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Abstract

Methods for model quality assessment are aiming to find the most appropriate model with respect
to accuracy and computational effort for a structural system under investigation. Model error es-
timation techniques can be applied for this purpose when kinematical models are investigated.
They are counted among the class of white box models, which means that the model hierarchy and
therewith the best model is known. This thesis gives an overview of discretisation error estima-
tors. Deduced from these, methods for model error estimation are presented. Their general goal
is to make a prediction of the inaccuracies that are introduced using the simpler model without
knowing the solution of a more complex model. This information can be used to steer an adaptive
process. Techniques for linear and non-linear problems as well as global and goal-oriented errors
are introduced. The estimation of the error in local quantities is realised by solving a dual problem,
which serves as a weight for the primal error. So far, such techniques have mainly been applied in
material modelling and for dimensional adaptivity. Within the scope of this thesis, available model
error estimators are adapted for an application to kinematical models. Their applicability is tested
regarding the question of whether a geometrical non-linear calculation is necessary or not. The
analysis is limited to non-linear estimators due to the structure of the underlying differential equa-
tions. These methods often involve simplification, e.g linearisations. It is investigated to which
extent such assumptions lead to meaningful results, when applied to kinematical models.

Keywords:
Model quality, Model error estimation, Kinematical model, Geometric non-linearity, Finite Ele-
ment method
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Zusammenfassung

Die verschiedenen Methoden zur Bewertung der Modellqualität haben ein Ziel: Das passende
Modell in Bezug auf Genauigkeit und Berechnungsaufwand für eine konkrete Struktur zu finden.
Steht dabei die Untersuchung eines Kinematik-Modells im Vordergrund, können Modellfehler-
schätzer zur Modellbewertung verwendet werden. Dieser Zusammenhang gilt, solange es sich
um mechanisch motivierte Modelle handelt, bei denen die Modellhierarchie und damit das beste
Modell bekannt sind. Die vorliegende Arbeit beschreibt den Weg von den einfachen Fehler-
schätzern für Diskretisierungsfehler bis zu den daraus abgeleiteten Modellfehlerschätzern. Das
Ziel der letztgenannten besteht in der Vorhersage von Ungenauigkeit, die durch die Verwendung
eines vereinfachten anstatt des komplexen Modells entstehen. Aus den gewonnenen Informa-
tionen wird eine adaptive Modellanpassung entwickelt. Die Methoden lassen sich dabei nach
verschiedenen Kriterien unterscheiden. Diese diffenzieren zwischen den verschiedenen Anwen-
dungsbereichen, zwischen linearen und nicht-linearen Modellen sowie zwischen globalen und
ziel-orientierten Fehlern. Die bislang in der Literatur hauptsächlich zu findenden Anwendungsge-
biete sind die Materialmodellierung und die Dimensionsadaptivität. Im Rahmen dieser Arbeit wer-
den nun die bekannten Methoden zur Abschätzung des Modellfehlers auf kinematische Modelle
erweitert. Zudem wird die Frage, ob eine geometrisch nicht-lineare Berechnung notwendig ist
oder nicht, untersucht. Aufgrund der Struktur der zugrunde liegenden Differentialgleichungen
beschränken sich die Analysen auf nicht-lineare Fehlerschätzer. Da diese Methoden oft auf Vere-
infachungen wie z.B. die Linearisierung der Grundgleichungen zurückgreifen, wird in der vor-
liegenden Arbeit untersucht, inwieweit diese Annahmen zu verwertbaren Ergebnissen führen.

Schlagwörter:
Modellqualität, Modellfehlerschätzer, Geometrisch nicht-lineare Berechnung, Kinematik Modell,
Finite Elemente Methode
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1 Introduction

“The goal of reliable and efficient engineering analysis is the proof of material and

structural resistance against all possible loadings (actions) with sufficient safety at

minimal cost, guaranteeing full usability within lifetime.”

(STEIN ET AL. [66] p. 104)

1.1 Theory of modelling

The postulate of STEIN leads to the formulation of a complex problem. For its solution, numerous
simplifications have to be introduced, leading to a model of the physical problem. Models are an
abstraction of reality, which are made for the purpose to describe, explain or predict the behaviour
of an observed system. “To an observer B, an object A* is a model of an object A to the extent that
B can use A* to answer questions that interest him about A.” MINSKY [43] Three main features
of a model can be named:

• Models always represent a current system, either a physical structure or an abstract object.

• Models represent only a reduced spectrum of effects, that exist in reality.

• Models are created for a specific purpose.

After a model for a theoretical problem is formulated in a conceptual way, a mathematical descrip-
tion needs to be found. The structure of such a mathematical model depends on the knowledge
available about the system. Generally two types can be distinguished:

White box models: They are based on knowledge and insight about the system to be modelled
that lead to a deductive modelling process. The mathematical model is derived analyt-
ically by making use of a series of progressively more specific concepts that may be
broadly categorised as: laws, structure and parameters. In physical systems, these laws
are usually expressions of the principles of conservations and continuity. Such models
are often formulated in the form of partial differential equations.

Black box models: Experimental data comprised of observations of inputs and outputs are the ba-
sis for the model development. This leads to an inductive process, where the structure of
the mathematical model is inferred from these observations. Such models might describe
a physical phenomena with sufficient accuracy, but they do not represent the underlying
mechanisms of the physical event. Before such models can be used for predictions they
need to be trained by known input-output relations.
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Physical reality

Conceptual model

Experimental model Mathematical model

Computational model

SimulationExperiment

Quantification

Verification
Validation
Model quality
evaluation

Calibration

Figure 1.1.: Different kinds of models and their relation to Verification, Validation and Model
Quality Assessment

Mathematical models are often far to complex to solve them by manual calculations. The trans-
formation into a computational model becomes necessary. This includes the discretisation of the
model domain, the representation of the model elements in terms of classes, inheritance hierar-
chies and relations, but also the choice of data structures and algorithms. The application of a
computational model with a set of model parameters in order to obtain the model behaviour for
this specific realisation is named simulation. The relationship between the different model types is
illustrated in fig. 1.1.

A complete model of the problem under investigation would be far too complex or is simply
not available, as certain mechanism are not fully understood. A model never represents a closed
system, as knowledge concerning certain effects or dependencies are unknown; for more details
see ORESKES ET AL. [54]. The most obvious simplification is the decomposition of the complex
structure into a set of partial problems - a common method in engineering practice. To get complete
information about the system behaviour, the partial models need to be coupled. This means in a
conceptual way the exchange of in- and output data between partial models must be possible
and meaningful. Additionally, the software coupling between the different programmes has to be
realised, which is no trivial task, since it might also require the mapping of data between different
programming languages and paradigms. Problems that arise concern the compatibility between
different representations of the data within each application. This leads to the situation whereby
interactions between partial models are approximated, and some may even be neglected.

By definition, models cannot consider all phenomena linked to a certain problem, and due to
the decoupling into partial models, additional inaccuracies occur. Thus, inherent to the models is
a certain amount of uncertainty. “Uncertainty is the term [...] to describe incomplete knowledge
about specific factors, parameters (inputs), or models.” [19, p. 26] It is convenient to categorise
the character of uncertainties as either aleatoric or epistemic. Epistemic (lat. episteme, knowledge)
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uncertainties stem from a lack of knowledge when setting up the model. Aleatoric (lat. alea,
dice) uncertainties are related to the intrinsic randomness of the phenomena. In this context the
robustness and the sensitivity of the models with respect to the variation of the input parameters is
investigated. Robustness describes the capability of a model to perform well across the full range
of environmental conditions it was designed for. Additionally, the sensitivity of a system with
respect to small changes of input parameters is studied. Sensitivity analysis investigates the input
parameters with the largest/smallest influence on the output and the interaction between model
input parameters.

It is of interest to assess and minimise the influence of these uncertainties on the quality of the
simulation result. In [1], [4] or [19] the standard concepts of model quality assessment, verifica-
tion and validation, are introduced. Verification is “the process of determining if a computational
model [...] can be used to represent the mathematical model of the physical event with sufficient
accuracy." [4, p. 4058] Two main categories can be distinguished: Code verification, which inves-
tigates the accuracy of the implementation, and solution verification, which deals with a posteriori
error estimation of the discretised model. After the computational model has proven to be suffi-
ciently correct, the validation procedure can be executed. “The fundamental strategy of validation
involves identifying and quantifying the error and uncertainty in the mathematical and compu-
tational models, estimating the experimental uncertainty, and then comparing the computational
results with the experimental data. This strategy does not assume that the experimental measure-
ments are more accurate than the computational results. The strategy only asserts that experimental
measurements are the most faithful reflections of reality for the purposes of validation." [44] Hence
absolute validation is impossible.

1.2 Model quality assessment in structural engineering

Structural engineers are interested in the determination of serviceability and ultimate limit state
of structures. For a certain problem, different options of modelling are available. All approaches
have in common that the complex problem is split into several partial models. This decomposition
can be done with respect to a least three different aspects:

• the physical meaning: for example material law, kinematic equations, loading, ...

• a functional differentiation: substructure, superstructure, ...

• the spatial alignment of the models: For instance, a structural model can be decomposed into
columns, beams, frames. Within this context a suitable dimension (1D, 2D or 3D) needs to
be choosen.

For each partial model, several options of modelling are conceivable. Considering e.g. wind
loads, the alternatives of modelling range from constant static wind pressure over the height of the
structure to time-dependent computational fluid dynamics.
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“Structural mechanics and its models have always had an intimate relation to the computational
means that were available to the engineer.” [71, p. 2] Therefore, many simplified models are
available for the different partial problems. During decades of application, they have proven their
applicability and reliability. Following the request of designing more complex structures and sup-
ported by an increase of computational power, more sophisticated models have been developed and
are now available for practical application. The question arises whether the more complex models
lead to an improvement of the quality of the simulation result. When is it meaningful to use these
sophisticated models as they are accompanied by an increased computational effort? According to
EINSTEIN, modelling should follow the idea “As simple as possible, but not simpler.”

The decision regarding the appropriate abstraction level and the associated partial models is
nowadays mainly based on engineering knowledge. The possibility of errors due to incorrect deci-
sions of the engineer is not considered in the safety concept of today‘s standards (EuroCode, DIN).
As mentioned in PROSKE [56], it can be noticed that errors caused by incorrect human decisions
contribute to a significant number of the failures of structures. An integration of human and pro-
gramming errors in the current standards has not been realised yet, as a stochastic modelling of
these errors is difficult. Therefore, it is desirable to develop methods that can support the decision
process. In a first step, it is necessary to point up the critical steps in the modelling process with
respect to the sources of uncertainties named in the previous section.

Quality of partial models: For the assessment of partial models, different strategies need to be
applied to different types of models. For white box models, it is convenient to expect the
most complex model to be the most reliable one. Therefore, a model hierarchy can be
established. Here it seems to be meaningful to find criteria that can be used to steer an
adaptive process. Starting with the most simple model, the model is upgraded if the error
caused with the simple model exceeds a certain level of tolerance. Black box models
demand a different approach, as the definition of the best model is not straightforward.
In KEITEL [28] and KNABE [30] it was found that besides the model complexity, the
uncertainty of the input parameters also need to be considered when studying model
quality. Simple models with a lower number of input parameters generally behave more
robustly than complex models with a high number of parameters, as their determination
often suffers from a high degree of uncertainty. On the other hand, complex models have
the advantage of describing more phenomena, so the degree of epistemic uncertainty is
reduced.

Interaction of partial models: Two major problems occur while coupling models. First, after an
appropriate abstraction level for a single models is found, it is not known, how different
models affect each other and how the coupling between models of different quality affect
the result of the complex model. Does a rather ‘coarse’ model cancel out the accuracy
of a highly sophisticated model it is coupled with? The second problem results from
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the uncertainty of our models. It is not known, how the inherent uncertainty of a single
model propagates.

Coupling of partial models: Besides the effects that have already been mentioned in the con-
text of verification, the coupling of partial models introduces new sources of errors, as
the models are rarely implemented in the same software application. In terms of struc-
tural engineering e.g. problems are caused by mapping the results of Finite Element
calculations between different meshes of several partial models or during data exchanges
between models with different dimensions.

All these aspects are of importance for model choice and therewith for the quality of the simulation
result. A complete view of the model quality cannot be found until all of these aspects are studied
intensively and the results are combined. In this context it has to be mentioned that the quality of
a model can only be investigated for a specific structure and a predefined goal quantity. Thinking
of a railway bridge, a model that is suitable to determine the ultimate limit state might not be
appropriate when investigating the passenger comfort for a train passing the bridge.

The inherent complexity of model quality assessment of coupled partial models makes it nec-
essary to solve this question/problem stepwise. Therefore, in this thesis the studies are limited
to the partial model “Geometric non-linear effects”. The goal is to find an appropriate procedure
for assessing this partial model. The underlying partial models can be assigned to the group of
white box models. Models of lower quality are defined by neglecting certain effects of more com-
plex descriptions and a hierarchy of the different models can be defined. There is no variation
in the number of input parameters considered, which can, for instance, be found in the context
of material modelling. From the underlying mechanical formulation, it is clear which kinematic
description produces the most reliable/exact result. In a strict sense, the question of model quality
can be answered easily for this partial model - the most complex one is the best. But the effort of
carrying out a non-linear analysis is not necessary for structures with internal stress state insen-
sitive to deformation. This means that the deformations are small and do not cause an increase
of loading effects due to the occurrence of additional moment arms. For most applications in
structural engineering, a simple model of the kinematic relationship leads to sufficiently accurate
results. The decision about when to use a more complex model and which of the available options
to use depends strongly on the experience of the engineer. To minimise the probability of incorrect
decisions regarding the model choice, an algorithm should be found to support the choice of the
most appropriate model. An ideal method used to estimate the error between simple and complex
solutions should fulfil the following aspects:

• Prediction of the necessity to choose a more complex model for the kinematic formulation
based on the results of a linear calculation or the simpler model, respectively.

• The error estimate should be accurate in the sense, that it is close to the actual (unknown)
error.
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• The effort of calculating the error estimate should be low compared to the calculation of the
complex model.

• The error estimator should be used to steer an adaptive process for the choice of the kine-
matical formulation.

1.3 State of the art: Modelling of geometrical non-linear effects

Modelling of geometrical non-linear effects is directly linked to the description of the deformation
of a structure. The core question is whether or not the deformations lead to an increase of loading
effects for the structure due to additional moment arms. For deformation-insensitive structures, a
kinematic linear formulation is sufficient. Here the displacements and strains are linked by a linear
relationship and equilibrium for the structure can be determined in a one-step calculation.1 For
deformation-sensitive structures, like flat shells or slender columns, a more sophisticated kinemat-
ical description is necessary.

Examples where the use of simplified kinematical descriptions lead to severe damage are the roof
of the gymnasium in Halstenbeck, fig. 1.2(a), the failure of a curved girder of a garage, fig. 1.2(b),
and the collapse of the truss girders of a basketball arena, fig. 1.2(c). In the first example, the
influence of deformation was neglected in equilibrium calculations, [31]. The failure of the curved
girder of several vehicle halls in 1962/63 was caused by an underestimation of compression forces.
The calculations were based on formulas deduced for straight girders, which led to a neglect of
additionally destabilising forces; see [61] for details. In 1969 the roof structure of the basketball
arena of Midwestern University collapsed. The failure of truss girders was caused by eccentricities
in the intersection point of the top chord and the diagonals, which were neglected in the analysis
of the load-bearing capacity.

For non-linear kinematic description, it is necessary to define a reference coordinate system for
the description of motion. Different models of geometrical non-linearities are distinguished with
respect to this property; see chapter 2.1 for details. The Lagrangian description relates the defor-
mation of the structure to an initial global coordinate system. The non-linear displacement-strain
relationship is described by Green‘s strain tensor. An alternative is the Co-rotational description.
The deformation is described by linear kinematics in a local coordinate system that constantly
rotates and translates with the structural elements. The rigid body movement of the structures
is captured by the transformational relation between the local and the global coordinate systems.
Under small strain conditions, both attempts lead to comparable results. The solution needs to
be found through an iterative procedure, which can be computationally expensive. Because in
this thesis non-linear material behaviour is excluded, large strain formulations and the associated
logarithmic description of strain is not considered here.

1An additional requirement for the determination of equilibrium in a one-step calculation is the assumption of a
linear material model.
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(a) Damage of the gymnasium in Halstenbeck, [10] (b) Failure of curved girders, [61]

(c) Failure of truss girders, [61]

Figure 1.2.: Structural failure due to the application of insufficient kinematical models

The use of simplified approaches for the consideration of geometric non-linears effect is wide-
spread in practical applications. The limitations of computational power, mentioned in WUNDER-
LICH / KIENER [71], led to the introduction of methods that are suitable for manual calculations.
These approaches have proven their reliability and are still content of relevant standards in struc-
tural steelwork (DIN 18800, EC 3), timber constructions (DIN 1052, EC 5) and reinforced concrete
constructions (DIN 1045, EC 2).

According to the standards, a consideration of geometrical non-linear effects is only necessary,
if resulting stresses are at least 10 % larger compared to linear theory. But even then simplified
methods can be applied, if certain boundary condition, e.g. slenderness ratios, are fulfilled. Equiv-
alent member methods or nominal curvature methods can then be applied. The advantage is that
the solution can be found using a one-step calculation, without any sophisticated software. A com-
putationally more expensive iterative solution of the underlying geometrical non-linear problem is
hence avoided. If the simplified methods are not applicable, a calculation considering 2nd order
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theory is necessary. The mathematical model associated with this phrase is generally not specified.
Obviously, a calculation of equilibrium for the deformed structural system is meant. Studying
standard work in the field of structural steelwork, PETERSEN [55], it becomes clear that different
methods are summarised under this labelling. Methods such as the Q∆-analysis [60], application
of the Dischinger factor, 2nd order stress calculation or stability analyses are mentioned in this
context. All of these methods are too simplified when compared to the non-linear Lagragian or
Co-rotational formulation. Within the scope of this work, these simplified methods are not con-
sidered, because most of them cannot be classified as white box models. Often they are based on
experiments and thus a clear hierarchy cannot be established.

1.4 Introductory studies

The goal is to establish an algorithm for the comparison of different kinematic descriptions men-
tioned in chapter 1.3. First a criterion needs to be found, that comprises the influence of non-linear
effects. The most obvious indicator to judge the different methods might be the deformation of the
structure. However, when analysing large structures, the comparison of the displacements for all
degrees of freedom is ineffective. It seems to be desirable to define a scalar value that integrates
the results. Thus, the deformational or internal strain energy Πint is a suitable criterion. Different
kinematical descriptions lead to differences in the predicted deformation of a structure. This results
in different strain and stress levels and with it the system‘s energy changes. In case of deformation-
sensitive structures, the modelling with or without consideration of geometrical non-linear effects
leads to variations in the internal energy. The degree of deviations in the energy can be used as an
indicator to steer an adaptive process.

For practical problems, it is not reasonable to investigate a problem by applying all available
methods and comparing results. It is more convenient to make a prediction based on results of the
simplest method. Kinematic formulations can be assigned to the group of white box models, which
are in hierarchical order. It is known which effects, and therewith which parts, of the mathematical
model are neglected by the linear formulation. Nevertheless, these parts of the model can be
calculated based on deformations of the linear model. It is assumed that the resulting approximated
non-linear energy gives a good estimate of the non-linear results and can therefore be used to steer
an adaptive process. The load is applied in several steps, and for each step the following procedure
is executed:

1. Calculation of the structural response using the linear kinematic description,

2. Approximation of strains and stresses based on non-linear model using linear displacement
solution,

3. Calculation of the linear and approximated non-linear internal energy, and

4. Comparison of the internal energy, which indicates the necessity for a non-linear calculation.
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This procedure can be applied either to a non-linear Lagrange or Co-rotational formulation as a
complex model.

Several examples are investigated to test the proposed procedure. The structural systems that
are chosen for this purpose are comparably small. So for comparison, a full geometrical non-linear
calculation can be realised with reasonable effort. Figure 1.3 shows an example composed of truss
elements. It can be seen that the approximated non-linear energy is a good estimate of the real
value. In this case the proposed method seems to be reliable.
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(b) Internal energy

Figure 1.3.: Prediction of internal energy for a cantilever composed of truss elements

In a second step, two beam structures, fig. 1.4, are investigated. The first one is a simple
supported beam loaded in the mid-span, a deformation-insensitive structure. The second one is
comparable with the 2nd Euler case. A slight imperfection is introduced so that instead of a sta-
bility problem, a geometrically non-linear stress problem can be studied. More details concerning
geometry and material data for the truss and beam structures can be found in section 4.2. Both
structural systems composed of beams reveal the weaknesses of the proposed method. For the
bending beam, the approximation leads to an overestimation of the non-linear energy. Using this
information for an adaptive process would lead to the shift in the kinematical model, which is obvi-
ously not necessary. The opposite can be observed for the Euler beam. Here the approximation of
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(a) Structural system: Bending beam
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(b) Internal energy: Bending beam

(c) Structural system: Euler beam
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(d) Internal energy: Euler beam

Figure 1.4.: Approximated internal energy for several beam structures

the non-linear internal energy leads to a value close to the linear one. The exact value is underesti-
mated and an adaptive process based on this information would result in an insecure design of the
structure. Comparably unreliable results are achieved when investigating 2D-problems, too. It is
not possible to find a general rule for the unreliable prediction. Varying parts of the internal energy
that are related to normal and bending strains are totally under- or overestimated. There is no dif-
ference whether the method is applied to the non-linear Lagrangian or Co-rotational formulation.
So the first idea has not proven to be a reliable/meaningful one. Additionally, it can be criticised
that the comparison of internal energies only leads to overall information about the structure. For
larger structures, where only parts are sensitive to deformations, geometrical non-linearities could
remain undetected using a global criterion.

Simulations considering geometrical non-linear effects are generally solved in the following
way. The load is applied in several steps, and for each of these steps the equilibrium state is found
iteratively. Thus the question arises whether an approximation for the final displacement solution
can be made based on the results of the first load steps. In the literature, comparable approaches
have already been pursued. There the goal was to improve the predictor step within the solution of
one load step to end up with fewer corrector iterations. Different ideas are presented and afterwards
their applicability regarding the present problem is tested.

MEEK / TAN [41]: The stiffness matrix for the next load step Ki+1 is defined by a 3-point La-
grange interpolation polynomial based on the stiffness matrix of the previous steps.

Ki+1 = 0.38 Ki−2 − 1.25 Ki−1 + 1.88 Ki (1.1)
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ERIKSSON [20]: Based on the actual equilibrium solution and the results of two to four previ-
ously solved load steps, the first- (and second-) order derivative of the stiffness matrix are
determined. This is done numerically using the central difference method. Afterwards,
the derivatives of the displacements u for the actual equilibrium point are determined.
Subsequently, a prediction of the displacement increment for the new load step is made
using Taylor series expansion.

∆ui+1 = ∆s ·u′i +
1

2
(∆s)2 ·u′′i +

1

6
(∆s)3 ·u′′′i + ... (1.2)

KIM / KIM [29]: The iteration for a new load step is not started in the previous equilibrium
point. Based in the previously found displacement increments, a better starting point is
determined. A neural network gives a prognosis for the direction and magnitude of the
expected displacements for the new load step.

Generally speaking, the results of already solved load steps are extrapolated within a certain do-
main. It is tested whether this idea can be used for the prediction of displacements for the next
load levels to come. Following the idea of ERIKSSON [20], a Taylor series expansion is used to
predict displacements. For the Euler beam, fig. 1.4c, the load is applied in 10 increments. The
attempt is made to predict the displacements based on the results of load steps one to three. In fig.
1.5 the evolution of the mid-span deflection is documented. A very poor quality of the extrapo-
lation appears for higher load steps, when geometrical non-linear effects are more significant. A
good prediction for the final load level can only be achieved if information from the eighth and
ninth load steps are already known. For practical applications this is not meaningful, because the
reduction of computational costs is close to zero.

At first sight both investigated procedures were promising, but when studying them in detail,
severe problems occurred. An alternative needs to be found. A quite promising approach is the
theory of model error estimation, which is briefly introduced in the following section and which
establishes a basis for this thesis.

1.5 State of the art: Model error estimation

During the last decade, the research focus was shifted towards the determination of modelling
errors, to assess the model quality with respect to complexity, robustness and efficiency. The goal
is to achieve results with sufficient accuracy using the least effort. White box models with an
inherent hierarchy are suitable for such an attempt. To the knowledge of the author, the focus so
far has been on material and dimensional modelling.

Error estimators were first introduced to determine the discretisation error in Finite Element
models; an overview can be found in GRÄTSCH / BATHE [21] or AINSWORTH / ODEN [2]. Dif-
ferences can be distinguished between a priori and a posteriori estimators. The former provide
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Figure 1.5.: Taylor series expansion based on results of the first load steps to predict the final
displacements for the Euler beam

knowledge regarding the convergence behaviour of a solution while the mesh is refined. A pos-

teriori techniques provide information concerning approximations of error bounds using the FE
solution. Generally speaking, upper and lower bounds are provided by a global error estimate η
and some unknown constants C1 and C2.

C1η ≤ ‖u− uh‖ ≤ C2η (1.3)

Here u describe the exact displacements and uh are the approximated displacements determined
by the Finite Element method. Most famous in this field are the residual-based error estimators
first introduced by BABUSKA / RHEINBOLDT [5] and the gradient smoothing techniques provided
by ZIENKIEWICZ / ZHU [72]. A large number of publications dealing with this topic are available,
improving these methods and introducing new approaches such as hierarchical error estimators or
gradient-free methods.

The methods mentioned so far can be summarised as global error estimators. In structural en-
gineering local quantities such as stresses or displacements in certain points are of greater interest
to determine the ultimate or serviceability limit state. Therefore, it would be more beneficial to
improve the discretisation with respect to these quantities. Basic work in the field of goal-oriented
or local error estimators was done by BECKER / RANNACHER [11], [12], who first introduced
the dual-weight residual method (DWR). Here a dual problem that is deduced from the quan-
tity of interest/goal quantity is solved. The procedure is comparable to the concept of influence
functions, with the result of the dual problem serving as a weight for the primal solution. BECK-
ER/RANNACHER introduced implicit error estimation techniques, which were extended by ODEN

/ PRUDHOMME [46], [47] to explicit error estimators with guaranteed upper and lower bounds
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using parallelogram law. Later these methods were applied to material and geometrical non-linear
problems; see CIRAK / RAMM [17] or OHNIMUS ET AL. [53].

First attempts to adopt error estimators to model problems were made by ODEN / ZOHDI [51]
using global error estimation techniques. Soon it turned out that the application of goal-oriented
techniques is more beneficial and the ideas of RANNACHER/BECKER and ODEN/PRUDHOMME

were extended to the model problem by e.g. ODEN / VEMAGANTI [50]. After starting with linear
problems, the methods have been extended to physical non-linear problems, too. For reference, see
the works of BRAACK / ERN [14] or ODEN / PRUDHOMME [48]. A large variety of model prob-
lems have been investigated so far. Following these concepts, e.g. errors due to the dimensional
reduction in models [64] have been investigated. A large number of publications are dedicated to
questions concerning material modelling with respect to homogenisation, see ODEN ET AL., or
multi-scale modelling LARSSON / RUNESSON [37]. A comprehensive overview concerning adap-
tive Finite Element modelling, especially goal-oriented discretisation and model error estimation,
is given in STEIN ET AL. [66].

It is the goal of this thesis to investigate to which extent already introduced methods for model
error estimators can by applied to geometrical non-linear problems and which adaptations are
necessary when indicated.

1.6 Outline

This work is organised as follows. After this introduction, in the second chapter the basic prin-
ciples of continuum mechanics are summarised, as they are essential for understanding the Finite
Element Method and the problem of geometrical non-linearity. Knowledge about the interaction
of kinematics, kinetics and the equilibrium equation is provided. Subsequently, the underlying
equations are discretised and the finite element method is introduced. The third chapter gives a
survey on error estimation techniques for discretisation and modelling problems. Global and goal-
oriented error estimation strategies are introduced for linear and non-linear problems. Thereby it is
shown how methods for approximating model errors are deduced from well-established discretisa-
tion error estimators. In the fourth chapter, the applicability of model error estimation techniques
for geometrical non-linear problems is investigated. Therefore, some of the previously introduced
approaches are adapted to the specific problem under consideration and tested regarding their ap-
plicability. Finally, the results are summarised and recommendations for practical applications are
given.
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2 Mechanical fundamentals

This chapter gives an introduction in continuum mechanics with the main focus being

on the kinematical description. Using the basic equations - kinematics, material

law and equilibrium - a system of differential equations is formed. An approximate

solution is found by applying the Galerkin method, which leads, after a limitation of

the ansatz function, to the weak equilibrium formulation. An enhancement for larger

structures is the Finite Element method, where the ansatz functions are defined over

single subdomains. The discretisation of the differential equations leads to the well-

known matrix equations, which have to be solved in case of non-linearities using an

iterative method.

2.1 Continuum mechanics

2.1.1 Kinematics

Description of motion The deformation of a body can be described with respect to different
coordinate systems, fig. 2.1 or [39], [25]. Physical properties can be related to the initial configu-
ration of a body or to the deformed state. The first is called material or Lagrangian formulation and
is mainly used in solid mechanics. If, for instance, the variation of material density ρ is the quantity
of interest, it is described with respect to the original/initial coordinate X with ρ = ρ (X, t). That
means, the material density of a specific particle changes over time. If the load is applied in mul-
tiple steps, one can distinguish between two approaches. The total Lagrangian formulation refers
to the initial state at t = 0, whereas the updated Lagrangian formulation refers to the equilibrium
position of the previous load step. In fluid mechanics the so-called spatial or Eulerian descrip-
tion is preferred. Changes of specific properties are observed for a fixed position over time. The
change of material density is formulated with respect to the position in space x, which is currently
occupied by the material particle at time t, which results in ρ = ρ (x, t).

An alternative procedure, the Co-rotational method, was introduced by Rankin/Brogan [57],
Crisfield [18] and Crisfield/Jelenic [26]. Here, a local coordinate system is assigned to each ele-
ment. It constantly moves and rotates with the element and strain and stresses are formulated with
respect to this local coordinate system. Thus, the geometric non-linearity induced by the large
rigid-body motion is incorporated in the transformation matrices relating local and global coordi-
nate systems. As long as the deformations are small, a linear kinematic description is sufficient
on element level to capture this behaviour. As pointed out by HAUGEN / FELIPPA [22], the main
benefit of such an assumption is the possibility to reuse existing high-performance linear elements.
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Figure 2.1.: Reference systems for description of motion

Deformation gradient Using Lagrangian formulation, the deformation of a three-dimensional
continuous body is described in relation to the original configuration at t = 0. The initial position
is described using capital letters, whereas for the state after deformation, lowercase letters are used.
The displacement vector is formulated as

u(X, t) = x(X, t)−X. (2.1)

For the purpose of this work, only static problems are considered.

Investigating two neighbouring points located at X and X + dX, see figure 2.2, the position of
the second point after deformation is

x + dx = X + dX + u(X + dX). (2.2)

Here dX and dx are a differentially small distance between two neighbouring points. Inserting
equation (2.1) and rearranging with respect to dx leads to

dx = dX + u(X + dX)− u(X). (2.3)
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Figure 2.2.: Body in initial and reference configuration

The second term in equation (2.3) is expanded in a Taylor series. In index notation the equation
becomes

dxi = dXi +����ui(Xj) +
∂ui
∂Xj

dXj +
1

2!

∂2ui
∂Xj∂Xk

dXjdXk + ...−����ui(Xj). (2.4)

The series expansion is truncated after the first term, resulting in a linear approximation of the
distance between two neighbouring points in the deformed configuration. This is reasonable, as
the distance between the neighbouring points is assumed to be small, so highe-order terms are
small compared to the linear one. Based on eq. (2.4), the deformation gradient is defined as

dx = dX +
∂u

∂X︸︷︷︸
H

dX = (H + I)︸ ︷︷ ︸
F =

∂x

∂X

dX ; (2.5)H . . . displacement gradient
F . . . deformation gradient

Strain The deformation gradient F describes the total motion of a body. No distinction between
rigid body motion, including displacement and rotation, and strain is made. For this reason a self-
contained measure for strain is introduced. It is derived from the change in the quadratic distance
between the two neighbouring points in initial and deformed configurations.

ds2 − dS2 =

(
δij +

∂ui
∂Xj

)(
δik +

∂ui
∂Xk

)
dXjdXk − dXjdXk

=

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
dXjdXk

= dXT · 2E · dX

(2.6)
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The Green-Lagrange strain tensor E is thus defined as

Eij =
1

2
(ui,j + uj,i + uk,iuk,j) . (2.7)

Using polar decomposition of the deformation gradient F, one can show that the strain tensor E

is invariant with respect to rigid body movement. The decomposition of F, eq. (2.8), results in a
symmetric tensor U or V and a orthonormal1 tensor R describing the rigid body rotation. U and
V represent the right and left stretch tensors, respectively.

F = RU = VR (2.8)

According to equation (2.6), E can be expressed as E = 1
2

(
FTF− I

)
= 1

2
(CCG − I) with CCG

being the right Cauchy-Green tensor, eq. (2.9). Because the rotation tensor R is orthogonal, CCG

only depends on stretch tensor U, which shows the independence of E on rigid body movement;
see equation (2.9).

CCG = FTF = UT RTR︸ ︷︷ ︸
I

U = UTU (2.9)

In case of small strains,2 the term ∂ui
∂Xj

becomes much smaller than one. The quadratic term of
strain tensor E can thus be neglected, and a linearised strain tensor ε can be defined as:

εij =
1

2
(ui,j + uj,i) . (2.10)

Symmetry condition can be applied and the linearised strain formulation can be written in matrix-
vector notation as

ε = Du =



∂
∂X1

0 0

0 ∂
∂X2

0

0 0 ∂
∂X3

∂
∂X2

∂
∂X1

0

0 ∂
∂X3

∂
∂X2

∂
∂X3

0 ∂
∂X1



u1

u2

u3

 . (2.11)

Thus, the Green-Lagrange strain tensor E can be written as

E = Du + Enl(u). (2.12)

1orthonormal means: RT = R−1 and detR = 1
2In literature different definition of small strain can be found: εij ≤ 0.01 [27], εij ≤ 0.02 . . . 0.05 [38]
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2.1.2 Stress formulation

In continuum mechanics, [39], [25], stress is a measure of the average force per unit area. It is
important to note that the area is related to the deformed configuration. The stress tensor is de-
composed in two components: one normal and one tangential to the surface. The components
of the stress tensor are derived by studying a differential small volume and setting up the equi-
librium equation in each direction. Based on figure 2.3, force equilibrium for y-direction can be
formulated, according to equation (2.13).

∑
Fy = 0 = (σy − σy + dσy)dxdz + (τzy − τzy + dτzy)dydx

+ (−τxy + τxy + dτxy)dzdy + pydxdydz (2.13)

z

y

py

pz

τzy

τzy + dτzy

τyz τyz + dτyz

σz

σz + dσz

σy

σy + dσy

x

y

py

px

τxy

τxy + dτxy

τyx
τyx + dτyx

σx

σx + dσx

σy σy + dσy

Figure 2.3.: Stresses acting on a cube

Applying the relations dσy = ∂σy
∂y
dy and dxdydz = dV , the Cauchy equations of motion for

static loading are deduced. Here eq. (2.14) shows the relationship for the y-direction; x- and
z-directions are derived analogously.

0 =
∂σy
∂y

+
∂τzy
∂z

+
∂τxy
∂x

+ py (2.14)

In index notation the whole set of Cauchy equations of motion with the symmetric Cauchy stress
tensor σji can be written as

0 = σji,j + pi; i, j = 1, 2, 3. (2.15)

Additionally, Cauchy’s stress theorem (2.16) states, that the stress vector t(n) on a surface is
uniquely defined by the stress tensor σσσ and the unit normal n through the surface. The upper
index n of the stress vector denotes the orientation of the surface the vector is acting on.

t(n) = σσσ n (2.16)
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The cauchy stress tensor is related to the deformed configuration. In contrast the Green-Lagrange
strain tensor is related to the reference configuration. Hence, a new energy-conjugated stress mea-
sure needs to be derived. This stress measure is called 2. Piola-Kirchhoff stress tensor and is
defined according to equation (2.17). For a detailed derivation, see A.2.1. For small strains, the
relationship S = σσσ is valid.

S = F−1σσσ(F−1)TdetF (2.17)

The equilibrium equation for non-linear problem reads

−div(S +∇u S) = p. (2.18)

2.1.3 Constitutive equations

Within the scope of this work, linear elastic material behaviour is assumed. The stress-strain
relationship for the 3-dimensional case is described by generalising Hooke’s law as

σij = Eijklεkl. (2.19)

The material tensor Eijkl has in case of anisotropic, linear -elastic material 81 components. Due
to symmetry of the strain and the stress tensor, as well as permutability of indices, the number of
unknowns can be reduced to 21. In matrix-vector notation the constitutive equation becomes

σ11

σ22

σ33

σ23

σ31

σ12


=



E11 E12 E13 E14 E15 E16

E22 E23 E24 E25 E26

E33 E34 E35 E36

sym. E44 E45 E46

E55 E56

E66





ε11

ε22

ε33

ε23

ε31

ε12


. (2.20)

An additional reduction of unknowns is possible if symmetry properties of the material are con-
sidered. In case of isotropic material, two material constants, the Lamé constants λ and µ, are
sufficient to describe the material behaviour.

σij = λεkkδij + 2µεij with δij =

1 if i=j

0 if i6= j
(2.21)

The relations between the Lamé constants and Young’s modulus E and Poisson ratio ν are given
as

E =
µ(3λ+ 2µ)

µ+ λ
and ν =

λ

2(λ+ µ)
. (2.22)
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The constitutive matrix C for linear elastic, isotropic materials can thus be defined as

C =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

1− ν ν 0 0 0

1− ν 0 0 0

sym. 1− 2ν 0 0

1− 2ν 0

1− 2ν


(2.23)

and the constitutive law becomes

σσσ = Cεεε. (2.24)

According to this, the 2nd Piola-Kirchhoff stress tensor can be expressed as

S(u) = C E(u) = 2µE + λ(trE)I

= µ(∇u +∇uT ) + λ(tr∇u)I + µ(∇uT∇u) +
1

2
λ(tr (∇uT∇u))I.

(2.25)

2.1.4 Strong equilibrium formulation

Based on the Cauchy equation of motion (2.15), the kinematic relationship (2.10) and the consti-
tutive law (2.24), the linear form of Navier differential equation is formulated.

(λ+ µ)uj,ji + µui,jj + pi = 0 (2.26)

Stresses and strains are eliminated and displacements remain as only unknowns. To solve this
system of equations, appropriate boundary conditions have to be formulated. Differences can be
distinguished between Dirichlet or displacement boundary conditions

ui = uD,i on ΓD, ΓD . . .Dirichlet boundary (2.27)

and Neumann or traction boundary conditions

σijnj = ti on ΓN , ΓN . . .Neumann boundary. (2.28)

Navier differential equation represents the strong form of the equilibrium equation, because equi-
librium as well as kinematic equations and material law are fulfilled in each point of the continuum.

The differential equation describing the non-linear problem is formulated by inserting (2.25) in
(2.18).

−div(S(u) +∇u S(u)) = p (2.29)
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2.2 Weak equilibrium formulation

An analytical solution for the system of differential equations is only possible for a limited number
of cases. Different approaches are available to find an appropriate solution. The basic idea of
many methods is the replacement of the exact solution u(x) with an approximate one ũ(x). The
displacements are described by ansatz functions Φj , which are scaled by unknown coefficients a.
The ansatz functions Φ must fulfil the Dirichlet boundary conditions.

u(x) ≈ ũ(x) =
n∑
j=1

ajΦj (2.30)

One procedure to determine the coefficient a is the Ritz‘s method, which is based on energy prin-
ciples. The principle of a minimum of potential energy is applied, which leads to

dΠ(x)

dx
= 0. (2.31)

Another approach is the Method of weighted residual. Here the idea is to minimise the error
R(ũ(x)) in the differential equation (2.26), which is caused by the approximation of the displace-
ments by eq. (2.30). The error should be equal to zero in some average sense over the whole
domain.∫

Ω

R(ũ(x))dx = 0 (2.32)

A more general formulation requires the weighted residuum to be zero in some average sense.∫
Ω

R(ũ(x))Ψdx = 0 (2.33)

Depending on the type of weighting functions Ψ different methods are distinguished. If contin-
uous functions, e.g. sin or cos, are chosen, the procedure is called the Galerkin method. As the
equilibrium is no longer fulfilled in every point of the continuum, it is generally known as a weak

equilibrium equation. Applying this methodology to the equilibrium equation (2.15) with v as a
weighting function yields∫

Ω

v (divσ + p) dΩ = 0. (2.34)

Applying the divergence theorem to the first summand, it becomes:∫
Ω

v divσdΩ =

∫
Ω

σ∇vdΩ−
∫
Γ

σ n ·vdΓ. (2.35)
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Due to the symmetry of σ, it is convenient to write σ · ∇v = σ · ε(v). Additionally, eq. (2.16) is
applied, which leads to∫

Ω

σ · ε(v)dΩ

︸ ︷︷ ︸
a(u,v)

=

∫
Ω

p ·vdΩ

︸ ︷︷ ︸
(p,v)

+

∫
Γ

t ·vdΓ.

︸ ︷︷ ︸
(f ,v)︸ ︷︷ ︸

F (v)

(2.36)

This formulation is equivalent to the principle of virtual displacements formulated in Eulerian
coordinates. The weighting functions v can be interpreted as virtual displacements δv. In this
spirit Equ. (2.34) states, that the work done by the forces acting on the virtual displacements and
stresses on the virtual strains must equal zero. The left hand side of (2.36) corresponds to the
internal virtual energy and external virtual energy can be assigned to the linear functional F (v).

For geometrical non-linear problems, the same approach is used, and applying it to eq. (2.29)
results in∫

Ω

p ·vdΩ = −
∫
Ω

div(S(u) +∇u S(u)) ·vdΩ

=

∫
Ω

(S(u) +∇u S(u)) · ∇vdΩ−
∫
Γ

t ·vdΓ.

(2.37)

Due to the symmetry of S(u), it is feasible to write

(S +∇u S) · ∇v = (I +∇u)S · ∇v = S · (I +∇u)T∇v

= S · 1
2

[
(I +∇u)T∇v +∇vT (I +∇u)

]
= S · 1

2
(∇v +∇vT +∇uT∇v +∇vT∇u).︸ ︷︷ ︸

Eu(v)

(2.38)

In matrix notation Eu(v) becomes

Eu(v) = (D + Dnl(u))v with

Dnl(u) =



u1,1
∂

∂X1
u2,1

∂
∂X1

u3,1
∂

∂X1

u1,2
∂

∂X2
u2,2

∂
∂X2

u3,2
∂

∂X2

u1,3
∂

∂X3
u2,3

∂
∂X3

u3,3
∂

∂X3

u1,2
∂

∂X1
+ u1,1

∂
∂X2

u2,2
∂

∂X1
+ u2,1

∂
∂X2

u3,2
∂

∂X1
+ u3,1

∂
∂X2

u1,3
∂

∂X2
+ u1,2

∂
∂X3

u2,3
∂

∂X2
+ u2,2

∂
∂X3

u3,3
∂

∂X2
+ u3,2

∂
∂X3

u1,3
∂

∂X1
+ u1,1

∂
∂X3

u2,3
∂

∂X1
+ u2,1

∂
∂X3

u3,3
∂

∂X1
+ u3,1

∂
∂X3


(2.39)
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Finally this results in

−
∫
Ω

S ·Eu(v)dΩ

︸ ︷︷ ︸
a(u; v)

+

∫
Ω

p ·vdΩ

︸ ︷︷ ︸
(p,v)

+

∫
Γ

t ·vdΓ

︸ ︷︷ ︸
(f ,v)︸ ︷︷ ︸

F (v)

= G(u,v) = 0. (2.40)

The term a(u; v) is a semi-linear form that is non-linear in u and linear in v. Both displacements
u and test functions v are defined in the Sobolev spaceH1(Ω), see A.1.

As this equation cannot be solved directly, it needs to be linearised and solved iteratively; for
more details see HOLZAPFEL [23], BONET / WOOD [13] or KUHL [32]. The linearisation L in a
known point u reads

L[G(u,v)]u=u = G(u,v) +DG(u,v) ·∆u +R. (2.41)

The directional or Gâteaux derivative D implies the differentiation with respect to u in direction
of ∆u. From eq. (2.40) it becomes clear, that only the part related to the internal energy a(u; v)

depends on the displacements. Thus the problem of finding the derivative of G(u,v) is reduced.
An obvious but tedious derivation, see KUHL [32], leads to

aT (u; ∆u,v) = DG(u,v) ·∆u

=
d

dε
[a(u + ε∆u,v)] |ε=0

=

∫
Ω

S(E(u)) ·Dnl(∆u)v + Eu(v) · DS(E(u))︸ ︷︷ ︸
C ·Eu(∆u)

dΩ

=

∫
Ω

Dnl(∆u)v ·C[Du + Enl(u)]

+ [(D + Dnl(u))v] ·C[D∆u + ∆Enl(u)]dΩ.

(2.42)

Finally, the linearised weak equilibrium equation is formulated as

a(u; v)− F (v) + aT (u; ∆u,v) = 0. (2.43)
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2.3 Finite Element Method

2.3.1 Discretisation

For complex structures it is not possible to find ansatz functions Φj that describe the displacements
in the entire domain. A solution to this problem provides the Finite Element Method (FEM),
an enhancement of the Galerkin method. It performs a partition of the domain in subregions or
elements and the definition of local ansatz functions. Within each element, the displacement field
is approximated by local ansatz/shape function N , which are scaled by the nodal displacements û.

u(x) ≈ ũ(x) = N(x)T û using N(x) =


N1

N2

...
Nn

 , û =


û1

û2

...
ûn

 (2.44)

As indicated in fig. 2.4, the shape functions are defined in a local natural coordinate system ξ.

-1 1

N1 N2

1

û1

û2

ξ

Figure 2.4.: Linear shape functions for a one-dimensional element

The iso-parametric concept uses the same shape functions N for the geometry mapping between
the physical and the local natural coordinate systems.

x(ξ) = N(ξ)T x̂ (2.45)

The equilibrium formulation (2.36) requires the derivatives of the displacements with respect to
X. As the ansatz functions are defined in the local natural coordinate system, the chain rule has to
be used, which yield

∂

∂X
= J−1(ξ)

∂

∂ξ
using J =


∂X1

∂ξ1

∂X2

∂ξ1

∂X3

∂ξ1
∂X1

∂ξ2

∂X2

∂ξ2

∂X3

∂ξ2
∂X1

∂ξ3

∂X2

∂ξ3

∂X3

∂ξ3

 . (2.46)
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The Jacobian matrix J is also used for the transformation between physical and local coordinates.
The relationship dV = dX1dX2dX3 = detJ dξ1dξ2dξ3 is required for the subsequent integration
over the element volume.

2.3.2 Discretisation of linear equilibrium formulation

For the discretisation of eq. (2.36), first the strain tensor 2.11 needs to be expressed using shape
functions. The differential operator D, eq. (2.11) , can thus be formulated in local natural coor-
dinates. Applying this operator to the shape functions, the B-matrix for a volume element can be
defined. The following expression is valid for the i-th node

Bi(ξ) = D(ξ) Ni(ξ) =



∂ξj
∂X1

N i
,j(ξ) 0 0

0
∂ξj
∂X2

N i
,j(ξ) 0

0 0
∂ξj
∂X3

N i
,j(ξ)

∂ξj
∂X2

N i
,j(ξ)

∂ξj
∂X1

N i
,j(ξ) 0

0
∂ξj
∂X3

N i
,j(ξ)

∂ξj
∂X2

N i
,j(ξ)

∂ξj
∂X3

N i
,j(ξ) 0

∂ξj
∂X1

N i
,j(ξ)


(2.47)

The approximations of the strains become

ε̃(ξ) = B(ξ)û with B = [B1 B2 . . . Bn]. (2.48)

The stresses are defined as

σ̃(ξ) = CB(ξ)û. (2.49)

Inserting these approximations of strain and stress in (2.36) results in a discretised equilibrium
formulation for a linear system. In local natural coordinates for one element derived by neglecting
the surface forces, the expression becomes

v

1∫
−1

1∫
−1

1∫
−1

NT (ξ) p(ξ) detJ dξ1dξ2dξ3︸ ︷︷ ︸
p̂

= v

1∫
−1

1∫
−1

1∫
−1

BT (ξ)CB(ξ) detJ dξ1dξ2dξ3︸ ︷︷ ︸
ke

û. (2.50)

Obviously, the weighting function v can be cancelled. This yields the well-known matrix equation
p̂ = keû, with ke the elastic, local element stiffness matrix. To build up the global stiffness
matrix Ke, the local matrices must be transformed to the global coordinate system and assembled
according to the relation of local and global degrees of freedom. The analytical solution of the
integrals is only possible in special cases. In practice, the integrals are evaluated by numerical
methods e.g. Gaussian integration.
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2.3.3 Discretisation of non-linear equilibrium formulation

The discretisation of the non-linear equilibrium equation in Lagrangian coordinates eq. (2.40)
is done in a comparable manner. To represent the derivation more clearly, the summands of eq.
(2.43) are treated separately. The discretisation of the linear functional F(v) equals the linear
formulation, see eq.(2.50). The internal energy formulated in the ξ-coordinate system becomes

a(u; v) =

1∫
−1

1∫
−1

1∫
−1

Eu(v, ξ) ·C E(u, ξ) detJ dξ1dξ2dξ3

=

1∫
−1

1∫
−1

1∫
−1

[D(ξ) + Dnl(u, ξ)] v ·C E(u, ξ) detJ dξ1dξ2dξ3.

(2.51)

The weighting functions v are described according to (2.44), which yields to the discretisation of
Eu(v, ξ) as follows

[D(ξ) + Dnl(u, ξ)] Nv̂ = (B(ξ) + Bnl(u, ξ))v̂ = B(u, ξ) v̂. (2.52)

This is inserted in eq. (2.51), and the discrete values v̂ can be put in front of the integral

a(u; v) ≈ v̂

1∫
−1

1∫
−1

1∫
−1

(B(ξ) + Bnl(u, ξ)) ·S(u, ξ) detJ dξ1dξ2dξ3 = v̂ ri(u) (2.53)

with ri(u) the internal force vector. The linearised internal energy (2.42) as a function of ξ be-
comes

DWint =

1∫
−1

1∫
−1

1∫
−1

S(u, ξ) ·Dnl(∆u, ξ)v detJ dξ1dξ2dξ3

+

1∫
−1

1∫
−1

1∫
−1

[D(ξ) + Dnl(u, ξ)]v ·C [D(ξ)∆u + ∆E(u, ξ)]︸ ︷︷ ︸
[D(ξ) + Dnl(u, ξ)]∆u

detJ dξ1dξ2dξ3.

(2.54)

According to CRISFIELD [18] the term in the first integral can be substituted by

S(u) ·Dnl(∆u)v = v̂ Ŝ ∆û with Ŝ =

S 0

S

0 S

 . (2.55)

Expressing this formulation in terms of ξ and introducing the shape functions in the second term
of (2.54) leads to
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DWint ≈ v̂

1∫
−1

1∫
−1

1∫
−1

BT
G (ξ) Ŝ(u, ξ)BG(ξ) detJ dξ1dξ2dξ3︸ ︷︷ ︸

kg(û)

∆û

+ v̂

1∫
−1

1∫
−1

1∫
−1

[BT (ξ) + BT
nl(u, ξ)] ·C [B(ξ) + Bnl(u, ξ)] detJ dξ1dξ2dξ3︸ ︷︷ ︸

km(û)

∆û.

(2.56)

The geometric stiffness matrix kg(û) and the material stiffness matrix km(û) are both dependent
on the deformations. Expanding the expression in the second integral shows that the elastic stiff-
ness matrix ke, eq. (2.50), can be extracted. In a compact way, the discretised, linearised internal
energy for a single element can be written as

DWint ≈ v̂(kg(û) + km(û))∆û = v̂ kT (û) ∆û = v̂ ∆ri(û
k). (2.57)

All parts of tangential stiffness matrix kT (û) are symmetric. The product kT (û) ∆û represents the
linearised internal forces ∆ri(u) of an element. The global stiffness matrix KT (û) of the structure
is composed of the local element matrices kT (û), which have, when indicated, be transformed to
the global coordinate system.

2.3.4 Iterative solution of non-linear equilibrium formulation

Finally, the discrete equation describing the equilibrium of non-linear static systems becomes

ri(û) = p̂. (2.58)

A solution is found by introducing an iterative procedure, e.g. the Newton-Raphson algorithm.
Equ. (2.58) is expanded in a Taylor series, which is truncated after the first series term.

ri(û
k+1) = ri(û

k) +
∂ri(û

k)

∂ûk
∆û = ri(û

k) + ∆ri(û
k) = p̂ (2.59)

Index k represents the number of the iteration cycle. The quotient in the second summand is known
as stiffness matrix kT (û), so the term equals the linearised internal force vector; see (2.57). The
transformation of (2.59) leads to characteristic equation

∆û = KT (û)−1
[
p̂− ri(û

k)
]
. (2.60)

The total deformation becomes ûk+1 = ûk + ∆û. Equ. 2.60 has to be solved several times until
the solution satisfies a predefined convergence criteria.



3 Error estimation

In this chapter the principles of error estimation are presented. First, discretisation

error estimates are introduced with a focus on a posteriori methods for linear and

non-linear problems. This includes approaches for the determination of the error

in goal quantities, too. In the second part of this chapter, model error estimation

techniques are described and a discussion of the results achieved so far is included.

Again techniques for linear and non-linear problems as well as global and goal-

oriented errors are distinguished.

3.1 Discretisation error

3.1.1 Overview

Applying the Finite Element method, the solution space is shifted from V to the test space Vh and
equation 2.36 becomes

a(uh,vh) = F (vh). (3.1)

The discretisation error is defined as

eh := u− uh. (3.2)

The Finite Element solution is characterisied by three properties, [9]:

1. Galerkin orthogonality, see A.1: a(eh,vh) = 0,

2. The strain energy of the Finite Element solution is smaller or equal compared to the one of
the exact solution: a(uh,uh) ≤ a(u,u),

3. The Finite Element solution uh leads to the smallest strain energy compared to the other
possible solutions vh in Vh: a(eh, eh) ≤ a(u− vh,u− vh).

The residual Rh of the Finite Element solution is

Rh(uh,v) := a(eh,v) = a(u,v)− a(uh,v) = F (v)− a(uh,v). (3.3)
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Overview: Error estimation techniques

Point in time Accuracy Goal quantity Type of error

• A priori

• A posteriori

• Absolute/implicit

• Relative/explicit

• Heuristic/
averaging based

• Local

• Global

• Discretisation

• Model

Figure 3.1.: Categorisation of error estimation techniques

Replacing v with the discretisation error eh shows that the residum can be replaced by the energy
norm of the error.

Rh(uh, eh) = a(eh, eh) = ‖eh‖E. (3.4)

The reasons for the application of error estimation techniques are twofold. On the one hand,
the error is assessed quantitatively by calculating lower and upper error bounds, which only yields
sufficient results if these bounds are close to each other. Most of the error estimators that provide
such theoretical bounds do not yield to guaranteed bounds in case of practical problems. On the
other hand, error estimation techniques are used to steer an adaptive process. In this case, it is not
important to get the correct value. Here, the main focus is on the error distribution and to detect
the areas of the domain where mesh refinement is necessary.

The field of error estimation is wide, and uncountable contributions can be found in literature to
determine ‖eh‖E; as summary see e.g. [2], [66] or [21]. Available methods can be distinguished
with respect to four main categories, figure 3.1. First of all, it is determined, whether the estimators
are applied before or after the calculation is started. A priori estimates provide knowledge regard-
ing the convergence properties, but no information regarding error bounds. A posteriori techniques
make information available concerning approximations of error bounds based on the FE solution.

A posteriori techniques can be distinguished in relative (explicit), absolute (implicit) and heuris-
tic/ averaging-based error estimators. Relative estimators do not provide guaranteed bounds, be-
cause the error is scaled with a mostly unknown constant. Implicit error estimators tackle this
problem by using information from auxiliary problems to bound the error. Averaging-based esti-
mators make use of the fact that the gradient of the discretised solution is discontinuous across the
inter-element boundaries. It is assumed that a smoothed gradient gives a better estimate of the real
solution and the error is defined as the difference between the discretised and the smoothed solu-
tions. Another distinctive feature deals with the question of whether the global error of the Finite
Element solution should be found or whether the error in a certain local or goal quantity, e.g. stress
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in a point xi, is of interest. Additionally, the error estimation techniques can not only be applied
regarding the discretisation, but also the model error can be determined with such methods.

3.1.2 A priori error estimates

A priori estimates provide information concerning the convergence behaviour of the Finite Element
solution before the calculation is carried out, see [21]. The main goal is to show that the error
converges to zero if the element size is reduced to zero. No information regarding error bounds
can be achieved using this approach. Céa’s Lemma provides a first estimation of the error in the
energy norm and it states, that the solution uh is the best solution in the space Vh.

‖eh‖E = inf
vh∈Vh

‖u− vh‖E (3.5)

In addition, the Lax-Milgram theorem states that if the bi-linear form a(., .) is continuous

|a(v,w)| ≤M‖v‖H‖w‖H, M > 0, continuity constant (3.6)

and elliptic

a(v,v) ≥ α‖v‖2
H, α > 0, ellipticity constant, (3.7)

then there is a unique solution. Here the bilinear form a(., .) is defined in a Hilbert space H with
the norm ‖.‖H (see A.1). Finally, the previously introduced relations can be summarised by the
estimate

‖eh‖H ≤
M

α
inf
vh∈Vh

‖u− vh‖H (3.8)

for details see e.g. MERDON [42]. Except the mesh size he, the quality of the solution also
depends on the polynomial order p of the ansatz function, BATHE [9]. From interpolation theory,
the estimate

‖eh‖H1 ≤ chpe‖u‖Hp+1 (3.9)

can be achieved. From the definition of the norm ‖.‖Hp+1 , it becomes clear, that this formulation
leads rather to an estimate for the gradients (stresses and strains) than the displacements. So the
convergence of the error in the displacements is of one order higher

‖eh‖H0 ≤ chp+1
e ‖u‖Hp+1 . (3.10)
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In many publications, a simplification of (3.9) can be found

‖eh‖ ≤ chpe. (3.11)

The interpolation and stability constant c depends on the material properties and the element type,
but not on the ansatz space. Only for a few cases can c be determined.

3.1.3 A posteriori error estimators

Introduction

A posteriori error estimators provide information concerning approximations of error bound based
on the Finite Element solution. Generally speaking, upper and lower bounds are described by a
global error estimate η and some unknown constants C1 and C2.

C1η ≤ ‖eh‖E ≤ C2η (3.12)

The error is often measured in the energy norm ‖eh‖E , see A.1, because of the inherent physical
meaning.

Residual-based estimates

The residual-based approach is a prominent representative of the class of relative / explicit error
estimators. Equation (3.3) is formulated element-wise, and written in a more detailed manner
based on (2.36)

a(eh,v) =
ne∑
e=1

∫
Ωe

f ·v dΩe +
nr∑
r=1

∫
ΓN

t ·v dΓN −
ne∑
e=1

∫
Ωe

σσσ(uh) ·εεε(v) dΩe. (3.13)

Here ΓΩ is the inter-element boundary, and the summation is done regarding the number of ele-
ments ne or the number of element boundaries nr. Partial integration and the divergence theorem,
see 2.35, are applied to the last term of equation (3.13), which leads after some rearrangement to

a(eh,v) =
ne∑
e=1

∫
Ωe

(f + div σσσ(uh)) ·v dΩe

+
nr∑
r=1

∫
ΓN

(t − σσσ(uh)n) ·v dΓN −
nr∑
r=1

∫
Γe

σσσ(uh)n ·v dΓe. (3.14)

In a compact way, the equation can be written as

a(eh,v) =
ne∑
e=1

∫
Ωe

Re(uh) ·v dΩe +
nr∑
r=1

∫
Γe

Jr(uh) ·v dΓe (3.15)
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where Re, the residuum of the strong equilibrium condition, is defined as

Re = div σσσ(uh) + f ∀Ωe (3.16)

and the jumps Jr on interface tractions become

Jr =


1
2
(σσσ(uh)

+n+ + σσσ(uh)
−n−) at Γe

t− σσσ(uh)n at ΓN

0 at ΓD.

(3.17)

In (3.15) all variables, except v, are known from the finite element solution. Theoretically, it is
possible to solve the equation using discretisation. This would be computationally expensive, as it
is necessary to expand the space of the ansatz functions to prevent the solution from reaching zero.
An alternative is to determine a(eh,v) approximately. This idea was first formulated by BABUSKA

/ RHEINBOLDT [5] and extended to elasticity theory by BABUSKA / MILLER [3]. A summary
can be found in STEEB [62] or GRÄTSCH / BATHE [21]. First, equation (3.15) is extended by
subtracting a(eh,vh), which is feasible due to the Galerkin orthogonality. The term vh can be
described by the Clément operator, vh = Πhv, which maps all continuous ansatz functions to the
space Vh. Applying the Cauchy-Schwarz inequality for integrals, eq. (A.9) , and describing the
associated integrals by the L2-norm, results in an upper bound of the error.

a(eh,v) ≤
ne∑
e=1

‖Re(uh)‖L2 ‖v −Πhv‖L2 +
nr∑
r=1

‖Jr(uh)‖L2 ‖v −Πhv‖L2 (3.18)

The norm ‖v −Πhv‖L2 is bounded from above by a local approximation of the interpolation.

‖v −Πhv‖L2(Ωe) ≤ Ci,1he|v|H1(Ωe)

‖v −Πhv‖L2(Γe) ≤ Ci,1
√
hr|v|H1(Γe)

(3.19)

Therewith, the interpolation constant Ci is introduced, which depends on the element size, the
polynomial degree and the inter-element angle. Inserting this approximation in (3.18) and re-
arrangement, a second constant Cr, depending on the number of elements of the local domain,
emerges. In a last step, the previously introduced H1-semi-norm is replaced by the energy norm.
By V-ellipticity/coercivity the equivalence of both norms is shown, which are linked by a stability
constant Cs.

|v|H1 ≤ Cs‖v‖E (3.20)
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The constant Cs describes the sensitivity of the differential equation regarding disturbances and
equals 1.0 for elliptic partial differential equations. Subsequently, the discretisation error eh is
chosen as test function for (3.18), which finally leads to

‖eh‖E ≤ CiCsCr

√√√√ ne∑
e=1

h2
e(‖Re(uh)‖L2)

2 +
nr∑
r=1

hr(‖Jr(uh)‖L2)
2. (3.21)

Here he and hΓ are the characteristic element size and the edge length, respectively. Due to the
difficulties in calculating these constants, the error can hardly be quantified correctly. Therefore,
this error estimation technique is often used as an indicator for mesh adaptivity. The mesh size is
sufficient if the error in all elements is approximately equal.

Averaging-type estimates/Recovery-based estimates

This heuristic approach was first introduced by ZIENKIEWICZ / ZHU [72]. It is based upon the
circumstance whereby the gradient of the Finite Element solution is in general discontinuous across
inter-element boundaries. Based on the discrete solution uh, an averaged gradient is determined,
and for its corresponding displacements u∗, it is assumed that the inequality

‖u− u∗‖E ≤ C‖u∗ − uh‖E with 0 < C < 1 (3.22)

holds. An extension of the energy norm of the error ‖eh‖E by (u∗−u∗) and the application of the
triangle inequality leads to the estimate

‖eh‖E ≤ ‖u− uh + u∗ − u∗‖E ≤ (1 + C) ‖u∗ − uh‖E. (3.23)

An alternative is the formulation of the error directly in terms of the averaged gradients, e.g. the
stresses σ∗. Following the procedure that was previously introduced for ‖eh‖E , leads to an error
definition in the L2-norm.

‖eσ‖L2 := ‖σ − σh‖L2

= ‖σ − σh + σ∗ − σ∗‖L2

≤ (1 + C) ‖σ∗ − σh‖L2

(3.24)

To determine the averaged stresses, post-processing methods are used after the discretised solu-
tion is found. One quite inexpensive computational approach is based on local averaging. Using
the same ansatz function as already introduced for the displacements, the stress values are extrapo-
lated to the element nodes, and the average of the adjacent elements is determined. The method can
be improved if instead of the nodal values, values of super-convergent points are used. Details con-
cerning the so-called super-convergent patch recovery technique can be found in ZIENKIEWICZ /
ZHU [73].
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Applying this approach, one needs to be aware of the following drawbacks/problems:

• Under certain conditions, the averaged gradient can be qualified as super-convergent1 be-
cause the Finite Element solution is often closer to the averaged solution than the exact one.
This means that the true error might be underestimated.

• The question of whether the averaged values are better than the Finite Element solution
cannot be answered generally.

• GRÄTSCH / BATHE [21] point out that for special problems with oscillating solutions, the
engineer needs to pay special attention. The basic assumption, that smoothed values are
better than oscillating ones is not valid in such a context.

Absolute/implicit error bounds

Improved information concerning the error inherent in the Finite Element solution can be obtained
by solving auxiliary problems. These auxiliary problems are local boundary value problems for-
mulated on a small element patch - sub-domain residual method - or on a single element - element

residual method. The first approach has the drawback that it might be computationally more ex-
pensive, as each element is considered several times. E.g. if a domain with n nodes is divided in
n patches, each patch consists of a central node and the adjoint elements. Higher computational
costs, compared to explicit error estimates, are excepted, as tighter upper error bounds can be
achieved. In the following, only local Neumann problems are considered. Fundamental work in
this field was done by LADEVEZE / LEGUILLON [34] and BANK / WEISER [8].

The idea is to solve the weak error equation (3.3) element-wise. For the term (f ,v), see (2.36),
an adequate expression on element level needs to be found. These so-called boundary tractions,
describe the equilibrium on the common edge of two neighbouring elements Γe,i and Γe,j . Ap-
proximated local boundary tractions

te ≈ σ(uh)ene onΓe (3.25)

are defined and have to fulfil the conditions

te = t on ΓN (3.26a)

t+
e + t−e = 0 on Γe,i ∩ Γe,j (3.26b)∫

Γe

te dΓe = −
∫
Ωe

(p− divσ(uh)) dΩe.︸ ︷︷ ︸
inner element residuals

(3.26c)

1super-convergent means that the solution converges faster than expected
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Based on the previous equation, the boundary traction can be written as∫
ΓN

t ·v dΓN =
ne∑
e=1

∫
Γe

te ·v dΓe. (3.27)

The weak equation defining the error (3.3) can thus be rewritten in an element-wise form.

a(eh,v) =
ne∑
e=1

(
(p,v)e +

∫
Γe

te ·v − ae(uh,v) dΓe

)
. (3.28)

Applying Cauchy-Schwarz inequality and using eh as a test function, results in

‖eh‖E ≤
ne∑
e=1

‖eh,e‖E, (3.29)

where eh,e is the discretisation error of one element. It becomes clear, that the quality of the error
estimate strongly depends on the quality of the approximated local tractions. The requirement that
the tractions have to be in equilibrium with the inner element residuals (3.26c) can be used for
their determination. From the Finite Element analysis, fictive nodal forces p̂e are known and can
be related to the discrete inner element residuals

nnodes∑
n=1

p̂iev̂
i = ae(uh,vh)−

∫
Ωe

p vh dΩe

=

∫
Γe

te,h ·vh dΓe

(3.30)

The continuous variables te,h and vh are discretised using bi-orthonormal2 ansatz functions N̄ j

and Ni. Shape functions for te,h have to be orthonormal with respect to the shape functions used
for vh ([64], p. 340). E.g. for a patch of five elements, see fig. 3.2. Inserting these ansatz functions
in (3.30), results in a system of equations such as

1 0 0 0 −1

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1




t̂Γe,1∩Γe,2

t̂Γe,2∩Γe,3

t̂Γe,3∩Γe,4

t̂Γe,4∩Γe,5

t̂Γe,5∩Γe,1

 =


p̂e,1

p̂e,2

p̂e,3

p̂e,4

p̂e,5

 . (3.31)

Two important things need to be considered. First eq. (3.31) is not regular and additional
equations are necessary to solve it, see e.g. [53]. As mentioned in the beginning of this paragraph,
this system of equations needs to be formulated for an element patch around each node to determine

2bi-orthonormal means that the condition
∫
Ωe
N̄ jNidΩe = δij is fulfilled.
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Elem. 1 Elem. 2

Elem. 3

Elem. 4

Elem. 5

t̂Γe,1∩Γe,2

t̂Γe,2∩Γe,3

t̂Γe,3∩Γe,4

t̂Γe,4∩Γe,5

t̂Γe,5∩Γe,1

p̂e,1

p̂e,2

p̂e,3p̂e,4

p̂e,5

i

Figure 3.2.: Element patch surrounding node i for the determination of nodal forces p̂, according
to [62]

the vector of local, discretised boundary tractions t̂e. Applying the ansatz function, te is found.
Using eq. (3.28) the upper bound for the discretisation error (3.29) can be calculated.

An alternative approach for calculating the error is given by STEIN / OHNIMUS [64], STEIN

/ OHNIMUS [65]. They call the method the posteriori equilibrium method (PEM). First, the im-
proved equilibrated tractions are determined as described above. Afterwards, local variational
problems are defined element-wise for an extended test space Vh+, by using the tractions as Neu-
mann boundary conditions. The local nodal boundary tractions are interpreted as nodal loads on
the elements. Using locally expanded test spaces for each element, improved displacements uh+

are determined by solving element-wise variational problems

a(uh+,vh+)Ωe = F (vh+)Γe with F (vh+)Γe =

∫
Γe

te,h ·vh+ dΓe. (3.32)

The discretisation error can thus be formulated in the energy norm as

‖eh‖2
E = ‖uh+ − uh‖2

E ≤ a((uh+ − uh), (uh+ − uh)). (3.33)
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3.1.4 Goal-oriented/local error estimators

In general the structural engineer is more interested in predicting quantities of engineering signif-
icance that are relevant to determine the serviceability or the ultimate limit state of a structure.
These quantities of interest or goal quantities J(u) are functionals of the displacements g(u), e.g.
stresses in specific points or integral values like moments in beams or displacements itself.

J(u) =
1

Ωpatch

∫
Ωpatch

g(u) dΩpatch (3.34)

Therefore the focus is shifted from global error estimation towards the error in the goal quantity
due to the discretisation, see e.g. [11], [35].

J(eh) = J(u)− J(uh) (3.35)

The local error J(eh) cannot be calculated by eq. (3.35), because u and with it J(u) are un-
known. So the most obvious approach, the calculation based on the displacement solution u of the
primal problem, eq. (3.34), is not possible. An alternative way applies Betti’s theorem, which is
also known as Reciprocal theorem, Green’s identity or Concept of influence functions. In linear
elasticity theory, when the superposition principle can be applied, it holds

(pprimal,udual) + (fprimal,udual) = (pdual,uprimal) + (fdual,uprimal). (3.36)

The work done by the primal loading on the dual displacement equals the work done by the dual
loading on the primal displacements. In the case, that a nodal displacement u(xi) represents the
goal quantity, the equivalent dual force is the Dirac-Delta function in this point xi. In Finite
Element calculations, this point load needs to be regularised, which means distributed over an
local element patch, to prevent singularities. Anyway, for this kind of goal quantity, it follows that

J(uh) = uh(xi) = ( uh(xi)︸ ︷︷ ︸
primal displ.

, δ(xi)︸ ︷︷ ︸
dual load

) = (p,Gh) + (t,Gh)

= a(uh,Gh) = a(Gh,uh).

(3.37)

The goal quantity can be determined by the semi-linear function a(., .). The same result can be
achieved through a generalised examination. Both terms F (.), (2.36), and J(.) are linear func-
tionals of a certain displacement. Therefore, J(v) can be interpreted as the right-hand side of an
equation comparable to (2.36).

a(z,v) = J(v) (3.38)
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The solution z is named generalised Green’s function. Due to symmetry of the semi-linear form
a(., .) it holds

J(u) = a(z,u) = a(u, z) = F (z) (3.39)

This relation can be used to determine J(uh), if the same discretisation is used for the primal and
the dual problem. After choosing the notation G also for the generalised Green’s function, for the
dual problem

a(G,v) = J(v) (3.40)

can be formulated according to (2.36). In test space Vh the variational formulation becomes

a(Gh,vh) = J(vh) (3.41)

with the dual error defined as

e∗h := G−Gh. (3.42)

The residual R∗h is defined as

R∗h(Gh,v) := a(e∗h,v) = J(v)− a(Gh,v) (3.43)

Finally, the error in the quantity of interest (3.35) can be defined as

J(eh) = J(u)− J(uh) = a(G,u)− a(G,uh) = a(G, eh) (3.44)

Expanding the previous description using Galerkin orthogonality by a(Gh, eh) = 0, results in the
basic equation for goal-oriented error estimates

J(eh) = a(e∗h, eh). (3.45)

To determine the error in the functional J(eh) different options are given below.

Energy-norm-based estimates/Duality techniques

According to CIRAK [16] the Cauchy-Schwarz inequality is applied on (3.45), which yields to

|J(eh)| ≤ ‖G−Gh‖E‖u− uh‖E. (3.46)

The energy norms for the primal and dual errors can be determined using error estimation tech-
niques introduced in section 3.1.3. Generally, this leads to an element-wise determination of the
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discretisation error, which can be summed up to acquire a global measure for the local error. From
(3.46) it can be seen, that the global error is scaled by the discretisation error in Green‘s function.
Numerical experiments show that “..., goal-oriented error estimators based on energy norm esti-
mates [...] eliminate the cancellation of errors over the domain, and therefore produce significant
error overestimation in general” [21, p. 246]. Tighter error bounds can be achieved using the paral-
lelogram identity. This technique was introduced by BABUSKA ET AL. [6] and applied to material
modelling by e.g. ODEN / PRUDHOMME [46] and ODEN / PRUDHOMME [47]

J(eh) = a(eh, e
∗
h) =

1

4
‖seh +

e∗h
s
‖E −

1

4
‖seh −

e∗h
s
‖E, with s =

√
‖e∗h‖E
‖eh‖E

. (3.47)

Upper and lower error bounds are defined

1

4
(ζ+
low)2 − 1

4
(ζ−upp)

2 ≤ J(eh) ≤
1

4
(ζ+
upp)

2 − 1

4
(ζ−low)2 (3.48)

with

ζ+
low ≤ ‖seh +

e∗h
s
‖E ≤ ζ+

upp,

ζ−low ≤ ‖seh −
e∗h
s
‖E ≤ ζ−upp.

(3.49)

To determine ζ+/−
low/upp, in ODEN / PRUDHOMME [47] implicit error estimators are used.

Dual-weight residual method (DWR)

This technique was first introduced by BECKER / RANNACHER [11] and extended to linear elas-
ticity by RANNACHER / SUTTMEIER [58]. The concept is based on residual-based estimates,
which were previously introduced. Equ. (3.15) is expanded by applying the Galerkin orthogo-
nality a(eh,vh) = 0. As test functions v can be chosen arbitrarily, here the solution of the dual
problem G/Gh is used. The same result can be achieved by applying symmetry conditions of
a(., .) and the Galerkin orthogonality a(eh,Gh) = 0 on eq. (3.44)

J(eh) = a(eh,G) = a(eh,G−Gh). (3.50)

Written in terms of the residual-based approach, eq. (3.15) becomes

J(eh) = a(eh,G−Gh)

=
ne∑
e=1

∫
Ωe

Re(uh) · (G−Gh) dΩe +
nr∑
r=1

∫
Γe

Jr(uh) · (G−Gh) dΓe.
(3.51)

The terms Re and Jr are the residual and jump terms of the primal problem defined in eqs. (3.16)
and (3.17). The error in the dual solution e∗h = G−Gh serves as a weight ωe for the residual term.
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A local interpolation estimate, cf. eq. (3.19), is used to determine the weight. As G is unknown,
it needs to be replaced with an extended discretised solution Gh+. This yields an estimation of the
weight ωe

ωe,app = Ci,ehe|∇2
hGh+|H1(Ωe), (3.52)

and the error in the goal quantity can be approximated with

J(eh)app =
ne∑
e=1

∫
Ωe

Re(uh) ·ωe,app dΩe +
nr∑
r=1

∫
Γe

Jr(uh) ·ωe,app dΓe. (3.53)

The local interpolation constant Ci,e depends on the element geometry. As its determination is not
straightforward, it “may be set Ci,e = 1” [58, p. 438]. It cannot be guaranteed that no underes-
timation of the error occurs due to this simplification. To determine the unknown Gh+, several
options are given in [11]. The dual problem can be solved using higher-order ansatz functions, as
done previously for the determination of Gh, or the discretisation could be refined.

3.1.5 Estimators for non-linear problems

Global estimates

An adaptation of global discretisation error estimators for non-linear problems can e.g. be found
in HUERTA ET AL. [24] or CIRAK [16]. The decomposition of the functional a(., .), according to
u = uh + eh, (3.3), is not valid in the non-linear case, since

a(u; v) = a(uh + eh; v) 6= a(uh; v) + a(eh; v). (3.54)

It would be beneficial if error estimation techniques introduced for linear problems could be
adapted to the non-linear case. The basic idea is to reduce the solution of the non-linear prob-
lem to the solution of the linearised problem. Therefore, a series expansion is performed to find a
formulation for the error

a(uh + eh; v) = a(uh; v) + aT (uh; eh,v) + h.o.t. . (3.55)

The higher-order terms h.o.t. are neglected, as error is assumed to be small compared to the dis-
placement solution. This leads to a definition of the residual

R(uh,v) = F (v)− a(uh; v) ≈ aT (uh; eh,v). (3.56)

This equates to the error estimation in equilibrium points of certain load steps. Additionally, a
non-linear energy norm must be defined. If the tangent form aT (uh; ., .) is symmetric and positive
definite, the norm induced by aT (uh; ., .) can be used for this purpose.
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Techniques previously introduced for linear problems can be applied to determine the error, e.g.
MATERNA [40] uses residual-based estimates

aT (uh; eh,v) =
ne∑
e=1

∫
Ωe

Re(uh) ·v dΩ +
nr∑
r=1

∫
Γe

Jr(uh) ·v dΓe. (3.57)

They differ from the linear version (3.15) in the definition of the residuum Re(uh), which is defined
as

Re(uh) = f + div(Sh −∇uhSh). (3.58)

Goal-oriented estimates

The theory of goal-oriented error estimates for non-linear problems was introduced by BECKER

/ RANNACHER [12] and BANGERTH / RANNACHER [7]. To determine the error in the goal
quantity, eq. (3.35) , a possibility needs to be found to express J(u) using known quantities. In the
linear case, Green’s identity was used for this purpose, which is no longer valid in the non-linear
case. Therefore, the derivation is based on the formulation of a constraint optimisation problem:

J(u)→ min,

a(u; v) = F (v)
(3.59)

The formulation using the Lagrange multiplier method reads

L(u, z) = J(u)− [a(u; z)− F (z)]︸ ︷︷ ︸
G(u; z)

(3.60)

where z, the generalised Green’s function, represents the Lagrange multiplier. The optimisation
problem is solved by setting dL = 0, which results in the formulation of the primal and the dual
problem. The derivative of (3.60) with respect to z leads to the primal problem, which equals the
fundamental variational equation

G′z(u; z,v) = lim
ε→0

ε−1 [G(u; z + εv)−G(u; z)] = G(u; v) (3.61)

The dual problem corresponds to the derivatives

J ′u(u;ρ)−G′u(u;ρ, z) = 0. (3.62)

After introducing the Finite Element method with its inherent discretisation of the domain, eq.
(3.60) becomes

L(uh, zh) = J(uh)− [a(uh, zh)− F (zh)] (3.63)
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with the corresponding definition of the primal and the dual problem. The residual Rh is defined
according to the linear case, see eq. (3.3) , as

Rh(uh; v) := F (v)− a(uh; v) (3.64)

and the adjoint or dual residual R∗h becomes

R∗h(uh;ρ) := J ′u(uh;ρ)−G′u(uh;ρ, zh). (3.65)

The error in the goal quantity equals

J(eh) = J(u)− J(uh) = L(u, z)− L(uh, zh) (3.66)

The goal is to define the error in terms of the residual’s Rh and R∗h. To achieve this goal, L(u, z)

is expanded in a Taylor series, and after some transformation we end up with

J(u)− J(uh) =
1

2
L′(uh, zh)(eh, e∗h)

+
1

2

∫ 1

0

L′′′(uh + seh, zh + se∗h)(eh, e
∗
h)(eh, e

∗
h)(eh, e

∗
h)ε(ε− 1) dε. (3.67)

The first summand can be expressed using the previously defined residuals.

L′(uh, zh)(eh, e∗h) = L′u(uh, zh)(eh) +L′z(uh, zh)(e∗h)
= J ′u(uh; eh)−G′u(uh; eh, zh) −G(uh; e

∗
h)

= R∗h(zh; eh) +Rh(uh; e
∗
h)

(3.68)

Additionally, a relation between the primal and dual residual, for details see [12], can be given in
the form

R∗h(zh; eh) = Rh(uh; e
∗
h) + ∆R (3.69)

The second summand in eq. (3.67) is cubic in the errors eh and e∗h and “may usually be neglected”
[12, p. 10]. This finally leads to an error representation of the form

J(eh) = Rh(uh; e
∗
h) +

1

2
∆R. (3.70)

This approach is e.g. applied to perfect plasticity, see [59] and [12]. The term ∆R “is not further
considered” [12, p. 79], which leads to an estimate of the error

J(eh) ≈ Rh(uh; e
∗
h) = F (e∗h)− a(uh; e

∗
h). (3.71)



44 ERROR ESTIMATION

At this point the well-known residual-based error estimate, or more precisely the dual-weight resid-
ual method, introduced on p. 40, can be applied. The error is approximated with

J(eh) ≈
ne∑
e=1

∫
Ωe

Re(uh) e∗h dΩe +
nr∑
r=1

∫
Γe

Jr(uh) e∗h dΓe (3.72)

Re(uh) and Jr(uh) are determined according to eqs. (3.58) and (3.17) , respectively. The weights
ωe introduced by the difference of the dual solution are approximated by local interpolation esti-
mates. The same result can be achieved following the approach of CIRAK / RAMM [17]. They
follow the idea that was previously introduced for global discretisation errors for non-linear prob-
lems, see p. 41, and incorporate the linearisation of the underlying non-linear formulation.



3.2 MODEL ERROR ESTIMATES 45

3.2 Model error estimates

3.2.1 Overview

Since the mid-1990s the research in the field of error estimators has been broadened to include
model error estimates. The fundamental idea was to establish methods, that allow the estimation
of the modelling error based on the solution of a simplified model. The magnitude of the error
is used as an indicator to steer an adaptive process, where more sophisticated models are intro-
duced if necessary. ODEN ET AL. [74], [51] started to work on global model error estimates
for heterogenous materials. They extended the theory to local error estimates [45], [50]. In this
context the parallelogram identity, which has proven to be useful to find tighter error bounds for
discretisation errors [46], is applied. In ODEN ET AL. [49] the theory is extended to non-linear
problems and applied to global problems when modelling non-linear viscoelastic material. Based
on the ideas of BECKER / RANNACHER [12] local model error estimators are introduced in ODEN

/ PRUDHOMME [48]. LARSSON / RUNESSON [37] also work on non-linear global and local error
estimators for material model problems. In their derivations of error estimators, they choose an
alternative way compared to ODEN ET AL. They linearise the underlying equation and are then
able to apply techniques already introduced for linear problems. A comprehensive overview of
linear and non-linear model error estimates, based on BECKER / RANNACHER [12], is also given
in BRAACK / ERN [14]. Here the applications of interest are diffusion problems and Poisson’s
equation.

In contrast to the previously introduced research, which is mainly dedicated to material mod-
elling, STEIN ET. AL introduced model error estimators that deal with the problem of dimension
and model adaptivity. Using dimensional reduced models involves approximations of kinematic
and/or physical hypotheses, e.g the Bernoulli hypothesis. In large domains of the structure, 1D- or
2D- models lead to considerably good results, whereas disturbances near supports or appearance
of concentrated loads requires higher quality models. The goal is to estimate these errors and steer
an adaptive process of dimensional and model change based on these results. First attempts of
dealing with modelling errors caused by dimensional reduction were done on the basis of heuris-
tic strategies, OHNIMUS [52]. Additionally, the anisotropic residual error estimation (REM) was
introduced, where the dimension adaptivity was linked with p-adaptivity, see also STEIN / OHN-
IMUS [63]. In STEIN / OHNIMUS [64] the posteriori equilibrium method (PEM), which is based
on local variational Neumann problems, is adjusted to deal with modelling errors. STEIN ET AL.
[67] and [68] extend this theory to non-linear problems and goal-oriented error estimates, still with
the focus on dimensional adaptivity.

In model error estimation it is assumed, that a problem can be described using a simple model
as and a complex, more sophisticated one ac. The complex model can be split in two parts

ac(u; v) = as(u; v) + d(u; v). (3.73)
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The application of both models to a certain structural problem leads to different displacement
solutions us and uc, for the simplified and the complex model, respectively.

as(us; v) = (p,v)

ac(uc; v) = as(uc; v) + d(uc; v) = (p,v)
(3.74)

Because the right-hand sides are equal, the difference term can be calculated using

as(uc; v) + d(uc; v) = as(us; v)

as(uc; v)− as(us; v) = −d(uc; v).
(3.75)

For linear models, see e.g. BRAACK / ERN [14], it is possible to write

as(em,v) = −d(uc,v) (3.76)

with the model error defined as

em = uc − us (3.77)

the difference of the displacement solution of the simplified and the complex model. The error in
the energy norm can be found by replacing v with em, see e.g. ODEN / ZOHDI [51],

as(em, em) = ‖em‖2
E = −d(uc, em). (3.78)

For linear models, the dual problem can be formulated according to (3.40) and the theory of
Green’s function given in sec. 3.1.4,

as(Gs,v) = J(v)

ac(Gc,v) = as(Gc,v) + d(Gc,v) = J(v).
(3.79)

In the second equation, v is substituted by em and in the a- and d-term, the order of the coefficients
is changed

as(em,Gc) + d(em,Gc) = J(em). (3.80)

Using the relationship given in (3.76) and split d(em,Gc) in d(uc − us,Gc) results in

−d(us,Gc) = J(em). (3.81)

Generally, one needs to make sure, that the discretisation error is sufficiently small before the
model error estimation strategies are applied and the model is adapted.
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3.2.2 Global model error estimates for linear problems

Application to material modelling

Research in the field of error estimation in the field of material modelling has been carried out by
Oden and coworkers since the mid-1990s. Their goal has been the computation of an “estimate
of the modelling error introduced by replacing the actual fine-scale material tensor with that of a
homogenised material [...].” [74, p. 273] This information is used to steer an adaptive process that
introduces the fine-scale material tensor in areas with high errors. In ZOHDI ET AL. [74] a global
error estimator is derived for elastostatic problems. The derivation differs in some details from the
general approach given in eqs.(3.73) to (3.76) , as the difference term d should be calculated using
the result of the simple model. Two models are distinguished: a complex model incorporating the
fine-scale elasticity tensor Cfs and a simple model, with the homogenised material tensor Chom

ac(uc,v) =

∫
Ω

∇v : Cfs∇ucdΩ = F (v), (3.82a)

as(us,v) =

∫
Ω

∇v : Chom∇usdΩ = F (v). (3.82b)

The difference between both models can be formulated as

d(us,v) = ac(us,v)− as(us,v) =

∫
Ω

∇v : (Cfs −Chom)∇usdΩ. (3.83)

As the right-hand sides of eqs. (3.82a) and (3.82b) are equal, by using (3.83) it can be written

ac(uc,v)− ac(us,v) = ac(uc − us,v)

= ac(em,v) = −d(us,v)

=: Rm(us,v).

(3.84)

Setting v = uc − us and applying Cauchy-Schwarz inequality, gives

‖em‖2
E = ‖uc − us‖2

E

= −
∫
Ω

∇(uc − us) : (Cfs −Chom)∇usdΩ

≤ ‖uc − us‖E‖I0∇us‖E, I0 = I−C−1
fs Chom.

(3.85)

Finally, the displacement error in the energy norm can be bounded from above by

‖uc − us‖E ≤ ‖I0∇us‖E = ηupp. (3.86)
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A lower error bound can be found using the residual Rm(u0,v), eq. (3.84) . The energy norm of
the error equals the norm of the residual in the dual space ‖Rm‖V ′ . For this norm, a lower error
bound is defined as

‖em‖E = ‖Rm‖V ′ := sup
v∈V

|Rm(us,v)|
‖v‖E

≥ |Rm(us,us)|
‖us‖E

= ηlow. (3.87)

To control the quality of the estimate, the effectivity index is defined. It relates the error estimate
to the real error and leads e.g. the upper error bound to

Ieff =
ηupp

‖uc − us‖E
. (3.88)

Table 3.1 shows the effectivity indices for the upper and lower bounds of the global error. For the
presented examples, the exact model could be evaluated. For these examples, the derived bounds
lead to good estimates for the error. An exception is the cantilever modelled with a checkerboard
microstructure. It could be shown using [51] that this is due to disadvantageous model of the
inclusions. Investigations of the same structure using ellipsoidal and spherical inclusions leads to
much better efficiency indices.

Table 3.1.: Effectivity indices: Global model error estimates - Examples by ZOHDI, VEMAGANTI

Structural system Effectivity index
ηlow ηupp

Heterogeneous bar, [74], [45] 0.7 ... 0.98 1.00
3D analysis of a cube in shear

checkerboard microstructure, [74] - 1.4 ... 2.7
ellipsoidal/spherical inclusions, [51] - 1.0 ... 1.05

Wall structure with spherical inclusions, [50] 0.494 1.085

Application to dimensional adaptivity

Modelling in structural engineering is affected by simplifications. Very common are dimensional
reductions of the structure using beam (1D elements), plate or shell elements (2D) instead of a full
3-dimensional modelling. Such dimensional reductions involve model simplification, like the in-
troduction of kinematical and/or physical hypotheses, e.g the Bernoulli hypothesis. In undisturbed
domains such approaches are sufficient, but they can lead to inaccuracies when e.g. supports or
point loads occur. STEIN ET AL. provide different methods to determine the model error due to
dimensional reduction and provide therewith the basis for dimensional adaptivity. Their first pub-
lications dealing with this topic, [52], [63] and [64], are dedicated to linear model problems, where
the global model error is determined.
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The first attempt made by OHNIMUS [52] is a heuristic error estimator. Based on St. Venant’s
principle, the dimension is increased, if the element length is 2.5 times smaller than its height.
Residual-based estimates, see p. 32, are the basis for the anisotropic residual-based error estimator
(REM), [52]. The model/dimension error is not determined directly but in a roundabout way by
calculating the discretisation error. If the error estimator leads to the result, that for certain direc-
tion p- or h-adaptivity is necessary, this is interpreted as an indicator for dimensional expansion.
The dimensional reduction is equated with hierarchical reduction of the ansatz space. In contrast
to the classical procedure introduced by BABUSKA / RHEINBOLDT [5], the variational problem,
eq. (3.15) , is solved directly. As it would be quite time-consuming to solve the problem for the
entire system, an element-wise approach is preferred. Based on the current model, the element
residuals are determined according to eqs. (3.16) , (3.17) . These results are projected on a patch
Pe surrounding the element. The error at the boundaries of the patch is assumed to be zero, which
is valid due to St. Venant’s principle of decaying local disturbances. To solve the variational prob-
lem on the patch, higher-order test spaces have to be used either with respect to mesh refinement
or polynomial expansion. This provides the opportunity to use different ansatz spaces for different
directions. The whole procedure is sped up by mapping the information from Pe onto a parametric
patch Ie using Jacobian transformation. The underlying equation system, including e.g stiffness
matrixes, only needs to be set up once for all elements. The resulting equation system, and there-
with the element-wise error, for each element can then be evaluated by either solving a general
eigenvalue problem or by inverting the local stiffness matrix of the element patch.

An alternative procedure to determine the dimensional error directly is proposed in STEIN /
OHNIMUS [64]. The posteriori equilibrium method (PEM) yields an error estimator with an upper
bound, and an adaptive split of discretisation and model error is possible. The procedure equals
the implicit error estimates introduced on p. 35 ff. Equilibrated tractions are determined and the
error is calculated in a comparable manner to eqs. (3.32) , (3.33) . In contrast to discretisation
error estimation, here the ansatz space as well as the dimensional model are expanded for the
local Neumann problems. The hierarchical expanded model is named as+ and yields to improved
displacements on element level uh+,s. To solve the equations on the element level, it is necessary
to eliminate rigid body modes. Finally eq. (3.32) becomes

as+(uh+,s,vh+)Ωe = F (vh+)Γe . (3.89)

Improved displacements of the simpler model uh+ are found using locally expanded test spaces.
The definition of the error η2

E,σe
in the energy norm using the stresses of the current and improved

model, has proven to be the most meaningful one.

η2
E,σe = ‖σh+,s − σh+‖2

E (3.90)

To determine the difference of σh+,s and σh+ a prolongation Pus between the solution spaces
needs to be guaranteed. It can be observed, that PEM leads to better efficiency indices than REM.
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3.2.3 Global model error estimates for non-linear problems

Estimates based on the difference of the complex and the simplified model

Similar to discretisation error theory, the strategy for the definition of the model error for linear
problems, introduced in sec. 3.2.2, cannot be applied to non-linear problems. The reason is that the
relation used in eq. (3.84) to derive the estimate is not valid for non-linear variational problems.
For applications where both models are linear, it can be shown that this spilt is feasible.∫

Ω

ε(v)Cfsε(uc)dΩ −
∫
Ω

ε(v)Cfsε(us)dΩ =

∫
Ω

ε(v)Cfs(ε(uc)− ε(us))dΩ (3.91)

Considering non-linearities, e.g. in the kinematical description, leads to the appearance of quadratic
or even higher-order terms with respect to the displacement, which makes a split like eq. (3.91)
incorrect. Therefore, another approach needs to be found for non-linear problems.

ODEN ET AL. [49] derive a global error bound for non-linear material models, that can be used
to steer an adaptive process. The method was tested on a class of visco-elastic material models of
hierarchical order. The derivation for the global modelling residual is comparable to the approach
that was used for linear models as well, see sec. 3.2.2. A residuum is defined based on the
differences between the simplified and complex models.

The model in the variational form also considers inertia terms and the time t dependence reads
as follows∫

Ω

ρ0ü(t) ·vdΩ +

∫
Ω

F(u, t)P(∇ut(s), t) : ∇vdΩ = F (u(t); v, t). (3.92)

Here P(∇ut(s), t) is the constitutive functional, which depends amongst others on internal vari-
ables s, like the temperature or entropy. A simplified and a complex model vary in the formulation
of the constitutive functional, where the simplified version is labelled Ps(∇uts(s), t) and us the
associated displacement solution. It is not difficult but time-consuming to show that the difference
between both models becomes∫

Ω

[
ρ0ëu(t) ·v +∇eu(t)Pc(∇uts(s), t) : ∇v + F(us + eu, t)EP (t) : ∇v

]
dΩ− eF (v, t)

︸ ︷︷ ︸
E(t)

−
∫
Ω

F(us, t)∆P(∇uts(s), t) : ∇vdΩ

︸ ︷︷ ︸
Residuum: R(uts(s); v, t)

= 0. (3.93)
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with

eu(t) = uc(t)− us(t),

EP (t) = Pc(∇utc(s), t)− Pc(∇uts(s), t),

eF (v, t) = F (uc(t); v, t)− F (us(t); v, t),

∆P(∇uts(s), t) = Ps(∇uts(s), t)− Pc(∇uts(s), t).

(3.94)

As indicated in eq. (3.93), the last term of the model difference is defined as residuum. Inherent
in this term is the difference between the model definitions. Additionally, it has the advantage,
that it can be determined by knowing only the simplified solution us. Thus, it is used to steer the
adaptive process by indicating when a model change is necessary. An upper error bound for the
residuumR(uts(s); v, t) can be found by applying Schwarz’s inequality

R(uts(s); v, t) ≤ η(t) ‖∇v‖L2

with η(t) =

√√√√∫
Ω

[F (us(t); t)∆P(∇uts(s), t)]
2 dΩ.

(3.95)

Introducing this inequality in (3.93), dividing by ‖∇v‖L2 and taking the supremum, results in the
global error bound

‖E(t)‖V ′ ≤ η(t), (3.96)

where ‖ · ‖V ′ denotes the norm in the dual space V ′ of V . A global error bound is found by
calculating η(t) element-wise and summing up over the whole domain.

When the derived error bound is applied, it is slightly changed without giving reasons or expla-
nations. The upper error bound, eq. (3.96), is scaled by the norm of the strain energy of the simpler
model:

η(t) =

√
η(t)2

η(t)2
add

with η(t)2
add =

∫
Ω

[
F (us(t); t)Ps(∇uts(s), t)

]2
dΩ. (3.97)

Equation (3.97) is evaluated element-wise and the material model of the elements, where the error
bound exceeds a certain tolerance, is upgraded. The proposed procedure gives reasonable results
for the example investigated in [49], a plate with a central hole under tension.

Posteriori equilibrium method for dimensional adaptivity

In STEIN ET AL. [67] the posteriori equilibrium method (PEM) is extended towards non-linear
problems and goal-oriented error estimates. The derivations are based on the basic assumption,
that the error is “small with respect to the associated solution” [67, p. 3602], which is crucial as
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it is not fulfilled under all circumstances. Comparable to the approach of HUERTA, see p. 41, the
underlying equations are thus linearised, which leads to

ac(Pus + em; v) ≈ ac(Pus; v)− aT,c(us; em,v). (3.98)

This allows defining the residual as

R(us,v) = F (v)− ac(Pus; v) ≈ aT,c(us; em,v). (3.99)

The norm induced by aT,c(us; · , · ) is analogous to the standard energy norm. Applying the Finite
Element method, it can be seen that the general structure of ‖ · ‖E = a(em, em) = êmkeêm and
aT,c(us; em, em) = êmkT (ûs)êm is equal. Therefore, after linearisation the standard procedure of
PEM can be applied, which is:

1. Solution of the simple model as(us; v) = F (v),

2. Elementwise determination of the tractions te according to the procedure given on p. 35 ff.,

3. Solution of local Neumann problems using the previously defined tractions as boundary
condition and applying the more sophisticated model ac elementwise, see p. 49,

4. Determination of the error in the energy norm ‖em‖2
E = aT,c(us; em, em).

In [36] the authors pursue the same strategy. The residual is first described using the secant form

R(us,v) =

∫ 1

0

aT,c(us + sem; em,v), (3.100)

and afterwards this expression is simplified using the tangent formulation, see eq. (3.99) . As the
best model ac is often inaccessible in practice, a fine model as+, which is a hierarchical expansion
of the simple one, is used instead. This is comparable to the approach of STEIN ET. AL., who
introduces a 21

2
D model to estimate the error between a 2D and a 3D model.

3.2.4 Goal-oriented model error estimates for linear problems

In ODEN / VEMAGANTI [45] and ODEN / VEMAGANTI [50] the procedure introduced in 3.2.2
is extended to local model error estimates for elastostatic problems. The goal is to determine the
error in the quantity of interest J(em) due to the model error em = uc − us. According to the
procedure introduced in chapter 3.1.4, first the dual problem for the complex model

J(v) = ac(v,Gc) (3.101)

and the simplified model

J(v) = as(v,Gs) (3.102)
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are introduced. Here Gs and Gc are the dual solution or Green’s function for the simplified and
the complex model, respectively. This leads to the definition of the error in the dual solution as

e∗m = Gc −Gs. (3.103)

The error in the goal quantity can be described as

J(em) = J(uc)− J(us)

= ac(uc,Gc)− ac(us,Gc) = ac(em,Gc)

= Rm(us,Gc).

(3.104)

The formulation for the error in the goal quantity (3.104) can be split in two parts

J(em) = ac(em,Gc) = ac(em,Gs + e∗m) = ac(em,Gs) + ac(em, e
∗
m). (3.105)

The first summand corresponds to the residual function Rm(us,Gs) and can be calculated accord-
ing to eq. (3.84). Upper and lower error bounds are defined in eqs. (3.86) and (3.87). For the
second term, an approach is used that was already introduced for discretisation errors, see sec.
3.1.4. Introducing a scaling factor s and applying the parallelogram identity results in

ac(em, e
∗
m) =

1

4
‖sem +

e∗m
s
‖E −

1

4
‖sem −

e∗m
s
‖E. (3.106)

Upper estimates ζ±upp for the norm ‖sem ± e∗m
s
‖E are found by applying techniques that are known

from global model error estimates, see (3.85), (3.86). This leads to

ac(sem ±
e∗m
s
,v) = Rm(sus ±

Gs

s
,v)

= −
∫
Ω

∇v : CI0∇(sus ±
Gs

s
)dΩ

(3.107)

and with v = sem ± e∗m
s

the upper bound becomes

‖sem ±
e∗m
s
‖E ≤

√√√√−∫
Ω

I0∇(sus ±
Gs

s
) : CfsI0∇(sus ±

Gs

s
)dΩ = ζ±upp. (3.108)

The lower bound ζ±low is defined according to the global error (3.87)

‖sem ±
e∗m
s
‖E ≥

|Rm(sus ± Gs

s
,v)|

‖v‖E
= ζ±low. (3.109)
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The scaling factor s is defined as the square root of ‖e∗m‖E/‖em‖E , as it leads to a minimum of
‖sem ± e∗m

s
‖E . The error in the primal and dual solutions are both unknown and are therefore

approximated according to eq. (3.86). This leads to an approximation of the scaling factor

s ≈

√
η∗upp
ηupp

. (3.110)

Summarising the previously introduced relationships and using (3.48) , the error in the functional
becomes

J(em) ≥ ζlow =
1

4
(ζ+
low)2 − 1

4
(ζ−upp)

2 +Rm(us,Gs)

≤ ζupp =
1

4
(ζ+
upp)

2 − 1

4
(ζ−low)2 +Rm(us,Gs).

(3.111)

Additionally, an estimate is established, where the second summands in (3.111) are exchanged.

J(em) ' ζlow,est =
1

4
(ζ+
low)2 − 1

4
(ζ−low)2 +Rm(us,Gs)

/ ζupp,est =
1

4
(ζ+
upp)

2 − 1

4
(ζ−upp)

2 +Rm(us,Gs).
(3.112)

For the first and third example mentioned in table 3.1, local error estimates are investigated, see
also fig. 3.3. For the heterogenous bar, investigated in [74] and [45], first an investigation of ζ±low
and ζ±upp is done. The quantities of interest are the average stress in the interval 0.75 . . . 0.76 and
the pointwise value of the homogenisation error at x = 0.75. For both quantities, the effectivity
index of ζ±upp equals one, whereas for ζ±low the values range from 0.57 to 0.98. These errors in the
estimation propagate as ζlow and ζupp are determined. Here the effectivity index reaches values
of ±4.7, which is far away from the optimal value of one. The estimates of the upper and lower
bounds for local error ζlow,est and ζupp,est show a better behaviour. From eq. (3.111) it is clear that
ζupp,est does not use the error-prone quantity ζ±low, and in ζlow,est a cancellation of the error occurs.
For the first goal quantity, this leads to ζupp,est=0.84 and ζlow,est=1.0, for the second one ζupp,est=0.4
and ζlow,est=0.86. It is conspicuous, that the lower bound is larger than the upper bound.

For the wall structure, see [50], the same behaviour is monitored. Here the goal quantity is the
average stress in a small domain. Equ. (3.111) leads to effectivity indices of -163 and 161, respec-
tively. Whereas the estimated bounds, eq. (3.112) , are ζupp,est=-2.03 and ζlow,est=0.7. “We see
that the estimate ζlow,est alone has a reasonable effectivity index. In our experience, this estimate
has performed consistently and can be used to drive the adaptive process.” [50, p. 46] Studying
VEMAGANTI / ODEN [69] it is conspicuous that this statement is disregarded. Here they take
ζupp,est as the estimate for the local error and achieve effectivity indices close to one. Summarising
these results, the presented methods seems not to be very reliable to the author. Reasons for this
are the seemingly arbitrarily chosen estimates for the error and the missing derivations for the error
estimates.
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(a) Heterogenous bar, [45]

(b) Wall structure with spherical inclusions, [50]

Figure 3.3.: Structures where the goal-oriented model error is determined for linear problems

3.2.5 Goal-oriented model error estimates for non-linear problems

Optimal control approach

Based on the method of BECKER / RANNACHER [12] for discretisation errors, ODEN / PRUD-
HOMME [48], BRAACK / ERN [14] and KUNOW [33] derive goal-oriented model error estimates
for non-linear problems. The variational problems are defined as optimisation problems using La-
grange’s multiplier method. For the stationary point (u, z), with z as generalised Green’s function,
it is

• Simple model:

Ls(us, zs) = J(us)− [as(us; zs)− F (zs)] (3.113)

• Complex model:

L(uc, zc) = J(uc)− [ac(uc; zc)− F (zc)]

= J(uc)− [as(uc; zc) + d(uc; zc)− F (zc)]

= Ls(uc, zc) + dL(uc, zc)︸ ︷︷ ︸
= −d(uc; zc)

(3.114)

The corresponding primal and dual problems become for the complex model

ac(uc; v)− F (v) = 0

J ′u(uc;ρ)−G′c,u(uc; zc,ρ) = 0
(3.115)



56 ERROR ESTIMATION

and for the simplified model

as(us; v)− F (v) = 0

J ′u(us;ρ)−G′s,u(us; zs,ρ) = 0.
(3.116)

The error in the goal quantity becomes

J(em) = J(uc)− J(us) = L(uc, zc)− Ls(us, zs)

= L(uc, zc)− L(us, zs) + dL(us, zs).︸ ︷︷ ︸
= −d(us; zs)

(3.117)

The term L(uc, zc) is expanded in a Taylor series, and after some rearrangements this results in

L(uc, zc)− L(us, zs) =
1

2
L′(us, zs)(em, e∗m) +

1

2
L′(uc, zc)(em, e∗m)

+
1

2

∫ 1

0

L′′′(us + sem, zs + se∗m)(em, e
∗
m)(em, e

∗
m)(em, e

∗
m)ε(ε− 1) dε.︸ ︷︷ ︸

Res(3)

(3.118)

In the stationary point (uc, zc), the derivative of the Lagrangian L is zero, which leads to the fact,
that the term L′(uc, zc)(em, e∗m) vanishes in eq. (3.118) . The summand L′(us, zs)(em, e∗m) can be
split according to eq. (3.114) . In the stationary point (us, zs) for the simplified Lagrangian Ls, the
same regularity holds as used before

L′(us, zs)(em, e∗m) = L′s(us, zs)(em, e∗m) + dL′(us, zs)(em, e∗m)

= − d(us; e
∗
m)︸ ︷︷ ︸

d′z(us, zs)

− d′u(us; em, zs).︸ ︷︷ ︸
d′u(us, zs)

(3.119)

Summarizing these derivations results in the representation of the goal-oriented error as

J(em) = −d(us; zs)−
1

2

[
d(us; e

∗
m) + d′u(us; em, zs)−Res(3)

]
. (3.120)

It can be seen that except the first summand, all terms depend on the solution of the complex
model. For their determination the solution of the complex model and/or the knowledge of the
error term is necessary. In case the error is small, all terms in squared brackets are negligible,
as they are quadratic or cubic in (em, e

∗
m). Thus BRAACK / ERN [14] defines the approximated

estimator as

J(em) ≈ −d(us; zs). (3.121)
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This formulation is similar to the goal-oriented error representation for linear problems, see eq. (3.81)
. Alternatively eq. (3.120) can be written as

J(em) = −d(us; zc)−
1

2

[
∆R−Res(3)

]
, (3.122)

because the equality d′u(us; em, zs) = d(us; e
∗
m) + ∆R holds; for details see [48].

In KUNOW [33] the error estimator eq. (3.121) is applied to non-linear material models. The
comparison of the estimated and the real error shows the problems inherent in the proposed sim-
plification. The approximated error estimator is not able to capture non-linearities. As long as the
error increases linearly, the estimator equals the real error. If the relation between the local error,
here the displacement error, and the change in the material model, here change in the modulus of
elasticity, becomes non-linear, the estimator fails in predicting the behaviour correctly.

Estimates based on linearisation of the primal and dual problems

In LARSSON / RUNESSON [36] and STEIN ET AL. [67] the error in the goal quantity is determined
by linearisation of the underlying variational equation. The procedure continues the work on global
error estimates, which is described on p. 51 f. In [36] the dual problem is defined as∫ 1

0

aT (us + εem; zc,v)dε =

∫ 1

0

JT (us + εem,v)dε. (3.123)

After linearisation it can be formulated in tangent form as

aT (us; zc,v) = JT (us,v). (3.124)

The model chosen for the linearisation is in the optimal case the complex one. If this model is not
available or its evaluation is too complicated, then the use of an enhanced simplified model as+ is
recommended to determine the dual solution zc. The same result can be achieved following the
approach of [67].

Due to the introduced linearisations for the simple and the complex non-linear model, the def-
inition of the error in the goal quantity is simplified. For linear or linearised problems, Green’s
identity can be applied, see sec. 3.1.4 or eq. (3.104) . In [36] a slightly different definition of the
residual is chosen, which leads to an error definition as follows

J(em) = J(us)− J(uc) = as(us; zc)− ac(us; zc). (3.125)

Again, if the evaluation of ac is not possible, an enhanced simplified model as+ can be used. This
kind of error formulations provides the possibility to use the difference term, see eq. (3.73) , to
determine the error

J(em) = −d(us; zc). (3.126)
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Thus the error in the goal quantity can be determined by knowing the difference in the formulation
of both models, the solution of the simple model us and the dual solution zc, which can be found
easily due to linearisation.

In [67] a slightly different approach is presented. Also, based on Green’s identity, they define
the error directly as

J(em) = aT (us; em, zc). (3.127)

Thus, the same strategy already introduced for global errors, the posteriori equilibrium method
(PEM), see p. 51, can be used.

3.3 Selection of methods applied on kinematical models

On the previous pages, methods for estimating the discretisation and model errors in structural
mechanics have been introduced. The main focus is placed on the complete representation of
techniques regarding non-linear model problems and goal-oriented model error estimators. To the
knowledge of the author, other approaches have not been published. Within the scope of this thesis,
the presented methods should be applied to kinematical models to answer the question of whether
a geometrical non-linear calculation is necessary or not.

Model error estimations techniques developed for linear models cannot be used, as at least the
complex model describing the displacement-strain relationship is non-linear. For the determination
of the global model error, both methods for non-linear problems that are presented will be imple-
mented. The estimation technique based on the differences between the complex and the simplified
models is adapted to the kinematical models and tested. The second approach, based on linearisa-
tion of the differential equations, is applied with some changes. The general idea of linearisation
is maintained, but finally the error is not found using PEM. Here the problem arises whereby local
Neumann problems are introduced, which have the drawback, that rigid body modes need to be
eliminated before they can be solved. Therefore, an enhanced global problem is defined to test the
applicability of the basic idea. These investigations show the general effects of linearisation, so
this method is not tested a second time for goal-oriented errors.

No attempt is made to adopt the idea of ODEN / VEMAGANTI [45], [50] for estimating the local
errors based on parallelogram identity to non-linear problems, as the derivation of the applied
equations is not clearly documented and the efficiency indices achieved were not very promising.
The goal-oriented model error estimator derived from an optimisation problem is tested. For this
method, practical experience is only available to a minor degree. It is investigated whether the
limitation of the exact error equation to terms that can be determined based on the solution of the
simplyfied model, leads to meaningful results and to which extent the different terms contribute to
the final result.



4 Applicability of different model error estimation
strategies to geometrical non-linear problems

The application of the various error estimation strategies to kinematical models is the

content of this chapter. First, different error norms are studied to determine the most

significant one with respect to the total scalar value and the error distribution, and to

provide knowledge regarding the exact error. For estimation of the global error, three

methods are studied: a strategy based on the direct evaluation of the difference term

between the various models, the determination of the upper bound of the residuum

using Schwarz’ inequality and an estimate based on linearisation. Goal-oriented

error estimates can be found based on the model difference and in a round-about way

via the definition of an optimisation problem.

4.1 Summary kinematical models

Different error estimation techniques will be studied regarding their ability to estimate the model
error when using different kinematical descriptions. Before the different strategies introduced in
the previous chapter are applied to assess different kinematic descriptions, the underlying vari-
ational formulations are summarised based on chapter 2.1. The linear model is represented by

al(ul,v) =

∫
Ω

σ(ul) ε(v)dΩ = F (v), with ε(v) =
1

2

(
∇v +∇vT

)
, (4.1)

and the non-linear model by

anl(unl; v) =

∫
Ω

Snl(unl) Eu(v)dΩ = F (v)

with Eu(v) =
1

2

(
∇v +∇vT +∇uTnl∇v +∇vT∇unl

)
.

(4.2)

From the non-linear strain and stress tensors, the linear part can be separated:

Eu(v) = ε(v) + ∆E(v,unl), Snl(unl) = σ(unl) + ∆S(unl). (4.3)



60 GEOMETRICAL NON-LINEAR PROBLEMS

The difference d between both models (4.1) and (4.2) is defined as

d(unl,v) =

∫
Ω

σ(unl) ·∆E(unl,v) + ∆S(unl) · ε(v) + ∆S(unl) ·∆E(unl,v)dΩ. (4.4)

For all the examples discussed later, sufficiently small discretisation errors are assumed. Thus the
investigations can be limited to model errors.

After the error estimation techniques are adapted for the problem under investigation, they will
be applied for the model assessment of different structural systems. The same structural systems
will be used for this purpose, which makes it meaningful to introduce them once. The idea is to
test structures that are modelled using different element types with respect to their dimensions. In
addition, the examples can be distinguished by their sensitivity to being modelled using different
kinematical assumptions. Some structures are insensitive regarding geometrical non-linear effects;
for other systems, the choice of the appropriate kinematical model is crucial.

4.2 Investigated structural systems

Truss structures Two structural systems composed of truss elements are introduced for the fol-
lowing investigations: the Mises truss and a cantilever composed of truss elements. For the Mises
truss, fig. 4.1, only half of the system is modelled due to symmetry conditions. For the truss can-

L

H

P

Figure 4.1.: Geometry Mises truss: H=50 cm, L=100 cm, Modulus of elasticity E=21000 kN/cm2,
Cross section A=10 cm2, Load P=1500 kN

tilever, the structural system is shown in fig. 4.2. The deformation of the system considering a
linear and non-linear kinematic description is shown in fig. 4.3

2*P

Pa=200 cm

b=100 cm

Figure 4.2.: Geometry truss cantilever: Modulus of elasticity E=21000 kN/cm2, Cross section
A=10 cm2, Load P=500 kN
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Figure 4.3.: Displacement truss cantilever: geometrical linear (black) and non-linear (red) solution

Simple supported beam Basically the same structural system is investigated using different
loading conditions. A simple supported beam is first loaded in the mid-span perpendicular to its
longitudinal axis with P=3000 kN, see fig. 4.4 in green colour. Under this loading condition, the
structural response is quite insensitive to the kinematical description, see fig. 4.5. In contrast, in
the second example the structure is loaded in a way that makes a non-linear kinematic description
necessary, see fig. 4.6 in red colour. The applied load can be characterised as compression force
and it has to be mentioned, that the shape of the beam is slightly changed. To prevent the structure
from becoming a classic Euler beam, it has a sinusoidal curvature, indicated by the dashed line in
the figure, with an imperfection in the middle of the beam of L/400. Bernoulli beam elements are
used to model both structures. Here the non-linearity is only incorporated in the axial deformation,
thus the formulation of the model error is identical to the truss, see sec. A.2.2.

2

P=3000 kN

1
P=4030 kN

Figure 4.4.: Geometry of the simple supported beam: Length L=2 m, Cross section A=0.1x0.1 m,
Modulus of elasticity E=2∗108 kN/m2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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−0.2
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0

Figure 4.5.: Displacement bending beam: geometrical linear (black) and non-linear (red) solution
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Figure 4.6.: Displacement Euler beam: geometrical linear (black) and non-linear (red) solution

Structures composed of plane elements Both structures, see fig. 4.7 and 4.8, are modelled
with bilinear plane elements for plain strain conditions. This element type is quite sensitive re-
garding locking effects and element distortion; a fine discretisation is used to prevent these effects.
Convergence studies have proven that the mesh is sufficiently fine. With the continuously loaded
wall structure, a system that is insensitive to geometrical non-linearities is introduced. In contrast
the cantilever response is substaintially influenced by this phenomena, as loading effects increase
significantly due to deformation, see fig. 4.9(b).

15.0 m

4.0 m

Figure 4.7.: Wall structure: Element size=0.25x0.25 m, Thickness t=0.1 m, Modulus of elasticity
E=3*107 kN/m2, Poisson’s ratio η=0.2

1.0 m

0.2 m

P

Figure 4.8.: Cantilever: Element size=0.02x0.02 m, Thickness t=0.1 m, Modulus of elasticity
E=4.4*107 kN/m2, Poisson’s ratio η=0.2, Force P=2000 kN
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(b) Cantilever

Figure 4.9.: Displacement 2D-structures for the geometrical linear (black) and non-linear (red)
solution

4.3 Investigation of possible error norms

All structural systems presented in the previous section, are chosen in a way that linear as well as
the non-linear variational formulations, and therewith the simple and complex kinematical models,
can be evaluated within a reasonable time span. So the actual model error is known and can be
used to judge the quality of the different error estimation techniques. Possible error measures are,
see e.g. [64]:

Energy norm based on u η2
E,u = ‖uc − us‖2

E

Energy norm based on σ η2
E,σ = ‖σc − σs‖2

E

Displacement error in L2-norm ηL2 = ‖uc − us‖L2

(4.5)

The goal of this preliminary study is to investigate the informative value of the different error
measures. Besides this, additional questions should be answered:
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• Is it meaningful to standardise the error norms? The displacement error in the L2-norm might
be scaled by ‖us‖L2 , and the error in the energy norm based on the linear displacements
‖us‖E .

• For the calculation of the error in the energy norm, either the linear variational al or the
non-linear variational form anl could be used. Does the result differ significantly?

• What informative value does the element-wise distribution of the error provide?

For the different structural systems, the various error formulations are presented in table 4.1. One
needs to be aware that all error terms are dependent on the discretisation. They converge with an
increasing element number to the exact value, see [9, p. 285].

Table 4.1.: Exact error representations - different structural systems
Mises truss Truss Bending Euler Wall Cantilever

cantilever beam beam

ηL 0.47 13.1 0.59 3.21 0.47 0.83
ηL/‖us‖L2 0.12 0.16 0.15 46.4 0.11 0.27

η2
E,u(al) 81.5 1.8∗104 1.7∗107 8.8∗106 2.8∗105 1.1∗107

η2
E,u(al)/‖us‖2

E 0.01 0.57 18.5 534.9 0.015 17.5
η2
E,u(anl) 80.6 1.7∗104 1.7∗107 2.9∗105 2.7∗105 9.0∗106

η2
E,u(anl)/‖us‖2

E 0.01 0.54 18.5 17.3 0.015 14.3

η2
E,σ 17 2664 1.3∗10−6 5.9∗105 1.0∗105 1.4∗105

η2
E,σ/‖us‖2

E 0.003 0.09 0 35.5 0.006 0.08

The following observations can be made:

• There is no significant influence whether al or anl is used to determine ηE,u. Hence the
classical energy norm, eq. (A.6) , is used.

• The interpretation of the different norms is better when they are standardised.

• For the beam elements, only the energy norm based on the stresses, η2
E,σ, and its standard-

ised value provide meaningful information. The energy norm based on the displacement
difference does not lead to a small error for the bending beam, as expected.

General advice as to which norm to choose can hardly be given. For the structures composed of
beam and plane elements, there is always one candidate insensitive to the kinematic description and
one that is sensitive. These effects are well captured by ηL/‖us‖L2 . Concerning the energy norm,
differences can be monitored. For the plane elements, the energy norm based on the displacement
difference captures the error quite well, whereas the interpretation of η2

E,σ is difficult. The contrary
behaviour can be observed for the beam structures. In this context, it needs to be mentioned that the
representation based on the standardised value might be confusing. A value of 0.08 for η2

E,σ/‖us‖2
E
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of the cantilever means that the error equals 8% of the linear energy. Whether this is considered as
a large value depends on the definition of the tolerance value for model adaptivity.

To get more insight into the problem, the error distribution for the different norms and problems
are studied, see figures 4.10 to 4.13. As a reference, the differences in the energy based on the
linear and non-linear variational formulations are chosen. It can be seen that for all examples the
error in the energy norm based on stress η2

E,σ leads to a more reasonable distribution than the error
in the energy norm based on displacements η2

E,u. The only exception is the bending beam. An
explanation for the un-symmetric distribution might be the fact, that the element-wise values are
approximately zero and numerical errors occur.
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(d) Displacement error in L2-norm ηL

Figure 4.10.: Euler beam: Distribution of global error for different norms

The conclusions that can be drawn from this investigation are:

• For the case where the serviceability of a structure is investigated, the L2-norm error in the
displacements might be preferred.

• The error in the energy norm based on stresses leads to the most meaningful results. This
conclusion is assured by the analysis of STEIN / OHNIMUS [64]. It can be used to judge
the ability of a model to reproduce the correct stress and strain distribution and is therefore
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(c) Error energy norm based on stress η2
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Figure 4.11.: Bending beam: Distribution of global error for different norms

the preferred method when the ultimate limit state of a structure is investigated. An ex-
planation for this observation can be found in the underlying mechanical formulation. The
energy norm based on stresses considers, besides the different displacement solutions, also
the different stress and strain definitions inherent in the geometrical linear and non-linear
formulations. Thus, more meaningful results are achieved.
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Figure 4.12.: Wall structure: Distribution of global error for different norms
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(b) Error energy norm based on displacements η2
E,u
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(c) Error energy norm based on stress η2
E,σ
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Figure 4.13.: Cantilever: Distribution of global error for different norms
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4.4 Global model error

4.4.1 Direct evaluation of the difference term d

General idea

Studying the descriptions of the variational formulations based on the different kinematical model,
the question arises whether a direct evaluation of the difference term d(unl,v), eq. (4.4) would
lead to sufficiently exact information concerning the model error and its distribution. In this context
the following questions should be answered:

• Can the error term d(u,v) be interpreted easily? Which values can be used as reference
values to compare the error term with?

• Does the approximation of the model error based on the linear solution give reliable results?

• Are there differences between the application to different structural elements?

Concerning the first question, it seems to be reasonable to choose al and the term anl − al as
reference values for the global error. Is the error large compared to these values? This should
indicate, that a non-linear calculation is necessary.

Truss structures

The results for both truss structures introduced in sec. 4.2 are summarised in tables 4.2 and 4.3.

Table 4.2.: Results of global model error determined using difference term d for the Mises truss

Error measure d(unl,unl) −780 kNcm
d(ul,ul) −562 kNcm

Energy alin 5990 kNcm
anl 6688 kNcm

Table 4.3.: Results of global model error determined using difference term d for the truss cantilever
load P=500 kN load P=150 kN

Error measure d(unl,unl) −2.5 ∗ 104 kNcm −284 kNcm
d(ul,ul) 1.32 ∗ 104 kNcm −17.5 kNcm

Energy alin 3.1 ∗ 104 kNcm 2792 kNcm
anl 3.83 ∗ 104 kNcm 2976 kNcm

For the Mises truss, the difference term d(unl,unl) is a suitable measure for non-linearity of the
system. It equals 13 % of alin, which is quite close to the value of anl − al =12 % of alin. Its
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approximation deviates about 25 %, which is an acceptable range. Based on this information, one
can decide on the necessity of a geometrical non-linear calculation.

For the truss cantilever loaded with P=500 kN, it is noted that the d(unl,unl) equals 80 % of alin.
Compared to the difference anl − al =23 % of alin, this is much larger. An estimation based on
the linear displacements gives a wrong value with respect to magnitude and algebraic sign. For a
reduced load level, the informative value of the difference term improves. Its approximation has at
least the same algebraic sign, but still the magnitude is not correct.

Simple supported beams

Studying table 4.4 it becomes obvious that for both loading conditions an approximation of the
difference term using ulin does not lead to satisfying results. Additionally, it is difficult to assess
the measure d(unl,unl). Its value is one or two orders of magnitude larger than the linear and
non-linear energy terms. So it is hard to find a value for comparison that leads to a meaningful
interpretation of the calculated term. Especially for the example with the vertical load in the mid-
span, it is not reasonable that such a high d-value, indicating a large errors, occurs. As the example
is a pure bending problem, where geometrical non-linearities are of minor influence, one would
expect that a chosen error measure would indicate this with a scalar value close to one.

Table 4.4.: Results of global model error determined using difference term d for the simple sup-
ported beam with compression force and single load in mid-span

Compression force Bending force

Error measure d(unl,unl) −9.1 ∗ 106 Nm −1.7 ∗ 107 Nm
d(ul,ul) −355 Nm 3.3 ∗ 107 Nm

Energy alin 1.6 ∗ 104 Nm 9 ∗ 105 Nm
anl 3.3 ∗ 105 Nm 9 ∗ 105 Nm

Structures composed of plane elements

The calculation of the difference term d and its approximation gives meaningful results for the wall
structure, see table 4.5. The maximum difference between the exact and the approximated value
is 32 % and the element-wise distribution is equal, see fig. 4.14. The total value equals 12.3 % of
alin, which is also a reasonable compared to the difference anl(unl,v) − alin(ul,v) =11.9 % of
alin.
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Table 4.5.: Results of global model error determined using difference term d for the wall structure
with continuous loading and the cantilever

Wall structure Cantilever Cantilever, pure bending

Error measure d(unl,unl) −2.2 ∗ 106 Nm −1.1 ∗ 107 Nm −2.1 ∗ 106 Nm
d(ul,ul) −1.5 ∗ 106 Nm 1.1 ∗ 107 Nm 6.3 ∗ 106 Nm

Energy alin 1.8 ∗ 107 Nm 6.3 ∗ 105 Nm 4.7 ∗ 105 Nm
anl 2.0 ∗ 107 Nm 8.2 ∗ 105 Nm 4.2 ∗ 105 Nm

Applied on the cantilever, the simplified approach using the linear deformations is not success-
ful. When compared with the exact values, the difference is far too great. This holds for the sum
of all elements as well as the element-wise distribution, see fig. 4.15. Even if it is expected that a
global model measure reaches a large value due to the non-linear effects incorporated in that exam-
ple, a value two orders of magnitude larger than the deformation energy can hardly be interpreted.
In order to ensure that the bad quality of the results for the cantilever was not due to singulari-
ties caused by using the point loading, the structure was loaded using distributed forces, too. The
evaluation of the exact and approximated difference terms did not show any improvement.

Additionally, the cantilever was investigated as a pure bending problem, which means without
any horizontal force. The displacements as well as the deformation energy differ only slightly
between linear and non-linear solutions. The same problems can be studied as with the beam
loaded in its mid-span, see tab. 4.5 last column. Even if the phenomenon of geometrical non-
linearity does not affect the solution, the introduced error measure in terms of d(unl,unl) indicates
a large error, if the problem is solved linearly.
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Figure 4.14.: Distribution global error based on difference term d of the wall structure
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Figure 4.15.: Distribution global error based on difference term d of the Cantilever

Problems of the proposed method and possible extensions

The examples discussed in the previous sections show, that a direct evaluation of the d-term, eq.
(4.4) , does not provide a meaningful error estimate. A suitable reference value that the d-term can
be related to, could not be identified. Possible values like al(ul,ul) or the difference anl(unl,unl)−
al(ul,ul) have not proven to be suitable for all cases, as for most examples the term d(unl,unl)

differs one or even more orders of magnitude. An approximation of the difference term d using the
linear solution ul is not reliable.

Table 4.6.: Decomposition: virtual deformation energy
al(unl,unl) d(unl,unl) anl(unl,unl)

Mises truss 7468 kNcm −780 kNcm 6688 kNcm
Truss cantilever 63168 kNcm −25000 kNcm 38300 kNcm

Simple supported beam
compression force 9.46 ∗ 106 Nm −9.1 ∗ 106 Nm 3.3 ∗ 105 Nm
bending force 1.75 ∗ 107 Nm −1.67 ∗ 107 Nm 9 ∗ 105 Nm

Wall structure 2.2 ∗ 107 Nm −2.2 ∗ 106 Nm 2 ∗ 107 Nm
Cantilever 1.2 ∗ 107 Nm −1, 1 ∗ 107 Nm 8.2 ∗ 105 Nm

The term d(unl,v), (4.4), is a only a part of the virtual deformation energy. That a more or less
arbitrarily chosen term out of the total equilibrium formulation is extracted, might be the reason for
the problems concerning the interpretation. The total non-linear virtual energy consists of two parts
anl(unl,unl) = al(unl,unl) + d(unl,unl) following the definition above. In table 4.6 the results
for the decomposed virtual energy are shown explicitly. It becomes clear that only anl(unl,unl)
has a physical meaning. An assessment of the influence of geometrical non-linear effects based on
d(unl,unl) is thus not reasonable.
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The term d(unl,unl) itself does not provide the information needed. It can be shown, that the
difference between the linear and non-linear virtual energy consists of two parts. There is on one
hand the term d, but additionally there is a difference between al(unl,unl) and al(ul,ul). It is
possible to split the linear part of the energy due to the non-linear displacements as follows

alin(unl,unl) =

∫
Ω

Sl(unl) El(unl)dΩ

=

∫
Ω

(Sl(ul) + Sl(em)) (El(ul) + El(em))dΩ

=

∫
Ω

Sl(ul)El(ul)︸ ︷︷ ︸
al(ul,ul)

+ (Sl(ul)El(em) + Sl(em)El(ul) + Sl(em)El(em))︸ ︷︷ ︸
∆al(ul, em)

dΩ.

(4.6)

If d(unl,unl) would be extended by the term ∆al(ul, em), the result would be much more inter-
pretable, as it equals the difference between the linear and non-linear virtual deformation energy,

anl(unl,unl)− al(ul,ul) = d(unl,unl) + ∆al(ul, em). (4.7)

It is obvious that this procedure has a disadvantage. The initial goal of the introduction of the
concept of model errors was to approximate the error based on the linear solution. Looking at eq.
(4.6) it is obvious that ∆al(ul, em) cannot be calculated if unl is unknown. So besides the differ-
ence of d(unl,unl) and d(ul,ul), which could be recognised for the various structural systems, an
additional source for the unreliability of the prognosis comes into play. From table 4.7 and fig.
4.16 it becomes clear that already the neglect of ∆al(ul, em) has a strong influence.

Table 4.7.: Decomposition: virtual deformation energy II
d(unl,unl) ∆al(ul, em) anl(unl,unl)− al(ul,ul)

Simple supported beam
compression force −9.1 ∗ 106 Nm 9.44 ∗ 106 Nm 3.14 ∗ 105 Nm
bending force −1.67 ∗ 107 Nm 1.67 ∗ 107 Nm 0.0 Nm

Wall structure −2.2 ∗ 106 Nm 4.2 ∗ 106 Nm 2 ∗ 106 Nm
Cantilever −1.12 ∗ 107 Nm 1.14 ∗ 107 Nm 1.92 ∗ 105 Nm
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Figure 4.16.: Extension for model error formulation based on difference term d, Example: Simple
supported beam with compression force

4.4.2 Error estimation using a residuum-based on model difference

The method introduced by ODEN ET AL. [49], see also chapter 3.2.3, is applied to kinematical
models. Before the procedure can be tested regarding its applicability, the residuum R needs to
be determined according to eqs. (3.93) and (3.95). The difference between a model with linear
kinematic description and a model considering geometrical non-linear effects is

anl(unl; v)− al(ul,v)

=

∫
Ω

Snl(unl)Eu(v)dΩ−
∫
Ω

σ(ul)ε(v)dΩ

=

∫
Ω

σ(unl)ε(v) + σ(unl)∆E(unl,v) + ∆S(unl)ε(v)

+ ∆S(unl)∆E(unl,v)dΩ−
∫
Ω

σ(ul)ε(v)dΩ.

(4.8)

Additionally, the displacement solution of the non-linear formulations unl is partitioned into the
linear solution ul and an error term em. Introducing a partition in the first term of eq. (4.8) yields
to ∫

Ω

σ(unl)ε(v)dΩ =

∫
Ω

σ(ul)ε(v)dΩ +

∫
Ω

σ(em)ε(v)dΩ. (4.9)
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The term marked in blue cancels out with the last integral in eq. (4.8). The other terms of the first
integral in eq. (4.8) can be split into:∫

Ω

σ(unl)∆E(unl,v)dΩ

=

∫
Ω

[σ(ul) + σ(em)]
[
∇(ul + em)T∇v +∇vT∇(ul + em)

]
dΩ

=

∫
Ω

[σ(ul) + σ(em)]
[
∇uTl ∇v +∇eTm∇v +∇vT∇ul +∇vT∇em

]
dΩ

=

∫
Ω

σ(ul)∆E(ul,v)dΩ +

∫
Ω

σ(ul)∆E(em,v) + σ(em)∆E(unl,v)dΩ

(4.10)

∫
Ω

∆S(unl)ε(v)dΩ =

∫
Ω

C
[
∇uTnl∇unl

]
ε(v)dΩ

=

∫
Ω

C
[
∇(ul + em)T∇(ul + em)

]
ε(v)dΩ

=

∫
Ω

∆S(ul)ε(v)dΩ +

∫
Ω

C
[
∇eTm∇ul +∇uTl ∇em +∇eTm∇em

]
ε(v)dΩ

(4.11)

∫
Ω

∆S(unl)∆E(unl,v)dΩ =

∫
Ω

C(∇uTl ∇ul +∇eTm∇ul +∇uTl ∇em +∇eTm∇em)

·
[
∇uTl ∇v +∇eTm∇v +∇vT∇ul +∇vT∇em

]
dΩ

=

∫
Ω

∆S(ul)∆E(ul,v)dΩ + . . . .

(4.12)

All terms marked in grey in the previous equations can be summarised as

R(ul,v) = d(ul,v) =

∫
Ω

σ(ul)∆E(ul,v) + ∆S(ul)ε(v) + ∆S(ul)∆E(ul,v)dΩ. (4.13)

This is the only part of the difference defined in eq. (4.8) that can be determined without knowing
the solution of the non-linear calculation or the error em. Following the idea of ODEN ET AL.
[49], this term is defined as residuum and interpreted as an estimate of the error caused by using
the linear model.
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Applying Schwarz’s inequality results in

R(ul,v) ≤

√√√√∫
Ω

|σ(ul)∇uTl |2dΩ ‖∇v‖L2

+

√√√√∫
Ω

|∆S(ul)|2dΩ ‖∇v‖L2 +

√√√√∫
Ω

|∆S(ul)∇uTl |2dΩ ‖∇v‖L2 . (4.14)

Dividing by ‖∇v‖L2 leads to an upper bound for the error ηOden caused by using a linear kinemat-
ical model instead of a geometrical non-linear formulation.

‖E‖V ′ ≤ η =

√√√√∫
Ω

|σ(ul)∇uTl |2dΩ +

√√√√∫
Ω

|∆S(ul)|2dΩ +

√√√√∫
Ω

|∆S(ul)∇uTl |2dΩ (4.15)

The term ‖E‖V ′ describes, according to eq. (3.93) , the norm in the dual space V ′ of all summands
of eqs. (4.10) to (4.12) , which incorporate the error em. Additionally, a normed upper error bound
is defined according to eq. (3.97),

η =
η

ηadd
with ηadd =

√√√√∫
Ω

|C∇ul|2dΩ. (4.16)

The applicability of the proposed method is first tested on the beam structures. For the bending
beam, the error distribution is shown in fig. 4.17. It is comparable to the distribution of η2

E,u, shown
in fig. 4.11(b). It can be seen that the error is overestimated, which is confirmed by the scaled error
bound with η = 0.81. Compared to the bending beam, the global error of the Euler beam seems to
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Figure 4.17.: Global error η for the bending beam, Ση = 4.2 ∗ 108

be underestimated; see fig. 4.18 and consider the scaled measure η = 0.002. As shown in sec. 4.3,
one would expect the error to be larger, as this kind of structural system is quite sensitive to the
kinematical formulation.

For the structures composed of plane elements, the results are summarised in fig. 4.19 and
4.20. The scaled error bound η is 0.08 for the wall structure and 3.6 for the cantilever. Here the
relation of the real relation of the errors of these structures is well captured. The values that have
been achieved are comparable to the scaled energy norm based on the exact error η2

E,u/‖us‖2
E

summarised in tab. 4.1. On the other hand, it can be seen in comparison to fig. 4.12 that the error
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Figure 4.18.: Global error η for the Euler beam, Ση = 1.4 ∗ 106

distribution for the wall is not well represented. The distribution of the error for the cantilever
equals fig. 4.13(b).
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Figure 4.19.: Global error η for the wall structure, Ση = 2.9 ∗ 109
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Figure 4.20.: Global error η for the cantilever, Ση = 2.1 ∗ 1010

Summarising this investigation, the following conclusions can be drawn:

• The estimation technique for global errors of non-linear problems proposed in [47], does not
provide reliable information concerning the error when investigating different kinematical
descriptions. The distribution as well as scalar value corresponds only for some problems to
the expected behaviour.

• Scaling the error according to eq. (4.16) leads to results that can be interpreted better.

• Considering the results of sec. 4.4.1, it was to some extent expected that this procedure does
not lead to useful results. The more or less arbitrary choice of the residuum R(ul,v) from
the total difference of the linear and non-linear variational formulation eq. (4.8) neglects
significant parts of the exact error.
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4.4.3 Error estimation based on linearisation

Following the approach of STEIN ET AL. [67] and HUERTA ET AL. [24], it is investigated whether
a reliable error estimate can be found linearising the non-linear kinematic equation. According to
eq. (3.99) the residuum can be defined as

R(ul,v) = F (v)− anl(ul; v) ≈ aT,nl(ul; em,v). (4.17)

Applying the Finite Element method, this equals

R(ul,v) =
ne∑
e=1

êmkT (ûl)v̂. (4.18)

Thus, an energy norm equivalent can be defined as

‖em‖2
E,e =

ne∑
e=1

êmkT (ûl)êm. (4.19)

The error em or the solution of the geometrical non-linear problem unl needs to be estimated
to evaluate eq. (4.19) . STEIN ET AL. [67] applies for this purpose the posteriori equilibrium
method, which involves the analyses of local Neumann problems. Here the problem arise, that rigid
body modes need to be eliminated before these local problems can be solved. This is prevented
by solving an auxiliary global problem based on the linearised form of the complex model. An
approximation of the non-linear displacement is found by solving

KT (ûl) ûnl,app = p̂. (4.20)

Thus, the error em and the associated energy norm (4.19) can be approximated. The interpreta-
tion of the norm is optimised by scaling it with the energy norm based on the linear displacements.
The results for the different structural systems are summarised in tab. 4.8 and the error distribution
is shown in figs. 4.21. This error formulation is comparable to the definition of the error norm

Table 4.8.: Global error estimates based on linearisation - different structural systems
Bending beam Euler beam Wall Cantilever

‖em‖2
E,e 9.9*107 1.1*105 7.9*105 3.3*107

‖em‖2
E,e/‖ul‖2

E 110 6.6 0.04 53

based on the displacements ηE,u and therefore the results are compared to the related exact error
representation in tab. 4.1. For the plane elements, a good agreement can be monitored. For the
bending beam, the error estimate is even higher than the exact value of ηE,u and thus the real be-
haviour of this structure is not captured. Comparing the error distribution with exact figures 4.10
to 4.13, it is monitored that it equals ηE,u for all structures except the Euler beam.
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(a) Bending beam
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(d) Cantilever

Figure 4.21.: Distribution global model error estimate based on linearisation of geometrical non-
linear model

It can be summarised that the exact values for the error in the energy norm are partially well cap-
tured. Based on the observations in chap. 4.3, it is known that the representation of the error in the
energy norm based on stresses leads to more meaningful results. Therefore, ηE,σ is approximated
based on the results achieved using eq. (4.20) . The results are summarised in tab. 4.9 and it can be
seen that for most of the structures the error is overestimated. It attracts positive attention that for
structures that are rather insensitive regarding the kinematical model the error estimates are lower
compared to deformation sensitive examples. Nevertheless, also the plot of the error distribution,
fig. 4.22, confirms that the error estimate does not capture the real behaviour very well. Only for
the wall structure do the calculations lead to reasonable results. Here the difference in displace-
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ments between both models is small.1 This proves that the prerequisite of small errors, formulated
in [67] and [24], is crucial for the applicability of this method. Unfortunately, this can never be
known in advance.

Table 4.9.: Estimate of ηE,σ based on linearisation - different structural systems
Bending beam Euler beam Wall Cantilever

‖em‖2
E,σ,app 8.8*105 6.9*109 1.3*105 1.2*107

‖em‖2
E,σ,app/‖ul‖2

E 0.98 4.2*105 0.01 18.2
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Figure 4.22.: Distribution global model error estimate based on estimated stress difference

1At first sight, the bending beam fulfils the requirement of small displacement differences, too. But if the horizontal
displacements are studied, it is obvious that in the linear case they are zero, and in the non-linear case there are
movements that are infinitely large related to the linear one.
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4.5 Goal-oriented error estimates

4.5.1 Direct evaluation of the difference term d

In BRAACK / ERN [14] it is shown that for linear models, eq. (3.76) is valid. For the specific case
of the comparison of geometrical linear and non-linear models, this relationship can be applied, as
the simple model is a linear one

al(unl,v)− al(ul,v) = al(em,v) = −d(unl; v). (4.21)

This relationship allows for the definition of an estimator for the error in the goal quantity. The
test function v can be chosen arbitrarily and is set to Gl.

al(em,Gl) = −d(unl; Gl) (4.22)

In section 3.1.4 it is shown, eq. (3.40) , that for linear models, the dual problem is defined as

a(G,v) = J(v).

Using em as a test function and shifting the components due to symmetry conditions leads to

J(em) = al(Gl, em) = al(em,Gl). (4.23)

The final definition of the goal-oriented error becomes

J(em) = −d(unl,Gl). (4.24)

To get a solution without knowing the exact solution unl, the error is approximated as

J(em) ≈ −d(ul,Gl). (4.25)

To what extent this simplification leads to reasonable results will be investigated for the structural
systems introduced in chapter 4.2. Table 4.10 shows the result for the exact and approximated
errors in the goal quantity. The application of the simplified approach, eq. (4.25) , only leads to
reasonable results for the Mises truss and the wall structure. Here the exact and the approximated
errors deviate 20 %. For all other structural systems, the predictions based on the displacement
solution ul are of poor quality. The approximated error is not reliable at all. It can be seen that
no general rule can be established concerning the question about which condition eq. (4.25) is
applicable. The failure of the approximated error is neither related to a certain type of structural
element nor to the sensitivity of the structure regarding the kinematic formulation.
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Table 4.10.: Goal-oriented error estimate
uGoal,l uGoal,nl −d(unl,Gl) −d(ul,Gl) Difference

Mises truss
vertical displacement in the
loaded point

4.0 cm 4.5 cm 0.47 0.37 20 %

Truss cantilever
vertical displacement in the
loaded point, P=500 kN

50.6 cm 57.8 cm 7.2 -26 460 %

Truss cantilever
P=150 kN

15.2 cm 15.8 cm 0.7 -0.2 130 %

Bending beam
vertical displacement at L/2

3.0 cm 3.0 cm 0.0 11.1 ∞

Euler beam
vertical displacement at L/2

0.5 cm 24.5 cm 24.0 0.5 98 %

Wall structure
horizontal displacement upper
corner

-7.0 cm -8.2 cm -1.2 -0.9 17 %

Cantilever
vertical displacement of loaded
point

27 cm 30 cm 3.0 -490 ∞

4.5.2 Strategy derived from an optimisation problem

Finally, the method introduced in sec. 3.2.5, p. 55 is applied to the geometrical non-linear problem.
First the equations for the primal and dual problems are adapted. For the complex model, this
yields

anl(unl; v)− F (v) = 0

J ′u(unl;ρ)−G′nl,u(unl; znl,ρ) = 0,
(4.26)

and for the simplified model

al(ul; v)− F (v) = 0

J ′u(ul;ρ)−G′l,u(ul, zl,ρ) = 0.
(4.27)

The simple model, assuming a linear kinematic description, allows for a simplified description
of the dual problem. As we are dealing here with a linear variational formulation, the concepts
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introduced in sec. 3.1.4 are valid; Betti’s theorem can be applied. It leads to the same formulations
as the Gâteaux derivative of the linear variational formulation,2 which is

al(zl,ρ)− F (ρ) = 0. (4.28)

For the complex model, such simplification cannot be found, which makes it necessary to calculate
the derivatives. The derivative of the non-linear variational formulation Gnl is already introduced
in eq. (2.42) . Therefore, for the discretisation case we can write

G′nl,u(unl; znl,ρ) = ρ̂kT (ûnl) ẑnl. (4.29)

Adapting eq. (3.120) , which describes the error in the goal quantity, to the problem of geometrical
non-linearity, it becomes

J(em) = −d(ul; zl)−
1

2

[
d(ul; e

∗
m) + d′u(ul; em, zl)−Res(3)

]
. (4.30)

In [48] as well [14] it is assumed that certain terms in the error definition can be neglected if the
error is small, which leads to the simplification

J(em) ≈ −d(ul; zl). (4.31)

It is shown in sec. 4.5.1, that this assumption is not valid for the problem under investigation.
Therefore, the different structural system, the different terms in eq. (4.30) are evaluated. Ini-
tially point-wise displacements as goal quantities are studied, which leads to the simplification
J ′u(u;ρ) = 1.

The evaluation of the first two terms of eq. (4.30) is straightforward an found by using (4.4) .
To determine the third term, some derivations are necessary. Based on the known partition of the
difference term d

d(ul; zl) = anl(ul; zl)− al(ul, zl), (4.32)

the calculation of the Gâteaux derivative in the direction of em leads to

d′(ul; em, zl) = G′nl,u − al(em, zl). (4.33)

Approximating this expression using Finite Elements leads to the following matrix equation

d′u(ul; em, zl) =
ne∑
e=1

ẑl [kT (ûl)− ke] êm. (4.34)

2G′l,u(ul; zl,ρ) = a′l(ul,ρ) = lim
ε→0

1
ε [a′l(ul + εzl,ρ)− a′l(ul,ρ)] = al(zl,ρ)
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The last term of eq. (4.30) is not considered, as its evaluation is quite tedious and it does not
provide any further information. In tab. 4.11 the results are summarised. In comparison to the
previous section, where only the term d(ul,Gl) was considered as an error estimate, a significant
improvement of the estimate can be monitored if eq. (4.31) is extended

J(em)app = −d(ul; zl)−
1

2
[d(ul; e

∗
m) + d′u(ul; em, zl)] . (4.35)

The term ∆J represents the difference J(em)− J(em)app.

Table 4.11.: Goal-oriented error estimate derived using an optimisation problem; Influence of the
different terms of the error definition

d(ul, zl) d(ul, e
∗
m) d′u(ul; em, zl) J(em)app ∆J

Mises truss
vertical displacement in the
loaded point

-0.37 -0.096 -0.086 0.47 0 %

Truss cantilever
vertical displacement in the
loaded point, P=500 kN

26 -38.4 29.1 7.8 8 %

Truss cantilever
P=150 kN

0.24 -0.95 -0.87 0.67 4 %

Bending beam
vertical displacement at L/2

-11.1 11.1 11.1 0.0 0 %

Euler beam
vertical displacement at L/2

-0.5 -36.0 -35.8 36.4 52 %

Wall structure
horizontal displacement upper
corner

0.9 0.3 0.26 -1.18 2 %

Cantilever
vertical displacement of loaded
point

-490 601 461 -41 1470 %

Concluding this investigation, it becomes clear that any simplification of the formulation of the
goal-oriented error eq. (4.30) does not lead to correct information concerning the error. Just for the
Mises truss and the wall structures, the limitation to the first term of this equation results in a good
approximation. It is never known in advance, how a structural system will behave. Therefore, it
is discouraged from using eq. (4.31) or any other simplification of eq. (4.30) . Unfortunately, any
estimation of the goal-oriented error that is more accurate requires unl or information concerning
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the primal and dual error. As this information is generally not known in advance or can only be
approximated by introducing more uncertainties, this approach is abandoned.

4.6 Summary: Model error estimation for kinematical models

For a variety of structural system that differ with respect to dimension and sensitivity regarding
deformations, different model error estimation techniques have been tested concerning their ability
to reproduce the error caused by using a simple kinematical model instead of full geometrical non-
linear description. To find an appropriate reference value, the error estimates can be compared
with different error norms that have been investigated using the exact solutions of the geometrical
linear and non-linear models. It was found that the error in the energy norm based on the stress
differences lead to the most meaningful results with respect to the total scalar value and the error
distribution.

The investigated global error estimators did not provide reliable information concerning the
model error. One reason might be that most of them are based on other norms than the preferred
one. The only method that measured the error in the energy norm ηE,σ is based on linearisation of
the complex model. At least for small displacement differences, the estimate was close to the real
error, but for larger errors meaningful results could not be achieved. As the magnitude of the model
error is never known in advance, this method is unfortunately not applicable. Global error estimates
based on a direct evaluation of difference tern d(.; .) were not successful, as important information
is neglected. If the missing parts were included, the results would be better interpretable, but
information about the error itself has to be available. The third approach, a residuum described
based on the linear solution and bounded from above by applying the Cauchy-Schwarz inequality,
also showed severe problems in predicting the error correctly. To sum up, none of the investigated
global error estimation techniques led to reliable estimates for all the structural systems under
investigation.

For goal-oriented error estimates, it was possible to derive a procedure that directly refers to
the difference term d due to the linear structure of the simple model. Unfortunately, the definition
requires knowledge regarding the solution of the complex model. Using the simplified solution
instead leads to severe inaccuracies. The derivation of an estimator in a round-about way by
defining an optimisation problem, results in a formula containing several terms. In contrast to
recommendations made in former publication, it could be shown that none of these terms can be
neglected without introducing significant errors.

A prediction of the model error for non-linear models, either global or local, seems not to be
possible as long as only the solution of the simpler model is known. Only for some rare cases
where the model error is small can the applied estimator lead to meaningful results. Unfortunately
the magnitude of the error is hardly known in advance. It is assumed that the difficulty when deal-
ing with non-linear problems lies in prediction of the non-linear load-deflection path. Information
regarding its evolution can hardly be captured within an estimator. This assumption is supported
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by the preliminary studies, see p. 8, where it was shown that a prediction of the structural be-
haviour under high loads cannot be predicted by informations gathered from lower load level if the
difference of the loading is large.



5 Conclusions

“Was man mit Fehlerkontrolle nicht berechnen kann, darüber muss man schweigen.”

(cf. WITTGENSTEIN [70])

The goal of this thesis was the introduction of a method for model quality assessment for kinemat-
ical models. Within the scope of this research, the problem was limited to the question of whether
a geometrical linear or non-linear calculation is necessary. The underlying models are assigned
to the class of white box models, where the model hierarchy is known. The goal was to steer
the model choice using an adaptive process. The control parameter is the model error, which is
determined based on the results of the simpler model. For this purpose, first the theory of discreti-
sation and model error estimators is studied. Methods for the determination of model errors for
non-linear problems are adapted to the problem of kinematic models, and their applicability and
accuracy are studied, respectively.

The strategy that can be used to judge the model quality strongly depends on the kind of model
under investigation. Kinematical models are white box models, which means that they are derived
analytically, based on physical laws. In this context, simple and more complex models deviate
with respect to certain phenomena, which are either included or neglected. Thus, a clear model
hierarchy can be established. In this context, the question does not arise about which model is
best. In fact, it needs to be investigated whether or not the additional effort of evaluating a complex
model leads to a significant improvement in the solution quality.

Generally, the decision about which model to use is made based on engineering experience.
To prevent incorrect decisions, an adaptive process steered by suitable error measures should be
established. Preliminary investigations were carried out to investigate the problem more deeply.
In a first approach, it was tested whether it is possible to approximate the deformation energy of
the non-linear model based on the linear solution. The second method applied the load in several
portions and tried to predict the final deformation based on an extrapolation of the results of the
first load steps. Both attempts did not lead to reliable results. An alternative had to be found.
Within the theory of model error estimation, which attracted notice in the beginning of the 1990s,
this question is addressed. The necessary condition for the application of this theory has to be
mentioned: “... a sequence of hierarchically reduced, i.e. simplified, mathematical models derived
from an appropriate master model is required for [...] model [...] adaptivity, controlled by the
model error [...].” [66, p. 105], is fulfilled.

Model error estimators are derived from the well-established theories for determination of dis-
cretisation errors. These techniques started to develop with the introduction of the Finite Element
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method. The goal is to estimate the error due to meshing and determine the optimal mesh for a
certain problem with respect to accuracy and computational effort. A priori estimates study the
convergence behaviour for a certain problem. A posteriori techniques provides estimates or upper
and lower error bounds. For linear problems, differences can be distinguished between residual-
based estimates, averaging-type estimates, and implicit/absolute error bounds, where auxiliary
problems are solved. For non-linear problems these techniques are adopted. After linearisation of
the underlying equations, the standard techniques can be used.

In engineering practise, the focus is often shifted towards errors in quantities of interest. Goal-
oriented error estimators are derived for such problems. If linear models are investigated, Betti’s

theorem can be used to determine a dual problem related to the local quantity. The error in the dual
problem is then used to scale the primal error. For non-linear models, an optimisation problem
needs to be introduced that provides a basis for the definition of the primal and dual problems.

Methods to estimate the model error are derived with the goal to steer an adaptive process within
a class of white box models. Of course, the most complex model would lead to the most accurate
result, at least as long as the stochastic character of the input parameters is neglected, but the
computational effort is much too large. This thesis provides a summary of the most important
publications in this field. Following the classification already introduced for discretisation errors,
one can distinguish between global and goal-oriented estimates for linear and non-linear problems.

For linear material models, the error due to homogenisation can be determined in the energy
norm based on the difference between both models under investigation. For dimensional adaptivity,
the posteriori equilibrium method (PEM) is introduced, which is an extension of implicit methods.
Here local Neumann problems are solved to find the error in the energy norm. For non-linear
problems, this approach can be applied without significant changes. The underlying equations are
linearised and an energy norm equivalent is defined. For non-linear material models, a residuum
based on the model difference is defined, which only depends on the solution of the simpler model.
Applying Cauchy-Schwarz inequality yields an upper error bound.

In the case of linear models, Betti’s theorem can again be applied to formulate a dual problem
in accordance with the goal quantity. The local error is assembled using a residual, determined
in a comparable manner to the global model error, and a second term, where the error of the
primal problem is weighted by the one of the dual problem. This additional term is estimated
using parallelogram identity, an approach already known from discretisation error estimates. For
non-linear problems, the approach of introducing a, optimisation problem is adapted. The error
in the goal quantity is assembled from several terms, which partially contain the unknown errors
of the primal and dual problems. Based on the assumption of small errors, these terms are often
neglected.

The applicability of various model error estimation techniques is investigated for the problem of
geometrical non-linearity. Various test structures are introduced for this purpose. They differ with
respect to dimension and their sensitivity regarding the chosen kinematical formulation. Before
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the error estimation strategies are tested, suitable error measures are investigated. The goal was to
identify suitable errors norms and reference values for the error estimates. The energy norm based
on displacement and stress differences as well as the L2-norm of the displacements are investigated
with respect to their total scalar value and their distribution. As a reference value, the difference of
the linear and non-linear deformation energy is chosen. Finally, the normalised value of the energy
norm based on stresses proved to be the most suitable measure.

First, the techniques for calculating the estimate for the global error are tested. Many of the
proposed methods are based on the term d defining the difference between the simple and complex
models. It is investigated whether the direct evaluation of this term leads to meaningful results. In
comparison with the previously determined exact error, an agreement could be monitored only for
some examples. In most of the cases, this approach failed to predict the scalar value and the error
distribution correctly. The reason for this failure is that the term d does not capture the total energy
difference between the linear and non-linear solutions. A possible extension is not meaningful, as
it requires knowledge about the error in the displacement itself.

The second approach tested to determine the global model error was first introduced for material
models and comprises the definition of a residual based on the model difference. It is important
to note that the residual is limited to terms that can be determined knowing only the solution of
the linear model. The upper error bound, found by applying Cauchy-Schwarz inequality, becomes
more interpretable after scaling. The information provided by this estimate is not reliable. Even if
the total scalar value is meaningful for some examples, the error distribution is misleading. Finally,
a method is applied that is based on the linearisation of the geometrical non-linear model. Here,
meaningful results could only be achieved in the case of small model errors; a prerequisite, whose
compliance cannot be guaranteed in advance.

For the determination of the goal-oriented model error, a significant simplification can be intro-
duced. The simple model for describing the kinematics is a linear one and Betti’s theorem can be
applied. Thus, the error in the goal quantity can be determined directly through an evaluation of
the difference term d using the non-linear solution of the primal problem and the linear solution of
the dual problem. An investigation of whether the primal solution of the linear model can be used
instead of the non-linear one did not lead to reliable results. Therefore the method based on the
formulation of an optimisation problem for defining the primal and the dual problems is tested. It
leads to an error definition based on several summands that partly depend on the unknown error of
the primal and dual solutions. It is shown that none of these terms can be neglected. Any simplifi-
cation based on the assumption of small errors provides erroneous information. As any estimation
of the unknown primal and dual errors would cause additional inaccuracies, this method is not
applicable.

The application of different error estimation techniques to judge the accuracy of a simplified
kinematical model does not prove successful. Without knowing the solution of the more complex
model and therewith the error in the displacement solution, a reliable prediction of the model
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error is hardly possible. Based on these results, the author assumes that this problem might also
occur for other non-linear models in case of larger errors. In contrast to linear models, non-linear
problems are mostly solved using an iterative procedure to find the equilibrium point. Therefore,
an approximation of the non-linear solution that is equitable to error estimation and based on the
results of the simplified model does not seem to be successful, as the neglected iterative solution
procedure can hardly be compensated. Any approximations of the exact error representation that
are made assuming small errors seem to be unreliable, as the magnitude of the error is unknown in
advance. Thus, for practical applications no methodology can be provided that allows an automatic
model adaption. The engineer needs to rely on his experience when choosing the kinematical
model or study the results of all available models to judge the system’s behaviour.



A Appendix

A.1 Mathematical background

Sobolev spaces and norms

The L2(Ω)-space is the most general space that can be defined in a functional analysis. It contains
all functions that can be Lebesgue integrated. The norm of a function in this space is defined as

‖u(x)‖L2 =

∫
Ω

u(x)2 dΩ

1/2

. (A.1)

If, in addition, a scalar product and a corresponding norm exist, the functional space L2(Ω) be-
comes a Hilbert space Hm(Ω). Here m ≥ 0 defines the number of weak derivatives that can be
determined. According to the order of m, the Hilbert-norms can be defined:

(‖v‖H0)2 =

∫
Ω

(
3∑
i=1

v2
i

)
dΩ, m = 0, (A.2)

(‖v‖H1)2 = (‖v‖H0)2 +

∫
Ω

(
3∑

i=1,j=1

(
∂vi
∂xj

)2
)
dΩ, m = 1. (A.3)

The Hilbert seminorm |.|Hm only considers the integration over the mth derivative and skips the
summation over all m. For more details see e.g. BRAESS [15].

In error estimation, also the control of the error in the displacements is of interest. The L2 norm
of the displacement vector is defined as

‖u‖L2 =
√

(u,u) =

∫
Ω

u ·u dΩ

1/2

. (A.4)

It can be shown, see e.g. [15, p. 87], that:

‖u‖H0 = ‖u‖L2 . (A.5)
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Another important norm for error estimation in structural mechanics is the energy norm

‖v‖E =
√
a(v,v) =

∫
Ω

σ(v) · ε(v) dΩ

1/2

. (A.6)

For a discretised domain, the energy norm can be evaluated elementwise and summed up.

Galerkin orthogonality

The Finite Element method involves the projection of the exact solution u from the space V to the
space of ansatz functions Vh. The Galerkin orthogonality

a(eh,vh) = 0 (A.7)

states that the discretisation error eh is energy-orthogonal to the space of ansatz functions. From
this, the following properties can be deduced, see also figure A.1:

• The projected solution uh is shorter than the exact solution u. Therefore, the deformation
energy of the Finite Element solution is always smaller compared to the exact one, which
means the discretised system behaves more stiffly.

• The Finite Element solution for a specific mesh is always the best possible solution within
this mesh, because the error eh is the shortest connection between V and Vh.

Vh

x

y

z

eh

u

uh

Figure A.1.: Galerkin orthogonality
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Cauchy-Schwarz inequality

For vectors, the Cauchy-Schwarz inequality states:

(x,y) ≤ (x,x) · (y,y) = ‖x‖2‖y‖2, (A.8)

where x and y are defined in a real vectorial space with the inner product (x,y).
The upper bound for an integral over two functions can be defined using Cauchy-Schwarz inequal-
ity as:∫

Ω

f(x) g(x) dΩ

2

≤
∫
Ω

f(x)2 dΩ

∫
Ω

g(x)2 dΩ. (A.9)

A.2 Mechanical background

A.2.1 Derivation of 2. Piola-Kirchhoff stress tensor

The basis for the derivation of the relationship between the Cauchy stress tensor and the 2nd

Piola-Kirchhoff stress tensor is the Nanson formula:

n da = detF (F−1)T N dA. (A.10)

It relates the area of a surface element in the initial configuration dA and the area of a surface
elemente in the actual configuration da. The vectors N and n denote the unit normal through
the surface in initial and actual configuration, respectively.1 The relationship of the stresses on a
surface and the forces dps acting on that surface are:

• in deformed/actual configuration: dps = σσσ n da,

• related to the initial/undeformed configuration it becomes: dps = P N dA, with the 1st

Piola-Kirchhoff stress tensor P.

Using Nanson formula the 1st Piola-Kirchhoff stress tensor can be written in terms of Cauchy

stresses as

P = detFσσσ (F−1)T (A.11)

To get a symetric tensor, eq. (A.11) is multiplied by F−1 and the 2nd Piola Kirchhoff stress tensor

S is defined as:

S = F−1 P = F−1 J σσσ (F−1)T (A.12)
1All quantities in the initial position are described using capital letters, whereas for the state after deformation

lowercase letters are used.
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A.2.2 Kinematic description truss and beam elements

Plane truss systems

X

Z

w1

u1

u2

w2

L
u′ = u2−u1

L

w′ = w2−w1

L

ε = u′

E = u′ + 1
2w
′2

δE = δu′ + 1
2 (w′ δw′ + δw′ w′)

Figure A.2.: Deformation of a truss elememt, Definition of strain measures

Based on strain definitions in fig. A.2, the formulas for the direct evaluation of the difference
term d becomes for the global error

d(unl,unl) = (u′nl ·E ·w′nlw′nl +
1

2
w′2nl ·E ·u′nl +

1

2
w′2nl ·E ·w′nlw′nl) ∗ A ∗ L, (A.13)

and for the goal-oriented error it can be specified as

d(unl,Gl) = (u′nl ·E ·w′nlw′dual +
1

2
w′2nl ·E ·u′dual +

1

2
w′2nl ·E ·w′nlw′dual) ∗ A ∗ L. (A.14)

Beam elements

For two-dimensional Bernoulli beam elements, the linear and non-linear internal energy can be
calculated as follows, whereas the same notation as in fig. A.2 is used.

alin =

noelem∑
e=1

(ε ∗ EA ∗ δε+ κ ∗ EI ∗ δκ) ∗ L (A.15)

anl =

noelem∑
e=1

(εnl ∗ EA ∗ δεnl + κ ∗ EI ∗ δκ) ∗ L

=

noelem∑
e=1

(u′ +
1

2
w′2) ∗ EA ∗ (δu′ +

1

2
(w′ δw′ + δw′w′)) + κ ∗ EI ∗ δκ) ∗ L

(A.16)

The term κ describes the curvature of the beam and is unembodied in fig. A.2. It is obvious that
the non-linearity is captured in the longitudinal strain and therefore the difference term d is defined
identically to eqs. (A.13) and (A.14) .
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