
}, and the material properties
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are given by:

K =







K1 =






1

2
0

0
1

2




 if x2 + y2 ≤ 1

64

K2 =






1 0

0 1




 if

1

64
< x2 + y2 ≤ 1 .

(4.33)

Figure 4.12 shows the parametric domain and the physical domain. The parametric

coordinates of the material interface are constructed by the inverse mapping in subsec-

tion 4.2.5 and the curve fitting in subsection 4.2.6.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Parametric Coordinates
of the Circle
↓

Parametric Domain

−1 0 1
−1

−0.5

0

0.5

1

Physical Coordinates
of the Circle
↓

Physical Domain

Figure 4.12: The effect of the inverse mapping for a circle

In this Example, we apply the ramp enrichment functions (4.5) and (4.6), and re-

peat the knots that surround the material interface similar to Example I and Example

II. The enriched elements are divided into sub-triangular elements, which contain the

curved triangular elements discussed in subsection 4.2.8. The results are shown in Ta-

ble 4.4, 4.5, 4.6 and 4.7. Figure 4.13 and Figure 4.14 compare the convergence rates

obtained by IGA and XIGA. It can be seen that as the mesh is refined, the XIGA be-

comes much more accurate. In addition, the numerical convergence rate of the XIGA

in terms of the energy norm errors reaches to 2.004 (see the last column in Table 4.5),
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which perfectly matches the theoretical optimal convergent rate 2. While, for the tra-

ditional IGA, the errors improvement gets slower and slower because of its limitation

in modeling discontinuities. Likewise, for L2 norm errors case, the XIGA also makes

an outstanding performance. The optimal convergence rate is clearly observed from

the last column of the Table 4.7.

Table 4.4: Energy Norm of the Errors with IGA

h DOFs errors convergence rate

(Energy Norm) (Energy Norm)

0.368683 100 0.0646215809

0.184825 324 0.0288270496 1.169007407172

0.092547 1156 0.0155824155 0.889377446160

0.046308 4356 0.0102319397 0.607493710512

0.023164 16900 0.0070860871 0.530353370040

Table 4.5: Energy Norm of the Errors with XIGA

h DOFs errors convergence rate

(Energy Norm) (Energy Norm)

0.368683 219 0.0527724692

0.184825 579 0.0134102137 1.98394527752073

0.092547 1825 0.0033327138 2.01280210416680

0.046308 6265 0.0008353585 1.99838295205034

0.023164 22921 0.0002084374 2.00404591385051

Table 4.6: L2 Norm of the Errors with IGA

h DOFs error(L2) convergence rate

L2

0.368683 100 1.49022952e-03

0.184825 324 5.70841339e-04 1.3896204857

0.092547 1156 1.89682082e-04 1.5928611855

0.046308 4356 7.51777547e-05 1.3366457428

0.023164 16900 2.96590460e-05 1.3426812289
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Table 4.7: L2 Norm of the Errors with XIGA

h DOFs error(L2) convergence rate

L2

0.368683 219 1.09719621e-03

0.184825 579 1.33239639e-04 3.0532563778

0.092547 1825 1.66963391e-05 3.0027438134

0.046308 6265 2.08023877e-06 3.0079514666

0.023164 22921 2.58861564e-07 3.0083955677
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Figure 4.13: Compare the convergence rates of the energy norm of the errors between

IGA and XIGA.
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Figure 4.14: Compare the convergence rates of the L2 norm of the errors between IGA

and XIGA.

Discussion: In this section, we have numerically studied XIGA, solving three dif-

ferent material interface problems based on the Poisson’s equation with weak discon-

tinuities. We have also used IGA as a control method, and compared their results. We

found that the two methods have quite different effects in terms of the L2 norm of the er-

rors, the energy norm of the errors and the numerical convergence rates. This is mainly

due to the limitation of IGA in modeling problems with discontinuous solutions. In our

proposed method, the precision is significantly improved, and the numerical conver-

gence rates are also optimal. These comparisons verify that the XIGA has the ability

to accurately model problems with weakly discontinuous solutions.

4.4 Conclusions

We have developed an extended IGA method to solve material interface problems by

combining the features of XFEM and IGA. We show that the XIGA can achieve the

optimal convergence rate while the IGA can only reach suboptimal convergence for

the Poisson’s equation with weakly discontinuous solutions. Several important tech-

niques have been applied in our XIGA method. (1) The Moës enrichment function120
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and ramp enrichment functions119 are used during our approximation. (2) The control

points are located at the Greville abscissae so that the mapping between the paramet-

ric and physical space is free from mesh size-related problems. (3) Repeating certain

knots reduces the span of several basis functions and resolves the accuracy issues in the

blending elements encountered in the standard XFEM. (4) For the real curved material

interface problem, the curved triangular elements are applied and the material inter-

face is approximated in the parametric space. We also applied our XIGA method to

study the bimaterial, curved, and real curved material interface problems, and optimal

convergence rates are obtained for all of the three examples.

As part of our future work, we plan to apply our algorithm to more complex ma-

terial interface and fracture problems. In addition, we would also like to extend our

technique to three dimensions.
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Chapter 5

An Isogeometric Collocation Method

Using Superconvergent Points

5.1 Introduction

We develop an IGA collocation method modified by collocating at points other than the

standard Greville abscissae. The method is related to orthogonal collocation used for

solving differential equations and to the superconvergence theory, therefore we refer

to this method as “super-collocation” (IGA-SC). By carefully choosing the collocation

points, it can be seen that the IGA-SC converges in the first derivative (energy) norms

at rates similar to that of the Galerkin solution. This is different from the collocation at

Greville abscissae (IGA-C), where the convergence in energy norm for odd polynomial

degrees is typically suboptimal. The method is tested on 1D, 2D and 3D numerical

examples, in which it is compared to IGA-C and Galerkin’s method (IGA-G). The

comparison includes a detailed cost vs. accuracy analysis, which shows an improved

efficiency of the proposed method in particular for odd polynomial degrees.
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5.2 IGA Super Collocation Method

5.2.1 Collocation

We assume that the strong form of the boundary value problem is given by

L u = f in Ω, (5.1)

G u = g on ∂Ω. (5.2)

Here Ω is an open set with Lipschitz continuous boundary ∂Ω, u is the unknown so-

lution, L is a differential operator, G is a vector operator and f ,g are given functions.

As an example, one can take L (u) :=−∇ ·∇u+au, a ≥ 0.

To solve this problem by the collocation method, two sets of sample (collocation)

points need to be considered, a set {xint
i }, i = 1, · · · ,Nint in the interior of Ω and a

set {xbnd
i }, i = 1, · · · ,Nbnd on ∂Ω, where Nint and Nbnd are the number of collocation

points chosen in the interior and on the boundary, respectively. Then the collocation

solution uC
h , is required to satisfy:

L uC
h (x

int
i ) = f (xint

i ) in Ω, i = 1, · · · ,Nint

G uC
h (x

bnd
i ) = g(xbnd

i ) on ∂Ω, i = 1, · · · ,Nbnd .

The traditional IGA collocation uses the so-called “Greville abscissae” to define

the collocation points. For a given knot vector Ξ = {ξ1,ξ2, · · · ,ξn+p+1}, the associated

Greville abscissae points ξ̄i, i = 1, · · · ,n, are calculated by

ξ̄i =
ξi+1 +ξi+2 + · · ·+ξi+p

p
. (5.3)

The collocation points τi jk ∈ Ω are defined by the tensor product structure:

τi jk = F(τ̂i jk), τ̂i jk = (ξ̄i, η̄ j, ζ̄k) ∈ Ω̂, (5.4)
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for i = 1, · · · ,n, j = 1, · · · ,m, and k = 1, · · · , l. F is the parametric mapping from (2.9).

τ̂i jk are the parametric coordinates of the collocation points, and τi jk represent their

corresponding physical coordinates. We note that the τ̂i jk (and also τi jk) need to be

separated into interior and boundary collocation points. When uC
h is a linear combi-

nation of the B-spline (or NURBS) basis functions, this gives rise to a non-symmetric

linear system. We mention that there are other ways of choosing the collocation points,

such as at the so-called Demko’s abscissae. These have been shown, for example in37,

to lead to more stable collocation schemes, but are more difficult to compute and only

result in very slight differences in accuracy compared to Greville abscissae for most

problems of interest. In the next subsection, we will propose another choice of colloca-

tion points which is easy to implement and leads to considerably better approximation

properties.

In our numerical examples, the linear elasticity problem is evaluated by the L2 and

energy norms. In others, we use the L∞ norm, W 1,∞ and W 2,∞ seminorms, and also

the L2 norm, H1 and H2 seminorms, for which analogous results have been observed.

The equations of these norms are referred to the Section 2.3 of Chapter 2. We note

that collocation in general converges optimally in the 2nd derivative norms (W 2,∞ and

H2), but not always so for 0th and 1st derivative norms. The latter in particular are of

interest in engineering applications.

5.2.2 Superconvergent Points for Collocation

In this subsection, we discuss a choice of collocation points for which the collocation

solution behaves similarly to the standard Galerkin approximation. The main idea of

this method is that we seek the collocation points for which the error in the second

derivatives of the Galerkin approximation is also small. This is based on the observa-

tion that the error in the second derivative for the collocation approximation is smallest

at the collocation points.

The phenomenon of superconvergence is based on the fact that there are often

points x∗ in the domain Ω for which the computed solution uh is more accurate at x∗
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5.2 IGA Super Collocation Method

compared to other points in Ω. These points are, of course, only useful if they can

be calculated based on the mesh discretization and do not depend on the unknown

solution u. For example, in the standard 1D finite elements it is well known that the

approximation uh is exact at the mesh nodes. It is also known for linear finite elements,

under some regularity assumptions, that the derivative of the approximate solution is

more accurate at the centroid of the elements. This has been used for error estimation

purposes, such as in ZZ-patch recovery techniques131.

Here we will look for superconvergence points in the second derivative, not for

error estimation purposes, but to investigate their use in collocation. We consider an

approximation space Sh(Ω) which reproduces polynomials of degree p, and an exact

solution u. Then, the approximation properties of the computed solution uh around

a point x0 in the domain can be investigated by considering the Taylor expansion of

degree p+1 at x0.

Specifically, suppose that the Galerkin formulation of the problem (5.1) can be

written as:

Find uh ∈ Sh(Ω) such that B(u−uh,χ) = 0,∀χ ∈ Sh(Ω),

where B(·, ·) is the bilinear form corresponding to the weak formulation of the problem.

Let Ω0 be a subdomain of Ω containing a point x0 , let Q be the p+ 1 degree Taylor

expansion of u centered at x0, and let Qh be the projection B(Q−Qh,χ) = 0,∀χ ∈
Sh(Ω0) with

∫

Ω0
(Q−Qh) = 0. Then we can write, by using the triangle inequality:

||u−uh||W i,∞(Ω0)
≤ ||Q−Qh||W i,∞(Ω0)

+ ||(u−Q)− (uh−Qh)||W i,∞(Ω0)
, i = 0,1,2.

It has been shown for the p-version of the Finite Elements132 and also for Generalized

Finite Elements133, that for i = 1 and an interior subset Ω1 ⊂ Ω0, the approximation is

dominated by the first term on Ω1, i.e.

||u−uh||W i,∞(Ω1)
≤ ||Q−Qh||W i,∞(Ω1)

+O(hp−i+1+α), with α > 0. (5.5)
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Moreover, for an uniform discretization (the shape functions in Ω0 are translation in-

variant and the mesh is uniform), it has been shown that Q−Qh can be approximated

by a periodic function related to a suitably chosen interpolant Ih[Q] of Q in Sh(Ω0):

||Q−Qh||W i,∞(Ω1)
≤ ||(Q− Ih[Q])−Pper(Q− Ih[Q])||W i,∞(Ω1)

+O(hp−i+1+α),

where Pper(Q−Ih[Q]) satisfies B(Pper(Q−Ih[Q]),χ)=B(Q−Ih[Q],χ),∀χ ∈ S
per
h (Ω0),

and S
per
h (Ω0) is a subset of Sh(Ω0) that is periodic with period h̄ related to the mesh

size parameter h. Then by the linearity of the interpolation and projection operators, to

find the superconvergent points it suffices to find the roots of

ψ := (Q− Ih[Q])−Pper(Q− Ih[Q]) (5.6)

and its derivatives, where Q is any monomial of degree p+1. Because ψ is periodic,

this requires only finitely many operations, i.e. this can be solved on a reference ele-

ment independently of h and the results can be scaled and translated to any particular

mesh. Moreover, if Sh is a space of piecewise polynomials, then ψ is also a piece-

wise polynomial of degree p+1. The interior estimate (5.5) has not been proven for

B-splines, however we can follow the steps similar to finite elements to calculate ψ .

For example to find the superconvergent points in the parametric space, on the

reference interval [−1,1] for a B-spline basis of degree p, the procedure is:

1. Consider a non-open knotvector [−2p+1,−2p+3, . . . ,−1,1, . . . ,2p−3,2p−
1], where the knots are uniform with nodal distance 2 and calculate the associated

B-spline basis of degree p.

2. Construct an interpolant Ih[Q] for Q = xp+1 and the subspace S
per
h

of B-splines

with period 2.

3. Calculate ψ according to (5.6).

4. Calculate the roots of ψ , ψ ′ or ψ ′′. We present the superconvergent points for

B-splines with polynomial degree p = 1, . . . ,7 in Table 5.1.
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Table 5.1: The superconvergent points for B-spline basis of degree p on interval [-1,1]

Roots of ψ Roots of ψ ′ Roots of ψ ′′

p = 1 −1,1 0 -

p = 2 −1,0,1 ±1/
√

3 0

p = 3 ±
√

225−30
√

30/15 -1, 0, 1 ±1/
√

3

p = 4 -1, 0, 1 ±
√

225−30
√

30/15 -1, 0, 1

p = 5 ±0.5049185675126533 -1, 0, 1 ±
√

225−30
√

30/15

p = 6 -1, 0, 1 ±0.5049185675126533 -1, 0, 1

p = 7 ±0.503221894597504 -1, 0, 1 ±0.5049185675126533

Somewhat surprisingly, the same points are also obtained if each knot is repeated

twice, resulting in a different basis of reduced continuity. Of interest for our method

are the superconvergent points for the second derivative (i.e. the roots of ψ ′′) as we

will collocate at these points. For higher dimensions, we take the tensor product of the

coordinates of the points for one dimension. Due to superconvergence, the error in the

Galerkin approximation at these points is also smallest in the second derivative (i.e.

up to O(hp), instead of the overall rate of O(hp−1)). Therefore with this choice, the

Galerkin and collocation schemes agree with each other up to at least terms of order

O(hp).

We note that when p = 2, the collocation points in the interior of Ω are the same as

the Greville abscissae, which are just the knot averages. For p even, p > 2 and uniform

meshes, the Greville abscissae in the interior are also located at the midpoint of each

knotspan. However, this method also suggests collocating at the knot coordinates. For

p odd and uniform meshes, the Greville abscissae are located at the knots (mesh nodes

in the parametric space), while the superconvergent points are in the interior of each

knot-span.

Remark 2.3.1: We observe that for all values of p> 2 there are 2d superconvergent
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points per knotspan, where d is the dimension of the domain. When the smoothest B-

spline basis is used, this collocation method gives rise to an over-determined system of

equations. A way to avoid this is to double the knots in each direction, which however

results in reduced continuity for the basis of Cp−2 instead of Cp−1 and an increase in

the number of degrees of freedom. For p = 3, this method becomes the same as the

orthogonal collocation studied in90,91, since the superconvergent points in this case are

the Gauss-Legendre point and each knot is doubled. In the numerical examples below

we choose instead to keep the Cp−1 basis and solve the resulting linear system in a

least-squares sense. The least squares solution can be written as

x = (KT K)−1(KT F). (5.7)

We note that KT , K, and most importantly KT K are sparse matrices. There are also

iterative methods for solving over-determined linear systems134,135.

Remark 2.3.2: Imposing boundary conditions

It is important that the boundary conditions are imposed exactly and not in a least-

squares sense. This was also done in136 for an overdetermined collocation method.

For the homogeneous Dirichlet boundary, this can be accomplished by eliminating the

corresponding columns from the matrix system, as shown below:










a11 a12 a13 a14 · · · a1n

a21 a22 a23 a24 · · · a2n

...
...

...
...

. . .
...

aN1 aN2 aN3 aN4 · · · aNn










︸ ︷︷ ︸

N×n
















x1

x2

x3

x4

...

xn
















︸ ︷︷ ︸

n×1

=










R1

R2

...

RN










︸ ︷︷ ︸

N×1

, (5.8)

Here N and n are equal to the number of the collocation points and the number of

global basis functions respectively, and we assume there are b prescribed coefficients
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for the boundary basis functions which correspond to the boxed columns in the ma-

trix. The prescribed components of the solution are also boxed. The boxed columns

and the known coefficients of the solution can be eliminated from the linear system.

Specifically, we solve










a11 a13 a15 · · · a1n

a21 a23 a25 · · · a2n

...
...

...
. . .

...

aN1 aN3 aN5 · · · aNn










︸ ︷︷ ︸

N×(n−b)













x1

x3

x5

...

xn













︸ ︷︷ ︸

(n−b)×1

=










R1

R2

...

RN










︸ ︷︷ ︸

N×1

−










a12 a14 · · ·
a22 a24 · · ·
· · · · · · · · ·
aN2 aN4 · · ·










︸ ︷︷ ︸

N×b







x2

x4

...







︸ ︷︷ ︸

b×1

(5.9)

and the final solution is:
(

x1 x2 x3 x4 · · · xn

)

.

For Neumann boundary conditions, which are commonly considered in many prob-

lems, there are only a few investigations within the framework of collocation. A natural

approach, proposed in38 is called the “pure collocation” approach. In a recent study

137, it has been shown that the pure collocation approach does not give accurate results

in certain situations. Two alternative methods are proposed to improve the imposition

of Neumann boundary conditions with good accuracy of the results: hybrid colloca-

tion and the enhanced collocation, respectively. Regardless of the method used, the

boundary conditions give rise to additional constraints on the linear system of equa-

tions which should be satisfied exactly, i.e. not in the least-squares sense.

5.3 Numerical Examples

In this section, we present several numerical examples, ranging from one dimensional

to three dimensional problems for which an analytic solution is available. We show the

error in various norms for IGA-C, IGA-G and the proposed IGA-SC. The focus of the

analysis is on the convergence rates obtained by each method.
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5.3.1 1D Problem

We begin with a 1D problem, similar to the one studied in37. The strong form of the

differential equation is given by:







−u
′′
(x)+u

′
(x)+u(x) = (1+4π2)sin(2πx)+2π cos(2πx),∀x ∈ (0,1)

u(0) = u(1) = 0,
(5.10)

and the corresponding exact solution is:

u(x) = sin(2πx). (5.11)

We consider a linear parametrization of the domain and we apply the three nu-

merical methods to solve this problem, and the results are compared in Figure 5.1 for

the L∞-norm, Figures 5.2 and 5.3 for W 1,∞ and W 2,∞ semi-norms from p = 2 up to

p = 7 where p represents the polynomial degree of the B-spline basis. In the L∞-norm

comparison through Figures 5.1(a) and 5.1(b), the errors corresponding to IGA-SC are

smaller than those of IGA-G. For p = 3,5 and 7, IGA-SC obtains the optimal conver-

gence rates shown in Figure 5.1(b) in the sense that they are the same as the ones for

the IGA-G (see Figure 5.1(c) ). The convergence rates are calculated with respect to h

which is the size of the elements in the mesh. We mention that for p = 2, the IGA-SC

is the same as the IGA-C, since the superconvergent points are the same as the Greville

abscissae. For p = 4 and p = 6, IGA-SC is still not optimal in the L∞-norm as com-

pared to IGA-G, however the error is generally much smaller than IGA-C, especially

as the mesh is refined. It can be seen that IGA-SC performs better than IGA-C and for

p = 3,5 and 7 the IGA-SC solutions approach asymptotically the IGA-G results.

Figure 5.2 also displays the errors in W 1,∞-seminorm obtained by the three meth-

ods. Here, for p = 2,4 and 6, the IGA-C and IGA-SC are optimal (same as IGA-G,

see Figure 5.2 (a) and (b)). But the errors of IGA-SC are smaller than those of IGA-C

when p = 4, however for p = 6 this only holds for relatively fine meshes. For p = 3,5
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and 7, the IGA-SC results are very close to the IGA-G results which are one order of

convergence better than IGA-C. For W 2,∞-seminorm, all 3 methods have the expected

convergence rate of O(hp−1).
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(b) IGA-SC
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(c) IGA-G

Figure 5.1: The 1D problem solved by (a) IGA-C, (b) IGA-SC and (c) IGA-G.
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(a) IGA-C
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(b) IGA-SC
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(c) IGA-G

Figure 5.2: The 1D problem solved by (a) IGA-C, (b) IGA-SC, and (c) IGA-G.

log10(relative error) = log10(| uex −uh |W 1,∞/| uex |W 1,∞)
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(a) IGA-C
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(b) IGA-SC
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Figure 5.3: The 1D problem solved by (a) IGA-C, (b) IGA-SC, and (c) IGA-G.

log10(relative error) = log10(| uex −uh |W 2,∞/| uex |W 2,∞)

5.3.2 Annulus Problem

The second example is the 2D annulus problem whose domain is shown in Figure 5.4.

The strong form of the partial differential equation is:







−∆u+u = f , ∀x ∈ Ω

u |∂Ω= 0,
(5.12)

with

f (x,y) = (3x4 −67x2 −67y2 +3y4 +6x2y2 +116)sin(x)sin(y)

+ (68x−8x3 −8xy2)cos(x)sin(y)

+ (68y−8y3 −8yx2)cos(y)sin(x) (5.13)

which is chosen so that

u(x,y) = (x2 + y2 −1)(x2 + y2 −16)sin(x)sin(y). (5.14)
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r

R

r =1

R=4

Figure 5.4: Domain Ω for the quarter of an annulus problem

This model is used as a “patch test” in many IGA studies, including37. As in the

previous example, collocation points of the classical IGA-C are given by the Greville

abscissae as defined in (5.4). Figure 5.5 (a-b) shows the distribution of the IGA-C

collocation points. The coordinates of the collocation points for the IGA-SC are the

tensor product of the 1D superconvergent points (in the parameter space). Figure 5.5

(c-d) and (e-f) show the IGA-SC collocation points. We distinguish the odd and the

even cases for p = 4 (c-d) and p = 5 (e-f). For even degree, the collocation points

include the middle points between each two neighbor knots and also the interior knots.

For odd degree, the positions of the super collocation points are in the interior of each

knot span.

For this problem, we also present the L∞-norm, W 1,∞-seminorm and W 2,∞-seminorm

errors of the solution obtained by the three methods. The detailed results are shown in

Figures 6.1, 5.7 and 6.3. For the L∞-norm, it can be seen that for p = 3,5 and 7, IGA-

SC has the same convergence rate as IGA-G, but one power of h slower convergence

for p = 4 and p = 6. For these polynomial degrees of the NURBS basis, IGA-C and

IGA-SC have the same convergence rate, but the error in IGA-SC is typically much

smaller, by an order of magnitude or more when the mesh is sufficiently refined.

For W 1,∞-seminorm, IGA-SC has the same convergence rate as the Galerkin method
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for all p. This is different from IGA-C, which is suboptimal for odd p. In fact, it can

be seen that for p = 3,5 and 7, the IGA-SC solution converges again asymptotically

to the one for IGA-G. However, for p = 4 and p = 6, the difference between the three

methods is much smaller. This indicates that IGA-C is also optimal in the first deriva-

tive norms for even polynomial degrees. For the W 2,∞ all 3 methods have the expected

optimal convergence rate.

98



5.3 Numerical Examples

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(d)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(f)

Figure 5.5: Greville abscissae points in (a) parametric domain and (b) physical domain

for p = 4; (c-d) IGA-SC collocation points in the parametric domain and the physical

domain for p = 4 and (e-f) p = 5. The black lines are the knot (mesh) lines and the

blue asterisks represent the collocation points.
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(a) IGA-C
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(b) IGA-SC
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Figure 5.6: The quarter annulus problem solved by (a) IGA-C, (b) IGA-SC and (c)

IGA-G. log10(relative error) = log10 (‖ uex −uh ‖L∞/‖ uex ‖L∞)
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(a) IGA-C
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(b) IGA-SC
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Figure 5.7: The quarter annulus problem solved by (a) IGA-C, (b) IGA-SC and (c)

IGA-G. log10(relative error) = log10(| uex −uh |W 1,∞/| uex |W 1,∞)
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(a) IGA-C
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(b) IGA-SC

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
−12

−10

−8

−6

−4

−2

0

log10(h)

lo
g 10

(r
el

at
iv

e 
er

ro
r)

 

 

p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
ref: h1

ref: h2

ref: h3

ref: h4

ref: h5

ref: h6

(c) IGA-G

Figure 5.8: The quarter annulus problem solved by (a) IGA-C, (b) IGA-SC and (c)

IGA-G. log10(relative error) = log10(| uex −uh |W 2,∞/| uex |W 2,∞)
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5.3.3 Infinite Plate with a Circular Hole with prescribed displace-

ments

We use the three methods to solve a standard 2D linear elasticity benchmark problem.

An infinite plate with a hole of radius R is subjected to a traction Tx in the x-direction.

The exact solution138 is given in terms of polar coordinates by:

σrr(r,θ) =
Tx

2
(1− R2

r2
)+

Tx

2
(1−4

R2

r2
+3

R4

r4
)cos(2θ), (5.15)

σθθ (r,θ) =
Tx

2
(1+

R2

r2
)− Tx

2
(1+3

R4

r4
)cos(2θ), (5.16)

σrθ (r,θ) = −Tx

2
(1+2

R2

r2
−3

R4

r4
)sin(2θ), (5.17)

where r and θ are radius and angle with respect to the origin which is located in the

center of the hole. The stresses in the Cartesian coordinate system are given by







σxx(x,y)

σyy(x,y)

σxy(x,y)







= A−1







σrr(r,θ)

σθθ (r,θ)

σrθ (r,θ)






, (5.18)

where the transformation matrix A is:

A =







cos2(θ) sin2(θ) 2sin(θ)cos(θ)

sin2(θ) cos2(θ) −2sin(θ)cos(θ)

−sin(θ)cos(θ) sin(θ)cos(θ) cos2(θ)− sin2(θ)






. (5.19)

To solve the problem numerically, only a finite domain is considered, i.e. a square

with side L = 4 with one corner at the center of the hole. Exact displacements are

imposed on the boundaries of this finite domain. The discretization on the coarsest

mesh is the same as in2, using a repeated control point in the upper left corner. This

parametrization will gives rise to a singularity in the inverse mapping between the

parametric space and the physical space. However, it has been observed that as long
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as the Gauss points are chosen away from the singularity (which is at the corner of an

element), the standard Galerkin method still gives good results. The analytic solution

and the errors obtained in the x-direction stress (σxx) are shown in Figure 5.9. We can

see that for p = 5 and a NURBS mesh with 16×32 elements, the IGA-G and IGA-SC

are relatively close, while the IGA-C solution is less accurate. For this problem, we

calculate the errors in L2 norm and energy (H1) norm. The results are shown in Figures

5.10 and 5.11. Again, for odd degrees, p = 3, p = 5 and p = 7 the IGA-SC errors are

close to IGA-G and smaller than the ones obtained by IGA-C.
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Figure 5.9: σxx plots of the 2D elastic plate with a circular hole (a) analytic solution,

(b) Error of the IGA-G, (c) Error of the IGA-C and (d) Error of the IGA-SC . The

applied force is Tx = 10. The polynomial degree of the basis is p = 5 and there are

16×32 elements (h = 1/16 in the parametric space).
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(a) IGA-C
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(b) IGA-SC
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Figure 5.10: The elastic plate with a circular hole problem solved by (a) IGA-C, (b)

IGA-SC and (c) IGA-G. log10(relative error) = log10(‖ uex −uh ‖L2/‖ uex ‖L2)
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(a) IGA-C
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(b) IGA-SC
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(c) IGA-G

Figure 5.11: The elastic plate with a circular hole problem solved by (a) IGA-C, (b)

IGA-SC and (c) IGA-G. log10(relative error) = log10(| uex −uh |H1/| uex |H1)

Remark: In Figures 5.10 and 5.11, some of the results on coarse meshes for p =

4 to p = 7 are not shown. This is because the IGA-SC for those cases leads to an

underdetermined system of equations, where there are more degrees of freedom than

there are constraints. By comparing the number of basis functions and collocation

points, it can be seen that a mesh with at least p− 2 non-empty knots-spans in each

direction are needed to obtain an unique solution when p is odd, and p−1 non-empty

knot-spans are needed when p is even.
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5.3.4 Infinite Plate with a Circular Hole under traction boundary

conditions

For this benchmark problem, the usual boundary conditions considered are exact trac-

tion imposed on the top and left edges of the plate, and symmetry boundary conditions

on the bottom and right edges of the modeled domain (i.e. prescribed zero displace-

ment in the vertical direction on the bottom edge and prescribed zero displacement in

the horizontal direction on the right edge). We note that in collocation, the zero trac-

tion conditions need to be explicitly added as additional constraints in the global linear

system. This is different from Galerkin methods where no special treatment is needed

on the free boundaries. For this problem, the traction-free boundaries are the bottom

edge, right edge and the circular portion of the boundary.

The most straight-forward method of imposing Neumann boundary conditions in

collocation is to interpolate the prescribed derivatives at collocation points on the

boundary. For simplicity, we use this method and choose the collocation points on

the traction boundary to be at the Greville abscissae for both IGA-C and IGA-SC. The

results for the energy norm of the error are shown in Figure 5.12. A close examination

of the convergence plots show similar patterns to those observed for the pure displace-

ment boundary conditions. However, we note that the accuracy is somewhat decreased

compared to the previous results, in particular for coarse meshes as more refinements

are needed to approach the asymptotic convergence rates. It is likely that some of the

recent developments with regard to imposing Neumann boundary conditions, such as

those discussed in137, would be helpful in this regard.
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(a) IGA-C
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(b) IGA-SC
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(c) IGA-G

Figure 5.12: The elastic plate with a circular hole problem solved by (a) IGA-C, (b)

IGA-SC and (c) IGA-G. log10(relative error) = log10(| uex −uh |H1/| uex |H1)

5.3.5 3D Cube Problem

The next example considers a unit cube domain and the strong form of the problem

considered is: 





−∆u+u = f , ∀x ∈ [0,1]× [0,1]× [0,1],

u |∂Ω= 0,
(5.20)

with

f (x,y,z) = (1+12π2)sin(2πx)sin(2πy)sin(2πz), (5.21)

where the exact solution is:

u(x,y,z) = sin(2πx)sin(2πy)sin(2πz). (5.22)

We compare IGA-SC with IGA-C and IGA-G solutions for this example, calculat-

ing the errors in the L∞-norm, W 1,∞ and W 2,∞-seminorms. From Figure 6.6, for the

L∞ norm, we observe that the errors for IGA-C are greater than for IGA-SC, which are

greater than the errors for IGA-G, except for the first two coarsest meshes and p = 6.

A similar pattern holds for the other two norms considered, while noting that for p = 6

the error for IGA-SC is initially greater before decreasing to the expected rates as the

mesh is refined. This can be seen in the Figures 5.15 and 5.16.
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(a) Exact solution u (b) IGA-G errors u− uG
h

(c) IGA-C errors (d) IGA-SC errors

Figure 5.13: Unit cube model problem. (a) exact solution u, (b) error of the IGA-

G u− uG
h , (c) error of the IGA-C u - uC

h and (d) error of the IGA-SC u− uSC
h . The

B-spline basis functions are of polynomial degree 5 in each direction. The domain is

discretized by 10×10×10 elements. Shown is the section of the cube with the volume

coordinates [0,1]× [0.1,0.9]× [0.2,0.8].
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(a) IGA-C
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(b) IGA-SC
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(c) IGA-G

Figure 5.14: Unit cube problem solved by (a) IGA-C (b) IGA-SC and (c) IGA-G.

log10(relative error) = log10(‖ uex −uh ‖L∞/‖ uex ‖L∞)
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(a) IGA-C
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(b) IGA-SC
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(c) IGA-G

Figure 5.15: Unit cube problem solved by (a) IGA-C (b) IGA-SC and (c) IGA-G.

log10(relative error) = log10(| uex −uh |W 1,∞/| uex |W 1,∞)
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(a) IGA-C

−1.6 −1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8
−9

−8

−7

−6

−5

−4

−3

−2

−1

log10(h)

lo
g 10

(r
el

at
iv

e 
er

ro
r)

 

 

p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
ref: h1

ref: h2

ref: h3

ref: h4

ref: h5

ref: h6

(b) IGA-SC
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(c) IGA-G

Figure 5.16: Unit cube problem solved by (a) IGA-C (b) IGA-SC and (c) IGA-G.

log10(relative error) = log10(| uex −uh |W 2,∞/| uex |W 2,∞)
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5.3 Numerical Examples

5.3.6 Poisson equation on a hollow sphere

In this numerical example, we consider a 3D model of 1/8th of a hollow sphere, oc-

cupying the domain Ω shown in Figure 5.17. The strong form of the model problem

studied is:







−∆u = f , ∀x ∈ Ω,

u |∂Ω= 0,
(5.23)

where f is manufactured so that the exact solution is:

u(x,y,z) = sin(x)sin(y)sin(z)(x2 + y2 + z2 − (R+H)2)(x2 + y2 + z2 − (R−H)2),

(5.24)

where we take R = 10 and H = 1. We have used an IGA discretization given in2 for

a shell problem (there H = 0.02). We note that this is a more severe stress of the IGA

formulation, since the mapping from the physical space to the parametric space has a

singularity along the y axis. In fact, the side of the cube corresponding to u = 0 in the

parametric space is mapped to an annulus with midsection radius R in the xy-plane,

while the side corresponding to u = 1 is mapped to the edge of the physical domain

above the origin.
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5.3 Numerical Examples

Figure 5.17: 8th of a hollow sphere

The results are shown in Figures 5.18 to 5.21. Here we use L2 norm and H1, H2

seminorms to report the errors. We note that for p = 6,7 and the coarsest meshes, the

IGA-SC gives poorer results compared to the other two methods. This pattern was

also seen in the previous examples, but the differences are more pronounced due to

the oscillating character of the exact solution. Also, because superconvergence is not

generally realized near the boundary, up to 2p+ 1 knot-spans in each direction are

needed for reliable results. Asymptotically, for odd p, IGA-G and IGA-SC are quite

close, while IGA-C is suboptimal in the L2 norm and H1 semi-norm.

110

Chapter5/Chapter5figures/figure52.eps


5.3 Numerical Examples

(a) Exact Solution (b) IGA-G errors (u− uG
h )/ | u |

(c) IGA-C errors (u− uC
h )/ | u | (d) IGA-SC errors (u− uSC

h )/ | u |

Figure 5.18: Hollow sphere problem with the solution and errors plotted on the mid-

surface of the sphere (at radius r = R). (a) exact solution u, (b) relative error of the

IGA-G (u− uG
h )/ | u |, (c) relative error of the IGA-C (u− uC

h )/ | u | and (d) relative

error of the IGA-SC (u− uSC
h )/ | u |. The B-spline basis functions are of polynomial

degree 5 in each direction. The domain is discretized by 10×10×10 elements.
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5.3 Numerical Examples
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(a) IGA-C
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(b) IGA-SC
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(c) IGA-G

Figure 5.19: Hollow sphere problem solved by (a) IGA-C, (b) IGA-SC and (c) IGA-G.

log10(relative error) = log10(‖ uex −uh ‖L2/‖ uex ‖L2)
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(a) IGA-C
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(b) IGA-SC
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(c) IGA-G

Figure 5.20: Hollow sphere problem solved by (a) IGA-C, (b) IGA-SC and (c) IGA-G.

log10(relative error) = log10(| uex −uh |H1/| uex |H1)
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(a) IGA-C
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(b) IGA-SC
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(c) IGA-G

Figure 5.21: Hollow sphere problem solved by (a) IGA-C, (b) IGA-SC and (c) IGA-G.

log10(relative error) = log10(| uex −uh |H2/| uex |H2)
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5.4 Analysis of algorithmic efficiency

5.4 Analysis of algorithmic efficiency

In this section, we will calculate the number of floating point operations (flops) re-

quired for the methods discussed here. We note that a detailed comparison between

IGA-C and IGA-G in terms of cost vs. accuracy has already been conducted in39.

In the following, we will extend this analysis to include the properties and the results

obtained for the numerical examples with IGA-SC.

A typical finite element or isogeometric analysis program has three components:

pre-processing, analysis and post-processing. In the first part, the geometry of the

domain is discretized and the connectivity between the quadrature or the collocation

points and the shape functions is established. In the analysis component, a system

of algebraic equations which incorporates the governing equations and the boundary

conditions is assembled and then solved. Finally, the post-processing module is where

the solution is displayed. Since the shape functions for a given discretization are the

same among all 3 isogeometric methods considered, only the analysis component dif-

fers substantially between the three isogeometric methods studied here. Therefore, we

will focus on this part, in particular on the costs involved in forming the left-hand side

matrix (or stiffness matrix) and that of solving the linear system of equations, as those

are the most expensive in terms of computational costs.

5.4.1 Assembling the linear system

For simplicity, we will assume that the domain of the problem is discretized into n

elements (or positive area knot-spans) in each spatial direction using NURBS of degree

p. The number of dimensions of the physical space is denoted by d, and we denote

by N the number of degrees of freedom in the discretization (which corresponds to the

number of columns in the stiffness matrix). If we assume that NURBS of maximal

continuity (Cp−1) are used, then there are N = (n+ p)d degrees of freedom for a scalar

problem (such as Poisson’s equation) and d times more degrees of freedom for a vector

problem (such as linear elasticity).
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5.4 Analysis of algorithmic efficiency

The total number of flops for assembling the stiffness matrix (without taking into

account the boundary conditions) is given by the flops needed for assembly the local

collocation/stiffness matrix at one interior collocation/quadrature point multiplied by

the number of evaluation points. Assembly of the local collocation matrix in IGA-SC

is exactly the same as in IGA-C, however there are (n+ p− 2)d interior collocation

points in IGA-C and (2n)d or (2n−1)d evaluation points in IGA-SC for odd p or for

even p respectively. The number of flops for evaluating the 2nd derivatives of the basis

functions, as required for collocation, is more than that required for Galerkin method

which needs only the first derivatives, although both require O(pd) flops. However,

for the scalar problem, the local collocation matrix has dimensions 1× (p+1)d, while

the local stiffness matrix has dimensions (p+ 1)d × (p+ 1)d , requiring O(p2d) flops

to compute. For a vector problem, the local collocation matrix has dimensions d ×
d(p+1)d , while the local stiffness matrix has dimensions d(p+1)d ×d(p+1)d . For

a detailed derivation of the flop counts we refer to39.

For the right-hand side (residual) vector, the cost for the collocation methods is

lower since it requires just the evaluation of the volume load function at the given

collocation point, while for the Galerkin method it requires the evaluation of a volume

integral. Therefore for a scalar problem, the cost of IGA-C and IGA-SC is O(1) per

collocation point and O(pd) per quadrature point for IGA-G. For a vector problem, the

cost for all the methods is increased by a factor of d. Since in all the examples studied,

we consider d ≤ 3, we neglect this additional cost.

Imposing the boundary conditions has a cost that depends on the type of bound-

ary conditions and the method used. Regardless of this, since the the imposition of

boundary conditions only affects the shape functions that have support on the domain

boundaries, it requires O(nd−1) flops for a scalar problem (and again d times more

for elasticity). In Table 5.2 we summarize the number of flops required by the three

methods for the assembly of the linear system of equations. For computing the total

time, we have considered only the highest exponents for n and p that appear in the

flops calculations and neglected the lower order terms.
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5.4 Analysis of algorithmic efficiency

Table 5.2: Number of flops for assembling the linear system in IGA-C, IGA-SC and

IGA-G

IGA-C IGA-SC (p ≥ 3) IGA -G

Number of collocation/ (n+ p−2)d (2n)d odd p nd(p+1)d

quadrature points (2n−1)d even p

Cost of assembling the local

matrix for scalar problem O(pd) O(pd) O(p2d)

(per quadrature/collocation point)

Cost of assembling the local

matrix for vector problem O(d2pd) O(d2pd) O(d2p2d)

(per quadrature/collocation point)

Cost of assembling the RHS

vector for scalar/vector problem O(1) O(1) O(pd)

(per quadrature/collocation point)

Cost of imposing boundary

conditions for scalar problem O(nd−1) O(nd−1) O(nd−1)

(for entire domain boundary)

Cost of imposing boundary

conditions for vector problem O(dnd−1) O(dnd−1) O(nd−1)

(for entire domain boundary)

Total cost when n ≫ p

(scalar problem) O
(
(np)d

)
O
(
(2np)d

)
O
(
(p3n)d

)

Total cost when n ≫ p

(vector problem) O
(
d2(np)d

)
O
(
d2(2np)d

)
O
(
d2(p3n)d

)
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5.4 Analysis of algorithmic efficiency

5.4.2 Solving the linear system

The last part of the analysis is generally solving the linear system obtained from the

problem discretization. There are two types of solvers that can be used: direct and it-

erative solvers. Direct solvers are typically more efficient for small linear systems, but

require progressively more memory as the number of degrees of freedom is increased.

Iterative solvers are more economical in terms of memory use but their performance

depends on the condition number of the matrix and, implicitly, on the type of precon-

ditioner being used. A detailed comparison between IGA-C and IGA-G in terms of the

floating point operations required to solve the linear system has also been conducted

in39. Therefore, in the following we will focus on calculating the cost of obtaining

the least squares solution of an overdetermined, full rank system obtained from the

IGA-SC method.

For obtaining a least-squares solution, one of two classes of algorithms are gener-

ally used: forming the normal equations or QR decomposition. The method of normal

equations solves the system Kx = b by first multiplying both sides by KT to get:

(KT K)x = KT b. (5.25)

It can easily be seen that the matrix KT K is square, symmetric and positive-definite.

Therefore the linear system in (5.25) can be solved by most standard direct or iterative

solvers.

Similarly to IGA-C, the collocation matrix K in IGA-SC is a sparse banded matrix,

where each row corresponds to a collocation point and each column corresponds to a

basis function. For a scalar problem, it has at most (p+1)d non-zero entries for each

row. Because each positive area knot-span contains up to 2d collocation points, there

are at most (2(p+1))d
non-zero entries in each column of K. We note that solving

(5.25) is equivalent to an L2 projection over the set of interior collocation points {xint
k },
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5.4 Analysis of algorithmic efficiency

k = 1, ...,Nint , i.e. if A = [ai j] = KT K, then

ai j =
Nint

∑
k=1

L φi(x
int
k )L φ j(x

int
k ),

where L is the differential operator in the strong form of the problem as defined in

(5.1). In practice, the sum is taken only over the points xint
k which are in the intersection

of the supports of the basis functions φi and φ j. Therefore, forming the N ×N normal

matrix requires O(N p2d) flops, where N is the number of degrees of freedom. More-

over the sparsity pattern and the number of non-zero entries for the normal matrix A

is the same as for the stiffness matrix in the Galerkin method. The collocation matrix

for IGA-C, the normal matrix for IGA-SC and the stiffness matrix for IGA-G for a

particular value of p, n and d are shown in Figure 5.22.
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G

Figure 5.22: The sparsity pattern and number of non-zero entries of the left hand side

matrix of the linear system for the three methods considered, with p = 4, d = 2, n= 30.

It is known that for sparse banded matrices, the cost of a direct solver using LU

factorization or (Cholesky factorization for symmetric matrices) is proportional to the

product of the upper and lower bandwidth of a matrix. We say that a matrix A = [ai j]

has lower bandwidth k1 and upper bandwidth k2 if k1 and k2 are the smallest non-
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5.4 Analysis of algorithmic efficiency

negative integers such that ai j = 0 for i > j+k1 and ai j = 0 for j > i+k2. In particular,

the number of flops required for the factorization by Gaussian elimination is O(Nk1k2)

139. Moreover, the bandwidth of the matrices L and U is k1 and k2 respectively, which

has implications for the memory requirements of the factorization.

The lower and upper bandwidths of the normal matrices resulting from IGA-SC are

presented in Table 5.3. The values for IGA-C and IGA-G have also been calculated in

39. We note that although the matrix arising from IGA-C is non-symmetric, the lower

and upper bandwidths are equal when a sensible numbering of shape functions is used.

The normal matrices from IGA-SC and the stiffness matrix in IGA-G are symmetric

in the examples considered here.

Table 5.3: Lower/Upper bandwidth of the linear system matrices in IGA-C, IGA-SC

and IGA-G for solving a scalar problem with n knot-spans in each direction and poly-

nomial degree p, when n ≫ p

IGA-C IGA-SC and IGA -G

d=1 p/2 or (p−1)/2 p

d=2 O(np/2) O(np)

d=3 O(n2p/2) O(n2p)

We can expect that in terms of operation counts and memory requirements, the

LU factorization of IGA-SC would be of similar cost as IGA-G and approximately 4

times more costly as IGA-C. However, one can exploit the symmetry of the matrices

in IGA-G and IGA-SC to significantly reduce the memory and computation costs.

For ill-conditioned problems, it is desirable to use the QR factorization method

instead of forming the normal equation, but this comes at the expense of increased

memory requirements and computational costs. For dense matrices, QR factorization

requires approximately twice the number of flops139. In our applications, we have

observed a similar increase in computational times.
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For large problems, especially in 3 dimensions, the usage of direct solvers becomes

problematic, particularly due to the increased memory requirements140. Although the

matrices L and U inherit the bandwidth of the stiffness or collocation matrices, they

typically have a much larger number of non-zero entries due to the “fill-in” that occurs

during row reduction operations. A more efficient approach is the use of iterative

solvers, coupled with an appropriate pre-conditioner.

We note that finding optimal pre-conditioners for IGA-G and IGA-C is still subject

of ongoing research, see for example141 or142 for some recent developments. For our

3D examples using Poisson’s equation, we have obtained significant improvements by

using incomplete LU (ILU) and incomplete Cholesky factorizations. The idea is to

perform LU or Cholesky factorization with zero fill-in, i.e. any entry that is zero in the

original matrix is also zero in the resulting decomposition. For IGA-C, which is non-

symmetric, we have used a GMRES (Generalized Minimal Residual) solver. To solve

the normal equations in IGA-SC and for IGA-G, the preconditioned conjugate gradient

(PCG) solver was found to be more efficient, as it exploits the matrix symmetry. We

give a more detailed discussion of the computing time needed for these solvers in the

next subsection.

5.4.3 Computational cost vs. computational accuracy

The flip-side of measuring the efficiency of an algorithm is the question of how accu-

rate it is. It is known that the Galerkin method for IGA converges at “optimal rates” for

smooth problems, i.e. the same as the finite elements with the same polynomial degree

p, while collocation methods have lower or equal rates of convergence.

Table 5.4 gives an overview of the convergence rates, in terms of a mesh size pa-

rameter h, obtained by the three methods currently studied. For the collocation meth-

ods, we also differentiate based on whether the polynomial degree p of the basis is odd

or even. In particular, we note that for the L∞ and L2 norms IGA-C is never optimal,

while IGA-SC is optimal for p odd. For W 1,∞ and H1 seminorms, only IGA-C with

p odd is not optimal. For the second derivative seminorms, all methods considered
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converge as O(hp−1).

Table 5.4: The convergence rates of the current numerical methods

L∞,L2 W 1,∞,H1 W 2,∞,H2

IGA-C p-even O(hp) O(hp) O(hp−1)

IGA-C p-odd O(hp−1) O(hp−1) O(hp−1)

IGA-SC p-even O(hp) O(hp) O(hp−1)

IGA-SC p-odd O(hp+1) O(hp) O(hp−1)

IGA-Galerkin O(hp+1) O(hp) O(hp−1)

While mathematically it is preferable to have a faster-converging method at the

expense of an additional cost which is bounded by a fixed multiplicative factor, this

is not always advantageous when this constant factor is very large. One way to better

analyze the costs vs. benefits ratio is to plot the time to the solution on the horizontal

axis vs. the error on the vertical axis as shown below.

The results shown in this section have been computed on a workstation with an Intel

Xeon X5472 CPU running at 3.0 GHz and 32 GB of RAM. All codes have been written

in MATLAB and run with the “-singleCompThread” option to restrict the program to

a single core. The times shown are the “wall-clock times” (i.e. real times) measured

from the start of the program until the full solution vector is obtained, including pre-

processing, computation of the basis functions and assembly of the matrix system and

the linear solver.

In Figure 5.23 we show the results for the 2D example in Section 5.3.2 (quarter of

an annulus problem). The solving of the linear system in IGA-SC we used the direct

solver based on sparse QR factorization provided by the MATLAB “mldivide” oper-

ator. For the other methods, direct solvers were also used. We note that for odd p,

IGA-SC generally performs better than IGA-C or IGA-G, though the advantage di-

minishes as the polynomial degree increases because of the initial poorer performance
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on coarse meshes. For even p, IGA-SC has the same order of convergence as IGA-C

and it is typically not as efficient, however the difference is a fixed constant factor.

Next, we consider the hollow sphere example studied in Section 5.3.6. The time vs.

relative error plots are shown in Figure 5.24. Because the linear systems arising from

this example are quite large (up to 100,000 degrees of freedom for IGA-SC and IGA-G

and up to 300,000 for IGA-C), we study the performance of both direct and iterative

solvers for p = 3,4, and 5. For IGA-SC, the normal equation is formed and then solved

using either a direct solver or PCG with an incomplete Cholesky preconditioner. The

same solvers are used for IGA-G. For IGA-C we used either a direct solver or GMRES

coupled with an incomplete LU preconditioner.

We observe that the plotted curves descend at an initially faster rate as the linear

systems are small and then the error decrease slows down as the number of degrees of

freedom increases and a larger percentage of the time is spent in the linear solver. This

slow-down is more evident for the direct solvers. Regardless of the solver used, we

notice again that IGA-SC is more efficient for fine meshes and odd p, while for even p

IGA-C is typically better by some fixed factor.

5.5 Conclusions

A noteworthy result is that the proposed collocation method has the same convergence

rates as the Galerkin method for odd p. Moreover for these values of p, the two approx-

imation schemes appear to converge asymptotically to the same relative error when the

mesh is refined. This suggests that collocation methods and methods based on the

weak form are more closely related than it would initially appear. This can also be

seen from some of the reduced quadrature rules that have been proposed in50 (such

as the center-vertex rules and reduced Gauss quadratures), which correspond to the

similar locations for the evaluation of the basis functions in these collocation methods.

A more thorough theoretical investigation of collocation methods, as well as appli-

cations to more interesting engineering problems that include nonlinearies remains the
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subject of future work.
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Figure 5.23: time vs. relative error of the 2D annulus example. (a-f) are the comparison

of the L∞-norm results. (g-l) are the comparison of the W 1,∞-norm results.
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Figure 5.24: Accuracy-to-time comparison of the 3D sphere exam-

ple. In (a-c) log10(relative error) = log10(‖ uex−uh ‖L2/‖ uex ‖L2). In (d-f)

log10(relative error) = log10(| uex −uh |H1/| uex |H1). In (g-i) log10(relative error) =

log10(| uex −uh |H2/| uex |H2).
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Chapter 6

A novel multilevel technique for

solving image registration

6.1 Introduction

Image registration techniques, developed in recent years, aim to align two images by

finding a spatial transformation70,71,72. These methods fall mainly into three basic cat-

egories, the landmark-based registration73,74,75, the segmentation-based registration

76,77,78 and the image intensity-based registration79,80. They have many applications

such as medical imaging81,82, remoting sensing83,84 and computer vision85. In ad-

dition to various types of spatial transformations, image registration approaches can

also be divided into rigid registration and non-rigid (or deformable) registration. The

landmark-based registration first identifies a limit set of landmark points on the tar-

get image, and also some corresponding salient points on the reference image. This

step can be done manually or automatically. Then the spatial transformation can be

defined based on the relationship among these points. The next step is to minimize

the spatial transformation, which is also known as the orthogonal Procrustes problem

143,144. The segmentation-based registration methods utilize segmented parts of the

reference image and the target image and seeks to align them together. Apart from the
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landmark-based and the segmentation-based methods, the intensity-based registration

methods directly operate on the image intensity values. The spatial transformations

are based on the intensity information recorded in both images, combining the se-

lected basis functions and transferring the discrete digital image data into a continuous

expression. From a theoretical point of view, the intensity-based registration meth-

ods are the most flexible because they use all the available information throughout the

registration process.

In this part, we present a novel dynamic multilevel technique for solving image reg-

istration problems. The development is carried out to construct a spatial transformation

based on cubic B-spline basis functions and determine the control points dynamically.

Unlike FEM-based image registration methods, we do not have the difficulty of solv-

ing a complicated matrix system. In addition, the presented method is enhanced by

a multilevel technique, which makes it more efficient and flexible. The numerical re-

sults and several comparison studies on real bio-medical images show our technique is

stable, accurate and fast, especially for large deformation registration problems.

6.2 Dynamic Mathematical Modeling

Suppose two images, the reference image I1(x) and the target image I0(x) are given,

image registration aims to find a continuous spatial transformation f (x) such that

I1( f (x)) ≈ I0(x). The spatial transformation is written as

f : R2 →R
2

f (x) =
N

∑
i=1

Ciφi(x), (6.1)

where Ci are the control points, φi(x) are the corresponding global basis functions, and

N is the number of global basis functions applied to the registration model. The global

basis functions are a combination of the cubic B-splines in two dimensions. Cubic B-
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splines are the most common basis functions used in image processing studies. They

have many good properties, such as small overlap, local support and C2 smoothness.

These advantages of cubic B-splines have been studied and compared with harmonic

functions, radial basis functions and wavelets80. The recursive formula of B-splines

can be written as,

Ni,0(u) =







1 if u ∈ [ui,ui+1)

0 otherwise

, (6.2)

and

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1 −u

ui+p+1 −ui+1
Ni+1,p−1(u), (6.3)

where Ni,p represents the ith B-spline function of polynomial order p+1. It is defined

on a knot vector {u1, . . . ,um} in the u direction. Likewise in 2D, there is a sequence

of B-splines in the v direction associated with the knot vector {v1, . . . ,vn}. When

p = 0, Ni,0 becomes a step function and equals zero everywhere except on the half

open interval [ui,ui+1).

In this paper, we focus on 2D image registration problems. The basis functions φi in

Equation 6.1 are a combination of cubic B-splines, and the cubic B-splines in each di-

rection are defined on open knot vectors, which means the starting and ending knots are

repeated by p+1 times. Thus N j,3(u) are the cubic B-splines in the u direction with an

open knot vector ξ u = {u1,u1,u1,u1,u2, . . . , um−1,um,um,um,um}, and Nk,3(v) are the

cubic B-splines in the v direction with an open knot vector ξ v = {v1,v1,v1,v1,v2, . . . ,

vn−1,vn,vn,vn,vn}. Then the global basis functions φi(x) are expressed by

φi(x) = N j,3(u)Nk,3(v), (6.4)

where x = (u,v), j = 1, . . . ,m+ p+ 1, k = 1, . . . ,n+ q+ 1, and i = 1, . . . ,(m+ p+

1)(n+q+1). For details of the cubic B-spline, we refer interested readers to2,92,145.

For the initial control points C= (Cx,Cy), we use the location of the Greville Abscissae
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93,

Cx(i) =
∑

i+p
j=i+1 ξ u

j

p
and Cy(i) =

∑
i+q
j=i+1 ξ v

j

q
,

where ξ u
k and ξ v

k are the kth entries in ξ u and ξ v, respectively. Here, we consider

equally spaced knots except for the ones in the beginning and at the end of the knotvec-

tors which are repeated 4 times. Since our initial control points are defined by the

Greville Abscissae, the initial control points are also equally spaced except near the

domain boundaries.

The FEM-based registration methods1,146,147 start with a pre-defined energy func-

tional, which is used to measure the differences between I0(x) and I1(x). It can be

written as1,

E(x) =

∫

Ω
(I0(x)− I1( f (x)))2dΩ

+λ1

∫

Ω
(‖ f,u(x) ‖2 +‖ f,v(x) ‖2)dΩ

+λ2

∫

Ω
(‖ f,u(x) ‖2‖ f,v(x) ‖2 − (〈 f,u(x), f,v(x)〉)2)dΩ, (6.5)

where λ1 and λ2 are two weighting factors, and we set λ1 = λ2 = 0.0001 in our nu-

merical examples. f,u(x) and f,v(x) denote the derivatives of the spatial transformation

f (x) with respect to u and v, respectively. 〈· , ·〉 stands for the inner product operator.

The first term is called the fidelity term, which is the main component of this energy

function used to minimize the differences between the reference and the target images.

The second and third terms are two regularization terms. Following1, the first regular-

ization term is called “the first-order regularization term”, which is used to keep the

spacial transformation f (x) changing uniformly with respect to u and v. The second

regularization term is called “the area regularization term”, which contains f (x) such

that the area element remains consistent.

FEM-based image registration methods usually follow three main procedures: defin-

ing an energy equation, minimizing it, and finally constructing a matrix system. It is
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time consuming and it also influences the accuracy of the model. There are some new

advances and improvements in recent years. For example in1, intermediate images are

computed between two given ones, without distinguishing the reference image and the

target image. A new energy function is considered and complicated variational for-

mula are derived, which is different with the traditional FEM procedures66,117. The

validation of the matrix system is based on the Fréchet differential of energy function

and a metric function. However, these extended steps still lead to large matrix systems.

Thus we endeavor to find another approach which is more computationally efficient.

Different from the FEM-based methods, in the following we will handle the energy

function directly and drive its differential formula. In addition, we also consider a new

coefficient factor for the fidelity term.

We minimize the energy function (Equation 6.5) to dynamically solve the optimal

control points for the spacial transformation. These procedures are written as

dC

dt
=−δE(x), (6.6)

and

Ck = Ck−1 − εδE(x), (6.7)

where δE(x) is the differential of the energy function, Ck and Ck−1 are the control

points calculated by the kth and the (k − 1)th iteration steps, and ε is the time step

chosen by the user. We calculate the differential of the energy function as follows

δiE(x) = −2

∫

Ω
g(I0(x)− I1( f (x)))∇I1( f (x))

d f (x)

dCi
dΩ

+λ1

∫

Ω
(2 f,u(x)

d f,u(x)

dCi

+2 f,v(x)
d f,v(x)

dCi

)dΩ

+λ2

∫

Ω
(2 f,u(x)‖ f,v(x) ‖2 d f,u(x)

dCi
+2‖ f,u(x) ‖2

f,v(x)
d f,v(x)

dCi

−2〈 f,u(x), f,v(x)〉 f,v(x)
d f,u(x)

dCi

−2 f,u(x)〈 f,v(x), f,u(x)〉
d f,v(x)

dCi

)dΩ, (6.8)
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where

g =
1

√

γ +(∇xI1( f (x)))2+(∇yI1( f (x)))2
,

γ is a small number and chosen to be 10−12 in all our case studies, g is a factor defined

to accelerate the evolution process. g is treated as a constant number calculated from

the previous iteration step. Different from the g factor defined in1, here we use the

gradient of the deforming image, because it can speed up the evolution process in the

homogeneous region, while slow down in the in-homogeneous region. By substituting

Equation 6.1 into Equation 6.8, we can obtain the final calculated δiE(x),

δiE(x) = −2

∫

Ω
g(I0(x)− I1( f (x)))∇I1( f (x))φi(x)dΩ

+λ1

∫

Ω
(2 f,u(x)φi,u(x)+2 f,v(x)φi,v(x))dΩ

+λ2

∫

Ω
(2 f,u(x)‖ f,v(x) ‖2φi,u(x)+2‖ f,u(x) ‖2

f,v(x)φi,v(x)

−2〈 f,u(x), f,v(x)〉 f,v(x)φi,u(x)

−2 f,u(x)〈 f,v(x), f,u(x)〉φi,v(x))dΩ. (6.9)

Remark 2.1. From the differential energy formula derived in Equations 6.8 and

6.9, we can see that φi(x), φi,u(x) and φi,v(x) come from the energy function itself.

We do not introduce test functions by extra multiplications. In1, an additional test

function φi is introduced on the left-hand side, but not on the right hand-side. From

the balance consideration, we decide to work on Equations 6.6 and 6.7 directly. In

this way, we avoid solving a complicated FEM system. Since the energy functional is

still in an integral formulation, we apply the most popular Gaussian quadrature rules

to approximate it in each quadrilateral element. The numerical implementations of δE

follow the FEM procedures66,117. In all our example studies, we apply 36 Gaussian

points in each element.

Remark 2.2. In the presented work, we define a metric named the similarity ratio
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for our quantitative study,

Rs = 1− ‖ I0(x)− Ik
1( f (x)) ‖

L2

‖ I0(x)− I1(x) ‖L2

, (6.10)

where Ik
1( f (x)) is the deformed image after the kth iteration step. The similarity ra-

tio Rs is only applied for a healthy model, which means the differences between two

images always decrease as the iteration steps go on. In other words, this number is

bounded from 0% to 100%, and 100% is the ideal approximation. 0% is obtained

when Ik
1( f (x)) ≡ I1(x), while 100% is obtained when Ik

1( f (x)) ≡ I0(x). However, in

practice images usually contain a lot of complex information. In many cases, they can-

not be represented mathematically. Therefore after some iteration steps, this ratio may

not improve and remains stable. On one hand it reflects a limitation of image registra-

tion models, and on the other hand it is due to the complexities of image registration

problems.

Another commonly used metric is called the mean square difference (MSD) mea-

sure, which is also used in1. The general form can be written as1,

MSD =
1

w ·h
w

∑
i=1

h

∑
j=1

(I0(xi j)− Ik
1( f (xi j)))

2,

where {xi j}w,h
i=1, j=1 are pixel points.

6.3 Multilevel Technique

In the previous section, we have introduced our dynamic mathematical model. In this

section, this model will be enhanced by a multilevel technique. From the theoreti-

cal point of view, the more basis functions are applied, the better approximation is

obtained. However, the large number of basis functions causes more time spent for

computation. During our practical testing, we notice that generally large deformations

happen at the initial iteration steps. Since our model has the dynamic property, we

130



6.3 Multilevel Technique

therefore are able to make it more flexible, stable and efficient. This development

is carried out by enhancing the dynamic model with a multilevel technique. We use

coarser levels in the first iteration steps. Despite the drawback of less accuracy, the

coarser-level solving systems are able to handle large deformations fast and efficiently.

However, the coarser levels can not be used for a long time. Errors will blow up after

certain iteration steps. To prevent this problem, we switch to using finer levels. Contin-

uing the previous iterations, the finer levels are able to catch more detailed information,

remedying the accuracy problem and keeping the model in an active and efficient man-

ner. We simply define an expression to illustrate our multilevel technique,

I1
1(x)

yI1
1 ( f 1

1 (x))
y

I2
1 ( f 2

1 (x))
y
. . .yIk

1( f k
1 (x))

y

︸ ︷︷ ︸

Level 1

I1
2( f 1

2 (x))
y
. . .y Ik

2( f k
2 (x))

y

︸ ︷︷ ︸

Level 2

y . . . . . . . . .y
︸ ︷︷ ︸

Level 3 . . . Level z-1

I1
z ( f 1

z (x))
y

I2
z ( f 2

z (x))
y
. . .yIk

z ( f k
z (x))

︸ ︷︷ ︸

Level z

, (6.11)

where I1
1 (x)= I1(x) is initialized by the reference image, Ik

l ( f k
l (x)) stands for the regis-

tration results at the kth iteration step at the lth level based on the corresponding spatial

transformation. The detailed algorithm is explained as follows.

Algorithm 3.1

The algorithm starts from two given images, the reference image I1(x) and the target image

I0(x). We want to find a spatial transformation f (x), aligning I1(x) with I0(x) such that

I1( f (x))≈ I0(x). We divide the registration process into a multilevel procedure, using

coarser levels for large deformation and finer levels for more detailed deformation.

1) Based on the chosen initial control points, we build the initial spatial transforma-

tion f 1
1 (x)=∑

N1

i=1 C1
1iφi(x), then we perform an interpolation to obtain I1

1 ( f 1
1 (x)).

2) For different levels l = 1, · · · ,z, do the following

I) For different iterations s = 1, · · ·k, do the following
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a) Substitute Is
l ( f s

l (x)) into the differential energy Equation 6.9 to obtain

δEs
l .

b) Substitute the control points Cs
l and the calculated δEs

l into the Equa-

tion 6.7, and then we obtain a new group of control points, Cs+1
l =

Cs
l − εδEs

l .

c) Using the newly calculated control points Cs+1
l , we are able to con-

struct the corresponding spatial transformation f s+1
l (x)=∑

Nl

i=1 Cs+1
li φi(x).

From the interpolation approximation, we obtain Is+1
l ( f s+1

l (x)).

II) Check the similarity ratio after each iteration. After certain iteration steps,

if the similarity ratio increases slower or even decreasing. Then we in-

crease the number of control points. Reset the spatial transformation, i.e.

f 1
l+1(x)=∑

NL+1

i=1 C
Nl+1

(l+1)iφi(x), and perform the interpolation operation to get

I1
l+1( f 1

l+1(x)).

3) The multilevel procedure continues till the similarity ratio becomes stable with-

out much improving.

Remark 3.1: If control grids overlap with each other and become too distorted,

the registration will become less accurate and influence the further iterations. Such

distortion problems commonly occur in coarse levels and also possibly occurs when

applying a single fine level for the whole procedure. Our multilevel technique prevents

this issue. From a practical point of view, the total iterations are simply equally divided

between each level. This equal division may not be an optimal, but it is a straightfor-

ward choice which works reasonably well. The method will go to finer levels before

distorted control grids occur. Since our algorithm is fast, one could find the time step

ε through several tests for each problem. Rs directly reflects information during the

running process, and can be used to choose a value for ε by observation. ε can also be

obtained through direct calculations. In1, a method was proposed to approximate the

varying εs where s stands for the sth iteration by minimizing the energy functional. But

this requires the calculation of the first and second differentials of the energy functional
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for each iteration.

In the following, we pick an example to illustrate this multilevel technique applied

to our dynamic model. Figure 6.1(a-b) show the reference image and the target image.

We want to register a rectangle from an ellipsoid. For this problem we apply four levels

in total and each level contains 10 iteration steps. Figure 6.1(c-f) show the deformed

mesh at each level. We can observe that large deformation happens at the beginning

levels. The change at the finer levels becomes slower, and they are used to resolve more

details. Figure 6.1(g-j) list the deformed images in the 10th iteration at the first level,

the 20th iteration at the second level, the 30th iteration at the third level and the 40th

iteration at the fourth level, respectively. We also give the inverse registration results

for this example. Subfigures (k-n) collect the deformed meshes and the registration

results. Furthermore, we compare several single level runs with the multilevel method,

and the Rs for each iteration are shown in Figure 6.2. The plot lines in Figure 6.2

are the results of the registration from an ellipsoid to a rectangle as in Figure 6.1. The

brown, gray, green and pink lines correspond to single level runs with 40×40, 50×50,

60× 60 and 70× 70 elements, respectively. As we can see, the brown line (40× 40)

decreases faster than the others. The gray line (50×50) decreases faster than the green

and the pink lines. The pink line decreases at the slowest rate among the four single

level cases. However, as the iterations increase, after around the 20th iteration, the

evolution of the four methods shows an opposite pattern. The pink line is the most

stable one among the four cases. And the brown line fluctuates and becomes unstable.

In our proposed strategy, we combine the different levels. We simply divide the total

iterations by four periods and each period is solved by one level and then move to the

finer levels. The blue line in Figure 6.2 shows the corresponding results of the multiple

level technique. As we can observe, the blue line decreases very fast at the beginning

of the iteration and has stable properties in further iterations. The three solid green

circles mark steps from one level to the next level.

Remark 3.2: The coarser level approximations are always fast and efficient, espe-

cially for large deformation at the beginning iteration steps. But they are not able to
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capture detailed deformation. This is why we move to finer levels gradually. During

the calculation, the interpolation is necessarily used to obtain the information from the

previous iteration. The interpolation procedures are also based on the cubic B-splines

basis functions. In our study and testing, we usually do not have error accumulation

issues because of using levels. In most cases, the error reduces as levels and iterations

increase. However, after several levels, we notice the error decrease levels off. The

similarity ratio depends on the complexity of the to-be-solved registration problems.

In this paper, the number of levels and iterations are chosen empirically according to

the given images. We will observe different final similarity ratios values in the numer-

ical examples in section 6.4.
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(b) the target image
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(g) 10th iteration
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(i) 30th iteration
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(j) 40th iteration
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(n) 30th iteration

Figure 6.1: Registration results from an ellipsoid to a rectangle. The reference image

and the target image are shown in (a) and (b). The deformed meshes are shown in

(c-f). The corresponding deformed images are shown in (g-j). (k-n) are the inverse

registration results from the rectangle to the ellipsoid.
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Figure 6.2: A comparison between the single level methods and the multilevel method.

6.4 Numerical Examples

In this section, we study more examples to test our dynamic multilevel registration

method, including two pairs of artificial images (Figures 6.3 and 6.4), three pairs of

MRI brain images (Figures 6.6, 6.7 and 6.8), and two pairs of CT cardiac images (Fig-

ures 6.10 and 6.11). The results shown in this section have been computed on a PC with

an Intel Core i7-3740QM CPU running at 2.70 GHz and 8 GB of RAM. All the codes

have been written in MATLAB. We show numerical registration results in different

iteration steps at different levels. We also provide the similarity ratio values calculated

for each problem. Table 6.1 shows the statistics data of all the tested examples.
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Table 6.1: Similarity ratios (Rs) and running time for all examples studied

Examples Star-Gear Disk-3Star Brain 1 Brain 2 Brain 3 Heart 1 Heart 2

Image Size 220×220 220×220 256×256 256×256 256×256 512×512 256×256

Total Levels 2 3 6 6 6 6 4

Iterations 5 20 15 10 10 10 10

Rs (%)

Level 1 69.85 48.83 60.88 58.38 57.58 52.08 63.55

Level 2 90.00 79.71 71.93 73.35 68.64 65.86 71.51

Level 3 - 97.45 75.92 78.13 75.92 70.05 74.22

Level 4 - - 78.89 80.03 78.99 74.11 76.15

Level 5 - - 80.14 81.26 80.44 75.82 -

Level 6 - - 81.31 81.71 81.12 77.05 -

Time (Seconds)

Level 1 35.38 132.87 156.35 107.51 108.72 117.10 108.33

Level 2 58.20 210.74 230.31 160.25 157.97 169.39 160.82

Level 3 - 309.80 326.67 227.93 224.99 236.28 227.92

Level 4 - - 446.89 314.18 309.82 322.05 312.96

Level 5 - - 594.75 420.41 414.75 428.40 -

Level 6 - - 790.97 549.05 545.35 557.61 -

Total 93.58 653.41 2545.90 1779.30 1761.60 1830.80 813.03

6.4.1 Artificial Images

Figure 6.3(a-b) shows the first pair of artificial images (star-gear). After applying our

dynamic multilevel solving system as discussed in sections 6.2 and 6.3, we pick three

sequential registration results and show them in (c-e). The total number of iterations

is 10 for this example, which are equally divided into two levels, 5 steps for each

level. (c) and (d) are results at the first level. In this level, we calculate 44 × 44

control points. Then after the 5th iteration, we increase the number of elements and

calculate 54×54 control points at the second level approximation. The final numerical

registration image is shown in (e). The image differences are shown in (f) and (g). In

both level calculations, the time step ε is chosen to be 0.001. As we can observe, the

starting star-shaped image is gradually registered into the gear-shaped image. The first

level calculation is around 35.38s. The second level costs 58.20s. Rs is about 69.85%
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after the first level calculation. With the second level, Rs is improved to be 90%.

Here we pick another artificial example (disk-3star) to show the large deformation

study. Figures 6.4(a-b) show the reference image and the target image, they are very

different from each other. We apply three levels to solve this large deformation reg-

istration with 44×44, 54×54 and 64×64 control points, respectively. To accelerate

the approximation at each level but prevent errors accumulation, we pick time step

ε = 0.002 for the first 10 iterations at a level, and ε = 0.001 for the following 10 iter-

ations at the same level. The three stars are shown clearly at the final iteration. From

Table 6.1, we can observe that the third level promotes Rs more to achieve 97.45%, and

our dynamic multilevel technique performs stably for large deformation cases. Due to

its dynamic property, the registration process can be improved gradually. During the

entire solving procedure, we are able to prevent inverted elements with the last two reg-

ularization terms in the energy function. Furthermore, the multilevel technique makes

the dynamic model more efficient.

We also implemented the FEM-based method1, applied it to this large deformation

problem, and compared with our method. Figure 6.4 shows the results using our dy-

namic multilevel method. (f) shows the initial differences between the reference image

(a) and the target image (b). (g) shows the final differences between the registered re-

sult (e) and (b), it is obvious that the differences are significantly reduced as compared

with (f). Figure 6.5 shows the registration results by the FEM-based method, which

only works at a certain level during the whole registration process. Therefore, (a) is the

same with our first level situation with applying 44× 44 control points. In this case,

Rs becomes constant around the 90th iteration step with the value of 93.95%, but the

time spent is already 583.26s. Then we calculated 54×54 control points to solve the

same problem as shown in (b). Rs levels off around the 90th iteration step again with

an improved value of 97.22%. The total running time reaches 929.68s. (c) and (d)

show the image differences. Comparing these two methods as shown in Table 6.2, our

method is more efficient and accurate, yielding a Rs of 97.45% in 653.41s. In addition,

we also compared these two methods in terms of the classical MSD measure. From
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Table 6.2, we can observe that our method outperforms the method in1 at the 3rd level

for all the three testing examples.

Table 6.2: Comparison of Our Method with the Method in1 in terms of similarity

ratios (Rs), mean square difference (MSD), and running time.

Example Control Points Iterations Rs (%) MSD Time (Seconds)

Method 44×44 total 90 93.95 7.8609e+02 583.26

Disk-3Star in 1 54×54 total 90 97.22 1.5792e+02 929.68

44×44 (Level 1) 0-20 48.83 5.3380e+04 132.87

Our Method 54×54 (Level 2) 20-40 79.71 8.7565e+03 210.74

64×64 (Level 3) 40-60 97.45 1.2974e+02 309.80

Total: 653.41

Method 54×54 stopped in 25th 57.79 3.0676e+03 262.82

in 1 64×64 stopped in 50th 65.80 2.0004e+03 789.61

Brain 3 54×54 (Level 1) 0-10 57.58 3.0836e+03 108.72

64×64 (Level 2) 10-20 68.64 1.6971e+03 157.97

Our Method 74×74 (Level 3) 20-30 75.92 1.0161e+03 224.99

84×84 (Level 4) 30-40 78.99 7.7085e+02 309.82

94×94 (Level 5) 40-50 80.44 6.5925e+02 414.75

104×104 (Level 6) 50-60 81.12 6.1496e+02 545.35

Total: 1761.60

Method 64×64 stopped in 80th 73.11 1.9957e+07 1246.89

in 1

Heart 2 54×54 (Level 1) 0-10 63.55 3.6718e+07 108.33

64×64 (Level 2) 10-20 71.51 2.2422e+07 160.82

Our Method 74×74 (Level 3) 20-30 74.22 1.8361e+07 227.92

84×84 (Level 4) 30-40 76.15 1.5711e+07 312.96

Total: 810.03
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(b) the target image
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(c) 3rd iteration
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(d) 5th iteration
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(f) the initial differences
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(g) the final differences

Figure 6.3: Register a gear-shaped object (b) from a star-shaped one (a). (c) and (d)

are the first level registration results. (e) is the second level registration result. The

initial differences between (a) and (b) and the final differences between (e) and (b) are

shown in (f) and (g), respectively.
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(a) the reference image
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(b) the target image
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(c) 20th iteration
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(d) 40th iteration
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(e) 60th iteration
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(g) the final differences

Figure 6.4: Register a three-star image (b) from a disk image (a). (c-e) are the registra-

tion results at the first level, the second level and the third level, respectively. (f) shows

the initial differences between (a) and (b). (g) shows the final differences between our

registration result (e) and the target image (b).
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(a) 90th iteration

(44× 44 control points)
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(b) 90th iteration

(54× 54 control points)
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(c) 90th iteration

(44× 44 control points)

20

40

60

80

100

120

140

160

180

200

220

(d) 90th iteration

(54× 54 control points)

Figure 6.5: Registration results from method in1. (a) is the result after the 90th iteration

steps with 44× 44 control points. (b) is the result after the 90th iteration step with

54×54 control points. (c) shows the differences between (a) and the target image. (d)

shows the differences between (b) and the target image.

6.4.2 MRI Brain Images

After two artificial images testing, we are ready to apply our model to deal with some

real medical images. Usually, the medical images contain more complicated structures.

Thus the registration from one medical image to another could be more challenging

compared with the previous studies. Brain has the most complex structure in a human

body, and MRI (magnetic resonance image) is the most common scanning technique

for visualization. In our study, we choose three pairs of MRI images148, see Figures

6.6, 6.7 and 6.8.
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The size of all brain images is 256×256, we use a total of six levels for each case.

Except the first brain image example applying 15 iterations for each level, the other two

examples consider 10 iterations for each level. For all the three examples, the number

of control points for the six levels are 54×54, 64×64, 74×74, 84×84, 94×94 and

104×104, respectively. As shown in Figures 6.6, 6.7 and 6.8, the reference images are

gradually deformed in different iteration steps and levels, and the final results are very

similar to their corresponding target images. In Figure 6.6, many complex cerebral

cortex information are registered, see the comparison between (h) and (b) and also the

image differences in (j). In Figure 6.7, the reference image (a) contains less tumor

information than (b). After applying our registration process, in the final result (h),

the tumor becomes more obvious and important. Meanwhile, all the important parts of

the cerebral cortex of the target image (b) are registered clearly in our results. Figure

6.8(a-b) contain even more different information, such as the eyes, the nose region,

the brain stem and many complex cortex. We apply our method to register (b) from

(a). (c-h) are a sequence of numerical results. As we can observe, the final registration

result (h) is substantially deformed, aligning with the target image (b). The similarity

ratio Rs and the time spent of each example are collected in Table 6.1.

We also compare our method with the FEM-based method in1, see Table 6.2. Fig-

ures 6.8(i-j) show the initial differences and our final improved differences. Then we

apply the model in1 to deal with the same problem, see Figure 6.9. Considering the

computational cost, we always first try less control points. The number of control

points equals our first level case with 54× 54. Because of the complication of this

problem, the method gets stopped around the 25th iteration step with a Rs of only

57.79%. The time spent is around 262.82s. Thus we have to apply more control points

to improve the approximation. By using 64× 64 control points, Rs stops improving

in around the 50th iteration step with a Rs of 65.80%, but the time spent is already

789.61s. If we increase the number of control points to promote the model more, Rs

will be improved but with even higher computational cost. From Table 6.2, we can

observe that our method yields a much better Rs (81.12%) and MSD (614.9687) in a
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shorter time. These comparisons show that our method is more suitable for dealing

with complicated situations.

6.4.3 CT Heart Images

Heart is the center of the blood circulation system. It consists of four main chambers,

connecting several major blood vessels. In our last subsection, we choose two pairs of

CT heart images to test our model. In Figure 6.10(a-b), the main differences appear

in the blood vessels surrounding the main heart body as well as the size and the shape

of the chambers. Our registration results are shown in Figure 6.10(c-h). As we can

observe, the 6th level result (h) is very similar to the target image (b), capturing well

the structure of the chambers and the surrounding blood vessels. The image differences

between (h) and (b) are shown in (j).

We perform the last comparison study between our method and the method in1

only for the registration of the main heart structure region. The reference image and

the target image are shown in Figure 6.11(a-b). Their differences are very obvious, see

(c). For the method in1, we choose 64×64 control points to solve this problem. The

registration process gets stopped at around the 80th iteration step. The result and the

improved differences are shown in (d) and (e). Then we carry out our method to deal

with this problem. We use four levels with 10 iteration steps at each level. The final

result of the 4th level is shown in (f) and its improved differences are shown in (g).

From the results, we can observe that both methods can capture most features of the

target image, but our result looks more smooth. From the comparison results in Table

6.2, we can also conclude that our method can save a lot of time (810.03s vs 1246.89s)

with a better similarity ratio value (76.15% vs 73.11%).
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Figure 6.6: Brain image 1. Register the target image (b) from the reference image (a).

(c-f) are the first level registration results with different iteration steps. (g) and (h) are

the fifth and sixth level results, respectively. (i) shows the initial differences between

(a) and (b), and (j) shows the differences between (h) and (b).

145

Chapter6/Chapter6figures/Figure61.eps
Chapter6/Chapter6figures/Figure62.eps
Chapter6/Chapter6figures/Figure63.eps
Chapter6/Chapter6figures/Figure64.eps
Chapter6/Chapter6figures/Figure65.eps
Chapter6/Chapter6figures/Figure66.eps
Chapter6/Chapter6figures/Figure67.eps
Chapter6/Chapter6figures/Figure68.eps
Chapter6/Chapter6figures/Figure69.eps
Chapter6/Chapter6figures/Figure70.eps


6.4 Numerical Examples

50

100

150

200

250

(a) the reference image

50

100

150

200

250

(b) the target image

50

100

150

200

250

(c) 2nd iteration

50

100

150

200

250

(d) 6th iteration

50

100

150

200

250

(e) 10th iteration

50

100

150

200

250

(f) 20th iteration

50

100

150

200

250

(g) 50th iteration

50

100

150

200

250

(h) 60th iteration

50

100

150

200

250

(i) the initial differences

50

100

150

200

250

(j) the final differences

Figure 6.7: Brain image 2. Register the target image (b) from the reference image (a).

(c-f) are the first level registration results with different iteration steps. (g) and (h) are

the fifth and sixth level results, respectively. (i) shows the initial differences between

(a) and (b), and (j) shows the differences between (h) and (b).
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Figure 6.8: Brain image 3. Register the target image (b) from the reference image (a).

(c-f) are the first level registration results with different iteration steps. (g) and (h) are

the fifth and sixth level results, respectively. (i) shows the initial differences between

(a) and (b), and (j) shows the differences between (h) and (b).
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Figure 6.9: Registration results from method in1. (a) is the result after getting stopped

in the 25th iteration step with 54× 54 control points. (b) is the result after getting

stopped in the 50th iteration step with 64×64 control points. (c) shows the differences

between (a) and the target image. (d) shows the differences between (b) and the target

image.
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Figure 6.10: Cardiac image 1. The reference and target images are shown in (a) and

(b). (c-e) are our registration results during the first level. (g) and (h) are solved after

the fifth level and sixth level. (i) is the initial differences, and (j) shows the differences

between our final solved result (h) and (b).
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Figure 6.11: Cardiac image 2. The reference and the target images are shown in (a) and

(b). (c) is the initial differences between (a) and (b). (d) is the registration result using

the method in1. (e) shows the differences between (d) and (b). (f) is the registration

result using our method, and (g) shows the differences between (f) and (b).

Discussion: In this section, we test our dynamic multilevel model by seven regis-

tration examples, two pairs of artificial images and five pairs of medical images. All

the registration procedures follow a dynamic strategy, enhanced by a multilevel tech-
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nique. For each example, the registration process is divided into several levels, and at

each level we solve for a certain amount of control points dynamically in each iteration

step. The number of control points is increased gradually. The method is flexible and

efficient, especially for dealing with large deformation problems. The coarser levels

are used for large deformation registration, and then gradually finer levels are used in

order to capture detailed deformations. These effects can be observed from our regis-

tration results of each example. Since we use a small system with fewer control points

in the beginning stage, the time spent is much less than carrying out a big solving sys-

tem during the entire registration process. This is one of the important reasons why

we save more time in our method than the method proposed in1. Another reason for

faster performances of our method is that unlike FEM-based image registration meth-

ods, we avoid solving a big matrix system. We solve for control points directly. For

image registration, the large matrix system usually brings some limitations or even

obstacles. For example, building and solving the matrix system are time consuming

and complicated. In addition, images usually contain many complicated information

and even irregular features, all of these will influence the accuracy of the matrix-based

registration methods. This also explains why some results of the method in1 are not

smooth and not accurate, see Figures 6.9 and 6.11. In our method, we still keep the

right-hand side of the energy function with energy minimization terms, but we do not

need to solve a large linear system. This is an important reason why our method is

more stable and accurate.

6.5 Conclusions

We have developed a dynamic multilevel modeling technique for solving image regis-

tration problems. The mathematical model is also enhanced by a novel multilevel idea.

The coarser levels focus on large deformations at the beginning iterations. The model

works faster and more efficiently. The finer levels deal with detailed registration. The

model works more accurately and stably. Our model is tested by two pairs of artificial
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images and five pairs of real medical images. The numerical results show our model is

successful in solving different cases. We also perform the quantitative study by calcu-

lating the similarity ratio for each example. The experimental results demonstrate that

the proposed method is stable and efficient.

The accuracy usually depends on the complexity of the registered images. There-

fore as part of our future work, we plan to study more to promote the accuracy. In

addition, we also plan to apply our algorithm to other type images and extend our

work to three dimensional problems.
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Chapter 7

Conclusions

The thesis focuses on IGA, developing several techniques for modeling and analysis.

It mainly contains four parts, including triangular B-spline basis functions, discontin-

uous problems modeling, superconvergent collocation method and image registration

application. The following paragraphs summarize the main achievements of the cur-

rent work and give several suggestions for the future work.

First, the thesis investigated a special triangular B-spline function which has gained

succeeds in geometry designs but has not often been applied in analysis. The particular

definition of the triangular B-spline gives itself the flexibility property. However, it also

leads to the instability problem during analysis, causing unexpected errors. In order

to control this triangular B-spline, we applied the reproducing kernel approximation

technique, calculating a correction term from the subset basis functions chosen by

the compact support of the triangular B-spline, and adding the correction term to the

triangular kernel function. Through the numerical comparisons, it can be seen that

the instability effect is reduced significantly and the improved triangular B-spline is

capable of solving PDEs with higher accuracy and almost optimal convergence rates.

As part of our future work in this part, we plan to apply our algorithm to complicated

problems, study singular and locking problems. In addition, we would also like to

extend our technique to 3D based on tetrahedral meshes, the trivariate triangular B-

spline.

Secondly, the thesis proposed several strategies to deal with material interface prob-
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lems by the proposed extended isogeometric analysis method (XIGA). We incorpo-

rated the main idea of XFEM into IGA, introducing extra enrichment functions in the

traditional IGA solving space. The considered enrichment functions include the ramp

and the Moës enrichment functions, which are continuous functions themselves but

with discontinuous derivatives. The resulting new basis space can model the disconti-

nuity efficiently in weak discontinuous problems such as the material interfaces. For

the curved material interface, in order to carry out the integration exactly, the inverse

mapping and the curved triangular integral elements are applied. In the numerical tests,

comparing with the traditional IGA, the accuracy was considerably improved and the

optimal convergence rates were retrieved by our XIGA method. As part of our future

work, we plan to apply our algorithm to more complex material interface and fracture

problems. In addition, we would also like to extend our technique to three dimensions.

In the third part, the thesis has developed the IGA-C which is based on strong PDE

forms. Comparing with the traditional IGA Galerkin weak form based strategy, the

IGA-C is simple to be implemented with less solving procedure, and it does not need

numerical integration calculation, so that the method has been demonstrated superior

to the classical IGA-G in terms of the computational efficiency and this is an important

advantage for higher polynomial degree approximation. However, a crucial point of

IGA-C approach is the proper collocation points choosing. The tradition IGA-C choose

the Greville abscissae as the collocation points. But it has been found the accuracy of

IGA-C is not comparable to IGA-G and the results are suboptimal for the various norm

evaluation except for the second order energy norm. In order to cope with these draw-

backs, we proposed IGA-SC which is based on the superconvergent theorem and apply

superconvergent points. The presented comparison tests show IGA-SC can obtain sig-

nificantly better results, i.e. the accuracy can be close in accuracy to the IGA-G results

and the convergent rates are optimal especially for odd polynomial degrees. In terms

of computational cost, IGA-SC requires asymptotically 2d times more basis function

evaluations than the Greville abscissae method, where d is the dimension of the space.

For odd p, the method has much improved accuracy while for even p the improvement
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is of a fixed constant factor. For higher polynomial degrees, IGA-SC also requires

more finely refined meshes to work correctly. A more thorough theoretical investiga-

tion of collocation methods, as well as applications to more interesting engineering

problems that include nonlinearities remains the subject of future work.

The last part of the thesis presented a novel dynamic multilevel technique for deal-

ing with image registration. This part has explored the applications of B-spline basis

on image process field. Image registration aims to align a target image from a reference

image by defining a spatial transformation. In our work, the spatial transformation is

the linear combination of B-spline functions with the to-be-determined control points.

Our strategies start from a energy function which is the same as one used in a previous

FEM based image registration. However, we solved the image registration in a dif-

ferent way. On one hand, we simplified the complicated solving procedure and work

on the energy function directly, avoiding the matrix construction and the linear system

solving. It resulted our method more simple and fast. On the other hand, we proposed

a multilevel technique to prevent the instability occurring. It yields our method be

more accurate and efficient. Our numerical tests include two artificial images and four

real bio-medical MRI brain and CT heart images. All the numerical results show our

technique can handle image registration well, especially for large deformation prob-

lems. The accuracy usually depends on the complexity of the two registered images.

Therefore as part of our future work, we plan to study more to promote the accuracy.

In addition, we also plan to apply our algorithm to other types of images.
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