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for his comments during the review and the defense of my thesis. Spe-

cial thank to Prof. Stephane Bordas for accepting the presidency of the

examination board. In addition to that, an endless gratitude to him and his

group for the cooperation during my three months attachment at Cardiff

University, UK.

During my research, I spent eleven months at institute of Dr. Jacob Muthu

in the University of Witwaterstand, South Africa. Many thanks to him for

his kind friendly and the nice cooperation. I would also like to thanks to

Prof. Hung Nguyen-Xuan, Prof. Yuri Bazilves and Dr. Joself Kiendl for

their assistance insightful suggestions and collaboration in research.

I am grateful to thank to my colleagues at Institute of Structural Mechanics

for their help and friendly support.

Finally, a precious thank you to my family especially to my parents for

their emotional supports and encouragement during my studies.

Weimar, October 2013

Nhon NGUYEN-THANH



Abstract

This thesis presents two new methods in finite elements and isogeometric

analysis for structural analysis. The first method proposes an alternative

alpha finite element method using triangular elements. In this method, the

piecewise constant strain field of linear triangular finite element method

models is enhanced by additional strain terms with an adjustable parame-

ter α , which results in an effectively softer stiffness formulation compared

to a linear triangular element. In order to avoid the transverse shear lock-

ing of Reissner-Mindlin plates analysis the alpha finite element method

is coupled with a discrete shear gap technique for triangular elements to

significantly improve the accuracy of the standard triangular finite ele-

ments. The basic idea behind this element formulation is to approximate

displacements and rotations as in the standard finite element method, but

to construct the bending, geometrical and shear strains using node-based

smoothing domains. Several numerical examples are presented and show

that the alpha FEM gives a good agreement compared to several other

methods in the literature.

Second method, isogeometric analysis based on rational splines over hi-

erarchical T-meshes (RHT-splines) is proposed. The RHT-splines are a

generalization of Non-Uniform Rational B-splines (NURBS) over hierar-

chical T-meshes, which is a piecewise bicubic polynomial over a hierar-

chical T-mesh. The RHT-splines basis functions not only inherit all the

properties of NURBS such as non-negativity, local support and partition

of unity but also more importantly as the capability of joining geomet-

ric objects without gaps, preserving higher order continuity everywhere

and allow local refinement and adaptivity. In order to drive the adaptive

refinement, an efficient recovery-based error estimator is employed. For

this problem an imaginary surface is defined. The imaginary surface is

basically constructed by RHT-splines basis functions which is used for

approximation and interpolation functions as well as the construction of

the recovered stress components. Numerical investigations prove that the

proposed method is capable to obtain results with higher accuracy and

convergence rate than NURBS results.
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Chapter 1

Introduction

1.1 Review of Finite Element Analysis

The Finite Element Method (FEM) was developed in the 1950s to 1960s. Nowadays,

the FEM has become one of the most powerful and popular tools for numerical sim-

ulations in various fields of natural science and engineering. For instance in most

structural analysis applications, the FEM has become necessary to compute displace-

ments and stresses at various points of interest. The finite element model is created by

dividing the structure into a number of finite elements. Each element is connected by

nodes. The selection of elements for modeling the structure depends on the behavior

and geometry of the structure being analyzed. The modeling pattern, which is gener-

ally called the ”mesh” for the finite element method, is a very important part of the

modeling process. The results obtained from the analysis depend upon the selection

of the finite elements and the mesh size. Although the finite element model does not

behave exactly like the actual structure, it is possible to obtain sufficiently accurate re-

sults for most practical applications. The deflections at each node of the finite element

model are obtained by solving the equilibrium equations. The stresses and strains can

then be obtained from the stress-strain and strain-displacement relations.

In the finite element method, higher-order elements (ZT00) are capable of provid-

ing excellent performance for complex problems including those involving materials

with near incompressibility, whilst lower-order elements are preferable to employ in

practice. However, these elements are often too stiff so that the elements become sen-

sitive to locking. In practice, the lower-order linear triangular element is preferred by

many engineers due to its simplicity, efficiency, lower demand on the smoothness of

the solution, and ease of adaptive mesh refinements for solutions of desired accuracy.

However, the fully-compatible FEM model using 3-node triangular element (T3) has

certain inherent drawbacks: overestimation of the stiffness matrix (Liu08), especially
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1.2 Review of Isogeometric Analysis

for problems with locking behavior; poor performance when distorted meshes are used

and poor accuracy in the stress results. One of the attempts to improve the constant

strain triangular element is to add an in-plane rotational degree of freedom which was

initially proposed by Allman (All84). Also the concept of enhanced strains Simo et.al.

(SR90) has been applied by many authors to improve the performance of low order

finite elements (PT00, BRB99, SJ99).

A superconvergent alpha finite element method (SαFEM) using triangular meshes

was proposed by Liu et al (LNXNTX09). In the SαFEM (now AαFEM), an assumed

strain field was formulated by adding the averaged nodal strains with an adjustable

factor α to the compatible strains. The new Galerkin-like weak form, as simple as the

Galerkin weak form, was then obtained for this constructed strain field. To solve the

forced vibration system equations, implicit time integration schemes are used. It was

also extended to Reissner-Mindlin plates analysis by using the Direct Shear Gap (DSG)

technique to remove shear locking. This leads to a stiffness matrix that comprises an

additive decomposition of two parts: (i) the DSG plate element stiffness matrix and

(ii) the stiffness matrix contributed from the assumed strain field. Where was proven

theoretically and numerically that the AαFEM is much more accurate than the original

FEM-T3 and even more accurate than the FEM-Q4 when the same sets of degrees of

freedom are used. The AαFEM can produce both lower and upper bounds to the

exact solution in the energy norm for all elasticity problems by properly choosing an

α . In addition, a preferable-α approach has also been devised for the alpha FEM

to produce very accurate solutions for both displacement and energy norms and the

superconvergent rate in the energy error norm.

1.2 Review of Isogeometric Analysis

In the past, engineers used splines to design aircraft wings and automobile chassis

before computer graphics existed. A spline is a long flexible piece of wood or plas-

tic with a rectangular cross section held in place at various positions by heavy lead

weights with a protrusion called ducks, where the duck holds the spline in a fixed

position against the drawing board (Bea91). The spline then conforms to a natural

shape between the ducks. By moving the ducks around, the designer can change the

shape of the spline. The drawbacks are obvious, recording duck positions and main-

taining the drafting equipment necessary for many complex parts will take up much

square footage in a storage facility, costs that would be absorbed by a consumer. In the

1960, Pierre Bézier developed computer aided geometric design (CAGD) tool called

UNISURF. This new software allowed designers to draw smooth looking curves on

a computer screen, and use less physical storage space for design materials. Bézier’s

contribution to computer graphics paved the road for CAD software like Maya, 3D

2
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Max, etc,.. Consecutively, Paul de Faget de Casteljau who has proposed the Casteljau

algorithm, one of the most common ways to evaluate Bézier curves.

The B-spline basis functions were introduced by Schoenberg (Sch46). In the field

of computer science, B-splines have been referred to as piecewise polynomial curves

(ANW67). Since their introduction, they have been used as a tool to create smooth

curves and surfaces in computer graphics. These functions provide a smooth interpo-

lated curve for a large number of control points, and also provide a higher continuity of

derivatives. In the 1962, Carl De Boor’s (Boo62) developed faster and numerically sta-

ble algorithms for the calculation of spline interpolation functions. B-Splines are now

extensively used in the graphic design and CAD industry for creating smooth curves

and surfaces.

In the 1970’s, Non-uniform rational B-splines (NURBS) were developed and are

the current industry standard for computational geometry. They are an ubiquitous tool

in CAD and computer graphics and provide a general notation for representing a broad

range of geometries. This includes straight lines, curves and complex curved surfaces

and, most importantly, even allow the representation of solids. The concept of isoge-

ometric analysis was developed by Hughes and co-workers in 2005 (HCB05) with the

aim of integrating the conventional FEM and CAD. The idea behind this method is to

base both the geometric description and the shape functions of the FEM on NURBS,

a standard technology embedded in CAD systems, so the exact geometry is presented

in both design and mechanics analysis procedures. The coarse mesh of the NURBS

element constructed by the exact CAD geometry is subsequently refined without com-

munication with the CAD system, but retaining exact geometry, which is the reason of

so-called isogeometric analysis. Although NURBS is suggested as a direct step from

CAD to FEA, the process is not as streamlined. NURBS models are often made of

several patches and contain gaps which are invisible in modeling perspective, but in-

hibit on the analysis to be performed. Another weakness is that NURBS do not allow

for local refinement. In order to refine a local area, a global refinement is required

because the B-spline control grid traverses the entire domain. As a result of global

refinement, many superfluous control points are created. NURBS also have certain

drawbacks in the context of numerical analysis. Due to the tensor-product form of

NURBS, their control points are required to lie in a structured grid (e.g. in a rect-

angle in 2D). This leads to an excessive overhead of control points with increasing

refinement. Cottrell et. al. (CHR07) proposed a local refinement strategy, but con-

straint equations are required with increasing complexity and implementation effort.

Moreover, refinement still propagates through a given patch. Another disadvantage of

NURBS is that they usually achieve only C0 continuity across patch boundaries. How-

ever, when two NURBS surfaces do not share a common boundary, they cannot even

achieve C0 continuity without disturbing at least one of the surfaces.
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In the 2003, the T-splines were introduced by Sederberg et. al. (SZBA03) as a gen-

eralization of NURBS technology that is capable of substantially reducing the number

of superfluous control points. T-splines offer a solution to this by their local refinement

property by using T-junctions, which allows the ability to remove gaps at intersections

of geometric model shapes. Therefore, very effective and efficient local refinement

can be made by using T-splines and T-junctions, since control mesh lines do not have

to traverse the entire control grids in order to maintain the B-spline structure. Con-

secutively, Sederberg et. al. (SCF+04) presented a robust algorithm for eliminating

superfluous control points, refining blending functions, and updating the positions of

control points. As a result, the number of control points is reduced and the computa-

tional efficiency is greatly improved by T-spline functions. Recently, an isogeometric

analysis using T-splines was exploited by Bazilevs et.al. (BCC+10). Consecutively,

an adaptive local h-refinement with T-splines was introduced by Döfel et. al. (DJS10).

However, though T-splines allow for local adaptive refinement, the complexity of knot

insertion under adaptive refinement is complex, particularly in 3D. Moreover, Buffa et.

al. (BCS09) showed that linear independence of the basis functions is not guaranteed

for generic T-meshes.

In the 2008, a new type of splines called polynomial splines over hierarchical T-

meshes (PHT-splines) was introduced by Deng et.al. (DCL+08). The PHT-spline

consisting of rectangles are special cases of T-splines, which are very useful for curve

and surface design. The PHT-spline is a piecewise bicubic polynomial over a hier-

archical T-mesh, which has the same important properties of NURBS such as linear

independence of the basis functions, partition of unity and non-negativity. Not only

do PHT-splines inherit of T-splines such as adaptivity and locality, but also extend

T-splines in several aspects except that they are only C1 continuous. The conversion

between NURBS and PHT-splines is simple and very fast, while conversion between

NURBS and T-splines is a bottleneck of T-splines in practical applications. Moreover,

in contrast to NURBS, PHT-splines have the capability of joining geometric objects

without gaps, preserving higher order continuity everywhere and allow for simple and

effective h-refinement strategies. Thereafter, Nguyen-Thanh et.al. demonstrated the

use of PHT-spline formulations in numerical analysis for problems in two-dimensional

and thin shell analysis (NTNXBR11, NTKNX+11). Recently, the RHT-splines is ex-

tended of the PHT-splines to rational functions for 3D problems in elasto-statics and

elasto-dynamics. In order to drive the adaptive refinement, an efficient recovery-based

error estimator is employed. Numerical investigations prove that the proposed method

is capable to obtain results with higher accuracy and convergence rate than NURBS

results. A good agreement was achieved between the numerical and analytical results

for both static and free vibration problems.
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1.3 Outline

A briefly review the discrete governing equations and weak form of finite element

method for two-dimensional and Reissner-Mindline plate element are presented in

Chapter 2.

An alternative alpha finite element method is proposed in Chapter 3. In the al-

pha finite element method, the piecewise constant strain field of linear triangular FEM

models is enhanced by additional strain terms with an adjustable parameter α which

results in an effective softer stiffness formulation compared to a linear triangular ele-

ment. Thereafter, some theoretical properties of the alpha FEM method for static and

free vibration analysis are presented and discussed.

In Chapter 4, the alpha FEM method for plates analysis is presented. To avoid the

transverse shear locking of Reissner-Mindlin plate analysis the alpha finite element

method coupled with a discrete shear gap technique for triangular elements is intro-

duced. The results obtained from static, free vibration and buckling analyses are shown

that the alpha FEM achieves high reliability compared to other existing elements in the

literature.

In Chapter 5, the computer aided design basic geometry for the development into

the isogeometric analysis method is reviewed: First, a short overview of the general

Bézier function and the drawbacks are given. Then, these problems can be overcome

by using B-Spline basis function. The differences parametric mapping in finite element

method and isogeometric analysis are presented in this chapter.

In Chapter 6, the concept of rational splines over hierarchical T-meshes (RHT-

splines) is introduced. The RHT-splines is a piecewise bicubic polynomial over a hi-

erarchical T-mesh. The RHT-splines basis functions not only inherit all the properties

of NURBS such as non-negativity, local support and partition of unity but also more

importantly as the capability of joining geometric objects without gaps, preserving

higher order continuity everywhere and allow local refinement and adaptive. To de-

scribe and construct of the RHT-splines basis functions two-dimensional elastic solids

are presented.

In Chapter 7, an adaptive three-dimensional RHT-splines formulation in linear

elasto-statics and elasto-dynamics is introduced. The RHT-splines basis function in

three-dimensional are described. In order to drive the adaptive refinement with stress

recovery for RHT-splines is presented. The propose method is applied to several prob-

lems in elasto-statics and elasto-dynamics. The results obtained from the proposal

method are shown and discussed in numerical example section.

Chapter 8, rotation free isogeometric thin shell analysis using RHT-splines for

both single patch and multi-patches are presented. Due to the C1-continuity of the

RHT-splines, I only discretize the mid-surface of the shell and automatically fulfill the

Kirchhoff-Love constraint. Therefore, only 3 DOFs per node are needed. The thin

shell analysis based on Kirchhoff-Love theory avoids the use of rotational degrees of

5



1.3 Outline

freedom. Numerical results show the excellent performance of the present method.

Finally, Chapter 9 presents concluding remarks and discusses further work.
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Chapter 2

Finite Element Analysis

2.1 Governing equations and weak form for solids

In that follows, a two dimensional linear elastic solid is modeled as a planar domain

Ω and a body force g within the domain. The displacement field satisfies the Dirichlet

boundary conditions u = ū on Γu and the stress field satisfies the Neumann boundary

conditions t on boundary Γt . Arbitrary virtual displacements δd result in compatible

virtual strains δε and internal displacements δu.

The relation between the displacement field u, the strain field ε and the stress field σ
are

The compatibility relations

εi, j =
1

2

(
∂ jui +∂iu j

)
in Ω (∀i, j ∈ 1,2,3) (2.1)

ui = ūi on Γu (2.2)

The constitutive relations

σi j =Ci jklεkl in Ω (2.3)

The equilibrium equations

∂ jσi j +gi = 0 in Ω (2.4)

σi jn j = t̄i on Γt (2.5)

where ∂ j = ∂/∂xi are the partial derivatives of first order corresponding to xi ∈ {x,y}
and ∂ denotes a differential operator for description of the strains obtained by the

7



2.1 Governing equations and weak form for solids

displacements. Let the two spaces of kinematically admissible displacements, denoted

by V and V0, respectively

V = {u ∈ (H1(Ω))2 , u = ū on Γu}. (2.6)

V0 = {v ∈ (H1(Ω))2 , v = 0 on Γu} (2.7)

Here, H1(Ω) denotes the Hilbert space of order 1 defined as

H1 (Ω) =
{

u|‖u‖H1(Ω) ≤ ∞
}

(2.8)

with

(u,v)H1(Ω) = (u,v)L2(Ω)+(∇u,∇v)L2(Ω) ; ‖u‖H1(Ω) =
[

(u,v)H1(Ω)

]1/2

(2.9)

and ∇ is the gradient vector.

The spaces, V and V0, lead to a bounded energy in a stable solid

∫

Ω
Ci jklεi j(u)εkl(v)dΩ < ∞ . (2.10)

From Eq. (2.10), both V and V0 may be equipped with the energy norm

‖u‖E =

(∫

Ω
Ci jklεi j(u)εkl(v)dΩ

)1/2

(2.11)

where C is a bounded positive definite matrix. The problem stated in the weak form is

given by: find u ∈ V such that

∀v ∈ V0, a(u,v) = f (v) (2.12)

where

a(u,v) =

∫

Ω
εT (u)Dε(v)dΩ , f (v) =

∫

Ω
gT vdΩ+

∫

Γt

t̄T vdΓ (2.13)

Now let V h be a finite-dimensional subspace of space V . The statement of the discrete

problem becomes finding a discrete solution uh ∈ V h that satisfies

∀v ∈ V
h

0 , a(uh,v) = f (v) (2.14)

where V h
0 = {v ∈ V h , v = 0 on Γu}. The principle of virtual work can be written

as follows
∫

Ω
δεTDεdΩ−

∫

Ω
δuT [b−ρü− cu̇]dΩ−

∫

Γt

δuTtdΓ = 0 (2.15)
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2.2 Discrete governing equations and weak form for Reissner-Mindline plate

where g is the body force vector; ρ is the mass density; c is damping factor; ü is

accelerator; u̇ is velocity. The virtual displacements and the compatible strains ε =∇su

within any element can be written as follows

δuh =
np

∑
I=1

NIδdI, δεh =
np

∑
I=1

BIδdI , (2.16)

where np is the total number of nodes in the mesh, dI = [uI vI]
T is the nodal displace-

ment vector and NI is the shape function. The assembly process gives,

∫

Ω
δdTBTDεdΩ−

∫

Ω
δdTNT [b−ρü− cu̇]dΩ−

∫

Γt

δdTNTtdΓ = 0 (2.17)

where B is the standard gradient matrix and D is a matrix of material constants. From

the expressions related to any arbitrary virtual displacements δd, we have

∫

Ω
BTDεdΩ−

∫

Ω
NT [b−ρü− cu̇]dΩ−

∫

Γt

NTtdΓ = 0 . (2.18)

The resulting discrete governing equations can be written as follows:

Mü+Cu̇+Ku = f (2.19)

in which

K =
∫

Ω
BT DBdΩ ; f =

∫

Ω
NTbdΩ+

∫

Γt

NTtdΓ (2.20)

M =

∫

Ω
NTρNdΩ ; C =

∫

Ω
NTcNdΩ . (2.21)

2.2 Discrete governing equations and weak form for

Reissner-Mindline plate

Let Ω be the domain in R
2 occupied by the mid-plane of the plate and w and β =

(βx,βy)
T denote the transverse displacement and the rotations in the x− z and y− z

planes, see Fig. 2.1, respectively. Assuming that the material is homogeneous and

isotropic with Young’s modulus E and Poisson’s ratio ν , the governing differential

equations of the Mindlin-Reissner plate are given by:

−divDbεb(β)−λ tεs(β ) = 0 in Ω (2.22)

−λ tdiv(εs) = p in Ω (2.23)

9



2.2 Discrete governing equations and weak form for Reissner-Mindline plate

w = w̄,β = β̄ on Γ = ∂Ω (2.24)

where t is the plate thickness, p = p(x,y) is the transverse loading per unit area, λ =
kE

2(1+ν) , k = 5/6 is the shear correction factor and Db is the tensor of bending module.

The bending εb and shear strains εs are defined as

Figure 2.1: Geometry of a typical Mindlin-Reissner plate

εb = Ldβ , εs = ∇w+β (2.25)

where ∇ = (∂/∂x,∂/∂y) is the gradient vector and Ld is a differential operator matrix

defined by

LT
d =

[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

]

(2.26)

The weak form of the static equilibrium equations in Eq. (2.24) is as follows
∫

Ω
(δεb)T DbεbdΩ+

∫

Ω
(δεs)T DsεsdΩ =

∫

Ω
δuT p̄dΩ (2.27)

where the displacement field is given by u = [w,βx,βx]
T , and the transverse load is

redefined by p̄ = [p,0,0]T . For the free vibration analysis of a Mindlin-Reissner plate

model, a weak form may be derived form the dynamic form of the principle of virtual

work under the assumptions of first order shear-deformation plate theory
∫

Ω
(δεb)T DbεbdΩ+

∫

Ω
(δεs)T DsεsdΩ+

∫

Ω
δuT müdΩ = 0 . (2.28)

In the case of in-plane buckling analyses and assuming pre-buckling stresses σ̂ 0, non-

linear strains appear and the weak form can be reformulated as (LWNT04)
∫

Ω
(δεb)T DbεbdΩ+

∫

Ω
(δε s)T DsεsdΩ+ t

∫

Ω
∇T δwσ̂ 0∇wdΩ

+
t3

12

∫

Ω

[
∇T δβx ∇T δβy

]
[

σ̂ 0 0

0 σ̂ 0

][
∇βx

∇βy

]

dΩ = 0 .
(2.29)
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2.2 Discrete governing equations and weak form for Reissner-Mindline plate

Eq. (2.29) can be rewritten as:

∫

Ω
(δεb)T DbεbdΩ+

∫

Ω
(δεs)T DsεsdΩ+

∫

Ω
(δεg)T τεgdΩ = 0 (2.30)

where

ε =

[
εb

εs

]

=









βx,x

βy,y

βx,y +βy,x

βx +w,x
βy +w,y









, εg =











wx 0 0

wy 0 0

0 βx,x 0

0 βx,y 0

0 0 βy,x

0 0 βy,y











, τ =






tσ̂0 0 0

0 t3

12
σ̂ 0 0

0 0 t3

12
σ̂ 0






(2.31)

σ̂ 0 =

[
σ0

x σ0
xy

σ 0
xy σ 0

y

]

, Db =
Et3

12(1−ν2)





1 ν 0

ν 1 0

0 0 1−ν
2



 , Ds = k
Et

2(1+υ)

[
1 0

0 1

]

.

(2.32)

Let us assume that the bounded domain Ω is discretized into nel finite elements such

that Ω = ∪nel
e=1Ωe and Ωi 6= Ω j 6= /0 , i 6= j. The finite element solution uh of a dis-

placement model for the Mindlin-Reissner plate is then expressed as:

uh =
np

∑
I=1





NI(x) 0 0

0 NI(x) 0

0 0 NI(x)



dI (2.33)

where np is the total number of nodes NI(x) , dI = [wI θxI θyI]
T are shape functions

and the nodal degrees of freedom of uh associated to node I, respectively. The bending,

shear strains and geometrical strains are written:

εb = ∑
I

Bb
I dI , εs = ∑

I

Bs
IdI , εg = ∑

I

B
g
I dI (2.34)

The formulation of a Mindlin-Reissner plate can then be obtained for static analysis,

Ku = f (2.35)

A general solution of such a homogeneous equation can be written as

u = ūexp(iωt) (2.36)

where t is indicates time, ū is the eigenvector and ω is the natural frequency. The

eigenvalue problem is given by

(
K−ϖ2M

)
ū = 0 (2.37)
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2.2 Discrete governing equations and weak form for Reissner-Mindline plate

and for the buckling analysis,

(K−λcrKg) ū = 0 . (2.38)

The global stiffness matrix and the load vector

K =

∫

Ω

(

Bb
)T

DbBbdΩ+

∫

Ω
(Bs)T

DsBsdΩ , f =

∫

Ω
pNdΩ+ fb (2.39)

in which fb is the remaining part of f subjected to prescribed boundary loads, ϖ is the

natural frequency, M is the global mass matrix.

M =
∫

Ω
NT mNdΩ with m = ρ






t 0 0

0 t3

12
0

0 0 t3

12




 (2.40)

The geometrical stiffness matrix is given by

Kg =
∫

Ω
(Bg)T τBgdΩ . (2.41)
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Chapter 3

An alternative alpha Finite Element

Method for free and forced vibration

analysis of solids using triangular

element

3.1 Introduction

The analysis of natural frequencies and forced response has played a very important

role in the design of structures in mechanical, civil and aerospace engineering appli-

cations (Hug87, ZT00). A thorough study of the dynamic behavior of these structures

is essential in assessing their full potential. Therefore, it is necessary to develop ap-

propriate models capable of accurately predicting their dynamic characteristics. In

practical applications, the lower order linear triangular element is mostly preferred due

to its simplicity, efficiency, less demand on the smoothness of the solution, and ease

for adaptive mesh refinements for solutions of desired accuracy.

In solving practical engineering problems, numerical methods have become the

most widely used tools. The finite element method (FEM) is considered to be a very ef-

fective and versatile approach for these problems. A generalized strain smoothing tech-

nique was proposed, which relies on the strain smoothing technique (CWYY01). The

smoothed FEM results in the application of this strain smoothing idea to the standard fi-

nite element method. The smoothed FEM (SFEM) has also been developed for general

n-sided polygonal elements (nSFEM) (DLN07), dynamic analysis (DL07, NXNT08,

RBZ07), plate and shell analysis (NXRBD08a, NTRNXB08, RAB07b, RA06a, BRZ08)

and coupled to partition of unity enrichment (RB05, RB06a, RAB07a). The latter pa-

per also provides a review of strain smoothing in FEM. A general framework for this

strain smoothing technique in FEM was proposed in (Liu08). Based on the idea of the

13



3.2 Construction of an assumed strain field

node-based smoothed point interpolation method (NS-PIM) and the SFEM, a node-

based smoothed finite element method (NS-FEM)(LNTNXL09) for 2D solid mechan-

ics problems has been developed.

The finite element methods with free parameters have been well known via previ-

ous contributions in (BF85, Fel94). An alpha finite element method (αFEM) (LNTL08)

using triangular and tetrahedral elements were formulated to obtain “exact” or “best

possible” solutions for a given problem by scaling the gradient of strains in the natural

coordinates and Jacobian matrices with a scaling factor α . The method is not variation-

ally consistent but proven stable and convergent. The αFEM can produce approximate

solutions that “very close to exact” solutions in the strain energy for all overestimation

problems, and “best” possible solution to underestimation problems.

Recently, Liu et al (LNXNTX09) have proposed a superconvergent alpha finite

element method (SαFEM) using triangular meshes. In the SαFEM (now AαFEM),

an assumed strain field was formulated by adding the averaged nodal strains with an

adjustable factor α to the compatible strains. The new Galerkin-like weak form, as

simple as the Galerkin weak form, was then obtained for this constructed strain field.

It was proven theoretically and numerically that the AαFEM is much more accurate

than the original FEM-T3 and even more accurate than the FEM-Q4 when the same

sets of nodes are used. The AαFEM can produce both lower and upper bounds to

the exact solution in the energy norm for all elasticity problems by properly choosing

an α . In addition, a preferable-α approach has also been devised for the AαFEM

to produce very accurate solutions for both displacement and energy norms and the

superconvergent rate in the energy error norm. Furthermore, a model-based selective

scheme is proposed to formulate a combined SαFEM/NS-FEM model that handily

overcomes the volumetric locking problems. It is also shown that AαFEM performs

excellently for singularity problems (LNXNTX09).

In this chapter, an alternative alpha finite element method is further extended to the

free and forced vibration analysis of 2D solids. The AαFEM is based on three-nodes

triangular elements and a properly chosen α parameter. The natural frequency and

eigenvalue-mode analysis of the free vibration are obtained by solving an eigenvalue

problem. In addition, an implicit time integration scheme is used in order to solve the

forced vibration system equations. The numerical results demonstrate that the AαFEM

is always more accurate than the original FEM-T3, and even more accurate than FEM-

Q4. It also gives a good agreement compared to several other methods in the literature.

3.2 Construction of an assumed strain field

The problem domain Ω is partitioned into Ne triangular elements and contains a total

of N nodes. The domain, Ω, is then divided into a set of smoothing domains Ωk

by connecting node k to centroid of the surrounding triangles as shown in Fig. 3.1a.

14



3.2 Construction of an assumed strain field

Ωk is then further divided into M subdomains Ωk,i as shown in Fig. 3.1b such that

Ωk =
M⋃

i=1

Ωk,i , Ωk,i ∩Ωk, j = /0 , i 6= j. The approximation of the displacement field

(a) (b)

Figure 3.1: (a) Triangular elements and smoothing cells associated with nodes. (b)

Smoothing cell and M triangular sub-domains associated with node k.

uh = (uh
x,u

h
y) of the elasticity problem can then be expressed as

uh (x) =
N

∑
I=1

NI (x)dI (3.1)

with di being the vector of (unknown) nodal displacements. The compatible strain εk,i

at any point using the assumed displacement field based on triangular elements. The

strain tensor is given by

εk,i = ∇suk,i(x) . (3.2)

Since the displacement is linear, εk,i is constant in Ωk,i and different from element to

element. Such a piecewise constant strain field obviously does not represent well the

exact strain field, and should be somehow modified or corrected. To make a proper

correction, a smoothed strain for node k is introduced as follows(LNXNTX09):

ε̄k =
1

Ak

∫

Ωk

εk,i (x)dΩ (3.3)

The area of the smoothing domain Ak is given by

Ak =

∫

Ωk

dΩ =
1

3

Ne
k

∑
i=1

Ae
i (3.4)
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3.2 Construction of an assumed strain field

where Ne
k is the number of elements connected to node k and Ae

i is the area of the ith

element around node k. The strains εk, ε I at points k, I are then calculated as

ε I = εP = εk,i −
α
√

6

3

(
ε̄k − εk,i

)

εk = α
√

6ε̄k +
(

1−α
√

6
)

εk,i −
α
√

6

3

(
ε̄k − εk,i

)
(3.5)

where α is an adjustable factor. The strain field ε̂ at any point within a sub-triangular

domain Ωk,i is now re-constructed as (LXZNT08, LNXNTX09):

ε̂ (x) = L1 (x)εk +L2 (x)εP +L3 (x)ε I

= L1 (x)

(

α
√

6ε̄k +
(

1−α
√

6
)

εk,i −
√

6

3
α
(
ε̄k − εk,i

)

)

+L2 (x)

(

εk,i −
√

6

3
α
(
ε̄k − εk,i

)

)

+L3 (x)

(

εk,i −
√

6

3
α
(
ε̄k − εk,i

)

)
(3.6)

where L1, L2, L3 are the area coordinates for the sub-triangle Ωk,i which form a parti-

tion of unity. Eq. (3.6) can be simplified as

ε̂ (x) = (L1 +L2 +L3)εk,i +α
√

6L1 (x)
(
ε̄k − εk,i

)
− (L1 +L2 +L3)α

√
6

3

(
ε̄k − εk,i

)

(3.7)

which can be further simplified as

ε̂ (x) = εk,i +αεad
k,i (3.8)

where εk,i is constant in Ωk,i and

εad
k,i (x) =

√
6
(
ε̄k − εk,i

)
(

L1 (x)−
1

3

)

. (3.9)

From Eq. (3.9), εad
k,i is the additional strain that is a linear function in Ωk,i. We now

prove that the constructed strain field satisfies an orthogonality condition to the con-

stant stress field. Using the formula (ZT00)

∫

Ωk,i

L
p
1L

q
2Lr

3dA =
p!q!r!

(p+q+ r+2)!
2Ak,i (3.10)

It is clear that

∫

Ωk,i

εad
k,idΩ =

√
6
(
ε̄k − εk,i

)
∫

Ωk,i

(

L1 −
1

3

)

dΩ = 0 (3.11)
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3.3 Weak form for modified strain field

which is termed as zero-sum property of the correction strain, which is similar to

the orthogonality condition that is used in the stabilization formulation (BB86, BB83,

FO04). The zero-sum property results in the following total zero-sum of the additional

strain over the entire problem domain:

∫

Ωk,i

εaddΩ =
N

∑
k=1

M

∑
i=1

∫

Ωk,i

εad
k,idΩ = 0 . (3.12)

Therefore, we have

∫

Ω
ε̂dΩ =

∫

Ω
εdΩ+

∫

Ω
εaddΩ =

N

∑
k=1

M

∑
i=1

∫

Ωk,i

εk,idΩ (3.13)

which implies that the strain εk,i does not effect the constant stress state that is needed

to satisfy a patch test (PT00, SR90), and hence ensures the convergence. Thus a strain

field ε̂ based on combining the constant compatible strains ε of the FEM and the node-

based smoothed strains ε̄ of the NS-FEM has been carefully reconstructed, so that

AαFEM can always pass the standard patch tests ensuring the convergence for any

finite α ∈ ℜ. In addition, an α is also introduced to regularize the variation of the

strain field and results in an effectively softened stiffness matrix.

3.3 Weak form for modified strain field

We use the modified Hellinger-Reissner variational formulation:

N

∑
k=1

M

∑
i=1

[∫

Ωk,i

δ
(

εk,i +αεad
k,i

)T

D
(

εk,i −αεad
k,i

)

dΩ

]

−
∫

Ω
δuTbdΩ−

∫

Γt

δuT
dΓ= 0

(3.14)

The Galerkin-like weak form, Eq. (3.14), is an extended form of the standard Galerkin

weak formulation to conform the strain field. The Galerkin-like weak form becomes

the standard Galerkin weak form as εad
k,i = 0. Substituting the approximation, Eq. (3.1),

into Eq. (3.14), and using the arbitrariness of the variation, we obtain

K̂AαFEM
α d̂ = f (3.15)

where K̂AαFEM
α is the global stiffness matrix with the scaled gradient strains

K̂AαFEM
α =

N

∑
k=1

M

∑
i=1

∫

Ωk,i
BT

k,iDBk,idΩ−α2
N

∑
k=1

M

∑
i=1

∫

Ωk,i

(

Bad
k,i

)T

DBad
k,idΩ

= KFEM-T3−α2K̂AαFEM
ad

(3.16)

and f is the global force vector given in Eq. (2.39). The KFEM-T3 is the global stiffness

matrix of the standard FEM (T3). K̂AαFEM
ad is derived from the corrected strain, and
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3.4 Forced and free vibration analysis

hence it is termed as corrected stiffness matrix that helps to reduce the well-known

overly-stiff behaviour of the standard FEM. In Eq. (3.16),

Bad
k,i =

√
6
(
B̄k −Bk,i

)
(

L1 −
1

3

)

(3.17)

and K̂AαFEM
ad can be rewritten explicitly as

K̂AαFEM
ad =

N

∑
k=1

M

∑
i=1

∫

Ωk,i

(

Bad
k,i

)T

DBad
k,idΩ

= 6
N

∑
k=1

M

∑
i=1

(
B̄k −Bk,i

)T
D
(
B̄k −Bk,i

)∫

Ωk,i

(

L1 −
1

3

)2

dΩ

=
1

3

N

∑
k=1

M

∑
i=1

(
B̄k −Bk,i

)T
D
(
B̄k −Bk,i

)
Ak,i

(3.18)

where B̄k =
1

Ak

M

∑
i=1

∫

Ωk,i

Bk,idΩ =
1

Ak

M

∑
i=1

Ak,iBk,i is the nodal strain displacement matrix

of node k, Bk,i is the strain displacement matrix of sub-triangular domain i connecting

to vertex k, see Fig. 3.1. It is clear that the corrected stiffness matrix K̂AαFEM
ad accounts

for the strain gap, Eq. (3.11), between the compatible (element) strains of the FEM

and the smoothed nodal strains of the NS-FEM. Note that the present formulation,

Eq. (3.16), is always stable for any finite parameters α . Hence, α can be manipulated

without affecting the convergence property of the method (LNTL08), i.e. the method

converges for any α . Manipulating K̂AαFEM
ad through α can, however, change the con-

vergence rate and the error level of the resulting method. Eq. (3.16) can alternatively

be expressed in the following form:

K̂AαFEM
α = K̂AαFEM

α=0 −α2K̂AαFEM
ad . (3.19)

We note that in the AαFEM is altered only the stiffness matrix. The other quantities:

force vector f, mass matrix M and damping matrix C remain unchanged.

3.4 Forced and free vibration analysis

From Eq. (3.19), the discretized system of equations in the AαFEM can be expressed

Mü+Cu̇+ K̂AαFEM
α u = f (3.20)

The Rayleigh damping is used where the damping matrix C is assumed to be a linear

combination of M and K̂AαFEM
α . I also used the Newmark method (Red93) which is
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3.5 Numerical results

a generation of the linear acceleration method. The latter method assumes that the

acceleration varies linearly within the interval (t, t+∆t).

ü = üt +
1

∆t
(üt+∆t − üt)τ (3.21)

u̇t+∆t = u̇t +[(1−δ ) üt +δ üt+∆t ]∆t (3.22)

ut+∆t = ut + u̇∆t +

[(
1

2
−β

)

üt +β üt+∆t

]

∆t2 . (3.23)

The response at t +∆t is obtained by evaluating the equation of motion at time t +∆t.

In this chapter, δ = 0.5 and β = 0.25 are used.

3.5 Numerical results

3.5.1 Static analysis

In this section, I will illustrate a numerical technique to determine an optimal value

of α that can produce a nearly exact solution in strain energy. This value will then be

used for all the problems in this manuscript.

3.5.1.1 Cantilever beam due to a parabolic traction at the free end

A cantilever beam with length L and height D and unit thickness is studied as a bench-

mark here. The beam is subjected to a parabolic traction at the free end as shown in

Fig. 3.2. The related parameters are taken as length L= 48m, height D = 12m, Young’s

module E = 3.0×107kPa, Poisson’s ratio ν = 0.3, P = 1000N. The analytical solution

is available and can be found in a textbook by Timoshenko and Goodier (TG70).

ux =
Py

6EI

[

(6L−3x)x+(2+ ν̄)
(

y2 − D2

4

)]

uy =− Py
6EI

[

3ν̄y2 (L− x)+(4+5ν̄) D2x
4

+(3L− x)x2
] (3.24)

where the moment of inertia I for a beam with rectangular cross section and unit thick-

ness is given by I = D3

12
.

The meshes based on triangular elements are used as shown in Fig. 3.2. The exact

strain energy for this problems is 4.4746, that is obtained by α = 1.4152 independent

of the mesh refinement as shown in Fig. 3.3. The convergence of normalized strain

energy with respect to the parameters α are described in Fig. 3.4. As computed, the

factor α = 1.4152 leads to the highest accuracy compared with the other methods.

The solutions in displacement of AαFEM is also compared with those of the FEM-T3,
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3.5 Numerical results

FEM-Q4, NS-FEM-T3(LNTNXL09) and ES-FEM-T3(LNTL09) as given in Fig. 3.5.

It is found that the FEM-T3 is very stiff while the NS-FEM-T3 is very soft compared

to the exact solution. The AαFEM is stiffer than the NS-FEM-T3 and softer than

the FEM-T3, and is very close the exact solution. The AαFEM is clearly a good

competitor to the ES-FEM-T3 that was found elsewhere to be one of the most accurate

models using linear triangular elements. The AαFEM is also more accurate than the

FEM-Q4. From Fig. 3.6 and Fig. 3.7, it is observed that the most accurate methods

tested here is the AαFEM.

0 8 16 24 32 40 48
−5

0

5

x(m)

y(
m

)

Figure 3.2: A cantilever beam and its meshes.

3.5.1.2 Infinite plate with a circular hole

Fig. 3.8 shows a plate with a circular hole of radius a = 1m. The plate is subjected to a

unidirectional tensile load of σ = 1.0N/m at infinity in the x-direction. Due to its sym-

metry, only the upper right quadrant of the plate is modeled. Plane strain conditions

are assumed and E = 1.0×103 N/m2, Poisson’s ratio ν = 0.3. Symmetric conditions

are imposed on the left and bottom edges, and the inner boundary of the hole is traction

free. The exact solution of the stress for the corresponding infinite solid is (TG70)

σxx(r,θ) = 1− a2

r2

[
3
2

cos2θ + cos4θ
]
+ 3a4

2r4 cos4θ

σyy(r,θ) =−a2

r2

[
1
2

cos2θ − cos4θ
]
− 3a4

2r4 cos4θ

τxy(r,θ) =−a2

r2

[
1
2

sin2θ + sin4θ
]
+ 3a4

2r4 sin4θ

(3.25)

where (r,θ) are the polar coordinates and θ is measured counterclockwise from the

positive x-axis. Traction boundary conditions are imposed on the right (x = 5.0) and

top (y = 5.0) edges based on the exact solution Eq. (3.25). The displacement compo-

nents corresponding to the stresses are

u1(r,θ) =
a

8µ

[
r
a
(κ +1)cosθ +2a

r
((1+κ)cosθ + cos3θ)−2a3

r3 cos3θ
]

u2(r,θ) =
a

8µ

[
r
a
(κ −1)sinθ +2a

r
((1−κ)sinθ + sin3θ)−2a3

r3 sin3θ
] (3.26)

where µ = E/(2(1+ ν)) , and κ = 3− 4ν . The mesh with 128 triangular elements

is shown in Fig. 3.9. The exact strain energy of the problem is 1.1817717×10−2, the
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3.5 Numerical results
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Figure 3.3: Strain energy of the cantilever beam versus parameter α . These series of

calculations allow to find an approximatively optimal value for α . This figure also

shows that for the range of regular meshes tested, this “optimal” value is mesh de-

pendent (all curves intersect the exact energy line at the same point with meshes of the

same aspect ratio). Also notice that the sensitivity to α decreases with mesh refinement

(smaller slope) and that the relationship between the strain energy and α being approx-

imately linear, two simulations for two different values of α and a coarse mesh would

be sufficient to estimate the optimal value of α . This was also observed in Fig. 3.10.

21

Chapter2/Chapter2Figs/EPS/parameter_alpha_energy_cantilever.eps


3.5 Numerical results

16x4 24x6 32x8 40x10 48x12
0.94

0.96

0.98

1

1.02

1.04

 

 
Exact
α=1.2
α=1.3
α=1.4
α=1.5
α=1.6
α=1.4152

N
o

rm
al

iz
ed

st
ra

in
en

er
g

y

Mesh index

Figure 3.4: Normalized strain energy of the cantilever beam

0 5 10 15 20 25 30 35 40 45 50
−10

−8

−6

−4

−2

0

2
x 10−3

 

 
Analytical solu.
FEM−T3
FEM−Q4
NS−FEM
ES−FEM
AαFEM(α=1.4152)

V
er

ti
ca

l
d

is
p

la
ce

m
en

t

x(y=0)

Figure 3.5: Vertical displacement at central line (y = 0) using triangular elements of

the cantilever beam
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3.5 Numerical results
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Figure 3.6: Convergence and the estimated rate in the displacement error norm of the

cantilever beam. Note that the proposed method, AαFEM outperforms all others and

is almost two orders of magnitude more accurate than the FEM-T3.
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Figure 3.7: Convergence and the estimated rate in the energy error norm of the can-

tilever beam.
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3.5 Numerical results

estimated solutions at α = 1.4156 for the strain energy are 1.1817966×10−2 shown in

Fig. 3.10. As resulted in Fig. 3.11 with the parameter α = 1.4156, the convergence of

strain energy is best compared with other elements. Fig. 3.12 and Fig. 3.13 illustrate

the displacements along the bottom and the left boundary of the methods for the mesh

with 128 triangular elements. It is shown that the AαFEM is more accurate than FEM-

T3, NS-FEM and ES-FEM. Fig. 3.14–Fig. 3.17, in the energy norms.

Remark the performance of the proposed method can be usefully compared with

that of the smoothed finite element method (SFEM). Similarly to the SFEM, the pro-

posed method shows different behaviours in the energy and displacement norms. The

smoothed FEM, a review of which is presented in (BRNX+10), is superconvergent in

the energy norm for the one-subcell version (which suffers from rank deficiency) while

this superconvergence is lost for larger numbers of subcells. Stabilization techniques

can be devised in the SFEM to combine the strengths of the one-subcell and large-

subcell-number methods. In the present method, this rank deficiency is not present.

At the cost of a slightly larger bandwidth and a tunable parameter, the AαFEM pro-

vides a stable and accurate alternative to standard FEM which can provide both high

displacement and stress accuracy and convergence rates.

Figure 3.8: Infinite plate with a circular hole and its quarter model

3.5.2 Free and forced vibration analysis

For two problems, we observed that the optimal value of α varies in the interval of

1.4÷1.5. Here, we choose the parameter α = 1.4156 for free and force vibration anal-

ysis. Although the parameter α chosen may not be optimal for all dynamic problems,

the results found are acceptable and more accurate than those of FEM-T3, FEM-Q4

and are a good competitor to serval other methods in the literature.
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3.5 Numerical results
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Figure 3.9: Domain discretization using 128 triangular elements for the quarter model

of the infinite plate with a circular hole
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Figure 3.10: Strain energy of the infinite plate with a hole as a function of parameter

α . See also Fig. 3.3.
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3.5 Numerical results
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Figure 3.11: Normalized strain energy of the infinite plate with a hole along the bottom

boundary for various meshes and values of parameter α . Note that it is possible to

obtain overestimation or underestimation of the exact strain energy only by tuning

parameter α .
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Figure 3.12: Horizontal displacement of the infinite plate with a hole along the bottom

boundary
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Figure 3.13: Vertical displacement of the infinite plate with a hole along the left bound-

ary.
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Figure 3.14: Distribution of stress along the left boundary (x = 0) of the infinite plate

with a hole subjected to unidirectional tension
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3.5 Numerical results
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Figure 3.15: Distribution of stress along the bottom boundary (y = 0) of the infinite

plate with a hole subjected to unidirectional tension
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Figure 3.16: Solution bounds of energy for infinite plate with a circular hole.
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3.5 Numerical results
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Figure 3.17: Convergence and the estimated rate in the displacement norm of the in-

finite plate with a circular hole. Note that the proposed method, for this value of α is

slightly outperformed by the ES-FEM in terms of displacement accuracy. As shown in

Fig. 3.18, this is not the case in the energy norm.

3.5.2.1 Free vibration analysis of a cantilever beam

The free vibration analysis presented for a 2-D cantilever beam as shown in Fig. 3.19.

The dimensions of the beam are: length L = 100mm, height D = 10mm, thickness t =

1.0mm, Young’s modules E = 2.1×104kg f/mm4, Poisson’s ratio ν = 0.3, and mass

density ρ = 8.0×10−10kg f s2/mm4. A plane stress problem is considered.

The first eight eigen-modes of the beam are shown in Fig. 3.20 and results are

listed in Tab. 3.1. It is observed that AαFEM converges much faster than the FEM-T3,

FEM-Q4 especially for a very coarse mesh (20× 2 elements). For 40× 4, AαFEM

achieves comparable accuracy compared with the corresponding reference solutions.

In addition, Tab. 3.2 describes the error of the approximated solution compared with

Euler–Bernoulli beam theory. It is clear that the frequency errors of the AαFEM are

slightly smaller than those of the other methods.

3.5.2.2 Free vibration analysis of tapered cantilever plate with central circular

hole

Consider the tapered cantilever plate with a central circular hole, shown in Fig. 3.21.

The following material property parameters are used in the analysis: mass density

ρ = 1, Young’s modulus E = 1 and Poisson’s ratio ν = 0.3, plane stress condition is
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Figure 3.18: Convergence and the estimated rate in the energy norm of the infinite plate

with a circular hole. Note the initial (for coarse meshes) superconvergence attenuates

and that the “asymptotic” rate of convergence is the same as that of the other method

tested.
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Figure 3.19: A cantilever beam and its mesh
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3.5 Numerical results

Table 3.1: First eight natural frequencies of a cantilever beam

No.elements FEM-T3 FEM-Q4 ES-FEM1 MLPG2 NBNM3 AαFEM

(20×2) 1119 924 853 824.44 844.19 867.80

6643 5561 5078 5070.32 5051.21 5228.45

80 12852 13484 12828 12894.73 12827.60 12833.66

triangular 17306 14732 13246 13188.12 13258.21 13858.33

elements 31173 27003 23783 24044.43 23992.82 25366.81

38686 40502 35784 36596.15 36432.15 38473.60

47342 41636 38298 38723.90 38436.43 38977.74

64769 58075 48533 50389.01 49937.19 54022.01

(40×4) 907 879 827 824.44 844.19 827.62

5431 5267 4950 5070.32 5051.21 4968.00

320 12834 13467 12826 12894.73 12827.60 12826.57

triangular 14286 13863 13006 13188.12 13258.21 13099.22

elements 25949 25193 23554 24044.43 23992.82 23836.27

38511 38456 35778 36596.15 36432.15 36409.61

39612 40370 38408 38723.90 38436.43 38453.30

54647 53043 49029 50389.01 49937.19 50215.89

1 Edge-based Smoothed Discrete Shear Gap Triangle Element (ES-DSG3)(LNTL09)
2 Meshless Local Petrov-Galerkin (MLPG) (GL01)
3 Node-By-Node Method (NBNM)(Nag99)

Table 3.2: Numerical error comparison with Euler–Bernoulli beam natural frequencies

Mode FEM-T3 FEM-Q4 ES-FEM MLPG NBNM AαFEM Euler beam

1 907 824 827 824 844.19 827.62 827.65

Error(%) 9.594 5.841 -0.072 -0.435 1.959 -0.0036 -

2 5431 4944 4950 5070 5051.21 4968.00 5186.77

Error(%) 4.709 4.681 -4.565 -2.251 -2.683 -4.2178 -
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3.5 Numerical results

MODE 1, FREQUENCY = 822.0314 [Hz] MODE 2, FREQUENCY = 4934.8035 [Hz]

MODE 3, FREQUENCY = 12825.8706 [Hz] MODE 4, FREQUENCY = 13012.3397 [Hz]

MODE 5, FREQUENCY = 23677.3354 [Hz] MODE 6, FREQUENCY = 36162.898 [Hz]

MODE 7, FREQUENCY = 38448.6968 [Hz] MODE 8, FREQUENCY = 49865.6182 [Hz]

Figure 3.20: First eight modes of a cantilever beam by the AαFEM
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3.5 Numerical results

assumed. Tab. 3.3 shows the numerical error of the AαFEM compared to several other

methods. The corresponding mode shapes are shown in Fig. 3.22. The above results

show the good performance of the present method. Also, it is found that the AαFEM

achieves higher accurate than FEM-T3 as well as reference solutions.
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Figure 3.21: Tapered cantilever plate with central circular hole and its meshes

3.5.2.3 Free vibration analysis of a shear wall

A shear wall with four openings (see Fig. 3.23) is analyzed, which has been solved

using BEM by Brebbia (BTW84). The bottom edge is fully clamped. Plane stress

conditions are considered with E = 10× 103N/m2 ,ν = 0.2 ,t = 1.0m,ρ = 1.0N/m3.

The natural frequencies of the first 8 modes are calculated and shown in Fig. 3.24 and

in Tab. 3.4. The natural frequencies obtained with the AαFEM are lower than those of

the FEM-T3 and provide the best results compared to the reference solution provided

by Brebbia et.al. (BTW84).

3.5.2.4 Free vibration analysis of a connecting rod

A free vibration analysis of a connecting rod as shown in Fig. 3.25 is performed.

The plane stress problem is considered with E = 1.0×1010N/m2,ν = 0.3,ρ = 7.8×
103kg/m3. The nodes on the left inner circumference are fixed in two directions.

Again, the AαFEM are always superior to FEM-T3 shown in Tab. 3.5. It is seen that

the AαFEM using triangular elements can be applied to the vibration analysis with

high reliability. The modes using the present method are also illustrated in Fig. 3.26.
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3.5 Numerical results

MODE 1, FREQUENCY = 0.073057 [rad/s] MODE 2, FREQUENCY = 0.16379 [rad/s]

MODE 3, FREQUENCY = 0.2117 [rad/s] MODE 4, FREQUENCY = 0.27792 [rad/s]

MODE 5, FREQUENCY = 0.32091 [rad/s] MODE 6, FREQUENCY = 0.44401 [rad/s]

MODE 7, FREQUENCY = 0.44998 [rad/s] MODE 8, FREQUENCY = 0.51477 [rad/s]

Figure 3.22: First eight modes of the tapered cantilever plate by the AαFEM
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3.5 Numerical results
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Figure 3.23: A shear wall with four openings and the mesh
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3.5 Numerical results

MODE 1, FREQUENCY = 2.027 [rd/s] MODE 2, FREQUENCY = 7.0054 [rd/s]

MODE 3, FREQUENCY = 7.6085 [rd/s] MODE 4, FREQUENCY = 11.6181 [rd/s]

MODE 5, FREQUENCY = 15.1223 [rd/s] MODE 6, FREQUENCY = 18.177 [rd/s]

MODE 7, FREQUENCY = 19.6959 [rd/s] MODE 8, FREQUENCY = 22.0139 [rd/s]

Figure 3.24: First eight frequencies of the shear wall by the AαFEM
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3.5 Numerical results

Table 3.3: First eight frequencies (rd/s) of the tapered cantilever plate

Mode FEM-T3 Zhao(ZS96) AαFEM Exact solution(ZS95)

Mode 1 0.0773 0.0833 0.0731 0.0744

Error(%) 3.9 11.9624 -1.75 -

Mode 2 0.1699 0.1661 0.1638 0.1648

Error(%) 3.09 0.7888 -0.61 -

Mode 3 0.2223 0.2334 0.2117 0.2055

Error(%) 8.18 13.5766 3.02 -

Mode 4 0.3055 0.3302 0.2779 0.2939

Error(%) 3.95 12.3511 -5.44 -

Mode 5 0.3531 0.3525 0.3209 0.3243

Error(%) 8.88 8.6957 -1.05 -

Mode 6 0.4763 0.4234 0.4441 0.4399

Error(%) 8.27 -3.7509 0.95 -

Mode 7 0.4821 0.4624 0.4499 0.4482

Error(%) 7.56 3.1682 0.38 -

Mode 8 0.5421 0.4805 0.5148 0.4973

Error(%) 9.01 -3.3782 3.52 -
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Figure 3.25: Geometric model of an automobile connecting rod and its meshes
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3.5 Numerical results

Table 3.4: First eight frequencies (rd/s) of a shear wall

No.elements FEM-T3 ABAQUS BET4 MLPG(GL01) AαFEM

2.146 2.073 2.079 2.069 2.0270

7.342 7.096 7.181 7.154 7.0054

952 7.653 7.625 7.644 7.742 7.6085

triangular 12.601 11.938 11.833 12.163 11.6181

elements 16.079 15.341 15.947 15.587 15.1223

18.865 18.345 18.644 18.731 18.1770

20.525 19.876 20.268 20.573 19.6959

22.793 22.210 22.765 23.081 22.0139

2.0634 2.073 2.079 2.069 2.0105

7.0926 7.096 7.181 7.154 6.9554

7.6206 7.625 7.644 7.742 7.6011

3808 11.8926 11.938 11.833 12.163 11.4767

triangular 15.3559 15.341 15.947 15.587 14.9788

elements 18.3444 18.345 18.644 18.731 18.0807

19.8988 19.876 20.268 20.573 19.5951

22.2439 22.210 22.765 23.081 21.8834

4 Boundary Element Techniques (BET) (BTW84)
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3.5 Numerical results

Table 3.5: First eight natural frequencies (Hz) of a connecting rod

No.elements FEM-T3 FEM-Q45 FEM-Q86 ES-FEM AαFEM

5.454 5.1369 5.1222 5.1368 5.0865

23.466 22.050 21.840 22.0595 21.8690

574 49.803 49.299 49.115 49.3809 49.2016

triangular 55.516 52.232 51.395 52.0420 51.6044

elements 99.715 93.609 91.787 92.7176 92.3010

116.243 108.59 106.153 109.5887 107.9777

147.192 134.64 130.146 132.6795 132.3226

166.975 159.45 156.142 158.2376 158.0875

5.209 5.124 5.1222 5.1246 5.1082

22.291 21.909 21.840 21.8805 21.8191

2296 49.360 49.211 49.115 49.1726 49.1125

triangular 52.592 51.657 51.395 51.5181 51.3580

elements 94.154 92.390 91.787 91.9305 91.7107

109.474 107.51 106.153 106.8473 106.3088

135.321 131.48 130.146 130.5546 130.2115

160.165 157.51 156.142 156.3497 156.1473

5 Four Node Quadrilateral Element (FEM-Q4)(Bat96)
6 Eight Node Hexahedral Element (FEM-Q8)(ZT00)
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3.5 Numerical results

MODE 1, FREQUENCY = 5.0865 [Hz] MODE 2, FREQUENCY = 21.869 [Hz]

MODE 3, FREQUENCY = 49.2016 [Hz] MODE 4, FREQUENCY = 51.6044 [Hz]

MODE 5, FREQUENCY = 92.301 [Hz] MODE 6, FREQUENCY = 107.9777 [Hz]

MODE 7, FREQUENCY = 132.3226 [Hz] MODE 8, FREQUENCY = 158.0875 [Hz]

Figure 3.26: First eight modes of a connecting rod by the AαFEM
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3.5 Numerical results

3.5.2.5 Free vibration analysis of a machine part

Next, consider the eigenvalue analysis for a machine part designed by CAD as shown

in Fig. 3.27. The two-dimensional plane stress problem is assumed with E = 2.1×
104kg f/mm2,ν = 0.3,ρ = 8.0×10−10kg f s2/mm4, t = 1.0mm.

The natural frequencies of the first eight modes are presented in Tab. 3.6. The results

obtained from the AαFEM agree with the reference solution and are more accurate

than the FEM-T3 for the same mesh. The modes calculated using the AαFEM are

shown in Fig. 3.28.

Figure 3.27: A machine part and its meshes

3.5.2.6 Forced vibration analysis of a cantilever beam

Then last example is the cantilever beam is show in Fig. 3.29. This beam is subjected

to a tip harmonic loading P = 1000g(t) in the y-direction. Plane strain conditions are

assumed with thickness t = 1, Young’s modulus E = 3×107 and Poisson’s ratio ν =
0.3. The time step ∆t = 1×10−3 is used. The AαFEM is more accurate than the FEM-

T3 and FEM-Q4 for large time steps, as shown in Fig. 3.30 and Fig. 3.31. Of course,

this accuracy decreases if the time step is too large (an example for ∆t = 5× 10−2 is

given in Fig. 3.31), the accuracy of the AαFEM decreases. As shown in Fig. 3.32 the

results obtained by the AαFEM without damping (c = 0) are very good. The results

with damping (c = 0.4) are very stable as shown in Fig. 3.33.
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3.5 Numerical results

Table 3.6: First eight natural frequencies (Hz) of a machine part

No.nodes FEM-T3 FEM(NTV92) NBNM(Nag99) AαFEM

954.208 909.09 906.50 899.5509

1684.134 1639.45 1640.04 1613.7050

637 4602.111 4434.00 4426.57 4372.3597

triangular 10383.386 9944.57 9932.99 9831.4070

elements 11498.753 11209.39 11226.98 11192.9315

17898.438 17522.44 17516.87 17337.4634

22907.050 - - 22376.2442

24794.438 - - 24057.6648

961.745 909.09 906.50 899.3090

1692.864 1639.45 1640.04 1614.9336

838 4611.028 4434.00 4426.57 4377.1788

triangular 10363.961 9944.57 9932.99 9833.8197

elements 11539.766 11209.39 11226.98 11182.8249

17961.157 17522.44 17516.87 17349.3836

22941.550 - - 22370.2123

24878.957 - - 24034.7601
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3.5 Numerical results

MODE 1, FREQUENCY = 899.309 [Hz] MODE 2, FREQUENCY = 1614.9336 [Hz]

MODE 3, FREQUENCY = 4377.1788 [Hz] MODE 4, FREQUENCY = 9833.8197 [Hz]

MODE 5, FREQUENCY = 11182.8249 [Hz] MODE 6, FREQUENCY = 17349.3836 [Hz]

MODE 7, FREQUENCY = 22370.2123 [Hz] MODE 8, FREQUENCY = 24034.7601 [Hz]

Figure 3.28: First eight modes a machine part by the AαFEM
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3.5 Numerical results

Figure 3.29: Cantilever beam for forced vibration and harmonic loading
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Figure 3.30: Displacement uy at point A using Newmark method (δ = 0.5,β =
0.25,g(t) = sinωt)
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Figure 3.31: Displacement uy at point A using Newmark method (δ = 0.5,β =
0.25,g(t) = sinωt)
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Figure 3.32: Transient displacement uy at point A using Newmark method (δ =
0.5 and β = 0.25)
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Figure 3.33: Transient displacement uy at point A using Newmark method (δ =
0.5 and β = 0.25)

3.6 Concluding remarks

The static, free and forced vibration analysis of two dimensional solids have been pre-

sented in this chapter. An assumed strain field is carefully constructed based on the

piecewise constant strain field of linear triangular FEM models with an adjustable pa-

rameter α (α ∈ [0,1.6]). When α = 0, the present element becomes the standard FEM

and hence produces a lower bound in the strain energy. For α = 1.6, the element be-

comes the node-based smoothed FEM (NS-FEM) model and leads to an upper bound

in the strain energy. For intermediate values of α , the element was shown to under-

estimate the strain energy. It was also shown that a so-called “optimal” value for α
could be easily found such that the exact strain energy is recovered. Through some

numerical examples showed, we conclude: (1) The numerical results of the AαFEM

using triangular elements are always more accurate than those of FEM-T3 and even

more accurate than those of the FEM-Q4 with the same number of nodes. The con-

vergence rates in the energy norm are asymptotically the same as these standard FEM

techniques; (2) In the natural frequency and forced vibration analyses, the AαFEM

is always stable and gives more accurate results than the corresponding FEM-T3 and

FEM-Q4; (3) The AαFEM is easy to implement into a finite element program and

triangular meshes are ideal for complicated problem domains.
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Chapter 4

An alternative alpha Finite Element

Method for Mindlin-Reissner plates

analysis with Discrete Shear Gap

technique

4.1 Introduction

The finite element analysis of plate structures plays an important role in engineering

applications because the plate is one of the most widely used structural components. In

practical applications, lower-order Mindlin-Reissner plate elements are preferred due

to their simplicity and efficiency. However, these low-order plate elements in the limit

of thin plates often suffer from the shear locking phenomenon which has the root of

incorrect transverse forces under bending.

Therefore, many formulations have been developed to overcome the shear lock-

ing phenomenon and to increase the accuracy and stability of numerical methods such

as Mixed formulation/hybrid elements(ZL88, ADB98, Lov98, TA93), the enhanced

assumed strain (EAS) method (SR90, SJ99) and the assumed natural strain (ANS)

method (dSJVA02, CYM+08). Recently, the Discrete-Shear-Gap (DSG) method (BBR00)

which can avoid shear locking was proposed. The DSG is similar to the ANS meth-

ods in the aspect of modifying the course of certain strains within the element, but

different in that it does not employ collocation points, which makes the DSG method

independent of the order and shape of the element.

In this chapter, I further extend the AαFEM to static, free vibration and buckling

analyses of Mindlin-Reissner plates using triangular elements only. In the AαFEM

for plates, the bending, shearing and geometrical stiffness matrices of the standard

FEM formulation are enhanced by additional strain terms with an adjustable parameter
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4.2 Weak form for modified strain field

α which results in an effectively softer stiffness formulation compared to the linear

triangular element. Transverse shear locking can be avoided through the discrete shear

gap (DSG) method. Several numerical examples illustrate the high performance of the

Aα-DSG3 formulation compared to other elements from the literature.

4.2 Weak form for modified strain field

We use the modified Hellinger-Reissner variational formulation:

N

∑
k=1

M

∑
i=1

[∫

Ωk,i

δ
(

εk,i +αεadd
k,i

)T

D
(

εk,i −αεadd
k,i

)

dΩ

]

−
∫

Ω
δuTp̄dΩ−

∫

Γt

δuT t̄dΓ = 0

(4.1)

In the present formulation, the usual compatible strain field is replaced by the modified

strain field, Eq. (3.8) and hence the modified Hellinger-Reissner variational principle

with the assumed strain vector ε̂ and displacement field û as independent field variables

for elasticity problems is given by (PW06)

ΠHR(û, ε̂) =−1

2

∫

Ω
ε̂T Dε̂dΩ+

∫

Ω
ε̂T DεdΩ−

∫

Ω
uT p̄dΩ−

∫

Γt

uT t̄dΓ (4.2)

where the constitutive matrix for linear isotropic elasticity D = [Db 0;0 Ds]T , the dis-

placement field is given by u = [w,βx,βx]
T , the plate is loaded by a transverse load

p̄ = [p,0,0]T and boundary loads t̄ = [p̄, m̄x, m̄y]
T .

The strain energy is given by

Û(û) =−1

2

∫

Ω
ε̂T Dε̂dΩ+

∫

Ω
ε̂T DεdΩ (4.3)

which can be rewritten in a summation of integrals over all sub-domain Ωk,i

Û(û) =
N

∑
k=1

M

∑
i=1

[

−1

2

∫

Ωk,i

ε̂T
k,iDε̂k,idΩ+

∫

Ωk,i

ε̂T
k,iDεk,idΩ

]

=
N

∑
k=1

M

∑
i=1

Ûk,i(û) (4.4)

in which

Û(û) =−1

2

∫

Ωk,i

ε̂T
k,iDε̂k,idΩ+

∫

Ωk,i

ε̂T
k,iDεk,idΩ (4.5)

Substituting Eq. (??) into Eq. (4.5) leads to

Û(û) =−1

2

∫

Ωk,i

(

εk,i +αεadd
k,i

)T

D
(

εk,i +αεadd
k,i

)

dΩ+
∫

Ωk,i

(

εk,i +αεadd
k,i

)T

Dεk,i

=
1

2

∫

Ωk,i

εT
k,iDεk,idΩ− 1

2
α2
∫

Ωk,i

(

εadd
k,i

)T

Dεadd
k,i dΩ

(4.6)
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4.2 Weak form for modified strain field

Due to the zero-sum property, Eq. (??), three terms in the integrals vanish. Hence, the

Hellinger-Reissner variational principle reduces to

ΠHR

(

û,εadd,α
)

=
N

∑
k=1

M

∑
i=1

[
1

2

∫

Ωk,i

εT
k,iDεk,idΩ−1

2
α2
∫

Ωk,i

(

εadd
k,i

)T

Dεk,idΩ

]

−
∫

Ω
uT p̄dΩ−

∫

Γt

uT t̄dΓ .

(4.7)

Taking the variation with respect to α , one obtains

δΠHR

(

û,εadd,α
)

=−α
N

∑
k=1

M

∑
i=1

∫

Ωk,i

(

εadd
k,i

)T

Dεadd
k,i dΩ ⇒ α = 0 (4.8)

Taking the variation with respect to εadd, Eq. (4.7) becomes the total potential energy

(ΠT PE).

δε add
ΠHR

(

û,εadd,α
)

=−α2
N

∑
k=1

M

∑
i=1

∫

Ωk,i

Dεadd
k,i dΩ ⇒

∫

Ωk,i

εadd
k,i dΩ = 0 (4.9)

We next perform variation with respect to û yielding

δûΠHR (û,α) =
N

∑
k=1

M

∑
i=1

[∫

Ωk,i

δ
(

εk,i +αεadd
k,i

)

D
(

εk,i −αεadd
k,i

)

dΩ

]

−
∫

Ω
δuT p̄dΩ−

∫

Γt

δuT t̄dΓ = 0 .

(4.10)

The Galerkin-like weak form Eq. (4.10) is an extended form of the standard Galerkin

weak formulation to conform the strain field. The Galerkin-like weak form becomes

the standard Galerkin weak form for εadd
k,i = 0. Substituting the approximation Eq. (2.33)

into Eq. (4.10), and using the arbitrariness of the variations, we obtain

K̃AαDSG3d = f (4.11)

where K̃AαDSG3 is the element stiffness matrix with the scaled gradient strains

K̃AαDSG3
k =

N

∑
k=1

M

∑
i=1

∫

Ωk,i

BT
k,iDBk,idΩ−α2

N

∑
k=1

M

∑
i=1

∫

Ωk,i

(

Badd
k,i

)T

DBadd
k,i dΩ

= KDSG3−α2K̃add
k

(4.12)

where KDSG3 is the global stiffness matrix of the discrete shear gap. K̃add
k is derived

from the corrected strain, and hence is coined corrected stiffness matrix and helps

reduce the well-known overly-stiff behavior of the discrete shear gap. Defining

Badd
k,i = 3

√
2
(
ε̄k − εk,i

)
(

L1 −
1

3

)

(4.13)

49



4.2 Weak form for modified strain field

K̃add
k can be rewritten explicitly as

K̃add
k =

N

∑
k=1

M

∑
i=1

∫

Ωk,i

(Badd
k,i )

T DBadd
k,i dΩ

= 18
N

∑
k=1

M

∑
i=1

(B̃k −Bk,i)
T D(B̃k −Bk,i)

∫

Ωk,i

(

L1 −
1

3

)2

dΩ

=
N

∑
k=1

M

∑
i=1

(B̃k −Bk,i)
T D(B̃k −Bk,i)Ak,i

(4.14)

Eq. (4.12) can be rewritten as:

K̃AαDSG3
k = K̃AαDSG3

α=0 −α2K̃add
k . (4.15)

Therefore the global stiffness and geometrical stiffness matrices of the Aα-DSG3 ele-

ment are given by

K̃AαDSG3 =
Nn

∑
k=1

K̃AαDSG3
k , K̃g =

Nn

∑
k=1

K̃
g
k (4.16)

The nodal stiffness matrix K̃add
k and geometrical stiffness matrix K̃

g
k are rewritten as

K̃add
k =

N

∑
k=1

M

∑
i=1

[(

B̃b
k −Bb

k,i

)T

Db
(

B̃b
k −Bb

k,i

)

+
(

B̃s
k −Bs

k,i

)T

Ds
(

B̃s
k −Bs

k,i

)]

Ak,i

(4.17)

K̃
g
k =

N

∑
k=1

∫

Ωk,i

(
B̃g
)T

τB̃gdΩ =
N

∑
k=1

(
B̃

g
k

)T
τB̃

g
kAk (4.18)

The final formulation for static analysis can be rewritten:

K̃AαDSG3d = f (4.19)

for free vibration, (

K̃AαDSG3 −ϖ2M
)

d = 0 (4.20)

and for the buckling analysis,

(

K̃AαDSG3 −λcrK̃g

)

d = 0 . (4.21)

The smoothed gradient matrices through the smoothing domain are given by

B̃b
k =

1

Ak

Ne
k

∑
i=1

1

3
Ae

i Bb
i , B̃s

k =
1

Ak

Ne
k

∑
i=1

1

3
Ae

i BsDSG3
i , B̃

g
k =

1

Ak

Ne
k

∑
i=1

1

3
Ae

i B
g
i (4.22)
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4.2 Weak form for modified strain field

where Bb
i is a matrix containing only constants for the three-node standard finite ele-

ment

Bb
i =

1

2Ae





0 b− c 0 0 c 0 0 −b 0

0 0 d −a 0 0 −d 0 0 a

0 d −a b− c 0 −d c 0 a −b



 (4.23)

and BsDSG3
i is derived from the discrete shear gap technique (BBR00)

BsDSG3
i =

1

2Ae

[
b− c Ae 0 c ac

2
bc
2

−b −bd
2

−bc
2

d−a 0 Ae −d −ad
2

−bd
2

a ad
2

ac
2

]

(4.24)

B
g
i is obtained from the geometrical strains

B
g
i =

1

2Ae











b− c 0 0 c 0 0 −b 0 0

d−a 0 0 −d 0 0 a 0 0

0 b− c 0 0 c 0 0 −b 0

0 d −a 0 0 −d 0 0 a 0

0 0 b− c 0 0 c 0 0 −b

0 0 d −a 0 0 −d 0 0 a











(4.25)

with a = x2−x1,b = y2−y1,c = y3−y1,d = x3−x1 and Ae is the area of the triangular

element, see Fig. 4.1.

Figure 4.1: Area coordinates and three node triangle element

Since only linear triangular elements are used to obtain stiffness matrices, the finite

Reissner-Mindlin plate-bending element approximation is simply interpolated using

the linear basis functions for both deflection and rotations without any additional vari-

ables. Hence, the bending strains are constant and unchanged from the standard finite

elements while the transverse shear strains contain linear interpolated functions. Ap-

plying the Discrete Shear Gaps (DSG) (BBR00), the shear strains γh become constant

and aims to avoid shear locking problem. Thus, strains ε = [εb εs εg]T are always

constant on the element.
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4.3 Numerical results

4.3 Numerical results

In the following, the performance of the proposed element (Aα-DSG3) is compared to

several elements from the literature, summarized in Tab. 4.1. Static, buckling and free

vibration analyses of square, rectangular, circular and triangular plates are considered.

Table 4.1: Summary elements

MITC4 Four node Mixed Interpolation of Tensorial Component (BD85)

MIN3 Three node Mindlin (TH85)

DSG3 Discrete Shear Gap Triangle Element (BBR00)

ES-DSG3 Edge-based Smoothed Discrete Shear Gap Triangle Element (NXLCHNT10)

Q4BL Quadrilateral Bubble Linked (ZXZ+93)

DKMQ Discrete Kirchhoff Mindlin Quadrilateral (Kat93)

ANS4 Four node Assumed Natural Strain (Lee04)

ANS9 Nine node Assumed Natural Strain (LH01)

RPIM Radial Point Interpolation Method (LC04)

Pb-2 Ritz Two-dimensional polynomial function Rayleigh-Ritz method (KKAb96)

NBNM Node-By-Node method (Nag99)

4.3.1 Static analysis

4.3.1.1 Patch test

The patch test is introduced to examine the convergence of finite elements. It is

checked if the element is able to reproduce a constant distribution of all quantities

for arbitrary meshes. A rectangular plate is modeled by several triangular elements as

shown in Fig. 4.2. The boundary deflection is assumed to be w = (1+ x+ 2y+ x2 +
xy+ y2)/2. It is found that the Aα-DSG3 element passes the constant bending patch

test within machine precision.

Table 4.2: Patch test
Element w5 θx5 θy5 mx5 mx5 mxy5

MIN3 0.6422 1.1300 -0.6400 -0.0111 -0.0111 -0.0033

DSG3 0.6422 1.1300 -0.6400 -0.0111 -0.0111 -0.0033

Aα-DSG3 0.6422 1.1300 -0.6400 -0.0111 -0.0111 -0.0033
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Figure 4.2: Patch test of the element (E = 100000; ν = 0.25; t = 0.01)

4.3.1.2 Square plates

Consider the model of a square plate (length L, thickness t) with clamped and simply

supported boundary conditions, respectively, subjected to a uniform load p = 1 as

shown in Fig. 4.3. The material parameters are: Young’s modulus E = 1092000 and

Poisson’s ratio ν = 0.3. Uniform meshes N×N with N = 2,4,8,16,32 are used and

symmetry conditions are employed.

The first step is the selection of the “optimal” value of α for this particular problem.

This is done by plotting the strain energy versus α for a sequence of meshes with

different fineness. As shown in Fig. 4.4, the curves obtained intersect at one point

corresponding to the exact energy (known in this particular case). The corresponding

value of α is called αexact and for this problem, αexact = 0.9483.1

Remark: the dependence of the strain energy plotted in Fig. 4.4 on α decreases

with mesh refinement, as was also the case in linear flexural analysis of continuum

(NTRHXB10).

Remark: for values of α approximately αexact , the mesh density does not influence

the results significantly. Once the optimal α has been determined, coarse meshes are

sufficient. This is a useful property if a large number of analyses with different loading

conditions must be performed on the same structure.

The Aα-DSG3 for αexact = 0.9483 leads to improved results compared to all other

elements considered in Fig. 4.4 and Fig. 4.5, both in terms of strain energy, displace-

ment and moment accuracy. The MITC4 (four-noded quadrilateral (BD85)) is clearly

the best competitor and, for an extremely coarse 2× 2 mesh, surpasses the proposed

element in terms of displacement accuracy. In terms of gradient accuracy and strain

energy however, the proposed element outperforms all others, including the DSG3 and

MIN3 (TH85).

1The reference energy was obtained from (TA93) as 8.5105× 103.
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4.3 Numerical results

For a simply clamped plate, the exact strain energy is 1.9456× 104(TA93), the

estimated strain energy at the intersection of the strain energy curves is 1.9478×104

and is obtained for αexact = 0.8372 and strain energy error, as shown in Fig. 4.6. The

convergence of the normalized deflection and moment at the center as a function of

t/L = 0.001 shown in Fig. 4.7. The Aα-DSG3 is clearly a good competitor to the ES-

DSG3 (NXLCHNT10) that was found recently to be one of the most accurate 3-noded

triangular plate elements. These results also show that the proposed element is free of

shear locking in the thin plate limit.

Figure 4.3: Simply supported and full clamped plate.
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Figure 4.4: Strain energy versus parameter α and the error in strain energy of simply

supported plate (t/L=0.01).
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4.3 Numerical results
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Figure 4.5: Normal deflection and moment of simply supported plate (t/L = 0.01).
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Figure 4.6: Strain energy versus parameter α and the error in strain energy of clamped

plate plate (t/L=0.001).
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Figure 4.7: Normal deflection and moment of clamped plate plate (t/L=0.001).

4.3.1.3 Skew plate subjected to a uniform load

Let us consider a rhombic plate subjected to a uniform load p = 1 as shown in Fig. 4.8.

This plate was originally studied by Morley (Mor63). Geometry and material parame-

ters are length L = 100, thickness t = 0.1, Young’s modulus E = 10.92 and Poisson’s

ratio ν = 0.3.

The estimated strain energy at the intersection of the strain energy curves is 3.5438

and is reached for αexact = 0.8221 as shown in Fig. 4.9. The values of the Max &

Min principle moments at the central point with αexact = 0.8221 are given in Fig. 4.10.

The Aα-DSG3 shows remarkably good performance compared to the DSG3, MITC4,

ES-DSG3 elements and a list of other elements (CLYC06).

Figure 4.8: A simply supported skew Morley’s model.
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4.3 Numerical results
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Figure 4.9: Strain energy versus parameter α and normal deflection of the supported

skew plate.
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Figure 4.10: Morley plates central principle moment Mmax/(pL2/100) and

Mmin/(pL2/100).
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4.3 Numerical results

4.3.2 Free vibration of plates

For free vibration and buckling plate analysis, we observed that the optimal value of α
varies in the interval of [0.8÷1.0]. Here, we choose the parameter α = 0.9. Although

the parameter α chosen may not be optimal for all problems, the results found are more

accurate than serval other methods in the literature.

In this section, I examine the accuracy and efficiency of the Aα-DSG3 element

for analyzing natural frequencies of plates. The plate may have free (F), simply (S)

supported or clamped (C) edges. A non-dimensional frequency parameter ϖ is often

used for the presentation of the results for regular meshes.

4.3.2.1 Square plates

We consider square plates of length a, width b and thickness t as shown in Fig. 4.11.

The material parameters are Young’s modulus E = 2.0×1011, Poisson’s ratio ν = 0.3
and the density mass ρ = 8000. The plate is modeled with uniform meshes of 16

elements per side are shown in Fig. 4.11. A non-dimensional frequency parameter

ϖ = (ω2ρa4t/D)1/4 is used, where D = Et3/(12(1−ν2)) is the flexural rigidity of the

plate. Thin and thick plates (SSSS) corresponding to length-to-width ratios, a/b = 1

and thickness-to-length t/a = 0.005 and t/a = 0.1 are considered in this problem.

The convergence of computed frequencies of SSSS and CCCC plates is shown in

Fig. 4.12. Our element outperforms the DSG3 element. In the case of thin and thick

plates (CCCC) the result are shown in Fig. 4.13. The Aα-DSG3 element outperforms

both the DSG3 and ES-DSG3 elements. We also consider the five sets of various

boundary conditions in this example: SSSF, SFSF, CCCF, CFCF, and CFSF. The first

four lowest frequencies are presented in Tab. 4.3.

Figure 4.11: Supported and clamped plate
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Figure 4.12: Convergence of normalized frequency of SSSS and CCCC plate with a/b

= 1; t/a = 0.005.

Table 4.3: A non-dimensional frequency parameter ϖ = ωa2
√

ρt/D of a square plate

(t/a = 0.005) with various boundary conditions

Plate Mode Methods

type DSG3 ES-DSG3 Present Exact(? )

1 11.7720 11.6831 11.6851 11.685

SSSF 2 28.3759 27.8382 27.7362 27.756

3 41.9628 41.4312 41.3646 41.197

4 61.5092 59.6720 59.4379 59.066

1 9.6673 9.6425 9.634 9.631

SFSF 2 16.3522 16.1239 16.1305 16.135

3 37.6792 36.9054 36.8071 36.726

4 39.5026 39.2167 39.092 38.945

1 24.2848 23.8947 24.0025 24.020

CCCF 2 41.7698 40.1998 40.0401 40.039

3 65.0068 63.5127 63.5079 63.493

4 80.9461 77.8776 77.6198 76.761

1 22.3437 22.1715 22.238 22.272

CFCF 2 27.1814 26.4259 26.5397 26.529

3 45.8829 43.9273 43.7792 43.664

4 62.5225 62.9466 63.1078 64.466

1 15.2788 15.2035 15.2357 15.285

CFSF 2 21.0199 20.5856 20.6477 20.673

3 41.1975 39.9697 39.8558 39.882

4 50.3328 49.7767 49.118 49.500
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4.3 Numerical results

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 4.13: The first six mode shapes of CCCC plate using the Aα-DSG3 with t/a =
0.005.
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4.3 Numerical results

4.3.2.2 Circle plates

In this example, a circular plate with clamped boundary is studied as shown in Fig. 4.14.

The material parameters are Young’s modulus E = 2.0×1011, Poisson’s ratio ν = 0.3,

radius R = 5 and mass density ρ = 8000. The plate is discretized with 848 triangu-

lar elements with 460 nodes. Two thickness-span ratios h/2×R = 0.01 and 0.1 are

considered.

The first six mode shapes of the circular plate using the Aα-DSG3 are plotted

in Fig. 4.15. The frequencies obtained from our element are closer to the analytical

solutions in references compared to the DSG3 element and is a good competitor to

quadrilateral plate elements such as the Assumed Natural Strain solutions (ANS4) and

the higher order Assumed Natural Strain solutions (ANS9) shown in Tab. 4.4. In case

of the thickness-span ratio h/2×R = 0.1, the Aα-DSG3 results also agree well with

the ANS4 element with 432 quadrilateral elements presented in Tab. 4.5.

Figure 4.14: The circle plates and initial mesh

4.3.2.3 Triangular plates

Let us consider cantilever (CFF) triangular plates with various shape geometries, see

Fig. 4.16. The material parameters are Young’s modulus E = 2.0× 1011, Poisson’s

ratio ν = 0.3 and mass density ρ = 8000. A non-dimensional frequency parameter ϖ =
ωa2(ρt/D)1/2/π of triangular square plates with the aspect ratio t/a = 0.001 and 0.2

is calculated. The mesh of 744 triangular elements with 423 nodes is used to analyze

the convergence for modes via various skew angles such as ϕo = 0o,15o,30o,45o,60o.

The first six modes of the thin triangular plate (t/a = 0.001) are shown in Tab. 4.6.

The Aα-DSG3 element is also compared to the MITC4 element and two other well-

known numerical methods such as the Rayleigh-Ritz method (MLH92). The frequen-

cies of the Aα-DSG3 are often bounded by these reference models. Note that our

method is simply based on the formulation of three-node triangular elements without
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4.3 Numerical results

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 4.15: The first six mode shapes of the clamped circle plate using the Aα-DSG3.
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4.3 Numerical results

Table 4.4: The parameterized natural frequencies ϖ = ωa2
√

ρt/D of a clamped

circular plate with t/2∗R = 0.01

Mode Methods

DSG3 ES-DSG3 Present ANS47 ANS98 Exact (Lei69)

1 10.2941 10.2402 10.2363 10.2572 10.2129 10.2158

2 21.6504 21.3966 21.3121 21.4981 21.2311 21.2600

3 21.6599 21.4096 21.2788 21.4981 21.2311 21.2600

4 35.9885 35.3012 35.0255 35.3941 34.7816 34.8800

5 35.9981 35.3277 35.4113 35.5173 34.7915 34.8800

6 41.1864 40.3671 40.2645 40.8975 39.6766 39.7710

7 53.4374 52.0138 51.1476 52.2054 50.8348 51.0400

8 53.5173 52.1013 51.1876 52.2054 50.8348 51.0400

9 64.2317 62.3053 61.0122 63.2397 60.6761 60.8200

10 64.4073 62.4665 61.1281 63.2397 60.6761 60.8200

11 74.2254 71.6554 70.6303 71.7426 69.3028 69.6659

12 74.3270 71.7269 70.8946 72.0375 69.3379 69.6659

13 91.4366 87.7019 85.8113 88.1498 84.2999 84.5800

14 91.5328 87.7861 85.9978 89.3007 84.3835 84.5800

7 Four node Assumed Natural Strain (ANS4)(Lee04)
8 Nine node Assumed Natural Strain (ANS9)(LH01)

Table 4.5: The parameterized natural frequencies ϖ = ωa2
√

ρt/D of a clamped

circular plate with t/2*R=0.1

Mode Methods

DSG3 ES-DSG3 Present ANS4 Exact(Lei69)

1 9.3012 9.2527 9.2502 9.2605 9.240

2 18.0038 17.8372 17.8308 17.9469 17.834

3 18.0098 17.8428 17.8375 17.9469 17.834

4 27.6010 27.2344 27.2248 27.0345 27.214

5 27.6082 27.2391 27.2273 27.6566 27.214

6 30.9865 30.5173 30.3818 30.3221 30.211

7 37.9464 37.2817 37.1889 37.2579 37.109

8 37.9817 37.3128 37.2297 37.2579 37.109

9 43.9528 43.0626 42.4781 43.2702 42.409

10 44.0324 43.1328 42.4573 43.2702 42.409

11 48.9624 47.8823 47.4465 47.7074 47.340

12 48.9793 47.8976 47.5786 47.8028 47.340

13 57.2487 55.7747 55.2053 56.0625 54.557

14 57.2776 55.8052 55.2727 57.1311 54.557
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4.3 Numerical results

adding any additional DOFs. The results for a thick plate are shown in Tab. 4.7. The

mode shapes of free vibration of cantilever triangular square plates are illustrated in

Fig. 4.17 .

Figure 4.16: A triangular cantilever plates and mesh.

4.3.2.4 Free vibration analysis of the machine part

In this problem, we analyze the natural frequencies and shape modes for the ma-

chine part as shown in Fig. 4.18. The numerical parameters are given as E = 2.1×
104kg f/mm2,ν = 0.3,ρ = 8.0×10−10kg f s2/mm4, t = 1.0mm.

The natural frequencies of the first six modes are presented in Tab. 4.8. It is clear

that the method present always produces more accurate results than the DSG3 element.

Also, the results obtained from the Aα-DSG3 show a very good agreement with the

reference solution. The first six modes using the Aα-DSG3 are described in Fig. 4.19.

4.3.3 Buckling of plates

In the following examples, we choose the parameter α = 0.9, the buckling load factor

is defined as K = λcrb
2/(π2D) where b is the edge width of the plate, λcr the critical

buckling load. The material parameters are Young’s modulus E = 2.0×1011, Poisson’s

ratio ν = 0.3.
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4.3 Numerical results

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 4.17: The first six mode shapes of triangular plates with t/a=0.001
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4.3 Numerical results

Table 4.6: The parameterized natural frequencies ϖ = ωa2(ρt/D)1/2/π of triangular

platess with t/b = 0.001

ϕo Mode Methods

DSG3 ES-DSG3 Present ANS4 Ref.9

1 0.6252 0.6242 0.6248 0.624 0.625

2 2.3890 2.3789 2.3776 2.379 2.377

0o 3 3.3404 3.3159 3.3139 3.317 3.310

4 5.7589 5.7124 5.7033 5.724 5.689

5 7.8723 7.7919 7.7727 7.794 7.743

6 10.3026 10.1547 10.1316 10.200 -

1 0.5855 0.5840 0.5847 0.583 0.586

2 2.1926 2.1833 2.1822 2.181 2.182

15o 3 3.4528 3.4163 3.4153 3.413 3.412

4 5.3481 5.3020 5.296 5.303 5.279

5 7.3996 7.3112 7.2939 7.289 7.263

6 10.2498 10.0779 10.0601 10.095 -

1 0.5798 0.5766 0.5779 0.575 0.578

2 2.1880 2.1778 2.1780 2.174 2.178

30o 3 3.7157 3.6539 3.6543 3.638 3.657

4 5.5983 5.5361 5.5330 5.534 5.518

5 7.2814 7.1628 7.1496 7.139 7.109

6 10.7753 10.5108 10.4989 10.477 -

1 0.6006 0.5923 0.5926 0.588 0.593

2 2.3564 2.3359 2.3350 2.324 2.335

45o 3 4.2795 4.1699 4.1778 4.126 4.222

4 6.5930 6.4424 6.4544 6.381 6.487

5 7.8615 7.6658 7.6224 7.614 7.609

6 11.7850 11.3496 11.3123 11.224 -

1 0.6497 0.6261 0.6288 0.613 0.636

2 2.7022 2.6101 2.6153 2.564 2.618

60o 3 5.6491 5.4283 5.4580 5.353 5.521

4 8.3505 7.7333 7.8264 7.460 8.254

5 10.7757 10.3756 10.3883 10.306 10.395

6 14.6003 13.3296 13.3254 12.942 -

9 Reference solution(MLH92)
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4.3 Numerical results

Table 4.7: The parameterized natural frequencies ϖ = ωa2(ρt/D)1/2/π of a triangu-

lar plates with t/b = 0.2

ϕo Mode Methods

DSG3 ES-DSG3 Present ANS4 Ref.9

1 0.5830 0.5823 0.5819 0.582 0.582

2 1.9101 1.9040 1.9007 1.915 1.900

0o 3 2.4176 2.4083 2.4082 2.428 2.408

4 3.9772 3.9559 3.9432 3.984 3.936

5 5.0265 4.9954 4.9948 5.018 -

6 5.9521 5.8994 5.8997 5.944 -

1 0.5449 0.5441 0.5440 0.545 0.544

2 1.7803 1.7749 1.7718 1.764 1.771

15o 3 2.3959 2.3854 2.3859 2.420 2.386

4 3.6668 3.6467 3.6354 3.608 3.628

5 4.8504 4.8208 4.8212 4.820 -

6 5.6057 5.5385 5.5074 5.431 -

1 0.5339 0.5328 0.5332 0.532 0.533

2 1.7815 1.7754 1.7722 1.773 1.772

30o 3 2.4356 2.4206 2.414 2.437 2.419

4 3.6085 3.5842 3.5735 3.591 3.565

5 4.7829 4.7444 4.7241 4.765 -

6 5.4532 5.3377 5.3057 5.323 -

1 0.5412 0.5391 0.5402 0.541 0.540

2 1.8977 1.8882 1.8845 1.884 1.885

45o 3 2.5304 2.5004 2.4937 2.518 2.489

4 3.7518 3.7035 3.6946 3.748 3.674

5 4.8188 4.6800 4.6632 4.740 -

6 5.4304 5.2256 5.2132 5.292 -

1 0.5634 0.5588 0.5577 0.559 0.559

2 2.0837 2.0623 2.0586 2.095 2.059

60o 3 2.5355 2.4356 2.4055 2.483 2.396

4 4.0862 3.8009 3.7622 3.910 3.590

5 4.6612 4.3393 4.3687 4.517 -

6 5.9782 5.5835 5.658 5.763 -

9 Reference solution(MLH92)
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4.3 Numerical results

Table 4.8: Natural frequency of the machine part

Methods Mode

1 2 3 4 5 6

DSG3 52.5925 72.5096 259.6188 525.8082 816.6085 894.7389

Present 50.8872 71.8003 255.7298 518.9853 788.5719 880.7170

NBNM 50.94 72.41 256.36 518.29 781.00 874.50

Figure 4.18: The machine part and mesh

4.3.3.1 Simply supported rectangular plates subjected to uniaxial compression

Let us first consider a plate with length a, width b and thickness t subjected to uniaxial

compression. Simply supported (SSSS) and clamped (CCCC) boundary conditions are

assumed. The geometry and a typical mesh of the plate are shown in Fig. 4.20.

Tab. 4.9 gives the convergence of the buckling load factor corresponding to meshes

with triangular elements. Fig. 4.21 plots the convergence of the normalized buckling

load Kh/Kexact of the square plate with thickness ratio t/b = 0.01, where Kh is the

numerical buckling load and Kexact is the analytical buckling load (TG70). The con-

vergence rate provided by the Aα-DSG3 is higher than that of the DSG3 and some

other methods from the literature, see Tab. 4.10.

Next, we consider the buckling load factors of SSSS, CCCC, CFCF plates with

thickness-to-width ratios t/b = 0.05; 0.1. The results compare well with several other

methods shown in Tab. 4.11.

We also consider simply supported plates with various thickness-to-width ratios,

t/b = 0.05; 0.1; 0.2 and length-to-width ratios, a/b = 0.5; 1.0; 1.5; 2.0; 2.5. The

axial buckling modes and buckling load of simply-supported rectangular plates with

thickness-to-width ratios t/b = 0.01 and various length-to-width ratios, a/b = 1.0; 1.5;

2.0; 2.5 are shown in Fig. 4.22 and Tab. 4.12.
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4.3 Numerical results

Mode 1, Omega = 50.8872[Hz]

(a) Mode 1

Mode 2, Omega = 71.8003[Hz]

(b) Mode 2

Mode 3, Omega = 255.7298[Hz]

(c) Mode 3

Mode 4, Omega = 518.9853[Hz]

(d) Mode 4

Mode 5, Omega = 788.5719[Hz]

(e) Mode 5

Mode 6, Omega = 880.717[Hz]

(f) Mode 6

Figure 4.19: The first six mode shapes of the machine part.
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4.3 Numerical results

(a) (b)

(c)

Figure 4.20: Rectangular plates: (a) Axial compression, (b) Biaxial compression, (c)

Shear in-plane.
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Figure 4.21: Normalized buckling load and convergence of axial buckling.
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4.3 Numerical results

(a) a/b=1 (b) a/b=1.5

(c) a/b=2 (d) a/b=2.5

Figure 4.22: Axial buckling modes of simply-supported rectangular plates with

thickness-to-width ratios t/b = 0.01 and various length-to-width ratios a/b =1; 1.5;

2.0; 2.5

Table 4.9: The axial buckling load factors Kb along the x-axis of rectangular plates

with length-to-width ratios a/b = 1 and thickness-to-width ratios t/b = 0.01

Plates Methods Index mesh

type 4×4 8×8 12×12 16 × 16

DSG3 7.5891 4.8013 4.3200 4.1590

SSSS ES-DSG3 4.7023 4.1060 4.0368 4.0170

Aα-DSG3 3.8236 3.9882 4.0003 4.0008

DSG3 31.8770 14.7592 11.9823 11.0446

CCCC ES-DSG3 14.7104 11.0428 10.3881 10.2106

Aα-DSG3 7.9868 9.8106 9.9968 10.0331
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4.3 Numerical results

Table 4.10: The axial buckling load factors Kb along the x-axis of rectangular plates

with length-to-width ratios a/b = 1 and thickness-to-width ratios t/b = 0.01

Plates Methods

type DSG3 ES-DSG3 Present Liew Ansys Tham10 Timoshenko11

SSSS 4.1590 4.0170 4.0008 3.9700 4.0634 4.00 4.00

(%) 3.97% 0.4% 0.02% -0.75% 1.85% - -

CCCC 11.0446 10.2106 10.0331 10.1501 10.1889 10.08 10.07

(%) 9.68% 1.4% -0.36% 0.8% 1.18% 0.1% -

10 Reference solution (TS90)
11 Reference solution (TG70)

Table 4.11: The axial buckling load factors Kb along the x axis of rectangular plates

with various length-to-width ratios a/b = 1 and various thickness-to-width ratios

t/b Plates Methods

type DSG3 ES-DSG3 Present RPIM(LC04) Ritz(KXWL93)

SSSS 3.9786 3.9412 3.9446 3.9464 3.9444

0.05 CCCC 9.8284 9.5426 9.5535 9.5819 9.5586

CFCF 3.8365 3.7654 3.8017 3.8187 3.8005

SSSS 3.7692 3.7702 3.7771 3.7853 3.7873

0.1 CCCC 8.2670 8.2674 8.2873 8.2931 8.2921

CFCF 3.4594 3.4966 3.4978 3.5138 3.5077
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4.3 Numerical results

Table 4.12: The axial buckling load factors Kb along the x-axis of rectangular plates

with various length-to-width ratios and various thickness-to-width ratios

a/b t/b Methods

DSG3 ES-DSG3 Present Meshfree(LWNT04) Ritz(KXWL93)

0.05 6.0478 5.9873 6.0237 6.0405 6.0372

0.5 0.1 5.3555 5.3064 5.3472 5.3116 5.4777

0.2 3.7524 3.7200 3.7642 3.7157 3.9963

0.05 3.9786 3.9412 3.9449 3.9293 3.9444

1.0 0.1 3.7692 3.7402 3.7465 3.7270 3.7865

0.2 3.1493 3.1263 3.1420 3.1471 3.2637

0.05 4.3930 4.2852 4.2450 4.2116 4.2570

1.5 0.1 4.0604 3.9844 3.9640 3.8982 4.0250

0.2 3.2014 3.1461 3.1680 3.1032 3.3048

0.05 4.1070 3.9811 3.9594 3.8657 3.9444

2.0 0.1 3.8539 3.7711 3.7855 3.6797 3.7865

0.2 3.2023 3.1415 3.1733 3.0783 3.2637

0.05 4.3577 4.1691 3.9938 3.9600 4.0645

2.5 0.1 4.0644 3.8924 3.8508 3.7311 3.8683

0.2 3.2393 3.1234 3.1950 3.0306 3.2421

4.3.3.2 Simply supported rectangular plates subjected to biaxial compression

Consider the square plate subjected to biaxial compression shown in Fig. 4.20. Tab. 4.13

gives the shear buckling factor of the square plate subjected to biaxial compression

with three essential boundary conditions (SSSS, CCCC, SCSC). The Aα-DSG3 ele-

ment matches well with the analytical solution (TG70).

Table 4.13: The biaxial buckling load factors K of rectangular plates with length to

width ratios a/b=1, thickness to width ratios t/b=0.01 and various boundary conditions

Plates Methods

type DSG3 ES-DSG3 Present Tham(TS90) Timoshenko(TG70)

SSSS 2.0549 2.0023 2.0021 2.00 2.00

CCCC 5.6419 5.3200 5.3113 5.61 5.31

SCSC 4.0108 3.8332 3.8339 3.83 3.83

4.3.3.3 Simply supported rectangular plates subjected to in-plane pure shear

Finally, consider the simply supported plate subjected to in-plane shear shown in

Fig. 4.20. The shear buckling load factors K of this plate are calculated using a
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4.3 Numerical results

16×16 mesh. The shear buckling factors with thickness-to-width ratio, t/b = 0.001

and length-to-width ratios, a/b = 1.0;2.0;3.0;4.0 are listed in Tab. 4.14. The Aα-

DSG3 element agrees well with the exact solution. Fig. 4.23 shows the convergence

of the shear buckling load. Fig. 4.24 presents the shear buckling modes of simply-

supported rectangular plates with thickness-to-width ratios t/b = 0.01 and various

length-to-width ratios, a/b = 1.0;2.0;3.0;4.0. The results are given in Tab. 4.15. The

Aα-DSG3 element agrees well with the analytical solution.
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Figure 4.23: Normalized shear buckling load Kh/Kexact of a square plate with t/b=0.01.

Table 4.14: The shear buckling load factors K of simply supported rectangular plates

with various length-to-width ratios, choose t/b = 0.01

a/b Methods

DSG3 ES-DSG3 Present Meshfree(LWNT04) Exact (AHB00)

1.0 9.5195 9.2830 9.3351 9.3962 9.34

2.0 6.7523 6.4455 6.3853 6.3741 6.34

3.0 6.5129 5.8830 5.7143 5.7232 5.784

4.0 6.3093 5.6732 5.5466 5.4367 5.59
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4.3 Numerical results

(a) a/b=1 (b) a/b=2

(c) a/b=3 (d) a/b=4

Figure 4.24: Shear buckling mode of simply supported rectangular plates with various

length-to-width ratios.

Table 4.15: The shear buckling load factors K of rectangular plates with length-to-

width ratios a/b=1, thickness-to-width ratios t/b=0.01 and various boundary condition

Plates Methods

type DSG3 ES-DSG3 Present Tham(TS90) Timoshenko(TG70)

SSSS 9.5195 9.2830 9.3351 9.40 9.33

CCCC 15.6397 14.6591 14.6628 14.58 14.66

SCSC 13.1652 12.5533 12.5605 12.58 12.58
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4.4 Concluding remarks

4.4 Concluding remarks

In this chapter, we extended previous works on the α finite element method from

3-nodes triangular continuum elements to 3-nodes triangular plate elements and ana-

lyzed the behavior of the resulting element, named Aα-DSG3, in solving static, free

vibration and buckling problems. The basic idea behind this element formulation is to

approximate displacements and rotations as in the standard finite element method, but

to construct the bending, geometrical and shear strains using node-based smoothing

domains.

The Aα-DSG3 is equipped with an adjustable factor α (α ∈ [0,1]). When α =
0, the present element becomes the standard Discrete Shear Gap (DSG) element and

hence produces a lower bound in the strain energy. For α = 1, the element becomes the

node-based smoothed DSG model and leads to an upper bound in the strain energy. For

intermediate values of α , the element was shown to underestimate the strain energy. It

was also shown that a so-called “optimal” value for α could be easily found such that

the “sufficiently exact” strain energy can be recovered.
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Chapter 5

Isogeometric Analysis

In this chapter, the Computer Aided Design (CAD) basic geometry is reviewed for the

development into the Isogeometric Analysis (IgA) method. The first part gives a short

overview of the general Bézier function which is called a Bernstein blending func-

tion, and that has basis function properties. The next part introduces a B-spline basis

functions and it is extended to B-spline surfaces and solids. The difference parametric

mapping in finite element method and isogeometric analysis is introduced at last part.

5.1 Bézier basis function

A Bézier curve is widely used in geometric modeling. The tensor product of bidirec-

tional Bézier curves allows to constitute Bézier surfaces. The Bézier function repre-

sents a parametric functions and is written as follows

C(ξ ) =
n

∑
i=1

Bp,i(ξ )Pi ; ξ ∈ [0,1] (5.1)

where Pi are the control points, n is the number of control points. The polynomial

degree is related to the number of control points by: p = n−1. The Bernstein polyno-

mials B
p
i of degree p are given by

B
p
i (ξ ) =

n!

i!(n− i)!
ξi(1−ξ )n−i

(5.2)

The Bernstein functions have the following important properties (PT97):

• Partition of unity: ∑n
i=1 Bp,i(ξ ) = 1 ∀ξ ∈ [0,1]

• Point wise non-negative: Bp,i(ξ )> 0 ∀ξ ∈ [0,1]
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5.1 Bézier basis function

(a)

0 1
0

1

B1

B2

B3 B4 B5

B6

B7

(b)

Figure 5.1: (a) Bézier curve. (b) Bézier basis function.

• Endpoint interpolation: C(0) = ∑n
i=1 Bp,i(0)Pi = P0 ; C(1) = ∑n

i=1 Bp,i(1)Pi =
Pn

• Symmetry: Bp,i(ξ ) = Bp,p−i+1(1−ξ ) ∀ξ ∈ [0,1]

• Linear independent: ∑n
i=1 ciBp,i(ξ ) = 0 ⇔ ci = 0, ∀i = 1,n.

The de Casteljau’s algorithm (PT97) is frequently used to evaluate the Bernstein poly-

nomials or to find a point on the Bézier curve for a given parameter value. It can also

be used to create new Bézier curves from the original Bézier curve by curve subdivi-

sion at an arbitrary parameter value. By applying de Casteljau’s algorithm, new control

points Pi, j are also evaluated by the following form

Pi, j = (1−ξ )Pi−1, j +ξ Pi−1, j+1

{
i = 1,2, ..,n

j = 0,1, ...,n− i
(5.3)

A short review of subdividing a given Bézier curve into two new Bézier sub-curves at

the parameter value, ξ = 0.4 see in Fig. 5.2a. Without the loss of generality, a set of

seven control points {P00...P06} are given. The P10 is in the leg of P00 and P01, P11

is in the leg of P01 and P02,..., and P15 is in the leg of P05 and P06. The triangular

table of control points generated by the de Casteljau’s algorithm is shown in Fig. 5.2b

which describes all intermediate steps using the de Casteljau’s algorithm to evaluate

the point Pξ = P60 on the curve. The original Bézier curve is subdivided into two

pieces, each of which is a new Bézier curve belonging to half of the original Bézier

curve. Also, their corresponding control points are obtained. It is known that we can

modify a part of the original Bézier curve (i.e, the left piece or the right one of the

original Bézier curve) while the other one is still unchanged. Applying this feature
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5.1 Bézier basis function

to graphical models, Deng et al. (DCL+08) have recently used it to modify the basis

functions for the PHT-spline. More details on the construction of the PHT-spline will

be given in section 6.3. A Bézier surface is defined as
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Figure 5.2: Subdivision of the Bézier curve using de Casteljau’s algorithm at the pa-

rameter ξ = 0.4

S(ξ ,η) =
n

∑
i=1

m

∑
j=1

Bi,p(ξ )B j,q(η)Pi, j . (5.4)

A three-dimensional solid based on the tensor product of Bézier basis functions in

three parametric dimensions.

S(ξ ,η,γ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

Bi,p (ξ )B j,q (η)Bk,r (γ)Pi, j,k . (5.5)

The drawbacks of Bézier curves are an increasing number of control points the polyno-

mial degree increased. For example Bézier curves in Fig. 5.1 performed that the relate

the polynomial degree and the number of control points (p = n−1 = 6). However, the

computation of higher degree Bézier curves are inefficient and can result in numeri-

cal instabilities. The global support of the basis functions is a problem for geometric

modeling, because it means that any modification of a control point has influence on

the whole curve and no local changes can be made to the curve. Another drawback

is the fact that no points of reduced continuity, such as kinks, can be inserted inside

the curve. Spline basis functions outlined in the next section can be overcome these

drawbacks.
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5.2 B-Splines basis function

5.2 B-Splines basis function

Let Ξ =
[
ξ1,ξ2, ...,ξn+p+1

]
be a nondecreasing sequence of parameter values, ξi ≤

ξi+1, i= 1, ...,n+ p; ξi are called knots, and Ξ is the set of coordinates in the parametric

space. If all knots are equally spaced then the knot vector is called uniform. Otherwise,

it is called non-uniform knots vector. When the first and the last knots are repeated by

p+1 times, the knots are called open. A knot value can appear more than once and is

then called a multiple knot. A B-Spline basis function is C∞ continuous inside a knot

span and Cp−1 continuous at a single knot. At a knot of multiplicity k, the continuity

is Cp−k. The B-spline basis functions Ni,p(ξ ) of order p = 0 (piece-wise constant) are

defined recursively on the corresponding knot vector given by:

Ni,0(ξ ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
(5.6)

For p > 1, we obtain

Ni,p(ξ ) =
ξ −ξi

ξi+p−ξi

Ni,p−1(ξ )+
ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ ) . (5.7)

The B-splines basis functions Ni,p possess the important properties such as non-negativity,

local support, partition of unity and linear independency. There are several types of

knot vectors. In this study, we only present non-periodic knot vectors which have the

form:

Ξ =



0, ...,0
︸ ︷︷ ︸

p+1

,ξp+1, ...,ξm−p−1,1, ...,1
︸ ︷︷ ︸

p+1



 . (5.8)

The B-spline curves are defined as follows:

C(ξ ) =
m

∑
i=1

Ni,p(ξ )Pi (5.9)

The B-splines surfaces are defined by the tensor product of basis functions with pa-

rameters Ξ and are expressed as follows:

S(ξ ,η) =
n

∑
i=1

m

∑
j=1

Ni,p(ξ )M j,q(η)Pi, j , (5.10)

where Pi, j are the bidirectional control net, Ni,p(ξ ) and M j,q(η) are the B-spline basis

functions defined on the knot vectors over an n×m net of control points Pi, j. An

example of a quadratic B-splines surface with three elements are illustrated in Fig. 5.4.

The B-splines solid is based on the tensor product of B-Splines basis functions in
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5.2 B-Splines basis function

(a)

0 1/4 1/2 3/4 1
0

1

N1

N2 N6

N7

N3 N5

N4

(b)

Figure 5.3: (a) B-spline curves. (b) Cubic B-spline basis function with open knot

vector Ξ = [0,0,0,0,1/4,1/2,3/4,1,1,1,1].

Figure 5.4: Parametric and physical space with quadratic B-splines.
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5.2 B-Splines basis function

(a) (b)

Figure 5.5: A bivariate cubic B-spline basis functions with knot vector Ξ1 =
[0,0,0,0,1/3,1/3,2/3,2/3,1,1,1,1] and Ξ2 = [0,0,0,0,1/2,1/2,1/2,1,1,1,1]. (a)

B-spline basis functions with N1,3. (b) B-spline basis functions with N4,4.

three parametric dimensions

S(ξ ,η,γ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

Ni,p (ξ )M j,q (η)Lk,r (γ)Pi, j,k (5.11)

where Pi, j,k are the tri-directional control net; Ni,p (ξ ) ,M j,q (η) ,Lk,r (γ) are the B-

splines basis functions. A NURBS solid is defined as:

S(ξ ,η,γ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

R
p,q,r
i, j,k (ξ ,η,γ)Pi, j,k (5.12)

with the basis functions

R
p,q,r
i, j,k (ξ ,η,γ) =

Ni,p (ξ )M j,q (η)Lk,r (γ)wi, j,k

n

∑
i=1

m

∑
j=1

l

∑
k=1

Ni,p (ξ )M j,q (η)Lk,r (γ)wi, j,k

(5.13)

where w are the weights.
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Chapter 6

Isogeometric analysis using rational

splines over hierarchical T-meshes for

two-dimensional elastic solids

6.1 Introduction

Isogeometric analysis was introduced by (HCB05) in order to improve and accelerate

numerical analysis and to closely link Computer Aided Design (CAD) and Computer

Aided Engineering (CAE). The basic idea is to use CAD basis functions in the con-

text of numerical analysis. While the finite element method is most popular in CAE,

the most common CAD basis functions are NURBS. Therefore, most studies in the

context of isogeometric analysis focus on NUBRS-based isogeometric finite element

formulations (EB10, H0̈3, SFMH08, SR08, SDR04).

One major advantage of CAD basis functions (e.g. NURBS) over finite elements

is their ability to describe a larger class of geometric objects, e.g. conic geometries.

However, the requirements on basis functions in CAE are higher than in CAD.

Besides their potential to unify CAD and CAE and therefore to reduce computa-

tional cost, NURBS-based isogeometric finite element formulations have other advan-

tages over (Lagrange) polynomial based Finite Elements (FEs):

• For many examples (see e.g. the results in (BCC+10, ABC+08, BCHZ08, CRBH06,

WFC08, HRS08)), it was found that NURBS-based isogeometric FEs give more

accurate results than their traditional FE-counterparts. This was devoted to the

higher smoothness and continuity of the isogeometric basis functions. Higher

continuous formulations do not lead to jump in derivatives, e.g. in the strain
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6.1 Introduction

field and stress field in mechanical analysis, inherent to C0 continuous FE for-

mulations.

• The higher continuity of the isogeometric formulation can also be exploited in a

different context, e.g. for thin plates and thin shells (DBH10, KBLW09) or for

gradient based constitutive models. We note that any order of continuity-even

C−1 -can be created in NURBS basis functions through a simple procedure, i.e.

knot insertion.

• Initial studies (DBH10) conjecture that isogeometric FEs based on NURBS show

less sensitivity with respect to excessive mesh distortion as compared to La-

grange polynomial based FEs making them particularly attractive for problems

with large deformations such as shear band formation, sheet metal stamping or

crashworthiness etc. (though mesh distortion can also be a consequence of poor

mesh generation); this was again attributed to higher-order and higher-continuity

of the approximation.

• It was found that the natural eigenfrequencies of higher order NURBS-based

isogeometric FEs are much lower compared to higher order Lagrange polyno-

mial based FEs (CHR07). This is particularly advantageous for explicit time

integration where the stable time step is inversely proportional to the maximum

eigenfrequency.

• Besides the conventional h-refinement and p-refinement, NURBS-based isogeo-

metric FEs offer a more flexible k-refinement. The k-refinement is ideally suited

for higher-order approximations. It maintains the polynomial degree and the

higher-order continuity under refinement. (TCB05, HRS08) showed many ex-

amples demonstrating the superiority of the k-refinement over the p-refinement.

However, NURBS also have certain drawbacks in the context of numerical analy-

sis:

• Due to the tensor-product form of NURBS, their control points are required to

lie in a structured grid (e.g. in a rectangle in 2D). This leads to an excessive

overhead of control points with increasing refinement. (CHR07, FB98) proposed

a local refinement strategy, Fig. 6.1, but constraint equations require increasing

complexity and implementational effort. Moreover, refinement still propagates

through a given patch.

• Another disadvantage of NURBS is that they usually achieve only C0 continuity

across patch boundaries. However, when two NURBS surfaces do not share a

common boundary, they cannot even achieve C0 continuity without disturbing

at least one of the surfaces. Note, that (Lagrange) polynomial based FEs also

possess only C0 continuity.
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• Probably the most striking drawback is that NURBS based geometries often suf-

fer from gaps and overlaps that are unacceptable for analysis and require “re-

pairing”.

Figure 6.1: (a) Tensor product global refinement and (b) An illustration of local refine-

ment (HCB05).

Sederberg (SZBA03, SCF+04) recently developed the T-spline in order to elimi-

nate or at least alleviate some of the above mentioned drawbacks of NURBS. (BCS09)

showed that T-splines inherit some of the basic properties of NURBS mentioned above.

1. T-splines are capable of joining objects without gaps.

2. T-splines are capable of preserving higher continuity globally, i.e. everywhere.

3. T-splines are better suited for local refinement that is a key ingredient of an

effective numerical method.

T-splines are meanwhile already available in commercial CAD software such as Maya

or Rhino .

However, though T-splines allow for local adaptive refinement, the complexity of

knot insertion under adaptive refinement is complex, particularly in 3D. Moreover,

(BCS09) showed that linear independence of the basis functions is not guaranteed for

generic T-meshes.

Recently, the polynomial splines over hierarchical T-meshes (PHT-spline) (DCL+08,

LDC07, LDC10) that inherits all above mentioned properties of NURBS (Non-negativity,

partition of unity, linear independence of the basis functions and local support) while

maintaining the advantages. The conversion between NURBS and PHT-splines is sim-

ple and very fast, while conversion between NURBS and T-splines is a bottleneck of

T-splines in practical applications.
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6.1 Introduction

From a linear algebra point of view, the NURBS space and T-spline space is a

subspace of the PHT-spline space. Or to be more precise: When we form a new T-

mesh (see Fig. 6.2) from a given T-spline mesh such that in the new T-mesh, a T-spline

function is a single polynomial over each cell, then we can say that the T-spline space

is a subspace of the PHT-space. Therefore, besides being polynomial over each cell,

the PHT-spline inherits basically all benefits of the T-spline, e.g. the ability to exactly

represent conic sections, free gaps, handle trimming curves, etc. Moreover, the piece-

wise polynomial approach facilitates adaptive refinement strategies. Local refinement

algorithms are relatively simple while the complexity of knot insertion with T-splines

might be high, particularly in 3D. Note that adaptive FEs are defined over hierarchi-

cal T-meshes and therefore, efficient refinement strategies can be adopted from the

FE literature (RB04b, RB06b, RB07a, RS08, RZBNX08). Compared with T-splines

and hierarchical B-splines, PHT-splines are only C1 continuous though extensions

of the PHT-spline to higher order continuous formulations seem possible. However,

since PHT-splines are polynomial, they cannot exactly represent common engineering

shapes of conic sections such as circles, spheres, ellipsoids, etc. Therefore, I employed

rational splines over hierarchical T-meshes (RHT-splines) for numerical analysis.

In this chapter, isogeometric analysis based on RHT-spline basis functions for two-

dimensional problems is proposed. The key feature of the proposed method is its

simplicity. It does not require the set-up of an additional mesh, nor additional nodes

and local refinement can be readily implemented through the refinement of geometric

models using RHT-splines.

Figure 6.2: An illustration of T-meshes.
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6.2 Rational splines over hierarchical T-meshes

6.2 Rational splines over hierarchical T-meshes

6.2.1 2D T-meshes

A T-mesh is a mesh based on rectangular grids that allow T-junctions (Sed). In T-

meshes, the end points of each grid line must lie on two other grid lines, and each cell

or facet in the grid is formed by a quadrilateral. Fig. 6.3 illustrates a typical T-mesh. A

vertex of the T-mesh is assigned to each grid point. If a vertex is inside the domain, it

is called an interior vertex. Otherwise, it is called a boundary vertex.

Figure 6.3: An illustration of boundary, crossing and T-junctional vertices: bi are

boundary vertices, v+i are crossing vertices and vT
i are T-junctional vertices.

6.2.2 Hierarchical T-meshes

A hierarchical T-mesh can be considered as a special form of T-mesh, which has a

natural level structure. One is also used widely in many research areas such as compu-

tational methods, computer science, and so on. Hierarchical T-mesh is initiated from

a TP mesh which is assumed to be a level-0 as shown in Fig. 6.2. If a level-k mesh

is given, then the level (k+ 1) mesh is obtained by subdividing some of the cells in

level-k. Each cell is subdivided into four subcells by connecting the middle points of

the opposite edges in the cell.

6.2.3 A dimension formula

As pointed out in (DCF06), polynomial spline functions over T-meshes has the ad-

vantages such as the simplification of local refinement strategy, the use of piecewise
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polynomials, and the utilization of hierarchical structures. Herein two important issues

are addressed to be the dimension formula of spline function spaces and the construc-

tion of basis functions of splines over hierarchical T-meshes. Let T be the T-mesh,

H be the cells in T , Ω ⊂ R
2 be the region occupied by T . Then we write:

S (p,q,α,β ,T ) =
{

s(x,y) ∈Cα,β (Ω)|s(x,y)|φ ∈ Ppq for any φ ∈ H

}

(6.1)

where the space, Ppq, consists of all the bi-degree (p,q) polynomials and the space,

Cα,β , consists of all the continuously bivariate functions up to order α in the x di-

rection and order β in the y direction. The dimension formula of the spline space

S (p,q,α,β ,T ) when p≥ 2α+1 and q≥ 2β +1 has already been proved in (DCF06).

For a C1-continuous cubic spline, where every interior knots is of multiplicity two, the

evaluation of the dimension formula is reduced to the following form

dimS (3,3,1,1,T ) = 4(V b +V+) (6.2)

where V b,V+ are boundary vertices, and interior crossing vertices, respectively. For

example, we have V b = 11 and V+ = 3 as illustrated in Fig. 6.3. The dimension formula

is

dimS (3,3,1,1,T ) = 4(11+3) = 56 (6.3)

Eq. (6.2) shows the number of basis functions corresponding to boundary and crossing

vertices which need to be constructed. It is also implied that each boundary vertex or

each crossing vertex is connected by four basis functions. After obtaining the dimen-

sional formula, the task in the next section will show how to construct basis functions

of splines over hierarchical T-meshes.

6.3 RHT-spline basis functions

6.3.1 Definition of knot vectors

Let us consider a knot vector with multiplicity of two defined as

Ξ = {ξ0,ξ0,ξ1,ξ1,ξ2,ξ2,ξ3,ξ3, ...,ξm−2,ξm−2,ξm−1,ξm−1,ξm,ξm} (6.4)

such that ξi < ξi+1, 1 ≤ i ≤ m−2, and ξ0 = ξ1 and ξm−1 = ξm. The set in Eq. (6.4)

can be rearranged as:

Ξ =







ξ0,ξ0,ξ1,ξ1
︸ ︷︷ ︸

p+1

,ξ2,ξ2
︸ ︷︷ ︸

k=2

, ...,ξm−2,ξm−2,ξm−1,ξm−1,ξm,ξm
︸ ︷︷ ︸

p+1







. (6.5)
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Figure 6.4: This figure illustrates cubic B-spline basis functions with multiplicity two

of interior knots, i.e, only C1-continuity: Ξ = {0,0,0,0, 1
3
, 1

3
, 2

3
, 2

3
,1,1,1,1}

As already mentioned in (DCL+08), the construction of RHT-spline basis functions

is initiated from C1 continuous cubic B-splines. Eq. (6.5) implies that cubic B-splines

(p = 3) are Cp−k =C1-continuous at every interior knots Fig. 6.4.

It is seen that, for the line case, only two B-spline basis functions in [ξi−1,ξi+1]
are nonzero at each interior knot ξi. These two basis functions are incorporated with

knot vectors [ξi−1,ξi−1,ξi,ξi,ξi+1] and [ξi−1,ξi,ξi,ξi+1,ξi+1] (see in Fig. 6.5). This

property also is satisfied by any B-spline basis function of degree p ≥ 3. In addition,

every interior knot is of multiplicity two, the derivatives of the basis functions also

vanish at ξi. Extending this fact further to the surface case, there are four B-spline

basis functions in [ξi−1,ξi+1]× [ηi−1,ηi+1] that are nonzero at each interior vertex

(ξi,ηi).

6.3.2 Modification of the basis functions at level k

Following Deng et al. (DCL+08), a basis function is represented by specifying its 16

Bézier ordinates in every cell within the support of the basis function as depicted in

Fig. 6.6a. A set of new Bézier ordinates is then generated by applying de Casteljau

algorithm, see Figs. 6.6b,c.

Suppose, among all the cells at level k, the cells θ k
i , i= 1, ...,Ck are subdivided. For

each i, if the basis function bk
i (ξ ,η) does not vanish in some cells of θ k

i (see Fig. 6.7).

Then we subdivide bk
i (ξ ,η) into these cells at level k+1 according to Eqs. (5.3).

Recall that the RHT-spline is constructed from cubic B-spline basis functions.

Therefore, there are 16 control points required to exactly interpolate the surface re-
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Figure 6.5: Four basis functions associated with (ξi,ηi) and their support

(a) (b) (c)

Figure 6.6: 16 basis function values of a basis function bk
i (ξ ,η) : (a) It is considered

as the given 16 Bézier ordinates, (b) Eq. (5.3) (or the de Casteljau algorithm) is then

applied to each of the four columns of bk
i (ξ ,η), (c) The de Casteljau algorithm is then

applied to each of the seven rows of bk
i (ξ ,η).
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stricted to each local “element”. Hence, there are 16 shape functions with respect to

these 16 control points (or 16 basis functions) presented in that element. Since the

RHT-spline is based on the knot vector in Eqs. (6.5), there are four basis functions at

each vertex (ξi,ηi) in the surface case.

(a) (b) (c)

Figure 6.7: Modification of a basis function : apply Eqs. (5.3) to each of the seven rows

of four Bézier ordinates, to obtain seven new Bézier ordinates. (a) A basis function

bk
i (ξ ,η) is considered as the given Bézier ordinates. (b) bk

i (ξ ,η) is subdivided into

four sub-cells. The square shaped vertices are new basis vertices. (c) The Bézier

ordinates around the new basis vertices are reset to zero (DCL+08).

It is clear that only Bézier ordinates are changed after its subdivision into four

subcells while the function bk
i (ξ ,η) has not changed, but is now defined over the mesh

Tk+1 .

6.3.3 Modification of the basis functions at level k + 1

In the following, we illustrate a simple way to modify a basis function at level k. Now

we describe the details of constructing the basis functions at level k + 1. Let con-

sider a new basis vertex (ξi,ηi) and its neighboring cells. The basis functions are

associated with the new basis vertices as {b̃k+1
i (ξ ,η)}4Vk+1

i=1 (see Fig. 6.8). The four

basis functions associated with (ξi,ηi) are defined to be M3
ik(s)N

3
il(t), k, l = 1,2 where

M3
i1(ξ ),M

3
i2(ξ ), N3

i1(η),N
3
i2(η) are the cubic B-spline basis functions associated with

the knot vectors (ξi−1,ξi−1,ξi, ξi,ξi+1), (ξi−1,ξi,ξi,ξi+1,ξi+1), respectively. If (ξi,ηi)
is a boundary vertex, then either ξi−1 = ξi, ξi+1 = ξi or ηi−1 =ηi, ηi+1 =ηi. These four

basis functions are in S (3,3,1,1,Tk+1) and they have the same support [ξi−1,ξi+1]×
[ηi−1,ηi+1]. Note that from the previous construction process, S1(ξ ,η)=∑

4Vk+1

i=1 b̃k+1
i (ξ ,η)

and S2(ξ ,η) = ∑
nk

i=1 b̄k
i (ξ ,η) are linearly independent as proven in (DCL+08).
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Figure 6.8: Modification of a basis function at level k and k+1.

6.3.4 Properties of the basis functions

It was found that the RHT-basis functions built in the previous section subsection have

the following properties (DCL+08):

• Partition of unity: For S1(ξ ,η), the Bézier ordinates attached to the new basis

vertices are equal to unit whereas all the others are equal to zero; and S2(ξ ,η)
also have the same properties as S1(ξ ,η). Hence, we have S1(ξ ,η)+S2(ξ ,η)=
1.

• Non-negativity: ∀i, bi(ξ ,η)> 0.

• Local support : ∀i, bi(ξ ,η) has a support as minimal as possible.

• Linear independent.

Let T be a hierarchical T-mesh, and bi(ξ ,η), i = 1,2...n be the basis functions. Then,

the polynomial spline surface over T is defined by:

S(ξ ,η) =
n

∑
i=1

Ri (ξ ,η)Pi ; Ri =
wibi (ξ ,η)

∑nml
i=1 wibi (ξ ,η)

(6.6)

where Pi are the control points; wi are the weights; bi are RHT-spline basis functions.

RHT-splines surfaces not only inherit all properties of B-spline and NURBS sur-

faces, but also, more importantly, allow us to manipulate efficiently local refinement.

In addition, it is in fact that RHT splines can also be considered as a special type of

Hermitian interpolation splines over T-meshes (SCM08). Note that in case of objects

including conic sections, the initial NURBS basis (level 0) should be chosen to repre-

sent exactly the geometry entire and a rational form of RHT splines should be therefore

recommended. In the following, we focus on an alternative to NURBS-based isoge-

ometric finite elements using the polynomial splines over hierarchical T-meshes for
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6.4 Numerical results

two-dimensional solid mechanics problems. Note that when we consider rational form

as its homogeneous one, there is not any difference between polynomial form and ra-

tional form. This is because polynomial curve is a curve with RHT bases and control

points in R2, while rational form is with RHT bases and control points in R3. In RHT

approach, if the geometry contains conic sections, the initial basis (level 0) based on

NURBS needs to be employed. From this initial basis, the process of the refinement

is started. At refinement step, new basis functions over T-meshes are created by using

above mentioned procedures. During the process of the refinement, the exact geometry

is always maintained. Therefore, communication with CAD is avoided.

6.4 Numerical results

In this section, four numerical examples are presented to demonstrate the performance

of my method. Note that with the geometry including conic sections such circles,

I use the original NURBS form at level 0. The results of the present formulation

will be compared with those of the standard FEM using cubic quadrilateral elements

(FEM-Q16) and the original cubic C1 continuous NURBS finite element approach.

The energy error norm is defined by

∥
∥
∥u−uh

∥
∥
∥

E
=

(
1

2

∫

Ω

(

σ −σ h
)T

D−1
(

σ −σ h
)

dΩ

)1/2

(6.7)

where u and σ represent the analytical displacement and stress solutions, respectively,

whereas all approximate values are denoted by the superscript h. It was shown in

(CHB09) that a priori error estimate can be derived as in the standard FEM, i.e,
∥
∥
∥u−uh

∥
∥
∥

H1(Ω)
≤C2hp (6.8)

where h is assumed to be a uniform mesh refinement. Therefore the energy error norm

can be obtained through the equivalence of H1-norm as follows

∥
∥
∥u−uh

∥
∥
∥

E
=

(
1

2
×a(u−uh,u−uh)

)1/2

≤C3

∥
∥
∥u−uh

∥
∥
∥

H1(Ω)
≤C2C3hp ≡Chp (6.9)

It is seen from numerical results below that the isogeometric finite element model using

RHT-spline basis functions can produce an optimal order of convergence of the a prior

error estimate as given in Eqs. (6.9).

6.4.0.1 Cantilever beam subjected to a parabolic traction at the free end

A cantilever beam with length L and height D and unit thickness is studied as a bench-

mark here. The beam is subjected to a parabolic traction at the free end as shown
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in Fig. 6.9. The parameters are: length L = 48m, height D = 12m, Young’s module

E = 3.0× 107kPa, Poisson’s ratio ν = 0.3, P = 1000N. The analytical solution is

available and can be found in a textbook by Timoshenko and Goodier (TG70).

ux =
Py

6ĒI

[

(6L−3x)x+(2+ ν̄)
(

y2 − D2

4

)]

uy =− Py

6ĒI

[

3ν̄y2 (L− x)+(4+5ν̄) D2x
4

+(3L− x)x2
] (6.10)

where the moment of inertia I for a beam with rectangular cross section and unit thick-

ness is given by I = D3

12
and

Ē =

{
E

E
/(

1−ν2
) , ν̄ =

{
ν for plane stress

ν
/
(1−ν) for plane strain

(6.11)

The stresses corresponding to the displacements Eqs. (6.10) are

σxx =
P(L− x)y

I
; τxy =− P

2I

(
D2

4
− y2

)

; σyy = 0 . (6.12)

The normalized strain energies and the energy error norms of the methods are com-

puted for various grid densities and shown in Fig. 6.10 and Fig. 6.11, respectively. It is

observed that the RHT-splines exhibits a superconvergence in the energy error norm of

the same order as that provided by the NURBS-based isogeometric analysis. However,

the errors of the RHT-splines are smaller than those of the traditional FEM-Q16 and

the NURBS-based isogeometric analysis. The contour plot of displacement and stress

components are shown in Fig. 6.12.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: A cantilever beam and meshes: a) A cantilever beam with parameters; b) A

uniformly coarse mesh used for both NURBS and RHT-splines at level 0; Slightly finer

meshes: c) NURBS and d) RHT-splines; Fine meshes: e) NURBS and f) RHT-splines.
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Figure 6.10: Normalized strain energy of the cantilever beam.
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Figure 6.11: Error in energy norm of the cantilever beam.

Figure 6.12: Contour plots of displacement and stress component of the cantilever

beam.
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6.4.0.2 Infinite plate with a circular hole

Next, we consider a plate with a hole. The exact solution for an infinite plate with a

hole of radius a centered at its origin, subjected to a constant tension in the x-direction

at infinity (see Fig. 6.13), is given by:

σrr(r,θ) =
Tx

2

(

1− R2

r2

)

+
Tx

2

(

1−4
R2

r2
+3

R4

r4

)

cos2θ

σθθ (r,θ) =
Tx

2

(

1+
R2

r2

)

− Tx

2

(

1+3
R4

r4

)

cos2θ

σrθ (r,θ) =−Tx

2

(

1+2
R2

r2
−3

R4

r4

)

sin2θ .

(6.13)

The normalized strain energies and the energy error norms of the methods are depicted

in Fig. 6.14 and Fig. 6.15, respectively. The most accurate results are obtained with the

RHT-splines formulation. In terms of convergence rate, it is seen that the convergence

rate of the RHT-splines are higher than that of the FEM-16 (r=3.196) and the NURBS

analysis (r=3.152). The contour plot of displacement and stress components are shown

in Fig. 6.16.

6.4.0.3 A hollow cylinder subjected to inner pressure: a plane stress problem

Fig. 6.17 shows a hollow cylinder and the discretizations of the domain, with in-

ternal radius a = 0.3m, external radius b = 0.5m, subjected to an internal pressure

p = 3×104kN/m2. Because of the axis-symmetry of the problem, only the upper right

quadrant of the cylinder is modeled. Plane stress conditions are assumed with Young’s

modulus E = 3×107kN/m2 and Poisson ratio ν = 0.25. Symmetry conditions are im-

posed on the left and bottom edges, and the outer boundary is traction free. The exact

solution for the stress components (TG70) as

σr(r) =
a2p

b2 −a2

(

1− b2

r2

)

; σφ (r) =
a2p

b2 −a2

(

1+
b2

r2

)

; σrφ = 0 (6.14)

whereas the radial and the tangential exact displacements are given by

ur(r) =
a2pr

E(b2 −a2)

{

1−υ +
b2

r2
(1+υ)

}

; uφ = 0 . (6.15)

Fig. 6.18 and Fig. 6.19 present the normalized strain energies and the energy error

norms, respectively. It is seen that the convergence rate of the RHT-splines are higher

than that other methods. More important, the RHT-spline can produce the smallest

error. Fig. 6.20 shows contour plots of different stress components.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: The elastic plate with circular hole and meshes: a) The elastic plate with

circular hole with parameters; b) A uniformly coarse mesh used for both NURBS and

RHT-splines at level 0; Slightly finer meshes: c) NURBS and d) RHT-splines; Fine

meshes: e) NURBS and f) RHT-splines.
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Figure 6.14: Normalized strain energy of the infinite plate with a hole.
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Figure 6.15: The estimated rate in energy norm of the plate with a hole.
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6.4 Numerical results

Figure 6.16: Contour plots of displacement and stress components of the plate hole.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17: A hollow cylinder subjected to inner pressure and domain discretization:

a) A hollow cylinder; b) A uniformly coarse mesh used for both NURBS and RHT-

splines at level 0; Slightly finer meshes: c) NURBS and d) RHT-splines; Fine meshes:

e) NURBS and f) RHT-splines.
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Figure 6.18: Normalized strain energy of the hollow cylinder.
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Figure 6.19: The estimated rate in energy norm of a hollow cylinder.
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6.4 Numerical results

Figure 6.20: Contour plots of displacement and stress components of a hollow cylinder.
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6.5 Concluding remarks

6.4.0.4 L-shaped panel subjected traction

Our last example is an L-shaped panel under plane stress condition as shown in Fig. 6.21.

The parameters of the structure are E = 1.0,ν = 0.3, t = 1. In this problem, the re-

entrant corner causes a stress singularity. Therefore, we refined the mesh in the vicin-

ity of the singularity. The normalized strain energy versus the number of degrees

of freedom is shown in Fig. 6.22. The most accurate results are obtained with the

RHT-splines. For example, an error of below 2% is obtained with approximately 5800

degrees of freedom (DOFs)for FEM-Q16 formulation while only 2600 DOFs elements

are needed for the RHT-spline formulation. The error in the energy norm for different

mesh refinements is shown in Fig. 6.23. Contour plots for this problem are given in

Fig. 6.24.

6.5 Concluding remarks

Isogeometric analysis based on RHT-splines with applications to solids in two dimen-

sions are presented. The RHT-spline basis functions fulfill all important properties in

the context of numerical analysis, i.e. non-negativity, partition of unity, linear inde-

pendent and local support. Moreover, the RHT-spline formulation facilitates adaptive

refinement that is cumbersome for NURBS or even T-spline based FE formulations.

In this chapter four numerical examples are presented: the cantilever beam, the

plate with a hole, a hollow cylinder under internal pressure and a L-shaped panel under

traction boundary conditions; a singularity is present for the latter example at the re-

entrant corner. For these problems, we showed that the convergence rate of the RHT-

spline is higher than that of the FEM-Q16 and the NURBS while the total error is lower.

It is clear that the RHT-spline is superior to the FEM-Q16 and the NURBS for all

problem tested. Moreover, RHT-splines allow for simpler (adaptive) mesh refinement.

The main drawback of the RHT-spline is that it can achieve only C1 continuity which is

nonetheless usually sufficient for most problems in solid and structural mechanics. In

conclusion, we believe the isogeometric analysis using RHT-splines holds significant

potential in computer-aided engineering and is a desirable alternative to the current

isogeometric analysis using B-splines and NURBS.
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6.5 Concluding remarks

(a) (b)

(c) (d)

(e) (f)

Figure 6.21: L-shaped panel problem setting: a) L-shaped panel problem; b) A uni-

formly coarse mesh used for both NURBS and RHT-splines at level 0; Slightly finer

meshes: c) NURBS and d) RHT-splines; Fine meshes: e) NURBS and f) RHT-splines.
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Figure 6.22: Normalized strain energy versus number of DOFs of the L-shape panel.
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Figure 6.23: Error in the energy norm for the L-shape problem.
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6.5 Concluding remarks

Figure 6.24: Contour plots of displacement and stress components for the L-shape

problem.
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Chapter 7

An adaptive three-dimensional

RHT-spline formulation in linear

elasto-statics and elasto-dynamics

7.1 Introduction

Isogeometric analysis (IGA) was introduced by Hughes et al. (HCB05) in order to

unify Computer Aided Design (CAD) and Computer Aided Engineering (CAE). Non

Uniform Rational B-Splines (NURBS) are classically used in CAD though they have

certain drawbacks in numerical analysis. One drawback is related to adaptive h-

refinement that is complex for NURBS-based isogeometric approaches. Recent ap-

proaches in IGA exploit different basis functions such as T-splines (SCF+04, BCC+10,

DJS10), polycube splines (WHL+08), Locally Refined (LR) splines (DS10), polyno-

mial splines over hierarchical T-meshes (PHT-splines) (Den) and among others (SDS+12,

VGJS12, KJZ12, GJS12).

The RHT-splines inherits all important properties of NURBS such as linear inde-

pendence of the basis functions, partition of unity, non-negativity and local support

(CHR07, BCS09, LDC07, LDC10). In contrast to NURBS, RHT-splines have the ca-

pability of joining geometric objects without gaps, preserving higher order continuity

everywhere and allow for simple and effective h-refinement strategies. From a lin-

ear algebra point of view, the NURBS space is a subspace of the RHT-splines space.

Moreover, local refinement algorithms are relatively simple while the complexity of

knot insertion with T-splines might be high, particularly in 3D.

In this chapter, the RHT-splines 2D formulation is extened to 3D for problems

in elasto-statics and elasto-dynamics. In order to drive the adaptive h-refinement the

stress recovery technique in isogeometric analysis is presented. The idea from Super-

convergent Patch Recovery (SPR) technique proposed by Zienkiewicz et.al. (OZ92a,
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7.2 Rational splines over 3D hierarchical T-meshes

OZ92b) is employed. The procedure is a least squares fitting of finite element solutions

over a local patch of elements at pre-selected points, where the rate of convergence is

higher than the global rate. The patch in SPR comprises elements that are assembled

around a central corner node. In isogeometric analysis the recovered stress components

are considered at an imaginary solid. This imaginary solid is constructed by the same

RHT-splines basis functions which are used for the approximation of the unknown dis-

placement field. It was show by Hassani et.al.(HGT12), that for NURBS-based IGA

the Gauss points of the knot elements are used as superconvergent points.

7.2 Rational splines over 3D hierarchical T-meshes

7.2.1 3D T-meshes

In 2D, a T-mesh is a mesh based on rectangular grids that allows T-junctions (Sed). In

T-meshes, the end points of each grid line must lie on two other grid lines, and each

cell or facet in the grid is formed by a quadrilateral. A 3D T-mesh is a partition of

a cuboid domain Ω ∈ R
3 such that each cell is a smaller cuboid (see in Fig. 7.1). A

vertex of the T-mesh is assigned to each grid point. If a vertex is inside the domain, it

is called an interior vertex. Otherwise, it is called a boundary vertex.

Figure 7.1: An illustration a typical 3D T-mesh with boundary vertices (bi = 8) and

crossing vertices (v+i = 1).

7.2.2 Hierarchical T-meshes

A hierarchical T-mesh can be considered as a special form of tensor product splines

with a natural level structure (PT97, Sed, Den). Hierarchical T-meshes are constructed

from a tensor product (TP) mesh starting from level-0 (T0). At level k (Tk), some
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7.2 Rational splines over 3D hierarchical T-meshes

cuboids are subdivided equally by three planes into eight sub-cuboids which are la-

beled as cuboid of level (k + 1). An example of a hierarchical T-mesh is shown in

Fig. 7.2.

(a) Level 0 (b) Level 1 (c) Level 2

Figure 7.2: A hierachical over 3D T-mesh.

7.2.3 A dimension formula

A 3D T-mesh is a natural generalization of 2D T-mesh. Let T be the T-mesh, H be

the cells in T , and Ω ⊂ R
3 be the region occupied by T . Then, when p ≥ 2α + 1;

q ≥ 2β +1 and r ≥ 2γ +1 the dimension formula can be defined as:

S (p,q,r,α,β ,γ,T ) =
{

s(x,y,z) ∈Cα,β ,γ(Ω)|s(x,y,z)|φ ∈ Ppqr for any φ ∈ H

}

(7.1)

where the space Ppqr consists of all the tri-degree (p,q,r) polynomials and the space

Cα,β ,γ consists of continuously trivariate functions of α,β ,γ in the x,y,z direction,

respectively. For a C1-continuous cubic spline, where every interior knots is of multi-

plicity two, the evaluation of the dimension formula is reduced to

dimS (3,3,3,1,1,1,T ) = 8(V b +V+) (7.2)

where V b,V+ are boundary vertices and interior crossing vertices, respectively. Eq. (7.2)

shows the number of basis functions corresponding to boundary and crossing vertices

which need to be constructed. It is also implied that each boundary vertex or each

crossing vertex is connected by eight basis functions. More details for construction of

dimension formula can be found in (DCF06, WYJ+11, LDC06).

In order to define the RHT-spline solid, let bi(ξ ,η,γ) be a hierarchical T-mesh T ,

and Pi be the corresponding control points. The RHT-spline solid is computed by

S(ξ ,η,γ) =
nml

∑
i=1

Ri (ξ ,η,γ)Pi ; Ri =
wibi (ξ ,η,γ)

∑nml
i=1 wibi (ξ ,η,γ)

(7.3)
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7.2 Rational splines over 3D hierarchical T-meshes

To parameterize the physical domain Ω by a global geometry function G : Ω0 = [0,1]2 →
Ω and (ξ ,η,γ) ∈ Ω0 → (x,y,z) ∈ Ω, the domain Ω is modeled by tri-cubic NURBS

functions:

G(ξ ,η,γ) =
nml

∑
i=1

Ri (ξ ,η,γ)Pi, (7.4)

The RHT-spline basis functions are identical to the NURBS basis functions at level 0.

The global geometry function is constructed from the parametric domain Ω0 which re-

mains unchanged after refinement. This geometry function can be exactly represented

with RHT-spline basis functions at any level k. The geometry of the RHT-spline solid

at level k can be represented by

G(ξ ,η,γ) =
nmlk

∑
i=1

Rk
i (ξ ,η,γ)Pk

i , (7.5)

where Ri are RHT-spline basis function given in Eq. (7.3). Let us define the linear

operator

L b(ξ ,η,γ) =
(
b,bξ ,bη ,bγ ,bξη ,bηγ ,bξγ ,bξηγ

)
(7.6)

For any fixed basis vertex (ξ0,η0,γ0), eight basis functions with indices j = 1, ..,8 are

associated

L G(ξ0,η0,γ0) =
N

∑
s=1

CsL bs (ξ0,η0,γ0) =
8

∑
j=1

C jL b j (ξ0,η0,γ0) = C ·B (7.7)

where B = (L b1
i (ξ0,η0,γ0),L b2

i (ξ0,η0,γ0), ...,L b7
i (ξ0,η0,γ0),L b8

i (ξ0,η0,γ0)) is a

8×8 matrix, and C = (C1
i ,C

2
i , ...,C

7
i ,C

8
i ) is a 1×8 matrix. From Eq. (7.7) we obtained

C = L G(ξ0,η0,γ0) ·B−1 (7.8)

The RHT-splines solid at level k+1 can be described as

Gk+1 (ξ ,η,γ) =
nmlk+1

∑
i=1

Rk+1
i (ξ ,η,γ)Pk+1

i (7.9)

The RHT-splines basis functions at level k+1 is given

Rk+1
i (ξ ,η,γ) =

wk+1
i bk+1

i (ξ ,η,γ)
nmlk+1

∑
i=1

wk+1
i bk+1

i (ξ ,η,γ)

(7.10)
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7.3 Stress recovery in isogeometric analysis

In isogeometric analysis, the recovered stress components are considered at an imagi-

nary solid. This imaginary solid is constructed by the same IGA basis functions which

are used for the approximation of the displacement field. The imaginary solid will

be fitted to these optimal sampling points in a least square sense for the recovered

stress components. Therefore, we take advantage of the RHT-spline solid generation

with the same control points. By minimizing a discrete L2 norm between the obtained

stresses and the recovered stresses at the Gauss points. The unknown coordinates of

the control points in the imaginary solid are obtained. An example for imaginary solid

in three-dimensions is shown in Fig. 7.3.

Figure 7.3: An example regarding imaginary solid in three dimensional.

The recovered stress components can be constructed by using the RHT-splines ba-

sis functions follow

σ∗
α =

n

∑
i=1

m

∑
j=1

l

∑
k=1

Ri, j,k (u,v,w)
(
Pi, j,k

)

α
(7.11)

where σ∗
α are stress components (α = xx,yy,zz,xy,yz,zx); Ri, j,k are the RHT-splines

basis function and Pi, j,k are the coordinates of control points.

R =







R1 (u1,v1,w1) R2 (u1,v1,w1) ... Rnml (u1,v1,w1)
R1 (u2,v2,w2) R2 (u2,v2,w2) ... Rnml (u2,v2,w2)

... ... ... ...
R1 (unml,vnml,wnml) R2 (unml,vnml,wnml) ... Rnml (unml,vnml,wnml)







(7.12)

Pα =







(P1 (u1,v1,w1))α (P2 (u1,v1,w1))α ... (Pnml (u1,v1,w1))α
(P1 (u2,v2,w2))α (P2 (u2,v2,w2))α ... (Pnml (u2,v2,w2))α

... ... ... ...
(P1 (unml,vnml,wnml))α (P2 (unml,vnml,wnml))α ... (Pnml (unml,vnml,wnml))α







(7.13)
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7.3 Stress recovery in isogeometric analysis

Eq. (7.11) can be rewritten in matrix form as:

σ∗
α = RT Pα (7.14)

We minimize discrete a norm F (Pα) of the difference between the new field and the

values at superconvergence points with respect to Pα as follows

F (Pα) =
gx

∑
i=1

gy

∑
j=1

gz

∑
k=1

(

σ∗
αi, j,k

−σ h
αi, j,k

)2

(7.15)

where σ h
α are the stress components obtained from the numerical analysis; gx,gy,gz

are the number of the Gauss points in the x, y, z-directions of the patch, respectively.

Substituting Eq. (7.14) into Eq. (7.15), we obtained

F (Pα) =
G

∑
g=1

(

RT
g Pα −σ h

αg

)2

(7.16)

where G is the number of Gauss points inside the patch

The minimization condition of F(Pα) requires its first derivative to be zero

∂F (Pα)

∂ (Pi)α

= 0 (7.17)

Yielding

APα = C ⇒ Pα = A−1C (7.18)

with

A =
G

∑
i=1

RT
i RiPαi

; C =
G

∑
i=1

Riσ
h
αi

(7.19)

The error in the energy norm and the approximate the energy norm is

‖e‖=
[∫

Ω

(

σ −σ h
)T

D
(

σ −σ h
)

dΩ

]1/2

(7.20)

‖e∗‖=
[∫

Ω

(

σ∗−σ h
)T

D
(

σ∗−σ h
)

dΩ

]1/2

(7.21)

where σ is the exact stress, σ∗ is the recovered stress, σ h is the stress obtained from

RHT-splines formulation.

The quality and accuracy of an error estimate is measured by its effective index

(ZTZ05)

θ =
‖e∗‖
‖e‖ (7.22)
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7.4 Numerical example

7.4.1 Static analysis

The RHT-splines results are compared with those of the cubic NURBS approach. At

level 0, both NURBS and RHT-splines share a uniformly coarse mesh for the initial

step. Both meshes are refined; while the RHT-splines formulation allows for local

refinement, the refinement for the NURBS-formulation crosses the entire patch. For

the error estimate the rate (r) is refered to degree of freedom.

7.4.1.1 Three dimension Lame problem

The first example is a hollow sphere of internal radius a = 1m and external radius

b = 2m, subjected to an internal pressure P = 1N/m2 as illustrated in Fig. 7.4a. Only

one eighth of the geometry is modelled and symmetry conditions are imposed on the

three planes of symmetry. The parameters are Young’s modulus E = 1kPa and Poisson

ratio ν = 0.3. The exact solution in polar coordinates is available in Timoshenko et.

al. (TG70):

ur =
Pa3r

E (b3 −a3)

[

(1−2υ)+(1+υ)
b3

2r3

]

; σr =
Pa3

(
b3 − r3

)

r3 (a3 −b3)
; σθ =

Pa3
(
b3 +2r3

)

2r3 (b3 −a3)
(7.23)

where r is the radial distance from the centroid of the sphere to the point of interest in

the sphere.

Fig. 7.4 shows the discretization of the cylinder for NURBS and RHT-splines. The

contour plot of the radial displacement and the deformed configuration are shown in

Fig. 7.5. The computed radial displacement and the tangential stresses along the x-axis

are presented in Fig. 7.6. The numerical results match with the analytical solution well.

Fig. 7.7 presents the error in the displacement and the error in the energy norms. The

effectivity index according to Eq. (7.22) is 0.837 for this problem. The convergence

rate in the energy error norm of the proposed method (r = 3.6275) is higher than

the convergence rate of the NURBS (r = 3.0153) based formulation with the same

polynomial degree (p=3).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: (a) Hollow sphere model. (b) A uniformly coarse mesh used for both

NURBS and RHT-splines. (c),(d) Non uniform NURBS refinements. (e),(f) RHT-

splines after 1 and 2 refinements.
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7.4 Numerical example

(a) (b)

Figure 7.5: (a) Contour plot of displacement. (b) Deformed configuration (scaling

factor = 1×103).
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Figure 7.6: (a) Distribution of the radial displacement. (b) Tangential stresses along

the x-axis.
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Figure 7.7: (a) Convergence rate in displacement of hollow sphere. (b) Convergence

rate in energy norm.

7.4.1.2 Pinched Cylinder

The cylindrical shell with rigid end diaphragm is subjected to a point load at the center

of the cylindrical surface as shown in Fig. 7.11a. The related parameters (NTRHXB08)

are: cylinder length L = 600; radius R = 300; thickness t = 3; Young’s modulus E =
3× 106; and Poisson’s ratio ν = 0.3. Due to its symmetry, only one-eighth of the

cylinder is modelled. The expected deflection at point A is 1.8248×10−5 (BSL+85).

The initial mesh and the mesh after 3 refinement steps are shown in Fig. 7.11.

The contour plot of the radial displacement at the loading point are shown in Fig. 7.8.

Fig. 7.9 shows the error in the displacement directly under load. Note that the reference

solution is based on shell theory while we employ a 3D continuum approach. The error

in the approximate energy norm according to Eq. (7.21) is illustrated in Fig. 7.10.

7.4.1.3 Solid “horseshoe” subjected to equal and opposite in-plane flat edge dis-

placements

Next, we consider the horseshoe problem, Fig. 7.12a. The parameters are Young’s

modulus E = 7.5×107; and Poisson’s ratio ν = 0.25.

The initial mesh and the mesh after 2 refinement steps are shown in Fig. 7.12.

The contour plot of the displacement and the deformed configuration are shown in

Fig. 7.13. The error in the approximate energy norm is shown in Fig. 7.14.
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7.4 Numerical example

Figure 7.8: Contour plot of displacement and deformed configuration (scaling factor

= 1×107).
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Figure 7.9: Convergence in displacement of pinched cylinder.
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Figure 7.10: Relative in the energy norm error.

Table 7.1: Natural frequency of a cantilevered rectangular plate

Methods Modes

1 2 3 4 5 6

Ref. solution(Nag99) 84.05 525.88 1469.99 1557.09 2874.13 4694.48

RHT-splines 84.326 527.642 1471.134 1574.465 2901.321 4732.816

7.4.2 Free vibration analysis

In this section, we examine the accuracy and efficiency of the RHT-splines for analyz-

ing natural frequencies of plates. The plate may have simply (S) supported or clamped

(C) edges.

7.4.2.1 Free vibration analysis of a cantilevered rectangular plate

The free vibration analysis is presented for a rectangular plate as shown in Fig. 7.15a.

The parameters (NTRHXB10) are: length L = 100mm, height D = 10mm, thickness

t = 1.0mm, Young’s modulus E = 2.1× 104kg f/mm4, Poisson’s ratio ν = 0.3, and

mass density ρ = 8.0×10−10kg f s2/mm4. The meshes are shown in Fig. 7.15b,c,d.

The first six shape modes of the free vibration of the plate are plotted in Fig. 7.16

and the results are listed in Tab. 7.1. The frequencies obtained from proposed method

are close to the reference solution (Nag99).
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7.4 Numerical example

(a) (b)

(c) (d)

(e) (f)

Figure 7.11: (a) Pinched cylinder model. (b) A uniformly coarse mesh used for both

NURBS and RHT-splines. (c),(d) Non uniform NURBS refinements. (e),(f) RHT-

splines after 1 and 3 refinements.
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7.4 Numerical example

(a) (b)

(c) (d)

Figure 7.12: (a) A horseshoe geometry. (b)(c)(d) The RHT-splines refinement steps at

level 0,1,2, respectively.

121

Chapter6/Chapter6Figs/EPS/Horseshoe_geo11.eps
Chapter6/Chapter6Figs/EPS/Horseshoe_level_0.eps
Chapter6/Chapter6Figs/EPS/Horseshoe_level_1.eps
Chapter6/Chapter6Figs/EPS/Horseshoe_level_2.eps


7.4 Numerical example

Figure 7.13: Contour plot of displacement and deformed configuration.
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Adaptive refinement with RHT−spline  (σ*−σh),(r=3.0164)

Figure 7.14: Relative in the energy norm error.
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7.4 Numerical example

(a) (b)

(c) (d)

Figure 7.15: (a) A cantilevered rectangular plate model. (b),(c),(d) RHT-splines refine-

ment mesh at level 0, level 1 and level 2.
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7.4 Numerical example

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 7.16: The first six shape modes of a cantilevered rectangular plate.
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7.4 Numerical example

Table 7.2: A non-dimensional frequency parameter ϖ =
(
ω2ρa4t/D

)1/4
of SSSS plate

(a/b=1)

t/b Methods Modes

1 2 3 4 5 6

0.1 Exact (ADK87) 4.37 6.74 6.74 8.35 9.22 9.22

NURBS 4.3803 6.7885 6.7894 8.4736 9.3645 9.3687

RHT-splines 4.3812 6.7912 6.7956 8.4961 9.3932 9.3973

7.4.2.2 Free vibration analysis of square plate

The next example is a square plate of length a, width b and thickness t as shown

in Fig. 7.17. The parameters (NTRHXB11, TNXNT+12) are Young’s modulus E =
2.0× 1011, Poisson’s ratio ν = 0.3 and mass density ρ = 8000. A non-dimensional

frequency parameter ϖ = (ω2ρa4t/D)1/4 is used, where D = Et3/(12(1−ν2)) is the

flexural rigidity of the plate. Thin and thick plates corresponding to length-to-width

ratios of a/b = 1 and thickness-to-length ratio of t/a = 0.1 are considered.

An initial mesh and the mesh after 2 refinement steps are shown in Fig. 7.18.

The first six shape modes of the clamped plate using the RHT-splines are plotted in

Fig. 7.19. The error in the first six frequencies are shown in Fig. 7.21 as well as

in Tab. 7.2 and Tab. 7.3. The RHT-splines results are compared with the results of

NURBS based on uniform and global refinement. It can be seen the convergence rate

in the eigenfrequencies of RHT-splines is faster than NURBS.

(a) (b)

Figure 7.17: (a) Square plates with four simply-supported edges (SSSS). (b) Square

plates with four clamped edges (CCCC).
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7.4 Numerical example

(a) (b)

(c) (d)

Figure 7.18: The meshes of square plate. (a) NURBS and RHT-splines coarse meshes.

(b) RHT-splines after 1 refinement. (c) Non uniform NURBS refinement. (d) RHT-

splines after 2 refinements.

Table 7.3: A non-dimensional frequency parameter ϖ =
(
ω2ρa4t/D

)1/4
of CCCC

plate (a/b=1)

t/b Methods Modes

1 2 3 4 5 6

0.1 Exact (ADK87) 5.71 7.88 7.88 9.33 10.13 10.18

NURBS 5.7232 7.9204 7.9227 9.4468 10.2623 10.3115

RHT-splines 5.7263 7.9283 7.9297 9.4485 10.2958 10.3224
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7.4 Numerical example

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 7.19: The first six shape modes of square with four clamped plate using the

RHT-splines.
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7.4 Numerical example
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Figure 7.20: Convergence of normalized frequencies ϖh/ϖexact . (a) SSSS plate. (b)

CCCC plate.
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Non−uniform refinement with NURBS,(ω−ωh),(r = 1.6052)

Adaptive refinement with RHT−spline,(ω−ωh),(r = 1.9807)
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Non−uniform refinement with NURBS, (ω−ωh), (r = 1.6141)

Adaptive refinement with RHT−spline, (ω−ωh),(r = 1.9909)

(b)

Figure 7.21: Convergence rates in the eigenfrequencies of mode 1. (a) SSSS plate. (b)

CCCC plate.
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7.5 Conclusion

7.5 Conclusion

We presented an isogeometric analysis based on RHT-splines for three-dimensional

problems in elasto-statics and elasto-dynamics. The RHT-splines is a piecewise tricu-

bic rational over 3D hierarchical T-meshes. The idea is based on rational splines and

exploits the flexibility of T-meshes for local refinement. The shape functions satisfy

important properties such as non-negativity, local support and partition of unity. The

RHT-splines inherits all properties of B-spline, NURBS and allows for efficient local

refinement. We also presented stress recovery approach in isogeometric analysis to

drive the adaptive h-refinement procedure. Therefore, an imaginary solid is defined.

This imaginary solid is constructed by the same the RHT-splines basis functions which

are used for approximation of the displacement field. Numerical studied showed the

high accuracy of the proposed method. A good agreement was achieved between the

numerical and analytical results for both static and free vibration problems.
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Chapter 8

Rotation free isogeometric thin shell

analysis using RHT-splines

8.1 Introduction

The shell structures are used for wide range of application in engineering design,

e.g. for car bodies in automotive industry, light weight component in aero space

structures. Shell elements can also be classified according to the thickness of the

shell and the curvature of the mid-surface (BBWR04). Depending on the thickness,

shell elements can be categorized into thin plate/shell elements (WC08, KB96, BD83,

COS00, MRA11, NR08, RGSB10) and thick plate/shell elements (WC04, CW06,

UO10, NXRBD08b, NTRHXB10, NTRHXB11, NTRNXB08). Thin shell elements

are based on the Kirchhoff-Love theory (TWK59) in which transverse shear deforma-

tions are negligible. The thin shell element also requires C1 displacement continuity

which is difficult to achieve for free-form geometries when using Lagrange polyno-

mials as basis functions. Thick shell elements are based on Reissner-Mindlin theory

which require only C0 continuity for the deflection and rotation fields. Especially the

development of thick shell elements suffers from one intrinsic difficulty locking, i.e.

the presence of “artificial” stresses. It is well known that low-order finite elements are

more prone to locking phenomena and that locking can often be alleviated by the use

of higher order elements.

Using higher continuous formulations in the context of thin shell analysis based on

Kirchhoff-Love theory avoids the use of rotational degrees of freedom or discretization

of the director field. A formulation that just discretizes the mid-surface position and

automatically fulfills the Kirchhoff-Love constraint by using a higher continuous for-

mulation was first proposed in the context of meshfree methods by (RA06b, RAB07c).

In the context of isogeometric analysis based on NURBS, such approaches have been

presented by (DBH10, BBHH11, KBLW09, KBH+10). Shell analysis based on T-
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8.2 Thin shell model

splines were proposed by (UY09).

In this chapter, I exploit a novel basis based on the rational splines over hierarchical

T-meshes for thin shell structures with single patch and multi-patches analysis. The key

feature of the proposed method is its simplicity. It does not require the set-up of an

additional mesh, nor additional nodes and local refinement can be readily implemented

through the refinement of geometric models using RHT-splines. It employs Kirchhoff-

Love theory in pristine form avoiding the need to introduce rotation DOFs due to the

C1 continuity of the RHT-splines.

8.2 Thin shell model

In this section, the basic equations of the thin shell theory is introduced. The trans-

verse shear deformation is ignored and the shell director remains normal to the middle

surface in the deformed configuration. Therefore, the description of the shell can be

reduced to the description of its middle surface. The Greek indices α = 1,2 refer to

quantities curvilinear coordinate system.

8.2.1 Kinematics of the shell

The deformation of a thin shell can be fully described by the deformation of its mid-

surface, which is a two-dimensional surface embedded in the dimensional. The map-

ping of shell middle surface is parameterized using coordinates ξ ,η ∈ A ⊂ R
2. The

position vector of a material point in the reference geometry is given by

x0 (ξ ,η,ζ ) = ϕ0 (ξ ,η)+ζ t0 (ξ ,η) (8.1)

and similar for the deformed geometry

x(ξ ,η,ζ ) = ϕ (ξ ,η)+ζ t(ξ ,η) (8.2)

where ζ ∈ [−0.5h,0.5h] is the through-thickness coordinate with h is the shell thick-

ness and t is the shell normal. The functions ϕ0(ξ ,η) and ϕ(ξ ,η) provide a para-

metric representation of the middle surface of the shell in the reference and deformed

configurations, respectively. The area element of the middle surface is computed as

dΩ0 = j̄0dξ dη where j̄0 = ||ϕ0
,1 ×ϕ0

,2||. The notation ξ ,η and ζ for the local coor-

dinates are abbreviated for the purpose of index notation and summation convention

into ξ α(ξ 1 = ξ ,ξ 2 = η) and ξ 3 = ζ (see Fig. 8.1). The Kirchhoff-Love hypothesis is

imposed by requiring that t0, t are perpendicular to ϕ0
α ,ϕα

t0 =
ϕ0
,1 ×ϕ0

,2
∥
∥
∥ϕ0

,1 ×ϕ0
,2

∥
∥
∥

; t =
ϕ ,1 ×ϕ ,2
∥
∥ϕ ,1 ×ϕ ,2

∥
∥

(8.3)
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8.2 Thin shell model

Figure 8.1: Shell geometry in the reference and the deformed configurations.

ϕ0
,α · t0 = 0 ; |t0|= 1 ; t0 · t0,α = 0 . (8.4)

The deformation gradient is given by

F = ∇x · (∇x0)
−1 (8.5)

with the tangent map

∇x =







∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3







. (8.6)

We also define the covariant base vectors as

gα =
∂x

∂ξ α
= ϕ,α +ξ 3tα ; g3 =

∂x

∂ξ 3
= t

g0
α =

∂x0

∂ξ α
= ϕ0

,α +ξ 3t0
α ; g0

3 =
∂x0

∂ξ 3
= t0 .

(8.7)

The Green-Lagrange strain tensor is given by

E =
1

2

(
FT F− I

)
(8.8)
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8.2 Thin shell model

where F is the deformation gradient and I is the identity tensor. The strain is decom-

posed into a constant part due to membrane action and a linear part due to bending.

The covariant strain coefficients is given by:

Eαβ = εαβ +ξ 3καβ =
1

2

(

gαβ −g0
αβ

)

+ξ 3
(

kαβ − k0
αβ

)

(8.9)

In Eq. (8.9), the covariant metric tensor and the curvature tensors of the surface are

given by

gαβ = g,α ·g,β = x,α ·x,β ; g0
αβ = g0

,α ·g0
,β = x0

,α ·x0
,β (8.10)

kαβ =−gα,β · t ; k0
αβ =−g0

α,β · t0 . (8.11)

8.2.2 Equilibrium deformations of thin shells

The principle of virtual work is expressed as

δΠ = δΠint +δΠext = 0 . (8.12)

The internal virtual work, which can be presented in terms of integrals over the para-

metric space A are as follows:

δΠint =−
∫

Ω0

(σ ·δE)dΩ0 =−
∫

A

(n ·δε +m ·δκ) j̄0dξ 1dξ 2 (8.13)

The stress tensor can be written in Voigt notation as

σ =





σ11

σ22

σ12



=
E

1−ν2





1 ν 0

ν 1 0

0 0 (1−ν)/2









E11

E22

2E12



 (8.14)

where σαβ and Eαβ are the strains; E is the Young’s modulus and ν the Poisson’s ratio

Separating the stresses into a membrane and a bending stress and integrating through

the thickness h, which can be interpreted as force and moment resultants.

n =





n11

n22

n12



=
Eh

1−ν2





1 ν 0

ν 1 0

0 0 (1−ν)/2









ε11

ε22

2ε12



 (8.15)

m =





m11

m22

m12



=
Eh3

12(1−ν2)





1 ν 0

ν 1 0

0 0 (1−ν)/2









κ11

κ22

2κ12



 (8.16)

For thin shell theory, the three-dimensional continuum description is reduced to that

of the shell mid-surface, and the transverse normal stress is neglected. Furthermore,
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8.2 Thin shell model

the Kirchhoff-Love theory is assumed that the shell cross-sections remain normal to its

mid-surface in the deformed configuration, which implies that the strain is assumed to

be linear through the thickness and the transverse shear strains are zero. The internal

energy density can be integrated through-the-thickness, resulting in an internal energy

density per unit area.

8.2.3 Galerkin discretization

The undeformed shell surface is defined in terms of basis functions

ϕ0(ξ
1,ξ 2) =

n

∑
i=1

Ri

(
ξ 1,ξ 2

)
Pi . (8.17)

The displacement field u is discretized as

u(ξ 1,ξ 2) =
n

∑
i=1

Ri(ξ
1,ξ 2)ui . (8.18)

The membrane strain and the bending strain in Voigt notation can then be computed as

ε(ξ 1,ξ 2) =
n

∑
i=1

Bi
n(ξ

1,ξ 2)ui ; κ(ξ 1,ξ 2) =
n

∑
i=1

Bi
m(ξ

1,ξ 2)ui . (8.19)

The membrane and bending strain matrices take the form

Bi
n =





bi
,1ϕ0

,1 · e1 bi
,1ϕ0

,1 · e2 bi
,1ϕ0

,1 · e3

bi
,2ϕ0

,2 · e1 bi
,2ϕ0

,2 · e1 bi
,2ϕ0

,2 · e3

(bi
,2ϕ0

,1 +bi
,1ϕ,2

0) · e1 (bi
,2ϕ0

,1 +bi
,1ϕ0

,2) · e2 (bi
,2ϕ0

,1 +bi
,1ϕ0

,2) · e3



 (8.20)

Bi
m =





Bi
m11 · e1 Bi

m11 · e2 Bi
m11 · e3

Bi
m22 · e1 Bi

m22 · e2 Bi
m22 · e3

2Bi
m12 · e1 2Bi

m12 · e2 2Bi
m12 · e3



 (8.21)

in which

Bi
mαβ = ϕ0

,αβ · t0
1

j̄0

[
bi
,1

(
ϕ0
,2 × t0

)
−bi

,2

(
ϕ0
,1 × t0

)]

+
1

j̄0

[

bi
,1

(

ϕ0
,αβ ×ϕ0

,2

)

−bi
,2

(

ϕ0
,αβ ×ϕ0

,1

)]

−bi
,αβ · t0

(8.22)

and where (e1,e2,e3) are the basis vectors of an orthonormal coordinate system.

Combining simultaneously membrane and bending actions, we write a linear system

for the vector of nodal unknowns u

Ku = f . (8.23)
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8.3 RHT-splines with multi-patches

The assembly of an element membrane and bending stiffness into the global stiffness

matrix K can finally be written as

Ki j =
∫

A

(

h
(
Bi

n

)T
DB j

n +
h3

12

(
Bi

m

)
T

DB j
m

)

j̄0dξ 1dξ 2 (8.24)

The force contribution of the ith node is

fi =
∫

A

qbi j̄0dξ 1dξ 2 +
∫

∂A

pbi‖ϕ0
,t‖dlξ (8.25)

where q is the body force per unit area and p are the forces per unit length on the

boundary of the middle surface.

During the element assembly, Eq. (8.24) is computed for all pairs of element basis

functions i, j for all elements and added to the global stiffness matrix K as described

above.

8.3 RHT-splines with multi-patches

8.3.1 Continuity conditions for RHT-splines surface

Consider the two bi-cubic polynomials, W1(x,y) and W2(x,y), defined by over two

adjacent domains [x0,x1]× [y0,y1] and [x1,x2]× [y0,y1], respectively. They are pre-

sented in the Bézier form with Bézier ordinates b1
i,k and b2

i,k, respectively and form

C1-continuity through their common boundary following:

b1
3,i −b1

2,i

x1 − x0
=

b2
1,i −b2

0,i

x2 − x1
(i = 0, ..,3) . (8.26)

In order to achieve the two bi-cubic polynomials with C1 continuity, we introduce the

following addition:

∂

∂x
W1 = p(y)

∂

∂x
W2 +q(y)

∂

∂y
W1 (y ∈ [y0,y1]) (8.27)

for x = x1 and some functions p(y) and q(y), and the connecting functions are p(x)
and q(x) ( with p(x)> 0).

From Eq. (8.27), we can choose the functions p, q are p(x) = 1 and q(x) = αx+β (1−
x), a linear function of x. The following are stilcient conditions for S to be C1.

p0,1 −q0,0 = q0,0 − r0,1 +α(q0,0 −q1,0)

p1,1 −q1,0 = q1,0 − r1,1 +
2
3
α(q1,0 −q2,0)+

1
3
β (q0,0 −q1,0)

p2,1 −q2,0 = q2,0 − r2,1 +
1
3
α(q2,0 −q3,0)+

2
3
β (q1,0 −q2,0)

p3,1 −q3,0 = q3,0 − r3,1 +β (q2,0 −q3,0)

(8.28)
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8.3 RHT-splines with multi-patches

where α,β are constants. In order to generate a piecewise bicubic surface that is C1,

we set p(x) = 1 and q(x) = α(1− x)2, this would automatically force q(x,0) to be

quadratic, then the conditions are:

p0,1 −q0,0 = q0,0 − r0,1 +α(q0,0 −q1,0)

p1,1 −q1,0 = q1,0 − r1,1 +
2
3
α(q1,0 −q2,0)− 1

3
α(q0,0 −q1,0)

p1,1 −q1,0 = q1,0 − r1,1 +
1
3
α(q2,0 −q3,0)

p2,1 −q2,0 = q2,0 − r2,1

p3,1 −q3,0 = q3,0 − r3,1 .

(8.29)

Next, we consider two vertices A,B on the boundary lines of two RHT-splines surfaces

S1(ξ ,η) and S2(ξ ,η) over the T-meshes T1 and T2 as shown in Fig. 8.2. In case of

point B which is not a basis vertex, the geometry information is formed by its neigh-

bor basis vertex in T2. The knot line segments are inserted in T1 and T2 when they

are through the boundary basis vertices of two meshes. The C1-continuity conditions

through the common boundary are given as :

S1
ξ (A) = S2

η(B) ; S1
ξη(A) =−S2

ξη (B) (8.30)

Figure 8.2: Continuity condition for surface over T-mesh

8.3.2 Connecting surface multi-patches

These are the main steps of connecting surface multi-patches algorithm:
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8.3 RHT-splines with multi-patches

• Step 1: Determining the common parameter domains The common parameter

boundary domains of two patches are extracted at this step. As an example

shown in Fig. 8.3, two curve segments (AB and CD) were determined on each

boundary. Then, they will be mapped back to the parameter domains.

Figure 8.3: Common boundary

• Step 2: Reparameterization of surfaces The reparameterization of two surfaces

along with the common boundary curve are presented on this step. The geometry

information at the surface S2 is f , fx, fy, fxy. Then it will be transformed into

h,hξ ,hη ,hξη (see in Fig. 8.3) such that

h = f ; hξ = fx ; hη =− fy ; hξη =− fxy

Describe the linear reparameterization form f (x) = ax+ b along the common

boundary that has the similar coincident parameter (for example: the parameter

at point A,D and B,C have the same knot values).

• Step 3: Combining the boundary information Insert some knot segments into T-

mesh. The geometric information at these basis vertices is evaluated by the aver-

age of the geometric information at two basis vertices on the common bound-

ary. The new geometric information at A and B should be f , fx, fy, fxy and

f ,− fx, fy,− fxy, respectively.

f = f1+ f2

2
; fξ =

f 1
x + f 2

y

2
; fη =

f 1
x − f 2

y

2
; fξη =

f 1
xy− f 2

xy

2

• Step 4: Interpolation of the geometry information
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8.4 Numerical results

8.4 Numerical results

In this section, we show the performance of the proposed method through three bench-

mark problems coming from the so-called shell obstacle course (BSL+85): the Scordelis-

Lo roof, the hemispherical shell and the pinched cylinder with diaphragms. These

problems were often used to asses the elements’ robustness and accuracy under com-

plex strain states. The present results are compared with those of the original cubic

NURBS approach. At level 0, both NURBS and RHT-splines share a uniformly coarse

mesh for the initial step. At each refinement step, NURBS still handles a uniform mesh

based on tensor-product form while RHT-splines uses a hierarchical T-mesh frame-

work. For the convergence in strain energy, we use the relative error in strain energy

(E −Eh)/E versus the number of DOFs, where Eh is the strain energy calculated using

by NURBS and RHT-splines and E is the “exact” strain energy calculated using a fine

mesh of higher order NURBS approximation (p=9).

8.4.1 Single patch analysis

8.4.1.1 Scordelis - Lo roof

Consider a cylindrical concrete shell roof with self-weight (g = 90/area) where two

curved edges are supported by rigid diaphragms and the other two edges are free see

Fig. 8.4.In our calculations, the given data is assumed as follows: the length of the

cylinder L = 50; its radius R = 25; the thickness h = 0.25; the Young’s modulus E =
4.32× 108; and the Poisson’s ratio ν = 0.0. The reference value for the mid-side

vertical displacement is 0.3024 (BSL+85, MH85).

For the parameters above a maximal value of the vertical displacement at the mid-

point of the side edge using the PHT approach is approximate u= 0.3006, that is lower

than the reference value ure f = 0.3024 given in (BSL+85) about 0.6%. The reason

for the different results is the different treatment of shear deformations in the respec-

tive formulations: In the reference solution, it was taken a shear-deformable theory

while the present method is based on Kirchhoff-Love theory which neglects transverse

shear deformations. The results displacement convergence of the methods are shown

in Fig. 8.5. It is observed that the RHT-splines exhibits the higher accuracy than the

NURBS-based approach when the same order approximation used. Strain energy and

energy error norm of the methods are computed for various grid densities and shown

in Fig. 8.6,Fig. 8.7, respectively. Contour plot of the vertical displacement and de-

formed configuration are displayed in Fig. 8.8 and the force and moment resultants are

presented in Fig. 8.9.
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8.4 Numerical results

(a) (b)

(c) (d)

(e) (f)

Figure 8.4: The Scordelis-Lo roof and meshes: a) The Scordelis-Lo roof; b) A uni-

formly coarse mesh used for both NURBS and RHT-splines at level 0; Slightly finer

meshes: c) NURBS and d) RHT-splines; Fine meshes: e) NURBS and f) RHT-splines.
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8.4 Numerical results
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Figure 8.5: Convergence in displacement of the Scordelis–Lo roof.
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Figure 8.6: Convergence of strain energy of the Scordelis-Lo roof.
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Figure 8.7: Error in energy norm of the Scordelis-Lo roof.

Figure 8.8: Contour plots of the vertical displacement at A point and deformed con-

figuration (scaling factor = 10) of the Scordelis-Lo roof.
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8.4 Numerical results

Figure 8.9: Contour plot of the force and moment resultants of the Scordelis-Lo roof.
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8.4 Numerical results

8.4.1.2 Pinched cylinder with diaphragm

A cylindrical shell with rigid end diaphragm is subjected to a point load at the center

of the cylindrical surface. The related parameters are taken as: length of the cylinder

L = 600; radius R = 300; thickness t = 3; Young’s modulus E = 3×106; and Poisson’s

ratio ν = 0.3. Due to its symmetry, only one octant of the cylinder as shown in Fig. 8.11

is modeled for the computation. The expected deflection under a concentrated load is

1.8248×10−5 (BSL+85).

Convergence of the normalized radial displacement at the loading point is depicted

in Fig. 8.10. Convergence of strain energy versus the number of degrees of freedom

is shown in Fig. 8.23. The error in the energy norm for different mesh refinements is

depicted in Fig. 8.13. The RHT-splines is clearly superior to the NURBS approach.

Fig. 8.21 illustrates contour plots of displacements for the an eighth and the full model

of the cylinder.
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Figure 8.10: Convergence in displacement of pinched cylinder.
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8.4 Numerical results

(a) (b)

(c) (d)

(e) (f)

Figure 8.11: Pinched cylinder with diaphragms boundary conditions and meshes: a) A

pinched cylinder; b) A uniformly coarse mesh used for both NURBS and RHT-splines

at level 0; Slightly finer meshes: c) NURBS and d) RHT-splines; Fine meshes: e)

NURBS and f) RHT-splines.
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Figure 8.12: Convergence of strain energy of pinched cylinder.
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Figure 8.13: Error in energy norm of pinched cylinder.
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8.4 Numerical results

Figure 8.14: Contour plots of displacement under point load and deformed configura-

tion (scaling factor = 1×107) of pinched cylinder.

8.4.1.3 Hemispherical shell

Let us consider a pinched hemisphere shell subjected to two opposite point loads F =
2.0. The bottom circumferential edge of the hemisphere is free (see in Fig. 8.15).

The parameters are given as follows: Young’s modulus E = 6.825× 107, Poisson’s

ratio ν = 0.3, radius R = 10.0 and the thickness of the shell t = 0.04. Due to its

symmetry, only one quarter of geometry is modeled. The reference value of the radial

displacement under the point loads is 0.0924 (BSL+85).

Convergence of the radial displacement under the applied loads is shown in Fig. 8.16.

Also, Fig. 8.17 and Fig. 8.18 present the convergence of strain energy and the energy

error norm, respectively. It is again seen that the RHT-splines produce more accu-

rate solution than the NURBS model. Fig. 8.19 shows contour plots and deformed

configuration of displacement component for both the quarter and full models.
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8.4 Numerical results

(a) (b)

(c) (d)

(e) (f)

Figure 8.15: Hemispherical shell at point loads and meshes: a) A hemispherical shell;

b) A uniformly coarse mesh used for both NURBS and RHT-splines at level 0; Slightly

finer meshes: c) NURBS and d) RHT-splines; Fine meshes: e) NURBS and f) RHT-

splines.
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Figure 8.16: Convergence of the normalized displacements of a hemispherical shell.
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Figure 8.17: Convergence of strain energy of a hemispherical shell.
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Figure 8.18: Error in energy norm of a hemispherical shell.

Figure 8.19: Contour plots of displacement at point loads and deformed configuration

(scaling factor = 30) of a hemispherical shell.
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8.4 Numerical results

8.4.2 Multi-patches analysis

8.4.2.1 Pinched Cylinder

A cylindrical shell with rigid end diaphragm is subjected to a point load at the center

of the cylindrical surface. The related parameters are taken as: length of the cylinder

L = 600; radius R = 300; thickness t = 3; Young’s modulus E = 3×106; and Poisson’s

ratio ν = 0.3. The expected deflection under a concentrated load is 1.8248×10−5

(BSL+85).

The geometry of cynlinder is subdivided into four patches and the meshes are

shown in Fig. 8.20. An illustrates contour plots of displacements force and moment

resultants of the pinched cylinder for a half model by coupling four patches are shown

Fig. 8.21. Convergence of displacement and the energy at the loading point is depicted

in Fig. 8.22, Fig. 8.23.

Figure 8.20: Pinched cylinder is subdivided into 8-patches and meshes.
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8.4 Numerical results

Figure 8.21: Contour plots of displacement, force and moment resultants on deformed

configuration (scaling factor = 1×107).
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Figure 8.22: Convergence in displacement of the pinched cylinder with multi-patches

analysis.
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Figure 8.23: Energy convergence of the pinched cylinder with multi-patches analysis.
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8.4 Numerical results

8.4.2.2 A wind turbine rotor

We consider a wind turbine rotor with gravity loading (g = 9.81m/s2) which is pre-

sented in Fig. 8.24a. For this example, we used isotropic material with the parameters

follow: Young’s modulus E = 19×109, Poisson’s ratio ν = 0.29, and the thickness of

the wind turbine rotor are shown in Fig. 8.24b.

The geometry of this problem is subdivided into sixteen patches and the meshes are

shown in Fig. 8.25. For this example, we used the different parameters mesh on patches

and these are refined from the tip to roof. Contour plots of the displacement and and

deformed configuration are displayed in Fig. 8.26. Convergence of displacement under

the gravity loading is presented in Fig. 8.28. The good performance of the method is

confirmed by complex geometry problem. Maximum displacement at the tip of the

blade using the RHT approach is u = 3.05m, while the reference value is ure f = 3.03m

(from Prof. Y. Bazilevs’s group) and the error is 0.66%.

(a) (b)

Figure 8.24: (a) The wind turbine rotor. (b) Blade thickness distribution.

153

Chapter7/Chapter7Figs/EPS/blade_setup.eps
Chapter7/Chapter7Figs/EPS/WTBlade_thickness.eps


8.4 Numerical results

Figure 8.25: The wind turbine blade is subdivided into 16-patches with coarse mesh

and refinement meshes.

(a) (b)

Figure 8.26: Contour plot of displacement and deformed configuration (scaling factor

= 20) of the wind turbine blade.
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8.4 Numerical results

(a) Normal Force N11 (b) Normal Force N22

(c) Normal Force N12 (d) Bending Moment M11

(e) Bending Moment M22 (f) Bending Moment M12

Figure 8.27: Contour plot of displacement, force and moment resultants of the wind

turbine blade.
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Figure 8.28: Convergence in displacement of the wind turbine blade.

8.5 Concluding remarks

An isogeometric approach based on RHT-splines has been formulated for the Kirchhoff-

Love thin shell structures. Due to the C1-continuity of the RHT-splines, I only dis-

cretize the mid-surface of the shell and automatically fulfill the Kirchhoff-Love con-

straint. Therefore, only 3 DOFs per node are needed. The RHT-splines possess C1

continuity, so the Kirchhoff-Love theory for thin shell model can be used in pristine

form. Moreover, RHT-splines allow a simple implementation for local refinement. By

embedding the well-known finite element in the isogeometric framework, the advan-

tage of exact geometry representation on the first coarsest mesh is inherited. The exact

geometry representation is preserved throughout the refinement process without the

need for additional communication with the CAD programs. The method is also ef-

ficient and can be easily applicable to complex surface modeling of multi-patch shell

geometries.
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Chapter 9

Conclusions

9.1 Summary of achievements

The present work improves accurate solutions for both displacement and energy norms

and a superconvergent rate in the energy error norm. In this context, the main focus

was placed on two specific concepts: an alpha finite element method and isogeometric

analysis method.

An alternative alpha finite element method using triangular elements is proposed

that significantly improves the accuracy of the standard triangular finite elements and

provides a superconvergent solution in the energy norm. In the alpha finite element

method, the piecewise constant strain field of linear triangular elements is enhanced by

additional strain terms with an adjustable parameter α which results in an effectively

softer stiffness formulation compared to the linear triangular element. To avoid the

transverse shear locking of Reissner-Mindlin plates analysis the alpha finite element

method is coupled with a discrete shear gap technique for triangular elements to sig-

nificantly improve the accuracy of the standard triangular finite elements. The basic

idea behind this element formulation is to approximate displacements and rotations

as in the standard finite element method, but to construct the bending, geometrical

and shear strains using node-based smoothing domains. The alternative alpha finite

element method is equipped with an adjustable factor α (α ∈ [0,1]) for plate prob-

lems. When α = 0, the present element becomes the standard finite element and hence

produces a lower bound in the strain energy. For α = 1, the element becomes the

node-based smoothed with discrete shear gap model and leads to an upper bound in

the strain energy. The results obtained from static, free vibration and buckling analy-

ses are shown that the alpha finite element method achieves high reliability compared

to other existing elements in the literature.An alternative alpha finite element method

using triangular elements is proposed that significantly improves the accuracy of the
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standard triangular finite elements and provides a superconvergent solution in the en-

ergy norm. In the alpha finite element method, the piecewise constant strain field of

linear triangular elements is enhanced by additional strain terms with an adjustable pa-

rameter α which results in an effectively softer stiffness formulation compared to the

linear triangular element. To avoid the transverse shear locking of Reissner-Mindlin

plates analysis the alpha finite element method is coupled with a discrete shear gap

technique for triangular elements to significantly improve the accuracy of the standard

triangular finite elements. The basic idea behind this element formulation is to ap-

proximate displacements and rotations as in the standard finite element method, but

to construct the bending, geometrical and shear strains using node-based smoothing

domains. The alternative alpha finite element method is equipped with an adjustable

factor α (α ∈ [0,1]) for plate problems. When α = 0, the present element becomes

the standard finite element and hence produces a lower bound in the strain energy. For

α = 1, the element becomes the node-based smoothed with discrete shear gap model

and leads to an upper bound in the strain energy. The results obtained from static,

free vibration and buckling analyses are shown that the alpha finite element method

achieves high reliability compared to other existing elements in the literature.

An isogeometric approach based on rational splines over hierarchical T-meshes

has been formulated for two-dimensional, the Kirchhoff-Love thin shell structures and

three-dimensional problems. The idea is based on rational splines and exploits the

flexibility of T-meshes for local refinement. The RHT-splines basis functions fulfill

all important properties in the context of numerical analysis such as non-negativity,

partition of unity, linear independent and local support. Moreover, the RHT-splines

formulation facilitates adaptive refinement that is cumbersome for NURBS or even T-

spline based finite element formulations. The main drawback of the RHT-splines is

that it can achieve only C1 continuity which is nonetheless usually sufficient for most

problems in solid and structural mechanics. By embedding the well-known finite ele-

ment in the isogeometric framework, the advantage of exact geometry representation

on the first coarsest mesh is inherited. The exact geometry representation is preserved

throughout the refinement process without the need for additional communication with

the CAD software. Numerical examples investigation proven that the convergence rate

of the RHT-splines is higher than the higher order finite element FEM-Q16 and the

NURBS while the total error is lower. The results are very encouraging as they not

only serve to verify the theory but also demonstrate the robustness of the error esti-

mators and the high order approximations provided by the adaptive spline space. The

proposed method using superconvergent patch recovery technique is also capable to

obtain results with higher accuracy and convergence rate than NURBS results. A good

agreement was achieved between the numerical and analytical results for both static

and free vibration problems. Another achieved of RHT-splines is C1-continuity, the

Kirchhoff-Love theory for thin shell model can be used in pristine form which is dis-

cretized the midsurface of the shell and automatically fulfill the Kirchhoff-Love con-
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straint. Therefore, only 3 DOFs per node are needed. The results obtained from the

proposal method for benchmark shell problems are higher accuracy than the NURBS

based approach when the same order approximation used.

9.2 Outlook

Although the present method has shown to be effective for structural analysis, further

investigations need to be considered for general engineering applications with compli-

cate geometries. Therefore an extension of the present work with some of the possible

future research topic as follow

• In the alpha finite element method, it is promising to extend the present method

for the shells, 3D problems by combining the alpha FEM with DSG method to

get rid of shear locking and to improve the accuracy of solutions. It also maybe

useful to combine the alpha finite element method with h-adaptivity procedure

for computing and simulating complex industrial structures (BM06, BCM+07,

RB06a, RBZ07).

• In the isogeometric analysis method, the exact geometry is taken into account

for the numerical analysis. However, the construction of initial geometry func-

tion consume time, and the geometry function is not always unique. How to

design the geometry automatically according to the analysis results, it should be

investigated in next time.

• An extend the RHT-splines formula based thin-shell element without rotational

degrees of freedom to fracture mechanics, large deformation and non-linear anal-

yses (RB07b, RB04a, RAB07b, RA06a, BRZ08).

• Development of the RHT-splines method for a posteriori error estimators and

adaptive refinement strategies with h-p refinement (dVBRS11, SR11).

• It also maybe extend to contact problems (Lau02, Wri06, LTWZ11, LWZ12).

• From an industrial perspective, the present method should be applied to engi-

neering problems like marine or offshore structures (BHA+11, BHK+11, SHBB12).
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[H0̈3] K. Höllig. Finite element methods with B-splines. Society for Indus-

trial and Applies Mathematics, Philadelphia, 2003. 83

[HCB05] T. J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analy-

sis: CAD, finite elements, NURBS, exact geometry and mesh refine-

ment. Computer Methods in Applied Mechanics and Engineering,

194:4135–4195, 2005. 3, 83, 85, 108

[HGT12] Behrooz Hassani, Ahmad Ganjali, and Mehdi Tavakkoli. An isogeo-

metrical approach to error estimation and stress recovery. European

Journal of Mechanics A/Solids, 31:101–109, 2012. 109

[HRS08] T.J.R. Hughes, A. Reali, and G. Sangalli. Duality and unified analy-

sis of discrete approximations in structural dynamics and wave prop-

agation: Comparison of p-method finite elements with k-method

NURBS. Computer Methods in Applied Mechanics and Engineer-

ing, 197:4104–4124, 2008. 83, 84

[Hug87] T.J.R. Hughes. The Finite Element Method: Linear Static and Dy-

namic Finite Element Analysis. Prentice-Hall, 1987. 13

[Kat93] Irwan Katili. A new discrete Kirchhoff-Mindlin element based on

Mindlin-Reissner plate theory and assumed shear strain fields-part

II: an extended DKQ element for thick-plate bending analysis. Inter-

national Journal for Numerical Methods in Engineering, 36:1885–

1908, 1993. 52

165



REFERENCES

[KB96] Petr Krysl and Ted Belytschko. Analysis of thin shells by the element

free Galerkin method. International Journal of Solids and Structures,

33(20-22):3057–3080, 1996. 130

[KBH+10] J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger.
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