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sion mit ihm beeinflussten nachhaltig die Schwerpunkte meiner Arbeit. Weiterer Dank

i



ii DANKSAGUNG

geht an meine Freunde, die mir insbesondere in der Endphase der Promotion hilfreich zur
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Sehr stark werde ich meine langjährigen Kollegen und Freunde am Institut für Struk-

turmechanik vermissen. Ohne Benjamin, Torsten, und Ingmar wäre die Zeit nicht annä-
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Abstract

Numerical models and their combination with advanced solution strategies are standard

tools for many engineering disciplines to design or redesign structures and to optimize

designs with the purpose to improve specific requirements. As the successful application

of numerical models depends on their suitability to represent the behavior related to the

intended use, they should be validated by experimentally obtained results. If the discrep-

ancy between numerically derived and experimentally obtained results is not acceptable,

a model revision or a revision of the experiment need to be considered. Model revision

is divided into two classes, the model updating and the basic revision of the numerical

model.

The presented thesis is related to a special branch of model updating, the vibration-

based model updating. Vibration-based model updating is a tool to improve the corre-

lation of the numerical model by adjusting uncertain model input parameters by means

of results extracted from vibration tests. Evidently, uncertainties related to the experi-

ment, the numerical model, or the applied numerical solving strategies can influence the

correctness of the identified model input parameters. The reduction of uncertainties for

two critical problems and the quantification of uncertainties related to the investigation

of several nominally identical structures are the main emphases of this thesis.

First, the reduction of uncertainties by optimizing reference sensor positions is con-

sidered. The presented approach relies on predicted power spectral amplitudes and an

initial finite element model as a basis to define the assessment criterion for predefined

sensor positions. In combination with geometry-based design variables, which represent

the sensor positions, genetic and particle swarm optimization algorithms are applied. The

applicability of the proposed approach is demonstrated on a numerical benchmark study

of a simply supported beam and a case study of a real test specimen. Furthermore, the

theory of determining the predicted power spectral amplitudes is validated with results

from vibration tests.

Second, the possibility to reduce uncertainties related to an inappropriate assignment

for numerically derived and experimentally obtained modes is investigated. In the context

of vibration-based model updating, the correct pairing is essential. The most common

criterion for indicating corresponding mode shapes is the modal assurance criterion. Un-

iii



iv ABSTRACT

fortunately, this criterion fails in certain cases and is not reliable for automatic approaches.

Hence, an alternative criterion, the energy-based modal assurance criterion, is proposed.

This criterion combines the mathematical characteristic of orthogonality with the phys-

ical properties of the structure by modal strain energies. A numerical example and a

case study with experimental data are presented to show the advantages of the proposed

energy-based modal assurance criterion in comparison to the traditional modal assurance

criterion.

Third, the application of optimization strategies combined with information theory

based objective functions is analyzed for the purpose of stochastic model updating. This

approach serves as an alternative to the common sensitivity-based stochastic model up-

dating strategies. Their success depends strongly on the defined initial model input pa-

rameters. In contrast, approaches based on optimization strategies can be more flexible.

It can be demonstrated, that the investigated nature inspired optimization strategies in

combination with Bhattacharyya distance and Kullback-Leibler divergence are appropri-

ate. The obtained accuracies and the respective computational effort are comparable with

sensitivity-based stochastic model updating strategies.

The application of model updating procedures to improve the quality and suitability

of a numerical model is always related to additional costs. The presented innovative

approaches will contribute to reduce and quantify uncertainties within a vibration-based

model updating process. Therefore, the increased benefit can compensate the additional

effort, which is necessary to apply model updating procedures.



Kurzfassung

Eine typische Anwendung von numerischen Modellen und den damit verbundenen nu-

merischen Lösungsstrategien ist das Entwerfen oder Ertüchtigen von Strukturen und das

Optimieren von Entwürfen zur Verbesserung spezifischer Eigenschaften. Der erfolgreiche

Einsatz von numerischen Modellen ist abhängig von der Eignung des Modells bezüglich

der vorgesehenen Anwendung. Deshalb ist eine Validierung mit experimentellen Ergebnis-

sen sinnvoll. Zeigt die Validierung inakzeptable Unterschiede zwischen den Ergebnissen

des numerischen Modells und des Experiments, sollte das numerische Modell oder das

experimentelle Vorgehen verbessert werden. Für die Modellverbesserung gibt es zwei ver-

schiedene Möglichkeiten, zum einen die Kalibrierung des Modells und zum anderen die

grundsätzliche Änderung von Modellannahmen.

Die vorliegende Dissertation befasst sich mit der Kalibrierung von numerischen Mo-

dellen auf der Grundlage von Schwingungsversuchen. Modellkalibrierung ist eine Methode

zur Verbesserung der Korrelation zwischen einem numerischen Modell und einer realen

Struktur durch Anpassung von Modelleingangsparametern unter Verwendung von expe-

rimentell ermittelten Daten. Unsicherheiten bezüglich des numerischen Modells, des Ex-

periments und der angewandten numerischen Lösungsstrategie beeinflussen entscheidend

die erzielbare Qualität der identifizierten Modelleingangsparameter. Die Schwerpunkte

dieser Dissertation sind die Reduzierung von Unsicherheiten für zwei kritische Probleme

und die Quantifizierung von Unsicherheiten extrahiert aus Experimenten nominal gleicher

Strukturen.

Der erste Schwerpunkt beschäftigt sich mit der Reduzierung von Unsicherheiten durch

die Optimierung von Referenzsensorpositionen. Das Bewertungskriterium für vordefinierte

Sensorpositionen basiert auf einer theoretischen Abschätzung von Amplituden der Spek-

traldichtefunktion und einem dazugehörigen Finite Elemente Modell. Die Bestimmung

der optimalen Konfiguration erfolgt durch eine Anwendung von Optimierungsmethoden

basierend auf genetischen Algorithmen und Schwarmintelligenzen. Die Anwendbarkeit

dieser Methoden wurde anhand einer numerischen Studie an einem einfach gelagerten

Balken und einem real existierenden komplexen Versuchskörper nachgewiesen. Mit Hilfe

einer experimentellen Untersuchung wird die Abschätzung der statistischen Eigenschaften

der Antwortspektraldichtefunktionen an diesem Versuchskörper validiert.
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vi KURZFASSUNG

Im zweiten Schwerpunkt konzentrieren sich die Untersuchungen auf die Reduzierung

von Unsicherheiten, hervorgerufen durch ungeeignete Kriterien zur Eigenschwingform-

zuordnung. Diese Zuordnung ist entscheidend für Modellkalibrierungen basierend auf

Schwingungsversuchen. Das am Häufigsten verwendete Kriterium zur Zuordnung ist das

modal assurance criterion. In manchen Anwendungsfällen ist dieses Kriterium jedoch

kein zuverlässiger Indikator. Das entwickelte alternative Kriterium, das energy-based

modal assurance criterion, kombiniert das mathematische Merkmal der Orthogonalität

mit den physikalischen Eigenschaften der untersuchten Struktur mit Hilfe von modalen

Formänderungsarbeiten. Ein numerisches Beispiel und eine Sensitivitätsstudie mit exper-

imentellen Daten zeigen die Vorteile des vorgeschlagenen energiebasierten Kriteriums im

Vergleich zum traditionellen modal assurance criterion.

Die Anwendung von Optimierungsstrategien auf stochastische Modellkalibrierungsver-

fahren wird im dritten Schwerpunkt analysiert. Dabei werden Verschiedenheitsmaße der

Informationstheorie zur Definition von Zielfunktionen herangezogen. Dieser Ansatz stellt

eine Alternative zu herkömmlichen Verfahren dar, welche auf gradientenbasierten Sensi-

tivitätsmatrizen zwischen Eingangs- und Ausgangsgrößen beruhen. Deren erfolgreicher

Einsatz ist abhängig von den Anfangswerten der Eingangsgrößen, wobei die vorgeschlage-

nen Optimierungsstrategien weniger störanfällig sind. Der Bhattacharyya Abstand und

die Kullback-Leibler Divergenz als Zielfunktion, kombiniert mit stochastischen Optimie-

rungsverfahren, erwiesen sich als geeignet. Bei vergleichbarem Rechenaufwand konnten

ähnliche Genauigkeiten wie bei den Modellkalibrierungsverfahren, die auf Sensitivitäts-

matrizen basieren, erzielt werden.

Die Anwendung von Modellkalibrierungsverfahren zur Verbesserung der Eignung eines

numerischen Modells für einen bestimmten Zweck ist mit einem Mehraufwand verbun-

den. Die präsentierten innovativen Verfahren tragen zu einer Reduzierung und Quan-

tifizierung von Unsicherheiten innerhalb eines Modellkalibrierungsprozesses basierend auf

Schwingungsversuchen bei. Mit dem zusätzlich generierten Nutzen kann der Mehrauf-

wand, der für eine Modellkalibrierung notwendig ist, nachvollziehbar begründet werden.
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Introduction

1.1 Motivation

The typical challenge in civil, mechanical, and aerospace engineering’s practice is the

design or redesign of structures (e.g., bridge, automobile, airplane) by minimizing total

costs, while ensuring all requirements on performance, safety, and reliability. In addition,

structures become more and more complex, new designs will be created, and innovative

materials will be implemented, about which little experience of their behavior is avail-

able. Hence, the application of numerical models in combination with advanced solving

strategies is standard in current practice. The systematic optimization of designs with

the purpose to improve specific requirements (e.g., robustness, weight reduction, reduc-

tion of costs, or increase of comfort) is a wide field of applied and fundamental research.

Consequently, numerical models are very important for design optimization and predic-

tive calculations. A numerical model is always based on certain simplifications, and will

usually not be able to consider all physical phenomena, like structural resistance, heat

transfer, or electro magnetic behaviors at the same time. Therefore, each numerical model

is strongly related to its intended use, which is in general a predictive calculation of a

certain physical behavior.

The successful application of numerical models depends on the quality or suitability

of the model itself. The suitability of the model covers questions regarding the possibility

to represent a respective required physical behavior or the ability of the model to con-

verge at least asymptotically to the true solution, assuming that all model parameters

are correct. The choice of constitutive law, numerical method for time integration, and

applied simplifications need to be approved by experience or validated by experiments,

for example.

Once the numerical model has been established and its basic suitability has been con-

firmed at least based on engineering experience, it is required to define model specific

input parameters. Such input parameters are, for instance, material parameters (e.g.,

1
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Young’s modulus), geometry parameters (e.g., width of plates), loading conditions (e.g.,

size and direction of excitation loads), or boundary conditions. Typically, the specific in-

put parameter values are uncertain due to the involved manufacturing, construction, and

production processes, but they can be described by random variables. For simplifications,

codes and standards can provide typical distributions or deterministic values associated

with specific safety concepts. However, the confidence on predictive results derived by the

numerical model relies on the chosen numerical model and its usually uncertain model

input parameters. If the confidence in the chosen numerical model or the defined model

input parameters is not sufficient, validation or calibration experiments need to be con-

ducted, respectively. A model revision or revision of the experiment needs to be applied,

if the discrepancy between numerically derived and experimentally obtained results is not

acceptable. The numerical model revision can be divided into two classes: the model

updating (i.e., adjustment of model input parameters) and the basic revision of the nu-

merical model (i.e., change of basic assumptions to improve the suitability of the model).

Obviously, also experimentally obtained results can be effected by inaccurate and unsuit-

able experiments. Therefore, also a revision of the experiment needs to be considered.

A general concept of model verification and validation is presented in [ASME V&V 10

2006].

In this PhD thesis, the reduction and quantification of uncertainties in vibration-based

model updating is the main emphasis. Model updating is a method to improve the cor-

relation between the numerical model and a realistic structure using measured data by

adjusting previously selected uncertain model input parameters (e.g., [Steenackers et al.

2006]). If the numerical model is a finite element model, the term finite element model

updating is very common ([Friswell et al. 1995]). Vibration-based model updating is a

type of model updating, in which the measured data is obtained by vibration experiments.

The measured quantities are typically, time histories of accelerations, velocities, displace-

ments, or strains. Based on these time histories, features like natural frequencies, modal

damping ratios, mode shapes, or frequency response functions can be derived. Suitable

modal parameter identification methods are stochastic subspace identification (SSI) (e.g.,

[Peeters et al. 1999], [Peeters et al. 2001]), enhanced frequency domain decomposition

(EFDD) (e.g., [Brincker et al. 2000]), or poly-reference least squares complex frequency

domain (p-LSCF) algorithm (e.g., [Cauberghe 2004]).

Assuming that the numerical model is suitable to cover the required principle physical

behavior, the reliability of the identified model input parameters depends on the accu-

racy of the experimentally obtained features and numerically derived model responses.

Hence, it is important to determine and reduce uncertainties in the experiments and the

numerical calculation. Numerical uncertainties are, for instance, unreliable mode pair-

ing strategies, numerical noise, inaccuracies due to ill-conditioned matrices, convergence

problems, or discretization. In general, numerical uncertainties need to be reduced to
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a minimum and should be determined or approximated by error estimators or repeated

numerical calculations. Uncertainties related to experiments are, for example, electronic

noise generated by the measurement instruments, sensitivity of sensor locations with

respect to the kind of measured quantity, random or systematic errors introduced by ex-

ternal excitation sources, unrecognized additional masses of the instrumentation, or signal

processing errors. Such uncertainties are difficult to separate and to quantify. Frequently,

they can only be determined by repeating several identical experiments with one identical

structure under identical environmental conditions. Experimental campaigns to quantify

experimental uncertainties were described in [Adhikari et al. 2009], [Govers et al. 2010b],

and [Govers et al. 2006]. Based on assumptions about these uncertainties, the most likely

set of input parameters can be identified and the model accuracy of the input parameters

can be expressed, for example, by confidence intervals or a certain variance. Obviously,

the obtained variation cannot be interpreted as a true physical variation of the identified

model input parameters.

Of course, assuming an experimental campaign investigating several nominally iden-

tical test structures or one test structure under different experimental conditions (e.g.,

uncertain loading conditions), a variation of the experimental results can be expressed as

a physical variation of model input parameters. If the variation of the identified model

input parameters can be interpreted as a property of a real physical quantity, the model

updating is denoted by stochastic model updating. In the case that the variations of

model input parameters are not determined, uncertainties are not considered in general,

or variations cannot be directly related to a physical variation of the identified model

parameters, the model updating strategy is a deterministic model updating.

Another very common possibility to distinguish uncertainties is the separation in

aleatory (i.e., inherent, irreducible) and epistemic (i.e., reducible) uncertainties (e.g.,

[ASME V&V 10 2006]). However, this separation is not appropriate to distinguish deter-

ministic and stochastic model updating.

1.2 Framework for model updating

Model updating algorithms are numerical tools to calibrate or to adjust uncertain model

input parameters to increase the correlation between numerically derived model responses

and experimentally obtained features. Several investigations and calculations are required

to provide all necessary information for model updating, such as, number and kind of

input parameters, the experimentally obtained features, or the initial numerical model.

Hence, a general framework for updating a numerical model is presented in the current

section. The framework does not only link the different analyses, it also provides the

main terminology used in this thesis. This is important, as the main methods have been

developed independently by many researchers within the last 20 years. A commonly
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⋆

Figure 1.1: General overview of the framework for model verification and model validation

[Schwer 2006]. The symbol ⋆ indicates the link to the framework for model updating.

agreed terminology does not exist.

The American society of mechanical engineers (ASME) is one organization, who tried

to unify the concept of model verification, validation, and updating. An overview of

this guideline is given in Figure 1.1. For an exhaustive description, it is referred to the

guideline [ASME V&V 10 2006] itself. Unfortunately, the current guide for verification and

validation in computational solid mechanics [ASME V&V 10 2006] is rather concentrated

on verification and validation of models than on model updating and necessary pretest

analysis.

The framework for model updating, presented in Figure 1.2, can be considered as

an extension to the general concept given in [ASME V&V 10 2006]. Assuming the dis-

crepancy between numerical model outputs and validation experiment outputs cannot be
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Figure 1.2: General overview of the framework for model updating.

accepted and a numerical model revision in form of adjusting model input parameters

is decided, the framework for model updating can be applied. The star in Figure 1.1

indicates the position, where the framework for model updating can be included into the

framework for model verification and validation.

General concept: At the beginning of the framework, a general concept has to be

prepared, which includes some conditions for the planned model updating procedure.

For example, time schedule, accessibility of the structure on site, a preselection of most

uncertain model input parameters, and a preselection of possible features to be extracted

from experimental results are important. Of course, the size of uncertainty has to be

estimated, for instance, by defining some reasonable upper and lower bounds for the

uncertain model input parameters.

Initial model: The initial numerical model was already designed and verified in previ-

ous stages of the model verification and validation procedure. However, it is possible that

some parts need to be modified or some algorithms need to be added or replaced to fit

the requirements defined in the general concept of model updating. At least, the possible

model outputs should be harmonized with the desired experimentally obtained features.

Sensitivity analysis: Using the initial model, a sensitivity analysis can be performed

to investigate the influence of changes in the preselected uncertain model input parameters

on changes in the preselected assortment of possible features. These sensitivities support

the decision in the pretest phase to select appropriate features to be extracted from the

measured data. In addition, the sensitivity is used to select the most sensitive parameters

to be later included in the model updating. The final selection of uncertain model input
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parameters is very important, as only sensitive model input parameters can be identified

with sufficient accuracy. The sensitivity analysis can be performed globally or locally.

The global sensitivity analysis is typically a correlation analysis using the Pearson

correlation coefficient or Spearman correlation coefficient. The obtained correlation ma-

trices can be postprocessed, for example, by principle component analysis or calculating

the coefficients of determination to identify the most sensitive model input parameters.

Whereas the global sensitivity analysis determines an averaged sensitivity for the whole

design space, the local sensitivity analysis is related to the first derivatives calculated for

example by finite differences in the vicinity of a certain set of model input parameters.

Sometimes it is difficult to obtain meaningful results, as the sensitivity analysis is

related to certain assumptions, for example, to the degree of regression polynom (e.g.,

linear, quadratic). Furthermore, it is difficult to recognize global sensitivities, if the

output data tends to cluster in certain regions of the output space. A comprehensive

overview about sensitivity analysis methods is given in [Saltelli et al. 2004], [Saltelli et al.

2008], [Fellin et al. 2006], and [Oberguggenberger et al. 2009]. Applications can be found

in [Brehm et al. 2010], [Keitel et al. 2010], and [Zabel et al. 2008c].

Pretest phase: The planning of experiments is conducted in the pretest phase. Sev-

eral aspects need to be considered in parallel to obtain a design, which optimally suits

predefined conditions.

Once the features are selected according to the previous sensitivity analysis, the mea-

surement quantity, such as accelerations, velocities, displacements, or strains, needs to be

defined. The expected or applied excitation with certain characteristics and spatial dis-

tribution can influence the results obtained from measurements. The selection of sensors

with respect to the required accuracy, measurement range, and resolution is fundamental.

Furthermore, the number of test setups, the number of sensors, their spatial distribution,

and their mounting on the structure need to be defined. Technical parameters of the data

acquisition system, such as, trigger possibilities, number of available channels, and reso-

lution of the analog digital converter (bit rate) are important, as well. Also the recording

duration per setup and the sampling rate are essential parameters, which strongly de-

pend on the properties of the given structural system. Moreover, the number of repeated

experiments to evaluate the uncertainty is relevant.

In practice, the available measurement equipment, as well as, the available time for

experiments restrict possible options. Most of the decisions are based on the experience

of the engineer. Information extracted from the initial numerical model, like the range

of natural frequencies of interest and the mode shapes, can support the decision process.

Moreover, the accessibility to the structure may reduce the available sensor positions.

Restrictions to the accessibility are, for instance, traffic below or on an investigated bridge

or high-voltage cables at train bridges. Because the numerical model is not calibrated at
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the time of pretest analysis, most extracted information is very uncertain. Therefore, the

robustness (i.e., the sensitivity to small changes) of the final experimental setup should

be considered.

Recommendations about measurement setups, measurement equipment, and the choice

of sensors were collected in [Wenzel et al. 2005] and [Kuendig et al. 2009]. [Franchi et al.

1995] and [Brehm et al. 2011] gave an introduction regarding optimal sensor placement.

Experiments: The experiment itself needs to be conducted as accurate as possible

based on the results of pretest analysis. All changes to the initial configuration of the

experiment should be documented. Typically, many individuals with widely spread pro-

fessional background, such as technicians, managers, engineers, and scientists, need to

interact in a team. This requires a well organized time schedule for the experiments. Ex-

periments with the aim to update a model are called calibration experiments. Validation

experiments are conducted to proof the numerical model’s capability regarding predictive

calculations. In contrast, the calibration experiment is designed to provide features to be

used to adjust uncertain model input parameters. Both experiments should be performed

independently from each other.

Practical realizations of vibration experiments were described, for example, in [Cantieni

2009], [Liu et al. 2009], [Chellini et al. 2009], [Ribeiro et al. 2009], [Cantieni et al. 2008a],

[Link et al. 2008], [Reynders et al. 2008], [Zabel et al. 2008b], and [Zabel et al. 2008a]

and moreover in [Cunha et al. 2006], [Maeck et al. 2003], [Brincker et al. 2003], and

[Krämer et al. 1999].

Feature extraction: Common features, extracted from vibration test data, are natural

frequencies, modal damping ratios, and modal displacements. Of course, power spectral

densities, frequency response functions, or wavelet transforms can also be of interest.

Alternative features are statistical values of time histories, such as maximal amplitudes

or signal energy contents. The most frequently applied modal parameter identification

methods are stochastic subspace identification (SSI) (e.g., [Peeters et al. 1999], [Peeters

et al. 2001]), enhanced frequency domain decomposition (EFDD) (e.g., [Brincker et al.

2000]), or poly-reference least squares complex frequency domain (p-LSCF) algorithm

(e.g., [Cauberghe 2004]), which were summarized in [Reynders 2009] and [Zabel et al.

2009b]. [Reynders et al. 2008] proposed a theoretical uncertainty quantification for the

stochastic subspace identification algorithm. General theoretical descriptions about modal

testing, especially for experimentally derived frequency response functions, were provided

by [Ewins 2000b].

Experimental investigations on uncertainties of extracted features were conducted by

[Adhikari et al. 2009], [Govers et al. 2010b], and [Govers et al. 2006].
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Model updating: A model updating algorithm adjusts the most sensitive uncertain

model input parameters, identified by the sensitivity analysis, with the aim to minimize

the discrepancy between model responses and the experimentally obtained features. De-

pending on the applied algorithm, objective functions need to be defined to evaluate the

discrepancy. Model updating is also known as model calibration, parameter estimation,

or physical parameter identification. A good overview about model updating techniques

with respect to vibration test data was given in [Mottershead et al. 1993] and more

recently in [Marwala 2010].

The deterministic model updating techniques can be subdivided in direct methods and

indirect methods. The direct methods are trying to modify entries of system matrices,

like stiffness, mass, or damping matrix. In many cases, the updating leads to a good

agreement with the features extracted from measured data. Unfortunately, the process

can produce updated matrices, which are ill-conditioned and non-sparse. Some direct

methods were explained in [Friswell et al. 1995]. Wavelet-based direct algorithms were

proposed by [Zabel 2003], [Brehm et al. 2005], and [Brehm 2006].

The indirect methods are based on a design variable description using material prop-

erties, geometrical measures, support conditions, or loading definition. Therefore, unrea-

sonable system matrices can be avoided and the models are more suitable for predictions.

A large class of model updating strategies is related to the partial derivative of the input

parameters with respect to the output parameters and is therefore denoted by sensitivity-

based model updating. Examples were given in [Brownjohn et al. 2001], [Jaishi et al.

2007], [Bakir et al. 2007], [Adhikari et al. 2010], and [Mottershead et al. 2010]. Other

researchers, for example, [Levin et al. 1998] and [Brehm et al. 2009a], used standard opti-

mization techniques, such as, simulated annealing and genetic algorithms. The updating

can rely on forced [Lin et al. 2006] or ambient vibration data [Jaishi et al. 2005]. Due to

considerable dynamic effects, railway bridges are frequently in the focus of research (e.g.,

[Chellini et al. 2007], [Teughels et al. 2003], [Brehm et al. 2009a]). [Chellini et al. 2010]

applied model updating on a steel concrete composite frame.

One possibility how to implement measurement uncertainties of a single test structure

is proposed by [Friswell et al. 1995] and applied by [Steenackers et al. 2006]. In this

approach, the variances were used to assemble a weighting matrix for a squared weighted

Euclidean norm. This norm was applied to determine the discrepancy between numerically

derived and experimentally extracted features. Hence, the squared weighted Euclidean

norm accentuated more reliable features. A more sophisticated weighting function is the

inverse of the covariance matrix, which leads to the squared Mahalanobis distance as, for

example, applied in [Doebling et al. 2000]. However, the adjusted parameters are still

deterministic. The first approach to obtain a measure of confidence for the identified pa-

rameters was presented by [Collins et al. 1974]. He considered the updating of a single test

structure, perturbed by some known measurement noise. Furthermore, the uncertainty of
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the unknown parameters was estimated at the initial step. Within an iteration procedure,

the unknown parameters were updated together with their confidences indicated by the

covariance matrix of the unknown parameters. A similar minimum variance method was

proposed by [Friswell 1989]. [Mares et al. 2002] tried to reduce the uncertainties applying

a robust estimation technique.

Sensitivity-based stochastic model updating techniques were proposed by [Mares et al.

2006], [Mottershead et al. 2006], [Khodaparast et al. 2008b], and [Govers et al. 2010a].

[Doebling et al. 2000] and [Zabel et al. 2009a] presented first applications of standard

optimization techniques for the purpose of stochastic model updating.

1.3 Scope and novelty of the presented thesis

The previous description of the framework for model updating demonstrates the large

field of different calculations and methods necessary to be considered to guarantee a

successful updated model suitable for predictive calculations. Of course, in every substep

uncertainties are present and need to be determined, reduced, and quantified. Due to

the variety of different analyses in various substeps, the contributions of this thesis are

restricted to three main tasks:

(i) optimal placement of reference sensors within roving setup configurations,

(ii) pairing of numerically derived and experimentally obtained mode shapes, and

(iii) suitability of objective functions for optimization-based stochastic model updating.

Based on the author’s practical experience by planning and conducting several measure-

ment campaigns and subsequent updating of models, deficits of current theory and its

limited applicability for particular cases have been identified. Such deficits are the main

reasons for current unsatisfying results obtained from available deterministic or stochastic

model updating procedures.

Even though the identified problems arise frequently, they are hardly covered in lit-

erature or the available methods are insufficient. Hence, the combination of all three

proposed approaches will improve essentially the reliability of results obtained by predic-

tive calculations using updated models. The three major contributions, their innovative

novel approaches, and advantages for applications are summarized in the following.

Optimal reference sensor placement: This part is strongly related to the pretest

phase, in which sensor locations need to be defined. Assuming a wide sense station-

ary process, the proposed approach is strongly connected to power spectral densities of

estimated model responses.
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Generally, two main sensor setup configurations are possible to generate vibration data.

First, all sensors are fixed at certain positions during all measurements. This configuration

is appropriate, if the access to the sensor locations on the structure is difficult and if the

number of sensors is sufficiently large to obtain a certain spatial resolution of information

at the structure. Second, at least one sensor is fixed during all measurements and at least

one sensor is roved across the structure. This roving sensor setup configuration is applied,

if the number of sensors is not sufficient to get the necessary resolution of information in

space at the structure. The fixed sensors are denoted by reference sensors and they will

be used to merge the information of different setups. It is obvious that the success of this

merging approach strongly depends on the signal quality and frequency content of the

reference sensors.

In contrast to available methods, which are reviewed exhaustively in Chapter 2, the

proposed approach will be able to determine optimal reference sensor positions with re-

spect to different signal quantities, like accelerations, velocities, or displacements and

different damping values of each mode. While most approaches rely on a white noise

excitation, the presented approach will be able to consider all excitation types, as long as,

a wide sense stationary process can be assumed. Moreover, the number of modes to be

considered does not restrict the number of reference sensors. Furthermore, an innovative

geometry-based search strategy is proposed to support the convergence of the applied,

nature inspired optimization strategies. Details about the methodology and its applica-

tion to numerical benchmark studies and an experimental case study are presented in

Chapter 2.

Pairing of numerically derived and experimentally obtained mode shapes:

Once the mode shapes, together with their natural frequencies, are extracted from the

experimental data, they need to be assigned to the most likely numerically derived modes.

This task can be challenging, as mode switches are possible due to the variation of

model input parameters. In addition, the numerical model can represent modes, for in-

stance, local modes, which cannot be obtained from experimental data. The classical

criterion to pair modes is the modal assurance criterion (MAC). However, this criterion

tends to fail for certain typical applications as only the mathematical property of orthogo-

nality is considered. A reliable mode pairing is required for sensitivity analysis and model

updating.

Therefore, an enhanced modal assurance criterion based on modal strain energies is

proposed to guarantee a reliable mode assignment for the process of sensitivity analysis

or model updating. This novel criterion is termed energy-based modal assurance criterion

(EMAC), which is described in Chapter 3. The related studies using artificially generated

and measured test data show the effects of a wrong mode assignment and the successful

application of the energy-based modal assurance criterion. Hence, uncertainties from a
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wrong mode assignment can be reduced.

Objective functions for optimization-based stochastic model updating: The

current sensitivity-based methods for stochastic model updating problems are limited in

their applications. For a successful updating, the initial input parameters need to be close

to the optimum that cannot be ensured in real applications. Furthermore, the approaches

determine only the first two statistical moments of the target distribution. This restricts

the applicability to a few distribution types.

Therefore, an alternative approach, the optimization-based stochastic model updating,

using standard optimization techniques, like genetic algorithm or particle swarm optimiza-

tion is proposed. Even if it is advantageous, the input parameter values do not need to be

close to the optimum. The presented methodology is not restricted to certain distribution

types. In contrast to deterministic model updating, where optimization methods were

already successfully applied, the definition of a suitable objective function to compare

two distributions is not straightforward for stochastic model updating. The innovative

contribution of this thesis is the application of dissimilarity measures, usually applied to

information theory problems, as objective functions to compare the distributions of target

features and numerical model responses. As various dissimilarity measures are existing,

the properties of such objective functions will be numerically investigated by means of

two benchmark studies. It can be derived that certain dissimilarity measures are suit-

able to be applied as objective functions in the context of optimization-based stochastic

model updating. The approach and the subsequent benchmark studies are explained in

Chapter 4.

The thesis will be closed by a general conclusion and recommendations for future

research.
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2

Optimal placement of reference sensors

2.1 Problem overview

2.1.1 Motivation

The success of vibration-based model updating depends on the applied theoretical meth-

ods, their numerical realization, computational efficiency, and the quality of measured

values. Applying the framework for model updating introduced in Section 1.2, a pretest

analysis needs to be performed to optimize the measurement configuration. The pretest

analysis will ensure suitable and reliable features used for model updating. Those features

are extracted from measured time series at certain positions of the structure. As not all

positions of a structure can be instrumented, a preselection is usually conducted.

Accordingly, one of the main tasks of a pretest analysis in the field of experimental

modal analysis is the optimal placement of sensors. Two main sensor setup configura-

tions are possible. First, all sensors are fixed at certain positions during all measurements.

This one-setup configuration is appropriate, if the positions at the structure are difficult

to reach and if the number of sensors is sufficient to obtain a certain spatial resolution

of information about the structure. Second, at least one sensor is fixed during all mea-

surements and at least one sensor is moved across the structure. This roving sensor setup

configuration is applied, if the number of available sensors or channels is not sufficient to

get the necessary resolution of information in space at the structure. The fixed sensors

are called reference sensors, which will be used to merge the different setups. It is obvious

that the success of this merging approach strongly depends on the signal quality and

frequency content of the reference sensors.

This contribution is focused on the determination of optimal reference sensor positions

within a roving sensor vibration test conducted to provide experimentally obtained fea-

tures for updating an initial finite element model. An output-only vibration measurement

with random excitation is assumed that can be interpreted as a weakly stationary process.

13
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As this specific topic is hardly addressed in literature, pretest approaches with respect to

one-setup configurations are reviewed, as well.

2.1.2 Literature review

Assessment criteria are reviewed regarding one-setup and roving setup configurations.

Then, the search strategies available in literature will be discussed. The reviewed criteria

are based on mode shapes of a numerical model in the pretest phase.

One common measure to judge the suitability of sensor positions in one-setup config-

urations is the Fisher information matrix, which leads to the D-optimal design criterion.

By maximizing the determinant of the Fisher information matrix (e.g., [Kammer 1991],

[Yao et al. 1993], [Kammer et al. 1994], [Kammer 1996], [Li et al. 2009], [Kincaid et al.

2002], [Tongco et al. 1994], [Tongco et al. 1996], [Bayard et al. 1988]), maximizing the

smallest eigenvalue of the Fisher information matrix (e.g., [Reynier et al. 1999]), mini-

mizing the trace of inverse of the Fisher information matrix (e.g., [Heredia-Zavoni et al.

1998]), or minimizing the condition number of the Fisher information matrix (e.g., [Kim

et al. 2001]), it is assumed that the correlation between the reduced mode shape vectors

can be minimized. Of course, these approaches assume that the number of sensors is at

least as big as the number of target modes that should be identified [Li et al. 2007a].

Otherwise, the independency of modes cannot be guaranteed. Garvey [Garvey et al. 1996]

enhanced the original criterion by a Guyan reduced mass weighting scheme.

Another criterion to judge combinations of sensor positions within one-setup configura-

tions is the modal kinetic energy, proposed by [Kammer 1991] and applied by [Papadopou-

los et al. 1998] and [Li et al. 2007a]. It is assumed that large response amplitudes at a

certain position are related to high modal kinetic energy. With this criterion, it should

be possible to increase the signal to noise ratio. This is essential, if notable measurement

noise is expected. The drawback of this method is the high dependency on the element

mesh size [Papadopoulos et al. 1998]. Therefore, the method tends to choose regions with

large element sizes where the mass is concentrated. This can lead to unsatisfying results.

As the kinetic energy is only a mass weighted version of the Fisher information matrix, the

connection to the effective independence method is obvious. This has been investigated

in detail by [Li et al. 2007a]. [Tuttle et al. 2005] proposed a subsequent application of

the iterative residual kinetic energy method and the mass weighted effective independence

method. These methods are modifications of the modal kinetic energy method and the

effective independence method, respectively.

Several other objectives and assessment criteria for optimal sensor positions within

one-setup configurations have been proposed. One set of criteria is derived from the

modal assurance criterion originally introduced by [Allemang et al. 1982], whereas the

off-diagonal terms of the MAC matrix need to be minimized (e.g., [Liu et al. 2008]).
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This typically leads to uncorrelated modes shapes. The MAC and the mass weighted

MAC were proposed as assessment criterion, for example, by [Penny et al. 1994]. Modal

strain energy based criteria were proposed by [Liu et al. 2008] and [Reynier et al. 1999].

An information entropy based criterion was introduced in [Papadimitriou et al. 2000]

and applied in [Papadimitriou 2004]. However, [Papadimitriou 2005] concluded that the

information entropy is related to the determinant of the Fisher information matrix.

In [Schwarz et al. 2002], a comprehensive overview about criteria to assess reference

sensor positions within a roving sensor setup configuration was presented. For example,

the shape product was suggested, which is the multiplication of a certain degree of freedom

of all modes of interest. This method aims to visualize the nodal points of target modes

in one plot. Those nodal points should be generally avoided as reference sensor positions.

Another possibility to avoid nodal points of target modes is the use of driving point

frequency response functions (e.g., [Schwarz et al. 2002]). Reference sensor positions

should be preferably located at positions with a high driving point frequency response

function value. If several reference positions are of interest, the complex mode indicator

function or the multivariate mode indicator function can be relevant, which was explained

in [Schwarz et al. 2002]. [Avitabile et al. 1996] proposed a method based on the singular

value decomposition of the frequency response function matrix. Herein, the contribution

of each possible position to the singular values indicates the suitability of a certain position

to be used as reference sensor position. This idea leads to an enhanced algorithm termed

test reference identification procedure as presented in [Chandler et al. 2001] and [Avitabile

et al. 2002]. It is worthy to note that the complex mode indicator function is defined by

the eigenvalues deduced from the frequency response function [Chandler et al. 2001].

So far, only the criteria to rank possible sensor positions are reviewed. The search

strategies to find the best sensor positions can be classified into three groups. The first

group simply calculates all possible combinations. This leads to the global optimum, but

is only possible for a small number of combinations. With an increasing number of pos-

sible sensor locations and available sensors, the computational effort becomes too high.

A second group uses sequential schemes within the effective independence approaches

proposed by [Kammer 1991]. [Papadimitriou 2004] suggested sequential schemes in com-

bination with the information entropy criterion. However, those schemes mostly lead to

a near-optimal sensor placement, as a strong monotonic behavior of the process cannot

be guaranteed.

The most frequently proposed search algorithms are based on optimization strategies,

which are arranged in a third group. In most cases, a discrete combinatoric optimization

problem needs to be solved. As predefined algorithms are available, the application of such

methods can be easily realized. However, the success of such methods strongly depends

on the definition of design variables.

Most researchers, for example, [Papadimitriou 2004], [Papadimitriou 2005], and [Liu
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et al. 2008], proposed discrete design variables based on the possible degrees of freedom

for sensor locations. This approach leads to a minimal number of design variables, but

destroys in many cases the spatial connection of proximate sensor positions. [Swann

et al. 2004] and [Maghami et al. 1993] suggested a design variable definition based on

the spatial location of sensor positions. [Swann et al. 2004] used the design variables

to describe a regular mesh of sensors. Maghami [Maghami et al. 1993] approximated

the output measurements with spatially continuous functions. As optimization strategies

prefer continuous design variables, [Pape 1994] proposed to approximate the discrete

mode shapes by a function based on Chebyshev polynomials. In many studies, a genetic

algorithm was applied as optimization strategy for this kind of problems (e.g., [Stabb

et al. 1995], [Swann et al. 2004], [Papadimitriou 2004], [Papadimitriou 2005], [Liu et al.

2008], [Cruz et al. 2009], [Franchi et al. 1995]). Alternatives are, for example, the specific

branch-and-bound technique developed by [Fijany et al. 2005] and the gradient-based

algorithm proposed by [Al-Shehabi et al. 2002]. A comparison of several search strategies

was given in [Bedrossian 1998].

Comprehensive comparisons of several methods by means of numerical (e.g., [Penny

et al. 1994]) and real size examples (e.g., [Meo et al. 2005], [Larson et al. 1994b], [Larson

et al. 1994a], [Papadopoulos et al. 1998]) were presented in literature. However, most

methods lead to similar and reasonable results.

Even though the results are reasonable, the methods are based on certain limiting

assumptions. First, the methods optimize the sensor placement with respect to a white

noise excitation. The general case of random excitation at certain degrees of freedom of

the structure is not covered in the analytical approaches. Second, most approaches neglect

the effect of damping, which is important, if the modal damping ratios are not equal for

all modes. The only exception are methods that rely on frequency response functions.

Third, the applied mass normalized eigenvectors of the initial numerical model are only

related to accelerations, which is unfortunately not always mentioned in the references. If

the measured quantities are velocities or displacements, the optimal sensor configurations

may differ from the proposed acceleration-based optimal sensor placements.

2.1.3 Proposed approach

The forcing idea of the proposed approach is based on the idea of maximizing the signal

to noise ratio of reference sensors. The signal energy should be as high as possible for all

frequencies of interest. In contrast to other methods, the expected power spectral densities

of responses at the frequencies corresponding to the modes of interest are calculated by

using a random spectral description of the excitation. The highest spectral response

amplitudes with respect to all positions and modes of interest will be the optimal ones.

This idea is implemented into a mathematically formulated objective function. Moreover,
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a search algorithm is proposed, which is based on nature inspired optimization strategies,

where the design variables are related to a geometrical description of possible sensor

positions.

Consequently, the proposed approach is able to consider all types of random excitation

as long as the requirements for a weakly stationary process are fulfilled. Furthermore,

the number of reference sensors and the number of target mode shapes are not restricted.

The quantity of vibration measure, namely accelerations, velocities, and displacements,

are taken into account. Different measurement noise levels, as well as, different modal

damping ratios can be considered.

The presented approach is assessed by means of a numerical benchmark study of a

simply supported beam assuming white noise and multiple impulse excitation at several

points on the structure. In addition, a case study of a test specimen is provided, which

is supposed to be investigated within an experimental modal analysis using a roving

sensor vibration test. The excitation for this test is applied at two predefined positions

on the structure. Reference sensor locations are determined by the proposed approach.

Furthermore, the analytically derived predictive power spectral amplitudes are compared

with experimentally obtained power spectral amplitudes. The experimental data rely

on 507 time histories of time length 27 seconds with identical testing conditions. This

procedure allows a sufficient statistical analysis.

2.2 Determination of random responses due to ran-

dom excitation

2.2.1 Fundamental equations

Almost all reference-based output-only experimental modal analysis procedures assume

that the reference signals cover all modes of interest with a certain intensity. This can

be easily assessed by the power spectral density of the measured response signal. The

following approach assumes that the system response and excitation can be interpreted

as a random wide sense stationary process. Therefore, the first and second statistical

moments are time invariant [Norton et al. 2003]. The signals of excitation do not need

to be measured. It is sufficient to known their basic stochastic characteristics. Based on

these statistics, the response spectral densities can be predicted.

Assuming a structural response in space and time due to a random excitation, which

is independent with respect to all discrete spatial points mf and regarding time, equation

[Natke 1992]

Sxx(ω) = Hxf (ω)∗ Sff (ω) Hxf (ω)T (2.1)

holds for all circular frequencies ω. Sxx(ω) ∈ C
mx×mx and Sff (ω) ∈ C

mf×mf are the auto
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power spectral density matrices of the response x(t) ∈ R
mx and the excitation f(t) ∈ R

mf ,

respectively. The frequency response function between response and excitation is denoted

by Hxf (ω) ∈ C
mx×mf . The superscripts ∗ and T indicate the complex conjugate and the

transpose of a matrix, respectively.

According to the Wiener-Khintchine theorem (e.g., [Papoulis et al. 2002]), the spectral

densities

Sxx(ω) =

+∞
∫

−∞

Rxx(τ) exp(−ιωτ) dτ and Sff (ω) =

+∞
∫

−∞

Rff (τ) exp(−ιωτ) dτ (2.2)

are defined by the Fourier transform of the belonging autocorrelation functions Rxx(τ)

and Rff (τ) (e.g., [Bucher 2009]). The value ι =
√
−1 is the imaginary unit.

However, for real finite continuous signals x(t) ∈ R
mx and f(t) ∈ R

mf defined within

a time interval [0, T ], the power spectral densities can be approximated [Natke 1992] by

S̃xx(ω) = Sxx(ω, T ) =
1

T
Fx(ω, T )∗ Fx(ω, T )T and

S̃ff (ω) = Sff (ω, T ) =
1

T
F f (ω, T )∗ F f (ω, T )T

(2.3)

with

lim
T→∞

E (Sxx(ω, T )) = Sxx(ω) and lim
T→∞

E (Sff (ω, T )) = Sff (ω) (2.4)

using the finite Fourier transform of the excitation

F̃ f (ω) = F f (ω, T ) =

T
∫

0

f(t) exp(−ιωt)dt (2.5)

and the finite Fourier transform of the response

F̃x(ω) = Fx(ω, T ) =

T
∫

0

x(t) exp(−ιωt)dt (2.6)

with F̃ f (ω) ∈ C
mf and F̃x(ω) ∈ C

mx . Hence, Equation (2.1) can be reformulated.

S̃xx(ω) =
1

T
Hxf (ω)∗ F̃ f (ω)∗ F̃ f (ω)T Hxf (ω)T (2.7)

Combining Equations (2.3), (2.6), and (2.7), the finite Fourier transformation of the

response derives

F̃x(ω) = Hxf (ω) F̃ f (ω). (2.8)

Assuming proportional viscous damping, the complex frequency response function matrix

Hxf (ω) can be analytically determined by using the classical undamped eigenvalues λ ∈
R

mλ and the classical undamped mass normalized eigenvector matrix Φ of the structure
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and corresponding modal damping ratios ζ ∈ R
mλ . The mode shape matrices of response

degrees of freedom Φx ∈ R
mx×mλ and of excitation degrees of freedom Φf ∈ R

mf×mλ

are assembled from the eigenvector matrix Φ. An initial estimate of eigenvalues and

eigenvectors can be extracted, for example, by conducting an analytical modal analysis

using a finite element model. If no other information is available, the damping values

need to be estimated based on experience. [Ewins 2000a, p. 64] and [Lin et al. 2006]

showed a simple approach to evaluate the complex frequency response function matrix

Hxf (ω) = α Φx D(ω) Φf
T. (2.9)

In this context, D(ω) ∈ C
mλ×mλ represents a complex diagonal matrix. Its diagonal

elements depend on the circular frequency ω.

(D(ω))l,l =
(λ)l − ω2 − ι

(

2ω
√

(λ)l(ζ)l

)

(λ)2l − 2ω2(λ)l + ω4 + 4ω2(λ)l(ζ)2l
(2.10)

The scaling factor α depends on the physical interpretation of the response and can be

set to 1, ιω, and −ω2 for displacements, velocities, and accelerations, respectively. [Lin

et al. 2006] derived frequency response functions for proportional structural damping and

general proportional damping.

The diagonal elements of the auto power spectral density of the responses (S̃xx(ω))k,k

∀k ∈ Z and k = 1, . . . ,mx are arranged in a vector S̃x(ω) ∈ R
mx . According to Equation

(2.3), the vector of diagonal elements yields

S̃x(ω) =
1

T
F̃x(ω)∗ ◦ F̃x(ω). (2.11)

The symbol ◦ denotes the Schur product. Assuming random excitation, the respective

mean value is given by

E
(

S̃x(ω)
)

=
1

T

(

E
(

Re
(

F̃x(ω)
))

◦ E
(

Re
(

F̃x(ω)
))

+ E
(

Im
(

F̃x(ω)
))

◦ E
(

Im
(

F̃x(ω)
))

+ V
(

Re
(

F̃x(ω)
))

+ V
(

Im
(

F̃x(ω)
)))

.

(2.12)

If the real and imaginary parts of the finite Fourier transform of excitation are independent

in space and regarding each other, the mean value

E
(

F̃x(ω)
)

= Hxf (ω) E
(

F̃ f (ω)
)

(2.13)

and variance
V
(

Re
(

F̃x(ω)
))

=
(

Re (Hxf (ω)) ◦ Re (Hxf (ω))
)

V
(

Re
(

F̃ f (ω)
))

+
(

Im (Hxf (ω)) ◦ Im (Hxf (ω))
)

V
(

Im
(

F̃ f (ω)
))

(2.14)
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V
(

Im
(

F̃x(ω)
))

=
(

Im (Hxf (ω)) ◦ Im (Hxf (ω))
)

V
(

Re
(

F̃ f (ω)
))

+
(

Re (Hxf (ω)) ◦ Re (Hxf (ω))
)

V
(

Im
(

F̃ f (ω)
))

(2.15)

of F̃x(ω) can be derived from Equation (2.8). Re(·) and Im(·) denote the real and

imaginary part of a complex number, complex vector, or complex matrix.

Consequently, Equations (2.12)-(2.15) can be applied to predict the expected value

of the response power spectral density, assuming that the statistics of the finite Fourier

transform of excitation are known. The predicted power spectral densities are fundamen-

tal for the definition of the objective function that indicates the best reference sensor

positions. The objective function is introduced in Section 2.3. Note that Equation (2.12)

can be derived directly using an approximation of the power spectral density matrix of

excitation S̃ff (ω) in Equation (2.1). As only the diagonal elements of the spectral density

matrix are of interest, the proposed approach is computationally more efficient.

2.2.2 Amendment for discrete signals

For reasons of completeness and consistency, the discrete Fourier transformation is dis-

cussed, as well. The discrete Fourier transformation is mainly applied to measured sig-

nals. Assuming a set of discrete signals {p}n ∈ R
mp , defined in equidistant time steps ∆t

∀n ∈ Z and n = 0, . . . , N − 1 with even N ∈ Z, the discrete finite Fourier transformation

(e.g., [Natke 1992])

{

F̃p

}

k
= ∆t

N−1
∑

n=0

{p}n exp

(

−ι
2π

N
kn

)

= ∆t

N−1
∑

n=0

{p}n
(

cos

(

−2π

N
kn

)

+ ι sin

(

−2π

N
kn

))

(2.16)

can be derived. Then, the rectangular rule can be applied to the continuous formulation

of the finite Fourier transformation analogously to Equation (2.5).
{

F̃p

}

k
∈ C

mp is

subsequently defined for equidistant circular frequency steps ∆ω = 2π
T

∀ k ∈ Z and k =

0, . . . , N
2

. The unit of the Fourier transform is the basis unit of the signal multiplied by

the time unit.

Consequently, the discrete power spectral density is defined as
{

S̃p

}

k
=

1

T

{

F̃p

}∗

k
◦
{

F̃p

}

k
. (2.17)

Hence, the unit of spectral densities is the square of the basis unit of the signal multiplied

by the time unit. For example, if the signal is a force time series with unit [N] and discrete

time steps declared in seconds, the Fourier transform and the power spectral densities are

given in units [Ns] and [N2s], respectively.
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[Natke 1992] proposed an averaging algorithm to reduce the variance of the spectra

obtained from a measured signal. By splitting a given signal of duration T = ntTt into

nt statistically independent blocks with constant time length Tt, an averaging can be

performed based on the finite discrete spectral densities of blocks
{

S̃
(i)
p

}

kt

. The averaged

power spectral density yields

{

∆

Sp

}

kt

=
1

nt

nt
∑

i=1

{

S̃(i)
p

}

kt

=
1

T

nt
∑

i=1

{

F̃
(i)

p

}∗

kt

◦
{

F̃
(i)

p

}

kt

, (2.18)

whereas the frequency resolution is reduced to ∆ωt = 2π
Tt

. The averaged power spectral

density corresponds to the sample mean value of the power spectral density. The Fourier

transform of the ith block is indicated by
{

F̃
(i)

p

}

kt

.

2.2.3 Transformation to local coordinate systems

In some applications, it is very difficult to measure the response and the excitation in

global coordinate directions. Therefore, it is appropriate to define several local coordinate

systems for the excitations and the responses.

Based on Equation (2.8), the transformations

F̃x,L(ω) = Tx F̃x,G(ω) = Tx Hxf ,G(ω) F̃ f ,G(ω) (2.19)

and

F̃ f ,L(ω) = Tf F̃ f ,G(ω) (2.20)

can be performed by using transformation matrices Tx ∈ R
mx×mx and Tf ∈ R

mf×mf . The

subscripts L and G indicate whether a matrix or a vector is defined in the local or global

coordinate system. Assuming that the transformation matrices Tx and Tf are orthogonal

matrices with the properties Tx
T = Tx

−1 and Tf
T = Tf

−1 and inserting Equation (2.9)

into Equation (2.19),

F̃x,L(ω) = α Φx,L D(ω) Φf ,L
T
F̃ f ,L(ω) (2.21)

can be derived with
Φx,L = Tx Φx,G,

Φf ,L = Tf Φf ,G, and

F̃ f ,G(ω) = Tf
−1

F̃ f ,L(ω).

(2.22)

Consequently, the local spectral response

F̃x,L(ω) = Hxf ,L(ω) F̃ f ,L(ω) (2.23)

is defined by using the local frequency response function

Hxf ,L(ω) = α Φx,L D(ω) Φf ,L
T (2.24)

and the locally defined finite Fourier transform of excitation F̃ f ,L(ω).
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2.2.4 White noise excitation

One example of random excitation is the white noise excitation. Although the assump-

tion of white noise excitation is of theoretical nature and does not represent a realistic

excitation, it leads to reasonable results in many applications. For example, white noise

is commonly used to represent ambient vibrations.

An approach to describe a white noise excitation as a discrete signal was given in

[Bucher 2009]. In this study, the white noise is represented by independent and identically

distributed (i.i.d.) random variables with a constant value for the time interval ∆t.

The random variables have a mean value of E((f)i,n) = 0 and a certain variance of

V((f)i,n) = σ2 ∀n ∈ Z and n = 0, . . . , N − 1 with even N ∈ Z. The variance itself can be

related to the intensity of white noise S0 in terms of spectral density, i.e.

σ2 =
S0

∆t
. (2.25)

Based on Equation (2.16), it can be derived that the mean values of real and imaginary

part of the Fourier transform vanish.

E
({

F̃ f

}

k

)

= ∆t

N−1
∑

n=0

E ({f}n)

(

cos

(

−2π

N
kn

)

+ ι sin

(

−2π

N
kn

))

= 0 (2.26)

The discrete circular frequency steps k ∈ Z with k = 0, . . . , N
2

are equidistantly spaced

by ∆ω = 2π
T

. The variance of the real part of the Fourier transform related to white noise

random excitation is expressed by

V
(

Re
({

F̃ f

}

k

))

= ∆t2
N−1
∑

n1=0

N−1
∑

n2=0

√

V ({f}n1) ◦V ({f}n2) cos

(

−2π

N
kn1

)

cos

(

−2π

N
kn2

)

= ∆t2
N−1
∑

n=0

V ({f}n) cos2
(

−2π

N
kn

)

,

(2.27)

which can be simplified to

V
(

Re
({

F̃ f

}

k

))

=

{

N∆t2σ2 : k = 0, N
2

1
2
N∆t2σ2 : k = 1, . . . , N

2
− 1

. (2.28)

Analogously, the variance of the imaginary part of the Fourier transform can be derived.

V
(

Im
({

F̃ f

}

k

))

=

{

0 : k = 0, N
2

1
2
N∆t2σ2 : k = 1, . . . , N

2
− 1

(2.29)

The covariance between the real and imaginary part of the Fourier transform, related

to a certain frequency step k, can be analytically derived

C
(

Re
({

F̃ f

}

k

)

, Im
({

F̃ f

}

k

))

=
∆t2

2

N−1
∑

n=0

E
(

{f}n {f}
T
n

)

sin

(

−4π

N
kn

)

= 0. (2.30)
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This is governed by the property
∑N−1

n=0 sin
(

−4π
N
kn
)

= 0 ∀ k, n ∈ Z. 0 indicates a matrix

with Frobenius norm zero. Due to the assumed independent random process, the covari-

ances between the real parts of a specific circular frequency step k with respect to space

are zero. Equivalently, this is also valid for the imaginary parts.

2.2.5 Multiple impulse excitation

A more realistic random excitation is the multiple impulse excitation with respect to time

and space, which can also be designed as a wide sense stationary process. According to

[Natke 1992], a typical single impulse function p(i)(t), where the impulse with an impulse

duration T (i) and a maximal amplitude of p
(i)
0 starts at time t

(i)
0 , can be represented by

p(i)(t) =

{

p
(i)
0 sin2

(

π

T (i)

(

t− t
(i)
0

))

: t
(i)
0 ≤ t ≤ t

(i)
0 + T (i)

0 : elsewhere
. (2.31)

Using the shift property of the Fourier transform and the formulation in [Natke 1992], its

Fourier transform is given by

F (i)
p (ω) = −p

(i)
0

ω







1

1 −
(

ωT (i)

2π

)2






sin

ωT (i)

2
exp

(

−ιω

(

T (i)

2
− t

(i)
0

))

. (2.32)

Then, a multiple impulse can be formulated as superposition of single impulse functions

p(i)(t) in time and frequency domain

p(t) =
∑

i

p(i)(t) (2.33)

and

Fp (ω) =
∑

i

F (i)
p (ω) , (2.34)

respectively.

If the durations of the impulses T (i), the maximal amplitudes p
(i)
0 , and the times of

impulse occurances t
(i)
0 are defined as random variables, a random multiple impulse pro-

cess can be obtained. A closed form of Equation (2.34), based on random variables, is not

available. Nevertheless, if the properties of the impulses are known, a simulation can be

conducted to extract the first two statistical moments of Equation (2.34). Alternatively,

several measurements of multiple impulse time histories and subsequent evaluation with

the Fourier transform can help to derive the required second order statistics of the ex-

citation Fourier transform. Both approaches will typically result in non-smooth discrete

curves of the statistical moments depending on the frequencies. Simulations show that

the mean value of the Fourier transform of a multiple impulse excitation converges to

zero.
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To identify the variances at each frequency of interest, surrogate models are used to

smooth the variances. The discrete non-smooth approximations of the variances obtained

from simulations or measurements will serve as training data.

One possibility to approximate the variances is offered by a surrogate model that is cre-

ated by the product of a Gaussian function and a potential function based on parameters

b1, b2, b3, b4, and b5

V (Re (Fp(ω))) = V (Im (Fp(ω)))

= b1ω
b5 exp

(

b2ω + b3ω
2
)

+ b4.
(2.35)

The free parameters bi can be determined, for instance, by curve fitting using a gradient-

based optimization strategy. Similar to white noise excitation, the covariances between

real and imaginary part for a certain frequency step k vanish in case of a multiple impulse

excitation. This has been proved by simulations.

Another possibility to approximate the variances is given by a surrogate model using

a moving least squares approach. [Lancaster et al. 1986] defined a local moving least

squares approximation by

ỹ (ω, ωj) =

nb
∑

i=1

hi(ωj)ai(ω), (2.36)

whereas nb is the predefined number of basis functions hi with corresponding coefficients

ai. The pairs ωj and y(ωj) are the ns support points, which are used to determine the

coefficients ai with the weighted least squares postulate

M(ω) =
ns
∑

j=1

w(ω − ωj)(ỹ(ω, ωj) − y(ωj))
2 → min . (2.37)

Assuming symmetry, the weighting w(ω − ωj) = w(‖ω − ωj‖L2) is defined by

w(‖ω − ωj‖L2) =











exp

(

−
(

‖ω−ωj‖L2

R(− log 0.001)−
1
2

)2
)

: ‖ω − ωj‖L2 ≤ R

0 : ‖ω − ωj‖L2 > R

(2.38)

with an influence radius R. More theoretical aspects about this approach and extensions

were given in [Lancaster et al. 1986] and [Most et al. 2005]. In the present application,

y corresponds to the variances of real and imaginary part of the Fourier transform and ỹ

to the respective approximations.

In general, the moving least squares approach is more flexible and can fit simulated

or measured data more accurately. However, the analytical function can be used, if

insufficient information is available about the multiple impulses. Both surrogate models

will be tested by means of an example. This example relies on a simulation conducted

with 100,000 multiple impulse time histories represented by the sum of single impulse time

histories according to Equation (2.33). The single impulse time histories are generated
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Table 2.1: Statistical properties of random input parameters used for simulation, whereas

p
(i)
0 = p

(is)
0 p

(im)
0 and t

(i)
0 =

∑i

j=0 ∆t
(j)
0 .

type of

variable distribution mean value variance

duration T (i) lognormal 0.003s 9 · 10−8s2

sign of amplitude p
(is)
0 binary⋆ 0 1

modulus of amplitude p
(im)
0 normal 100N 400N2

time between impulses ∆t
(j)
0 lognormal 1.5s 2.25s2

⋆ values are -1 or 1

by Monte Carlo samples with the statistical properties given in Table 2.1. For each time

history, the simulation time is 10s with a discrete time step ∆t = 1
4096

s. Figure 2.1

shows the comparison between mean values and variances determined by a statistical

assessment of 100,000 time histories and the approximated function obtained by curve

fitting according to Equations (2.35) and (2.36). The discrete values of the simulation

are used as support points for the surrogate models. Using moving least squares with

an exponential weighting and influence radius of 100, the variances can be approximated

sufficiently well. The proposed analytical function with parameters b1 = 0.082982, b2 =

−10−13, b3 = −3.3145 · 10−7, b4 = 5 · 10−7, and b5 = 0.01, obtained with a gradient-based

optimization algorithm, is only suitable to approximate the variances related to lower
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Figure 2.1: Statistical properties of the Fourier transform of a random multiple impulse

excitation time history.
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frequencies. The approximations of the mean values are set to a constant value of zero. In

the later application of searching the best reference sensor positions, the lower frequencies

are usually of interest. Therefore, both proposed surrogate models are suitable, whereas

the moving least squares approach should be preferred due to higher accuracy and simple

application. The analytical function can serve as alternative approximation beyond the

moving least squares approach.

The presented approach shows that the statistical parameters of the Fourier transforms

can be determined with low numerical effort, if the characteristics of the single impulse

are approximately known.

2.3 Determination of optimal reference sensor posi-

tions

The described approach in Section 2.2 can be used to evaluate the spectral response at

every degree of freedom of the structure depending on the frequency characteristics of the

excitation signals, as long as wide sense stationarity is guaranteed.

To assess a set of predefined positions with respect to their suitability as reference

sensor positions, the expected values related to the amplitudes of power spectral den-

sities evaluated at the circular eigenfrequencies of the structural system are important.

Knowing the statistical properties of the excitation, the expected spectral amplitudes can

be easily extracted using Equation (2.12). All n circular eigenfrequencies of interest are

assembled in a vector ω ∈ C
n. The ith element of vector ω is denoted by (ω)i. For pro-

portional viscous damping, the circular eigenfrequencies are real numbers. The spectral

amplitudes, corresponding to all preselected degrees of freedom m for a set of n modes to

be investigated, are arranged column-wise in a matrix

Υ =
n
∑

i=1

1i ⊗
√

E
(

S̃x((ω)i)
)

(2.39)

with Υ ∈ R
m×n. Matrix 1i =

[

01×(i−1) 1 01×(n−i)
]

represents a matrix, whereas

all entries are zero except for the ith position, which is one. Therefore, E
(

S̃x((ω)i)
)

is the expected value of the diagonal of the power spectral density matrix at circular

eigenfrequency (ω)i according to Equation (2.12). To obtain a suitable objective function,

the values Υ are normalized by the maximal value of Υ.

Ῡ =
1

maxj,i (Υ)j,i
Υ (2.40)

Once the matrix of normalized spectral amplitudes Ῡ is arranged, the best location

j to represent the ith mode is given at the position of the largest value of
{

Ῡ
}

i
. Hence,
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the objective function

J(j) = 1 −
(

Ῡ
)

j,i
J(j) → min (2.41)

has to be minimized.

If n modes should be covered by one reference sensor, the problem can be solved by

minimizing

J(j) = 1 − (α)j J(j) → min with (α)j = min
i

(

Ῡ
)

j,i
. (2.42)

Assuming that m measurement positions are possible, the maximal number of evaluations

for Equation (2.42) is m.

To find the best set of l sensors to cover n modes of interest is a more general task.

The total number of different combinations of sensor positions without repetition will

be
(

m

l

)

. These combinations are arranged in a binary combinadic matrix C ∈ Z(m
l )×m

(e.g., [Worden et al. 2001]), also denoted by sensor distribution matrix, consisting of

all l-combinations of the set {1, 2, . . . ,m}, whereas zero and one in a certain row j and

column k indicate the belonging of sensor position k to the l-combination set j. Then,

the problem can be formulated as

J(j) = 1 − (A)j J(j) → min; j = 1, 2, . . . ,
(m

l

)

(2.43)

assuming (A)j is defined as

(A)j = min
i

(B)j,i A ∈ R(m
l ) (2.44)

with

(B)j,i = max
k

(Fk)j,i B ∈ R(m
l )×n, (2.45)

whereas i = 1, 2, . . . , n and k = 1, 2, . . . ,m and moreover

Fk =
(

C GT
k

)

⊗
(

Gk Ῡ
)

Fk ∈ R(m
l )×n ∀k = 1, 2, . . . ,m. (2.46)

The one row matrix Gk is defined by Gk =
[

01×k−1 1 01×m−k

]

. Consequently, matrix

Fk represents the normalized spectral amplitude at position k of all sets j and all modes

i. The matrix B contains the maximal normalized spectral amplitudes of each set j for all

modes n. The vector A determines the normalized spectral amplitude of the mode that is

least represented in set j. If a certain j has been identified by applying Equation (2.43),

the sensor positions are represented by the jth row of the binary combinadic matrix C.

It is assumed that all combinations of reference sensor sets can be evaluated and

assessed by the proposed criterion to find the best set. However, the computational effort

increases fast with an increasing number of reference sensors. Although, the operations

are mainly based on comparisons, the computational effort is not neglectable. Hence, the

algorithm has to be implemented as efficiently as possible. Furthermore, the algorithm is
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suitable for sequential parallel computing that will additionally reduce the computation

time. Other strategies to reduce the computational expense are discussed in the Section

2.5.

As minimum and maximum functions are applied, it is likely that many possible

sensor configurations are equally assessed. Consequently, a secondary criterion needs

to be added to the objective. Such a criterion is, for instance, the norm of normalized

spectral amplitudes derived for a certain set of positions. A larger norm indicates a higher

redundancy. The Euclidean norm based on the matrices Fk is appropriate

(N)j,i =

√

√

√

√

1

l

m
∑

k=1

(Fk)2j,i. (2.47)

Hence, a modified weighted objective function

J(j) =w1 (1 − (A)j) + w2

(

1 − min
i

(N)j,i

)

J(j) → min, (2.48)

can be derived. The values of scaling factors w1 and w2 can be specified depending on the

application. The weighting factor w1 forces that the least represented mode is covered

with a normalized spectral amplitude of (A)j at least at one position. The normalized

spectral amplitudes of other positions are not recognized. Therefore, the best signal to

noise ratio can be obtained with a high value of w1 with respect to w2. In contrast,

the weighting factor w2 is related to the norm of normalized spectral amplitudes of all

sensor positions in a certain configuration for the least represented mode. Therefore, w2

accentuates the redundancy of a certain sensor setup configuration. As the norm itself

does not guarantee that all modes of interest are covered appropriately, w1 should be larger

than w2. A recommended combination of weighting factors, derived from experience, is

w1 = 0.9 and w2 = 0.1. Due to the scaling of the normalized spectral amplitudes according

to Equation (2.40), both objectives, (1 − (A)j) and (1 − mini(N)j,i), range between 0 and

1. Of course, if the number of reference sensors is one, it follows B = N.

For a sufficiently large finite number of sensors and w1 +w2 = 1, the minimal expected

objective value

J̃ = 1 − min
i

(

max
k

(

Ῡ
)

i,k

)

(2.49)

is determined by the minimal maximum values of the normalized spectral amplitudes

corresponding to each mode of interest. However, this optimal objective value is based

on the assumption that the determining mode i has l equal maximal values and that all

modes are covered better than mode i for the corresponding sensor position set. Even

if this approximation of the minimal expected objective value is unlikely to be achieved,

it can serve as a criterion for the assessment whether the application of more reference

sensors has the potential to improve the objective significantly.
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2.4 Possible simplifications for ambient excitation

In case of ambient excitation, the computational effort to calculate spectral response

amplitudes increases with increasing degrees of freedom of the structure. Under certain

conditions, the spectral response amplitudes can be approximated by the eigenvectors of

the system.

If the ambient excitation can be represented by white noise, the mean value of the

finite Fourier transform is zero and the variances of real and imaginary part are identical

for all circular frequencies:

V
(

Re
(

F̃ f (ω)
))

= V
(

Im
(

F̃ f (ω)
))

= Vf . (2.50)

Furthermore, the mode shape matrices of response and excitation are identical with the

eigenvector matrix, if the response positions are not restricted:

Φx = Φf = Φ. (2.51)

Therefore, the frequency response function

Hxf ((ω)i) = α Φx D((ω)i) Φf
T (2.52)

is given for a circular eigenfrequency (ω)i, if proportional viscous damping is assumed.

Consequently, Equation (2.12) can be simplified

E
(

S̃x((ω)i)
)

=
2

T
(Hxf ((ω)i) ◦Hxf ((ω)i)

∗)Vf . (2.53)

For n modes and k degrees of freedom, the row sum of the squared frequency response

matrix yields

m
∑

k=1

(Hxf ((ω)i))j,k (Hxf ((ω)i))
∗
j,k ≈

m
∑

k=1

n
∑

l=1

(Φ)j,l (Φ)j,l αα
∗ (D((ω)i))l,l (D((ω)i))

∗
l,l (Φ)k,l (Φ)k,l

(2.54)

assuming (D((ω)i))l1,l1 (D((ω)i))l2,l2 ≈ 0 ∀ l1 6= l2. If a constant value (Vf )k = V0

∀ k = 1, . . . ,m can be expected, Equation (2.53) derives

E
(

S̃x((ω)i)
)

≈

2V0

T

n
∑

l=1

((

αα∗ (D((ω)i))l,l (D((ω)i))
∗
l,l {Φ}Tl {Φ}l

)(

{Φ}l ◦ {Φ}l
))

.
(2.55)

Introducing a factor

(γ((ω)i))
2 = αα∗ (D((ω)i))i,i (D((ω)i))

∗
i,i {Φ}Ti {Φ}i (2.56)
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Figure 2.2: Comparison of predicted spectral amplitudes using eigenvectors and power

spectral amplitudes. The spectral response based on the first three bending modes of a

simply supported beam are shown separately. The modal damping varies by 1%, 5%, and

20%.

and applying Equation (2.10), Equation (2.55) can be reformulated

E
(

S̃x((ω)i)
)

≈

2V0

T
(γ((ω)i))

2
n
∑

l=1

((

4(ζ)2i (ω)4i
((λ)l − (ω)i)2 + 4(ζ)2l (λ)l(ω)2i

{Φ}Tl {Φ}l
{Φ}Ti {Φ}i

)

(

{Φ}l ◦ {Φ}l
)

)

(2.57)

with (ζ)l 6= 0 ∀ l = 1, 2, . . . , n. If the modal damping ratios (ζ)l are small, but not zero,

and the circular eigenfrequencies (ω)l are well separated, the expected value of the power

spectral density can be approximated by

E
(

S̃x((ω)i)
)

≈ 2V0

T
(γ((ω)i))

2 {Φ}i ◦ {Φ}i . (2.58)

On the premise that the factors (γ((ω)i))
2 = γ2

0 are constant for all modes i, the

spectral response amplitude matrix according to Equation (2.39) can be reduced to

Υ = γ0
∆

Φ with (
∆

Φ)i,j = ‖(Φ)i,j‖L2. (2.59)

As the normalized matrix Ῡ according to Equation (2.40) is the basis of the algorithm,

Υ =
∆

Φ can be applied directly.

One example, which fullfils all requirements, is a simply supported beam with a suffi-

cient stiffness to mass ratio, where only the bending modes in one direction are considered

and accelerations are supposed to be measured. The excitation is assumed to be a perfect

white noise. Furthermore, the modal damping ratios are small and constant for all modes

i. For an equidistantly discretized, homogeneous beam, the norms of the eigenvectors

{Φ}Ti {Φ}i are constant for all modes i. Due to measured accelerations, the value α is
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equal to −(ω)2i . The variances of the Fourier transform of the white noise excitation

are constant as well. All these requirements lead to a constant value γ2
0 for all modes i.

Therefore, the simplification to use directly the mass normalized eigenvectors as basis for

the determination of optimal reference sensor positions is appropriate.

To visualize the effect of insufficient small modal damping ratios, the simply supported

beam described in Section 2.6 is investigated with different modal damping values that

are constant for the first three modes. Figure 2.2 shows a comparison of the normal-

ized spectral amplitudes based on Equation (2.39) with the approximation of normalized

spectral amplitudes using the mass normalized eigenvectors according to Equation (2.59).

The discrepancies between the correct curves and the approximation with eigenvectors

decrease with decreasing modal damping ratios. In this case, a modal damping ratio

below 5% may be acceptable.

However, other examples can be found where the simplification is reasonable. In

general, the simplification needs to be approved for each structure. If Equation (2.58) is

approximately fulfilled together with their specific conditions, the simplification can be

applied.

In the context of optimal experimental design of one-setup configurations, Bayard [Ba-

yard et al. 1988] also states that the sensors can be placed optimally by using only mode

shape information, if lightly damped systems are considered. This demonstrates that the

simplification is widely used also for other applications. Nevertheless, the conditions for

the simplification have to be fulfilled.

2.5 Search strategy

In Section 2.3, it was assumed that all possible sets of sensor positions can be evaluated

to extract the best set. As already discussed, the drawback of this search strategy is

the computational expense. Many authors (e.g., [Liu et al. 2008], [Papadimitriou 2004],

[Papadimitriou 2005], [Stabb et al. 1995]) solved similar problems using optimization

methods. They tried to find the optimal set of sensor positions with respect to model

updating or structural health monitoring, that includes not only the identification of

frequencies, but also the separation of mode shapes. Hence, it is obvious that at least as

many sensors are needed as modes should be identified. For the intended application in

this chapter, the identification of mode shapes is not of primary interest and the number

of reference sensors is typically smaller than the number of modes of interest.

Even if the objective functions are different, the optimization search strategy has to

deal with the same demands. [Liu et al. 2008] proposed to use the ordering of the iden-

tification number of the degrees of freedom as design variables, which is an appropriate

strategy for simple structures with one measurement direction. Of course, as the number-

ing of degrees of freedom or the node numbering itself is not necessarily coherent with the
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geometrical information of the nodes, many isolated local minima can be present. Many

researchers (e.g., [Liu et al. 2008], [Stabb et al. 1995]) applied genetic algorithms or

evolutionary algorithms as optimization method with a high number of generations and

a large population size to deal with resulting weak convergence rates. Therefore, the ap-

proaches are not applicable for complex structures with different measurement directions

and a high number of possible combinations of sensor positions.

For a satisfying convergence of the optimization algorithms, the objective function

needs to be as smooth as possible with a minimal number of local minima. In con-

trast to available approaches in literature, the innovative contribution of this chapter

is the definition of design variables based on geometrical information of possible sensor

positions instead of using directly degree of freedom numbers or any other numbering.

Consequently, the design variables are parameters of the sensor positions representing the

spatial location. For example, the longitudinal distance to a reference point (e.g., one

support) can be an appropriate design parameter, in case of a beam structure for one

measurement direction. If different measurement directions are necessary or in case of

more complicated structures, the set of possible sensor positions has to be divided into

subsets with simple geometries and one measurement direction. For example, if vertical

and lateral modes of a beam are of interest, the two measurement directions need to be

separated into two subsets.

In the next step, several smaller optimization problems will be created. The opti-

mization problem itself depends mainly on the number of design variables, which should

represent the location of possible sensor positions. If the possible reference sensor posi-

tions need to be divided into t subsets, whereas a near-optimal set of l reference sensors is

required, a number of
(

t+l−1
l

)

optimization subproblems have to be solved. The minimum

of all suboptima J(js) is the final global optimum

J(j) = min
s

J(js) ∀s = 1, 2, . . . ,

(

t + l − 1

l

)

. (2.60)

An advantage of this approach is that the suboptimization problems are well defined

and the respective objective functions are relatively smooth. Hence, a fast convergence

can be expected. This approach reduces the total computational effort and increases

the probability to determine the global optimum of the problem. An example with a

benchmark comparing several search strategies is presented in Section 2.7.

To summarize the proposed algorithm, a workflow is presented in Figure 2.3. Therein,

three phases are distinguished: (1) Preparation of numerical model and excitation, (2)

Determination of normalized spectral response amplitudes, and (3) Optimization. The

three phases have to be applied in succession.
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Phase 1: Preparation of numerical model and excitation

Extract eigenvalues λ and correspond-

ing eigenvectors Φ from numerical

model; define modal damping ratios ζ

Define mean value E

(

F̃ f (ω)
)

and

variance V

(

F̃ f (ω)
)

of Fourier

transform of expected excitation

Assemble mode shape matrices Φf and Φx, with

respect to excitation and response locations

Apply transformation according to Section 2.2.3, if needed

Phase 2: Determination of normalized spectral response amplitudes

For all modes of interest

Evaluate the frequency response function Hxf (ω) at respective circular

eigenfrequency (Equation (2.9))

Evaluate the mean value and variance of response power spectral densities S̃x

(Equations (2.12)-(2.15))

Assemble respective column of Υ (Equation (2.39))

Calculate normalized spectral amplitudes Ῡ (Equation (2.40))

Phase 3: Optimization

Define t substructures s and corresponding design variables

Calculate combinations of substructures

For all combinations of substructures

Determine best reference sensor positions using optimization

while (stop criterion is not true)

Variation of design variables

Determining nearest discrete position corresponding to a certain row in Ῡ

Evaluation of objective function according to Equation (2.48)

do

Determine global optimum (Equation (2.60))

Extract best reference sensor positions

Figure 2.3: Workflow for optimal reference sensor placement.
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2.6 Benchmark study: Simply supported beam

2.6.1 System description

The described approach of Section 2.3 will be investigated within a benchmark study of

a simply supported beam. The beam is 10m long and has a rectangular cross-section

as described in Figure 2.4. It is supposed to be made of concrete. Hence, the Young’s

modulus is assumed to be 3 ·1010 N
m2 , the Poisson ratio is given as 0.2, and the mass density

is set to 2500 kg
m3 . The beam is modeled using finite elements. The 1000 twelve degree

of freedom beam elements are equidistantly distributed along the structure. All modal

damping ratios are set to 3%. Then, the complex frequency response function can be

calculated by Equation (2.9) for each natural frequency of the system assuming measured

accelerations.

Only the first n vertical bending modes are of interest, whereas each mode is equally

important. The 500 possible sensor positions are distributed at the left half of the beam

between x = 0.01m and x = 5.00m. Possible positions of the reference sensors are

identical to the positions of the finite element nodes. In the following, the best reference

sensor positions for an ambient excitation and a random multiple impulse excitation will

be determined while the number of reference sensors and the number of modes of interest

will be varied. As only vertical bending modes are of interest, the reference sensors are

assumed to measure always in vertical direction.

2.6.2 Ambient excitation

The ambient excitation, which is applied for all frequencies to each translational degree of

freedom in vertical and longitudinal direction, is realized by applying white noise with a

zero mean and a constant variance of the real and imaginary part of the Fourier spectrum,

according to the investigations in Subsection 2.2.4. The rotational degrees of freedom are

assumed to be not excited. The normalized spectral amplitudes are calculated by using

Equations (2.39) and (2.40). The columns of the matrix of normalized spectral amplitudes

represent the modes of interest. Figure 2.5 shows the normalized spectral amplitudes up

to the 8th vertical mode of the system. It can be observed that the shape of the spectral

x

5.00m 5.00m 40cm

2
0
cm

cross-section

Figure 2.4: Simply supported beam with rectangular cross-section.
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Figure 2.5: Normalized spectral amplitudes of the simply supported beam in case of

ambient excitation. (only left half span is considered due to symmetry)
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of vertical modes of a simply supported beam. ⊕ indicates the optimal position with

respect to the number of modes of interest.

amplitudes is similar to the mode shapes with respect to the observed degrees of freedom.

Section 2.4 discussed this phenomenon in detail.

Based on the normalized spectral amplitudes, the objective function according to

Equation (2.48) can be evaluated for all combinations of reference sensor positions. The

optimal reference sensor positions are found at the minimum of the objective function.

Of course, the best configuration depends on the number of reference sensors, the number

of modes of interest, and the weightings w1 and w2. The dependency on the number of

modes of interest in case of one reference sensor is visualized in Figure 2.6. In total, 500

positions are available in the present study. Obviously, if only the first vertical mode
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(d) Objective for 4 modes of interest
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Figure 2.7: Objective function using two reference sensors to detect a certain number of

vertical modes of a simply supported beam assuming ambient excitation. ⊕ indicates the

optimal position.

is of interest, the best reference position will be in the midspan of the simply supported

beam at position 5m. The first three vertical modes are best represented using a reference

sensor at position 2.5m. This is the crossing point of the normalized spectral amplitudes

of modes one and three and the maximal normalized spectral amplitude of mode two.

Derived from practical applications, [Wenzel et al. 2005, p. 33] recommended a position

of 40% of the maximal span width to capture the modal information of the first few modes.

Actually, the proposed approach shows that this position represents an optimal position,

if the first four vertical modes need to be investigated. Furthermore, it is a suboptimal

position in case the first three vertical modes are of interest.

With an increasing number of modes to be investigated, the minimal achievable ob-

jective function values increase. Depending on the normalized spectral noise level, it is

possible that the spectral amplitudes of a certain mode are below the noise level. Conse-
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(b) Objective for 6 modes of interest
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(c) Objective for 7 modes of interest
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(d) Objective for 8 modes of interest
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Figure 2.8: Objective function using two reference sensors to detect a certain number of

vertical modes of a simply supported beam assuming ambient excitation. ⊕ indicates the

optimal position.

quently, additional reference sensors have to be used to capture a large number of modes.

As a next step, the number of available reference sensors is extended to two. That is

related to 124,750 possible combinations of reference sensor sets. The objective functions

are evaluated for an increasing number of modes of interest up to eight modes. The

weighting factors are chosen to be w1 = 0.9 and w2 = 0.1. Figures 2.7 and 2.8 show the

results. As expected, the best positions to detect up to three modes are at the maximum

points of the respective normalized spectral amplitudes according to Figure 2.5. For six,

seven, or eight modes to be detected, the optimal positions do not change significantly,

which cannot be generalized for an increasing number of modes. When using two refer-

ence sensors instead of one reference sensor, while eight modes are of interest, the minimal

objective value can be significantly reduced from 0.65 to 0.19.

To investigate a further improvement of the objective function and thus, an improve-
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Figure 2.9: Objective function value at the optimum for different numbers of available

reference sensors and modes to be detected assuming white noise excitation.

Table 2.2: Objective function value and respective optimal positions assuming ambient

excitation. The positions are related to the distance of the sensor to the left support.

1 sensor 2 sensors 3 sensors 4 sensors (PSO)

# of objective position objective positions objective positions objective positions

modes value [m] value [m] value [m] value [m]

1 0.033516 5.00 0.033516 4.99 5.00 0.033517 4.98 4.99 5.00 0.065894 4.97 4.98 4.99 5.00

2 0.163304 3.34 0.061603 2.50 5.00 0.051084 2.51 2.52 5.00 0.048941 2.57 2.98 3.00 5.00

3 0.316581 2.50 0.061603 2.50 5.00 0.051084 2.51 2.52 5.00 0.052859 1.88 2.43 3.43 5.00

4 0.428804 4.00 0.096235 2.01 4.00 0.073138 1.25 2.58 4.94 0.061034 1.28 2.43 3.72 5.00

5 0.515869 1.67 0.177338 1.68 3.34 0.073138 1.25 2.58 4.94 0.061034 1.28 2.43 3.72 5.00

6 0.573101 4.28 0.185096 3.33 4.45 0.073200 1.25 2.57 5.00 0.061320 1.23 2.50 3.70 5.00

7 0.621318 3.76 0.185096 3.33 4.45 0.073200 1.25 2.57 5.00 0.061320 1.23 2.50 3.70 5.00

8 0.654878 2.22 0.185096 3.33 4.45 0.105985 1.02 2.00 4.41 0.076504 0.64 1.17 2.57 4.94

9 0.681027 2.99 0.235301 1.01 3.01 0.106869 2.99 4.00 4.85 0.076504 0.64 1.17 2.57 4.94

10 0.702232 2.74 0.280632 1.82 4.55 0.142414 0.91 1.83 4.36 0.076639 0.64 1.17 2.44 4.94

ment of the signal to noise ratio, a variation is performed with respect to the number

of reference sensors and the number of modes of interest. The results are visualized in

Figure 2.9. It can be observed that with increasing numbers of reference sensors, the

optimal objective function value decreases. However, for a certain number of sensors, the

objective function improvement may be not significant enough to justify the application

of more reference sensors. Moreover, the numerical effort increases with a higher number

of available reference sensors. For example, 20,708,500 evaluations of the objective func-

tion are needed for three reference sensors and 2,573,031,125 evaluations of the objective

function are possible for four reference sensors. To determine the best set of four reference

sensor positions, an evaluation of all combinations is not efficient. Hence, an optimization

procedure using a particle swarm optimization (PSO) (e.g., [Kennedy et al. 1995]) with

passive congregation ([He et al. 2004]) and fly-back mechanism according to [Li et al.

2007b] is applied. The design variables, which are related to the discrete nodal informa-

tion of the structure, are the distances from the left support. The objective function is
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identical to the one used in the sequential evaluations for up to three reference sensors.

In addition, the limit defined in Equation (2.49) is drawn in Figure 2.9. For this special

benchmark example with white noise excitation, the limit is almost independent from the

number of modes of interest. This could be not observed for a random multiple impulse

excitation as described in Section 2.6.3.

Table 2.2 summarizes all optimal objective function values with their corresponding

sets of sensor positions regarding the number of modes to be investigated and the available

number of reference sensors. As already observed for the determination of the best sensor

positions, in case of one and two reference sensor positions, the number of local optima

increases with increasing number of sensors and modes of interest. Hence, it is difficult to

find the best set of positions, if it is not possible to evaluate all combinations. However,

the local minima have objective values similar to the global optimum. Therefore, it may

be sufficient for applications to use a local optimum as reference sensor position.

2.6.3 Multiple impulse excitation

In many applications, the low spectral amplitudes usually obtained from ambient ex-

citations are not sufficient. Higher spectral amplitudes of a random excitation can be

achieved, for example, by generating an artificial noise signal with shakers mounted on

the structure. Practical problems may arise due to additional masses on the structure,

the interaction with the structure, or the additional effort to install and to operate the

shakers. The application of random multiple impulses is an easy and efficient alternative,

if a representative total excitation time and sufficient excitation energy can be guaranteed.
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Figure 2.10: Variance of the real and imaginary part of the Fourier spectrum of random

multiple impulse excitation. Vertical lines indicate the position of circular eigenfrequencies

corresponding to vertical bending modes of the simply supported beam.
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Figure 2.11: Normalized spectral amplitudes expecting random multiple impulse excita-

tion on a simply supported beam.
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Figure 2.12: Objective functions assuming one reference sensor detecting a certain num-

ber of vertical modes of a simply supported beam assuming random multiple impulse

excitation. ⊕ indicates the optimal position with respect to the number of modes of

interest.

The single impulses do not need to be measured in terms of intensity or spatial distribu-

tion, as long as the statistical characteristics are available. In the presented benchmark

study, the impulses are only applied at the right half of the beam between x = 5.05m

and x = 9.99m. Furthermore, only vertical degrees of freedom in positive and negative

direction can be excited. A random number represents the excitation of each degree of

freedom with respect to a certain time instant. The distribution of the random numbers

are identical for all degrees of freedom and all instants of time. These random numbers

are independent concerning time and space. The expected value of the Fourier spectrum

is zero and the variance of imaginary and real part can be represented similar to Equation
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(b) Objective for 2 modes of interest
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(d) Objective for 4 modes of interest
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Figure 2.13: Objective function using two reference sensors to detect a certain number of

vertical modes of a simply supported beam assuming random multiple impulse excitation.

⊕ indicates the optimal position.

(2.35) by

V (Re (Ff (ω))) = V (Im (Ff (ω)))

= 0.18(ω + 500) exp (−0.002(ω + 500)) + 1.7 ∀ ω > 0.
(2.61)

This function is shown in Figure 2.10. The vertical lines in Figure 2.10 are related to the

circular eigenfrequencies of the first ten vertical bending modes of the beam. As typical

for an impulse excitation, the excitation energy decreases with higher frequencies.

Once the statistical properties are known, the normalized spectral amplitudes can be

calculated according to Equation (2.40). They are visualized in Figure 2.11. The effect

of decreasing excitation energy with increased circular eigenfrequency is clearly visible.

Based on the normalized spectral amplitudes, the best reference sensor position can be

determined using Equation (2.48) with weightings w1 = 0.9 and w2 = 0.1.
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(d) Objective for 8 modes of interest
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Figure 2.14: Objective function using two reference sensors to detect a certain number of

vertical modes of a simply supported beam assuming random multiple impulse excitation.

⊕ indicates the optimal position.

In a first investigation, only one reference sensor is assumed to be available. The

results are given in Figure 2.12. The determined best reference positions are similar

to the positions obtained for white noise excitation, presented in Figure 2.6. The only

exceptions occur with six and eight modes of interest. It is obvious that the best positions

are in the vicinity of crossing normalized spectral amplitudes of the determining modes.

For example, if eight modes are of interest, the best position is at the crossing of the

normalized spectral amplitude of the first and eighth mode.

The best positions of two reference sensors in combination with random multiple

impulse excitation are presented in Figures 2.13 and 2.14. If less than six modes are

of interest, the obtained positions are comparable to those of white noise excitation. In

cases of six, seven, or eight modes to be detected, the determined positions deviate clearly

from the positions obtained for white noise excitation. The objective function shapes



2.6. BENCHMARK STUDY: SIMPLY SUPPORTED BEAM 43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

ob
je

ct
iv

e
va

lu
e

at
m

in
im

u
m

[-
]

number of modes of interest

1 sensor
2 sensors
3 sensors
4 sensors

J̃

Figure 2.15: Objective function value at optimum for different numbers of available

reference sensors and modes to be detected assuming random multiple impulse excitation.

Table 2.3: Objective value and respective optimal positions assuming random multiple

impulse excitation.

1 sensor 2 sensors 3 sensors 4 sensors (PSO)

# of objective position objective positions objective positions objective positions

modes value [m] value [m] value [m] value [m]

1 0.000000 5.00 0.000000 4.99 5.00 0.000001 4.98 4.99 5.00 0.000002 4.97 4.98 4.99 5.00

2 0.139250 3.30 0.041362 2.50 4.41 0.032870 2.50 2.73 4.42 0.031571 2.51 3.04 3.05 4.42

3 0.307436 2.44 0.098687 2.50 5.00 0.088374 2.29 2.45 5.00 0.090217 1.67 2.17 3.31 5.00

4 0.434647 4.03 0.196376 1.67 3.77 0.196325 1.25 2.14 3.94 0.192396 1.66 1.67 3.75 4.10

5 0.540408 1.52 0.333965 1.29 3.01 0.333622 1.01 3.24 4.65 0.331338 1.01 1.24 3.12 4.77

6 0.616970 2.89 0.481886 0.84 2.39 0.481510 0.84 0.90 4.11 0.481313 0.83 0.84 2.50 4.17

7 0.685214 3.70 0.611533 0.72 2.14 0.611502 0.71 0.72 2.14 0.611520 0.71 0.72 0.73 3.57

8 0.741497 0.84 0.700511 0.63 1.88 0.700482 0.62 0.63 1.88 0.700471 0.62 0.63 0.64 1.88

9 0.775433 0.73 0.746643 0.56 1.67 0.746616 0.55 0.56 1.67 0.746606 0.55 0.56 0.57 1.66

10 0.794130 0.66 0.763842 0.50 1.50 0.763814 0.50 0.51 1.50 0.763802 0.49 0.50 0.51 1.50

themselves are similar, but with a lower objective value. This lower objective value results

from the high differences of excitation energy between lower and higher frequencies. As

the optimal reference sensor positions are at locations of maximal normalized spectral

amplitudes of the respective last mode of interest, the best position is only determined by

this mode. For instance, in case of eight modes of interest, the optimal positions are at

locations of the maximal normalized spectral amplitudes of the eighth mode. This differs

from the white noise excitation, where the best positions are at crossing points of the

normalized spectral amplitudes.

The investigation can be continued by increasing the number of available reference

sensors. Figure 2.15 shows this effect for different numbers of modes of interest. It is

noticeable that the objective value at the minimum cannot be significantly improved for

increasing numbers of available reference sensors. This is typical for impulse excitations

as the objective is mainly determined by the mode with the highest frequency. The limit

according to Equation (2.49), presented graphically in Figure 2.15, shows that more than
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two sensors are not feasible for the current benchmark study.

A summary of all results with best objective values and respective positions for several

combinations of sensor numbers and number of modes of interest is given in Table 2.3.

2.7 Case study: Test specimen

2.7.1 System description

While the benchmark study of a simply supported beam, presented in Section 2.6, ex-

plained and validated the proposed algorithm, the case study in this section considers a

test specimen with a more complex geometry. For this example, the optimal reference sen-

sor positions cannot be determined exclusively by experience. The test specimen, made

of welded steel plates and a standard C-section, has dimensions of about 75cm by 50cm

by 70cm and weighs approximately 160kg. Its first eleven calculated global mode shapes

are presented in Figure 2.16. In the tests, the specimen is supported by a rubber rope to

ensure free-free conditions. Figure 2.17 shows the test configuration.

The presented case study investigates two issues. Firstly, the accuracy of theoretically

derived spectral response amplitudes are validated by a specific test configuration. And

secondly, the best reference sensor configuration is determined by the proposed strategy.

As the measurement direction and the excitation direction are always perpendicular to

the surfaces, a transformation needs to be applied. This transformation is described in

Section 2.2.3.

2.7.2 Description of finite element model

An initial finite element model is created using the software Ansys Workbench [ANSYS,

Inc. 2009]. The model is only based on pretest knowledge. The geometry and the

material are modeled as accurate as possible based on drawings and additional geometry

measurements. As the test specimen is assumed to be decoupled from the supporting

structure, the finite element model does not contain supports. The welds are connected by

the bonded contact formulation with standard penalty formulation provided in [ANSYS,

Inc. 2009]. It is assumed that the welded parts are in direct contact with each other.

This is modeled again by the same bonded contact formulation. The final model has

132,792 nodes and 38,295 volume and contact elements. It is assumed that welds and

structural steel have identical material properties, namely a Young’s modulus of 2.12MPa,

a Poisson’s ratio of 0.3, and a density of 7850 kg
m3 .

The finite element model is shown in Figure 2.18 and the first eleven non-local, non-

rigid body mode shapes obtained from the numerical model are presented in Figure 2.16.

In addition, six rigid body modes at frequencies close to 0Hz and eight local modes at
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Mode 1: 78.72Hz Mode 2: 104.40Hz Mode 3: 160.65Hz Mode 4: 259.30Hz

Mode 5: 318.13Hz Mode 6: 328.16Hz Mode 7: 338.76Hz Mode 8: 395.81Hz

Mode 9: 415.74Hz Mode 10: 462.88Hz Mode 11: 541.24Hz

Figure 2.16: First 11 non-local, non-rigid body modes obtained by numerical modal

analysis.

Figure 2.17: Left: Test specimen with free-free support conditions. Right: Accelerometers

PCB338B35 mounted with magnets at lower flange.
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Figure 2.18: Finite element model. The measurement points and excitation points are

indicated with MP and F, respectively.

natural frequencies between 195.19Hz and 198.16Hz are observed. The local modes are

mainly associated with bending modes of the four support plate screws mounted as safety

support for the rope.

2.7.3 Validation of spectral response amplitudes

To validate the theory described in Section 2.2, a multiple impulse test has been per-

formed, whereas random excitation is applied at two specific positions. This test is con-

ducted as a one-setup configuration and does not primarily aim at identifying the best

reference sensor positions. The investigation shows a comparison between experimentally

obtained and theoretically derived power spectral densities.

The data acquisition system consists of an NI DAQ6062E card connected to an NI

SCXI1000DC with four modules NI SCXI1531. The data acquisition software LabVIEW

[National Instruments 2009] is applied on a standard notebook. The hammer impacts

are introduced by a standard rubber mallet at the two predefined positions. Two force

sensors PCB200B05 are utilized to measure the force over time. Twelve accelerometers

PCB338B35 measure the response at twelve predefined positions denoted by MP1 to

MP12.

The locations of force sensors and accelerometers are described in Figure 2.18. The

measurement duration of a single test is 180 seconds. This test has been repeated 107

times. Figures 2.19-2.23 show representative time histories of force and acceleration with

corresponding averaged power spectral densities for a single test. It can be observed

that the most energy of the impulses is concentrated within a frequency range up to
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Figure 2.19: Example of a time history of the force signal at position F1.
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Figure 2.20: First impulse of the force time history given in Figure 2.19.
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Figure 2.21: Example of an averaged power spectral density of the force signal at position

F1 using 180 statistically independent blocks of a 180s time history.
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Figure 2.22: Example of a time history of the response signal at position MP12.

10−5

10−4

10−3

10−2

10−1

100

101

102

103

0 500 1000 1500 2000 2500 3000 3500 4000

∆ S
x

[

m
2

s3

]

frequency [Hz]

Figure 2.23: Example of an averaged power spectral density of the response signal at

position MP12 using 180 statistically independent blocks of a 180s time history.

600Hz. Therefore, the following assessment is limited to frequencies not greater than

600Hz. For subsequent analyses, the first 18s of each 180s test are removed to assure

stationarity in the remaining signals. The remaining time histories are cut into six 27s

blocks without overlapping. An advanced model updating of the described finite element

model is not the intention of this investigation. To validate the confidence of the model

with the experiments, each 27s block is evaluated by the covariance-based stochastic

subspace identification algorithm [Peeters et al. 1999]. Based on these results, erroneous

measurements and outliers are identified and removed manually from the total set. Finally,

507 blocks of 27s are included in the statistics. The sample mean and sample standard

deviation of the obtained modal parameters are presented in Table 2.4. The sample mean

value and sample standard deviation of the magnitudes of the complex modal assurance

criterion [Allemang et al. 1982] between experimentally obtained and numerically derived

modal displacements using the twelve measurement points are given as well.
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Table 2.4: Comparison of numerically derived and experimentally obtained modal prop-

erties. The statistics rely on 507 stochastic subspace identification (SSI) evaluations of

data sets with time duration of 27s. The modal assurance criterion is calculated between

the mode shapes obtained from the SSI algorithm and numerical mode shapes.

experimental numerical

mode frequency damping frequency MAC

mean(stdv) mean(stdv) mean(stdv)

[Hz] [%] [Hz] [-]

1 78.737 (0.0270) 0.1773 (0.0627) 78.721 0.9994 (0.0000)

2 105.13 (0.0176) 0.0640 (0.0184) 104.40 0.9996 (0.0000)

3 160.69 (0.0181) 0.0324 (0.0103) 160.65 0.9982 (0.0000)

4 256.62 (0.2228) 0.5637 (0.0747) 259.30 0.9980 (0.0002)

5 318.18 (0.1199) 0.0447 (0.0082) 318.13 0.9890 (0.0008)

6 330.26 (0.0373) 0.0479 (0.0083) 328.16 0.9786 (0.0018)

7 340.91 (0.0266) 0.0554 (0.0065) 338.76 0.9634 (0.0031)

8 394.95 (0.2036) 0.3757 (0.0186) 395.81 0.9955 (0.0004)

9 415.58 (0.0637) 0.1271 (0.0133) 415.74 0.9980 (0.0001)

10 466.19 (0.0296) 0.0352 (0.0068) 462.88 0.9983 (0.0001)

11 538.91 (0.0647) 0.2231 (0.0261) 541.24 0.9936 (0.0004)

The fast Fourier transformation is applied to each of the 507 27s blocks without any

further data processing except an offset removal. The complex Fourier spectra are eval-

uated separately for each block. Thereafter, the statistical properties, sample mean and

sample standard deviation, of the Fourier transforms are calculated. The mean values

of the power spectral densities are calculated according to Equation (2.12). They are

visualized for each measurement point in Figures 2.25 and 2.26 indicated with the black

lines.

The data processing of the force time histories is exactly the same as for the response

time histories up to the evaluation of the sample mean and sample standard deviation of

their Fourier transforms. The power spectral densities are not needed for further calcula-

tions. Figure 2.24 shows that the mean values are close to zero. A moving least squares

algorithm [Lancaster et al. 1986] with exponential weighting and an influence radius

R = 600 is applied to smooth the curve of sample variances. It is assumed that the real

and imaginary parts are equal and that the mean values are zero. The sample variances

and mean values of the imaginary and real parts are given in Figure 2.24 exemplarily for

the first excitation point.

Applying Equations (2.13), (2.14), (2.15), and (2.12), the mean value of the response

power spectral density can be calculated analytically, based on the smoothed variances

and a zero mean of the excitation Fourier spectra. The first 32 rigid body, global, and local
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Figure 2.24: Sample mean values and sample variances of the Fourier transform of the

force signal at position 1 with respect to the multiple impulse excitation. The smoothed

curves for the variances are based on a moving least squares algorithm. The sample means

are approximated by a constant value zero.

modes, which are required to assemble the frequency response function, are extracted from

the numerical model described in Section 2.7.2. Assuming proportional viscous damping,

the modal damping ratios of the first eleven global modes are set to the mean values of

the modal damping ratios derived from the stochastic subspace identification evaluations,

which are presented in Table 2.4. The modal damping ratios of the local modes between

170Hz and 200Hz are set to 0.15%. All other modal damping ratios are set to 0.1%. The

results for each measurement point are given in Figures 2.25 and 2.26, indicated with the

red lines.

To investigate the influence of model assumptions (e.g., proportional viscous damping,

support conditions) and deviations of the numerical model, two alternative approaches are

chosen to describe the frequency response function in Equations (2.13), (2.14), and (2.15).

The first alternative approach uses the modal data (frequencies, damping ratios, modal

displacements) of the first eleven global modes obtained from the stochastic subspace
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identification to assemble the frequency response function. The results are indicated by

the blue lines in Figures 2.25 and 2.26. The second alternative approach relies on the

experimental frequency response function obtained from averaging all 507 experimental

input and output relations. This is visualized as green line in Figures 2.25 and 2.26. Both

alternative approaches use the same statistical values of the force Fourier transforms like

in the structural model based approach.

In general, all power spectral densities of the alternative approaches agree well in

comparison to the pure experimentally obtained power spectral densities. The experi-

mental power spectral densities, corresponding to the black line, are less smooth com-

pared to those obtained by the approaches indicated by the red and blue line. This can

be explained by the statistical scatter. In addition, measurement noise influences the

smoothness of the curves. If the noise can be approximated by a normally distributed

zero mean independent variable with respect to amplitude and frequency, the variance of

the noise is included as an additional summand in the mean value of the experimental

power spectral density. Test measurements without external excitation showed that the

mean value of the power spectral density of measurement noise is approximately 10−6 m2

s4
s

for all acceleration signals in the frequency range between 50Hz and 600Hz.

The approach, indicated by the green color in Figures 2.25 and 2.26, uses directly

the spectral input output relation by establishing the experimental frequency response

function. Therefore, no structural model assumptions are included. The green and the

black lines are very similar to each other. The amplitudes and positions of the natural

frequencies agree perfectly. Discrepancies are obvious in the lower amplitudes. This can be

partially explained by nonlinear effects and measurement noise that are disregarded. Due

to averaging effects, the calculated frequency response function is less sensitive to noise

than the experimentally obtained power spectral densities, which include the variance of

the noise as a summand.

An additional assumption is made by using the modal parameters from the stochastic

subspace identification, as performed in the approach indicated by the blue line. There,

proportional viscous damping is presumed, which is reflected in the calculation of the

frequency response function. However, the amplitudes and positions of the natural fre-

quencies agree almost perfectly with the experimental power spectral amplitudes. Larger

discrepancies are observed for lower amplitudes. As only the eleven global modes are

included, the amplitudes near the boundaries of the covered frequency range have higher

deviations. This can be explained by the missing interaction effects with modes outside

the considered frequency range. A very clear example for this phenomenon is the measure-

ment point MP3 around the frequency of 500Hz. Furthermore, the local modes between

160Hz and 250Hz cannot be recognized.

The approach, corresponding to the red line in Figures 2.25 and 2.26, uses the modal

damping ratios from the measurement. The natural frequencies and mode shapes are
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Figure 2.25: Comparison of mean values of auto power spectral amplitudes of the re-

sponses at MP1 to MP6 using different approaches.
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Figure 2.26: Comparison of mean values of auto power spectral amplitudes of the re-

sponses at MP7 to MP12 using different approaches.
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extracted from the numerical structural model. Therefore, additional model uncertainties

are introduced, which lead to higher deviations in the spectral amplitudes and positions

of the natural frequencies. Nevertheless, the deviations are small especially in the range of

the natural frequencies. As this approach assumes a proportional viscous damping model,

the results are very similar to those obtained from the stochastic subspace identification

approach, indicated by the blue color.

The different approaches show how different assumptions and simplifications of the

model can lead to deviations. However, it can be shown that the proposed method to

estimate the power spectral densities, based on a numerical model, is appropriate to

predict power spectral densities obtained by a vibration test. These estimated power

spectral amplitudes constitute the basis to validate possible sensor positions.

2.7.4 Determination of optimal reference sensor positions

2.7.4.1 One reference sensor using measured positions

Now, the twelve previously defined measurement points are investigated concerning their

suitability for a reference sensor position in a roving sensor setup configuration with one

reference sensor, where the first eleven global modes need to be covered. For each possible

sensor position, Equation (2.48) will be evaluated based on the power spectral densities

of both, the experimental data and the approach, which relies on the numerical structural

model marked by the red color in Figures 2.25 and 2.26.

As the experimental power spectral amplitudes are not smooth, the peak values at the

position of the natural frequencies of the experimental power spectral densities are ob-

tained from a moving least squares (MLS) smoothed curve around the natural frequencies.

The spectral amplitudes corresponding to the numerical model approach are calculated

directly at the position of the natural frequencies.

Figure 2.27 shows the objective function value according to Equation (2.48). Even

though significant deviations are observed at positions MP1 and MP6, the results, based

on experiments and numerical structural model, are very similar. Assuming a required

signal to noise ratio of 100, defined by the ratio of power spectral densities, possible

reference sensor positions are at MP6, MP7, MP8, and MP11, which are revealed by both

approaches. Furthermore, both approaches indicate MP7 as best position.

The investigation shows impressively that the predicted best reference position is equal

to the experimentally obtained position. This validates the methodology proposed in

Section 2.3. However, these perfect results rely on an almost perfect numerical model

and the experimentally obtained modal damping ratios. For more imprecise models and

less accurate predicted modal damping ratios, the prediction may be less reliable. The

influence of those uncertainties needs to be investigated more detailed, which is out of the

scope of these investigations.
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Figure 2.27: Objective function value of each measurement position according to Equation

(2.48). black: calculation based on measured data; red: prediction based on structural

model; The dotted line is related to a signal to noise ratio of 100 derived from the spectral

density of measurement noise.
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Figure 2.28: Objective function value of each measurement position according to Equation

(2.48) depending on the distribution and size of modal damping ratios.

Nevertheless, a small investigation of the variation of modal damping ratios has been

performed. This study uses the previously described approach related to the structural

model indicated by the red color. The modal damping ratios are modified and set to a

certain constant value for all 32 considered modes to calculate the frequency response

function. Figure 2.28 shows the result using the original modal damping values obtained

from the stochastic subspace identification method and assuming constant modal damping

ratios with values of 0.1%, 0.3%, and 0.5% for all included modes. All spectral amplitudes

are scaled with the maximal value maxj,i (Υ)j,i according to the reference approach using
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modal damping ratios extracted from the stochastic subspace identification.

It can be observed that the objective function is sensitive to the size of modal damp-

ing and the distribution over the modes. However, for all constant damping ratios of

0.1%, 0.2%, and 0.5%, the measurement point MP8 is indicated as best reference sensor

position, which is one of the four best positions identified by the approach related to the

experimental data.

The objective values in Figures 2.27 and 2.28 are all close to one. Nevertheless, the

differences are significant, when they are related to the minimal expected objective value

according to Equation (2.49). The results derived with the structural model approach,

presented in Figure 2.27, need to be related to the best objective value of 0.9952443. To

obtain this value a large number of reference sensors and additional other assumptions

and simplifications are required, as discussed in Section 2.3.

2.7.4.2 One reference sensor

On the basis of the previously validated model, the optimal sensor position for one refer-

ence sensor to represent the first eleven global modes will be investigated. 22,706 degrees

of freedom are selected as possible sensor positions. The measurement directions are al-

ways perpendicular to the respective surfaces. From each plate, only one side is chosen to

represent the behavior in orthogonal direction. As the direction cannot be defined within

one global coordinate system, the transformation described in Subsection 2.2.3 is applied.

The positions of the selected degrees of freedom are illustrated in Figure 2.29. With the

weighting factors w1 = 0.9 and w2 = 0.1, Equation (2.48) is applied as objective function

to assess the suitability of each preselected degree of freedom. Due to the small number

0.998

0.999

1.000

⊕

Figure 2.29: Objective function for the placement of one reference sensor for the detection

of the first 11 global modes of the structure. The symbol ⊕ indicates the optimal position

with an objective value of 0.99781.
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of possible reference sensor positions, all possibilities can be evaluated. The objective

function values associated with the degrees of freedom are visualized in Figure 2.29. As

the structure is almost symmetric, two possible suitable positions can be identified. The

best position with an objective value of 0.99781 is marked with the symbol ⊕.

2.7.4.3 Two reference sensors

For the previously described test specimen, the optimal sensor positions of two reference

sensors will be studied in this subsection. This investigation intends to find the optimal

positions regarding the first eleven global modes of the finite element model. The total

number of combinations for the preselected 22,706 measurement positions is 257,769,865.

Even though the time to evaluate one combination is approximately 0.3ms at a single cpu

with a Six-Core AMD Opteron(tm) Processor 8439 SE, a calculation of all combinations

would need about 1 day, which is computationally too expensive for a practical application.

Therefore, an optimization strategy is needed to find the best combination of reference

sensor positions.

Following search strategies will be compared with each other:

(i) optimization with a genetic algorithm using design variables that are related to the

geometry of the structure,

(ii) optimization with a particle swarm optimization using design variables that are

related to the geometry of the structure,

(iii) optimization with a genetic algorithm using design variables that are related to the

degrees of freedom of the model,

(iv) optimization with a particle swarm optimization using design variables that are

related to the degrees of freedom numbering of the model,

(v) optimization with a genetic algorithm using design variables that are related to a

randomly reordered degree of freedom numbering of the model,

(vi) optimization with a particle swarm optimization using design variables that are

related to a randomly reordered degree of freedom numbering of the model, and

(vii) evaluation of samples of combinations generated by the plain Monte Carlo method.

Strategies (i) and (ii) are related to the proposed innovative concept described in

Subsection 2.5. In contrast to other strategies, the design variables are the coordinates

of a local coordinate system of defined subdomains. The 22,706 possible positions are

sorted into 20 subdomains. The subdomains, indicated in Figure 2.30, are related to

the corresponding planes of the positions. Therefore, an optimization run needs to be
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Figure 2.30: Subdomains of preselected degrees of freedom.

Table 2.5: Most important configuration parameters of the genetic algorithm (GA) de-

pending on a total number of design evaluations b.

parameters value

number of parents
√

b
5

number of individuals 2
√

b
5

number of generations 5
√

b
5

crossover probability 0.5

mutation rate 0.5

mutation standard deviation 0.01

Table 2.6: Most important configuration parameters of the particle swarm optimization

(PSO) depending on a total number of design evaluations b.

parameters value

number of iterations 2
√

b
2

number of particles
√

b
2

c1 0.5

c2 0.5

c3 0.5

ω at first iteration 0.9

ω at last iteration 0.6
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conducted for a total of 210 combinations of subdomains assuming that both reference

sensor positions can be mounted in one subdomain. For the optimization, the total

geometrical dimensions of the subdomains are normalized in each direction. Hence, the

design variables are constrained between 0 and 1. Each reference sensor position within a

certain subdomain has two design variables to describe the position in plain. As the design

variables are defined as continuous variables and the spectral information is only available

at the nodes of the finite element structure, the nearest available finite element node has

to be detected. To determine two reference sensor positions, four design variables have to

be defined. The most important configuration parameters of the optimization approaches,

genetic algorithm and particle swarm optimization, are presented in Tables 2.5 and 2.6.

A general description of the algorithms are given in Appendix B.

Strategies (iii) and (iv) are related to the common strategies found in literature, where

only the ordering of possible positions according to the degree of freedom numbering of

the finite element model is used to define a certain sensor position. In this investigation,

the preselected 22,706 possible sensor positions are sorted according to their subdomains

depicted in Figure 2.30 and then numbered from 1 to 22,706. This configuration is referred

to as the original degree of freedom numbering. For the most important subdomains one

and seven, the ordering is given in Figure 2.31. It can be observed that a certain relation

to the geometry is present. The configuration of the applied optimization approaches is

identical to the configuration used in strategies (i) and (ii). But in contrast to strategy

(i) and (ii), only two discrete design variables are required to define the reference sensor

positions.

Strategies (v) and (vi) are similar to strategies (iii) and (iv). The only difference

is the numbering of possible sensor positions, which is randomly reordered to reduce the

dependency of the numbering on the geometry. The random numbering of subdomains one

and seven is given in Figure 2.31. To increase convergence and computational efficiency of

the optimization algorithms in strategies (i) to (vi), permutations with repetition instead

of combinations without repetition are generated as design sample sets.

The simplest strategy is a search with a plain Monte Carlo sampling, which is proposed

for strategy (vii). The combinations without repetition are defined by using the design

variable definition of strategies (iii) and (iv). This unguided search algorithm is very easy

to apply.

The seven investigated strategies will be compared regarding their efficiency in terms

of generated number of design samples and with respect to the ability to detect the

optimum in terms of location and objective function value. The objective function is

evaluated according to Equation (2.48) using the weighting factors 0.9 and 0.1 for w1 and

w2, respectively. Due to the symmetry properties of the test specimen, many suboptimal

sensor position sets with almost equal objectives are possible. Therefore, the best four

suboptima are considered in the assessment. The four suboptimal sensor positions are
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visualized in Figure 2.32, whereas the global optimum is represented by the first subop-

timum. The minimal distance dp between the location vector θj ∈ R
4 of the currently

detected optimum and the location vector θp ∈ R
4 of the suboptimum p is defined as

dp = ‖θp − θj‖ with p = 1, 2, 3, 4. (2.62)

The criterion to assign a certain position to the most likely suboptimum p̄ is

p̄ = argmin
p

dp. (2.63)

The optimization is declared as failed, when the optimum cannot be found on the subdo-

mains one and seven, or when the detected positions are not within a range of 10cm of

the position of the corresponding suboptimum. To investigate the efficiency of the search

strategies, the number of maximal allowed design sample sets is restricted and reduced in

seven steps. The seven steps are performed with 2,150,895, 1,127,892, 616,370, 360,634,

232,767, 168,840, and 84,396 design sample sets. As the genetic algorithm and the particle

swarm optimization are stochastic optimization strategies, they do not deliver repeatable

results. The natural randomness of the search strategies is considered by generating 20

runs for each search. The mean values of the distance and the objective function value

of the detected optimum are calculated separately for each suboptimum. The results are

presented in Figures 2.33 - 2.39.

The implemented genetic algorithm performs better in case of optimal positions on

the boundary. This can be explained by the constraint handling. If a new design point is

not within the defined boundaries, it will be set to the respective violated boundary value.

1

7076

(a) Original DOF assignment subdomain 1

1

22706

(b) Random DOF assignment subdomain 1

17158

21786

(c) Original DOF numbering subdomain 7

1

22706

(d) Random DOF numbering subdomain 7

Figure 2.31: Original and random degree of freedom (DOF) numbering for subdomains

1 and 7.
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(a) Suboptimum 1 with (b) Suboptimum 2 with

objective value 0.995852 objective value 0.995873

(c) Suboptimum 3 with (d) Suboptimum 4 with

objective value 0.995984 objective value 0.995991

Figure 2.32: Position of best four suboptima. The first suboptimum is the global opti-

mum. The red dots mark the reference sensor positions.
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Table 2.7: Averaged calculation time to evaluate one design sample set.

strategy (i) (ii) (iii) (iv) (v) (vi) (vii)

time per design [ms] 1.87 1.93 0.30 0.34 0.30 0.34 0.38

Therefore, more designs are generated at the boundaries, which improves the detection

of optimal positions at the boundaries.

If the boundary condition is not fulfilled when using the particle swarm optimization

algorithm, the unsuitable design sample set is replaced by a randomly chosen design from a

collection of best design sample sets. Thus, the implemented particle swarm optimization

is more suitable for optima in the center of a design domain. This effect can be recognized

for the search strategies (i) and (ii), where the boundaries are very important for the

search. Only for the lower number of design sample sets, the genetic algorithm is not

able to detect one of the four suboptima. In contrast, the particle swarm optimization

frequently identifies suboptimal positions near the center of the design spaces, which are

not assignable to one of the considered suboptima. However, this effect is not observed

in case of search strategies (iii) to (vi), in which the boundaries are represented by the

available number of sensor positions.

Furthermore, it can be concluded that the innovative proposal to use geometry-based

design variables, as applied in strategies (i) and (ii), is more suitable to detect the op-

timum correctly. The optimum can be identified, even if the number of available design

sample sets is very low compared to the total number of available combinations. With

a decreasing geometry association of the design variables, the accuracy of the obtained

optimum decreases as well. This is proven by comparing the results from strategies (iii)

and (iv) with the results from strategies (v) and (vi). For search strategies (v) and (vi),

the design variables are totally disconnected from the geometry. Thus, it is obvious that

the accuracy of obtained results is similar to the search strategy (vii), in which a Monte

Carlo sampling is performed.

The time to evaluate a single design is not identical for all strategies. A benchmark

with respect to the average time to evaluate a single design is conducted on a single cpu of

a Six-Core AMD Opteron(tm) Processor 8439 SE. The results are presented in Table 2.7.

The average time includes also the calculation of the search directions, necessary sampling

of designs, and the observation of constraints. The implemented genetic algorithm is

always faster than the particle swarm optimization. Strategies (i) and (ii) are slower

than the others, because the search for the nearest discrete possible finite element node

is required. The Monte Carlo based search strategy is surprisingly slow in comparison

to strategies (iii) to (vi). The explanation therefor is the increased computational effort

to gain combinations without repetition. All other strategies are based on permutations

with repetition, which can be generated more efficiently.

Summarizing, the best search strategy is strategy (i) with a genetic algorithm and the
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Figure 2.33: Results of search strategy (i) with geometry-based design variables and

genetic algorithm.
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Figure 2.34: Results of search strategy (ii) with geometry-based design variables and

particle swarm optimization.
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Figure 2.35: Results of search strategy (iii) with design variables based on a modified

degree of freedom numbering and genetic algorithm.
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Figure 2.36: Results of search strategy (iv) with design variables based on a modified

degree of freedom numbering and particle swarm optimization.
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Figure 2.37: Results of search strategy (v) with design variables based on a randomly

reordered degree of freedom numbering and genetic algorithm.
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Figure 2.38: Results of search strategy (vi) with design variables based on a randomly

reordered degree of freedom numbering and particle swarm optimization.
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Figure 2.39: Results of search strategy (vii) based on Monte Carlo sampling.

geometry-based design variables. Like every other investigated strategy, even the best

strategy will not be able to find one of the suboptima with a certain accuracy, if the

number of available design sample sets is too small. However, very satisfying results can

be obtained with only 168,840 assessed design sample sets. These are approximately 0.066

per cent of the total number of combinations. Nevertheless, the other search strategies can

also provide suitable results with an increased but acceptable number of design sample

sets.

By applying two reference sensors, the objective function can be reduced from 0.99781

to 0.99585. Following the limits of the applied objective function, it is not worthy to

consider a higher number of reference sensors. According to Equation (2.49), the limit is

given by 0.9952443.

2.8 Discussion

The presented chapter proposed an innovative strategy to determine optimal reference sen-

sor positions for a roving sensor setup configuration. In contrast to alternative methods,

this approach can be applied to all structures where vibration quantities like displace-

ments, velocities, or accelerations, need to be measured. Moreover, the predicted spectral

response can be related to a certain measurement noise level. The strategy relies on a

prediction of expected power spectral amplitudes of the responses assuming a random

weak stationary excitation. Such excitations are, for example, ambient vibrations or mul-

tiple impulse excitations. Based on the predicted power spectral amplitudes, an objective

function could be mathematically formulated to detect the best positions for a set of ref-
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erence sensors at a structure. To solve the optimization problem, a search strategy using

nature inspired optimization algorithms, namely genetic algorithm and particle swarm

optimization algorithm, were proposed. The inventive design variable description, which

defined the sensor positions based on the geometry of the structure, improved the con-

vergence and accuracy of the proposed standard optimization algorithms. Unfortunately,

this advantage was partly neutralized by the increased computational effort.

The proposed approach was demonstrated by means of a numerical benchmark study

on a simply supported beam. The derived results met experience-based expectations.

Especially the derived position for one reference sensor, in case of ambient excitation to

investigate the first four bending modes, met experience-based expectations. Furthermore,

the approach has been applied on a real test specimen. As the computational effort was

not neglectable for this case study, intensive investigations were performed with respect to

computational effort and accuracy of various search strategies. Finally, a genetic algorithm

with a geometry-based design variable description performed best. Only 0.066 percent of

all possible combinations needed to be evaluated to obtain one of the best four suboptima.

In addition, the predicted analytically derived and experimentally obtained power spectral

densities of the responses were compared. The results showed an almost perfect agreement

at the investigated measurement points for a random multi impulse excitation. Repeated

identical tests assured statistical confidence.

Of course, the obtained results relied on an accurate finite element model and experi-

mentally derived modal damping ratios. As the definition of reference sensor positions is

a task in the pretest phase, such information is typically very uncertain. Hence, model

uncertainties need to be considered. The resulting task of determining a robust optimal

reference sensor configuration should be the topic of subsequent studies. Nevertheless,

the proposed approach to determine optimal reference sensor positions contributes to a

reduction of uncertainties with respect to extracted features from vibration measurements.
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3

The energy-based modal assurance criterion

3.1 Problem overview

According to the framework for model updating described in Section 1.2, vibration-based

model updating and prior sensitivity analysis need to compare and assign modal parame-

ters obtained from experiments and numerical analyses. Regardless of which methods are

applied for model updating or sensitivity analysis, the reliability of the obtained results is

strongly related to a correct pairing of numerically derived and experimentally obtained

mode shapes. This can be a challenge not only because of changes in the order of mode

shapes due to a change of model input parameters, but also due to the fact that only

a limited number of degrees of freedom are included in experimentally obtained mode

shapes.

Most mode assignment strategies are based on criteria that were developed to investi-

gate the correlation between an experimentally identified modal vector and the respective

mode shape of a numerical model. These indicators were analyzed by several authors and

were described in standard text books on experimental modal analysis such as [Ewins

2000a], [Maia and Silva 1997], and [Heylen et al. 1999].

One of these measures for the correlation of two mode shapes is the modal scale factor

(MSF), originally developed in [Allemang et al. 1982]. This measure is a non-normalized

indicator that depends on the scaling of two vectors. Accordingly, the magnitude of

the MSF is strongly related to the applied normalization that is used in the analysis.

This normalization can cause problems in context with a correct assignment of respective

modes. The most widely used approach to check the correlation between experimental

and numerical modal vectors is the modal assurance criterion (MAC). It was introduced

in [Allemang et al. 1982] and has been discussed in several references (e.g., [Allemang

2003], [Ewins 2000b]) as well as in the aforementioned text books. The main advantages

of the MAC are its independence of the scaling of mode shapes and its straightforward

implementation, as it does not require coordinate-complete experimental eigenvectors or

69
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system matrices [Morales 2005]. The possible range of the MAC is from zero to one.

An application of the MAC in the context of topology optimization using reduced nodal

information is given in [Kim et al. 2000]. Another criterion that is related to both, the

MAC and the MSF, was suggested in [Waters 1995] and [Maia and Silva 1997]. It is based

on normalized modal differences (NMD) and indicates maximal correlation by zero. The

NMD indicator is not bounded and yields infinity in case of perfect orthogonal mode

shapes. This can be a drawback in practice.

Several other correlation measures were derived from the MAC. For example, the linear

modal assurance criterion (LMAC) proposed by [Morales 2005], linearizes the nonlinear

behavior of the MAC. This results in a higher sensitivity in case of almost identical modal

vectors. The coordinate modal assurance criterion (COMAC) [Lieven et al. 1988] and

the enhanced coordinate modal assurance criterion (ECOMAC) [Hunt 1992] highlight the

discrepancy of particular degrees of freedom and require a preliminary mode pairing. An

overview and further discussion is given in [Allemang 2003] and [Morales 2005]. The

weighted modal assurance criterion, also known as normalized cross orthogonality (NCO)

(e.g., [Lieven et al. 1994], [Ewins 2000a], [Morales 2005]), includes additional physical

information of the structure by using reduced or expanded mass or stiffness matrices of

a finite element model. [Morales 2005] discussed this measure and indicated advantages

compared to the MAC. However, one disadvantage is the introduction of additional errors

and inaccuracies due to the necessary reduction or expansion procedure.

Unfortunately, the previously described criteria tend to fail under certain, but typical,

conditions. There are cases in which a defined sensor setup can only capture the global

dynamic behavior but not local modes, such as vibrations of certain structural elements

or substructures. If one considers, for example, a space frame structure with sensors

placed at structural nodes, the global bending and torsional modes of the system can

be identified very well, but not the mode shapes of the truss rods. Due to small modal

displacements of local modes at the measured global positions of the structure, artificial

modes could be detected that can impair a correct mode assignment. Another example is

an arch bridge, where only the bridge deck may be accessible for vibration measurements

but not the arch. Here, it can become very difficult to distinguish the modes of the arch

and the modes of the deck. This can be explained to a certain extent by the existence

of vibration modes of the arch and bending and torsional modes of the bridge deck that

have similar vibration shapes at the bridge deck [Ribeiro et al. 2009].

These problems mainly arise, if the spatial information in the experimentally identified

mode shapes is incomplete. In an interactive analysis, the recognition of correct mode as-

signment can be managed by engineering judgment. However, automated processes, such

as optimization or sensitivity analysis in the context with finite element model updating,

require a different approach.

This chapter emphasizes on situations where the mentioned mode correlation criteria
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may fail in the correct assignment of numerical to experimental modes due to incom-

plete spatial information in the experimental data. A novel mode assignment strategy

is presented that enhances the purely mathematical modal assurance criterion (MAC)

by physical information about stiffness distributions. In case of using mass-normalized

eigenvectors, a relation with modal strain energies of numerically obtained mode shapes

is achieved. Therefore, the new criterion is denoted by the energy-based modal assurance

criterion (EMAC). Typical applications are systems where only unidirectional measure-

ments are possible. The proposed method can also be applied to systems with several

weakly coupled substructures, for which sufficient modal information is not available for

all substructures. The developed method is suitable to be applied to an automatic mode

assignment, for example, within an optimization procedure.

Even though modal strain energies have been applied to manifold problems, their use

in combination with mode assignment is novel, as presented in this chapter. For example,

various approaches that use modal strain energies to detect and locate structural damage

were described in literature (e.g., [Shi et al. 1998], [Shi et al. 2000], [Li et al. 2006],

[Cornwell et al. 1999]). In [Doebling et al. 1997], it was suggested using modal strain

energies to select the most relevant modes with respect to certain structural damage.

Those modes were taken into account in model updating to detect and localize damage.

Also in context with damage detection, [Reynders et al. 2007] suggested an approach that

used measured modal strains to derive modal curvatures, which were applied as a damage

indicator. Some of these approaches require a numerical model of the considered structure

that has to describe the respective structural behavior with sufficient accuracy. This is

usually obtained by updating the parameters of an initial model. If the available experi-

mental modes are spatially incomplete, especially for systems with several substructures,

the correct assignment of the respective modes is of great importance to the updating

process.

For an enhanced understanding, the theory of the most relevant mode pairing criteria

is briefly described in the following section, before the suggested criterion is defined. A

numerical benchmark study and an experimental case study are presented. For these

studies, the suggested approach leads to satisfying results with limited additional numer-

ical effort while the application of the modal assurance criterion (MAC) fails to find the

correct mode shapes.
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3.2 Most important existing mode pairing criteria

3.2.1 Modal assurance criterion (MAC)

According to [Allemang et al. 1982], the modal assurance criterion (MAC) is defined as

(MAC)i,j =

(

{Φ̂}Ti {Φ̂}j
)2

(

{Φ̂}Ti {Φ̂}i
)(

{Φ̂}Tj {Φ̂}j
) , (3.1)

where {Φ̂}j is the reduced numerical eigenvector of mode j containing only the measured

degrees of freedom. {Φ̂}i is the corresponding experimental eigenvector of the experimen-

tal derived mode i. The modal assurance criterion is a purely mathematical criterion for

checking the consistency between two eigenvectors. The relation

(̄j)i = argmax
j

((MAC)i,j) (3.2)

assigns the numerical mode (̄j)i to the experimental mode i. For perfectly correlated

mode shapes that are in an appropriate order, the numbers i and (̄j)i should agree with

each other. As long as the modes are evidently separated based on the available sparse

spatial information and the measurement noise is negligible, the modes can be assigned

with high reliability. Some applications can be found in [Ribeiro et al. 2009], [Zabel et al.

2008b], [Cantieni et al. 2008b], [Keye 2003], [Kim et al. 2000], and [Doebling et al. 1997].

According to [Morales 2005], the linearized version of the MAC, the linear modal

assurance criterion (LMAC) is formulated by

(LMAC)i,j = 1 − 2

π
arccos

√

(MAC)i,j with arccos
√

(MAC)i,j =
[

0,
π

2

]

. (3.3)

The possible values of the MAC and the LMAC range between zero and one, where one

indicates a perfect fit. [Morales 2005] showed that the LMAC becomes more sensitive if

two modes are almost identical. Advantages of the MAC and the LMAC are a convenient

implementation and their independence of system matrices. The MAC and the LMAC

do not consider system properties like an inhomogeneous mass or stiffness distribution

[Allemang 2003]. Therefore, the application in those cases is not recommended.

3.2.2 Normalized cross orthogonality (NCO)

An extension of the MAC is the weighted modal assurance criterion (WMAC) [Allemang

2003], also denoted by modified MAC (ModMAC) [Penny et al. 1994] or normalized cross

orthogonality (NCO) check, proposed by [Lieven et al. 1994] and [Ewins 2000b]. This

normalized cross orthogonality is expressed by

(NCO)i,j =

(

{Φ̂}Ti W{Φ̂}j
)2

(

{Φ̂}Ti W{Φ̂}i
)(

{Φ̂}Tj W{Φ̂}j
) , (3.4)
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where W is a weighting matrix. Usually, either the mass or the stiffness matrix of the nu-

merical model are used as weighting matrix (e.g., [Lieven et al. 1994], [Penny et al. 1994],

[Morales 2005], [Ewins 2000b]). If the mass matrix is applied, those modal components

that are related to high kinetic energy contributions are accentuated while the application

of the stiffness matrix highlights the high strain energy contributions [Penny et al. 1994].

Since usually only limited information about the total degrees of freedom is available from

tests, reduced system matrices have to be used. It has to be recognized that a reduction

of the system matrices introduces additional errors into the system. A frequently applied

method to generate reduced system matrices is the Guyan reduction, also called static

condensation [Guyan 1965]. The numerical effort increases with a smaller ratio between

known and unknown degrees of freedom (DOFs). This increased numerical effort can be

critical for some applications. A numerically more efficient method, the system equivalent

reduction and expansion process (SEREP), has been proposed by [Avitabile et al. 1988]

and [O’Callahan et al. 1989] and was briefly explained in [Ewins 2000a]. The condensed

mass matrix MS
a and the condensed stiffness matrix KS

a are calculated by

MS
a = TTMT and KS

a = TTKT. (3.5)

The full size mass and stiffness matrices are denoted by M and K, respectively.

The transformation matrix T = ΦΦ̂+ is given by the numerical eigenvector matrix Φ

with dimension of the numerical model and the generalized inverse of the reduced eigenvec-

tor matrix Φ̂. If Φ̂ consists of a independent rows (measured DOFs) and m independent

columns (number of considered modes), the generalized inverse Φ̂+ can be calculated

using the singular value decomposition Φ̂ = LSRT [Ewins 2000b] as Φ̂+ = RS+LT. As-

suming the weighting matrix of Equation (3.4) is given by a SEREP-condensation, the

normalized cross orthogonality is also referred to as SEREP cross orthogonality (SCO)

[Ewins 2000b].

Similar to the linearized modal assurance criterion, an extension of the NCO has been

proposed by [Morales 2005].

(LNCO)i,j = 1 − 2

π
arccos

√

(NCO)i,j with arccos
√

(NCO)i,j =
[

0,
π

2

]

(3.6)

The values of NCO and LNCO range between zero and one. One indicates a perfect fit.

3.3 Mode assignment using the energy-based modal

assurance criterion

In case of a mass normalized eigenvector matrix Φ, where the jth column corresponds to

the eigenvector of the jth eigenvalue (ω)2j , one has

ΦTMΦ = I (3.7)
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and

ΦTKΦ = I(ω ◦ ω) (3.8)

with the positive definite mass matrix M, the positive definite stiffness matrix K, and

an identity matrix I. According to Equation (3.8), the total modal strain energy for

each mode j is 1
2
(ω)2j . By separating the available degrees of freedom into n independent

clusters, the eigenvector of mode j can be rewritten as

{Φ}Tj =
[

{Φ}(1)j

T {Φ}(2)j

T · · · {Φ}(n)j

T
]T

. (3.9)

Then, the corresponding clustered stiffness matrices K(k,l) ∀ k, l = 1, 2, . . . , n are given by

K =













K(1,1) K(1,2) · · · K(1,n)

K(2,1) K(2,2) · · · K(2,n)

...
...

. . .
...

K(n,1) K(n,2) · · · K(n,n)













. (3.10)

Hence, the modal strain energy for mode j with respect to cluster k is obtained.

(MSE)
(k)
j =

1

2

n
∑

l=1

{Φ}(k)j

T
K(k,l) {Φ}(l)j (3.11)

Accordingly, the total strain energy of mode j is represented by

n
∑

k=1

(MSE)
(k)
j =

1

2

n
∑

k=1

n
∑

l=1

{Φ}(k)j

T
K(k,l) {Φ}(l)j =

1

2
{Φ}Tj K {Φ}j =

1

2
(ω)2j . (3.12)

Equations (3.11) and (3.12) yield the relative modal strain energy of mode j with respect

to cluster k

(Π)
(k)
j =

(MSE)
(k)
j

n
∑

k=1

(MSE)
(k)
j

=

n
∑

l=1

{Φ}(k)j

T
K(k,l) {Φ}(l)j

{Φ}Tj K {Φ}j
with

n
∑

k=1

(MSE)
(k)
j 6= 0. (3.13)

Therefore, multiplying Equation (3.1) by Equation (3.13), results in an energy-based

modal assurance criterion for each cluster k

(EMAC)
(k)
i,j = (Π)

(k)
j (MAC)i,j. (3.14)

Based on the linearized modal assurance criterion (LMAC), an equivalent energy-based

linear modal assurance criterion can be defined.

(ELMAC)
(k)
i,j = (Π)

(k)
j (LMAC)i,j (3.15)
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The assignment of modes is given similarly to the modal assurance criterion, where the

numerical mode with the largest value is assigned to the respective experimental mode.

Analogously to Equation (3.2) the assignment can be formulated with

(̄j)
(k)
i = argmax

j

(

(EMAC)
(k)
i,j

)

. (3.16)

The chosen numerically derived mode (̄j)
(k)
i depends on the experimentally obtained

mode i and the corresponding cluster k. The relative modal strain energy (Π)
(k)
j , which

ranges between zero and one, and the modal assurance criterion (MAC)i,j are connected

by multiplication. Therefore, the range of the energy-based modal assurance criterion

(EMAC)
(k)
i,j is bounded between zero and one. The relative modal strain energy of the

observed cluster reflects the amount of energy, which can be covered by the measure-

ments. By this interpretation, the EMAC involves the possibility that a numerical mode

can be represented by both, the measurements and the purely mathematical correlation

between scaled measured and scaled numerical modes. The workflow, visualized in Fig-

ure 3.1, summarizes the procedure of pairing modes by the proposed energy-based modal

assurance criterion.

numerical modal analysis to
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Figure 3.1: Workflow for mode pairing using the energy-based modal assurance criterion.
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The success of the proposed method depends on the selected numerical degrees of free-

dom, which will be clustered. Since this selection strongly hinges on the specific structure

to be investigated and the applied experimental setup, it is difficult to present a general

guideline. However, the clusters should be chosen in a way that the measured degrees

of freedom can be separated from those degrees of freedom that were not considered in

the tests. In case of a structure that consists of several substructures, the selection of

clusters should be also related to the substructures. For example, if an arch bridge is only

instrumented at the main slab and not at the arch itself, it is more likely that a certain

experimentally obtained mode is associated with a mode that activates high energies in

the main slab. Therefore, the EMAC should be related to the cluster that contains all

degrees of freedom of the main slab. Another example is the test specimen described in

Section 2.7. The twelve chosen measurement points can cover all global modes of the

structure, but not the local modes of the screws. Therefore, the degrees of freedom of

the main structure and the degrees of freedom of the screws should be separated in two

clusters. Then, the mode assignment for the global modes can be related to the cluster

associated with the main structure. For a better understanding how to choose appropriate

clusters, further examples of typical cases are presented in the following section.

3.4 Benchmark study: Cantilever truss

3.4.1 Description of the system

The numerical example is based on a 20 degree of freedom cantilever truss consisting of

12 nodes and 21 truss members. It has been suggested in [Khodaparast et al. 2008b] for

a numerical model updating benchmark. The geometry is presented in Figure 3.2. The

cross-sectional area and the mass density of all truss members are defined to 0.03m2 and

2700 kg
m3 , respectively. The material is linearly elastic with a Young’s modulus of 7 ·1010 N

m2 .

For the numerical test example, it is assumed that the vertical modal displacements at

the four measurement points (MP), indicated in Figure 3.2, are available for identifying

5 x 1.00m

1
.0

0
m

MP2 MP3 MP4MP1

T1 T2 T3 T4 T5

Figure 3.2: Geometrical description of the cantilever truss system.
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Figure 3.3: First four experimental mode shapes of the system obtained by simulation.

Only the vertical modal displacements of the marked positions (•) are assumed to be

available from tests.

Table 3.1: Original modal displacements.

Mode 1 Mode 2 Mode 3 Mode 4

MP1 -0.0127 0.0344 0.0107 0.0287

MP2 -0.0225 0.0224 -0.0360 0.0029

MP3 -0.0327 -0.0064 -0.0149 -0.0395

MP4 -0.0425 -0.0362 0.0384 0.0275

Table 3.2: Perturbations of modal displacements.

Mode 1 Mode 2 Mode 3 Mode 4

MP1 0.0010 0.0007 -0.0001 -0.0015

MP2 -0.0002 0.0043 -0.0001 -0.0002

MP3 -0.0004 -0.0003 -0.0002 0.0016

MP4 -0.0012 0.0041 0.0016 -0.0014

the first four vertical modes. The corresponding mode shapes are shown in Figure 3.3.

Furthermore, it is assumed that the mode shapes, supposed to be identified from tests, are

affected by some inaccuracies. These inaccuracies are simulated by adding independent

normally distributed perturbations with a mean value of 0 and a coefficient of variation

of 0.05 to the calculated modal displacements. These noise disturbed mode shapes are re-

ferred to as experimental mode shapes in the following. The original modal displacements

and one set of random perturbations of noisy modal displacements are given in Table 3.1

and 3.2, respectively.
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3.4.2 Application of mode assignment

It is assumed that one design of an optimization run or one sample of a sensitivity anal-

ysis leads to a change of the Young’s moduli of the diagonal elements T2 and T4 to

2.2 · 1011 N
m2 . The first nine modes of the changed system are presented in Figure 3.4. For

reliable results in the subsequent analyses, it is essential that the experimentally obtained

modes are assigned to the most likely numerical modes based only on the vertical modal

displacements of the four measurement points. The MAC values between numerical and

noise disturbed experimental modes are presented in Figure 3.5. It can be observed that

the MAC values between the second experimental mode and the second and third numer-

ical mode are close to one. This indicates an almost perfect agreement in both cases. If

the original MAC is used to select the mode, the wrong third numerical mode, which is

mainly a longitudinal mode, will be assigned to the second experimental mode, because

the MAC value is slightly higher. The results are illustrated in Figures 3.6 and 3.7. This

wrong mode assignment can cause significant problems for some investigations, such as

sensitivity analysis or model updating.

The proposed alternative approach uses the energy-based modal assurance criterion to

pair correct modes. Therefore, the total degrees of freedom are separated into two clusters.

Cluster 1 contains the vertical degrees of freedom and cluster 2 contains the horizontal

degrees of freedom. The relative modal strain energies (Π)
(k)
j according to Equation

(3.13) are visualized in Figure 3.8. By this criterion, the modes can be distinguished into

primary horizontal and primary vertical modes. The EMAC according to Equation (3.14)

Mode 1 – 32.16Hz Mode 2 – 134.50Hz Mode 3 – 177.85Hz

y

x

y

x

y

x
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x

Figure 3.4: First nine mode shapes of the modified numerical model.
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Figure 3.5: Modal assurance criterion (MAC) – numerical vs. experimental modes.
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modes.
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Figure 3.7: Identified mode shapes from numerical modal analysis using MAC.
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Figure 3.8: Relative modal strain energies for vertical and horizontal degrees of freedom.

is presented in Figure 3.9. The largest value in each row indicates to which numerical

mode the respective experimental mode has to be assigned. The EMAC and the original

MAC of the identified modes are shown in Figures 3.10 and 3.11, respectively. Figure 3.12

presents the selected numerical mode shapes. It can be observed that the correct second

numerical mode can be assigned to the second experimental mode.

This numerical benchmark study shows that the MAC is able to pair the correct modes

as long as the modes can be reliably separated based on the sparse spatial information.

If the modes cannot be separated by the available information, the physical information

of the modes, namely the modal strain energy, can be used to distinguish between modes

with similar MAC values.

Obviously, the size of perturbation is essential for the success of the investigated mode

assignment criteria. Therefore, the coefficient of variation that determines the size of
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Figure 3.9: Energy-based modal assurance criterion (EMAC) for vertical degrees of

freedom – numerical vs. experimental modes.
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criterion (EMAC).
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Figure 3.12: Identified mode shapes from numerical modal analysis using the energy-based

modal assurance criterion (EMAC).
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Table 3.3: Dependency of successful mode assignment on the degree of noise.

degree of noise mode assignment assignment

(coefficient of variation) criterion successful failed

0.02 MAC 1000 0

EMAC 1000 0

0.05 MAC 920 80

EMAC 1000 0

0.10 MAC 787 213

EMAC 1000 0

perturbation is varied by 2%, 5%, and 10%. For each value, 1000 samples are generated

based on a normal distribution using the Monte Carlo method. Table 3.3 shows the

success of both mode assignment criteria, MAC and EMAC. It can be concluded that the

EMAC is very robust and is always able to assign the right modes. The MAC criterion

shows good results for the lowest level of perturbations. However, with increasing size

of perturbations, the possibility of getting a failed mode assignment increases by using

the MAC criterion. For a coefficient of variation of 10%, more than 20% of the mode

assignments failed.

Hence, the success of using the MAC as mode pairing criterion in the presented bench-

mark study depends strongly on the size and distribution of the perturbations itself, while

the success of the proposed EMAC is less sensitive to a usually acceptable size of pertur-

bations.

3.4.3 Optimization

Assuming that only the Young’s moduli of the diagonal element T2 and T4 are unknown,

an optimization problem can be established. The Young’s moduli are defined by E(T2) =

7 k2 · 1010 N
m2 and E(T4) = 7 k4 · 1010 N

m2 , respectively. Based on the values k2 = 1 and

k4 = 1, the artificial experimentally derived modal parameters are defined and presented

in Figure 3.3. The subsequently applied measured noise disturbed modal displacements

are obtained by adding the perturbations given in Table 3.2 to the original values of Table

3.1. Hence, the measured feature vector

zm =
[

(fm)1 (fm)2 (fm)3 (fm)4 1 1 1 1
]T

(3.17)

is assembled by the first four measured known natural frequencies (fm)i and the four

values of 1 assuming the best value for the MAC of the first four paired modes. The

updated feature vector is given by

zp =
[

(fp)1 (fp)2 (fp)3 (fp)4 (MACp)1,1 (MACp)2,2 (MACp)3,3 (MACp)4,4

]T

(3.18)
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where (fp)i are the four updated numerical natural frequencies at optimization step p

obtained by the mode pairing strategy. The MAC values are related to the four measured

modes and the corresponding identified numerical modes. The objective function

J =

√

(zm − zp)
T W (zm − zp) with J(zp(θp)) → min (3.19)

is a weighted Euclidean distance between the measured feature vector zm and the updated

feature vector zp, whereas zp depends on the unknown parameters θp =
[

k2 k4

]T

. The

weighting matrix W is a diagonal matrix defined by

W = diag
(

(fm)−2
1 , (fm)−2

2 , (fm)−2
3 , (fm)−2

4 , 1, 1, 1, 1
)

. (3.20)

The initial estimates for the optimization are θ0 =
[

1.05 0.90
]T

.

Using the adaptive response surface approach (e.g., [Etman et al. 1996], [Kurtaran

et al. 2002]) of the software optiSLang [Dynardo GmbH 2009], optimal values can be

obtained for θp. The optimization at the approximated surfaces is based on a combina-

tion of the gradient-based method SQP (sequential quadratic programming) and genetic

algorithm (GA) (e.g., [Holland 1992], [Goldberg 1989]). Details about the optimization

method are described in Appendix B.3. The results are independent from the starting

values θ0 within the given range.

The application of the MAC-based mode pairing strategy results in optimal values θp =
[

0.70182 0.70768
]T

, which do not reflect the nominal values
[

1.00000 1.00000
]T

.

This effect is explained by an inappropriate mode assignment.

The correct values θp =
[

1.00010 0.99994
]T

were found by using the EMAC-based

mode pairing strategy. As the optimization itself is performed on the response surface, 250

objective function evaluations were required in total to define the supporting points for

the response surface approximations. On a computer with an Intel Xeon 5130 (2.00GHz)

processor, the total computation time for the model updating is 10 minutes. The high

number of objective function evaluations and the total computational time is mainly

caused by the desired accuracy of the parameters. Analogously to the previous study, the

relative modal strain energies are related to all vertical degrees of freedom of the numerical

model. The shapes of the objective functions are given in Figures 3.13 and 3.14. The

respective minima are marked by white dots, which coincides with the identified values.

Accordingly, one can deduce that inaccurately identified values are not caused by the

choice of an inappropriate optimization strategy. The objective function related to a

MAC-based mode assignment is incorrectly established. Note that the sharp edges in

Figures 3.13 and 3.14 indicate discontinuities in the objective functions due to mode

switches. Furthermore, the optimum using the MAC-based approach is coincident with

the discontinuity of the objective function, where the gradients in the vicinity of the

optimum are small along the edge, which is visualized in Figure 3.13b. This causes an

additional challenge for an optimization strategy.
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These observations verify that the application of an inappropriate mode assignment

strategy in a model updating algorithm can lead to wrong results for the optimization.
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Figure 3.13: Objective function using MAC-based mode pairing strategy. The minimum

is obtained at (k2,k4)=(0.70182, 0.70768) and marked by the white dot. Diagram (b)

shows a detail of diagram (a).
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Figure 3.14: Objective function using EMAC-based mode pairing strategy. The minimum
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3.5 Case study: High-speed railway bridge EÜ Erft-

talstraße

3.5.1 Description of the system

The numerical model describes a high-speed railway bridge on the line between Cologne

and Brussels, which was discussed in several references, like [Brehm et al. 2009a], [Cantieni

et al. 2008a], and [Cantieni et al. 2008b]. This filler beam bridge consists of two main

superstructures, each carrying one rail line. The rail is installed on ballast, which is

continuously distributed over both superstructures and the transition zones between the

bridge and the embankment. Figures 3.15, 3.16, and 3.17 show the simplified bridge

model and the resulting finite element model. A set of seven experimental mode shapes

and corresponding natural frequencies are available from an experimental campaign, which

was described in [Cantieni et al. 2008a] and [Cantieni et al. 2008b]. The mode shapes and

the natural frequencies obtained from the experimental campaign are listed in Table 3.4.

Due to limitations in the experimental setup, the modal displacements are only available

in vertical direction at 44 points at the bottom side of the composite slabs.

As the model is supposed to be used for model updating, a correct mode assignment

is essential. A total number of 35 uncertain material parameters was initially defined.

These parameters are listed in Table 3.5.

3.5.2 Application of mode assignment

One particular set of 35 unknown model parameters was generated by a stochastic sam-

pling scheme. For this set, a numerical modal analysis has been performed to extract

the first 200 mode shapes and natural frequencies, which represent a frequency range

between 0Hz and 50Hz. Many modes are primary modes of the rail system containing a

small modal deflection amplitude of the bridge deck. Due to noise influences, these modes

are unlikely to be detected with the measured data acquired at the bottom side of the

slabs.

First, the original modal assurance criterion (MAC) is used to assign the experimental

to the corresponding numerical mode shapes. The MAC matrix for all 200 numerical

and seven experimental modes is depicted in Figure 3.18a. The largest value in each row

indicates the numerical mode that has to be assigned to the respective experimental mode.

Based on this assignment, the MAC matrix, illustrated in Figure 3.18a, can be reduced.

The reduced MAC matrix is presented in Figure 3.18b. Since some MAC values between

a certain measured mode and the numerical modes are almost identical, the selection is

sensitive to noise and small changes of the input parameter values.

Alternatively, the energy-based modal assurance criterion (EMAC) is applied for mode
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Figure 3.15: Longitudinal section of the simplified bridge model.

Figure 3.16: Cross section of the simplified bridge model.

Figure 3.17: Finite element model of the bridge.
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assignment. As the sensors are homogeneously distributed at the bottom side of the main

slabs in a vertical direction, the relative modal strain energies (Π)
(k)
j , and therefore the

corresponding EMAC values, are based on a cluster with all vertical degrees of freedom of

the composite slabs with respect to the numerical model. The resulting EMAC matrix

is visualized in Figure 3.19a. Figure 3.19b shows the EMAC values for the identified

numerical modes. The MAC values of the selected numerical modes are illustrated in

Figure 3.20. It has been assumed that the main modal strain energy is present in the

vertical components of the two main composite slabs. Since only one large EMAC value

is present in each row, the selection is insensitive with respect to noise and small input

parameter value changes.

The compared mode selection methods, based on MAC and EMAC, assign some dif-

ferent numerical modes. The obtained modes are compared in Table 3.4. It should be

0

0.2

0.4

0.6

0.8

1

(a) Modal assurance criterion using all numerical modes

1 50 100 150 200

numerical modes

7

6

5

4

3

2

1

ex
p

er
im

en
ta

l
m

o
d

es

0

0.2

0.4

0.6

0.8

1

(b) Modal assurance criterion using identified numerical modes

6 12 13 23 26 38 143

numerical modes

7

6

5

4

3

2

1

ex
p

er
im

en
ta

l
m

o
d

es

diagonal elements: 0.99536, 0.98226, 0.91866, 0.93891, 0.84953, 0.9316, 0.83423

Figure 3.18: Modal assurance criterion (MAC) – (a) all numerical vs. experimental modes

of the Erfttal bridge; (b) identified numerical vs. experimental modes of the Erfttal bridge.
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noted that these numerical modes do not correspond to a model that was obtained by an

optimization, but with a parameter set that could be generated within one optimization

step or during a sensitivity analysis. In the cases of measured modes 3, 5, 6, and 7, it can

be observed that the assignments fail using the original MAC, whereas the EMAC values

constitute a more reliable result. This is mainly caused by the scaling of the MAC. The

MAC does not recognize the size of modal displacement compared to the largest modal

displacement of a respective numerical mode of the complete system. Some of the modes,

primarily related to the rails, have small modal deflections of the bridge decks, which are

of similar shape as some of the global modes. Due to the lack of scaling of the reduced mo-
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Figure 3.19: Energy-based modal assurance criterion (EMAC) for vertical degrees of

freedom of the slab – (a) all numerical vs. experimental modes of the Erfttal bridge; (b)

identified numerical vs. experimental modes of the Erfttal bridge.
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Figure 3.20: Modal assurance criterion – identified numerical vs. experimental modes

of the Erfttal bridge. The numerical modes are selected previously by the energy-based

modal assurance criterion.

dal vectors, the MAC indicates an almost perfect fit. For some parameter configurations

and a certain level of noise, the MAC indicates a higher correlation between a global mea-

sured mode and a rail mode, which is an unlikely pairing. The proposed EMAC scales the

MAC by the relative modal strain energy with respect to the vertical degrees of freedom

of the bridge deck. Therefore, the rail modes with low relative modal strain energy will

generate a small EMAC value. Finally, the EMAC is able to separate the modes and to

assign the most likely global numerical modes to the respective experimentally obtained

modes.

3.5.3 Global sensitivity analysis

The following investigation demonstrates the influence of an inappropriate mode selection

algorithm on a global sensitivity analysis. The 35 selected, uncertain independent input

parameters of the model are varied by a stochastic sampling scheme, the Latin hypercube

sampling. For each parameter, a uniform distribution is assumed. The boundaries are

listed in Table 3.5, in which the numbering corresponds to the numbering of the vertical

axis in Figure 3.21. The parameter’s boundaries are related to physically reasonable

ranges. The Latin hypercube sampling uses 750 classes, whereas one representative of

each class, the mean value, will be selected. Thus, the number of cubes is 75035. The

modal parameters are calculated for all 750 generated sample sets. All moduli of the

linear Spearman correlation coefficient [Spearman 1904] between each input and output

parameter pair are assembled into a matrix. The matrix is used to assess the sensitivity

of each parameter with respect to a certain calculated modal parameter. Applications

of the Spearman correlation in the context of model updating can be found in [Mares
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Table 3.4: Comparison of identified numerical mode shapes with the mode shapes obtained

from measurements.

measured mode shape numerical mode shape

identified by

MAC EMAC

1 3.67Hz 3.67Hz 3.67Hz

X
Y

Z

2 5.24Hz 5.82Hz 5.82Hz

X
Y

Z

3 9.36Hz 7.28Hz 15.14Hz

X
Y

Z

4 13.17Hz 12.69Hz 12.69Hz

X
Y

Z

5 13.71Hz 14.38Hz 13.89Hz

X
Y

Z

6 15.09Hz 18.86Hz 18.38Hz

X
Y

Z

7 20.98Hz 31.41Hz 30.75Hz

X
Y

Z
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Table 3.5: Notation, lower bounds, and upper bounds for all input variables.

# parameter unity lower bound upper bound

1 Young’s modulus of concrete B25 including ballast N
m2 2.70 ·1010 4.50 ·1010

2 Poisson ratio of concrete B25 including ballast - 1.80 ·10−1 2.20 ·10−1

3 density of concrete B25 including ballast kg
m3 3.00 ·103 4.00 ·103

4 Young’s modulus of concrete B25 including ballast N
m2 2.90 ·1010 4.50 ·1010

5 Poisson ratio of concrete B25 including ballast - 1.80 ·10−1 2.20 ·10−1

6 density of concrete B25 including ballast kg
m3 3.00 ·103 4.00 ·103

7 Young’s modulus of HEM1000 N
m2 2.00 ·1011 2.30 ·1011

8 Poisson ratio of HEM1000 - 2.50 ·10−1 3.50 ·10−1

9 density of HEM1000 kg
m3 7.70 ·103 8.00 ·103

10 Young’s modulus of sleeper N
m2 3.00 ·1010 5.00 ·1010

11 Poisson ratio of sleeper - 2.00 ·10−1 3.00 ·10−1

12 density of sleeper kg
m3 2.10 ·103 3.00 ·103

13 shear modulus of elastomer 1 N
m2 9.40 ·106 4.50 ·106

14 shear modulus of elastomer 2 N
m2 9.40 ·106 4.50 ·106

15 stiffness of ballast gap ux
N
m 3.00 ·105 3.00 ·1011

16 stiffness of ballast gap uy
N
m 5.00 ·105 5.00 ·1011

17 stiffness of ballast gap uz
N
m 3.00 ·105 9.49 ·107

18 stiffness of ballast gap rx
Nm
rad 1.00 ·101 1.00 ·105

19 stiffness of ballast gap ry
Nm
rad 1.00 ·101 1.00 ·108

20 stiffness of ballast rim-soil ux
N
m 3.00 ·104 3.00 ·1011

21 stiffness of ballast rim-soil uy
N
m 5.00 ·104 5.00 ·1011

22 stiffness of ballast rim-soil uz
N
m 3.00 ·105 3.00 ·108

23 stiffness of ballast rim-soil rx
Nm
rad 1.00 ·101 1.00 ·106

24 stiffness of ballast rim-soil ry
Nm
rad 1.00 ·101 1.00 ·1010

25 stiffness of slab-sleeper connection ux
N
m 5.00 ·104 5.00 ·1011

26 stiffness of slab-sleeper connection uy
N
m 1.58 ·105 5.00 ·1011

27 stiffness of slab-sleeper connection uz
N
m 5.00 ·105 5.00 ·1011

28 stiffness of slab-sleeper connection rx
Nm
rad 1.00 ·101 1.00 ·105

29 stiffness of slab-sleeper connection ry
Nm
rad 1.00 ·101 1.00 ·105

30 stiffness of rail pad ux
N
m 1.00 ·105 1.00 ·1010

31 stiffness of rail pad uy
N
m 1.00 ·105 1.00 ·1010

32 stiffness of rail pad uz
N
m 5.01 ·106 1.58 ·109

33 stiffness of rail pad rx
Nm
rad 1.00 ·101 1.00 ·105

34 stiffness of rail pad ry
Nm
rad 1.00 ·101 1.00 ·105

35 stiffness of rail pad rz
Nm
rad 1.00 ·101 1.00 ·105
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(a) Modulus of Spearman correlation coefficient using MAC
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(b) Modulus of Spearman correlation coefficient using EMAC

concrete

steel

sleeper

bearing

ballast

pads

concrete

steel

sleeper

bearing

ballast

pads

concrete

steel

sleeper

bearing

ballast

pads

concrete

steel

sleeper

bearing

ballast

pads

concrete

steel

sleeper

bearing

ballast

pads

concrete

steel

sleeper

bearing

ballast

pads

concrete

steel

sleeper

bearing

ballast

pads

concrete

steel

sleeper

bearing

ballast

pads

frequency MAC relative modal displacement

numerical modal parameters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

se
le

ct
ed

m
at

er
ia

l
p

ar
am

et
er

s
of

0

0.2

0.4

0.6

0.8

1

Figure 3.21: Modulus of the linear Spearman correlation coefficient based on 750 sample

sets. Coefficients smaller than 0.3 are set to 0. (a) using the modal assurance crite-

rion (MAC) for mode assignment (b) using the energy-based modal assurance criterion

(EMAC) for mode assignment.
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et al. 2006] and [Mottershead et al. 2006]. A compact theoretical description is given in

Appendix A.1.

The assignment of numerical modes to experimental modes is important. Figure 3.21a

shows the result of the global sensitivity analysis in case the traditional modal assurance

criterion (MAC) is applied for mode assignments. By using the same design space, but

applying the energy-based modal assurance criterion (EMAC) for mode assignments, dif-

ferent results are obtained, as presented in Figure 3.21b. For example, the MAC approach

indicates a significant sensitivity of the bearings, which disappears, when the energy-based

criterion is applied. Therefore, in the case of using the MAC, the sensitivity of the bear-

ings are overvalued. As the most sensitive parameters should be used in a subsequent

finite element model updating, a disadvantageous parameter set would be selected. This

would lead to an inaccurate identification of the bearing parameters and an unfavorable

convergence rate within the optimization. By using the EMAC as mode pairing criterion,

the bearing parameters would not be selected for finite element model updating.

3.6 Discussion

This chapter emphasized the problem of wrong mode selection by using the traditional

modal assurance criterion (MAC) in certain cases. An innovative criterion combined the

common mathematical modal assurance criterion with additional physical information,

the modal strain energies of the numerical eigenvectors. This energy-based modal as-

surance criterion was denoted by EMAC. It has been shown that additional information

leads to a more reliable mode assignment.

The problem has been explained extensively by means of a numerical example with

artificially generated and noise disturbed measured data. It was shown that an optimiza-

tion can lead to a wrong identification of parameters when using an inappropriate mode

pairing algorithm. However, by applying the proposed EMAC, the most likely numerically

derived modes could be assigned correctly to the respective experimentally determined

mode. This is an important issue in the context with automated model updating, which

is focused on the correct identification of uncertain model input parameters. The pro-

posed EMAC-based mode assignment has been tested on a high-speed railway bridge, for

which experimentally identified modal data were available. On the example of an finite

element model of a bridge with a single arbitrarily chosen model input parameter set, it

was demonstrated that the most likely mode pairing was found by using the EMAC. In

this case, the application of the MAC as mode pairing criterion failed. Furthermore, the

effect of a wrong mode assignment within a global sensitivity analysis became obvious.

An important step in the application of the energy-based modal assurance criterion

(EMAC) is the selection of appropriate clusters, which is needed to define the relative

modal strain energies. A general and detailed guideline for the selection of clusters could
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not be given, because the selection always depends on the specifics of each individual

structure. The clusters always have to be defined in accordance with the kind of the

underlying structure and the measurement setup used in the tests. In this context, it is

important

(i) that the degrees of freedom that are instrumented with sensors in the tests can

represent the considered mode shapes sufficiently well and

(ii) that the selected clusters of the stiffness matrix have to be strongly related to those

components of the numerical model that are known from the tests.

Finally, the proposed methodology cannot replace a careful preparation of modal tests.

However, it can significantly reduce uncertainties associated with mode assignments in

situations when only limited spatial information is available due to unavoidable reasons.
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4

Objective functions for stochastic model

updating

4.1 Problem overview

4.1.1 Motivation

Model updating is a procedure to improve the correlation between a mathematical or

numerical model and a realistic structure using extracted features from measured data

(e.g., [Steenackers et al. 2006]). In the context of vibration measurements, typical fea-

tures are modal parameters, like natural frequencies, modal damping ratios, or modal

displacements. The purpose of model updating is the generation of a model that cannot

only represent the involved features or measurements. Depending on the intended use,

the updated model should also be able, for example, to predict other loading scenarios

under different conditions or to estimate the residual life time of the realistic structure.

Typically, uncertain input parameters of the model will be modified to increase the agree-

ment between numerically derived and experimentally obtained features. The measure

of agreement is termed cost function or objective function. A general framework for

model updating and its relation to model verification and model validation is described

in Section 1.2.

Of course, several sources of uncertainties are present in the model updating pro-

cess. Uncertainties may be associated with the measurements, the postprocessing and

extraction of features, the simplification of the realistic structure, and the calculation of

numerically derived features. Another possibility is the variability of test structures or

test conditions. Examples are the experimental investigation of several nominally identi-

cal structures or the repeated measurement of a disassembled and reassembled structure.

A comprehensive overview about uncertainties in model updating using dynamic test data

was given in [Friswell et al. 1995], [Natke 1998], and [Mottershead et al. 2010]. The results

of experimental evaluations of uncertainties were documented in [Adhikari et al. 2009]

97
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and [Govers et al. 2010b]. An additional example of the variability of modal parameters

from experimental modal analysis was presented in Chapter 2.

Different approaches are available to treat uncertainties in the process of model updat-

ing. The standard deterministic model updating does not consider uncertainties directly.

The features, as well as, the adjusted model parameters are often assumed to be determin-

istic. However, if the uncertainty of experimentally obtained features can be estimated

and the source of uncertainty is not modeled explicitely, the uncertainty of identified

model parameters can be minimized or quantified even in deterministic approaches. The

application of an estimator is evidently required. An overview about several estima-

tors, such as maximum likelihood estimators, minimum variance estimators (e.g., [Collins

et al. 1974], [Friswell 1989]), or Bayesian estimators (e.g., [Bucher 2009], [Lombaert et al.

2010a], [Lombaert et al. 2010b]) was given in [Teughels 2003]. An appropriate weighting

of residuals, for instance, by applying the inverse of the covariance matrix, may reduce the

influence of uncertainties [Doebling et al. 2000]. [Mares et al. 2002] tried to reduce the

uncertainties by a robust estimation technique. In stochastic model updating methods,

the source of uncertainty can be integrated within the updating as model parameter. The

variability of test structures or test conditions are applications for such methods. The

results are distributions of the unknown model parameters that correspond to the distri-

butions of experimentally obtained features. Hence, the identified statistical properties of

model parameters are no indicators of confidence.

In this chapter, an approach is presented, which is affiliated to stochastic model updat-

ing methods. In contrast to existing sensitivity-based methods, optimization strategies

are applied to determine the optimum. The resulting group of methods is denoted by

optimization-based stochastic model updating. A special emphasis is put on the investi-

gation of information theory based measures with respect to their suitability as objective

functions.

4.1.2 Literature review

Sensitivity-based stochastic model updating procedures were developed by [Mares et al.

2006] and [Mottershead et al. 2006], as well as, by [Khodaparast et al. 2008b]. Besides

some numerical benchmark studies, also realistic case studies with measured data were

specified. [Brehm et al. 2009a] improved the perturbation approach of [Khodaparast et al.

2008b] regarding decreasing computational expenses using a Latin hypercube sampling

strategy combined with neural network approximations of the output parameters. For the

presented benchmark study, the evaluations within the stochastic structural analysis could

be reduced by 99.7% in comparison to the original approach. [Govers et al. 2009] and

[Govers et al. 2010a] introduced a sensitivity-based stochastic model updating procedure,

in which the mean values and variances can be updated separately. That was demon-
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strated by numerical examples. However, this method is only asymptotically correct,

if the distribution of numerical model responses is a linear function of the distribution

of model parameters. An application on an aircraft-like structure with experimentally

obtained data was presented in [Govers et al. 2010b]. An alternative to probabilistic

approaches is the interval model updating given in [Khodaparast et al. 2010]. In this

approach, kriging has been applied to approximate model responses.

For a successful application of sensitivity methods, the initial input parameters need

to be close to the optimal solution. This can be difficult in some applications. Hence,

[Khodaparast et al. 2008a] and [Zabel et al. 2009a] applied successfully classical optimiza-

tion methods (i.e., genetic algorithm, adaptive response surface methods). [Khodaparast

et al. 2008a] chose a combination of squared weighted Euclidean norm and Frobenius

norm of the mean value vector and covariance matrix as objective function. In contrast,

[Zabel et al. 2009a] used information theory measures, like Kullback-Leibler divergence

and Bhattacharyya distance. A subsequent optimization of mean values using the Maha-

lanobis distance and the covariances using the Kullback-Leibler divergence was proposed

by [Doebling et al. 2000]. The optimization method was based on a quasi Newton ap-

proach on response surfaces. An alternative objective function, the constitutive relation

error estimator, was suggested by [Ladevèze et al. 2006].

The distribution of numerically derived model responses and experimentally obtained

features need to be compared by using an objective function. The distributions can be

uniquely defined by their cumulative distribution functions, probability density functions,

their statistical moments, or other parameters. For example, a multivariate normal dis-

tribution is defined by its mean value vector and the covariance matrix. Therefore, an

Euclidean norm combined with a Frobenius norm, as applied by [Khodaparast et al.

2008a] and investigated in detail by [Zabel et al. 2009a], may be appropriate. How-

ever, the type of distribution is not recognized. In a general case, the objective function

should be able to consider different distribution types. Dissimilarity measures, commonly

applied and developed in information theory, are measures that can compare distribu-

tions by their probability density functions. Such dissimilarity measures are also termed

divergence measures.

Comprehensive lists of dissimilarity measures were given in [Baseville 1989], [Bock

and Diday 2000], [Pekalska et al. 2005], and [Escolano et al. 2009]. A large parametric

class of f -divergences was introduced by [Csiszár 1967a], [Csiszár 1967b], and [Ali et al.

1966]. These divergences were investigated in detail by [Vajda 1972], [Vajda 2009], and

[Jain et al. 2007]. The most common dissimilarity measures are the Kullback-Leibler

(e.g., [Kullback et al. 1951], [Kullback 1997], [Prasanth et al. 2003]), Bhattacharyya

(e.g., [Bhattacharyya 1943], [Thacker et al. 1997]), Chernoff ([Chernoff 1952]), Patrick-

Fisher ([Patrick et al. 1969]), and Hellinger ([Hellinger 1909]) dissimilarities. Alternative

measures were proposed by [Kannappan 1974], [Burbea et al. 1982], [Rao et al. 1985],
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[Chung et al. 1989], [Ullah 1996], [Kumar et al. 2005b], and [Kumar et al. 2005a].

Typically, information theory based dissimilarity measures rely on integrals of functions

depending on probability distributions functions. Explicite formulas are available for

some measures comparing multivariate normal distributions. Examples were presented

in [Kailath 1967], [Shen 1998], [Kullback 1997], and [Bock and Diday 2000]. Properties

and inequalities of various dissimilarity measures were investigated in [Kobayashi et al.

1967], [Kobayashi 1970], [Taneja 1989], [Topsøe 2000], [Dragomir et al. 2000], and [Sahoo

1999]. Typical applications are face recognition [Singh et al. 2002], speech recognition

[Jeon et al. 2004][Lee 1991], and pattern recognition (e.g., [Rauber et al. 2008a], [Rauber

et al. 2008b], [De Maesschalck et al. 2000], [Ramakrishnan et al. 2006]) in disciplines

like chemistry ([Mekenyan et al. 2004]), biology ([Stoll et al. 2006]), and finance ([Brigo

et al. 2001],[Brigo et al. 2005]). Applications closer related to structural engineering

disciplines are fault detection of engines ([Basir et al. 2007]) and sensors ([Wang et al.

2003]), discrimination analysis of ground vibrations ([Kakizawa et al. 1998]), and model

selection problems ([Shibata 1997]).

The previously presented non-exhaustive list of various dissimilarity measures leads

to the problem of selecting the best suitable measure for a specific application. This task

is recognized by some authors, but it is not well analyzed in literature. The problem of

selecting the best measure for hypothesis testing or assignment of pattern to the most

suitable class was investigated by [Nayak et al. 2009] and [Abrahams 1982]. They con-

cluded that the suitability of measures depends strongly on the kind of problem and that

there is no preferred dissimilarity measure at all. [Nayak et al. 2009] stated that topologi-

cal rather than non-topological f -divergences should be considered. [Ullah 1996] observed

that the Kullback-Leibler divergence measure is the most frequently applied measure to

compare probability density functions even though there is no real reason to promote the

Kullback-Leibler divergence measure against others. In contrast, [Kulhavý 1996] stated

that the Kullback-Leibler dissimilarity measure is a natural way to be consistent with

probability theory. Similarities of the Kullback-Leibler distance estimator with the max-

imum likelihood estimators and Bayesian estimators are obvious (e.g., [Kulhavý 1996],

[Ullah 1996]).

Some dissimilarity measures, like α-divergences and β-divergences, need to be con-

figured with a parameter. Hence, the problem to find the best parameter for a specific

application arises. [Minka 2005] systematically investigated this problem for a specific

type of α-divergence. Extreme values of the parameter α try to cover the mass or all

modes of a distribution P with respect to a distribution Q. For α values between zero

and one, the mass and the modes of the distributions are almost equally considered in the

divergence. In these cases, the α-divergence is close to the Kullback-Leibler or reversed

Kullback-Leibler divergence. The Rényi α-divergence was investigated by [Hero et al.

2001]. The best results were obtained for an image indexing problem with α-values of
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1 and 1
2
, corresponding to the Kullback-Leibler divergence and the Bhattacharyya dis-

tance, respectively. However, if the discrimination between the distributions was small,

the Bhattacharyya distance performed better. [Zabel et al. 2009a] compared the suitabil-

ity of Kullback-Leibler divergence and Bhattacharyya distance as objective functions for

model updating using different optimization methods. The Kullback-Leibler distance in

combination with an adaptive response surface method was the most suitable approach

for the investigated benchmark study.

4.1.3 Proposed methodology

The available sensitivity-based stochastic model updating methods are suitable for a large

class of problems. In general, a fast convergence can be achieved within few iterations.

Certainly, the numerical derivation to calculate the sensitivities needs various objective

function evaluations. The computational effort to calculate the first order sensitivity

matrix is increasing quadratically with the number of features included in the target

distribution and the number of uncertain model parameters. Nevertheless, some of the

sensitivity-based stochastic model updating methods are asymptotically not correct, if the

connection between the model parameters and the model responses is nonlinear. Further-

more, they are based on residuals of mean values and covariance matrices, which limits

the application with respect to the feasible distribution type of the features. Moreover,

an initial distribution close to the optimal distribution needs to be chosen to assure the

success of the methods.

A promising alternative is the application of standard optimization methods, such as

adaptive response surface method, genetic algorithm, or particle swarm optimization. Of

course, the success of these methods depends strongly on the definition of the objective

function. Some initial investigations from [Zabel et al. 2009a] showed that dissimilarity

measures are suitable for the application in optimization-based stochastic model updating.

These measures are based on the comparison of probability density functions. Therefore,

the type of distribution is less important. Most optimization methods require the defini-

tion of input parameter bounds. Hence, unrealistic values of adjusted model parameters

can be avoided. Initial distributions are only needed for some optimization methods.

Usually, a random set of parameters is chosen from the design space to define the initial

distributions. Although, a near-optimal initial parameter set is beneficial for optimization

methods, it is not essentially required for the success of the method.

The novel contribution of the presented approach is the investigation of information

theory based dissimilarity measures in combination with conventional optimization meth-

ods in the field of optimization-based stochastic model updating using vibration test

data. The aim is to assess various dissimilarity measures, with respect to their appli-

cation as objective functions. The dissimilarity measures depend on several input pa-
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rameters, which describe the distribution of uncertain model parameters. An analytical

investigation of the objective function properties is not possible. Thus, some parts of

the multi-dimensional objective function will be mapped onto several one-dimensional

functions. Such one-dimensional functions can be assessed easily regarding monotonicity,

convexity, and first derivatives. Based on the properties of the one-dimensional functions,

a monotonicity, convexity, and gradient indicator of the objective function are defined.

The objective functions are tested with several optimization strategies to proof their suit-

ability for stochastic model updating. The capability of the methodology will be tested in

two representative numerical benchmark studies, a three degree of freedom mass-spring

system and a 20 degree of freedom cantilever truss.

4.2 Optimization-based stochastic model updating

Like every optimization problem, also the stochastic model updating intends to find a

set of input parameters that is most suitable to represent a certain set of target out-

put parameters. Therefore, the optimization problem in context of optimization-based

stochastic model updating can be defined by six important quantities:

• the input parameters x, sometimes denoted by design variables, defining the distri-

bution of an unknown model parameter vector θ,

• the output parameters y, defining the numerically derived distribution of a model

response vector z,

• the function or relation to calculate the model responses depending on the model

parameters,

• the target output parameters ym, defining the distribution of an experimentally

obtained feature vector zm,

• the objective function J(x) that should be typically minimized, and

• the optimization method.

In case of stochastic model updating, the input parameters x ∈ R
mx are statistical

parameters describing the probability distribution of the random vector associated with

the uncertain model parameters θ. For example, mean values Eθ, variances Vθ, and

correlation coefficients rθ of material properties, geometry data, modeling parameters, or

loads are possible input parameters. The distribution type of the model parameter vector

can be added as discrete input parameter or is assumed to be known. Obviously, all

input parameters need to be restricted by lower bounds xl and upper bounds xu to avoid

unreasonable identification results or to avoid numerical problems. Typical restrictions
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are the requirement of a positive standard deviation and a correlation coefficient between

-1 and 1. Additional equality or inequality constrains, he(x) = 0 or hi(x) > 0, can limit

the valid input parameter space. For example, the covariance matrix of the multivariate

model parameter vector θ needs to be positive definite, which can be written as |Cθ| > 0.

The output parameters y ∈ R
my are the statistical parameters describing the proba-

bility distribution of the random vector associated with the model responses z. Typical

output parameters are mean values Ez and covariances Cz of the modal parameters (nat-

ural frequencies, modal damping ratios, modal displacements) or features extracted from

response time histories of displacements, velocities, accelerations, strains, or stresses.

Of course, to obtain the output parameters y, a function or relation between the

model parameter vector θ and the model response vector z is required. This can be an

analytical function or another mathematical description of the relation, for instance, a

solution obtained from a finite element model. An analytical derivation of the relation

between input parameters x and output parameters y is advantageous. If this is not

possible, a sample-based stochastic structural analysis, as described in [Bucher 2009], can

be applied. This analysis relies on systematic sampling schemes (e.g., D-optimal design,

Koshal design, full factorial design [Myers et al. 2009]) or stochastic sampling schemes

(e.g., plain Monte Carlo sampling, Latin hypercube sampling [Verma et al. 2010][Bucher

2009]) to generate a certain number of samples from the multivariate distributions of

model parameters θ defined by a certain set of input parameters x. For each model input

parameter sample, a sample of model responses z can be determined by using the known

relation between model parameters and model responses. Performing a statistical analysis

on the obtained model response sets, the output parameters y can be derived.

The target output parameters ym are the statistical properties specifying the prob-

ability distribution of the random vector based on the experimentally obtained features

zm. The vector ym can be determined by a statistical analysis of the respective extracted

features obtained from several measurements. Obviously, the target output parameters

ym and the output parameters y need to describe the same kind and number of features.

To evaluate the suitability of the input parameter vector xj corresponding to a certain

iteration step j, the random vector of experimentally obtained features zm and model

response random vector zj have to be compared, for example, by means of a function

depending on the target output parameters ym and output parameters yj. Such a function

is termed objective function. If the optimization problem is formulated as a positively

defined minimization problem, the objective function

J(x) → min with J : Rmx → R (4.1)

should at least satisfy the properties

J(ym‖yj(xj)) ≥ 0 and J(ym‖yj(xj)) = 0, if and only if ym = yj(xj). (4.2)
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A very common example of an objective function is the weighted Euclidean distance. In

the presented contribution, dissimilarity measures originally developed for information

theory problems are used as objective functions. These dissimilarity measures are de-

scribed in Section 4.3. To reduce computational expenses, explicite formulas assuming

multivariate normal distributions are applied in this study.

By using the previous description of input parameters, output parameters, and objec-

tive function, any standard optimization method (e.g., gradient-based methods, response

surface methods, or nature inspired methods) can be applied. If the relation between

the input parameters xj and the output parameters yj cannot be derived analytically

and a sample-based stochastic analysis needs to be applied, the topology of the objective

function can be very rough. Therefore, gradient-based methods are not recommended, as

demonstrated in [Zabel et al. 2009a].

If a sample-based stochastic structural analysis is integrated in stochastic model updat-

ing, the most computational effort is required for the evaluation of the samples generated

according to the distribution of model parameters. The accuracy of the obtained output

parameter vector y depends on the number of evaluated samples. Hence, the convergence

of the optimization depends on both, the configuration of the optimization method (e.g.,

number of iterations) and the number of samples used to determine the output parameters

y. The challenge is to minimize the total number of sample evaluations by optimizing

the configuration parameters of the optimization method. However, this is not the major

emphasis of this contribution. The main aim is to investigate the general suitability of

various objective functions and optimization methods by means of benchmark studies as

described in Sections 4.5 and 4.6.

4.3 Dissimilarity measures

4.3.1 Definitions

A typical task in several scientific and engineering disciplines is the comparison of two

t-variate distributions P and Q described by their probability density functions p(u) and

q(u). Those probability density functions need to satisfy the conditions
∫

Rt

p(u)du = 1 and p(u) ≥ 0 ∀ u ∈ R
t resp.

∫

Rt

q(u)du = 1 and q(u) ≥ 0 ∀ u ∈ R
t.

(4.3)

Most of the dissimilarity measures between two distributions P and Q can be represented

by a general function

D(P‖Q) = g

(∫

f(p(u), q(u), r)du, s

)

(4.4)
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depending on a set of parameters r and s. g(·) and f(·) are functions to be specified.

Dissimilarity measures are usually no metrics in the classical sense, because they do not

necessarily satisfy the symmetry and triangular condition, but they meet the positive

definiteness condition

D(P‖Q) ≥ 0 and D(P‖Q) = 0 if and only if p(u) = q(u), (4.5)

which is essential for the application onto model updating problems. Many dissimilarity

measures can be derived from similarity measures S (P‖Q). They satisfy the condition

S(P‖P ) ≥ S(P‖Q) and S(P‖P ) ≥ S(Q‖P ), (4.6)

but not necessarily the symmetry and triangular condition. Therefore, the maximal value

for the similarity measure will be obtained if and only if p(u) = q(u). The most important

similarity measures are listed in Subsection 4.3.2.

The dissimilarity measure integrals according to Equation (4.4) can only be solved

analytically for few distribution types. For example, explicite formulas are available for

various dissimilarity measures comparing normal distributions. If a closed form is not

existing, the integral needs to be solved numerically, for instance, by rectangle rule, Monte

Carlo method, or Metropolis Hastings algorithm [Evans et al. 2005]. Probability density

estimates need to be applied, if the probability density functions cannot be expressed

as analytical function. [Scott 1992] proposed various methods, like histograms, averaged

shifted histograms, and kernel density estimates. The accuracy of the estimation strongly

depends on the number of available sample sets.

In the presented thesis, the dissimilarity measures are only applied with their explicite

formula assuming a multivariate normal distribution. Symmetric and unsymmetric dis-

similarity measures are indicated by D(P,Q) and D(P‖Q), respectively. In case the

distributions P and Q are t-variate normal distributions, they can be described by the

mean value vectors Ep and Eq and the positive definite covariance matrices Cp and Cq.

The unity matrix of size t is indicated by It with entries

(It)i,j =

{

1 : i = j

0 : i 6= j
. (4.7)

The congruent transformation of a vector A and matrix B is abbreviated by

‖A‖2B = ATBA. (4.8)

If the vector A is a difference between two vectors, ‖A‖2B is denoted by the squared

weighted Euclidean distance. The term ‖Ep − Eq‖2C−1
p

represents the squared Maha-

lanobis distance. In the following, | · | indicates the determinant of a matrix.
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4.3.2 Similarity measures based on probability density functions

4.3.2.1 Hellinger coefficient

The Hellinger coefficient SHC (P‖Q, s) of order s with 0 < s < 1 is a similarity measure

bounded within [0, 1] (e.g., [Bock and Diday 2000], [Pekalska et al. 2005]). It is defined

by

SHC (P‖Q, s) =

∫

Rt

p(u)1−sq(u)sdu. (4.9)

For two t-variate normal distributions P and Q the explicit equation

SN
HC (P‖Q, s) =

∣

∣sIt + (1 − s)C−1
p Cq

∣

∣

− s
2
∣

∣(1 − s)It + sC−1
q Cp

∣

∣

− 1−s
2

exp

(

1

2

∥

∥sC−1
q Eq + (1 − s)C−1

p Ep

∥

∥

2

(sC−1
q +(1−s)C−1

p )
−1

−s

2
‖Eq‖2C−1

q
− 1 − s

2
‖Ep‖2C−1

p

)

(4.10)

can be derived according to [Bock and Diday 2000]. It is required that the matrix
(

sC−1
q + (1 − s)C−1

p

)

is positive definite.

Based on this similarity measure, several dissimilarity measures, like the Chernoff

distance, can be derived. For the calculation of α-divergence and β-divergence, the re-

strictions of 0 < s < 1 can be extended to s > 0.

4.3.2.2 Hellinger integral

The Hellinger integral was originally introduced by [Hellinger 1909] and referenced, for

example, by [Escolano et al. 2009] and [Hazewinkel 2002]. With s = 1
2
, the Hellinger

integral is a special case of the Hellinger coefficient. Therefore, its general form is given

by

SHI (P,Q) = SHC

(

P‖Q,
1

2

)

=

∫

Rt

√

p(u)q(u)du (4.11)

and the explicite formula for two t-variate normal distributions

SN
HI (P,Q, s) =2

t
2

∣

∣2It + C−1
p Cq + C−1

q Cp

∣

∣

− 1
4

exp

(

1

4

∥

∥C−1
q Eq + C−1

p Ep

∥

∥

2

(C−1
q +C−1

p )
−1

−1

4
‖Eq‖2C−1

q
− 1

4
‖Ep‖2C−1

p

)

(4.12)

can be derived from Equation (4.10). The Hellinger integral is the basis of the dissimilarity

measures Bhattacharyya distance and Hellinger distance. [Escolano et al. 2009] denoted

the Hellinger integral by Bhattacharyya coefficient.
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4.3.3 Dissimilarity measures based on probability density func-

tions

4.3.3.1 Patrick-Fisher distance

The Patrick-Fisher distance

DPF (P,Q) =

√

∫

Rt

(p(u) − q(u))2 du, (4.13)

was introduced by [Patrick et al. 1969] and is identical to the Minkowski L2 distance

(e.g., [Walter-Williams et al. 2010]). In [Shen 1998] and [Zhou et al. 2006], an explicite

equation for two t-variate normal distributions was presented.

DN
PF (P,Q) =





1
√

(2π)t |2Cp|
+

1
√

(2π)t |2Cq|
−

2
√

(2π)t |Cp + Cq|
exp

(

−1

2
‖Ep − Eq‖2(Cp+Cq)

−1

)





1
2

(4.14)

The matrix (Cp + Cq) needs to be positive definite. [Baseville 1989] also listed the

Patrick-Fisher distance. According to [Rauber et al. 2008a], an analytical solution for

the Patrick-Fisher distance is not existing for two Dirichlet distributions.

4.3.3.2 Squared Patrick-Fisher distance

The squared Patrick-Fisher distance or squared Minkowski distance of order two is defined

as (e.g., [Bock and Diday 2000], [Pekalska et al. 2005])

DSPF (P,Q) =

∫

Rt

(p(u) − q(u))2 du. (4.15)

The explicite formula for two t-variate normal distributions can be derived directly from

Equation (4.14).

DN
SPF (P,Q) =

(

DN
PF (P,Q)

)2
(4.16)

[Bock and Diday 2000] presented an alternative for the comparison of two t-variate normal

distributions

DN
SPF (P,Q) =

1

2tπ
t
2

(

1

|Cp|
1
2

+
1

|Cq|
1
2

)

− 2

(2π)
t
2 |Cp + Cp|

1
2

exp

(

1

2

∥

∥C−1
p Ep + C−1

q Eq

∥

∥

2

(C−1
p +C−1

q )
−1

−‖Ep‖2C−1
p

− ‖Eq‖2C−1
q

)

.

(4.17)
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This version is computationally more expensive and numerically unstable for ill-conditioned

matrices Cp and Cq. Besides (Cp + Cq), also
(

C−1
p + C−1

q

)

need to be positive definite.

Hence, Equation (4.16) is preferred in the subsequent benchmark studies.

4.3.3.3 Chernoff distance

Chernoff’s distance of order s, introduced in [Chernoff 1952], can be derived from the

Hellinger coefficient SHC (P‖Q, s) according to Equation (4.9) by

DCH (P‖Q, s) = − lnSHC (P‖Q, s) (4.18)

with 0 < s < 1. Applying Equation (4.10), the formula for two t-variate normal distribu-

tions can be directly expressed. A numerically more stable explicite formula

DN
CH (P‖Q, s) =

1

2
ln

|sCp + (1 − s)Cq|
|Cp|s |Cq|1−s

+
1

2
s(1 − s) ‖Ep − Eq‖2(sCp+(1−s)Cq)

−1

(4.19)

was presented in [Zhou et al. 2006] and [Shen 1998].

[Rauber et al. 2008a] showed an explicite form of the Chernoff distance for two Dirich-

let distributions, as well as, for two Beta distributions.

4.3.3.4 Bhattacharyya distance

A symmetric version of the Chernoff distance is obtained for order s = 1
2
, which is referred

to as Bhattacharyya distance [Bhattacharyya 1943]

DBH (P,Q) = DCH

(

P‖Q,
1

2

)

= − lnSHI (P,Q) . (4.20)

Presuming two t-variate normal distributions, [Kailath 1967] and [Zhou et al. 2006]

provided an analytical solution

DN
BH (P,Q) =

1

2
ln

∣

∣

1
2

(Cp + Cq)
∣

∣

√

|Cp| |Cq|
+

1

8
‖Ep − Eq‖2(Cp+Cq

2

)

−1 . (4.21)

An explicite formula of the Bhattacharyya distance for other exponential densities was

given in [Kailath 1967]. For the cases of two Dirichlet distributions and two Beta distribu-

tions, explicite formulas were derived in [Rauber et al. 2008b] and [Rauber et al. 2008a].

The properties of the Bhattacharyya distance were extensively discussed in [Thacker et al.

1997].
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4.3.3.5 Hellinger distance

The Hellinger distance DHD (P,Q) can be directly derived from the Hellinger integral. A

common representation (e.g., [Hazewinkel 2002], [Nguyen et al. 2005]) is

DHD (P,Q) =
√

2 − 2SHI (P,Q)

=

√

∫

Rt

(

√

p(u) −
√

q(u)
)2

du.
(4.22)

With this definition, the symmetric Hellinger distance is bounded within [0,
√

2]. The

closed equation for two t-variate normal distributions can be obtained by applying Equa-

tion (4.12). The derivation from the Chernoff distance, according to Equation (4.19), is

numerically more stable.

DN
HD (P,Q) =

√

2 − 2 exp

(

−DN
CH

(

P‖Q,
1

2

))

(4.23)

Another representation of the Hellinger distance was defined in [Escolano et al. 2009],

which only differs in the prefactor 1
2
. [Rauber et al. 2008a] termed the Hellinger distance,

as described in Equation (4.22), Jeffreys-Matusita distance, because the Hellinger distance

is a special case of the generalized Matusita distance ([Toussaint 1974]).

4.3.3.6 Squared Hellinger distance

The squared variant of the Hellinger distance is

DSHD (P,Q) = 2 − 2SHI (P,Q) =

∫

Rt

(

√

p(u) −
√

q(u)
)2

du. (4.24)

It is bounded within [0, 2] and is a true metric (e.g., [Hero et al. 2001], [Brigo et al. 2005],

[Vajda 2009]), as it fulfills the positive definiteness, symmetry, and triangular condition.

An analytical calculation for two t-variate normal distributions can be performed with

Equation (4.12) or (4.23). In general, the latter version is numerically more stable.

Other terms for the squared Hellinger distance are Matusita distance ([Nayak et al.

2009]) and Jeffreys distance ([Sahoo 1999][Chung et al. 1989]).

4.3.3.7 χ2-divergence

In the general case of two continuous probability distribution functions, the directed χ2-

divergence is a weighted form of the squared Patrick-Fisher distance and can be calculated

by

Dχ2 (P‖Q) =

∫

Rt

(p(u) − q(u))2

p(u)
du. (4.25)
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According to [Bock and Diday 2000], an explicite formula

DN
χ2 (P‖Q) =

∣

∣CpC
−1
q

∣

∣

∣

∣2CpC−1
q − It

∣

∣

1
2

exp

(

1

2

∥

∥2C−1
q Eq −C−1

p Ep

∥

∥

2

(2C−1
q −C−1

p )
−1

−‖Eq‖2C−1
q

+
1

2
‖Ep‖2C−1

p

)

− 1

(4.26)

is available for two t-variate normal distributions, assuming the matrix
(

2C−1
q −C−1

p

)

is

positive definite. In [Sahoo 1999], the χ2-divergence was referred to as Kagan affinity

measure.

4.3.3.8 Symmetrized χ2-divergence

The symmetrized χ2-divergence (e.g., [Jain et al. 2007], [Kumar et al. 2005a])

Dχ2S (P,Q) = Dχ2 (P‖Q) + Dχ2 (Q‖P )

=

∫

Rt

(p(u) − q(u))2 (p(u) + q(u))

p(u)q(u)
du

(4.27)

can be directly obtained from the directed χ2-divergence. Positive definite matrices
(

2C−1
q −C−1

p

)

and
(

2C−1
p −C−1

q

)

are required for the explicite formula derived from

Equation (4.26) expecting two t-variate normal distributions.

4.3.3.9 Kullback-Leibler divergence

The Kullback-Leibler divergence [Kullback 1997, p. 189] is defined by

DKL (P‖Q) =

∫

Rt

q(u) ln
q(u)

p(u)
du. (4.28)

[Kakizawa et al. 1998] showed that Equation (4.28) simplifies to

DN
KL (P‖Q) =

1

2
ln

|Cp|
|Cq|

+
1

2
tr
(

Cq

(

C−1
p −C−1

q

))

+

1

2
(Ep − Eq)T C−1

p (Ep − Eq) ,

(4.29)

for t-variate normal distributions P and Q, whereas tr (·) is the trace of a matrix.

[Rauber et al. 2008a] derived that the explicite formula for the Kullback-Leibler

divergence between two Dirichlet distributions is not defined.

4.3.3.10 Symmetrized Kullback-Leibler divergence

The symmetrized Kullback-Leibler divergence is also known as J-divergence [Bock and

Diday 2000] in honor of Jeffrey, who first used this divergence. According to [Kullback

1997, p. 190], it is defined by

DKLS (P,Q) = DKL (P‖Q) + DKL (Q‖P ) =

∫

Rt

(p(u) − q(u)) ln
p(u)

q(u)
du. (4.30)
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For two t-variate normal distributions, an explicite formula can be deduced [Kullback

1997, p. 190]

DN
KLS (P,Q) =

1

2
tr
(

(Cp −Cq)
(

C−1
q −C−1

p

))

+

1

2
(Ep − Eq)T

(

C−1
p + C−1

q

)

(Ep − Eq) .
(4.31)

Alternatively, Equation (4.29) can be applied to define an explicite formula.

The L-divergence and K-divergence, established by [Burbea et al. 1982], are identi-

cal to the symmetrized Kullback-Leibler divergence for special parameters. An explicite

formula of the symmetrized Kullback-Leibler divergence for exponential densities was

provided by [Kailath 1967].

4.3.3.11 Rényi α-divergence

Rényi’s α-divergence (e.g., [Rényi 1961], [Escolano et al. 2009]) of order s, also well known

as information gain (e.g., [Sibson 1969], [Bock and Diday 2000]), is defined by

Dα (P‖Q, s) =
1

s− 1
ln

∫

Rt

p(u)1−sq(u)sdu. (4.32)

The integral is identical to the Hellinger coefficient, but the parameter s ∈ R with s > 0

has no upper bound. In the limit s → 1, the information gain

lim
s→1

Dα (P‖Q, s) = DKL (P‖Q) (4.33)

is equal to the Kullback-Leibler divergence according to Equation (4.28). For s = 2,

one half of the χ2-distance defined in Equation (4.25) is obtained. Within a range of

0 < s < 1, the Rényi α-divergence is up to a factor 1
1−s

identical to the Chernoff distance.

Using the Hellinger coefficient according to Equation (4.10), an explicite equation for

two t-variate normal distributions can be derived for s > 0.

DN
α (P‖Q, s) =

1

s− 1
ln
(

SN
HC (P‖Q, s)

)

(4.34)

An explicite formula based on Equation (4.19) is numerically more stable, but is restricted

to 0 < s < 1.

DN
α (P‖Q, s) =

1

1 − s

(

DN
CH (P‖Q, s)

)

(4.35)

4.3.3.12 β-divergence

Another generalized directed measure is the β-divergence, for example, proposed and

investigated by [Ullah 1996]. Based on the Hellinger coefficient, according to Equation

(4.9), it is defined by

Dβ (P‖Q, s) =
1

s− 1

(∫

Rt

p(u)1−sq(u)sdu− 1

)

. (4.36)
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The parameter s needs to be restricted to s ∈ R with s > 0 to obtain a reasonable distance

with Dβ (P‖Q, s) ≥ 0. For s → 1, the β-divergence is identical to the Kullback-Leibler

divergence according to Equation (4.28).

lim
s→1

Dβ (P‖Q, s) = DKL (P‖Q) (4.37)

The squared Hellinger distance (4.24) and the χ2-distance (4.25) can be obtained with

values s = 1
2

and s = 2, respectively.

An explicite equation for two t-variate normal distributions can be derived from the

Hellinger coefficient according to Equation (4.10), whereas the parameter s is only re-

stricted by s > 0.

DN
β (P‖Q, s) =

1

s− 1

(

SN
HC (P‖Q, s) − 1

)

(4.38)

For 0 < s < 1, the numerically more stable formula based on the Chernoff distance

according to Equation (4.19) is recommended.

DN
β (P‖Q, s) =

1

s− 1

(

exp
(

−DN
CH (P‖Q, s)

)

− 1
)

(4.39)

In [Sahoo 1999] and [Chung et al. 1989], an α-divergence was given, which is identical

to the β-divergence, where the factor 1
s−1

is replaced by 1
2s−1−1

. An alternative factor
1

s(s−1)
was utilized in [Minka 2005] with an unbounded s ∈ R.

4.3.3.13 Symmetrized β-divergence

The symmetrized form of the β-divergence is expressed by

DβS (P,Q, s) = Dβ (P‖Q, s) + Dβ (Q‖P, s)

=
1

s− 1

(∫

Rt

p(u)1−sq(u)s + p(u)sq(u)1−sdu− 2

)

(4.40)

with s ∈ R and s > 0. The limit s → 1 results in the symmetrized Kullback-Leibler

distance and for s = 2 the symmetrized χ2-distance is obtained.

A closed solution for t-variate normal distributions can be derived from the Hellinger

coefficient according to Equation (4.10) using s > 0.

DN
βS (P‖Q, s) =

1

s− 1

(

SN
HC (P‖Q, s) + SN

HC (Q‖P, s) − 2
)

(4.41)

The numerically more stable version based on the Chernoff distance, but restricted to

0 < s < 1, is

DN
βS (P‖Q, s) =

1

s− 1

(

exp
(

−DN
CH (P‖Q, s)

)

+ exp
(

−DN
CH (Q‖P, s)

)

− 2
)

. (4.42)

[Burbea et al. 1982] denoted the symmetrized β-divergence as L-divergence. The

factor 1
s−1

was replaced by 1
2s−1−1

in [Chung et al. 1989].
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4.3.4 Dissimilarity measures based on statistical moments

4.3.4.1 Euclidean Frobenius norm

To compare the first two statistical moments of two distributions P and Q, a combined

Euclidean Frobenius norm can be defined by

DS
EF (P‖Q,w1, w2) = w1 ‖Ep − Eq‖2It + w2‖Cp −Cq‖F . (4.43)

The scalars w1, w2 ∈ R with w1, w2 > 0 are weighting parameters. A similar measure was

proposed by [Khodaparast et al. 2008a] in the context of stochastic model updating.

4.3.4.2 Weighted Euclidean Frobenius norm

To avoid a non-uniform weighting of the mean value differences, the Euclidean distance

can be weighted by a matrix W1 with entries

(W1)i,j =

{

(

(Ep)
i
+ δ((Ep)

i
, 0)
)−2

: i = j

0 : i 6= j
∀ i = 1, . . . , t. (4.44)

δ(a, b) is the Kronecker delta, which is specified by

δ(a, b) =

{

1 : a = b

0 : a 6= b
. (4.45)

The resulting weighted Euclidean Frobenius norm is expressed as

DS
WEF (P‖Q,w1, w2) = w1 ‖Ep − Eq‖2W1

+ w2‖Cp −Cq‖F (4.46)

with w1, w2 ∈ R and w1, w2 > 0.

4.3.4.3 Mahalanobis Frobenius norm

A dimensionless quantity can be obtained by applying the Mahalanobis distance and

the Frobenius norm of the scaled difference between the covariance matrices. Hence, a

combined Mahalanobis distance and Frobenius norm

DS
MF (P‖Q,w1, w2) = w1 ‖Ep − Eq‖2C−1

p
+ w2‖ (Cp −Cq)C−1

p ‖F (4.47)

is deduced for w1, w2 ∈ R and w1, w2 > 0.

4.3.4.4 Weighted Euclidean norm of statistical moments

The first four statistical moments, mean value E, variance V, skewness S, and kurtosis

K of the marginal distributions of the t-variate distributions P and Q, are assembled in

vectors

m4Sp =
(

ET
p VT

p ST
p KT

p

)T

and m4Sq =
(

ET
q VT

q ST
q KT

q

)T

, (4.48)
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respectively. The definition of the statistical moments is given in Appendix A. Thereafter,

a dissimilarity measure can be established by a squared weighted Euclidean norm

DS
E4S (P‖Q) = ‖m4Sp −m4Sq‖2W4S

(4.49)

with

(W4S)i,j =

{

(

(m4Sp)
i
+ δ((m4Sp)

i
, 0)
)−2

: i = j

0 : i 6= j
∀ i = 1, . . . , 4t (4.50)

using the Kronecker delta δ(a, b) defined in Equation (4.45).

As a sufficient accuracy of higher statistical moments requires a large number of sam-

ples, it can be reasonable to exclude the skewness and the kurtosis from the measure.

This measure is expressed as DS
E2S (P‖Q).

4.3.4.5 Weighted Euclidean norm of statistical moments with correlation co-

efficients

By implementing the correlation coefficients, another measure

DS
E4SC (P‖Q) = ‖m4SCp −m4SCq‖2W4SC

(4.51)

with

m4SCp =
(

ET
p VT

p ST
p KT

p (rp)1,2 . . . (rp)
t−1,t

)T

,

m4SCq =
(

ET
q VT

q ST
q KT

q (rq)1,2 . . . (rq)
t−1,t

)T

,

(4.52)

and

(W4SC)i,j =

{

(

(m4SCp)
i
+ δ((m4SCp)

i
, 0)
)−2

: i = j

0 : i 6= j
∀ i = 1, . . . , 4t +

1

2
(t2 − t)

(4.53)

can be derived from Equation (4.49).

If the skewness and the kurtosis are of minor importance or cannot be calculated

with sufficient accuracy, they can be excluded from the measure in Equation (4.51). The

resulting measure is indicated by DS
E2SC (P‖Q).

4.3.4.6 Weighted Euclidean norm of L moments

The accuracy of statistical moments depends on the sample size. Especially for the higher

statistical moments, large sample sizes are needed to achieve a sufficient accuracy. With

the same sample size, L moments [Hosking 1990] and their sample estimates [Wang 1996]

can be calculated with higher accuracy than the traditional statistical moments. The

calculation is described in Appendix A.

By replacing the traditional statistical moments E, V, S, and K by L1, L2, L3,

and L4 in Equation (4.49), respectively, the dissimilarity measures based on L moments

DS
E4L (P‖Q) and DS

E2L (P‖Q) can be derived.
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4.3.5 Numerical and computational aspects

In the subsequent benchmark studies, the dissimilarity measures are utilized as objective

functions. Due to similar dependencies of the output parameters with respect to the

input parameters, covariance matrices of the outputs are typically not well conditioned.

In addition, the accuracy of the sample covariance matrix depends on the number of

samples used for the estimation. Therefore, it is not guaranteed that the covariance

matrices and their linear combinations are always positive definite or well conditioned.

Several techniques are available to improve the condition of a matrix. Suitable regular-

ization techniques are the Tikhonov regularization and approaches based on singular value

decomposition [Friswell 2001]. The quality of improvement depends strongly on the cho-

sen regularization parameters, which can be determined by L-curves or minimizing cross

validation functions [Friswell 2001]. In the current work, the sensitivity of dissimilarity

measures with respect to ill-conditioned covariance matrices is one subject of interest.

Therefore, no regularization techniques are applied.

However, to avoid failed designs within the optimization process, all objective func-

tion values need to be numerically representable. Furthermore, the optimization algo-

rithm performs additional calculations using the objective function values. This addi-

tionally limits the range of allowed numerical values for the objective function. The

numerical calculation of the listed dissimilarity measures is conducted with the soft-

ware package SLang [Dynardo GmbH and Bauhaus University Weimar 2010], which is

based on C, C++, and FORTRAN routines. The used datatype is an 8 Byte double,

which implies that the minimal positive and maximal representable numerical values are

2.2250738585072014 · 10−308 and 1.7976931348623157 · 10308, respectively. The accuracy

can be described by ǫ ≈ 2.2204460492503131 ·10−16. If the result of an operation is higher

than the maximal representable numerical value, INF (infinity) is obtained. The result

of an invalid operation is declared as NAN (not a number). Examples are the division by

zero and the square root of a negative number. Hence, adjustments during the evaluation

of dissimilarity measures are required to avoid failed designs. In addition, the maximal

value of the dissimilarity measure needs to be reduced, because the optimization methods

Table 4.1: Adjustments applied during the calculation of the dissimilarity measures to

avoid unrepresentable numerical values.

adjusted values original values and conditions

|A| = 2.2250738585072014 · 10−308 |A| ≤ 0

a = 10292 a > 10292

exp(a) = 10292 a > 6.72354847154261392461 · 102
ln a = −1 · 10292 a = 0

a−b = 10292 a = 0 and b > 1
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usually perform additional mathematical operations by using objective function values.

Typical examples of adjustments to avoid unrepresentable values are given in Table 4.1

represented by the matrix A and two real scalar values a and b.

To increase the readability of the diagrams shown in the benchmark studies, abbrevi-

ations are introduced to indicate the respective formula applied in the calculations. An

overview on introduced abbreviations is presented in Table 4.2.

Table 4.2: Abbreviations and respective formula applied in the diagrams of the benchmark

studies in Sections 4.5 and 4.6.

abbreviation exact formula symbol formula

PF DN
PF (P,Q) according to Equation (4.14)

SPF DN
SPF (P,Q) according to Equation (4.16)

HD DN
HD (P,Q) based on Equation (4.12)

HD† DN
HD (P,Q) according to Equation (4.23)

SHD DN
SHD (P,Q) based on Equation (4.12)

SHD† DN
SHD (P,Q) based on Equation (4.23)

BH DN
BH (P,Q) according to Equation (4.21)

CH(·) DN
CH (P‖Q, ·) according to Equation (4.19)

χ2 DN
χ2 (P‖Q) according to Equation (4.26)

rχ2 DN
χ2 (Q‖P ) according to Equation (4.26)

χ2S DN
χ2S

(P,Q) based on Equation (4.26)

α(·) DN
α (P‖Q, ·) according to Equation (4.34)

KL DN
KL (P‖Q) according to Equation (4.29)

rKL DN
KL (Q‖P ) according to Equation (4.29)

KLS DN
KLS (P,Q) according to Equation (4.31)

β(·) DN
β (P‖Q, ·) according to Equation (4.38)

β†(·) DN
β (P‖Q, ·) according to Equation (4.39)

βS(·) DN
βS (P,Q, ·) according to Equation (4.41)

βS†(·) DN
βS (P,Q, ·) according to Equation (4.42)

WEF (·, ·) DS
WEF (P‖Q, ·, ·) according to Equation (4.46)

MF (·, ·) DS
MF (P‖Q, ·, ·) according to Equation (4.47)

EF (·, ·) DS
EF (P‖Q, ·, ·) according to Equation (4.43)

E2S DS
E2S (P‖Q) based on Equation (4.49)

E2L DS
E2L (P‖Q) based on Equation (4.49)

E4S DS
E4S (P‖Q) according to Equation (4.49)

E4L DS
E4L (P‖Q) based on Equation (4.49)

E2SC DS
E2SC (P‖Q) based on Equation (4.51)

E4SC DS
E4SC (P‖Q) according to Equation (4.51)
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4.4 Numerical evaluation of objective function prop-

erties

Independent from the optimization algorithm, the objective function J(x) should satisfy

certain properties. If the optimization problem is a positive defined minimization problem

according to Equation (4.1), the properties

(i) positive definiteness according to Equation (4.2),

(ii) strict monotonicity with respect to the optimum,

(iii) strict convexity with respect to the optimum,

(iv) existence and suitable size of the gradient, and

(v) positive definiteness of the Hessian matrix

are convenient for the objective function.

If the objective function is strictly monotone decreasing (ii) with respect to the opti-

mum, suboptima will not exist. The convexity (iii) is a stronger property, as it implies

the monotonicity. In general, the topology of strictly convex functions is very suitable

for objective functions. Especially objective functions in combination with response sur-

face methods and gradient-based methods will benefit from this property. However, even

convex functions can have rapid gradient changes that are inappropriate for objective

functions. Also small gradients can be disadvantageous as inaccuracies for the numerical

calculations and numerical noise can strongly influence the objective. Hence, a suitable

size of the gradient (iv) is required. The size itself depends on the optimization problem

and the accuracy to determine the objective function. Property (v) is stronger than prop-

erty (iv). A positive definite Hessian matrix is essential for gradient-based optimization

methods, in which it is required for the line search. The entries of the Hessian matrix

are the second partial derivatives, which are indicators for the change of gradients. The

existence and the positive definiteness of the Hessian will further ensure a well-shaped

smooth function.

If an analytical objective function is given, the properties can be analyzed analyti-

cally. However, the analytical objective function depending on the input parameters is

not always available. Therefore, the properties have to be determined numerically with

acceptable computational effort.

Since analytical objective functions are not available for the following benchmark

studies, a numerical investigation of the properties needs to be conducted. To reduce the

computational expenses, the properties of the objective function will be investigated at

discrete design space points (X)k,l ∈ R
mx with k = 1, . . . ,m and l = 1, . . . , n assembled
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Figure 4.1: Definition of discrete points based on a full factorial design for a two-

dimensional parameter space.

ξ1 = 1.00 ξ3 = 0.25ξ2 = 0.50 ξ4 = 0.00

linearized J(x)

J(x)

J((X)1,l)

J((X)2,l)
J((X)3,l)

J((X)4,l)

Figure 4.2: Example of a slice l of the objective function using four points per slice.

in a tensor JXK ∈ R
m×n×mx . Based on a design-of-experiment (DOE) sampling scheme at

the boundaries of the design space, the points (X)1,l of a slice l can be defined. Suitable

DOE schemes are, for example, full factorial design, central composite design, or Koshal

design. The central points are neglected for the present application. The total number

of slices n depends on the DOE scheme and the number of design variables mx. For

example, a configuration based on a full factorial design will provide n = 3mx − 1 slices,

whereas configurations based on a central composite design will have n = 2mx + 2mx − 1

slices. Each slice l consists of m > 1 points (X)k,l, which are assembled at a line between

(X)1,l and (X)m,l. All points (X)m,l are identical to the optimum. Defining normalized

coordinates ξ ∈ R
m by

(ξ)k = 21−k ∀ k = 1, . . . ,m− 1 and (ξ)m = 0, (4.54)

the points of the design space are specified as

(X)k,l = (X)m,l + (ξ)k ((X)1,l − (X)m,l) ∀ k = 1, . . . ,m. (4.55)

Figure 4.1 shows a configuration for two design variables based on a full factorial

design. The number of points m for each slice l is four. Presuming two design variables,

the full factorial and face centered central composite sampling scheme are identical. An

example of slice l with the corresponding objective function values are given in Figure 4.2.
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(a) Full factorial design (b) Central composite design

Figure 4.3: Definition of discrete points (X)k,l for a three-dimensional parameter space

with two points per slice.

Figure 4.3 visualizes the configuration for three design variables based on full factorial

and central composite design using two points per slice.

To proof the required properties of an objective function, three indicators will be

defined based on the properties of the slices using the discrete points (X)k,l. The convexity

in the interval ](ξ)k, (ξ)m[ ∀ k = 1, . . . ,m−2 and m > 2 of the discrete objective function

slice l is indicated by

(oc)k,l =











0 : J((X)j,l) <
(ξ)j − (ξ)m
(ξ)k − (ξ)m

J((X)k,l) +
(ξ)k − (ξ)j
(ξ)k − (ξ)m

J((X)m,l) ∀ k < j < m

1 : else

.

(4.56)

The convexity indicator (Oc)k is obtained by averaging all (oc)k,l over all slices l. Hence,

it is defined by

(Oc)k =
1

n

n
∑

l=1

(oc)k,l ∀ k = 1, . . . ,m− 2. (4.57)

Obviously, the indicator (Oc)k is bounded by 0 and 1, whereas (Oc)k = 0 indicates a

strict convexity of the objective function in the interval ](ξ)k, (ξ)m[.

The monotonicity within the interval ](ξ)k, (ξ)k+1[ ∀ k = 1, . . . ,m− 1 and m > 1 are

tested by

(om)k,l =

{

0 : J((X)k,l) > J((X)k+1,l)

1 : J((X)k,l) ≤ J((X)k+1,l)
(4.58)

and the corresponding monotonicity indicator yields

(Om)k =
1

n

n
∑

l=1

(om)k,l ∀ k = 1, . . . ,m− 1. (4.59)

This indicator ranges between 0 and 1. (Om)k = 0 refers to a monotone decreasing

function in all slices with respect to the interval ](ξ)k, (ξ)k+1[.
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By using the single sided finite differences approach, the first derivatives of each slice

l at a position k = 1, . . . ,m− 1 are calculated.

(og)k,l =
1

‖(X)1,l − (X)m,l‖L2

J((X)k+1,l) − J((X)k,l)

(ξ)k+1 − (ξ)k
(4.60)

A gradient indicator

(Og)k =

n
∑

l=1

(og)k,l

max
k

n
∑

l=1

(og)k,l

(4.61)

is derived. Applying this definition, a positive value of (og)k,l is related to a decrease of

the objective function with respect to the optimum. In general, it is possible that some

of the values (og)k,l are negative even though the gradient indicator (Og)k is positive.

Therefore, the gradient indicator needs to be related to the monotonicity indicator. A

monotone decrease of the gradient indicators is convenient for an objective function.

However, the gradient indicators should be not too small to avoid high influences from

inaccurately calculated objective function values or numerical noise.

The three presented indicators are applied within the benchmark studies in Sections

4.5 and 4.6. Of course, the numerically derived properties rely on the discrete slices

of the objective function. They can only indicate and not determine the properties of

the objective function. The quality of the indicators can be improved by increasing the

number of slices and points. Unfortunately, this is related to an additional computational

effort.

4.5 Benchmark study: Three degree of freedom mass-

spring system

4.5.1 Description

A three degree of freedom system [Khodaparast et al. 2008b] is considered with known

deterministic masses m1 = m2 = m3 = 1.0 kg and stiffnesses k3 = k4 = 1.0 N
m

, k6 = 3.0 N
m

.

It is depicted in Figure 4.4. The stiffnesses k1, k2, and k5 are the unknown model input

parameters, which are assembled in a random vector θ =
[

k1 k2 k5

]T

. It is assumed

that the random vector entries are independently lognormal distributed. The multivariate

distribution is described by the mean value vector Eθ and the standard deviation vector

σθ. Thus, the input parameters x = [ (Eθ)1 (Eθ)2 (Eθ)3 (σθ)1 (σθ)2 (σθ)3 ]T are

used in the optimization process. Assuming the system’s natural frequencies are the

known target features given as a random vector zm =
[

f1 f2 f3

]T

obtained from

several experiments, the inverse problem is established.
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m1 k4

k2

k5

k6

m2

m3

k3k1

Figure 4.4: Three degree of freedom mass-spring system

Of course, the experimental data needs to be generated artificially for this benchmark

study. The properties describing the distribution of the random vector zm are obtained

from 1,000,000 Latin hypercube samples based on the nominal values of the stiffnesses

θ̂ =
[

k̂1 k̂2 k̂5

]T

∈ LN (E
θ̂
,C

θ̂
) with

E
θ̂

=
[

1 1 1
]T

and (C
θ̂
)
i,j

=

{

0.04 : i = j

0.00 : i 6= j
. (4.62)

The obtained mean values, covariance matrix, skewness, kurtosis, and L moments of

the target output features are respectively:

Ezm =
[

1.5861569206 · 10−1 3.1785414404 · 10−1 4.5040703469 · 10−1
]T

,

Czm =







5.4013635699 · 10−5 3.4854959899 · 10−5 1.4801754616 · 10−5

3.4854959899 · 10−5 1.6615287298 · 10−4 3.8101343173 · 10−5

1.4801754616 · 10−5 3.8101343173 · 10−5 1.6981213650 · 10−5






,

Szm =
[

2.2005156916 · 10−1 2.5019213736 · 10−1 5.6342856633 · 10−1
]T

,

Kzm =
[

5.8981458043 · 10−2 5.0541817841 · 10−2 7.0438472870 · 10−1
]T

,

L1zm =
[

1.5861569206 · 10−1 3.1785414404 · 10−1 4.5040703469 · 10−1
]T

,

L2zm =
[

4.1412783652 · 10−3 7.2631368837 · 10−3 2.2958859280 · 10−3
]T

,

L3zm =
[

1.5007058955 · 10−4 3.0596503399 · 10−4 1.9761198197 · 10−4
]T

, and

L4zm =
[

5.0648855561 · 10−4 8.8362809194 · 10−4 3.0285439088 · 10−4
]T

.

The histograms of the marginal distributions of the random vectors corresponding

to nominal model input parameters and target features are shown in Figure 4.5. The

distributions of the nominal stiffnesses are known to be lognormal, whereas the best fitting

distributions of corresponding frequencies are determined by a χ2-test [Montgomery et al.
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Figure 4.5: Probability density functions of the nominal stiffness and corresponding nat-

ural frequencies. The histograms are density estimations based on 1,000,000 Latin hyper-

cube samples.

2002]. The Weibull, as well as, the lognormal distribution provide a valid description of

the frequencies. However, the Weibull distribution is closer to the histogram, especially

for the third natural frequency. The estimated probability density functions are also close

to a probability density function of a normal distribution, which justifies the application

of the explicite formulas of dissimilarity measures as objective functions.

This benchmark study investigates the suitability of dissimilarity measures, defined in

Sections 4.3.3 and 4.3.4, with respect to their applicability as objective functions in the

stochastic model updating process. The input parameter space is bounded by [10−3, 5]

and [10−3, 0.5] for the mean values Eθj
and the standard deviations σθj

of the unknown

stiffnesses, respectively. The model input parameters are assumed to be uncorrelated.

The accuracy of estimated statistical properties of the model responses Ezj and Czj

derived from a certain distribution of θj, depends on the sample size of the sample-based

stochastic structural analysis.

In a first step, the properties of each objective function are numerically assessed by

means of the convexity, monotonicity, and gradient indicator. Subsequently, the results

of two nature inspired optimization methods, genetic algorithm (GA) and particle swarm
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optimization (PSO), are compared. As an alternative to nature inspired optimization

methods, the adaptive response surface method (ARSM) using a linear regression polynom

with a quadratic D-optimal sampling scheme is investigated.

4.5.2 Numerically derived properties of the objective functions

The gradients of the objective functions, as well as, the convexity and monotonicity

properties are investigated by the indicators defined in Equations (4.61), (4.57), and

(4.59), respectively. The investigation is based on a full factorial sampling using six

points for each of the 728 slices. A detailed description to define the positions of the

resulting 3,641 assessment points is given in Section 4.4. As the accuracy of the objective

function value depends on the accuracy of the derived output parameters, the number

of Latin hypercube sample sets to be used in the stochastic structural analysis is varied

by 10, 100, and 1,000. Based on these calculated data, the objective function values
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Figure 4.6: Averaged objective function properties of the three degree of freedom bench-

mark study using 10 Latin hypercube samples. The acronyms are defined in Table 4.2.
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are determined. Then, the property indicators are derived relying on these objective

function values. To increase the confidence of the obtained indicators, they are averaged

over 20 independent evaluations of each objective function. The averaged indicators

for all investigated dissimilarity measures are illustrated in Figures 4.6-4.8. The chosen

acronyms for the dissimilarity measures are related to specific Equations as listed in Table

4.2. Some examples of objective function slices corresponding to one evaluation of the

objective function are visualized in Figures 4.9 and 4.10. Therein, 1,000 Latin hypercube

samples are utilized for the stochastic structural analysis.

Comparing Figures 4.6-4.8, the influence of the number of Latin hypercube samples

is investigated. As expected, the accuracy of the output parameters is essential in the

vicinity of the optimum. Indicators close to the boundaries are less affected. Hence, most

fundamental changes are observed for indicators near the optimum. By increasing the

samples from 100 to 1,000, only the indicators associated with the Euclidean norm of
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Figure 4.7: Averaged objective function properties of the three degree of freedom bench-

mark study using 100 Latin hypercube samples. The acronyms are defined in Table 4.2.
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statistical moments are significantly influenced. For some measures, two different kinds

of formula (e.g., HD vs. HD†) are used to compute the same dissimilarity measure. The

results do not considerably disagree.

The Patrick-Fisher distance (PF ) and squared Patrick-Fisher distance (SPF ) perform

similarly with respect to monotonicity and size of gradients. Both measures show an

appreciable monotone behavior near the optimum. The violation of monotonicity at

some positions close to the boundaries indicates the existence of local minima. Moreover,

the sudden gradient change from (E(Og))1 to (E(Og))2 is not beneficial for the objective

function. The squared Patrick-Fisher distance satisfies at least the property of convexity

near the optimum.

Both, the Hellinger distance (HD) and the squared Hellinger distance (SHD), are

almost monotone functions. The convexity indicator and the gradient indicator demon-
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Figure 4.8: Averaged objective function properties of the three degree of freedom bench-

mark study using 1,000 Latin hypercube samples. The acronyms are defined in Table

4.2.
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strate that the Hellinger distance is very irregular. Even if the squared Hellinger distance

is convex near the optimum, it is a non-convex function with respect to the whole design

space. As the squared Hellinger distance has an upper bound of two, the topology near

the boundaries is similar to a plateau with small gradients. Representative slices for one

objective function evaluation are depicted in Figures 4.9c and 4.9d.

Independent from its parametric value, the Chernoff distance (CH) has optimal prop-

erties to be used as an objective function. The convexity and monotonicity criteria are

satisfied at all positions and the gradient changes monotonously using only 100 Latin

hypercube samples. For s = 0.5, the Chernoff distance is commonly denoted by Bhat-

tacharyya distance (BH). The slices of one representative objective function evaluation

are presented in Figure 4.9b.

The χ2-divergence, reversed χ2-divergence (rχ2), symmetrized χ2-divergence (χ2S),

as well as, the α-divergences, β-divergences, and symmetrized β-divergences (βS) with

parameters s = 1.5 and s = 2.5 are similar in their performance regarding the investigated

properties. All of these measures have suitable properties in the vicinity of the optimum.

Near the boundaries of the design space, a high degree of non-monotonicity and non-

convexity is displayed, which indicates the existence of local minima. Furthermore, the

average of all gradients, which coincides with the gradient indicator, is negative in some

cases. The unfavorable behavior close to the boundaries is explained by violations of the

positive definiteness condition for certain covariance matrix combinations. The positive

definiteness condition is an essential requirement for numerical stability, which is defined

in Section 4.3.3 for several dissimilarity measures. Examples of representative slices are

visualized in Figures 4.9f-4.9h.

If at least 100 Latin hypercube sample sets are utilized in the stochastic structural

analysis, the Kullback-Leibler divergence (KL) becomes a well-shaped objective function

with respect to convexity and monotonicity. The gradient decreases monotonously with

a decreasing distance of the input variables with respect to the optimum. The properties

are similar to that of the Chernoff distance. Also the reversed Kullback-Leibler distance

(rKL) and the symmetrized Kullback-Leibler distance (KLS) show suitable convex and

monotone properties. Only the sudden change of the gradient near the boundaries can

cause difficulties for certain optimization strategies. Slices of the objective function are

presented in Figure 4.9a.

The objective functions based on the β-divergence with parameters s = 0.1, . . . , 0.9 are

convex in the vicinity of the optimum and concave close to the boundaries of the design

space. In general, they are smooth functions. Similar to the squared Hellinger distance,

their topology near the boundaries is comparable to a plateau with small gradients. The

properties of the symmetrized β-divergences (βS) are not significantly different from those

of the β-divergences. Figure 4.9e shows a set of slices of the β-divergence with s = 0.7.

The weighted Euclidean Frobenius norm (WEF ), Mahalanobis Frobenius norm (MF ),
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(a) Kullback-Leibler divergence (KL)
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(b) Bhattacharyya distance (BH)
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(c) Hellinger distance (HD)
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(d) Squared Hellinger distance (SHD)
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(e) β-divergence (β(0.7))
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(f) α-divergence (α(2.5))
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(g) χ2-divergence (χ2)
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(h) β-divergence (β(2.5))

Figure 4.9: Slices of one representative objective function evaluation. The stochastic

structural analysis of the three degree of freedom system is based on 1,000 Latin hypercube

samples.
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(a) Weighted Euclidean Frobenius (WEF (1.0, 1.0))
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(b) Mahalanobis Frobenius norm (MF (1.0, 0.1))
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(c) Euclidean Frobenius norm (EF (1.0, 1.0))
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(d) Euclidean norm (E2S)
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(e) Euclidean norm (E2L)
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(f) Euclidean norm (E2SC)
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(g) Euclidean norm (E4L)
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Figure 4.10: Slices of one representative objective function evaluation. The stochastic

structural analysis of the three degree of freedom system is based on 1,000 Latin hypercube

samples. (continued from Figure 4.9)
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and Euclidean Frobenius norm (EF ) are monotone at all investigated points. Even if the

convexity is not perfectly confirmed close to the optimum, they can serve as an objective

function for the considered three degree of freedom system. Also the gradient indicator

predicts a smooth and almost convex function. Of course, the suitability of these measures

depends on the selection of the weighting parameters w1 and w2. In the present study,

the discrepancies related to the mean values and the variances near the optimum are

equally weighted. However, as the optimum is typically not known, the suitable choice of

weighting factors is always a difficult task.

Another possibility to define a dissimilarity measure is to apply the Euclidean norm

of the first two statistical moments (i.e., E2SC, E2S, E2L). These measures are smooth

as indicated by the gradients, but they have some drawbacks with respect to convexity

and monotonicity nearby the optimum and the boundaries. A significant effect of using

the correlation coefficient cannot be observed. Generally, the application of L moments

instead of the standard statistical moments is advantageous. In comparison to other

investigated measures, the measures based on the first two statistical moments benefit ex-

traordinarily from an increase of Latin hypercube samples used in the stochastic structural

analysis.

So far, only the first two statistical moments are applied to the dissimilarity measures,

which is not sufficient, if the probability density function is significantly unsymmetric.

To consider also unsymmetric probability density functions, measures related to the Eu-

clidean norm of the first four statistical moments represented by the acronyms E4SC,

E4S, and E4L have been introduced. Unfortunately, their properties, especially the non-

monotonicity, are not feasible for an objective function. Furthermore, negative gradients

are derived. Hence, a high number of local minima can be expected. The undesirable

properties are explained by the insufficient accuracy of the third and fourth moments

obtained with the investigated number of Latin hypercube samples. Representative ob-

jective function slices are given in Figure 4.10g and 4.10h.

In summary, a number of 100 Latin hypercube samples is sufficient to represent the

principle behavior of the objective functions at the investigated discrete points. The Bhat-

tacharyya distance, the Kullback-Leibler divergence, the weighted Euclidean Frobenius

norm, and the Mahalanobis Frobenius norm are the most suitable dissimilarity measures

obtained for this benchmark study. In the following section, all investigated dissimilarity

measures will be tested as objective functions for different optimization strategies.

4.5.3 Dissimilarity measures applied as objective functions

The previous section concluded that some dissimilarity measures are qualified to be ap-

plied as objective functions. This section aims to demonstrate that optimization methods

in combination with the suggested dissimilarity measures can be successfully applied to
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Table 4.3: Configuration parameters of the genetic algorithm (GA) applied to the three

degree of freedom benchmark study.

parameters value

number of parents 34

number of individuals 68

number of generations 70

Table 4.4: Configuration parameters of the particle swarm optimization (PSO) applied to

the three degree of freedom benchmark study.

parameters value

number of particles 36

number of iterations 70

Table 4.5: Configuration parameters of the adaptive response surface method (ARSM)

applied to the three degree of freedom benchmark study.

parameters value

maximal iterations or function calls 58

samples for quadratic D-optimal scheme 42

solve stochastic model updating problems. It is not intended to determine the best opti-

mization method with its optimal configuration parameters.

The genetic algorithm and particle swarm optimization method are investigated with

a variation of 100 and 10,000 Latin hypercube samples used for the stochastic structural

analysis. These investigations are supplemented by the results obtained from an adaptive

response surface approach.

For the nature inspired optimization methods, a randomly chosen set is automatically

defined as initial input parameter set. In case of the adaptive response surface method,

the initial mean values and covariance matrix for the unknown stiffnesses are set to

Eθ0 =
[

2 2 2
]T

and (Cθ0)i,j =

{

0.09 : i = j

0.00 : i 6= j
, (4.63)

which are identical to the values chosen in the investigations by [Khodaparast et al.

2008b]. A short description of the optimization algorithms is given in Appendix B. Ta-

bles 4.3 – 4.5 list the corresponding most important configuration parameters, which are

related to a similar total number of design point evaluations for each optimization method.

The suitability of each optimization strategy and dissimilarity measure is judged by

the error

ε1 =
mx
∑

i=1

(

1 − (x̃)i
(x̂)i

)2

(4.64)
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Figure 4.11: Statistics of the error norm ε1 according to Equation (4.64) using genetic al-

gorithm (GA). The statistics are based on 20 independent optimization runs. To evaluate

one objective function value, 100 and 10,000 Latin hypercube samples are applied.

between nominal input parameters x̂ and obtained optimal input parameter values x̃ with

mx = 6. Based on 20 independent optimization runs for each configuration, a statistical

assessment is derived and presented in form of a boxplot (e.g., [Falk et al. 2002]). The

boxplot indicates minimum, 25-percent quantile, median, 75-quantile, and maximum of

the criterion according to Equation (4.64). The results are visualized in Figures 4.11-4.13.

This investigation supports the conclusions drawn from the investigation of objective

function properties. The measures χ2 divergence, reversed χ2 divergence, symmetrized

χ2 divergence, as well as, all α- and β-divergences with parameters s = 1.5 and s = 2.5

are not recommended to be used. The only exception is the α-divergence in combination

with the adaptive response surface method. With this optimization method and a pa-

rameter s = 1.5, the best results are obtained with the α-divergence. Furthermore, the

dissimilarity measures related to the norms of statistical moments and L moments are

not recommended to be applied as objective functions.

By comparing the results of the different optimization methods, some global trends

can be observed. The results of the particle swarm optimization method have higher

deviations, but are in average more accurate than the results obtained by the genetic

algorithm. Applying the adaptive response surface method, a good accuracy with low
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Figure 4.12: Statistics of the error norm ε1 according to Equation (4.64) using particle

swarm optimization (PSO). The statistics are based on 20 independent optimization runs.

To evaluate one objective function value, 100 and 10,000 Latin hypercube samples are

applied.

deviations can be derived with only 100 Latin hypercube samples.

The improvements resulting from an increased number of Latin hypercube samples

are not high enough to justify the increased computational expense. This can be ex-

plained to a certain extent by a non-optimal set of configuration parameters applied to

the optimization methods.

In summary, the Bhattacharyya distance, the Kullback-Leibler divergence, and the β-

divergence with s = 0.7 are suitable measures independent from the optimization method.

In addition, the α-divergence using s = 1.5 in combination with the adaptive response

surface method and the Mahalanobis Frobenius norm combined with a genetic algorithm

show acceptable results.

Since the Kullback-Leibler divergence is one of the most suitable objective functions,

it has been selected for a more detailed investigation. Figure 4.14 shows the convergence

of the solution for all optimization algorithms using the Kullback-Leibler distance as

objective function. Each line corresponds to a single representative optimization run. The

nature inspired optimization methods behave similar. The number of Latin hypercube

samples shows no significant influence. As no stagnation is observed, it is advised to
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Figure 4.13: Statistics of the error norm ε1 according to Equation (4.64) using adaptive

response surface optimization methods (ARSM). The statistics are based on 20 indepen-

dent optimization runs. To evaluate one objective function value, 100 Latin hypercube

samples are applied.
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Figure 4.14: Convergence of the solution indicated by the best objective function value

depending on the generation or iteration number.

increase the number of generations or iteration steps to improve the quality of the results.

The solutions of the adaptive response surface methods converge fast in the first half of the

optimization. In the second half, the solutions do not converge significantly, which may be

explained by the discrepancy between the true objective function and its approximation.

However, the adaptive response surface method performs better than the nature inspired
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optimization method investing similar computational effort.

For comparison, the convergence of the sensitivity-based perturbation method pro-

posed by [Khodaparast et al. 2008b] is presented in Figure 4.14. The graph refers to the

simplified form of the method, in which the correlation between measured features and

model parameters is neglected. The Monte Carlo sampling is replaced by the Latin hyper-

cube sampling as recommended by [Brehm et al. 2009a]. A fast convergence within the

first few iteration steps can be observed. Unfortunately, the solution cannot be reduced

in the subsequent iteration steps, which indicates a systematic error of the perturbation

method.

Table 4.6 presents the statistical information of identified input parameters regarding

20 independent optimization runs for each configuration. The Kullback-Leibler divergence

in combination with the genetic algorithm and particle swarm optimization is investigated

with respect to 100 and 10,000 Latin hypercube samples. For each input parameter (x)i,

the error is defined by

ε2(i) = 1 − (x̃)i
(x̂)i

∀ i = 1, . . . ,mx. (4.65)

Based on mean values and standard deviations of the errors ε2(i), the two indicators

ε3E =

√

√

√

√

mx
∑

i=1

(E(ε2(i)))2 resp. ε3σ =

√

√

√

√

mx
∑

i=1

(σ(ε2(i)))2 (4.66)

can be derived with mx = 6. The vectors x̃ and x̂ are related to the identified and

nominal input parameters, respectively. It can be observed that the mean values are

identified with a higher accuracy than the standard deviations. Only the accuracy of the

standard deviations is significantly improved by increasing the number of samples from

100 to 10,000. With respect to the errors ε3E and ε3σ, the genetic algorithm should be

preferred. However, the benefit of the genetic algorithm is only marginal.

The results deduced from the adaptive response surface method are shown in Table

4.7. In comparison to the nature inspired optimization algorithms, only the standard

deviation error ε3σ is significantly improved. The value of the indicator ε3E is similar to

those of the genetic algorithm and particle swarm optimization listed in Table 4.6.

Furthermore, the influence of a variation in the number of parents and generations

is investigated for the genetic algorithm. The respective results are presented in Table

4.7. It is observed that the proposed variations do not achieve an improvement of the

identified parameters.

To compare the proposed optimization-based stochastic model updating method with

the sensitivity-based stochastic model updating method suggested by [Khodaparast et al.

2008b], Table 4.8 collects the results from both approaches. Assuming that the solver runs

conducted for the stochastic structural analysis are the most time consuming calculations,
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Table 4.6: Comparison between genetic algorithm and particle swarm optimization. The

statistical values of identified input parameters are based on 20 independent optimization

runs.
method GA with KL PSO with KL

LHS 100 10,000 100 10,000

total solver runs ≈ 250,000 ≈ 25,000,000 ≈ 250,000 ≈ 25,000,000

error ε2 [%] error ε2 [%] error ε2 [%] error ε2 [%]

i parameter E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i))

1 E
(

k̃1

)

0.1069 0.3774 0.0355 0.3053 0.0525 0.2429 0.0203 0.0740

2 E
(

k̃2

)

-0.1136 0.2901 0.0207 0.3276 0.0150 0.2270 0.0175 0.0973

3 E
(

k̃5

)

0.0882 0.3099 0.0926 0.1988 0.0450 0.1614 -0.0250 0.0807

4 σ

(

k̃1

)

0.6232 2.1620 0.0380 0.8671 0.4170 2.1280 0.1475 1.1131

5 σ

(

k̃2

)

0.1707 1.3498 0.0252 0.8038 0.3432 2.4061 0.2007 1.2347

6 σ

(

k̃5

)

-0.0243 1.2532 0.1250 0.8836 0.5380 1.1078 0.0350 0.7421

ε3E resp. ε3σ 0.6710 2.8964 0.1672 1.5553 0.7656 3.4178 0.2542 1.8264

Table 4.7: Results derived from the adaptive response surface method (ARSM) and a

variation in configuration parameters of the genetic algorithm (GA). The statistical values

of identified input parameters are based on 20 independent optimization runs.

method ARSM with KL GA with KL

LHS 100 10,000 100a 100b

total solver runs ≈ 250,000 ≈ 25,000,000 ≈ 2,500,000 ≈ 25,000,000

error ε2 [%] error ε2 [%] error ε2 [%] error ε2 [%]

i parameter E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i))

1 E
(

k̃1

)

0.0787 0.2611 0.0118 0.0241 0.1147 0.1385 0.0815 0.0813

2 E
(

k̃2

)

-0.0044 0.1610 -0.0036 0.0201 -0.0191 0.1287 -0.0237 0.0916

3 E
(

k̃5

)

0.2058 0.3016 0.1022 0.1090 -0.0073 0.1361 0.0414 0.1057

4 σ

(

k̃1

)

0.2500 1.1581 0.0520 0.1818 0.7077 0.9870 0.9532 0.9569

5 σ

(

k̃2

)

0.2850 0.8340 -0.0878 0.2136 0.2635 0.8381 -0.0735 0.7759

6 σ

(

k̃5

)

0.4500 0.6849 0.0737 0.1325 0.3057 0.5335 0.1627 0.4029

ε3E resp. ε3σ 0.6283 1.6404 0.1626 0.3303 0.8231 1.4197 0.9744 1.3062
a configuration parameter variation with 70 parents, 350 generations
b configuration parameter variation with 140 parents, 1750 generations

Table 4.8: Comparison of different updating methods with similar computational ex-

pense. The statistical values of identified input parameters are based on 20 independent

optimization runs.

method perturbation method GA with KL PSO with KL ARSM with KL

LHS 10,000 40 40 40

total solver runs ≈ 100,000 ≈ 100,000 ≈ 100,000 ≈ 100,000

error ε2 [%] error ε2 [%] error ε2 [%] error ε2 [%]

i parameter E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i))

1 E
(

k̃1

)

0.1289 0.0051 0.0143 0.4444 0.0831 0.3534 0.3859 0.4615

2 E
(

k̃2

)

-0.0440 0.0048 0.2637 1.0532 -0.0554 0.4008 0.0492 0.3048

3 E
(

k̃5

)

-0.0539 0.0024 0.2237 0.4917 0.1462 0.3480 0.2322 0.3289

4 σ

(

k̃1

)

2.2637 0.0185 1.1760 2.2873 0.7407 2.8058 1.9657 1.8117

5 σ

(

k̃2

)

1.3576 0.0350 -0.1340 1.5984 0.4062 2.6342 1.1227 1.1237

6 σ

(

k̃5

)

-0.4315 0.0512 1.0857 1.8946 1.0902 2.5581 1.1472 1.6541

ε3E resp. ε3σ 2.6786 0.0652 1.6430 3.5951 1.3906 4.6649 2.5780 2.7740
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the computational expenses are comparable for all approaches. Due to the fast converging

behavior of the perturbation method, only 10 iteration steps are accomplished. The

configuration parameters for the optimization algorithms remain unchanged in comparison

to previous calculations.

As the results show, it is not possible to nominate one single method as the best

approach for the given limitation of 100,000 solver runs. The optimization methods

derive more accurate mean values of the identified input parameters, whereas the input

parameters obtained by the perturbation method have lower standard deviations. On

average the results found with the particle swarm optimization are the best, but their

scatter is the worst in comparison with other methods.

For this benchmark study, it is not possible to determine one preferred optimization

method. Of course, the perturbation method converges fast to a solution, but a systematic

error is always present. Also, the adaptive response surface method has a fast convergence

rate with low computational effort. But due to the approximation, a systematic error

cannot be avoided. Furthermore, the success of both approaches depends on the chosen

initial input parameter values. In contrast, the nature inspired optimization methods

can always find a solution near the optimum. By increasing the computational effort for

nature inspired optimization methods, an improvement can be obtained.

It can be constituted that several optimization methods in combination with the pro-

posed dissimilarity measures can be successfully applied for the stochastic model updating

problem of this benchmark study. The quality of the derived results obtained by opti-

mization methods and by sensitivity-based methods is almost identical.

4.6 Benchmark study: Truss system

4.6.1 Description

This numerical benchmark study is based on a plain truss cantilever with 20 degrees of

freedom consisting of 12 nodes and 21 truss members. The same system has been applied

in [Khodaparast et al. 2008b] for a numerical sensitivity-based stochastic model updating

benchmark study and in Chapter 3 for the investigation of mode pairing strategies. The

geometry is presented in Figure 4.15. The cross-sectional area, the mass density, and the

Poisson’s ratio of all truss members are set to the known deterministic values of 0.03m2,

2700 kg
m3 , and 0, respectively. The material is linear elastic. For all non-diagonal truss

members, a known Young’s modulus of 7·1010 N
m2 is chosen and considered as deterministic

value.

The Young’s moduli of the diagonal elements T1–T5 are unknown and will be re-

presented by E(Ti) = (θ)i · 7 · 1010 N
m2 ∀ i = 1, . . . , 5, whereas θ is the random vec-

tor of model input parameters. The random vector θ is described by a multivariate
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00
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5 x 1.00m

MP2 MP3 MP4MP1

T1 T2 T3 T4 T5

Figure 4.15: Truss system with indicated measurement points (MP) and directions.

lognormal distribution with mean value Eθ and covariance matrix Cθ. As the entries

of the random vector are assumed to be uncorrelated, it is sufficient to assemble the

mean values and standard deviations into the unknown input parameter vector x =

[ (Eθ)1 . . . (Eθ)5 (σθ)1 . . . (σθ)5 ]T. These input parameters are modified during

the optimization with the aim to minimize the difference between output parameters y

and target output parameters ym.

The statistical properties of the distribution of the random feature vector are obtained

by a numerical modal analysis of 1,000,000 Latin hypercube samples generated from the

model parameter vector, described by the nominal mean value vector and the nominal

covariance matrix

E
θ̂

=
[

1 1 1 1 1
]

and (C
θ̂
)
i,j

=

{

0.018225 : i = j

0.000000 : i 6= j
, (4.67)

respectively. The target feature vector is representing the natural frequencies of the first

four bending modes and the corresponding vertical modal displacements at measurement

positions MP1-MP4. Therefore, a total number of 20 features is defined. Figure 4.15 in-

dicates the measurement positions. The first four bending modes related to the nominal

mean values of the stiffnesses are illustrated in Figure 4.16. Performing a sample-based

stochastic structural analysis, the target output parameters, mean value, covariance ma-

trix, skewness, kurtosis, and the first four L moments, can be extracted. Figure 4.17

shows the estimated and fitted analytical probability density functions of the marginal

distributions of some target feature parameters. The target features are typically obtained

from experimental data. For this benchmark study, they are generated by performing the

previously described artificial experiment.

Mode switches are frequently possible, due to the variation of stiffnesses related to

both, the generation of target features and the adjustments during the optimization pro-

cess. In this benchmark study, the energy-based modal assurance criterion (EMAC)

according to Equation (3.14) has been applied to assign numerically derived modes to

experimentally obtained modes. The respective cluster includes all vertical degrees of
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Mode 1 – 31.29Hz Mode 2 – 128.29Hz

Mode 3 – 292.75Hz Mode 4 – 480.34Hz

Figure 4.16: First four vertical mode shapes of the system related to the nominal mean

values of the stiffnesses. Only the vertical modal displacements of the marked positions

(•) are assumed to be available for the artificial experiment.
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Figure 4.17: Examples of probability density functions of target features. The histogram

is a density estimation related to 1,000,000 Latin hypercube samples. The best fit based

on a normal distribution is indicated by the red line.
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freedom of the structural model. More details about the proposed concept of mode pair-

ing has been presented in Chapter 3. For mode pairing purposes, a set of reference mode

shapes has to be defined for both, the artificial experiment and the numerical modal ana-

lyses performed to calculate the objective function values. In this benchmark study, both

applications use the reference mode shapes of the first four bending modes corresponding

to the four measurement points with respect to the nominal mean values of the input

parameters. However, if the target feature vector is obtained from real experiments, the

mode pairing can be conducted with reference mode shapes of the initial numerical model.

For the subsequent model updating, the reference mode shapes should be based on the

mean value vector of all experimentally obtained mode shapes.

The suitability of dissimilarity measures that were proposed in Section 4.3 and are

intended to be applied as objective functions, is the main emphasis of the current bench-

mark study. In contrast to the benchmark study of the three degree of freedom system,

the number of input and output parameters is higher. Furthermore, the effect of numerical

instabilities resulting from ill-conditioned covariance matrices can be demonstrated.

First, the numerical properties are derived for each dissimilarity measure as described

in Section 4.4. The boundaries of mean values and standard deviations of the model

input parameter vector are set to [10−2, 5] and [10−2, 0.5], respectively. As the accu-

racy of the derived property indicators depends on the number of samples used for the

sample-based stochastic structural analysis, the sample number is varied. Based on this

investigation, the most suitable dissimilarity measures are identified and applied in the

subsequent stochastic model updating using the nature inspired optimization methods

genetic algorithm (GA) and particle swarm optimization (PSO).

4.6.2 Numerically derived properties of the objective functions

The numerical properties for the truss benchmark study are derived as described in Section

4.4. In contrast to the three degree of freedom benchmark study, the investigations are

based on a central composite sampling scheme at the boundaries. Each slice contains six

assessment points. Hence, the total number of objective function evaluations is 5,216. A

variation of 100 and 1,000 Latin hypercube samples applied in the stochastic structural

analysis is performed. The indicators obtained from 10 independent objective function

assessments are averaged to increase the confidence. Figures 4.18 and 4.19 illustrate

the averaged indicators for convexity, monotonicity, and gradients. The acronyms of

the dissimilarity measures are explained in Table 4.2. In addition, all slices of a single

objective function assessment for several dissimilarity measures are presented in Figures

4.20 and 4.21.

The general observations are similar to those derived within the three degree of free-

dom benchmark study. With an increasing number of Latin hypercube samples, the
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Figure 4.18: Objective function properties for the truss system. The indicators are aver-

aged over 10 identical runs using 100 Latin hypercube samples for each objective function

evaluation.

indicators become more accurate, especially in the vicinity of the optima. The mono-

tonicity indicators of the Chernoff distance (CH), the Kullback-Leibler divergence (KL),

the β-divergences (β†), and their deviations are significantly improved. However, the

slices in Figures 4.20a and 4.20b indicate that local minima are likely even for 1,000 Latin

hypercube samples.

The topology of all bounded measures, like Hellinger distance (HD), squared Hellinger

distance (SHD), β-divergence, and symmetrized β-divergence, is very inconvenient for an

objective function. The dissimilarity measures have very small gradients in a large area

of the design space. Only in the vicinity of the optimum, suitable gradients are observed.

Figures 4.20f and 4.20h depict this phenomenon.

By comparing the results of different formulas to calculate the same dissimilarity

measure, the deviations are higher than those obtained in the three degree of freedom
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Figure 4.19: Objective function properties for the truss system. The indicators are av-

eraged over 10 identical runs using 1,000 Latin hypercube samples for each objective

function evaluation.

Table 4.9: Covariance matrix properties of the random feature vector.

property of Czm benchmark study

truss 3DOF

determinant 5.6788 · 10−47 5.6267 · 10−14

maximal singular value 7.8520 · 101 1.8592 · 10−4

minimal singular value 1.4676 · 10−7 6.8136 · 10−6

condition number 5.3503 · 108 2.7286 · 101
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(a) Kullback-Leibler divergence (KL)
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(b) Bhattacharyya distance (BH)
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(c) Reversed Kullback-Leibler divergence (rKL)
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(d) Symmetrized Kullback-Leibler divergence (KLS)
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(e) β-divergence (β(0.7))
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(f) β-divergence (β†(0.7))
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(g) Squared Hellinger distance (SHD)
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(h) Squared Hellinger distance (SHD†)

Figure 4.20: Representative slices of objective functions. 1,000 Latin hypercube samples

are utilized for the stochastic structural analysis of the truss system.
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(a) Weighted Euclidean Frobenius (WEF (100, 0.01))
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(b) Mahalanobis Frobenius norm (MF (100, 0.001))
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(c) Euclidean Frobenius norm (EF (1, 0.01))
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(d) Euclidean norm (E2S)
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(e) Euclidean norm (E2L)
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(f) Euclidean norm (E2SC)
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(g) Euclidean norm (E4L)
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(h) Euclidean norm (E4S)

Figure 4.21: Representative slices of objective functions. 1,000 Latin hypercube samples

are utilized for the stochastic structural analysis of the truss system. (continued from

Figure 4.20)
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benchmark study. The alternative formulas are indicated by the superscript †, for exam-

ple, HD versus HD†. The original formulas are based on the explicite formula of the

Hellinger integral, whereas the alternative formulas are based on the explicite formula

of the Chernoff distance. The original formula leads to a negative gradient indicator,

which is very undesirable for the objective function. The differences are clearly visible by

comparing Figures 4.20e and 4.20g with Figures 4.20f and 4.20h.

The reason for the differences is the unfavorable condition of the covariance matrix

of the target output parameters, which leads to numerical instabilities. Some important

properties of the covariance matrix of the target output parameters are listed in Table

4.9, which are compared with those corresponding to the covariance matrix of the target

output parameters used in the three degree of freedom benchmark study. Consequently,

ill-conditioned covariance matrices should be avoided for the equations relying on the

Hellinger integral.

Summarizing, the most suitable dissimilarity measures for the truss benchmark study

are almost the same as for the three degree of freedom benchmark study. If at least 1,000

Latin hypercube samples are provided, the best performing dissimilarity measures are

Bhattacharyya distance, Kullback-Leibler divergence, and Mahalanobis Frobenius norm.

4.6.3 Dissimilarity measures applied as objective functions

The most suitable dissimilarity measures derived from the previous investigation are now

applied as objective functions within an optimization-based stochastic model updating

of the truss system. In addition, the dissimilarity measures squared Hellinger distance

(SHD), β-divergence (β†(0.7)), and the Euclidean norm E2L are investigated. Genetic

algorithm and particle swarm optimization are combined with 100 and 10,000 Latin hy-

Table 4.10: Most important configuration parameters of the genetic algorithm (GA) ap-

plied to the truss system.

parameters value

number of parents 42

number of individuals 68

number of generations 84

Table 4.11: Most important configuration parameters of the particle swarm optimization

(PSO) applied to the truss system.

parameters value

number of particles 42

number of iterations 84
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percube samples utilized for the stochastic structural analysis. The most important con-

figuration parameters of the optimization methods are listed in Tables 4.10 and 4.11.

Additional descriptions are presented in Appendix B. The results are summarized in Fig-

ures 4.22 and 4.23. The boxplots illustrate the minimum, 25-percent quantile, median,

75-quantile, and maximum of the errors ε1. The errors ε1(Eθ̃
) and ε1(σθ̃

) are derived

with Equation (4.64) regarding the mean values and standard deviations of the identified

input parameters. With mx = 10, Equations (4.65) and (4.66) represent the definitions

of the deviation measures ε2, ε3E, and ε3σ used in this study.

Comparing the results of both benchmark studies, it can be observed that the de-

viations of the identified input parameters with respect to the nominal values are higher

in the case of the truss benchmark study. Especially, the deviations associated with

the standard deviations of the model input parameters are high, even if 10,000 Latin

hypercube samples are chosen. This can be an indicator for an insufficient number of

Latin hypercube samples.

The dissimilarity measure based on the Euclidean norm E2L is the measure with the

highest deviation. This observation supports the results derived from the investigation

of the objective function properties. In general, the improvement of the identification

deduced from an increasing number of Latin hypercube samples from 100 to 10,000 is

not significant. However, the results obtained from the genetic algorithm are marginally

better than those related to the particle swarm optimization.

A very interesting fact is that the dissimilarity measures Bhattacharyya distance (BH),

Kullback-Leibler divergence (KL), β-divergence (β†(0.7)), and Mahalanobis Frobenius

norm (MF (100, 0.001)) behave similar regarding the obtained accuracy of input param-

eters, when the particle swarm optimization is applied. A totally different behavior is

observed, when the genetic algorithm is used as optimization method. Applying the ge-

netic algorithm, the Bhattacharyya distance becomes outstanding in comparison to other

investigated dissimilarity measures. Therefore, the Bhattacharyya distance is chosen for

a detailed investigation of the identified input parameters.

Table 4.12 illustrates that the averaged errors of the identified input parameters are

significantly higher for this benchmark study than for the three degree of freedom bench-

mark study. The reasons can be manifold and thus need a more detailed investigation.

Although it is out of the scope of this study, some discussions and a few recommendations

are given. One reason for the high inaccuracy can be an insufficient number of samples

used for the stochastic structural analysis. Moreover, the number of iterations, parents,

or particles can contribute to the high deviations. Another aspect, which can contribute

to high uncertainties, are the ill-conditioned output covariance matrices. This effect could

be minimized by an appropriate regularization technique.

A remarkable value is the random variable corresponding to the stiffness of the diagonal

truss element T5. The errors are significantly higher for (E
θ̃
)5 and (σ

θ̃
)5 than for other
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Figure 4.22: Statistics of the error ε1 according to Equation (4.64) using genetic algorithm

(GA) for the truss benchmark study. The statistics are based on 20 independent opti-

mization runs. To evaluate one objective function value, 100 and 10,000 Latin hypercube

samples are applied.
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Figure 4.23: Statistics of the error norm ε1 according to Equation (4.64) using particle

swarm optimization (PSO) for the truss benchmark study. The statistics are based on 20

independent optimization runs. To evaluate one objective function value, 100 and 10,000

Latin hypercube samples are applied.
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Table 4.12: Comparison of different updating methods for the truss system. The statistical

values of identified input parameters are based on 20 independent optimization runs.

method GA with BH PSO with BH

LHS 100 10,000 100 10,000

total solver runs ≈ 350,000 ≈ 35,000,000 ≈ 350,000 ≈ 35,000,000

error ε2 [%] error ε2 [%] error ε2 [%] error ε2 [%]

i parameter E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i)) E (ε2(i)) σ (ε2(i))

1
(

E
θ̃

)

1
0.6206 2.2297 -0.1006 2.2852 3.0713 4.5412 0.3115 2.9638

2
(

E
θ̃

)

2
0.7211 2.6346 1.2616 6.1047 2.1099 5.5362 2.3055 6.7262

3
(

E
θ̃

)

3
3.9979 4.9558 0.9429 2.6634 5.2117 7.5376 2.2303 5.0693

4
(

E
θ̃

)

4
4.2077 5.9552 2.1751 6.8758 2.2068 4.7755 -0.3834 3.0020

5
(

E
θ̃

)

5
3.7668 6.0280 6.8328 8.7265 6.8788 7.4385 4.2290 7.5518

6
(

σ
θ̃

)

1
6.6807 10.0229 2.0859 10.4507 30.6333 43.9260 4.8326 30.0006

7
(

σ
θ̃

)

2
9.8041 22.6880 3.4503 30.0115 28.0174 53.0474 16.4557 52.8543

8
(

σ
θ̃

)

3
27.8289 41.1784 1.6600 10.9736 55.5051 65.7168 21.3374 43.1617

9
(

σ
θ̃

)

4
29.8348 37.5750 6.6849 40.0135 17.0915 43.9451 -7.7599 17.9164

10
(

σ
θ̃

)

5
18.5367 33.8419 36.9133 50.2106 50.5774 59.4536 30.3789 57.9866

ε3E resp. ε3σ 46.8797 70.5428 38.4734 73.6581 88.0206 121.3027 41.9636 96.8801

identified parameters. It seems to be comprehensible that these values are less sensitive

to the global modal behavior than all other input parameters as the respective diagonal

is placed in the last segment of the cantilever. Unfortunately, this cannot be confirmed

by a correlation analysis using the linear or quadratic Pearson or Spearman correlation

coefficient. Other sensitivity analysis methods may be more suitable, which needs to be

investigated in further studies.

A direct comparison of the optimization-based stochastic model updating strategies to

the sensitivity-based stochastic model updating strategy proposed by [Khodaparast et al.

2008b] is difficult, because in the latter strategy the initial parameters were chosen to be

nearby the optimum. The mean values had maximal five percent initial deviations. Of

course, with these initial values, the identified input parameters were very close to the

nominal values.

In summary, it could be shown that the application of dissimilarity measures as objec-

tive functions is in general possible. For the presented benchmark study, the deviations

between identified input parameters and nominal input parameters are high. This can be

related to other effects, like insensitive input parameters or ill-conditioned matrices.

Conducting optimization methods for the purpose of stochastic model updating, at

least an input parameter set, which is close to the nominal input parameters can be

identified. This set can be used as the initial parameter set in a subsequently applied

sensitivity-based stochastic model updating analysis, which refines the results very fast.

Hence, a symbiosis of both approaches can reveal their full potential.
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4.7 Discussion

In this chapter, an optimization-based stochastic model updating approach using vibra-

tion test data has been proposed. Generally, the statistics of features can be extracted

from several measurements of nominal identical structures or under similar, but non-

identical experimental conditions. If the source of uncertainty is considered as model

input parameter, the identified statistics of the model parameters are associated with real

existing variations of model parameters, which were present in the tests.

The proposed optimization-based approach serves as alternative to sensitivity-based

algorithms. A special aim was to assess the suitability of several objective functions re-

lated to dissimilarity measures that are usually applied in information theory. In total,

49 measures were investigated with respect to their properties of monotonicity and con-

vexity and their first derivatives. Since the objective functions were multi-dimensional

and could not be analyzed analytically, a mapping was proposed to extract representable

one-dimensional slices from the objective functions. Using these one-dimensional discrete

functions, indicators for monotonicity, convexity, and gradients were derived, which were

able to rate the properties of a multi-dimensional objective function with low computa-

tional effort. Applying this methodology to two representative benchmark studies, the

measures Kullback-Leibler divergence, Bhattacharyya distance, β-divergence with para-

meter s = 0.7, and Mahalanobis Frobenius norm could be recommended for vibration-

based stochastic model updating using optimization methods.

The 49 dissimilarity measures were applied to an optimization-based stochastic model

updating problem. The most suitable measures determined with the indicators for mono-

tonicity, convexity, and gradients were confirmed by the results of the optimization, which

justified the proposed methodology to rate the properties of objective functions. By

testing several optimization strategies (i.e., genetic algorithm, particle swarm optimiza-

tion, adaptive response surface method), it was observed that the optimization strategy

had only a secondary effect on the results. With similar computational effort, similar

accuracies of the identified input parameters were derived for the three degree of free-

dom benchmark study. A similar quality of identified parameters was obtained from the

sensitivity-based perturbation approach.

Nevertheless, all of the investigated approaches showed advantages and disadvantages.

Nature inspired optimization strategies, genetic algorithm and particle swarm optimiza-

tion, did not need an initial input parameter set, but they could only find near-optimal

solutions. In contrast, the adaptive response surface method and the sensitivity-based

stochastic model updating approaches needed an initial parameter set, which had to be

sufficiently close to the optimum. The solutions converged fast, but were often influ-

enced by systematic errors of the algorithms. It was concluded that the combination of

optimization-based and sensitivity-based stochastic model updating approaches could be
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beneficial.

In the presented benchmark studies, the application of explicite formula to solve the

integrals of dissimilarity measures was justified since the feature vectors were almost

multivariate normally distributed. This reduced significantly the numerical effort as the

mean value vectors and covariance matrices could be estimated with sufficient accuracy

by evaluating only a few samples. However, the general definition of dissimilarity mea-

sures comprises the potential to apply such measures to non-normal distributed feature

vectors. For this purpose, the multi-dimensional probability density functions need to be

estimated. To obtain a sufficient accuracy, more samples are needed for the probability

density estimation than for the estimation of mean values and covariance matrices.

The high computational effort to perform stochastic model updating limits the appli-

cation to realistic structures, typically modeled with many degrees of freedom. As the

most computational expense is related to derive the solutions of structural analyses, sur-

rogate models are proposed to accelerate the determination of model responses. This is

recommended for future research.
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5

Summary and conclusions

In this thesis, a framework for model updating has been proposed, which was integrated

into the guideline of verification and validation ([ASME V&V 10 2006]) by the Ameri-

can society of mechanical engineers (ASME) . The model updating framework consists of

several independent tasks, which are connected with each other. These tasks are: sensi-

tivity analysis, pretest analysis, execution of experiments, feature extraction, and model

updating. Therefore, the success of model updating depends on the success of each task.

Meaningful and useful results can only be obtained from a model updating process, if the

uncertainties are quantified and reduced for all contributing tasks.

Three specific problems were investigated, which arise frequently in the context of

vibration-based model updating: (i) optimal placement of reference sensors within roving

setup configurations, (ii) pairing of numerically derived and experimentally obtained mode

shapes, and (iii) suitability of objective functions for optimization-based stochastic model

updating. Some conclusions could be drawn for each emphasis.

Optimal reference sensor placement: With respect to vibration measurements using

roving sensor configurations, a problem was identified, which was hardly addressed in

literature. This was the task of determining the optimal positions for reference sensors.

Inappropriate positions can introduce a high degree of uncertainty into the measured data.

The innovative approach to define optimal positions for reference sensors was based on

the normalized predicted power spectral amplitudes of the responses assuming the statis-

tics of the excitation spectrum are known. The frequency response function was adapted

from a finite element model. This enabled the possibility to consider the differences of

measured accelerations, velocities, and displacements. To assess predefined reference sen-

sor positions, an objective function could be derived relying on normalized power spectral

amplitudes. A genetic algorithm in combination with a novel geometry-based description

of the sensor locations lead to a well defined optimization problem of determining the

best reference sensor positions. The derived optimal reference sensor positions of a sim-

ply supported beam met experience-based expectations. Furthermore, the approach has

151
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been successfully applied to a case study of a test specimen, where the predicted power

spectral amplitudes of the responses were validated.

The proposed inventive placement of reference sensors is computationally efficient and

can be applied to numerical models of real-sized structures. If the number of sensor set

positions is limited to 109 possibilities, at least a near-optimal solution can be obtained by

applying a nature inspired optimization algorithm with acceptable computational effort.

Of course, the reliability of the obtained optimal reference sensor positions depends

strongly on the model and excitation uncertainties. The robust determination of optimal

reference sensor positions considers such uncertainties. Consequently, it is proposed for

future research.

Pairing of numerically derived and experimentally obtained mode shapes: A

suitable mode pairing strategy is essential for automated processes, such as model up-

dating or sensitivity analysis. By means of a numerical benchmark study, it could be

demonstrated that the currently available methods were not reliable for certain struc-

tures and measurement configurations, especially if the experimentally obtained mode

shapes were perturbed by noise.

The derived novel energy-based modal assurance criterion combined the common mo-

dal assurance criterion with the physical properties of the instrumented parts of the

structure by using modal strain energies. The innovative criterion could be successfully

applied to the investigated numerical benchmark study. Furthermore, it was shown that

an unsuitable mode paring strategy affects the results derived from a sensitivity analysis

on a finite element model of a railway bridge. This example demonstrated also the ap-

plication of the energy-based modal assurance criterion to numerical models of realistic

structures.

Even if the proposed mode pairing strategy does not replace a carefully conducted

pretest analysis and execution of experiments, it contributes to a reduction of uncertainties

within the model updating process and preliminary processes, like sensitivity analysis.

Objective functions for optimization-based stochastic model updating: Since

stochastic model updating is a new research topic, only few methods are currently avail-

able. Most methods are based on sensitivity matrices. Such methods provide a fast

convergence of the solution, but are less flexible, for example with respect to the ini-

tial parameter set definition. Such stochastic model updating methods stress to identify

the statistics of uncertain model parameters using the statistics of experimentally ob-

tained features. The statistics of the features are derived from the execution of several

experiments from nominal identical structures or experiments with almost identical test

conditions.

In contrast to sensitivity-based stochastic model updating approaches, the optimization-
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based stochastic model updating methods are more flexible. The novel contribution was

the investigation and determination of suitable objective functions for optimization-based

stochastic model updating. Several dissimilarity measures from information theory were

tested with respect to their appropriateness to be applied as objective functions. For

two representative benchmark studies, the Kullback-Leibler divergence, Bhattacharyya

distance, β-divergence with parameter s = 0.7, and Mahalanobis Frobenius norm were

declared as most suitable with respect to their properties. An inventive approach was

developed to rate numerically the properties of a multi-dimensional objective function.

Also the application to a stochastic model updating problem using a genetic algorithm,

particle swarm optimization, and adaptive response surface method was successful. Invest-

ing same computational effort, the obtained accuracy of identified input parameters was

similar. The quality of obtained results derived from optimization-based stochastic model

updating and sensitivity-based stochastic model updating was approximately identical.

Optimization-based approaches based on nature inspired strategies tended to converge

slowly to the nominal solution, but needed no initial parameter set, while sensitivity-

based approaches converged fast, if the initial parameter set was close to the optimal

values. Hence, a combination of both methods was recommended.

With the investigations on objective functions, a substantial contribution was pro-

vided to support the success of optimization-based stochastic model updating methods.

They are an important complement to sensitivity-based approaches to determine the un-

certainties of vibration-based model updating.

The currently available methods for stochastic model updating are not applicable to

real-sized structures as the computational expense is too high. Therefore, the compre-

hensive numerical model solution needed for the stochastic structural analysis should be

replaced by approximations obtained by surrogate models. This is suggested for further

research activities.

With this thesis, a milestone has been established to reduce and quantify uncertain-

ties for updated numerical models. Thereby, model updating was considered as a process

consisting of several subproblems. The most critical sources of uncertainties, namely the

determination of sensor positions and the mode pairing of numerically derived and exper-

imentally obtained modes, were the main emphases of this thesis. As complementation,

the uncertainties of model parameters for the special task of investigating nominally iden-

tical structures or test conditions were quantified. Consequently, the presented thesis

contributes significantly to the quality improvement of updated numerical models. While

applying the proposed approaches, vibration-based model updating procedures become

cost-effective tools to enhance the predictability of numerical models with the purpose

to guarantee all requirements on performance, safety, and reliability of designed and re-

designed structures.
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6

Recommendations for future research

6.1 Pretest phase

6.1.1 Robust optimal reference sensor positions

The basic approach to determine optimal reference sensor positions was presented in

Chapter 2. As already discussed, the main drawback for its application is the discrepancy

between the underlying numerical model and the real test structure, since the definition

of reference sensors is typically performed in the pretest phase.

Therefore, the obtained optimal reference sensor positions depend on the numerical

model itself. Consequently, uncertainties of model input parameters (e.g., material prop-

erties, geometrical measures, and modal damping ratios) need to be taken into account

in the optimization process. Since some model input parameters of the structure are

uncertain at least in the pretest phase and the excitation is a random stationary process,

the spectral response amplitudes will also be obtained as random variables with their

respective distribution. The computational expenses to obtain such a random description

are very high. Thus, it is proposed to use surrogate models to replace the comprehensive

model used for the statistical evaluation. Additional uncertainties arise from the approx-

imations extracted from surrogate models and the statistical evaluation using sampling

methods. They need to be considered in the robust optimization of reference sensor po-

sitions. A short description, some applications, and recommended references of surrogate

modeling are provided in Section 6.2.3.

The aim of this robust design optimization is to determine a set of reference sensor

positions that is insensitive to the expected uncertainties of model input parameters. Fur-

thermore, parallel computing in an efficient coding environment is essential for a successful

application. As a robust determination of optimal reference sensor positions is required

for the design of vibration tests, it should be a major topic for future research.

155
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6.1.2 Optimal roving sensor positions

So far, the determination of roving sensor positions within a multiple setup configuration

has not been considered. Of course, not only the positions of reference sensors but also

the positions of the remaining sensors assembled in setups can be optimized to reduce

uncertainties from measured data.

It is assumed that the number of required sensors and respective positions of the

merged configuration can be determined, for instance, by the effective independence

method or modal kinetic energy approach (e.g., [Penny et al. 1994]). The position and

number of reference sensors can be defined as proposed in Chapter 2. Consequently, the

remaining task is to split the total number of sensor positions into setups. For the merg-

ing, it is required that each setup is able to identify independently all modes of interest.

For example, if the stochastic subspace identification method (e.g., [Peeters et al. 1999],

[Peeters et al. 2001], [Reynders et al. 2008] [Reynders 2009]) is applied, stable poles

should appear at similar frequencies in each setup. If one mode cannot be detected by a

certain setup, it is difficult to merge the modal displacements. This introduces additional

uncertainties to the experimentally obtained modal data. Hence, it has to be ensured that

sufficient energy of each mode is present in each setup. It is proposed to use power spec-

tral densities of all associated sensor positions as an indicator. Additional requirements

can be necessary to separate the modes with similar frequencies.

However, the applied operational modal analysis method suggests possible eigenmodes,

for example, by stable poles or by complex mode indicator functions. Therefore, a mathe-

matically derived criterion to optimize the roving sensor positions should be related to the

operational modal analysis method intended to apply. Of course, robustness should be

considered analogously to the procedure described in Section 6.1.1. The research on opti-

mal placement of roving sensor positions will complement the research on robust optimal

reference sensor positions. Both approaches are required to design an optimal vibration

test for a roving sensor setup configuration with the purpose to extract modal properties.

6.2 Model updating

6.2.1 Multivariate non-normal distributions

Multivariate normal distributions are assumed in sensitivity-based stochastic model up-

dating schemes, as well as, in the benchmark studies, which are related to the optimization-

based stochastic model updating approach presented in this thesis. This assumption is

valid for various applications. However, if the random vector of target output parame-

ters cannot be approximated by a multivariate normal distribution, the sensitivity-based

stochastic model updating schemes may not be appropriate.
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The approach presented in Chapter 4 has the potential to be applied to any type

of multivariate distribution. In a general case, the integral defining the dissimilarity

measures given in Equation (4.4) needs to be solved analytically or numerically. As already

mentioned, rectangle rule, Monte Carlo method, or Metropolis Hastings algorithm [Evans

et al. 2005] are suitable numerical integration methods. Typically, the distribution of

target output parameters is not available as analytical function. Therefore, the probability

density function needs to be estimated. Some methods were proposed in [Scott 1992].

Usually, only few samples are available to estimate the probability density function. The

resulting uncertainty and their reduction should be considered in future research.

Also the distribution of model responses is generally derived by sample evaluations

of a sample-based stochastic structural analysis of input parameter samples. To obtain

similar accuracies, the number of samples to estimate the probability density function is

larger than the number to estimate the mean value or covariance matrix. Consequently,

it is recommended to reduce the number of function calls needed to evaluate the model

input parameter samples, for example, by applying surrogate models. A short description

of the surrogate modeling concept is given in Section 6.2.3.

Without implementing this proposed extention to the stochastic model updating meth-

ods presented in this thesis, it is not possible to perform a stochastic model updating using

strictly non-normal distributed target output parameters.

6.2.2 Sequential parameter optimization

Several optimization methods were successfully applied to problems of optimal sensor

placement and stochastic model updating in Chapters 2 and 4, respectively. In these ap-

plications, predefined standard sets of parameters to configurate the optimization methods

are utilized. However, it is expected that a certain set of configuration parameters can be

determined that minimizes the total computational expenses with respect to a predefined

accuracy of the results. The corresponding research field is termed sequential parameter

optimization. [Bartz-Beielstein 2010] and [Bartz-Beielstein et al. 2005] are recommended

for a general overview of available methods. A benchmark study was presented in [Nan-

nen et al. 2008] and an application to root identification problems was investigated in

[Joan-Arinyo et al. 2011]. [Nguyen et al. 2010] proposed an agent-based approach for

robust optimization, which is an extension to the sequential parameter optimization. The

application of sequential parameter optimization to model updating problems is hardly

addressed in literature, and is therefore recommended for future research.

Obviously, the optimal configuration depends on the structural system and the for-

mulation of the optimization problem. Nevertheless, it should be possible to derive rec-

ommended configuration parameters for specific optimization tasks. In case of stochastic

model updating, the number of sample evaluations needed for the sample-based stochastic
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structural analysis has to be integrated into the determination of optimal configuration

parameters.

One group of specific tasks is the model updating of filler beam bridges of the Ger-

man Railways using measured modal data with the purpose to predict the dynamical

behavior for train passages under various speeds. The bridges vary in height and span

width, but the construction principle is identical. In the past, large discrepancies between

numerically derived and experimentally obtained modal parameters were observed. As

several hundred bridges are existing in Germany, a systematic research is justified. In

a first step, the application of sequential parameter optimization to deterministic model

updating strategies should be sufficient. If measured data from a longterm monitoring

are available, stochastic model updating methods may be more appropriate.

6.2.3 Surrogate modeling

In some cases, it may be not sufficient to apply only optimal configuration parameters

for the optimization methods to reduce significantly the computational effort. Hence, the

additional application of surrogate models is proposed. Surrogate models, also known

as meta models or response surface models, try to approximate a comprehensive model

of high complexity and high computational expense by simplified models. With this

approximation, additional uncertainties are introduced into the model updating process

that need to be determined, observed, and reduced. The application of surrogate models to

stochastic model updating problems and the investigation of the introduced uncertainties

is hardly addressed in literature. Therefore, this application is proposed for future research

activities, due to the potential to reduce efficiently the computational expense of stochastic

model updating.

A general introduction to surrogate models with several references to theory and ap-

plications was given in [Queipo et al. 2005]. Bayesian neural network and support vector

machines were investigated by [Unger 2009] with the intention to identify parameters

of constitutive laws. Another application of approximating natural frequencies within

stochastic modal updating by a Bayesian neural network was documented in [Brehm

et al. 2009b]. [Khodaparast et al. 2010] proposed the application of kriging for the pur-

pose of stochastic model updating. A MATLAB toolbox [Suykens et al. 2010] is available,

which is based on the theory of [Suykens et al. 2002]. [Queipo et al. 2005] addressed the

problem of determining the suitability of a surrogate model and suggests several measures.
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A

Statistical values

A.1 Statistical measures of distributions

Assuming that n sample sets of the random vector x are assembled column-wise in a

sample matrix X, the following statistical values can be calculated.

• Mean value [Hogg et al. 2005]

(E(x))i = (Ex)i =
1

n

n
∑

k=1

(X)i,k (A.1)

• Covariance (unbiased) [Hogg et al. 2005]

(Cx)i,j =
1

n− 1

n
∑

k=1

(

(X)i,k − (Ex)i

)(

(X)j,k − (Ex)j

)

(A.2)

• Variance (unbiased) [Hogg et al. 2005]

(V(x))i = (Vx)i = (Cx)i,i =
1

n− 1

n
∑

k=1

(

(X)i,k − (Ex)i

)2

(A.3)

• Standard deviation (unbiased) [Hogg et al. 2005]

(σx)i =
√

(Vx)i (A.4)

• Skewness (bias-corrected) [MathWorks 2010]

(Sx)i =

√

n(n− 1)

n− 2

1

n

n
∑

k=1

(

(X)i,k − (Ex)i

)3

(

1

n

n
∑

k=1

(

(X)i,k − (Ex)i

)2
) 3

2

(A.5)
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• Kurtosis (bias-corrected; assuming zero for normal distributions) [MathWorks 2010]

(Kx)i =
n− 1

(n− 2)(n− 3)















(n + 1)

1

n

n
∑

k=1

(

(X)i,k − (Ex)i

)4

(

1

n

n
∑

k=1

(

(X)i,k − (Ex)i

)2
)2 − 3(n− 1)















(A.6)

• Pearson correlation coefficient (e.g., [Hogg et al. 2005], [Hartung et al. 2007])

(rx)i,j =

n
∑

k=1

(

(X)i,k − (Ex)i

)(

(X)j,k − (Ex)j

)

√

n
∑

k=1

(

(X)i,k − (Ex)i

)2 n
∑

k=1

(

(X)j,k − (Ex)j

)2
=

(Cx)i,j
√

(Vx)i (Vx)j

(A.7)

• Spearman correlation coefficient (e.g., [Spearman 1904], [Hogg et al. 2005])

(

rSx
)

i,j
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n
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k=1

((

∆

X
)

i,k
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x
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i

)((
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j
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= 1 − 6

n(n2 − 1)
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(

∆

X
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X
)

j,k

)2

(A.8)

The rank coefficients
∆

X are assigned independently according to the ordering of the

matrix entries in each row. The ranking is expressed by values in the interval [1, n].

A.2 L moments of marginal distributions

Assuming n sample sets of the random vector x are assembled column-wise in a sample

matrix X, the direct estimators for the first four L moments according to [Wang 1996]

are

(L1)i =
(

n

1

)−1
n
∑

k=1

(X)i,k , (A.9)

(L2)i = 1
2

(

n

2
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n
∑
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((

k−1
1

)

−
(
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1
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(X)i,k , (A.10)
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Optimization methods

B.1 Genetic algorithm

A general description of genetic algorithms can be found in [Holland 1992] and [Goldberg

1989]. The initial design sample set is randomly generated and is based on a uniform

distribution. The cross over rate, mutation rate, and respective mutation standard de-

viation need to be defined next to the number of individuals, the number of parents per

generation, and the number of generations. The algorithm selects the parents by using a

dominance-based ranking. If a design sample violates a boundary, it is set directly to this

boundary value. A set of standard configuration parameters is presented in Table B.1.

This form of genetic algorithm is available in the software package SLang [Dynardo

GmbH and Bauhaus University Weimar 2010].

Table B.1: Standard configuration parameters of the genetic algorithm (GA).

parameters value

crossover probability 0.5

mutation rate 0.5

mutation standard deviation 0.01

B.2 Particle swarm optimization

The basic concepts of the applied particle swarm implementation are given in [Kennedy

et al. 1995], which is enhanced by the passive congregation of [He et al. 2004]. According

to [He et al. 2004], the velocity of the ith particle is updated by

V k+1
i = ωV k

i + c1r1
(

P k
i −Xk

i

)

+ c2r2
(

P k
g −Xk

i

)

+ c3r3
(

Rk
i −Xk

i

)

. (B.1)

The updated displacement of the ith particle yields

Xk+1
i = Xk

i + V k+1
i . (B.2)
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The control factors c1, c2, and c3 need to be defined. The factor ω is linearly dependent

on the updating step and will be defined for the first and last iteration. To handle the

boundary conditions, the fly-back mechanism proposed in [Li et al. 2007b] is applied.

This mechanism relies on a harmony search scheme. If a design sample set violates the

constraints, the set will be replaced by a randomly chosen set of best previously identified

design sample sets. The standard configuration parameters are listed in Table B.2.

The scripting level of the software package SLang [Dynardo GmbH and Bauhaus Uni-

versity Weimar 2010] was applied to implement this algorithm.

Table B.2: Standard configuration parameters of the particle swarm optimization (PSO).

parameters value

c1 0.5

c2 0.5

c3 0.5

ω at first iteration 0.9

ω at last iteration 0.6

B.3 Adaptive response surface method

The proposed adaptive response surface approach uses a combination of the gradient-

based method SQP (sequential quadratic programming) and a genetic algorithm (GA)

([Holland 1992][Goldberg 1989]) to perform an optimization at the approximated surfaces.

A general description of adaptive response surface methods was presented in [Etman et al.

1996] and [Kurtaran et al. 2002]. The details of the applied optimization algorithm are

given as follows.

The adaptive response surface method is based on a panning, an oscillation, and a

zooming parameter. The response surface is approximated by linear regression polynoms,

whereas the supporting points are defined by a D-optimal quadratic design-of-experiment

(DOE) scheme. The response surface is changed adaptively depending on the problem.

The optimization on the response surface is performed by a genetic algorithm. As the

convergence of the genetic algorithm near the optimum is poor and no unique solution can

be found, when using several runs, a subsequent application of the gradient-based algo-

rithm refines the optimum on the response surface obtained by the genetic algorithm. The

gradient-based method uses the SQP (NLPQL) approach [Schittkowski 1985], whereas the

gradients are calculated using central differences. As the optimization is conducted on

a response surface defined by linear polynoms, the criterion of differentiable objectives

for the SQP algorithm is guaranteed. If not stated otherwise, the standard configuration

parameters according to Table B.3 are applied.
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This algorithm is implemented in the software optiSLang [Dynardo GmbH 2009], which

has been applied for the calculations.

Table B.3: Standard configuration parameters of the adaptive response surface method

(ARSM).

parameters value

maximal iterations or function calls 50

panning (automatically adapted) 1.0

oscillation 0.6

zooming 0.6

NLPQL maximal iterations 50

NLPQL maximal function calls 50

NLPQL normalization length 20

GA individuals 10

GA generations 15

GA elites 1

GA replace individual 1

GA crossover rate 0.5

GA selection pressure 90%

GA cliff value 20
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