
Cryptanalysis and Design of
Symmetric Primitives

Inauguraldissertation
zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr.rer.nat.)

der Bauhaus-Universität Weimar
an der Fakultät Medien

vorgelegt von
Michael Gorski

Weimar, Dezember 2010

Gutachter: Prof. Dr. Stefan Lucks
Bauhaus-Universität Weimar, Weimar (Deutschland)

Dr. Orr Dunkelman
Weizmann Institute of Science, Rehovot (Israel)

Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit ohne unzulässige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefer-
tigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und
Konzepte sind unter Angabe der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Ar-
beit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlung- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen) in
Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leis-
tungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
einer anderen Prüfungsbehörde vorgelegt.

Ich versichere, dass ich nach bestem Wissen die reine Wahrheit gesagt und nichts ver-
schwiegen habe.

Ort, Datum Unterschrift

Acknowledgements

First of all I want to thank all the people who helped me to make this thesis successful.
I would like to thank my PhD advisors Prof. Dr. Stefan Lucks and Dr. Orr Dunkelman
for their support and comments they gave to me helping to force my understanding
in cryptography. They inspired and supported me while exploring the world of sym-
metric cryptography. I also want to thank Prof. Dr. Johannes Blömer for giving me
an interesting topic for my diploma thesis that initialized my research on symmetric
cryptography and forced my interest in this topic.

I also want to thank Ewan Fleischmann who discussed and developed many ideas with
me many times. He always spent his time to enjoy discussions of different aspects in
cryptography with me. Furthermore, I thank Christian Forler, who joined the research
group of Prof. Dr. Stefan Lucks in 2009. He had huge impact on the success of our
TWISTER hash function proposal as well as a fast and efficient implementation of the
algorithm. A special thank to Thomas Peyrin for interesting discussions and motiva-
tions for my thesis. Thanks to all the people in the crypto community that have given
me helpful comment on the papers I made. Last but not least I want to thank my parents
for their everlasting support and encouragement in all the things I have done, the things
I do and all the things that I will do.

Michael Gorski

Abstract

This thesis focuses on the cryptanalysis and the design of block ciphers and hash func-
tions. The thesis starts with an overview of methods for cryptanalysis of block ciphers
which are based on differential cryptanalysis. We explain these concepts and also sev-
eral combinations of these attacks. We propose new attacks on reduced versions of
ARIA and AES. Furthermore, we analyze the strength of the internal block ciphers of
hash functions. We propose the first attacks that break the internal block ciphers of
Tiger, HAS-160, and a reduced round version of SHACAL-2.

The last part of the thesis is concerned with the analysis and the design of cryptographic
hash functions. We adopt a block cipher attack called slide attack into the scenario of
hash function cryptanalysis. We then use this new method to attack different variants
of GRINDAHL and RADIOGATÚN.

Finally, we propose a new hash function called TWISTER which was designed and pro-
posed for the SHA-3 competition. TWISTER was accepted for round one of this com-
petition. Our approach follows a new strategy to design a cryptographic hash function.
We also describe several attacks on TWISTER and discuss the security issues concern-
ing these attack on TWISTER.

Zusammenfassung

Der Schwerpunkt dieser Dissertation liegt in der Analyse und dem Design von Block-
chiffren und Hashfunktionen. Die Arbeit beginnt mit einer Einführung in Techniken
zur Kryptoanalyse von Blockchiffren. Wir beschreiben diese Methoden und zeigen wie
man daraus neue Techniken entwickeln kann, welche zu stärkeren Angriffen führen.

Im zweiten Teil der Arbeit stellen wir eine Reihe von Angriffen auf eine Vielzahl von
Blockchiffren dar. Wir haben dabei Angriffe auf reduzierte Versionen von ARIA und
dem AES entwickelt. Darüber hinaus präsentieren wir im dritten Teil Angriffe auf
interne Blockchiffren von Hashfunktionen. Wir entwickeln Angriffe, welche die inter-
nen Blockchiffren von Tiger und HAS-160 auf volle Rundenanzahl brechen. Die hier
vorgestellten Angriffe sind die ersten dieser Art. Ein Angriff auf eine reduzierte Ver-
sion von SHACAL-2 welcher fast keinen Speicherbedarf hat, wird ebenfalls vorgestellt.

Der vierte Teil der Arbeit befasst sich mit den Design und der Analyse von kryp-
tographischen Hashfunktionen. Wir habe einen Slide Angriff, eine Technik welche
aus der Analyse von Blockchiffren bekannt ist, im Kontext von Hashfunktionen zur
Anwendung gebracht. Dabei präsentieren wir verschiedene Angriffe auf GRINDAHL

und RADIOGATÚN. Aufbauend auf den Angriffen des zweiten und dritten Teils dieser
Arbeit stellen wir eine neue Hashfunktion vor, welche wir TWISTER nennen. TWISTER

wurde für den SHA-3 Wettbewerb entwickelt und ist bereits zur ersten Runde angenom-
men.

Contents

1 Introduction 1

1.1 Cryptography . 1

1.2 Outline . 3

2 Preliminaries 5

2.1 A Block Cipher . 5

2.2 Preliminaries . 6

2.3 Differential Cryptanalysis . 8

2.4 Related-Key Differential Attack . 12

2.5 The Boomerang Attack . 12

2.6 The Amplified Boomerang Attack 16

2.7 The Rectangle Attack . 17

2.8 The Related-Key Boomerang Attack 19

2.9 The Related-Key Rectangle Attack 22

2.10 A Hash Function . 23

3 Cryptanalysis of Block Ciphers 25

3.1 Boomerang Attack on ARIA . 25

3.2 Related-Key Boomerang Attacks on 7 and 9-Round AES-192 33

3.3 Related-Key Boomerang Attack on 9-Round AES-256 48

4 Cryptanalysis of Block Ciphers inside Hash Functions 57

4.1 A Related-Key Boomerang Attack on SHACAL-2 57

I

CONTENTS

4.2 A Related-Key Boomerang Attack on Tiger Block Cipher 65

4.3 A Related-Key Rectangle Attack on the HAS-160 Encryption Mode . 71

5 Cryptanalysis and Design of Hash Functions 81

5.1 Slide Attacks on a Class of Hash Functions 81

5.2 The SHA-3 Candidate TWISTER . 96

6 Summary and Conclusions 123

List of Publications 125

Bibliography 129

A The AES/TWISTER S-box 143

II

List of Tables

3.1 Comparison of attacks on ARIA . 26

3.2 Existing attacks on AES-192 . 34

3.3 Existing attacks on round reduced AES-256 49

4.1 Comparison of attacks on SHACAL-2 58

4.2 The fixed plaintext bits for our attack on SHACAL-2 61

4.3 Attack on SHACAL-2: The Related-Key Differential for E0 62

4.4 Attack on SHACAL-2: The Differential for E1−1 63

4.5 Comparison of attacks on Tiger . 65

4.6 Comparison of attacks on Tiger Block Cipher 65

4.7 Attack on Tiger: The Related-Key Differentials for E0 and for E0−1 in
the reverse order . 69

4.8 Attack on Tiger: The Related-Key Differential for E1−1 70

4.9 Attack on HAS-160: Boolean functions and constants 72

4.10 Attack on HAS-160: The bit rotation s1 73

4.11 Attack on HAS-160: The key schedule 74

4.12 Attack on HAS-160: The Related-Key Differential for E0 77

4.13 Attack on HAS-160: The Related-Key Differential for E1 78

5.1 TWISTER: MDS Properties . 110

5.2 Performance comparison of TWISTER and SHA-2 122

A.1 The AES/TWISTER S-box . 143

III

IV

List of Figures

2.1 A differential characteristic over three rounds 11

2.2 A right boomerang quartet . 15

2.3 A right related-key boomerang quartet 21

2.4 A right related-key rectangle quartet 23

3.1 Byte coordinates of a 4 x 4 state matrix of ARIA 27

3.2 ARIA: The S-box layer SL1 . 27

3.3 ARIA: The S-box layer SL2 . 28

3.4 Attack on 5-round ARIA The differential for E0 29

3.5 Attack on 5-round ARIA: The differential for E1−1 30

3.6 Attack on 5-round ARIA: The differential for E0−1 31

3.7 Attack on 7-round AES-192: Subkey differences derived from ∆K∗ . . 37

3.8 Attack on 7-round AES-192: Subkey differences derived from ∆K′ . . 37

3.9 Attack on 7-round AES-192: The related-key differential for E0 . . . 38

3.10 Attack on 7-round AES-192: The related-key differential for E1−1 . . 39

3.11 Attack on 7-round AES-192: The related-key differential for E0−1 . . 40

3.12 Attack on 9-round AES-192: Subkey differences derived from ∆K∗ . . 42

3.13 Attack on 9-round AES-192: Subkey differences derived from ∆K′ . . 43

3.14 Attack on 9-round AES-192: The related-key differential for E0 . . . 43

3.15 Attack on 9-round AES-192: The related-key differential for E1−1 . . 44

3.16 Attack on 9-round AES-192: The related-key differential for E0−1 . . 45

3.17 Attack on 9-round AES-256: Subkey differences derived from ∆K∗ . . 51

V

LIST OF FIGURES

3.18 Attack on 9-round AES-256: Subkey differences derived from ∆K′ . . 51

3.19 Attack on 9-round AES-256: The related-key differential for E0 . . . 52

3.20 Attack on 9-round AES-256: The related-key differential for E1−1 . . 53

3.21 Attack on 9-round AES-256: The related-key differential for E0−1 . . 54

4.1 The round function of SHACAL-2 59

4.2 The round function of Tiger . 67

4.3 The round function of HAS-160 . 73

5.1 A slid pair for a block cipher . 83

5.2 A slid pair . 85

5.3 The general design of the GRINDAHL compression function 90

5.4 Detecting a slid pair of messages for GRINDAHL-512 91

5.5 Detecting a slid pair of messages for GRINDAHL-256 93

5.6 TWISTER: A Mini-Round . 101

5.7 TWISTER: A Maxi-Round . 104

5.8 The compression function of TWISTER-224 and TWISTER-256 104

5.9 The compression function of TWISTER-384 and TWISTER-512 105

5.10 TWISTER: An Output-Round . 106

5.11 TWISTER: Minimal number of active bytes after two Mini-Rounds 111

5.12 A semi-free-start collision for the TWISTER compression function . . 115

5.13 The inversion of the first part of the output transformation of TWISTER 117

VI

Notations

The following notations are used in this thesis:

⊕ : bitwise XOR operation

∧ : bitwise AND operation

∨ : bitwise OR operation

¬ : bitwise complement operation

X≪i : shift of the word X by i bits to the left

X≫i : shift of the word X by i bits to the right

X≪k : bit-rotation of the word X by k positions to the left.

X≫k : bit-rotation of the word X by k positions to the right.

⊞ : addition modulo 2b, where b is the word size in bits

⊟ : subtraction modulo 2b, where b is the word size in bits

⊠ : multiplication modulo 2b, where b is the word size in bits

ei : a b-bit word with zeros in all bits except for bit i, (0≤ i≤ b− 1)

ei1,...,il : ei1 ⊕·· ·⊕ eil

a≪ b : a is much smaller than b

f−1(·) : is the inverse function to f (·)

The bit positions follow the little endian convention, i.e., for a b-bit word bit b− 1 is
the most significant bit and bit 0 is the least significant bit. The bit positions are labeled
as b− 1,b− 2, . . .,1,0.

Chapter 1

Introduction

1.1 Cryptography

During the last years, the amount of data transferred through the internet follows an ex-
ponential growth. The wide spreading of the world wide web in more and more parts
of society leads to an increase in the possibility of accessing data from everywhere.
The barriers for data transportation disappear, meaning that it gets easier to share, con-
tribute, and access data due to the increasing number of connections that support these
actions.

For example, today it is quite common to use online-banking from all over the world
to manage bank accounts everywhere. Having access to our personal bank accounts
whenever and wherever we want, raises the need for assuring that this data can only
be used by us. Thus, data is often encrypted using methods designed to give rights of
handling only to the persons of desire. The creator of some data, therefore, applies
a cryptographic algorithm to the data to protect them against modification, or access
by a third party. He then shares some kind of secret information with the receiver
in an encrypted way, which only the receiver should be able to decrypt. An adver-
sary which observes an encrypted communication between the bank and the customer
should not be able to gain any relevant information concerning the customer’s bank ac-
count. Hence, cryptography must guarantee on the one hand that the adversary will not
succeed in doing so and on the other hand that the encryption does not reduce the us-
ability of the system while increasing the customers’ access barriers to their accounts.

Cryptography always faces this tradeoff between security and speed. It is quite easy
to design a slow cryptographic system that offers a high degree of security, i.e., an
adversary cannot gain any useful information from observing a large set of transactions.
Such a system will be unusable in practice and thus will never be used. It is also

1

Introduction

easy to design a fast insecure cryptographic system. The difficulty is to find the best
equilibrium between both extremes, which depends heavily on the applications, needs
for security, and the duration the security must be maintained.

Cryptography deals with a broad range of security applications such as protocols, sig-
natures, and encryptions. One of the most known cryptographic applications is encryp-
tion. Two types of encryption can be addressed, public key encryption and secret key
encryption. In public key encryption, a public and a private key are being used, where
the public key is accessible to anyone for encryption, whereas the private key is only
attainable to the person that is allowed to decrypt the data. In contrast, secret key en-
cryption uses only one key, which is accessible to all authorized persons which share
the secret key.

The most important symmetric primitives which are regarded in this theses can be
grouped into four main primitives which are block ciphers, stream ciphers, hash func-
tions and message authentication codes. A block cipher is a keyed permutation that
processes plaintexts of fixed length with a secret key and encrypts them into corre-
sponding ciphertexts. To decrypt the ciphertexts, one has to apply the inverse of the
encryption algorithm using the same secret key as for the encryption. Stream ciphers
are divided into two types synchronous and self-synchronizing stream ciphers. In a
synchronous stream cipher, a stream of pseudo-random characters is generated inde-
pendently of the plaintext and the ciphertext. Then, these characters are combined with
the plaintext or the ciphertext. In a self-synchronizing stream cipher, the receiver will
automatically synchronize with the key stream generator after receiving some cipher-
text characters which makes it easier to recover if characters are dropped or added to
the message stream due to transmission errors. A hash function is a primitive that maps
an arbitrary sized input value to a digest of fixed size. A message authentication code
computes a fingerprint of a given message using a secret key.

The Data Encryption Standard (DES) [117], which was the American block cipher
standard and widely accepted by everybody since 1977, was replaced in a competition
due to some security and performance concerns. During this process, initiated by the
U.S. National Institute of Standards and Technology (NIST) in 1997, block ciphers
received much attention. NIST accepted 15 candidates for the first round of the com-
petition which were designed by researchers as well as from companies. In 1999, five
finalists were selected for a more thorough analysis RC6, Rijndael, Twofish, MARS
and Serpent. The competition ended in 2001, when the Rijndael block cipher was
selected to be the Advanced Encryption Standard (AES).

Block ciphers have a fixed sized input and output length. In order to process messages
of arbitrary length, block ciphers are used in modes of operation. A mode of operation
specifies how to process concatenated blocks of the message. Well known modes of op-

2

eration are electronic codebook (ECB), cipher-block chaining (CBC), cipher feedback
(CFB), output feedback (OFB), and counter mode (CTR).

A hash function takes an input of arbitrary length and generates an output of fixed
length. It can be seem as a digital fingerprint of the data. Hash functions are used
in a broad range of applications, e.g., digital signatures, databases, or for checksums.
Nowadays, hash functions gained much attention due to recent breaks of the some
widely used hash functions such as MD5, SHA-0 and SHA-1. NIST announced a
competition for a new Secure Hash Algorithm (SHA-3), which started at the end of
2008. Compared to a block cipher, the design of a good hash function is much more
complicated since it contains no secret key which is unknown to the adversary. Every
part of the computation is known and can be observed and controlled in some way by
the adversary.

1.2 Outline

The contribution of this thesis is outlined in the following, were we give a summary of
each chapter.

Chapter 2 treats the preliminaries that are needed for the remainder of this thesis.
We explain attacks on block ciphers like differential cryptanalysis, related-key
attacks, as well as some of their extensions.

Chapter 3 focuses on the boomerang and the rectangle attacks on reduced versions of
ARIA and the Advanced Encryption Standard (AES). The results of this chapter
have been published in [55, 60, 64, 71].

Chapter 4 focuses on boomerang and rectangle attacks on the internal block ciphers
of hash functions. We present an attacks on SHACAL-2 for reduced version
and we also propose attacks which break the Tiger block cipher and 77-round
HAS-160 in encryption mode. The results of this chapter have been published in
[47, 61, 62].

Chapter 5 addresses a new technique for attacking hash functions called slide attacks.
This technique was originally proposed for block cipher cryptanalysis and we
adopted it to a class of hash function which are designed using the sponge frame-
work. We also present a candidate hash function for the SHA-3 competition
called TWISTER. The TWISTER hash function family was designed to resist
cryptanalytic techniques presented in Chapter 2 and Chapter 4 and 5. It offers a
simple and easy to analyze framework for building a hash function. The results
of this chapter have been published in [50, 51, 52, 53, 56, 72].

3

Introduction

Chapter 6 concludes the thesis and discusses open problems and further research di-
rections.

As presented above, preliminary versions of the results obtained in this thesis were
published before in [47, 50, 51, 52, 53, 55, 56, 60, 64, 61, 62, 71, 72]. Other results in
symmetric cryptography that are not considered in this thesis and have been published
during my studies, can be found in [54, 57, 58, 59, 63, 65].1

1These papers do not fit in the context of this thesis, so we do not include them. Also some of them were
published after finishing the thesis.

4

Chapter 2

Preliminaries

In the first parts of this chapter we describe what block ciphers are and methods for
cryptanalysis of block ciphers. These techniques are used to analyze the security of
such ciphers in the later parts of the thesis. In the second part of this chapter we
introduce hash functions and show how they can be built from a block cipher.

2.1 A Block Cipher

We start with a description of a block cipher, which is a symmetric key primitive.
A block cipher accepts data strings of n bits and keys of k bits. When the data is a
plaintext, the block cipher encrypts the data into a ciphertext, and when the data is the
ciphertext, the block cipher decrypts the data back into a plaintext. In other words a
block cipher, E : {0,1}n×{0,1}k→{0,1}n is a keyed permutation of n-bit where the
key K is of length k bits. A plaintext P is encrypted under K as

EK(P) =C,

where C is the corresponding ciphertext. Most block ciphers follow an iterative design,
which repeats the same round transformation many times. A Substitution Permutation
Network (SPN) is a common form of building such a block cipher. Usually a round of
a SPN consists of three different layers substitution, permutation, and key mixing in
each round.

Substitution Layer The substitution layer consists of so called S-boxes. An S-box
is a non linear transformation, i.e., the output bits cannot be represented as a linear
function of the input bits. It can be implemented by a lookup table.

5

Preliminaries

Permutation Layer The permutation layer simply permutes the bit or byte positions
or applies a linear transformation (e.g., MixColumns which is part of the permutation
layer of AES, see Section 3.2.1). These operations can be applied bit-wise, byte-wise
or word-wise depending on the block cipher.

Key Mixing Layer In the key mixing layer a subkey, which is obtained from the key
schedule algorithm, is inserted into the internal state (e.g., via bitwise⊕ or ⊞ mod 2n).
A key schedule is an algorithm which is used for the derivation of the subkeys from the
key.

These layers are often combined in a round function fKi(·) (under the subkey Ki) which
is applied several times, depending on the number of rounds, r, of the block cipher. Let
f−1
Ki

(·) be the inverse round function. Furthermore, let gKi(·) (under the subkey Ki) be
a key mixing layer and g−1

Ki
(·) its inverse. The key is usually used before the first round

to guarantee that the first round is applied to values unknown to the adversary while
assuming that the key mixing layer is the last operation in fKi (·). Thus, the encryption
can be written as

EK(P) = fKr ◦ fKr−1 ◦ · · · ◦ fK2 ◦ fK1 ◦ gK0(P) =C,

where K0,K1,K2, . . . ,Kr are the subkeys derived from the key K, by the key schedule
algorithm. The decryption of C into P is performed by the inversion of the encryption
process as

DK(C) = g−1
K0
◦ f−1

K1
◦ f−1

K2
◦ · · · ◦ f−1

Kr−1
◦ f−1

Kr
(C) = P.

2.2 Preliminaries

For a given small number, e.g., ⌈(k + 1)/n⌉, of plaintext-ciphertext pairs which are
encrypted under K, the key K can be recovered in average time of 2k−1 trial encryp-
tions using exhaustive search, i.e., trying to encrypt all ⌈(k+1)/n⌉ plaintexts under all
the possible keys and verifying that the ciphertexts correspond to the given respective
ciphertexts.

Generally, an attack can be used for a key recovery or to distinguish the cipher from
an ideal cipher [139]. The ideal cipher is a model, where we assume the existence of a
publicly accessible block cipher with an n-bit input and a k-bit key. This block cipher
is a set of randomly chosen permutations from n bits to n bits. Using an ideal cipher
the adversary cannot predict any information on the key observing the plaintexts and
ciphertexts. Thus, cryptographers try to design their block ciphers in a way that best
imitates the ideal cipher. In the following we discuss possible attack scenarios that can
be used for this showing that the cipher is not ideal.

6

Attacking a block cipher depends heavily on the assumptions made on the adversary
and his knowledge of the cipher. In the standard assumptions it is common that the
adversary has access to all the data transmitted over the insecure channel. Due to
Kerckhoffs’ principle [89] we also assume that he knows all the details of the underly-
ing encryption function except for the secret key. From a standard point of view this
seems to be a bit unusual, since one would expect not to make the cryptosystem public.
Kerckhoffs’ principle is applied in modern cryptography since it is hard to hide the
cryptosystem. Furthermore, a lack of security could be found more easily in a pub-
licly known algorithm, since more people have the capability to analyze the algorithm.
Historically, this was always proved to be the case. Assume that the key of a publicly
known algorithm gets public. In such a system changing the key might be very cheap
compared with the scenario where a hidden algorithm gets publicly known and weak-
nesses are found. So it would be much more expensive to replace the whole algorithm
instead of just changing the key in a well studied algorithm.

There are several types of attacks:

• ciphertext only attack – only the ciphertexts are available to the adversary.

• known plaintext attack – plaintext-ciphertext pairs are available for some plain-
texts, which are usually assumed to be random. The adversary has no control
over the plaintext pairs.

• chosen plaintext attack – the adversary may choose plaintexts and obtain their
corresponding ciphertexts.

• adaptive chosen plaintext attack – the adversary may choose plaintexts adap-
tively and obtain their corresponding ciphertexts.

• chosen ciphertext attack – the adversary may choose ciphertexts and obtain
their corresponding plaintexts.

• adaptive chosen ciphertext attack – the adversary may choose ciphertexts adap-
tively and obtain their corresponding plaintexts.

• related-key attack – the adversary has some knowledge about the relation be-
tween different keys that are used in the encryption or he may be able to choose
the relation. (see Section 2.4)

Related-key attack models are always combined with one of the other scenarios. Each
scenario defines the access the adversary has to the cipher while performing the attack.

Usually, an attack can be separated into three steps which are data acquisition, data
filtering, and analysis.

7

Preliminaries

• Data Acquisition Step In this step the data, which is needed to mount the attack
is generated through the scenarios listed above.

• Data Filtering Step In this step the adversary reduces the amount of data which
is analyzed to reduce the complexity of the analysis and improve the success
probability. This might improve the success probability, since some useless data
is usually discarded.

• Analysis Step The data remaining after the data filtering step is used either to
distinguish the cipher from an ideal cipher or for key recovery.

2.3 Differential Cryptanalysis

Differential cryptanalysis [20, 22] was introduced by Biham and Shamir in 1990 as a
technique for block cipher cryptanalysis. It can also be used to attack stream ciphers
and hash functions as well. Biham and Shamir have demonstrated the strength of the
attack by breaking reduced versions of DES. They later extended the attack to break
DES faster than exhaustive search [21]. Many other block ciphers were shown to be
vulnerable to this attack.

Differential cryptanalysis is a method used for key recovery and distinguishing. It
uses pairs of plaintexts or ciphertexts, which have a certain relation in the pair. The
propagation of the pairs’ relation, which is called a difference is computed through the
components of the cipher. The adversary predicts this propagation and uses it to find
the correct keys.

It is quite common that the subkeys are injected by an XOR function during each
round. In the following we assume this kind of injection. Assume that X and X ′ are
some intermediate values during the encryption process of the plaintexts P and P′. We
assume that each plaintext is encrypted under the same key K, where Ki indicates the
corresponding subkey of round i due to the key schedule. Furthermore, let Y = X ⊕Ki

and Y ′ = X ′⊕Ki, respectively, be the intermediate encryption values after the subkey
injection. In the following we often write ∆X for X⊕X ′ and ∆Y for Y⊕Y ′, respectively.
The difference between two intermediate encryption values after the subkey injection
is

∆Y = Y ⊕Y ′

= (X⊕Ki)⊕ (X ′⊕Ki)

= X⊕X ′ = ∆X .

For sake of simplicity we only discuss the case where the subkeys are inserted by an

8

XOR operation.1 While regarding the difference between two intermediate values, this
difference is independent of the subkey Ki as long as the same subkeys are used in
both encryptions. Therefore, the adversary can predict the value of ∆Y , but he cannot
compute the actual values of Y and Y ′ due to the unknown subkey.

Let A be a linear transformation, an let Z = A ·X , and X ′ is processed as Z′ = A ·X ′,
respectively. The difference ∆Z of the pair of intermediate values, Z and Z′, can then
be computed as

∆Z = A ·∆X .

When a nonlinear operation is performed, i.e., Z = F(X), for a nonlinear F , then most
of the time ∆X 6= 0 prevents determining the difference ∆Z with probability 1. When
∆X = 0, then ∆Z = 0 as well. We note that for some specific (and rare) combinations
of ∆X 6= 0 and F , one can predict the output difference ∆Z with probability 1.

Assuming that X is chosen uniformly over all possible plaintexts and for a given ∆X ,
the adversary can compute the distribution of all possible output differences ∆Z, which
are listed in a difference distribution table. A difference distribution table displays how
often a certain pair of input and output differences occurs for the S-box. It is therefore
used to compute the probability of these transitions.

The adversary uses this table to form a differential characteristic. A one-round dif-
ferential characteristic is an input and an output differences to one round of the cipher
with the probability that the input difference is transformed to the output difference.
One can concatenate one-round differential characteristics to form differential charac-
teristics over many rounds.

Finally, the differential characteristic ends in a ciphertext difference (or some differ-
ence before the last round) ∆C for a given plaintext difference ∆P. Assuming that the
propagations of the differences for each non-linear component are independent of each
other, the overall probability p of a differential characteristic is given by the product of
each one-round differential characteristic it consists of.

A differential is an input and output difference linked with its probability. The proba-
bility of a differential can be computed as the sum of all the differential characteristics
which share the same input and output difference.

Given a plaintext difference ∆P = α which is transformed into a ciphertext difference
∆C = β with probability p (or in short we just write α → β for the differential) it is
defined as

Pr
P,K

[EK(P)⊕EK(P⊕α) = β] = p,

1We note that differential cryptanalysis can be applied if the subkeys are injected with an operation
different than ⊕.

9

Preliminaries

where PrP,K [·] is an average probability over the choices of P and K.

Given a differential with probability p, the adversary needs about O(p−1) plaintext
pairs which all have difference α for a successful attack. The larger the probability p
is, the fewer pairs are needed for the attack to succeed. The adversary then often counts
the number of pairs which produce the predicted output difference β . Given N pairs
of plaintexts the number of expected matches is p ·N. For an ideal cipher the expected
number is about 2−n ·N. If 2−n≪ p then the analyzed cipher can be distinguished from
an ideal cipher successfully.

An S-box is called active if its input difference is non-zero, otherwise the S-box is
called non-active (or passive). In order to keep the data complexity low, the adver-
sary tries to maximize the probability of the differential characteristic. Therefore, he
chooses the differential characteristic such that the probability of the differential is as
high as possible.

We now give an example of a differential characteristic for a simple block cipher as
shown in Figure 2.1. The block cipher processes strings of size 16 bits. The S-boxes are
labeled with Si, j and the rectangles before each S-box layer represent the key mixing
layers. In our example the bold lines represent the positions where a bit is one in
the difference, where the remaining bits are zero. The example shows how a certain
plaintext difference propagates through three rounds of the sample cipher.

After the introduction of differential cryptanalysis, many extensions were proposed
such as truncated differentials [94, 95] (considering differences that are only partially
determined), the higher-order differential attack [95] (differences of differences), the
boomerang attack [144] (combining two differentials each covering half of the cipher in
an adaptive chosen plaintext and ciphertext attack scenario), the amplified boomerang
attack [86] (transformation of the boomerang attack in an adaptive chosen plaintext
attack), the rectangle attack [16] (combining a large amount of differentials in an am-
plified boomerang attack scenario), and the impossible differential attack [13] (a com-
bination of input and output differences that cannot occur simultaneously).

In our later attacks we often use a special form a differentials which are called truncated
differentials. These truncated differentials consider differences that are only partially
determined. For example, differences where only a part of the whole difference is
regarded or differences where it is only of interest if certain words or bytes have a zero
or a non-zero difference.

10

Figure 2.1: A differential characteristic over three rounds

11

Preliminaries

2.4 Related-Key Differential Attack

Related-key attack was introduced independently by Biham [12] and Knudsen [93]. In
this model the adversary can choose or observe the relations between different keys
and exploit this additional knowledge to perform his attack. Block ciphers with weak
key schedules, i.e., with a high degree of linear operations, are often more vulnerable
to related-key attacks than block ciphers with strong key schedules.

Related-keys can be used to enhance differential attacks, i.e., exploiting properties
of the keys the differential probability can be increased (or decreased in the case of
related-key impossible differential attacks [18, 81]).

Let ∆K = K⊕K′ be the XOR difference between two keys K and K′. A related-key
differential attack uses a related-key differential α → β that holds with probability p
under a key differential ∆K. Formally, the probability for such a differential is written
as

Pr
P,K

[EK(P)⊕EK⊕∆K(P⊕α) = β] = p.

It is assumed that this probability is independent of P and K. As in the original differen-
tial attack the probability p of the related-key differential must be greater than 2−n (or
exactly zero in the case of impossible differentials) for the attack to succeed. Forming
a differential characteristic with a high probability through the cipher becomes more
likely if the differences between the subkeys lead to a few active S-boxes. This might
increase the overall probability of the differential characteristic.

2.5 The Boomerang Attack

The boomerang attack was introduced by Wagner [144]. It is an extension of differ-
ential cryptanalysis which uses two differentials, each covering a part of the cipher
instead of one differential for the whole cipher. Generally speaking, the less rounds a
differential covers, the higher its probability. Using two short high probability differen-
tials instead of a long low probability differential might be better if the total probability
is higher in the first case.

The boomerang attack treats the cipher as a cascade of two subciphers

EK(P) = E1K(E0K(P)),

where K is the key used for the encryption and E0(·) and E1(·) are two subciphers,
respectively. It is assumed that E0(·) and E1(·) are independent of each other. In the
reminder of this subsection we discuss attacks on one key and thus we omit the key

12

K and write E(P) = E1(E0(P)) instead. Whenever we use only one key we use this
notation.

We assume that the differentialα→ β for E0 has probability p, and that the differential
γ → δ for E1 has probability q, where α,β ,γ and δ are XOR differences. The back-
ward direction (i.e., decryption) E0−1 and E1−1 of the differential for E0 and E1 are
denoted by α ← β and γ ← δ and which have probabilities p and q, respectively. The
boomerang attack includes a data acquisition step, a data filtering step and an analysis
step.

Data Acquisition Step

To generate the amount of data needed for the attack the adversary performs the fol-
lowing steps:

1. The adversary chooses a pool of s (s depends on the probability of the differ-
entials) plaintexts Pi, i ∈ {1, . . . ,s} uniformly at random and computes a pool
P′i = Pi⊕α .

2. He asks for the encryption of Pi, i.e., Ci = E(Pi), and he asks for the encryption
of P′i , i.e., C′ = E(P′i).

3. He computes new ciphertexts Di =Ci⊕ δ and D′i =C′i⊕ δ .

4. He asks for the decryption of Di, i.e., Oi = E−1(Di), and he asks for the decryp-
tion of D′i, i.e., O′i = E−1(D′i).

This step generates a certain amount of quartets (Pi,P′i ,Oi,O′i) which are used in the
following steps.

Data Filtering Step

The data filtering step reduces the number of quartets which are used to recover some
key bits afterwards. It works as follows:

For each pair (Oi,O′i), i ∈ {1, . . . ,s} check if Oi⊕O′i is equal to α and store the
quartet (Pi,P′i ,Oi,O′i) into a set φ if so.

The number of quartets, which passes the filtering can be estimated in the following
way. A pair (P,P′) with difference α satisfies the differential α → β with probability
p. Let the output after the encryption with the subcipher E0 be A and A′, respectively,
i.e., E0(P) = A and E0(P′) = A′. These intermediate encryption values have difference

13

Preliminaries

β = A⊕A′ with probability p. The encryption of A and A′ under the second subcipher
E1 leads to the ciphertexts C = E1(A) and C′ = E1(A′), respectively. Using C and
C′, the new ciphertexts, D =C⊕ δ and D′ =C′⊕ δ can be computed. The decryption
under E1 leads to the intermediate encryption values B= E1−1(D) and B′= E1−1(D′),
respectively. A pair of ciphertexts with difference δ has a difference γ after passing
E1−1 with probability q, due to the differential δ → γ which has probability q. Since
we regard two such pairs of ciphertexts, the difference γ = A⊕B and γ = A′⊕B′ has
probability q2. Since A⊕A′ = β occurs with probability p, it follows that

(A⊕B)⊕ (A⊕A′)⊕ (A′⊕B′) =

γ⊕β ⊕ γ = β = (B⊕B′)

holds with probability p · q2 under the assumption that both differentials are indepen-
dent of each other. A β difference of two intermediate encryption values leads to an
α difference after passing the differential β → α with probability p. Thus, a pair of
plaintexts (P,P′) with P⊕P′ = α generates a new pair of plaintexts (O,O′) having a
plaintext difference α = O⊕O′ with probability p2 ·q2. These two pairs form a quartet
which is called a right quartet or a right boomerang quartet. A right quartet containing
these two pairs is defined as:

Definition 1 A quartet (P,P′,O,O′) which satisfies

P⊕P′ = α = O⊕O′,

A⊕A′ = β = B⊕B′,

A⊕B = γ = A′⊕B′,

C⊕D = δ =C′⊕D′,

is called a right quartet. A random quartet has probability Prc = p2 ·q2 to be a right
one.

In other words, a right quartet satisfies all the differential characteristics. Figure 2.2
displays the structure of such a right boomerang quartet. The adversary discards all
quartets which do not satisfy the condition P⊕P′ = α = O⊕O′ and stores the remain-
ing quartets in the set φ .

Analysis Step

From now on, the adversary operates on the remaining quartets stored in the set φ .
The quartets can now be used in a distinguishing attack or to recover some (or all) key

14

PSfrag

P

C

P′

C′

O

D

O′

D′

αα

ββ
γ

γ

δ

δ

E0E0

E1E1

E0E0

E1E1

A

A′

B

B′

Figure 2.2: A right boomerang quartet

bits from either the first or the last rounds of the cipher (or both simultaneously). We
describe the last round analysis. The other cases work similarly to this case. Let k be
some key bits of the last subkeys derived from the keys K. Let dk(C) be the one round
partial decryption of C under the key k. The key recovery step can be done with the
following simple algorithm:

- For each candidate k

1. Initialize a counter to zero.

- For all quartets (Pi,P′i ,Oi,O′i) stored in φ , where i ∈ {1,2, . . . , |φ |}.

2. For the plaintext quartet (Pi,P′i ,Oi,O′i) and the respective ciphertext
quartet (Ci,C′i ,Di,D′i), decrypt the ciphertext quartets (Ci,C′i ,Di,D′i),
i.e., C̄i = dk(Ci),C̄′i = dk(C′i), D̄i = dk(Di) and D̄′i = dk(D′i).

3. Test whether the differences C̄i⊕ D̄i and C̄′I ⊕ D̄′i have the desired dif-
ference an adversary expects depending on the differential character-
istic δ → γ . Increase the counter if the difference is satisfied in both
pairs.

4. Output the candidate k with the highest counter as the right one and perform an
exhaustive key search on the remaining key bits.

15

Preliminaries

Four cases can be differentiated in Step 3, since φ contains right quartets and quartets
which do not satisfy all the differential characteristics. The key-bit combination k can
either be right or wrong. A right quartet encrypted with the right key bits has the
desired difference needed to pass the test in Step 3 with probability 1. Hence, the
counter for the right key bits is increased. The three other cases are: a right quartet is
used with false key bits (cK f), a wrong quartet is used with the correct key-bits (f Kc) or
a wrong quartet is used with a false key-bit combination (f K f), where the second case
also increases the counter for the correct key bits. Usually, this additional increment
is negligibly small compared to the case where the right quartets are encountered with
the right key bits, and thus, we usually disregard it. The probabilities in the two other
cases of incrementing the counter for the wrong key bits is

Prfilter = PrcK f +Pr f K f .

The differential characteristics have to be chosen such that the counter for the correct
key bits is significantly higher. If the differential characteristics have a high probability
the analysis step outputs the correct candidate key in Step 4 with a high success rate.
This depends on several factors, e.g., the number of subkeys which are guessed and the
number of wrong keys suggested by the quartets. Assuming that the adversary wants
to recover key bits at the last round of the cipher, then it could occur that no active
S-boxes are available in the last round. Then he has to guess some subkeys from the
last round and additionally from a previous round at the positions where active S-boxes
are available.

We need at least one right quartet to mount the boomerang attack. Thus, the amount of
data needed for the attack is s = O(p−2q−2) adaptive chosen plaintexts and ciphertexts
such that we can expect one right quartet.

2.6 The Amplified Boomerang Attack

The amplified boomerang attack [86] is a descendant of the boomerang attack. This
attack transforms the boomerang attack into a chosen plaintext attack. We treat the
cipher E as a cascade of two subciphers E(P) = E1(E0(P)), as in the boomerang
attack. The differentials being used are α → β for E0 which has probability p and
γ→ δ for E1 which has probability q.

In this attack the adversary uses quartets of plaintexts (P1,P2,P3,P4), such that P1⊕P2 =

α and P3⊕P4 = α . Each pair satisfies the differential α→ β with probability p in E0.
Thus, we obtain

E0(P1)⊕E0(P2) = β = E0(P3)⊕E0(P4)

16

with probability p2. If this condition holds, then E0(P1)⊕E0(P3) equals E0(P2)⊕

E0(P4) = (E0(P1)⊕β)⊕(E0(P3)⊕β). If E0(P1)⊕E0(P3) equals to γ , then E0(P2)⊕

E0(P4) equals to γ as well. Under the assumption that the intermediate encryption
values are distributed uniformly over all possible values, with probability 2−n, the con-
dition E0(P1)⊕E0(P3) = γ is satisfied. A pair of intermediate encryption values with
difference γ satisfies the second differential γ → δ for E1 with probability q. Finally,
for two ciphertext pairs with C1⊕C3 = δ =C2⊕C4 the probability is q2 to obtain a δ
difference after E1 in both pairs. A right quartet satisfies all these conditions.

Having N pairs with difference α , about pN of them are expected to satisfy the first
differential for E0. From these pN pairs with difference β after E0 we can construct
about (pN)2/2 quartets that consist of two such pairs. As stated above with probability
2−n, a difference γ occurs in the two pairs of the quartet after E0 under the assumption
that the intermediate encryption values are distributed uniformly over all possible val-
ues. Thus, the remaining number of quartets is about (pN)2/2−n which have a certain
difference γ in two pairs after E0. Each pair with intermediate difference γ satisfies the
second differential for E1 with probability q. The expected number of right quartets
after E1 is about

(

pN
2

)

·2−n ·q2 ≈ N2 ·2−n−1 · (pq)2.

For an ideal cipher the expected number of quartets is about N2 · 2−2n(≈ (N2/2) ·
2−2n+1), since there are N pairs that can be combined approximately to N2 candidate
quartets. For each pair (C1,C3), (C2,C4) the probability of having a specific difference
in the output is 2−n. Thus, the amplified boomerang attack can be mounted success-
fully if 2−n/2 < pq holds and if N is sufficiently large. In this way we can distinguish
between the block cipher E and an ideal cipher and recover some key bits.

2.7 The Rectangle Attack

The rectangle attack [16] is an improvement of the amplified boomerang attack. As in
the amplified boomerang attack for a right quartet (P1,P2,P3,P4) the following proper-
ties hold:

P1⊕P2 = α = P3⊕P4 and C1⊕C3 = δ =C2⊕C4,

where α and δ are the differences as before.

In the amplified boomerang attack we assumed that we have a differential α → β for
E0 which has probability p and another differential γ→ δ for E1 which has probability
q. Instead of using a specific γ we count over all possible γi for which γi → δ for E1
exists. A second improvement can be made by counting over all possible βi for which

17

Preliminaries

α → βi for E0 holds. This can be done since the differences βi and γi do not matter,
only α and δ are of interest for the attack.

The rectangle attack can be mounted for all possible values of βi and γi in the following
way. Firstly, using all possible values of βi simultaneously. Let p2

i = Pr2[α→ βi] be the
probability that the two pairs of the quartet satisfies the differential α → βi for E0 for
one fixed value of βi, i.e., both pairs of the quartet satisfy the first differential. Hence,
counting over the probabilities for all possible differentialα→ βi for all possible values
of βi we write

p̂ =

√

∑
βi

p2
i =

√

∑
βi

Pr2[α → βi].

Thus, we obtain the probability of a right quartet as

2−n ·

(

∑
βi

Pr2[α → βi]

)

·q2 = 2−n · (p̂q)2 .

Secondly, we use all possible differentials γi → δ in the attack. Let q2
i = Pr2[γi→ δ]

be the probability that a pair satisfy the differential γi→ δ for E1 for one fixed value
of γi. Now, we can count over all the probabilities for all the differentials γi→ δ which
is

q̂ =
√

∑
γi

q2
i =

√

∑
γi

Pr2[γi→ δ].

The probability for a right quartet can now be written as

2−n ·

(

∑
βi

Pr2[α → βi]

)

·

(

∑
γi

Pr2[γi→ δ]

)

= 2−n · (p̂q̂)2 .

Thirdly, in the boomerang attack we know the exact counterpart of the ciphertext C1,
which is C3 = C1 ⊕ δ , and C4 is the counterpart of C2. This is not the case in the
rectangle attack, since for every pair of pairs (P1,P2) and (P3,P4) there are two possible
quartets that can be built as ((P1,P2),(P3,P4)) or ((P1,P2),(P4,P3)). Now we can check
whether a quartet ((P1,P2),(P3,P4)) satisfies the rectangle conditions C1⊕C2 = δ =

C2⊕C4. If the test fails, i.e., the quartet ((P1,P2),(P3,P4)) is not a right quartet, then
the quartet ((P1,P2),(P4,P3)), might still be a right quartet. Therefore, given N plaintext
pairs with difference α the expected number of quartets that satisfy the differential is
about

N2 ·2−n · (p̂q̂)2 . (2.1)

Equation (2.1) gives a lower bound on the expected number of quartets. One can
construct quartets that satisfy the rectangle conditions but are not counted by Equa-
tion (2.1). Assume that we have a quartet of the following form. For the intermedi-
ate differences E0(P1)⊕E0(P2) = a′, E0(P2)⊕E0(P4) = b′, and E0(P1)⊕E0(P3) =

18

γ ′ and where E0(P2)⊕ E0(P4) = a′⊕ b′⊕ γ ′ it can be possible that the differential
a′⊕b′⊕ γ ′→ δ has a probability greater than zero. We can take this into consideration
and count over the differentials for which this holds. Thus, the probability for a right
quartet can be written as

2−n · ∑
ai,b j

(

Pr[α → ai] ·Pr[α→ b j] ·∑
γk

Pr[γk→ δ] ·Pr[ai⊕ b j⊕ γk→ δ]

)

. (2.2)

Equation (2.2) counts over all quartets. However, it is infeasible to compute the exact
probability for a quartet to occur since one has to count over all the differentials, which
is hard. Thus, the expected lower bound given by Equation (2.1) is used instead.

The main difference between this attack and the amplified boomerang attack is that
the probability for a right quartet is higher which results in a lower data and time
complexities for the attack. A cipher, which has a key length much bigger than its
block size is likely to be more vulnerable to the amplified boomerang or the rectangle
attacks, because we always have to ”pay” the price of getting two equal internal states
between both subciphers, i.e., they have a γ difference.

2.8 The Related-Key Boomerang Attack

The related-key boomerang attack [17] is the adaption of the boomerang attack to the
related-key model. Instead of using the same key for the encryption and decryption
process, in the related-key boomerang attack the adversary uses at least two different
keys.

The cipher is treated as a cascade of two subciphers EK(P) =E1K(E0K(P)), where K is
the key used for encryption and decryption. We assume that the related-key differential
α→ β for E0 has the probability p under the key difference∆K∗, while the related-key
differential γ→ δ for E1 has the probability q under the key difference∆K′. In the case
of four key they are related as:

∆K∗ = Ka⊕Kb = Kc⊕Kd and

∆K′ = Ka⊕Kc = Kb⊕Kd.

We denote Pl as the plaintext P encrypted under the key Kl , l ∈ {a,b,c,d}. Let s be
the amount of plaintexts needed for the attack. The attack works as follows:

Data Acquisition Step

• For i = 1,2, . . . ,s (s to be determined later) do

19

Preliminaries

1. Choose a plaintext Pa
i at random and let Pb

i = Pa
i ⊕α .

2. Ask for the encryption of Pa
i under Ka, i.e., Ca

i = EKa(Pa
i), and of Pb

i under
Kb, i.e., C′bi = EKb(Pb

i).

3. Compute the new ciphertexts Dc
i =Ca

i ⊕ δ and Dd
i =Cb

i ⊕ δ .

4. Ask for the decryption of Dc
i under Kc, i.e., Oc

i = E−1
Kc (Dc

i), and of Dd
i ,

under Kd , i.e., Od
i = E−1

Kd (Dd
i).

Data Filtering Step

• For i = 1,2, . . . ,s do

If Oc
i ⊕Od

i = α store the quartet (Pa
i ,Pb

i ,Oc
i ,Od

i) in the set φ , where φ is an
empty set at the beginning.

Assume that a pair (Pa
i ,Pb

i), i ∈ {1, . . . ,s} with difference α satisfies the differential
α → β with probability p. Given Pa

i and Pb
i we denote the output of E0 by Aa

i and
Ab

i , respectively, i.e., Aa
i = E0Ka(Pa

i) and Ab
i = E0Kb(Pb

i). Aa
i and Ab

i have difference
β = Aa

i ⊕Ab
i with probability p. The encryption of Aa

i and Ab
i with E1 leads to the

ciphertexts Ca
i and Cb

i , respectively, i.e., Ca
i = E1(Aa

i) and Cb
i = E1(Ab

i). Using the
ciphertexts Ca

i and Cb
i , the new ciphertexts Dc

i =Ca
i ⊕ δ and Dd

i =Cb
i ⊕ δ can be com-

puted. Let Bc
i = E1−1

Kc (Dc
i) and Bd

i = E1−1
Kd (Dd

i) be the decryption of Dc
i and Dd

i under
E1. Two ciphertexts with difference δ have a difference γ with probability q after
the decryption with E1 and key difference ∆K′. Since we have two ciphertext pairs
with difference δ =Ca

i ⊕Dc
i =Cb

i ⊕Dd
i , the intermediate differences Aa

i ⊕Bc
i = γ and

Ab
i ⊕Bd

i = γ occur with probability q2. As discussed earlier, the difference β = Aa
i ⊕Ab

i
occurs with the probability p. Thus, (Bc

i ⊕Bd
i) = (Bc

i ⊕Aa
i)⊕ (Aa

i ⊕Ab
i)⊕ (Ab

i ⊕Bd
i) =

γ ⊕ β ⊕ γ = β holds with probability pq2. An input difference β leads to an output
difference α through E0−1 (under key difference ∆K∗) with probability p. Thus, a pair
of plaintexts (Pa

i ,Pb
i) with Pa

i ⊕ Pb
i = α generates a new pair of plaintexts (Oc

i ,Od
i)

where Oc
i ⊕Od

i = α with probability p2 ·q2. The definition of right quartets is equiva-
lent to that defined in the boomerang attack. Figure 2.3 displays the structure of a right
related-key boomerang quartet.

After filtering step the set φ contains the remaining quartets which is used in the anal-
ysis step.

Analysis Step From now on, the adversary operates on the remaining quartets in φ .
We now explain a key recovery variant which recovers some key bits from the first
round of the cipher. Retrieving key bits from the last round of E1 works very similarly.

20

Pa

Ca

Pb

Cb

Oc

Dc

Od

Dd

αα

ββ
γ

γ

δ

δ

E0KaE0Ka

E1KaE1Ka

E0KbE0Kb

E1KbE1Kb

Aa

Ab

Bc

Bd

Figure 2.3: A right related-key boomerang quartet

Let Ka
0 ,K

b
0 ,K

c
0 ,K

d
0 be the 0-th subkeys derived from the keys Ka,Kb,Kc,Kd , i.e., the

key which enters the cipher initially. The subkeys are related as

∆K∗0 = Ka
0 ⊕Kb

0 = Kc
0⊕Kd

0 ,

∆K′0 = Ka
0 ⊕Kc

0 = Kb
0 ⊕Kd

0 ,

where ∆Kl
0, l ∈ {a,b,c,d} is the key difference of the 0-th subkeys. The key recovery

step works as follows:

- For each Ka
0 and the respective keys Kb

0 ,K
c
0 ,K

d
0 do

1. Initialize a counter with zero.

- For all quartets (Pa
i ,P′bi ,Oc

i ,Od
i), (i, j ∈ {1,2, . . . ,s}) stored in φ do

2. Ask for the encryption of the plaintext quartet (Pa
i ,Pb

i ,Oc
i ,Od

i) one
round under the guessed subkeys Ka

0 and the keys Kb
0 ,K

c
0 ,K

d
0 , respec-

tively, i.e., Pa
1,i = encKa

0
(Pa

i), Pb
1,i = encKb

0
(Pb

i),Oc
1,i = encKc

0
(Oc

i) and
Od

1,i = encKd
0
(Od

i).
3. Test whether the differences Pa

1,i⊕Pb
1,i and Pc

1,i⊕Pd
1,i have a desired dif-

ference an adversary expects depending on the related-key differential
being used. Increase a counter for the used key-bits if the difference is
fulfilled in both pairs.

4. Output the subkeys Ka
0 ,K

b
0 ,K

c
0 and Kd

0 with the highest counter as the correct
one.

21

Preliminaries

The analysis is the same as for the boomerang attack as well as the complexity for the
attack. The data complexity of the attack is s = O(p2q2) adaptive chosen plaintexts
and ciphertexts (where the exact value of s depends on several parameters, e.g., the
differentials in use, the cipher.

2.9 The Related-Key Rectangle Attack

The related-key rectangle attack [17, 78, 91] is an adaption of the rectangle attack to
the related-key model. The analysis of the attack is very similar to the one described
for the rectangle attack and the related-key boomerang attack, so we skip some of the
details in this section.

The block cipher is treated as EKi(P) = E1Ki(E0Ki(P)), where P is a plaintext en-
crypted under the key Ki. It is assumed that there exist a related-key differential α→ β
which holds with probability p for E0 under a key difference ∆K∗, i.e., Pr[E0Ka(Pa)⊕

E0Kb(Pb) = β |Pa⊕Pb = α] = p, where Ka and Kb = Ka⊕∆K∗ are two related keys,
∆K∗ is a chosen key difference (the same holds for Pr[E0Kc(Oc)⊕E0Kd (Od) = β |Oc⊕

Od = α] = p, where Kc and Kd = Kc⊕∆K∗ = Ka⊕∆K′⊕∆K∗ are two related keys).
Note that these keys are related in the same way as we described in the realted-key
boomerang attack. The related-key differential γ → δ for E1 holds with probability q
under the key difference∆K′. Given two intermediate encryption values Aa and Bc with
difference γ = Aa⊕Bc, we expect a ciphertext difference δ =Ca⊕Dc with probability
Pr[E1Ka(Aa)⊕E1Kc(Bc) = δ |Aa⊕Bc = γ] = q. The same argument can be applied for
the other pair Ab and Bd , i.e., Pr[E1Kb(Ab)⊕E1Kd(B

d) = δ |Ab⊕Bd = γ] = q.

The expected number of quartets satisfying both conditions E1Ka(Ca)⊕E1Kc(Dc) = δ
and E1Kb(Cb) ⊕E1Kd (Dd) = δ is about

∑
β ′,γ ′

N2 ·2−n · p̂2
β · q̂

2
γ ≈ N2 ·2−n · (p̂ · q̂)2,

where p̂ =
√

∑β ′(Pr[α → β ′])2 and q̂ =
√

∑γ ′(Pr[γ ′→ δ])2 if we count over all possi-
ble differentials. For an ideal cipher, the expected number of quartets is about N2 ·2−2n.
Therefore, if p · q > 2−n/2 and N is sufficiently large, the related-key rectangle dis-
tinguisher can distinguish between E and an ideal cipher and recover some key bits.
Figure 2.4 displays the structure of a related-key rectangle quartet.

So far we have used differences where all values are specified. In our attacks we often
use truncated differentials. This means that not all the bytes in a difference have to
have a specific value. We only regard some bytes to be zero or non-zero. We use this
concept where the specific differences are either hard to predict or are not of interest

22

Pa

Ca

Pb

Cb

Oc

Dc

Od

Dd

αα

ββ
γ

γ

δ

δ

E0Ka

E1Ka

E0Kb

E1Kb

E0Kc

E1Kc

E0Kd

E1Kd

Aa

Ab

Bc

Bd

Figure 2.4: A right related-key rectangle quartet

for the attack. In this case a differential might have different probabilities in forward
and backward direction.

2.10 A Hash Function

A cryptographic hash function H : {0,1}∗→ {0,1}n is used to compute an n-bit di-
gest from an arbitrarily-sized input. Cryptographic hash functions should satisfy the
following security requirements:

• Collision resistance – It is hard to find x,x′ ∈ {0,1}∗ such that x′ 6= x and H(x′) =
H(x),

• 2nd preimage resistance – Given a value x∈ {0,1}∗, it is hard to find x′ ∈ {0,1}∗

such that x′ 6= x and H(x′) = H(x).

• Preimage resistance – Given a hash value y∈ {0,1}n, it is hard to find x∈ {0,1}∗

such that H(x) = y,

Ideally, cryptographers expect a good hash function to somehow behave like a random
oracle. A random oracle [6] is a black box that responds to every query with a randomly
chosen answer and saves the query together with its responds. Given a query, the oracle
checks whether the query was asked before. If so, the oracle gives the same answer as

23

Preliminaries

before, otherwise, the oracle selects an answer at random, and stores the query with the
answer for future uses.

Current practical hash functions, such as SHA-1 or SHA-2 [119, 120], are iterated
hash functions, using a compression function with a fixed-length input, say

h : {0,1}n+l→{0,1}n.

SHA-1 or SHA-2 use the MERKLE-DAMGÅRD transformation [41, 113] to obtain a
hash function H with arbitrary input sizes. The core idea is to split the message M into
l-bit blocks M1, . . . ,Mm ∈ {0,1}l (with some padding, to ensure that all the blocks are
of size l-bit), to define an initial value X0, and to apply the recurrence Xi = h(Xi−1,Mi).
The final chaining variable Xm is used as the hash output or hash value. The main
benefit of the MERKLE-DAMGÅRD transformation is that it preserves collision resis-
tance: if the compression function is collision resistant, then so is the hash function
[41, 113]2.

A hash function H with length extension property is hash function for which one can
compute h(x||y) for a chosen message y from h(x). This is a weakness of MERKLE-
DAMGÅRD hash functions, since the adversary has access to the entire internal state
after the final message block is processed. The length extension attack can be applied
as follows. For a given hash value one can append additional message blocks to the
message and compute the new hash value.

A Message Authentication Code (MAC) computes a fingerprint of a given message
using a secret key. The MAC protects both the message’s integrity as well as its au-
thenticity, by allowing verifiers, who also possess the secret key, to detect any changes
to the message content. Consider for example a secret key K, a message M and de-
fine a MAC, MAC(K,M) = H(K||M). For a MERKLE-DAMGÅRD-based hash func-
tion H, one can easily forge tags for messages related to M in the following way.
Given MAC(K,M) = H(K||M), where K is an unknown key and an arbitrary value
Y , one can compute a valid MAC for the message M||Y , even without knowing K
as MAC(K,M||Y) = H(K||M||Y) using the length extension property of MERKLE-
DAMGÅRD. A MAC can be build using a hash function, a block cipher, a stream
cipher, or a dedicated algorithm to generate an output of fixed length.

2Note, that this is only true, if the padding rule offers a prefix-key encoding [36].

24

Chapter 3

Cryptanalysis of Block Ciphers

Since the AES is the world wide standard for symmetric key encryption it received
much attention in cryptanalysis during the last years. Thus, analyzing the security of
the AES is important. If there are any weaknesses an adversary can use, people would
lose trust in the strength of the AES.

In 2003 a block cipher called ARIA was proposed to serve as a replacement for the
AES. ARIA is very similar to the AES and shares some of its operations as well, but
the authors claim that ARIA is more secure than the AES while its performance is only
slightly lower than of the AES’.

In this chapter we present new cryptanalytic attacks on the block ciphers AES and
ARIA.

3.1 Boomerang Attack on ARIA

The ARIA block cipher [99] was presented at ICISC’03. ARIA is a substitution-
permutation network whose structure is based on the Advanced Encryption Standard
(AES) [40]. ARIA [99] uses data blocks of 128 bits with a 128, 192 or 256-bit key. A
different number of rounds are used depending on the length of the key, 10, 12, and 14
rounds when a 128, 192 or 256-bit key is used, respectively. Moreover, it is claimed to
have better security against all existing attacks on block ciphers.

Previous cryptanalytic attacks at ARIA of Wu et al. [153] showed that ARIA is vul-
nerable to impossible differential attacks up to 6 rounds. Li et al. [134] also proposed
some impossible differential attacks of up to 6 rounds of ARIA. Table 3.1 summarizes
the existing results on ARIA. In the following we present a new attacks on 5-round
ARIA.

25

Cryptanalysis of Block Ciphers

Table 3.1: Comparison of attacks on ARIA

Attack # Rounds Data Memory Time Source
Impossible Differential 5 271.3 CP 272 mem∗ 271.6 [134]
Boomerang Attack 5 2109 ACPC 257 mem 2110 Sec. 3.1.2
Impossible Differential 6 2121 CP 2121 mem∗ 2112 [153]
Impossible Differential 6 2120.5 CP 2121 mem∗ 2104.5 [134]
Impossible Differential 6 2113 CP 2113 mem∗ 2121.6 [134]
CP: Chosen Plaintexts, ACPC: Adaptive Chosen Plaintexts and Ciphertexts, mem:

memory usage in blocks.

∗ We estimated the memory usage of these attacks since it was not mentioned in the paper.

3.1.1 Description of ARIA

ARIA has an SPN structure, which contains two kinds of S-boxes and two types of
substitution layers which are different between even and odd rounds. The diffusion
layer of ARIA uses a 16×16 binary matrix with a branch number 8.1 ARIA is claimed
to be more efficient in 8-bit and 32-bit software implementations than the AES. The
plaintexts are treated as a 4 x 4 byte matrix, which is called the state. A round applies
three operations to the state:

• Substitution layer (SL) is a non-linear byte-wise substitution applied on every
byte of the state matrix in parallel, where two different substitution layers exist,
denoted by SL1 and SL2 (SL−1

1 and SL−1
2 for their inverse).

• Diffusion layer (DL) is a linear matrix multiplication of the state matrix with a
16× 16 involution binary matrix.

• Round key addition (ARK) is the XORing of the state and a 128-bit subkey
which is derived from the key.

Before the first round, an initial ARK operation is applied and the DL operation is
omitted in the last round. The bytes coordinates of a 4 x 4 state matrix are labeled as in
Figure 3.1.

Substitution Layer (SL). ARIA uses two S-boxes S1 and S2 and also their inverse
S−1

1 ,S−1
2 , where S1 is the same S-box used for the AES. Each S-box is defined to be an

1A differential branch number of a linear transformation M is given by

min
a 6=0
{wb(a)+wb(M(a))}

where wb(a) is the number of non-zero elements of the vector a. We always mean differential branch number
whenever we write branch number.

26

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Figure 3.1: Byte coordinates of a 4 x 4 state matrix of ARIA

affine transformation of the inversion function over GF(28).

S1,S2 : GF(28)→GF(28),

S1 : x 7→ A · x−1⊕ a,

where

A =













1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1













and a =













1
1
0
0
0
1
1
0













.

S2 : x 7→ B · x247⊕ b,

where

B =













0 1 0 1 1 1 1 0
0 0 1 1 1 1 0 1
1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1
0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 1
0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1













and b =













0
1
0
0
0
1
1
1













.

ARIA has two types of S-box layers for even and odd rounds as shown in Figures 3.2
and 3.3. Type 1 is used in the odd rounds and type 2 is used in the even rounds.

Figure 3.2: The S-box layer SL1

Diffusion Layer (DL). A mapping GF(28)16→ GF(28)16 is performed which is given
by

(x0,x1, . . . ,x15) 7→ (y0,y1, . . . ,y15),

27

Cryptanalysis of Block Ciphers

Figure 3.3: The S-box layer SL2

where

y0 = x3⊕ x4⊕ x6⊕ x8⊕ x9⊕ x13⊕ x14,

y1 = x2⊕ x5⊕ x7⊕ x8⊕ x9⊕ x12⊕ x15,

y2 = x1⊕ x4⊕ x6⊕ x10⊕ x11⊕ x12⊕ x15,

y3 = x0⊕ x5⊕ x7⊕ x10⊕ x11⊕ x13⊕ x14,

y4 = x0⊕ x2⊕ x5⊕ x8⊕ x11⊕ x14⊕ x15,

y5 = x1⊕ x3⊕ x4⊕ x9⊕ x10⊕ x14⊕ x15,

y6 = x0⊕ x2⊕ x7⊕ x9⊕ x10⊕ x12⊕ x13,

y7 = x1⊕ x3⊕ x6⊕ x8⊕ x11⊕ x12⊕ x13,

y8 = x0⊕ x1⊕ x4⊕ x7⊕ x10⊕ x13⊕ x15,

y9 = x0⊕ x1⊕ x5⊕ x6⊕ x11⊕ x12⊕ x14,

y10 = x2⊕ x3⊕ x5⊕ x6⊕ x8⊕ x13⊕ x15,

y11 = x2⊕ x3⊕ x4⊕ x7⊕ x9⊕ x12⊕ x14,

y12 = x1⊕ x2⊕ x6⊕ x7⊕ x9⊕ x11⊕ x12,

y13 = x0⊕ x3⊕ x6⊕ x7⊕ x8⊕ x10⊕ x13,

y14 = x0⊕ x3⊕ x4⊕ x5⊕ x9⊕ x11⊕ x14,

y15 = x1⊕ x2⊕ x4⊕ x5⊕ x8⊕ x10⊕ x15.

Round Key Addition (ARK). The subkeys are derived from the key using the key
schedule algorithm which uses a 3-round 256-bit Feistel cipher. We skip its description
since we do not use it in our attack. We refer the reader to [99] for more details.

3.1.2 A Boomerang Attack on 5-Round ARIA

In this section we mount a boomerang attack on 5-round ARIA-128. The reduced
cipher is treated as E(P) = E1(E0(P)), where a differential for E0 containing rounds 1
to 3 and a differential for E1 is covering rounds 4 to 5. We apply a key recovery attack
to retrieve 56 key-bits of the first round. The notations used in our attack are defined
as:

• Pi,Oi are plaintexts.

28

• Ci,Di are ciphertexts.

• a is a known non-zero byte difference.

• ∗ is a non-zero byte differences.

• ? is an unknown byte differences.

The Differential for E0 (α→ βout)

Considering the S-box being used, for any non-zero difference there are 126 values
which occur with probability 2−7, one with probability 2−6 and 129 with probability
0. We pick a difference α with b differences in 7 byte positions, i.e., bytes 3, 4, 6, 8, 9,
13, and 14. We choose the b difference such that it transforms into an a difference with
probability 2−6. Thus, the non-zero differences in the difference α of the differential
for E0 transforms into an a difference in bytes 3, 4, 6, 8, 9, 13 and 14 with probability
2−42. DL1 then leaves an a difference in byte 0, while the remaining bytes have a zero
difference. Since ARK is linear it does not alter this difference. SL2 produces a non-
zero difference in byte 0 and DL2 spreads this difference in bytes 3, 4, 6, 8, 9, 13 and
14. At the end of the differential we obtain a difference called βout where all the 16
bytes of the state difference are unknown. We discuss this below in more details. The
probability of the differential for E0, i.e., the transformation of an α difference into a
βout difference, is given by

Pr(α→ βout) = 2−42.

The differential E0 is shown in Figure 3.4.

α
b b

b b
b b

b

ARK0,SL1−−−−−→
2−42

a a
a a

a a
a

DL1−−→

a
ARK1−−−→

a

SL2,DL2−−−−→

∗ ∗
∗ ∗

∗ ∗
∗

ARK2−−−→

∗ ∗
∗ ∗

∗ ∗
∗

SL3,DL3,ARK3−−−−−−−−→

βout
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

Figure 3.4: The differential for E0

The Differential for E1−1 (δ → γ)

The ciphertext difference δ consists of a single a difference in byte 0 and a zero differ-
ence in the remaining bytes. The difference remains non-zero in only one byte (namly,

29

Cryptanalysis of Block Ciphers

byte 0) after the inverse of round 5. Recall, that there is no DL5 operation in the last
round of ARIA. The DL−1

4 operation spreads this non-zero difference to bytes 3, 4,
6, 8, 9, 13 and 14. We denote the the output difference of the differential by γ . The
probability of E1−1 is Pr(δ → γ) = 1. The differential E1−1 is shown in Figure 3.5.

δ
a

ARK−1
5 ,SL−1

5 ,ARK−1
4−−−−−−−−−−−→

∗
DL−1

4 ,SL−1
4−−−−−−→

γ
∗ ∗
∗ ∗

∗ ∗
∗

Figure 3.5: The differential for E1−1

The Differential for E0−1 (βin→ α)

For the following steps we need that the output difference βout of the differential for
E0 is equal to the difference βin for the differential for E0−1. Note that βin and βout

are not only equal in the positions of non-zero differences but should also be equal in
each byte. We compute the probability that this actually happens. From the boomerang
condition inside the cipher for two differences γ1 and γ2 we know that

βout⊕ γ1⊕ γ2 = βin

holds. When γ1 and γ2 are equal in all the bytes, we simply write γ . We compute the
probability for that to occur below. Thus, the above condition reduces to:

βout⊕ γ⊕ γ = βout = βin (3.1)

Using the differentials above, the differences βin and βout are equal with probability
2−56. This is the probability that the 7 non-zero bytes in γ1 are equal to the 7 non-zero
bytes in γ2.

Let A,A′,B,B′ be the internal state after SL3 in the forward direction when encrypting
P,P′,O,O′, respectively. The notation from Figure 2.2 is used. Since DL is linear γ can
be expressed as

γ = K3⊕DL3(A)⊕K3⊕DL3(B) = DL3(A⊕B) (3.2)

and as

γ = K3⊕DL3(A′)⊕K3⊕DL3(B′) = DL3(A′⊕B′). (3.3)

Equations (3.2) and (3.3) can be combined, which leaves A⊕A′ = B⊕B′. In other
words, DL3 can be undone with probability 1 due to the boomerang condition (3.1).

30

This means that we know exactly that after DL3 in the backward direction bytes 3, 4, 6,
8, 9, 13, and 14 are non-zero while the remaining bytes are with difference zero. There
are several cases for which an a difference in bytes 3, 4, 6, 8, 9, 13, and 14 occurs after
SL3, which are one case with probability 2−42, 7 ·127 with probability 2−43 and so forth
until 1267 cases with probability 2−49 each. Thus on average, after SL3 an a difference
in bytes 3, 4, 6, 8, 9, 13, and 14 occurs with probability (2−6.93)7 = 2−48.79. DL2

outputs an a difference in byte 0 and a zero difference in the remaining bytes. SL2 then
transforms the a difference in byte 0 into a non-zero difference, which is spread into
the bytes 3, 4, 6, 8, 9, 13, and 14 after DL1. The output difference α of the differential
for E0−1 contains these non-zero and zero differences. The differential for E0−1 has
the probability Pr(βin→ α)≈ 2−49 to occur. It is shown in Figure 3.6.

βin
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ARK−1
3 ,DL3

−−−−−−−→

∗ ∗
∗ ∗

∗ ∗
∗

SL3−−−−→
2−48.79

a a
a a

a a
a

ARK−1
2 ,DL2

−−−−−−−→

a
SL2−−→

∗
ARK−1

1 .DL1,SL1
−−−−−−−−−→

∗ ∗
∗ ∗

∗ ∗
∗

ARK−1
0−−−−→

α
∗ ∗
∗ ∗

∗ ∗
∗

Figure 3.6: The differential for E0−1

The Attack

The adversary first collects data and stores the filtered data in the set φ . A key-search
is then applied to the remaining quartets in φ in order to find 56 bits of K0. Let k0 be
a 56-bit subkey in the position of bytes 3, 4, 6, 8, 9, 13, and 14 of K0. Let e0,k(X) be
the partial encryption of X under the subkey k before DL1 is applied. The attack is as
follows:

1. Choose 253 structures S j, j ∈ {1,2, . . . ,253} each consists of 256 plaintexts
Pi, j, i ∈ {1,2, . . . ,256} which have all the possible values in seven bytes
(3, 4, 6, 8, 9, 13, and 14). Ask for the encryption of all Pi, j to obtain the
ciphertexts Ci, j, i.e., Ci, j = E(Pi, j). Let P′i, j = Pi, j⊕α and let C′i, j = E(P′i, j).

2. For each ciphertext Ci, j compute a new ciphertext Di, j = Ci, j⊕ δ , where
δ is a fixed 128-bit value with a non-zero value a in byte 0 and zero in
the remaining bytes. For each ciphertext C′i, j compute a new ciphertext
D′i, j =C′i, j⊕ δ , respectively.

31

Cryptanalysis of Block Ciphers

3. Ask for the decryption of the Di, j and D′i, j to obtain the new ciphertexts
Oi, j and O′i, j, i.e., Oi, j = E−1(Di, j) and O′i, j = E−1(D′i, j), respectively.

4. Store only those quartets (Pi, j,P′l, j,Oi, j,O′l, j) in the set φ where Oi, j⊕O′l, j
have a non-zero difference in bytes 3, 4, 6, 8, 9, 13, and 14 and a zero
difference in the remaining bytes.

5. For each 56-bit candidate key k

– Set a counter to zero.

For each quartet passing the test in Step 4:

5.1. Partially encrypt the plaintext quartet (Pi, j,P′l, j,Oi, j,O′l, j), i.e.,
compute P̄i, j = e0,k(Pi, j), P̄′l, j = e0,k(P′l, j), Ōi, j = e0,k(Oi, j) and Ō′l, j =
e0,k(O′l, j).

5.2. Increase the counter for the used 56-bit subkey k by one if P̄i, j⊕

P̄′l, j and Ōi, j⊕ Ō′l, j have a difference of a in bytes 3, 4, 6, 8, 9, 13,
and 14.

6. Output the 56-bit subkey k with the highest counter.

Analysis of the Attack

We have 253 structures which contain 255 plaintext pairs of the desired difference each.
Thus, we expect about #PP = 253 ·255 = 2108 quartets in total. Thus, the transition in
this differential happens with probability one in this case. A right quartet occurs with
probability

Prc = Pr(α → βout) · (Pr(γ ← δ))2 ·Pr(γ1 = γ2) ·Pr(α← βin)

= 1 ·1 ·2−56 ·2−49 = 2−105,

since all the differential conditions are fulfilled. A random difference of two plaintexts
has 9 zero byte difference with probability Pr f = 2−72. Thus, after Step 4 we have
about #C = 2108 · 2−105 = 23 right and approximately #F = 2108 · 2−72 = 236 wrong
quartets. A quartet passes the test in Step 5.2 with probability Prfilter = 2−112, since we
have a 56-bit filtering condition on both pairs of a quartet. Thus, we expect #CKc = 23

right boomerang quartets for the right key and #FKc = #F ·Prfilter = 236 ·2−112 = 2−76

wrong quartets for each wrong subkey guess remain after this step.

Using the Poisson distribution2 we can compute the success rate of our attack. The
probability that the counter of a wrong key is at least 3 assuming Yi ∼ Poisson(µ =

2Normally, we would use a binomial distribution but we use the Poisson distribution instead as a sim-
plification. X ∼ Poisson(µ) means that the random variable X follows the Poisson distribution with mean
µ .

32

2−76) is

Pr(Y ≥ 3) = e−2−76
·
(2−76)3

3!
≈ 2−230.

For all the 256−1 wrong keys used in our analysis we expect about 256 ·2−230 = 2−174

wrong keys which have a count of at least 3 quartets. The probability that the right key
has a count of at least 3 quartets using Z ∼ Poisson(µ = 23) is

Pr(Z ≥ 3)≈ 0.98.

We can increase the success probability by increasing the number of quartets which
also increases the data and time complexity of the attack.

Each structure of data can be analyzed sequentially. Thus, the total memory complexity
is determined by Step 1 to 3, which is about 2 · 256 = 257 blocks and additionally 256

counters. The memory complexity of Steps 4, 5.1 and 5.2 is negligible compared to
the memory complexity of the first two steps. The time complexity of Step 1 to 3 is
2 ·256 = 257 encryptions for each structure. Since we have to run these steps for each
structure of data the time complexity of the attack is about 253 · 257 = 2110 5-round
encryptions. The data complexity is of size about 253 · 256 = 2109 adaptive chosen
plaintexts.

3.2 Related-Key Boomerang Attacks on 7 and 9-Round
AES-192

In this section we present a related-key boomerang attack on 7 rounds of AES-192
using 4 related keys. Our related-key boomerang attack can also break 9 rounds using
256 related keys. Table 3.2 summarizes existing attacks on AES-192 and our new
attacks on 7 and 9 rounds.

3.2.1 Description of AES-192

The AES [40] is a block cipher with 128-bit block size and 128, 192 or 256-bit key
size. A different number of rounds is used depending on the length of the key, 10, 12
and 14 rounds when a 128, 192 or 256-bit key is used, respectively. The plaintexts are
treated as a 4 x 4 byte matrix, which is called state. A round applies four operations to
the state:

• SubBytes (SB) is a non-linear byte-wise substitution applied on every byte of the
state matrix in parallel.

33

Cryptanalysis of Block Ciphers

Table 3.2: Existing attacks on AES-192

Attack # Rounds # Keys Data Time Source
Impossible Differential 7 1 292CP 2186 [124]
Impossible Differential 7 1 2115CP 2119 [157]
Impossible Differential 7 1 292CP 2162 [157]
Impossible Differential 7 1 2113.8CP 2118.8MA [100]
Impossible Differential 7 1 291.2CP 2139.2 [100]
Meet in the Middle 7 1 234+nCP 2208−n + 282+n [43]
Square 7 1 232CP 2184 [104]
Partial Sums 7 1 19 ·232CP 2155 [49]
Partial Sums 7 1 2128− 2119CP 2120 [49]
Related-Key Differential 7 2 237RK-CP 2145 [158]
Related-Key Differential-Linear 7 2 222RK-CP 2187 [159]
Related-Key Differential-Linear 7 2 270RK-CP 2130 [159]
Related-Key Impossible Differential 7 2 2111RK-CP 2116 [81]
Related-Key Impossible Differential 7 32 256RK-CP 294 [18]
Related-Key Impossible Differential 7 2 252RK-CP 280 [158]
Related-Key Boomerang Differential 7 4 263RK-ACPC 263 Sec. 3.2.2
Single-Key 7 1 2103+nCP 2103+n [48]
Partial Sums 8 1 2128− 2119CP 2188 [49]
Related-Key Impossible Differential 8 2 288RK-CP 2183 [81]
Related-Key Rectangle 8 4 286.5RK-CP 286.5 [78]
Related-Key Rectangle 8 2 294RK-CP 2120 [90]
Related-Key Differential-Linear 8 2 2118RK-CP 2165 [159]
Related-Key Impossible Differential‡ 8 32 2116RK-CP 2134 [18]
Related-Key Impossible Differential‡ 8 32 292RK-CP 2159 [18]
Related-Key Impossible Differential‡ 8 32 268.5RK-CP 2184 [18]
Related-Key Impossible Differential 8 2 264.5RK-CP 2177 [158]
Related-Key Impossible Differential 8 2 288RK-CP 2153 [158]
Related-Key Impossible Differential 8 2 2112RK-CP 2136 [158]
Meet-in-the-Middle 8 1 2113+nCP 2172+n [48]
Related-Key Rectangle† 9 256 286RK-CP 2181 [17]
Related-Key Rectangle 9 64 285RK-CP 2182 [90]
Related-Key Boomerang 9 256 2112RK-ACPC 2134.8 Sec. 3.2.3
Related-Key Rectangle 10 256 2121.2RK-CP 2184.2 [90]
Related-Key Rectangle 10 64 2119.2RK-CP 2185.2 [90]
Related-Subkey Rectangle 12 4 2123RS-ACPC 2176 [25]

CP: Chosen Plaintexts, ACPC: Adaptive Chosen Plaintexts and Ciphertexts,
RK: Related-Key, RS: Related-Subkey#, MA: memory access,

Time: Encryption units.

† the attack with some flaws corrected by Kim et al. [90]. The table shows the corrected complexities.
‡ the attack with some flaws corrected by Zhang et al. [158]. The table shows the corrected complexities.
In a related-subkey attack the adversary chooses the difference between certain subkeys being used.

34

• ShiftRows (SR) is a cyclic left shift of the i-th row by i bytes, where i∈{0,1,2,3}.

• MixColumns (MC) is a multiplication of each column by a constant 4 x 4 matrix
over GF(28).

• AddRoundKey (ARK) is an XORing of the state and a 128-bit subkey which is
derived from the key.

An AES round applies the SB, SR, MC and ARK operations in that order. Before the
first round a whitening ARK operation is applied and the MC operation is omitted in
the last round. We label the first round with 1. We concentrate on the 192-bit and
256-bit key versions of the AES in this thesis and refer to [40] for more details on the
AES-128.

The state matrix is labeled as follows:
x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

Let Wj be a 32-bit word and Wj[i] be the i-th byte in Wj, then the 192-bit key is repre-
sented by W0||W1||W2|| . . . ||W5. The 192-bit key schedule algorithm works as follows:

• For j = 6 to 51

– If j ≡ 0 mod 6, then

• Wj[0] =Wj−6[0]⊕ SB(Wj−1[1])⊕Rcon(j/6),

• For i = 1 to 3 do Wj[i] =Wj−6[i]⊕ SB(Wj−1[i+ 1 mod 4]),

– Else

• For i = 0 to 3 do Wj[i] =Wj−6[i]⊕Wj−1[i],

where Rcon(·) denotes the constants being used. The whitening key is W0||W1||W2||W3,
the subkey of round 1 is W4||W5||W6||W7, the subkey of round 2 is W8||W9||W10||W11,
and so on.

3.2.2 A Related-Key Boomerang Attack on 7-Round AES-192

In this section we mount a key recovery attack on 7-round AES-192 using 4 related
keys. The cipher is treated as E(·) = E1(E0(·)), where E0 represents rounds 1 to 4
and includes the whitening key addition as well as the key addition of round 4. E1
represents rounds 5 to 7. The notations used in our attack are defined as follows:

35

Cryptanalysis of Block Ciphers

• Ka,Kb,Kc,Kd unknown keys (192 bits).

• Ka
i ,Kb

i ,Kc
i ,Kd

i unknown subkeys of round i, where i ∈ {0,1,2, . . . ,9} (128 bits),
(Ka

0 ,K
b
0 ,K

c
0 ,K

d
0 represent the whitening keys).

• ∆K∗,∆K′ known key differences (192 bits).

• ∆K∗i ,∆K′i known subkey differences of round i (128 bits).

• Pl
i ,Ol

i plaintexts processed with the key Kl , l ∈ {a,b,c,d}.

• Cl
i ,Dl

i ciphertexts processed with the key Kl , l ∈ {a,b,c,d}.

• E0K j(·) 4-round AES-192 encryption from round 1 to 4 under key K j, where
j ∈ {a,b,c,d}.

• E0−1
K j (·) 4-round AES-192 decryption from round 4 to 1 under key K j, where

j ∈ {a,b,c,d}.

• E1−1
K j (·) 3-round AES-192 decryption from round 7 to 5 under key K j, where

j ∈ {a,b,c,d}.

• a is a known non-zero byte difference.

• b is an output difference of S-box for the input difference a.

• c,d,∗ are unknown non-zero byte differences.

• ? is an unknown byte differences.

The Structure of the Keys

In our attack we use four related but unknown keys Ka,Kb,Kc and Kd . Let Ka be the
unknown key the adversary tries to recover. The relation that is required for the attack
is:

Kb = Ka⊕∆K∗

Kc = Ka⊕∆K′

Kd = Ka⊕∆K∗⊕∆K′

∆K∗ is the key difference used in the first related-key differential for E0 and ∆K′ is the
key difference used in the second related-key differential for E1. The adversary only
knows the differences ∆K∗ and ∆K′. Recall that the adversary does not know the keys
themselves, but can choose the key differences as:

∆K∗ =

a a

and ∆K′ =

a a

36

∆K∗0
a a

KS
−→

∆K∗1

KS
−→

∆K∗2
a

KS
−→

∆K∗3
a a

KS
−→

∆K∗4
a a

b b

KS
−→

∆K∗5
a a

b b b b

KS
−→

∆K∗6
a a

c c c c
b b

KS
−→

∆K∗7

d d
c c c
b b b

Figure 3.7: Subkey differences derived from ∆K∗

∆K′0
a

KS
−→

∆K′1
a a a

KS
−→

∆K′2
a a

KS
−→

∆K′3
a a

KS
−→

∆K′4
a a

KS
−→

∆K′5

KS
−→

∆K′6
a

KS
−→

∆K′7
a a

Figure 3.8: Subkey differences derived from ∆K′

Using the key schedule algorithm of AES-192 we can use the key differences ∆K∗ and
∆K′ to derive the subkey differences ∆K∗0 , . . . ,∆K∗7 and ∆K′0, . . . ,∆K′7, respectively.3

These values are shown in Figure 3.7 and 3.8, respectively.

The Related-Key Differential for E0 (α→ βout)

The difference α of the differential for E0 has an a difference in bytes 8 and 12 and
zero differences in the remaining bytes. The whitening key addition ARK0 generates a
zero difference in all the bytes of the state. These zero differences remain until ARK2

is applied, since ∆K∗1 has only zero differences and does not alter the differences in the
state matrix. ARK2 introduces an a difference in byte 0, which is transformed into an
unknown non-zero difference after SB3. MC3 generates a non-zero difference in bytes
0,1,2 and 3, while ARK3 inserts an a difference in bytes 8 and 12. After applying SR4

we have one non-zero byte in columns 0 and 1 and two non-zero bytes in columns 2
and 3. Four non-zero bytes remain after MC4 in column 0 and 1 with probability one,
while we do not know which bytes of column 2 and 3 are non-zero but at most two of

3These key differences are also used in [78].

37

Cryptanalysis of Block Ciphers

α
a a

ARK0,...,ARK2−−−−−−−−→

a
SB3,SR3,MC3−−−−−−−→

∗
∗
∗
∗

ARK3−−−→

∗ a a
∗
∗
∗

SB4,SR4−−−−→

∗ ∗ ∗
∗

∗
∗

MC4−−→

∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

ARK4−−−→

βout
? ? ? ?
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

Figure 3.9: The related-key differential for E0

these can be zero (at most one in each column). Finally, we call the output difference
βout, which is the difference obtained after passing the related-key differential for E0.
The probability of the differential for E0, i.e., the transformation of an α difference
into a βout difference is given by

Pr(α → βout) = 1.

The related-key differential for E0 is shown in Figure 3.9.

The Related-Key Differential for E1−1 (δ → γ)

The difference δ consists of a b difference in byte 0 and an a differences in bytes 8 and
12. The a differences vanish after ARK−1

7 , since ∆K′7 has two a differences in bytes 8
and 12 while the b difference remains. The adversary chooses b such that Pr(b→ a) =
2−6. If this occurs then the intermediate difference after SB−1

7 is equal to the subkey
difference ∆K′6. Hence, all bytes have a zero difference after applying ARK−1

6 . All the
bytes have a zero difference after ARK−1

5 , which are denoted by γ = 0. The probability
of the differential for E1−1 is Pr(δ → γ) = 2−6. The related-key differential for E1−1

is shown in Figure 3.10.

The Related-Key Differential for E0−1 (βin→ α)

For the following steps we need that the output difference βout of the related-key dif-
ferential for E0 is equal to the output difference βin for the related-key differential for
E0−1. From the boomerang condition inside the cipher for the two differences γ1 and
γ2 we know that

βout⊕ γ1⊕ γ2 = βin

holds.

38

δ
b a a

ARK−1
7−−−−→

b
SR−1

7 ,SB−1
7−−−−−−→

2−6

a
ARK−1

6 ,...,SB−1
5−−−−−−−−−→

γ

Figure 3.10: The related-key differential for E1−1

Let Aa,Ab,Bc,Bd be the internal state after SR4 when encrypting Pa,Pb,Oc,Od under
Ka,Kb, Kc,Kd , respectively (following the notations of Figure 2.2). Since MC is linear,
γ can be expressed as

γ = Ka
4 ⊕MC4(Aa)⊕Kc

4⊕MC4(Bc) =

∆K′4
︷ ︸︸ ︷

Ka
4 ⊕Kc

4⊕MC4(Aa⊕Bc) (3.4)

and as

γ = Kb
4 ⊕MC4(Ab)⊕Kd

4 ⊕MC4(Bd) =

∆K′4
︷ ︸︸ ︷

Kb
4 ⊕Kd

4 ⊕MC4(Ab⊕Bd). (3.5)

Equations (3.4) and (3.5) can be combined, which leaves Aa⊕Ab = Bc⊕Bd . In other
words, the MC4 operation can be undone with probability 1 due to the boomerang
condition (3.1). This means that we know that after MC−1

4 only bytes 0,7,8,10,12, and
13 have a non-zero difference, while all other bytes have a zero difference. SB−1

4 then
transforms a non-zero difference into an a difference with probability 2−7. Regarding
bytes 8 and 12, we have probability 2−14 of doing so. These a differences vanish after
ARK−1

3 . After MC−1
3 and SB−1

3 a column with four non-zero bytes is transformed into
a byte with a difference in byte 0 with probability 2−32.

This a difference is canceled out by ARK−1
2 . We call α the difference that is the output

of the related-key differential for E0−1, α , has an a difference in the bytes 8 and 12.
The differential for E0−1 has probability Pr(βin → α) = 2−14 · 2−32 = 2−46 and is
shown in Figure 3.11.

The Attack

The attack recovers one byte of the last round’s subkey. Let ka
7 be the 8-bit subkey in

byte 0 of the subkey Ka
7 . Let d7ki

7
(X), i ∈ {a,b,c,d} be the seventh round decryption

of X under the 8-bit subkey ki in byte 0. The attack is as follows:

39

Cryptanalysis of Block Ciphers

βin
? ? ? ?
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

ARK−1
4−−−−→

∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

MC−1
4−−−→

∗ ∗ ∗
∗

∗
∗

SR−1
4 ,SB−1

4−−−−−−→
2−14

∗ a a
∗
∗
∗

ARK−1
3−−−−→

∗
∗
∗
∗

MC−1
3 ,SR−1

3 ,SB−1
3−−−−−−−−−−→

2−32

a
ARK−1

2 ,...,ARK−1
0−−−−−−−−−−→

α ′

a a

Figure 3.11: The related-key differential for E0−1

1. Choose 261 plaintexts Pa
i , i ∈ {1,2, . . . ,261} at random. Ask for the encryp-

tion of Pa
i under Ka to obtain the ciphertexts Ca

i , i.e., Ca
i = EKa(Pa

i).

2. Compute 261 plaintexts Pb
i = Pa

i ⊕α, where α is a 128-bit value with value
a in bytes 8 and 12, while the remaining bytes are zero. Ask for the en-
cryption of the Pb

i under Kb, where Kb =Ka⊕∆K∗ to obtain the ciphertexts
Cb

i , i.e., Cb
i = EKb(Pb

i).

3. Compute 261 ciphertexts Dc
i , such that Dc

i = Ca
i ⊕ δ , where δ is a fixed

value with a b byte value in byte 0 and an a difference in bytes 8 and
12. Ask for the decryption of Dc

i under Kc to obtain the plaintexts Oc
i , i.e.,

Oc
i = E−1

Kc (Dc
i).

4. Compute 261 ciphertexts Dd
i , such that Dd

i =Cb
i ⊕δ , where δ is as in Step

3. Ask for the decryption of Dd
i under Kd to obtain the plaintexts Od

i , i.e.,
Od

i = E−1
Kd (Dd

i).

5. Store only those quartets (Pa
i ,Pb

j ,Oc
i ,Od

j), i, j ∈ {1,2, . . . ,261} in the set φ
where Oc

i ⊕Od
j have an a difference in bytes 8 and 12, while the remaining

byte differences are zero.

6. For each 8-bit candidate key ka
7, compute kb

7 = ka
7,k

c
7 = ka

7, and kd
7 = ka

7.

For each quartet remaining after the test in Step 5:

6.1. Partially decrypt a ciphertext quartet (Ca
i ,Cb

j ,Dc
i ,Dd

j), i.e., C̄a
i =

d7ka
7
(Ca

i), C̄b
j = d7kb

7
(Cb

j), D̄c
i = d7kc

7
(Dc

i), and D̄d
j = d7kd

7
(Od

j).

6.2. Increase the counter for the used 8-bit subkey ka
7 by one if C̄a

i ⊕

D̄c
i and C̄b

j ⊕ D̄d
j have difference a in byte 0.

7. Output the 8-bit subkeys with the highest counter, which are ka
7 and ka

7⊕δ .

40

Analysis of the Attack

Using #PP= 261 plaintext pairs we obtain the same amount of quartets. A right quartet
occurs with probability

Prc = Pr(α → βout) · (Pr(γ ← δ))2 ·Pr(α ← βin)

= 1 · (2−6)2 ·2−46 = 2−58,

which is the probability that all related-key differentials are fulfilled. A random value
of a plaintext difference is equal to the differenceα with probability Pr f = 2−128. Thus,
after Step 5 we have about

#C = #PP ·Prc = 261 ·2−58 = 23

right quartets and
#F = #PP ·Pr f = 261 ·2−128 = 2−67

wrong quartets stored in φ . The data and time complexities of Step 6 and 7 are neg-
ligible compared to the other steps before, since we expect to have only 23 quartets
analyzed.

A wrong key is counted in Step 6.2 with probability 2−12. This is the probability that
an active byte with a b difference has an a difference after SB−1

7 . The output of Step 7
is ka

7 and ka
7⊕ b, since both values are expected to have the highest counter. We expect

that the right key has a counter of about 23 +2−79 ≈ 23 quartets in total while for each
wrong key we expect to count 23 ·2−12+2−67 ·2−12≈ 2−9 quartets. The adversary can
only distinguish k and k⊕b using exhaustive search of the remaining key bits and later
check for correctness.

Using the Poisson distribution we can compute the success rate of our attack. The
probability that the counter for each wrong key is at least 5 assuming Yi ∼ Poisson(µ =

2−9) is

Pr(Y ≥ 5) = e−2−9
·
(2−9)5

5!
≈ 2−51.

For all the 28− 1 wrong keys (but ka
7⊕ b) used in our analysis we expect about 28 ·

2−51 = 2−43 wrong keys which have a count of at least 5 quartets. The probability that
the right key has a count of at least 5 quartets using Z ∼ Poisson(µ = 23) is

Pr(Z ≥ 5)≈ 0.90.

The data complexity of this attack is determined by Steps 1, 2, 3 and 4 which is about
263 = 22 ·261 adaptive chosen plaintexts and ciphertexts. The time complexity is about
263 = 22 ·261 seven round AES-192 encryptions.

41

Cryptanalysis of Block Ciphers

∆K∗0

a a KS
−→

∆K∗1

a a KS
−→

∆K∗2

KS
−→

∆K∗3

a

KS
−→

∆K∗4

a a KS
−→

∆K∗5

a a a a KS
−→

∆K∗6
b b b b
a a KS

−→

∆K∗7
b b b
a a a

c c

KS
−→

∆K∗8
b b

a a

c c c c

KS
−→

∆K∗9
b b

a
d d d d
c c

Figure 3.12: Subkey differences derived from ∆K∗

3.2.3 A Related-Key Boomerang Attack on 9-Round AES-192

Our related-key boomerang attack can be extended to attack 9 rounds of AES-192.

The Structure of the Keys

In the attack we use the key differences ∆K∗ and ∆K′ as shown below and derive
the subkey differences ∆K∗0 , . . . ,∆K∗9 and ∆K′0, . . . ,∆K′9, respectively. These values are
shown in Figures 3.12 and 3.13, respectively. This attack works for weak key classes
for which the subkeys satisfy the differences shown in Figure 3.12 and 3.13, where an a
difference transforms into a b difference. We assume that we are in this weak key class
for our attack. One can transform the attack into a more general attack by increasing
the number of keys being used.

The Related-Key Differential for E0 (α→ βout)

The related-key differential for E0 for rounds 1 to 5 is described as follows. The
difference α of E0 has a non-zero difference in bytes 1,2,6,7,8, 10,11, 12 and byte 9
has an a difference. After SR1 all non-zero bytes are found in columns 2 and 3. A
column with four non-zero bytes is transformed into a column having an a difference
in a fixed position after MixColumns with probability of 2−64. The two a differences in
bytes 9 and 13 are canceled out by the key addition ARK1. Thus, each byte of the state
matrix has a zero difference until ARK3 introduces an a difference in byte 1, which is
transformed to a non-zero difference by SB4 and to four non-zero bytes by MC4. After

42

∆K′0
a a

b b

KS
−→

∆K′1

b b

KS
−→

∆K′2
a

KS
−→

∆K′3
a a

b

KS
−→

∆K′4
a a

KS
−→

∆K′5
a a

KS
−→

∆K′6
a a

KS
−→

∆K′7

KS
−→

∆K′8
a

KS
−→

∆K′9
a a

Figure 3.13: Subkey differences derived from ∆K′

α
∗ ∗

∗ a ∗
∗ ∗
∗ ∗

ARK0,SB1,SR1,MC1−−−−−−−−−−−→
2−64

a a ARK1,...,ARK3−−−−−−−−→
a

SB4,SR4,MC4−−−−−−−→

∗
∗
∗
∗

ARK4−−−→

∗
a ∗
∗
∗

SB5,SR5,MC5,ARK5−−−−−−−−−−−→

βout
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Figure 3.14: The related-key differential for E0

ARK4 the state matrix has an a difference in byte 9 and non-zero differences in bytes
11,12,13,14. The difference which occurs after ARK5 is the output difference which we
call βout, where all the bytes have non-zero difference except for bytes 4 and 7 which
are unknown. The probability of the differential for E0, i.e., the transformation of an
α difference into a βout difference is given by

Pr(α→ βout) = 2−64.

The related-key differential for E0 is shown in Figure 3.14.

The Related-Key Differential for E1−1 (δ → γ)

From the decryption direction of the related-key boomerang distinguisher, the related-
key differential for E1−1 is used in rounds 9− 6 with the subkey differences of ∆K′.

43

Cryptanalysis of Block Ciphers

δ
b a a

ARK−1
9−−−−→

b
SR−1

9 ,SB−1
9−−−−−−→

2−6

a

ARK−1
8 ,...,ARK−1

6−−−−−−−−−−→

a a
MC−1

6 ,...,SB−1
6−−−−−−−−→

γ
∗ ∗

∗ ∗
∗ ∗
∗ ∗

Figure 3.15: The related-key differential for E1−1

The difference δ consists of a b difference in byte 0 which is chosen such that Pr(b→
a) = 2−6 and two a differences in bytes 8 and 12 after applying the S-box appear. The
a differences vanish after ARK−1

9 , since ∆K′9 has two a differences in bytes 8 and 12
while the other bytes of ∆K′9 are zero. Only the b difference in byte 0 remains. SB−1

9
generates an a difference in byte 0 with probability 2−6. If this occurs, the intermediate
difference after SB−1

9 is equal to the subkey difference ∆K′8. Hence, all the bytes have
a zero difference after applying ARK−1

8 . Passing ARK−1
6 the state matrix has two a

differences in bytes 8, 12. We call γ the intermediate difference remaining after SB−1
6 .

This intermediate difference has eight non-zero difference in bytes 1,2, 6,7,8,11,12
and 13. The probability of the differential δ → γ in E1−1 is Pr(δ → γ) = 2−6. The
related-key differential for E1−1 is shown in Figure 3.15.

The Related-Key Differential for E0−1 (βin→ α)

As in the 7-round attack on AES-192 we need that the output difference βout of the
related-key differential for E0 is then equal to the difference βin for the related-key
differential for E0−1. If this holds the MixColumns operation of round 5 can be undone
with probability one. For a detailed description we refer to the analysis of our 7 round
attack.

To achieve that βout equals βin, the differences γ1 and γ2 have to be equal. This hap-
pens with probability 2−56 since an a difference can be one of 27− 1 values after an
inverse S-box transformation and MixColumns is a linear operation. We know from
the boomerang condition that βout⊕ γ1⊕ γ2 = βout = βin then holds whenever γ1 = γ2

and MC5 can be undone with probability one. This means that we know that a non-zero
byte difference occurs after MC−1

5 only in bytes 3, 5, 6, 9 and 12, while the other bytes
have a zero difference. SB−1

5 then transforms a non-zero difference in byte 9 into an a
difference with probability 2−7 (as this difference was produced by a difference in the

44

differential for E0). Four non-zero bytes remain after ARK−1
4 in the third column. With

probability 2−24 we get a non-zero difference in byte 13. This turns into an a difference
SB−1

4 which occurs with the probability 2−8. The further steps operate such that the
output difference of E0−1 has non-zero differences in bytes 1,2,6,7,8,11,12,13 and an
a difference in byte 9 they occur with probability one. The related-key differential for
E0−1 has the probability Pr(βin→ α) = 2−39 and is shown in Figure 3.16.

βin
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ARK−1
5 ,MC−1

5−−−−−−−−→

∗
∗ ∗
∗

∗

SR−1
5−−−→

∗
∗ ∗
∗
∗

SB−1
5−−−→

2−7

∗
a ∗
∗
∗

ARK−1
4−−−−→

∗
∗
∗
∗

MC−1
4−−−→

2−24

∗ SR−1
4 ,SB−1

4−−−−−−→
2−8

a

ARK−1
3 ,...,ARK−1

1−−−−−−−−−−→
a a MC−1

1 ,SR−1
1 ,SB−1

1−−−−−−−−−−→

∗ ∗
∗ ∗
∗ ∗
∗ ∗

ARK−1
0−−−−→

α
∗ ∗

∗ a ∗
∗ ∗
∗ ∗

Figure 3.16: The related-key differential for E0−1

The Attack

1. Choose 246 structures of 264 plaintexts Pa
i, j, i ∈ {1,2, . . . ,264}, j ∈ {1,2, . . . ,

246} where bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed. Ask for the encryption
of Pa

i, j under Ka to obtain the ciphertexts Ca
i, j, i.e., Ca

i, j = EKa(Pa
i, j).

2. Compute 246 structures of 264 plaintexts Pb
i, j = Pa

i, j⊕α, where α is a 16-
byte value of which byte 9 is a and all the other bytes are zero. Ask for the
encryption of Pb

i, j under Kb, where Kb = Ka⊕∆K∗ to obtain the ciphertexts
Cb

i, j, i.e., Cb
i, j = EKb(Pb

i, j).

3. Compute 246 structures of 264 ciphertexts Dc
i, j, i∈{1,2, . . . ,264}, j ∈{1,2, . . . ,

246} such that Dc
i, j =Ca

i, j⊕ δ , where δ is the output difference depicted in
Figure 3.15. Ask for the decryption of Dc

i, j under Kc = Ka⊕∆K̃′ to obtain
the plaintexts Oc

i, j, i.e., Oc
i, j = E−1

Kc (Dc
i, j).

4. Compute 246 structures of 264 ciphertexts Dd
i, j, i∈{1,2, . . . ,264}, j ∈{1,2, . . . ,

246} such that Dd
i, j = Cb

i, j ⊕ δ where δ is as in Step 3.1. Ask for the de-
cryption of Dd

i, j under Kd = Ka⊕∆K∗⊕∆K̃′ to obtain the plaintext Od
i, j, i.e.,

Od
i, j = E−1

Kd (Dd
i, j).

45

Cryptanalysis of Block Ciphers

5. Store only those quartets (Pa
i, j,Pb

l, j,O
c
i, j,Od

l, j) where Oc
i, j⊕Od

l, j have a zero
byte differences in bytes 0, 3, 4, 5, 10, 14, 15 and an a difference in byte
9.

6. Guess the 8-bit subkey k̄a
9 of Ka

9 in byte 0 and compute k̄b
9, k̄

c
9, k̄

d
9 , respec-

tively.

6.1. Partially decrypt each remaining quartet (Ca
i, j,Cb

l, j ,D
c
i, j,Dd

l, j) under
k̄a

9, k̄
b
9, k̄

c
9, k̄

d
9 , respectively.

6.2. Check if dk̄a
9
(Ca

i, j)⊕dk̄c
9
(Dc

i, j) and dk̄b
9
(Cb

l, j)⊕dk̄d
9
(Dd

l, j) have an a-difference

after SB−1
9 in byte 0. Record (k̄a

9) and discard all quartets which do
not satisfy the condition.

7. Guess the 32-bit subkey of bytes 2,7,8,13 of k′a0 of Ka
0 and compute k′b0 =

k′c0 = k′d0 = k′a0 (∆K∗0 and ∆K′0 are zero in these four bytes)

7.1. Partially encrypt each remaining quartet (Pa
i, j,Pb

l, j,O
c
i, j,Od

l, j) under
k′a0 ,k

′b
0 ,k

′c
0 ,k
′d
0 , respectively.

7.2. Check if ek′a0
(Pa

i, j)⊕ ek′b0
(Pb

l, j) and ek′c0
(Oc

i, j)⊕ ek′d0
(Od

l, j) have an a differ-
ence in byte 9 while the remaining bytes are zero. Record (k̄a

9,k
′a
0)

and discard all the quartets which do not satisfy the condition.

8. Guess the 32-bit subkey k∗a0 of Ka
0 in bytes 1,6,11,12 and compute k∗b0 =

k∗a0 ⊕M1, with the 32-bit value M1 = (a,0,0,0), compute k∗c0 = k∗a0 ⊕M2, with
the 32-bit value M2 = (0,0,b,a) and compute k∗d0 = k∗a0 ⊕M1⊕M2.

8.1. Partially encrypt each remaining quartet (Pa
i, j,Pb

l, j,O
c
i, j,Od

l, j) under
k∗a0 ,k∗b0 ,k∗c0 ,k∗d0 , respectively.

8.2. Check if ek∗a0
(Pa

i, j)⊕ek∗b0
(Pb

l, j) and ek∗c0
(Oc

i, j)⊕ek∗d0
(Od

l, j) have an a differ-
ence in byte 13. If there exist at least 5 boomerang quartets passing
this test, record (k̄a

9,k
′a
0 ,k

∗a
0) and all the remaining quartets and then

go to Step 9. Otherwise, repeat Step 8 with another guessed key.
If all the possible keys are tested, then repeat Step 7 with another
guessed key. If all the possible keys are tested, then repeat Step 6
with another guessed key.

9. Output the keys (k̄a
9,k
′a
0 ,k

∗a
0).

Analysis of the Attack

Using 264 plaintexts we can combine them in about
(
264)2

= 2128 quartets. To increase
the amount of data, we use 246 structures to obtain a total of 246 ·2128 = 2174 quartets.

46

The following analysis of the data and time complexity regards only one structure of
data. The data complexity of Step 1, 2, 3 and 4 is 22 · 264 = 266 adaptive chosen
plaintexts, while the time complexity is about 22 ·264 = 266 encryptions for Steps 1 to
4.

Due to the 64-bit filtering condition of Step 5 about 2128 ·2−64 = 264 of the 2128 quartets
in each structure remain after this step.

Step 6.1 takes about (1/9) · (1/16) ·28 ·22 ·264 = 266.83 nine round encryptions, since
for each of the 28 keys we have to encrypt the 264 quartets in one S-box of one round.
The number of remaining quartets after Step 6.2 is 264 · 2−12 = 252, since we have a
6-bit filtering on both pairs of a quartet. The time complexity of Step 7.1 is about
(1/9) · (4/16) · 232 · 28 · 22 · 252 = 288.83 nine round encryptions. Due to the 32-bit fil-
tering on both pairs we obtain about 252 ·2−64 = 2−12 quartets after Step 7.2. The time
complexity of Step 8.1 is negligible, while about 2−12 · 2−64 = 2−76 quartets remain
after this step for each key.

Now let us look at all structures together. About 246 ·2−76 = 2−30 quartets are counted
in Step 8.2 with a wrong key. A right quartet occurs with probability

Prc = Pr(α → βout) · (Pr(γ ← δ))2 ·Pr(βout = βin) ·Pr(α ← βin)

= 2−64 · (2−6)2 ·2−56 ·2−39 = 2−171,

since all related-key differential conditions are fulfilled, thus we expect about 23 =

2174 · 2−171 right quartets among all quartets. For the right key we expect a counter
of 23 + 2−30 ≈ 23 quartets, while for each wrong key we expect 2−30 quartets to be
counted.

Using the Poisson distribution we can compute the success rate of our attack. The
probability that the counter for each wrong key is at least 4 using Yi ∼ Poisson(µ =

2−30) is

Pr(Y ≥ 4) = e−2−30
·
(2−30)4

4!
≈ 2−124.

For all the 272− 1 wrong keys used in our analysis we expect about 272 ·2−124 = 2−52

wrong keys which have a count of at least 4 quartets. The probability that the right key
has a count of at least 4 quartets using Z ∼ Poisson(µ = 23) is

Pr(Z ≥ 4)≈ 0.95.

The data complexity is about 22 · 246 · 264 = 2112 adaptive chosen plaintexts and ci-
phertexts and the time complexity is about 246 · 288.83 ≈ 2134.8 nine round AES-192
encryptions.

47

Cryptanalysis of Block Ciphers

3.3 Related-Key Boomerang Attack on 9-Round AES-
256

In this section we propose a 9-round related-key boomerang attack on AES-256. In
addition to the previous attack, we introduce a key differential that has a probability
below one. Up to now, this is the first analysis, which used this technique on AES-256.
Table 3.3 summarizes existing attacks on AES-256 and our new attack on 9 rounds.

3.3.1 Description of AES-256

AES-256 has 14 rounds and a 256-bit key. As AES’ encryption is the same as AES-192
(beside the number of rounds), we only describe the different key schedule. As before,
let Wi be a 32-bit word and Wi, j the i-th byte in Wj, then the 256-bit key is represented
by W0||W1||W2|| . . . ||W7. The 256-bit key schedule algorithm works as follows:

• For j = 8 to 59

– If j ≡ 0 mod 8, then

• W0, j =W0, j−8⊕ SB(W1, j−1)⊕Rcon(j/8),

∗ For i = 1 to 3

• Wi, j =Wi, j−8⊕ SB(Wi+1 mod 4, j−1),

– Else if j ≡ 4 mod 8, then

∗ For i = 0 to 3 do Wi, j =Wi, j−8⊕ SB(Wi, j−1),

– Else

∗ For i = 0 to 3 do Wi, j =Wi, j−8⊕Wi, j−1,

where Rcon(·) denotes the constants being used. The whitening key is W0||W1||W2||W3,
the subkey of round 1 is W4||W5||W6||W7, the subkey of round 2 is W8||W9||W10||W11

and so on.

3.3.2 A Related-Key Boomerang Attack on 9-Round AES-256

In this section we mount a key recovery attack on 9-round AES-256 using four related
keys. We assume that we are in a weak key class where all the subkey differences
occur. It might be possible to transform our attack into a general attack by using about
212 quartets of keys. This amount of keys is necessary such that we can expect about
one key quartet, which fulfills the required subkey difference.

48

Table 3.3: Existing attacks on round reduced AES-256

Attack # Rounds # Keys Data / Time Source
Square 7 1 232CP / 2200 [104]
Collision 7 1 232CP / 2140 [69]
Partial Sums 7 1 2128− 2119CP / 2120 [49]
Partial Sums 7 1 21 ·232CP / 2172 [49]
Impossible Differential 7 1 292.5CP / 2250.5CP [127]
Impossible Differential 7 1 292CP / 2163MA [100]
Impossible Differential 7 1 2115.5CP / 2119 [157]
Impossible Differential 7 1 2113.8CP / 2118.8MA [100]
Meet-in-the-Middle 7 1 232ACPC / 2208 [43]
Partial Sums 8 1 2128− 2119CP / 2204 [49]
Meet-in-the-Middle 8 1 232ACPC / 2209 [43]
Impossible Differential 8 1 2116.5CP / 2247.5 [157]
Impossible Differential 8 1 289.1CP / 2229.7MA [100]
Impossible Differential 8 1 2111.1CP / 2227.8MA [100]
Related-Key 8 2 231RK-CP / 231 [24]
Relate Subkey 8 2 226.5RK-CC / 226.5 [24]
Meet-in-the-Middle 8 1 2113+n CP / 2196+n [48]
Partial Sums 9 256 285CP / 5 ·2224 [49]
Related-Key Rectangle 9 4 299RK-CP / 2120 [90]
Related-Key Boomerang† 9 4 2104 RK-ACPC / 2127 Sec. 3.3.2
Related-Key 9 2 238RK-CP / 239 [24]
Related Subkey 9 2 232RS-CC / 232 [24]
Related-Key Rectangle 10 256 2114.9RK-CP / 2171.8 [17]
Related-Key Rectangle‡ 10 64 2113.9 RK-CP / 2172.8 [90]
Related Subkey 10 2 249RS-CC / 248 [24]
Related Subkey 10 2 245RS-CC / 244 [24]
Related-Key Boomerang 13 4 276RK-ACPC / 276 [26]
Related-Key Rectangle 14 4 299RS-ACPC / 299 [25]

CP: Chosen Plaintexts, CP: Chosen Ciphertexts, ACPC: Adaptive Chosen Plaintexts
and Ciphertexts, mem: Memory Usage.

RK: Related-Key, RS: Related-Subkey, Time: Encryption units.

† : the attack is in a weak key class of size 2244 keys.
‡ : the attack is based on the 10-round attack of Biham et al. [17], which has some flaws. The table shows

the corrected complexity from [90].

49

Cryptanalysis of Block Ciphers

The cipher is represented as E(P) = E1(E0(P)), where E0 covers rounds 1 to 5 and
includes the whitening key addition as well as the key addition of round 5. E1 is
covering rounds 6 to 9. The notations used in our attack are defined as follows:

• Ka,Kb,Kc,Kd unknown keys each (256 bits).

• Ka
i ,Kb

i ,Kc
i ,Kd

i unknown subkeys of round i, where i∈ {0,1,2, . . . ,10} each (128
bits), (where Ka

0 ,K
b
0 ,K

c
0 ,K

d
0 represent the whitening keys).

The Structure of the Keys

In our attack the relation that is required for the attack is:

Kb = Ka⊕∆K∗

Kc = Ka⊕∆K′

Kd = Ka⊕∆K∗⊕∆K′

∆K∗ is the key difference used in the first related-key differential for E0 and ∆K′ is
the key difference used in the second related-key differential for E1. The adversary
only chooses the differences ∆K∗ and ∆K′ but does not know the keys. The chosen key
differences are:

∆K∗ =

a a

and ∆K′ =

b a

Using the key schedule algorithm of AES-256, we can use the key differences ∆K∗

and ∆K′ to derive the subkey differences ∆K∗0 , . . . ,∆K∗10 and ∆K′0, . . . ,∆K′10, respec-
tively.4 These values are shown in Figures 3.17 and 3.18, respectively. In the weak
key class the transition a→ b occurs with probability one, thus, the subkey differences
∆K∗0 , . . . ,∆K∗10 occur with probability one and the subkey differences ∆K′0, . . . ,∆K′10
occur also with probability one for (Ka,Kc) and (Kb,Kd) simultaneously.

Note that the key differential ∆K′ has a probability of 2−6 to occur, which increases the
necessary number of keys for the attack. We have to pay 2−12 in probability since we
have two key pairs where this occur.

The Related-Key Differential for E0 (α→ βout)

The difference α of the differential for E0 has a non-zero difference in bytes 0,3,4,5,9,
10,14, and 15. After SR1 all non-zero byte differences are in columns 0 and 1. With

4The key difference ∆K∗ is also used in [90].

50

∆K∗0

KS
−→

∆K∗1
a a

KS
−→

∆K∗2

KS
−→

∆K∗3
a

KS
−→

∆K∗4

KS
−→

∆K∗5
a a a a

KS
−→

∆K∗6

b′ b′ b′ b′

KS
−→

∆K∗7
a a

c c c c

KS
−→

∆K∗8

d d d d
b′ b′

KS
−→

∆K∗9
a a

e e e e
c c

KS
−→

∆K∗10

f f f f
d d
b′ b′

Figure 3.17: Subkey differences derived from ∆K∗

∆K′0
a

KS
−→

∆K′1
b

KS
−→

∆K′2
a a a

KS
−→

∆K′3
b

KS
−→

∆K′4
a a

KS
−→

∆K′5

KS
−→

∆K′6
a a

KS
−→

∆K′7

KS
−→

∆K′8
a

KS
−→

∆K′9

KS
−→

∆K′10
a a a

Figure 3.18: Subkey differences derived from ∆K′

51

Cryptanalysis of Block Ciphers

α
∗ ∗
∗ ∗
∗ ∗

∗ ∗

ARK0,SB1,SR1,MC1−−−−−−−−−−−→
2−64

a a
ARK1,...,ARK3−−−−−−−−→

a

SB4,SR4,MC4,ARK4−−−−−−−−−−−→

∗
∗
∗
∗

SB5,SR5,MC5,ARK5−−−−−−−−−−−→

βout
? ? ? ?
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Figure 3.19: The related-key differential for E0

probability 2−64 we obtain an a difference in bytes 0 and 4 after MC1. The two a
differences in bytes 0 and 4 are canceled out by the key addition ARK1. Thus, each
byte of the state matrix has a zero difference until ARK3 introduces an a difference in
byte 0, which is transformed to a non-zero difference by SB4 and to four non-zero byte
differences after MC4. The state matrix has a non-zero differences in bytes 0, 1, 2, and
3. We denote the difference which occurs after ARK5 by βout, where all the bytes have
non-zero difference. The differential for E0 has a probability of 2−64 to occur, and is
shown in Figure 3.19.

The Related-Key Differential for E1−1 (δ → γ)

From the bottom up direction, the differential for E1−1 is used with the subkey differ-
ences of ∆K′. The difference δ consists of a b difference in byte 4. The difference b
is chosen such that Pr(b→ a) = 2−6 holds (note that this holds for the inverse S-box),
using the inverse S-box. In this case SB−1

9 generates an a difference with probability
2−6 This happens in byte 4. If this occurs the difference of the intermediate encryption
values after SB−1

9 is equal to the subkey difference ∆K′8. Hence, all bytes have a zero
difference after applying ARK−1

8 . Passing ARK−1
6 the state matrix has two a differ-

ences in bytes 4 and 8. We denote the difference of the intermediate encryption values
remaining after SB−1

6 by γ . This text difference has eight non-zero difference in bytes
2,3,4,7,8,9,13 and 14. The probability of the differential for E1−1 is Pr(δ → γ) = 2−6.
The related-key differential for E1−1 is shown in Figure 3.20.

The Related-Key Differential for E0−1 (βin→ α)

For the following steps we need that the output difference βout of the related-key dif-
ferential for E0 is equal to the difference βin for the related-key differential for E0−1.

52

δ
b

ARK−1
9−−−−→

b
SR−1

9 ,SB−1
9−−−−−−→

2−6

a

ARK−1
8 ,...,ARK−1

6−−−−−−−−−−→

a a
MC−1

6 ,...,SB−1
6−−−−−−−−→

γ
∗ ∗
∗ ∗

∗ ∗
∗ ∗

Figure 3.20: The related-key differential for E1−1

As in our attack on AES-192 we know that

βout⊕ γ1⊕ γ2 = βin

holds. If γ1 and γ2 are equal in all bytes, we simply write γ and obtain :

βout⊕ γ⊕ γ = βout = βin. (3.6)

Using the differentials above, the differences γ1 and γ2 are equal with probability 2−56.
This leaves βout equal to βin. If this occurs, we know that MC5 can be undone with prob-
ability one. This means that we know that a non-zero byte difference occurs after MC−1

5
in bytes 0,7,10 and 13, while the other bytes are zero. Four non-zero bytes remain after
ARK−1

4 in column 0. With probability 2−24 MC−1
4 generates a non-zero difference in

byte 0 while the remaining byte differences are zero. After the next S-box operation
we have an a difference with probability 2−8. The following steps operate such that
the output difference of E0−1 has non-zero differences in bytes 1,2,6,7,8,11,12 and
13. The differential for E0−1 has the probability Pr(βin→ α) = 2−32 and is shown in
Figure 3.21.

The Attack

1. Choose 238 structures S j, j∈{1,2, . . . ,238} of 264 plaintexts Pa
i, j, i∈{1,2, . . . ,

264} each where the bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed and the other
bytes have all possible values. Ask for the encryption of Pa

i, j under Ka to
obtain the ciphertexts Ca

i, j, i.e., Ca
i, j = EKa(Pa

i, j).

2. Compute 238 structures S′j, j ∈ {1,2, . . . ,238} of 264 plaintexts Pb
i, j = Pa

i, j
each. Ask for the encryption of Pb

i, j under Kb, where Kb = Ka⊕∆K∗ to
obtain the ciphertexts Cb

i, j, i.e., Cb
i, j = EKb(Pb

i, j).

3. Compute 238 structures S∗j , j ∈ {1,2, . . . ,238} of 264 ciphertexts Dc
i, j, such

that Dc
i, j = Ca

i, j ⊕ δ each, where δ is a fixed 128-bit value of which byte

53

Cryptanalysis of Block Ciphers

βin
? ? ? ?
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ARK−1
5 ,MC−1

5−−−−−−−−→

∗
∗

∗
∗

SR−1
5 ,SB−1

5−−−−−−→

∗
∗
∗
∗

ARK−1
4 ,MC−1

4−−−−−−−−→
2−24

∗
SR−1

4 ,SB−1
4−−−−−−→

2−8

a

ARK−1
3 ,...,ARK−1

1−−−−−−−−−−→

a a
MC−1

1 ,SR−1
1 ,SB−1

1 ,ARK−1
0−−−−−−−−−−−−−−→

α
∗ ∗

∗ ∗
∗ ∗
∗ ∗

Figure 3.21: The related-key differential for E0−1

4 has a known value b while the remaining bytes are zero. Ask for the
decryption of Dc

i, j under Kc = Ka⊕∆K̃′ to obtain the plaintexts Oc
i, j, i.e.,

Oc
i, j = E−1

Kc (Dc
i, j).

4. Compute 238 structures S′∗j , j ∈ {1,2, . . . ,238} of 264 ciphertexts Dd
i, j, such

that Dd
i, j = Cb

i, j ⊕ δ each where δ is as in Step 3. Ask for the decryption
of Dd

i, j under Kd = Ka⊕∆K∗⊕∆K̃′ to obtain the plaintexts Od
i, j, i.e., Od

i, j =

E−1
Kd (Dd

i, j).

5. Store only those quartets (Pa
i, j,Pb

l, j,O
c
i, j,Od

l, j) where Oc
i, j ⊕Od

l, j have zero
differences in bytes 0, 3, 4, 5, 9, 10, 14, and 15.

6. Guess the 8-bit subkey k̄a9 of Ka
9 , i.e., byte 4, and compute k̄b9, k̄c9, k̄d9,

respectively.

6.1. Partially decrypt each quartet (Ca
i, j ,Cb

l, j,D
c
i, j ,Dd

l, j) remaining after Step
5 under k̄a9, k̄b9, k̄c9, k̄d9, respectively.

6.2. Check if dk̄a9
(Ca

i, j)⊕ dk̄c9
(Dc

i, j) and dk̄b9
(Cb

l, j)⊕ dk̄d9
(Dd

l, j) have an a dif-
ference after SB−1

9 in byte 4. Record (k̄a9) and discard all the quartets
which do not satisfy this condition.

7. Guess the 32-bit subkey ka′
0 of Ka

0 in the positions of bytes 0,5,10,15 and
compute kb′

0 = kc′
0 = kd′

0 = ka′
0 (∆K∗0 and ∆K′0 are zero in these four bytes).

7.1. Partially encrypt each quartet (Pa
i, j,Pb

l, j,O
c
i, j,Od

l, j) remaining after Step
6.2 under ka′

0 ,k
b′
0 ,k

c′
0 ,k

d′
0 , respectively.

54

7.2. Check if eka′
0
(Pa

i, j)⊕ ekb′
0
(Pb

l, j) and ekc′
0
(Oc

i, j)⊕ ekd′
0
(Od

l, j) have an a differ-

ence in byte 0 after MC1. Record (k̄a9,ka′
0) and discard all the quartets

which do not satisfy this condition.

8. Guess the 32-bit subkey ka∗
0 of Ka

0 in the positions of bytes 3,4,9,14 and
compute kb∗

0 = ka∗
0 , compute kc∗

0 = ka∗
0 ⊕M1, with the 32-bit value M1 =

(a,0,0,0) and compute kd∗
0 = kb∗

0 ⊕M1.

8.1. Partially encrypt each quartet (Pa
i, j,Pb

l, j,O
c
i, j,Od

l, j) remaining after Step
7.2 under ka∗

0 ,kb∗
0 ,kc∗

0 ,kd∗
0 , respectively.

8.2. Check if eka∗
0
(Pa

i, j)⊕ ekb∗
0
(Pb

l, j) and ekc∗
0
(Oc

i, j)⊕ ekd∗
0
(Od

l, j) have an a dif-
ference in byte 4 after MC1. If there are at least 2 quartets passing
this test, record (k̄a9,ka′

0 ,k
a∗
0) and all the remaining quartets and then

go to Step 9. Otherwise, repeat Step 8 with another guessed key.
If all the possible keys are tested, then repeat Step 7 with another
guessed key. If all the possible keys are tested, then repeat Step 6
with another guessed key.

9. Output the subkeys (k̄a9,ka′
0 ,k

a∗
0).

Analysis of the Attack

The amount of 264 plaintexts can be combined in about
(
264)2

= 2128 quartets. We use
238 structures of 264 plaintexts to increase the amount of quartets to 2128+38 = 2166.
We note that each structure can be analyzed separately. In the following we discuss the
complexities for one structure.

The data complexity of Steps 1, 2, 3 and 4 is 22 ·264 = 266 chosen plaintexts, while the
time complexity is about 22 ·264 = 266 encryptions for Steps 1 to 4. The memory com-
plexity of Step 5 is 23 ·264 = 267 plaintexts. Since we have a 64-bit filtering condition
in Step 5 about 2128 · 2−64 = 264 wrong quartets remain after this step. Step 6.1 takes
about

(1/9) · (1/16) ·28 ·22 ·264 = 266.83

nine round encryptions. The number of remaining wrong quartets after Step 6.2 are
264 · 2−12 = 252, since we have a 6-bit filtering on both pairs of a quartet. The time
complexity of Step 7.1 is about

(1/9) · (4/16) ·232 ·28 ·22 ·252 = 288.83

nine round encryptions. Due to the 32-bit filtering on both pairs we obtain about
252 · 2−64 = 2−12 wrong quartets after Step 7.2. The time complexity of Step 8.1 is
negligible, while about 2−12 ·2−64 = 2−76 quartets remain after this step.

55

Cryptanalysis of Block Ciphers

Now we regard all the structures together. We obtain about 238 · 2−76 = 2−38 wrong
quartets for all structures. A right quartet occurs with probability

Prc = Pr(α → βout) · (Pr(γ ← δ))2 ·Pr(βout = βin) ·Pr(α ← βin)

= 2−64 · (2−6)2 ·2−56 ·2−32 = 2−164,

since all related-key differential conditions are fulfilled. Thus, we expect to obtain
about 2166 ·2−164 = 22 right quartets after Step 5 in total.

For the right key we count about 22 +2−38 quartets and for some wrong key we expect
a count of about 2−38 quartets.

Using the Poisson distribution we can compute the success rate of our attack. The
probability that the counter for each wrong key is at least 2 assuming Yi ∼ Poisson(µ =

2−38) is

Pr(Y ≥ 2) = e−2−38
·
(2−38)2

2!
≈ 2−77.

For all the 272− 1 wrong keys used in our analysis we expect about 272 · 2−77 = 2−5

wrong keys which have a count of at least 2 quartets. The probability that the right key
has a count of at least 2 quartets using Z ∼ Poisson(µ = 22) is

Pr(Z ≥ 2)≈ 0.91.

The memory complexity is about 267 = 23 ·264 plaintexts and ciphertexts and the time
complexity is about 2126.83 = 238 ·288.83 9-round AES-256 encryptions. The data com-
plexity is 238 ·264 ·22 = 2104 adaptive chosen plaintexts and ciphertexts.

56

Chapter 4

Cryptanalysis of Block Ciphers
inside Hash Functions

Block ciphers are well studied primitives which are often used as building blocks for
hash functions as the base of their compression function. They are often used in modes
of operations like Davies-Meyer [152], Matyas-Meyer-Oseas, or Miyaguchi-Preneel
[111].

In this chapter we present attacks on block ciphers which are used as such building
blocks. We propose an attack on a round reduced version of SHACAL-2 and an attack
which breaks the entire internal block ciphers of Tiger as well as another one which
breaks the HAS-160 in encryption mode. It is quite unknown if a weak internal block
cipher leads also to a weak hash function, but nevertheless it shows the existance of
flaws in some special attack scenarios.

4.1 A Related-Key Boomerang Attack on SHACAL-2

SHACAL-2 [75] is a 256-bit block cipher which is based on the compression function
of the hash function standard SHA-256 [120].

SHACAL-2 has 64 rounds and supports key lengths from 128 up to 512 bits. The
first cryptanalytic result on SHACAL-2 was an impossible differential attack [77] on
a 30-round reduced version of SHACAL-2. A differential-nonlinear attack [140] and
a square-nonlinear attack [140] were introduced which can attack up to 32 and 28
rounds, respectively. Introducing related keys leads to an improved attack of up to 37
rounds which was called the related-key differential-nonlinear attack [92]. The best
cryptanalytic results on SHACAL-2 are the related-key rectangle attacks on 42 rounds

57

Cryptanalysis of Block Ciphers inside Hash Functions

Table 4.1: Comparison of attacks on SHACAL-2

Attack # Rounds # Keys Data Time Memory Source

Square-Nonlinear 28 1 463 ·232 CP 2494.1 245.9 [140]
Impossible Differential 30 1 744 CP 2495.1 214.5 [77]
Differential-Nonlinear 32 1 243.4 CP 2504.2 248.4 [140]
RK Boomerang 34 2 2225 RK-ACPC 2225 210 Sec. 4.1.2
RK Differential-Nonlinear 35 2 242.32 RK-CP 2452.10 247.32 [92]
RK Rectangle 37 2 2235.16 RK-CP 2486.95 2240.16 [92]
RK Rectangle 40 2 2243.38 RK-CP 2448.43 2247.38 [102]
RK Rectangle 42 2 2243.38 RK-CP 2488.37 2247.38 [102]
RK Rectangle† 43 2 2240.38 RK-CP 2480.4 2245.38 [146]
RK Rectangle 44 2 2233 RK-CP 2497.2 2238 [101]

RK: Related-Key, CP: Chosen Plaintexts, ACPC: Adaptive Chosen Plaintexts and
Ciphertexts, Memory in bytes

† : The attack has a flaw pointed out in [101]. The table shows the corrected values.

by Lu et al. [102], a 43-round attack by Wang [146] and a 44-round attack by Lu et al.
[101]. The disadvantage of these attacks is the huge memory requirements, which we
address in this thesis. We present the first attack on SHACAL-2 which can break up to
34 rounds using two related keys with very little memory. Table 4.1 summarizes the
results known from the literature and our results on SHACAL-2.

4.1.1 Description of SHACAL-2

For keys smaller than 512 bits, zeros are padded until the key length reaches 512 bits.
A 256-bit plaintext is divided into eight 32-bit words:

P0 = A0||B0||C0||D0||E0||F0||G0||H0

The corresponding ciphertext P64 is denoted by

P64 = A64||B64||C64||D64||E64||F64||G64||H64.

Round i can be described as follows:

T 1
i+1 = Ki ⊞Σ1(Ei)⊞Ch(Ei,Fi,Gi)⊞Hi⊞Wi,

T 2
i+1 = Σ0(Ai)⊞Ma j(Ai,Bi,Ci),

Hi+1 = Gi,

Gi+1 = Fi,

Fi+1 = Ei,

58

Ei+1 = Di ⊞T 1
i+1,

Di+1 = Ci,

Ci+1 = Bi,

Bi+1 = Ai,

Ai+1 = T 1
i+1 ⊞T 2

i+1,

where Ki is the i-th subkey and Wi is the i-th round constant. The four functions in the
encryption algorithm are defined as follows:

Ch(X ,Y,Z) = (X ∧Y)⊕ (¬X ∧Z),

Ma j(X ,Y,Z) = (X ∧Y)⊕ (X ∧Z)⊕ (Y ∧Z),

Σ0(X) = (X≫2)⊕ (X≫13)⊕ (X≫22),

Σ1(X) = (X≫6)⊕ (X≫11)⊕ (X≫25).

We do not describe the constants here since they are not relevant for our analysis.
Figure 4.1 shows the round function of SHACAL-2.

PSfrag replacements

Ai Bi Ci Di Ei Fi Gi Hi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

Ki

Wi

Ch
Σ1

Σ2

Ma j

Figure 4.1: The round function of SHACAL-2

The key schedule algorithm of SHACAL-2 takes as an input a 512-bit key. As stated
above, as many zeros as necessary are padded to obtain a full 512-bit key. The 512-bit
key K is then divided into sixteen 32-bit words K0,K1, . . . ,K15. These are the subkeys
for the first 16 rounds. The i-th subkey (16≤ i≤ 63) is computed as

Ki = σ1(Ki−2)+Ki−7 +σ0(Ki−15)+Ki−16,

where

σ0(X) = (X≫7)⊕ (X≫18)⊕ (X≫3),

σ1(X) = (X≫17)⊕ (X≫19)⊕ (X≫10).

59

Cryptanalysis of Block Ciphers inside Hash Functions

In the following we present some basic properties of the Ch(·) and Ma j(·) functions
which are needed in our attack.

Proposition 1 (from [146]) The nonlinear function Ch(X ,Y,Z) = (X ∧Y)⊕ (¬X ∧Z),
possesses the following properties:

1. Ch(x,y,z) =Ch(¬x,y,z) if and only if y = z.

Ch(0,y,z) = 0 and Ch(1,y,z) = 1 if and only if y = 1 and z = 0.

Ch(0,y,z) = 1 and CH(1,y,z) = 0 if and only if y = 0 and z = 1.

2. Ch(x,y,z) =Ch(x,¬y,z) if and only if x = 0.

Ch(x,0,z) = 0 and Ch(x,1,z) = 1 if and only if x = 1.

3. Ch(x,y,z) =Ch(x,y,¬z) if and only if x = 1.

Ch(x,y,0) = 0 and Ch(x,y,1) = 1 if and only if x = 0.

Proposition 2 (from [146]) The nonlinear function
Ma j(X ,Y,Z) = (X ∧Y)⊕ (X ∧Z)⊕ (Y ∧Z), possesses the following properties:

1. Ma j(x,y,z) = Ma j(¬x,y,z) if and only if y = z.

Ma j(0,y,z) = 0 and Ma j(1,y,z) = 1 if and only if y = ¬z.

2. Ma j(x,y,z) = Ma j(x,¬y,z) if and only if x = z.

Ma j(x,0,z) = 0 and Ma j(x,1,z) = 1 if and only if x = ¬z.

3. Ma j(x,y,z) = Ma j(x,y,¬z) if and only if x = y.

Ma j(x,y,0) = 0 and Ma j(x,y,1) = 1 if and only if x = ¬y.

4.1.2 Memoryless Related-Key Boomerang Attack on 34-Round
SHACAL-2

In this section we propose a 34-round almost memoryless related-key boomerang at-
tack on SHACAL-2 using two related keys. The cipher E is treated as a cascade of two
subciphers E(P) = E1(E0(P)), E0 is a subcipher containing rounds 1 to 25 while the
subcipher E1 covers rounds 25 to 34. Our related-key differentials are based on the
differentials used in [146]. We use these differentials to build a 34-round related-key
boomerang distinguisher, which can be used in a memoryless attack to break 34 rounds
of SHACAL-2. The main advantage of our attack is that we do not need to store all

60

Table 4.2: The fixed plaintext bits for our attack on SHACAL-2

A1
0,i B1

0,i E1
0,i F1

0,i

a1
31 = b1

31, a1
k = c1

k b1
k = ¬ f 1

k (k = 19,30) e1
31 = 0, e1

k = 0 f 1
k = g1

k
(k = 6,9,18,20,25,29) b1

9 = e1
9 (k = 18,29) (k = 9,13,19)

a1
k , b1

k , c1
k , e1

k , f 1
k , g1

k are the k-th bits of A1
0,i,B1

0,i,C1
0,i,E1

0,i,F1
0,i,G1

0,i

the quartets as in the related-key rectangle attack of [92, 101, 102, 146]. Thus, we only
require a very small amount of memory to successfully mount our attack.

The notations used in the attack are as follows:

• K,K∗ keys (512-bit).

• Ki,K∗i subkeys of round i, where i ∈ {0,1,2, . . . ,38} (32-bit).

• ∆K is the key difference, ∆K = (e31,0,0,0,0,0,0,0,0,e31,0,0,0, 0,0,0).

• ∆Ki is the i-th subkey difference derived from ∆K.

In the following we describe the related-key differentials used in our attack.

The Related-Key Differential for E0 and for E0−1

The related-key differential for E0 covers rounds 1 to 25, and is

(e6,9,18,20,25,29,e31,0,0,e6,20,25,e31,0,0)→ (0,0,eM,e31,0,e9,13,19,e18,29,e31).

The key schedule of SHACAL-2 has a low difference propagation in the first several
rounds. Thus, if two keys K and K∗ are different in only two words in the first 16
rounds, namely ∆K0 = e31 and ∆K9 = e31, we can introduce a zero subkey difference
from round 10 to 23 as shown in Table 4.2. Wang [146] improves the 25-round dif-
ferential characteristic introduced by Lu et al. [102] such that one does not have to
guess the first subkeys K0 and K∗0 . This can be done by using Proposition 1 and Propo-
sition 2 and fixing 16-bit conditions in the plaintexts to obtain a probability of 1 for
the first round of the related-key differential. The bit conditions are presented in Table
4.2. The related-key differential for E0 is shown in Table 4.3. Since we do not deal
with truncated differentials, the probability for a differential remains the same if it runs
in backward direction. Thus, Pr(α → β) = 2−47 holds for the related-key differential
for E0. As explained in [102], many possible differences ∆K24 are caused due to the
addition modulo 232 operations in the key schedule. The addition of the round keys in
round 24 are taken with the output of round 23. Due to the zero difference in the output

61

Cryptanalysis of Block Ciphers inside Hash Functions

Table 4.3: The Related-Key Differential for E0

i ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆Fi ∆Gi ∆Hi ∆Ki Prob.
0 0 eM e31 0 e9,13,19 e18,29 e31 ∆H e31 1
1 0 0 eM e31 0 e9,13,19 e18,29 0 0 2−11

2 e31 0 0 eM 0 0 e9,13,19 e18,29 0 2−10

3 0 e31 0 0 e6,20,29 0 0 e9,13,19 0 2−7

4 0 0 e31 0 0 e6,20,25 0 0 0 2−4

5 0 0 0 e31 0 0 e6,20,25 0 0 2−3

6 0 0 0 0 e31 0 0 e6,20,25 0 2−4

7 0 0 0 0 0 e31 0 0 0 2−1

8 0 0 0 0 0 0 e31 0 0 2−1

9 0 0 0 0 0 0 0 e31 e31 1
10 0 0 0 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

23 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 · 2−6

25 e13,24,28 0 0 0 e13,24,28 0 0 0 · ·

M = {6,9,18,20,25,29}, Σ1(E0⊕ e9,13,19)−Σ1(E0)+∆H = 0

of round 23, we can count over the possibilities for all the additions together when we
compute the probability for E0. The subkey differences ∆K24 and ∆K25 are marked
with ·, since we do not know the exact values.

The related-key differential for E0−1 is very similar to the related-key differential for
E0 presented in Table 4.3. It starts from the bottom of the table (round 25) and goes
up to the top (round 1). Since we cannot fix some bits before the first round, the prob-
ability going from round two to one in backward direction is less than one. Thus, the
probability in the backward direction decreases by 2−18. This gives a total probability
of Pr(α ← β) = 2−47 ·2−18 = 265.

The Differential for E1−1

Our differential for E1−1 covers rounds 34 to 25, which can be written as

(e31,0,0,0,e31,0,0,0)→ (e31,e31,eM′ ,0,0,e9,13,19,e18,29,31,0).

Note that this differential does not uses related keys. The differential for E1−1 occurs
with probability Pr(γ ← δ) = 2−54 and can be found in Table 4.4. We emphasize that
it does not use any key differences.

62

Table 4.4: The Differential for E1−1

i ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆Fi ∆Gi ∆Hi Prob.
34 e31 0 0 0 e31 0 0 0 1
33 0 0 0 0 0 0 0 e31 2−1

32 0 0 0 0 0 0 e31 e31 1
31 0 0 0 0 0 e31 e31 e31 2−4

30 0 0 0 0 e31 e31 e31 e6,20,25 2−7

29 0 0 0 e31 e31 e31 e6,20,25 0 2−8

28 0 0 e31 e31 e31 e6,20,25 0 0 2−7

27 0 e31 e31 e31 e6,20,25 0 0 e9,13,19 2−12

26 e31 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 2−15

25 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 0 –
M′ = {6,9,18,20,25,29,31}

The Attack

The attack works as follows:

• For i = 1,2, . . . ,2223 do

1. Choose a plaintext Pa
0,i and a difference ∆Hi satisfying the conditions

presented in Table 4.2, where Σ1(E0⊕ e9,13,19)−Σ1(E0)+∆H0 = 0 is
satisfied. Ask for the encryption of Pa

0,i under K to obtain the plaintext
Pa

35,i.

2. Use the previously chosen Pa
0,i and the difference

αi =(0,eM,e31,0,e9,13,19,e18,29,e31,∆Hi), M = {6,9,18,20,25,29}, to com-
pute Pb

0,i = Pa
0,i⊕αi. Ask for the encryption of Pb

0,i under K∗ to obtain
Pb

35,i.

3. Compute the ciphertexts Pc
35,i = Pa

35,i⊕ δ , where
δ = (e6,9,18,20,25,29,e31,0,0,e6,20,25,e31,0,0). Ask for the decryption of
Pc

35,i under K to obtain Pc
0,i.

4. Compute the ciphertexts Pd
35,i = Pb

35,i⊕ δ . Ask for the decryption of
Pd

35,i under K∗ to obtain Pd
0,i.

5. Check if Pc
0,i⊕Pd

0,i = αi. Discard all quartets (Pa
0,i,P

b
0,i,P

c
0,i,P

d
0,i) which

do not satisfy this condition and store the remaining in φ .

• For all 32-bit candidate subkeys K0 do

6. Set a counter to zero.

• For all quartets (Pa
0,i,P

b
0,i,P

c
0,i,P

d
0,i) in φ

7. Encrypt Pc
0,i,P

d
0,i one round under K∗0 = K0⊕ e31, respectively.

63

Cryptanalysis of Block Ciphers inside Hash Functions

8. Check if Pc
1,i⊕Pd

1,i = τ, where τ = (0,0,eM,e31,0, e9,13,19, e18,29,0).
If so, increase the counter for the used subkey by one.

9. Take the guess of K0 with the highest counter as the correct
subkey pair.

10. Output the subkeys K0 and K∗0 = K0⊕ e31.

Analysis of the Attack

A right quartet occurs with probability

Prc = Pr(α → β) · (Pr(γ← δ))2 ·Pr(α ← β)

= 2−47 · (2−54)2 ·2−65 = 2−220,

when all related-key differential conditions are fulfilled. We expect to obtain about
2223 · 2−220 = 23 right quartets and about 2223 · 2−256 = 2−33 wrong quartets stored in
φ . Note that a random difference is equal to αi with probability 2−256. We need to
store only 23 quartets, since each quartet can be computed independently of the others,
and discarded if needed. This is equivalent to 22 · 23 = 25 plaintexts which are about
210 bytes of memory.

The data and time complexity of Steps 1 to 4 is about 22 ·2223 = 2225 adaptive chosen
plaintexts and ciphertexts. Since we expect to have about 23 + 2−33 ≈ 23 quartets
stored in φ . The time and data complexity of Steps 6 to 10 is negligible compared to
the previous steps.

We expect to have about 23 + 2−33 ≈ 23 quartets counted for the right key in Step 8.
For each wrong key we expect to have about 2−33 quartets.

Using the Poisson distribution we can compute the success rate of our attack. The
probability that the counter of a wrong key is at least 2 using Yi ∼ Poisson(µ = 2−33)

is

Pr(Y ≥ 3) = e−2−33
·
(2−33)3

3!
≈ 2−101.

For all the 232− 1 wrong keys used in our analysis we expect about 232 ·2−101 = 2−69

wrong keys which have a count of at least 2 quartets. The probability that the right key
has a count of at least 2 quartets using Z ∼ Poisson(µ = 23) is

Pr(Z ≥ 3)≈ 0.95.

We can increase the success probability of our attack by increasing the initial number of
quartets, which will also increase the data, time and memory complexity of our attack.
The data and time complexity of our attack is determined by Steps 1 to 4 which is
about 2244 adaptive chosen plaintexts and ciphertexts. This attack needs only 210 bytes
of memory.

64

4.2 A Related-Key Boomerang Attack on Tiger Block
Cipher

Tiger [1] is a 192-bit MERKLE-DAMGÅRD [41, 113] hash function, which operates on
512-bit message blocks.

Table 4.5 summarizes the results known from the literature on the Tiger hash func-
tion. The best cryptanalytic result on the Tiger block cipher is a 22-round related-key

Table 4.5: Comparison of attacks on Tiger

Attack # Rounds Time Source

Collision 17 249 [87]
Collision 19 262 [106]
Near-Collision 20 249 [87]
Pseudo-Near-Collision 22 244 [106]
Pseudo-Near-Collision 24 247 [110]
Pseudo-Collision 24 247 [110]
2nd-Pre-Image 12 263.5 [79]
2nd-Pre-Image 16 2161 [80]
2nd-Pre-Image 23 2187.5 [148]
Pre-Image 12 264.5 [79]
Pre-Image 13 2128.5 [79]
Pre-Image 16 2161 [80]
Pre-Image 23 1.4× 2189 [148]
Pre-Image 24 2184.3 [73]

boomerang and rectangle attack [45]. See Table 4.6 for a comparison of both attacks
and our new attack on full round Tiger block cipher. We present the first attack that
can break the full 24-round Tiger block cipher, using a related-key boomerang attack
which has a data complexity of 2161 adaptive chosen plaintexts and ciphertexts. The
time complexity is about 2161 24-round Tiger encryptions.

Table 4.6: Comparison of attacks on Tiger Block Cipher

Attack # Rounds Data Time Source

Related-Key Rectangle 22 297 2154.3 [45]
Related-Key Boomerang 22 216 214.25 [45]
Related-Key Boomerang 24 2161 2161 Sec. 4.2.2

65

Cryptanalysis of Block Ciphers inside Hash Functions

4.2.1 Description of Tiger’s Block Cipher

Tiger’s compression function is based on applying an internal “block cipher like” func-
tion, which takes a 192-bit “plaintext” and a 512-bit key to compute a 192-bit “ci-
phertext”. The “block cipher like” function is applied according to the Davies-Meyer
construction: a 512-bit message block is basically used as a key to encrypt the 192-bit
chaining value, and then the input chaining value is fed forward to make the whole
function non-invertible. In the remainder of this section, we describe Tiger in sufficient
detail to follow the course of our attack; for a more detailed description of the hash
function and its design rationale, the reader is referred to [1].

Tiger has been designed with 64-bit architectures in mind. Accordingly, in this section
we denote a 64-bit unsigned integer as a “word”. We represent a word as a hexadecimal
number.

Furthermore, it uses the bit-wise NOT function, e.g., for X = 0xEEEEAAAA66660000,
the negation X of X is X = 0x111155559999FFFF.

The Tiger Round Function

In the terminology of [138], Tiger’s block cipher is a target-heavy unbalanced Feistel
cipher. The block is broken into three words, labeled A, B, and C. A plaintext is
denoted by the triple (A−1,B−1,C−1) and a ciphertext is denoted by (A23,B23,C23),
respectively. Each round, a subkey X , derived from the key schedule below, is XORed
into C:

C := C⊕X .

Then A and B are modified:

A := A⊟ even(C),

B := B⊞ odd(C),

B := B⊠ (const),

with a round-dependentconstant (const)∈{5,7,9}. The results are then shifted around,
so that A, B, C becomes B, C, A. See Figure 4.2 for a description of the round function
of Tiger. For the definition of even and odd, consider the word C being split into eight
bytes C7,. . . , C0, with C7 as the most significant byte. The functions even and odd
employ four S-boxes T1, . . . ,T4 : {0,1}8→ {0,1}64 as follows:

even(C) := T1[C0]⊕T2[C2]⊕T3[C4]⊕T4[C6],

odd(C) := T1[C7]⊕T2[C5]⊕T3[C3]⊕T4[C1].

66

i−1

Ai CiBi

Bi−1 XiA

(const)

even
odd

Ci−1

Figure 4.2: The round function of Tiger

We refer to C0, C2, C4, and C6 as the “even bytes of C”. In our attack we also use the
odd function on differences. For example, for a difference ∆C =C⊕C′ we obtain

odd(∆C) = (T1[C7]⊕T2[C5]⊕T3[C3]⊕T4[C1])⊕ (T1[C′7]⊕T2[C′5]⊕T3[C′3]⊕T4[C′1]).

The round function spreads changes around very quickly. A one-bit difference intro-
duced into C in the first round changes about half of the bits of the block by the end of
the third round.

The Key Schedule

Tiger consists of 24 rounds. The rounds are labeled as 0,1,2, . . . ,22,23. Each round
uses one sukbey word Xi as its subkey. The first eight subkeys X0, . . . ,X7 are identical
to the 512-bit key (or rather, to the 512-bit message block). The remaining 16 subkeys
are generated by applying the key schedule function:

(X8, . . . ,X15) := KeySchedule(X0, . . . ,X7)

(X16, . . . ,X23) := KeySchedule(X8, . . . ,X15)

The key schedule modifies its input (x0, . . . ,x7) in two passes:

first pass second pass
1. x0 := x0 ⊟ (x7⊕Const1) 9. x0 := x0 ⊞ x7
2. x1 := x1⊕ x0 10. x1 := x1 ⊟ (x0⊕ (x7

≪19))
3. x2 := x2 ⊞ x1 11. x2 := x2⊕ x1
4. x3 := x3 ⊟ (x2⊕ (x1

≪19)) 12. x3 := x3 ⊞ x2
5. x4 := x4⊕ x3 13. x4 := x4 ⊟ (x3⊕ x2

≫23))
6. x5 := x5 ⊞ x4 14. x5 := x5⊕ x4
7. x6 := x6 ⊟ (x5⊕ (x4

≫23)) 15. x6 := x6 ⊞ x5
8. x7 := x7⊕ x6 16. x7 := x7 ⊟ (x6⊕Const2)

67

Cryptanalysis of Block Ciphers inside Hash Functions

The final values (x0, . . . ,x7) are used as the key schedule output. The constants written
in Heaxadecimal are Const1 = 0xA5A5 . . . A5A5 and Const2 = 0x0123 . . . CDEF.

4.2.2 A Memoryless Related-Key Boomerang Attack on the full
Tiger’s Block Cipher

In this section, we propose a 22-round related-key boomerang distinguisher, which
is used for our memoryless related-key boomerang attack on the full 24-round Tiger
block cipher. We make an extensive use of the following property in our attack.

Property 1 Switching between an additive and an XOR difference holds with some
probablitiy. e.g., if X−Y = 2i mod 264, then Pr[X⊕Y = 2i] = 2−1. We have Pr[X⊕Y =

263] = 1, i.e., switching between the additive difference I = 263 and the XOR-difference
I is for free.

A 22-Round Related-Key Boomerang Distinguisher

Let K be a key which can be written as K = x0,x1, . . . ,x7, where xi is a 64-bit word. We
use four different but related keys Ka,Kb,Kc and Kd to mount our related-key rectangle
attack on the full Tiger encryption mode. The key differences are as follows:

∆K∗ = Ka⊕Kb = Kc⊕Kd = (I, I,0,0,0, I,0,0),

∆K′ = Ka⊕Kc = Kb⊕Kd = (0,0,0, I,0,0,0, I)

Since the key schedule of Tiger offers a high degree of linearity we can determine
most of the subkey differences derived from the key differences ∆K∗ and ∆K′, respec-
tively. Using the above key schedule we can derive the subkey differences from the key
differences ∆K∗ and ∆K′. The subkey differences for E0 propagate as:1

(I, I,0,0,0, I,0,0)−→ (0,0,0,0,0, I,0, I)−→ (I,0, I,0,?,?,?,?)

The ? indicates an unknown value of a key difference. We obtain the subkey differences
for E1 as:2

(0,0,0, I,0,0,0, I)−→ (0, I,0,0,0,0,0, I)−→ (0,0,0,0,0,0,0, I)

For our attack we use an 11-round related-key differential from round 2 to 12 for E0
(α → β) using the key difference ∆K∗. The related-key differential is α → β , where

1This related keys were also used in the attack on the Tiger encryption mode from [45].
2The same key differential was used by pseudo-collision attack of Mendel and Rijmen [110].

68

α = (0,0⊟∆S, I) and β = (0,0,0), where ∆S = odd(I) is chosen to be

∆S = T1(0x00)⊕T1(0x80)

= 0x02AA B17C F7E9 0C5E⊕0x0E57 15A2 D149 AA23

= 0x0CFD A4DE 26A0 A67D.

Note that the attack also works with different values ∆S than the one we give here.
The differential for E0−1 (β → α) is the differential for E0 in the reverse direction.
The related-key differential for E0 and for E0−1 are shown in Table 4.7. Note that
the table shows in each row the differences after round i. For example, the difference
(∆A1,∆B1,∆C1) = (0,0⊟ ∆S, I) enters round 2 with the subkey difference ∆k2 = 0.
The output differences of round 2 are (∆A2,∆B2,∆C2) = (0, I,0), which happens with
probability 2−7.

Table 4.7: The Related-Key Differentials for E0 and for E0−1 in the reverse order

Round(i) ∆Ai ∆Bi ∆Ci ∆ki Prob.
1 0 0⊟∆S I – 2−7

2 0 I 0 0 1
3 I 0 0 0 1
4 0 0 I 0 1
5 0 0 0 I 1
6 0 0 0 0 1
...

...
...

...
...

...
12 0 0 0 0 –

We exploit another 11 rounds related-key differential for E1−1 (δ → γ) that covers
rounds 23 to 12 using the key difference ∆K′. The related-key differential is δ → γ ,
where δ = (0, I,0) and γ = (∆S, I,0). The related-key differential for E1−1 is shown
in Table 4.8. Note that the table shows in each row the differences before round i.

The difference (∆A23,∆B23,∆C23) = (∆S,1,0) enters round 23 with the subkey differ-
ence ∆k23 = I. The output in backward direction of this round is (∆A22,∆B22,∆C22) =

(0,0,0), which happens with probability 2−7. The resulting differences (∆A22,∆B22,

∆C22) are now the input differences of round 22. Our 22-round related-key boomerang
distinguisher holds with probability 2−28, since p = 2−7 and q = 2−7 which leads to
(p ·q)2 = 2−28.

The Attack

The attack works as follows:

1. Guess the two 64-bit subkeys ka
0,k

a
1 and compute ki

0,k
i
1, i ∈ {b,c,d} using

the known subkey differences ∆K∗ and ∆K′.

69

Cryptanalysis of Block Ciphers inside Hash Functions

Table 4.8: The Related-Key Differential for E1−1

Round(i) ∆Ai ∆Bi ∆Ci ∆ki Prob.
23 ∆S I 0 I 2−7

22 0 0 0 0 1
21 0 0 0 0 1
...

...
...

...
...

...
16 0 0 0 0 1
15 0 0 0 I 1
14 0 0 I 0 1
13 I 0 0 0 1
12 0 I 0 – –

• For i = 1,2, . . . ,231 do

2. Choose a plaintext Pa
1,i uniformly at random and compute Pb

1,i =

Pa
1,i⊕α, where α = (0,0⊟∆S, I). Decrypt Pa

1,i and Pb
1,i under ka

1,k
a
0

and kb
1,k

b
0, respectively, and obtain the plaintexts Pa

−1,i and Pb
−1,i.

Ask for the encryption of the plaintexts Pa
−1,i and Pb

−1,i under Ka

and Kb, respectively, to obtain the ciphertexts Pa
23,i and Pb

23,i.
3. Compute the ciphertexts Pc

23,i = Pa
23,i⊕ δ and Pd

23,i = Pb
23,i⊕ δ , for

δ = (∆S, I,0). Ask for the decryption of the ciphertexts Pc
23,i,P

d
23,i

under Kc and Kd , respectively, and obtain the plaintexts Pc
−1,i

and Pd
−1,i.

4. Partially encrypt Pc
−1,i,P

d
−1,i under kc

0,k
c
1 and kd

0 ,k
d
1 , respectively,

and obtain Pc
1,i and Pd

1,i. Check if Pc
1,i⊕Pd

1,i = α. If true, store the
quartet (Pa

1,i,P
b
1,i,P

c
1,i,P

d
1,i) in φ .

5. Output the candidate keys ki
0,k

i
1 (i ∈ {a,b,c,d}) with the highest counter.

Analysis of the Attack

From #Q= 231 quartets we expect about #C = 231 ·2−28 = 23 right boomerang quartets
in φ . A difference Pc

1,i⊕Pd
1,i is equal to α with probability Pr f = 2−192. Thus, we expect

#F = #Q ·Pr f = 231 ·2−192 = 2−161 wrong boomerang quartets which pass the test in
Step 4.

The data complexity for each candidate key pair ka
0,k

a
1 of Step 1 to 4 is about 22 ·231 =

233 adaptive chosen plaintext and ciphertexts. We expect to have only 23 quartets stored
in φ that satisfy the condition in Step 4, hence, we do not have to store 233 as one might
expect.

Step 1 is applied 2128 times for each of the 2128 keys. The time complexity of Step 2
is determined by two 24-round Tiger encryptions. Steps 3 and 4 have negligible time

70

complexity. Thus, the overall time complexity is bounded by 2128 ·231 ·22 = 2161.

A wrong quartet is filtered in Step 4 with probability 2−192. Thus, about 2161 ·2−192 =

2−31 wrong quartets are expected for each key candidate. Furthermore, we expect
about 23 + 2161 ·2−192 ≈ 23 quartets are encountered after this step for the right key.

Using the Poisson distribution we can compute the success rate of our attack. The
probability that the counter of a wrong key is at least 5 assuming Yi ∼ Poisson(µ =

2−31) is

Pr(Y ≥ 5) = e−2−31
·
(2−31)5

5!
≈ 2−161.

For all the 2128−1 wrong keys used in our analysis we expect about 2128 ·2−161 = 2−33

wrong keys to have at least 5 quartets. The probability that the right key has a count of
at least 5 quartets using Z ∼ Poisson(µ = 23) is

Pr(Z ≥ 5)≈ 0.9.

The data complexity of our attack is determined by Steps 1 to 4 which is 233+128 = 2161

adaptive chosen plaintexts and ciphertexts, while the time complexity is about 2161 24-
round Tiger encryptions. Each quartet can be analyzed separately and thus we only
need to store 25 plaintexts and ciphertext pairs.

4.3 A Related-Key Rectangle Attack on the HAS-160
Encryption Mode

HAS-160 is a hash function widely used by the Korean industry, following its stan-
dardization by the Korean government (TTAS.KO-12.0011/R1) [143]. Based on the
MERKLE-DAMGÅRD structure [41, 113], it uses a compression function with message
block of 512 bits and a chaining value of 160 bits. HAS-160 consists of a round func-
tion which is applied 80 times for each input message block. The overall design of
the compression function is similar to the design of SHA-1 [119] and the MD family
[132, 131], except some modifications in the rotation constants and in the key schedule.

Up until now there were only a few cryptographic results on HAS-160. Yun et al. [155]
found a collision on 45-round HAS-160 with complexity 212 by using the techniques
introduced by Wang et al. [149]. Cho et al. extended the previous result to break 53-
round HAS-160 in time 255 [33]. Mendel and Rijmen shown the attack complexity in
[33] to 235 hash computations and they were able to present a colliding message pair
for the 53-round version of HAS-160 [109]. They also shown how the attack can be
extended to 59-round HAS-160 with a complexity of 255.

71

Cryptanalysis of Block Ciphers inside Hash Functions

HAS-160 in encryption mode is resistant to most of the attacks that can be applied to
SHACAL-1, e.g., since it offers different rotation constants in each round and its key
schedule does not offer any sliding properties. Nevertheless, the linearity of the key
schedule, makes it vulnerable to related-key attacks.

In this section we analyze the internal block cipher of HAS-160 and present the first
cryptographic result on 77-round HAS-160 used as a block cipher, which we call en-
cryption mode. Using a related-key rectangle attack with four related keys we can
break 77-round HAS-160, i.e., recovering some key bits faster than exhaustive search.

4.3.1 Description of the HAS-160 Encryption Mode

Now, we briefly describe the structure of HAS-160 and how it can be used as a block
cipher. The inner block cipher operates on a 160-bit plaintext as the message block
and a 512-bit key. A 160-bit plaintext, P0, is divided into five 32-bit words, i.e., P0 =

A0||B0||C0||D0||E0. HAS-160 consists of 4 passes of 20 rounds each, and the round
function is applied 80 times in total. The corresponding ciphertext, P80, is denoted by
A80||B80||C80||D80||E80. The round function at round i (i = 1, . . . ,80) can be described
as follows:

Ai ← A≪s1,i
i−1 ⊞ fi(Bi−1,Ci−1,Di−1)⊞Ei−1 ⊞ ki ⊞ ci,

Bi ← Ai−1,

Ci ← B≪s2,i
i−1 ,

Di ← Ci−1,

Ei ← Di−1,

where ci and ki represents the i-th round constant and the i-th round subkey, respec-
tively, while fi(·) represents a boolean function. Figure 4.3 shows the round function
of HAS-160. The function fi(·) and the constants ci of round i can be found in Table
4.9. The rotation constant s1,i used in round i are given in Table 4.10.

Table 4.9: Boolean functions and constants

Pass Round (i) Boolean function (fi) Constant (ci)
1 1 – 20 (x∧ y)∨ (¬x∧ z) 0x00000000
2 21 – 40 x⊕ y⊕ z 0x5a827999
3 41 – 60 (x∨¬z)⊕ y 0x6ed9eba1
4 61 – 80 x⊕ y⊕ z 0x8f1bbcdc

The rotation constant s2,i depends on the pass, i.e., it changes when the pass is changed
but it is constant in each pass. The pass-dependent values of s2,i are:

72

Ai−1 Bi−1 Ci−1 Di−1 Ei−1

Ai Bi Ci Di Ei

≪ s1,i

≪ s2,i
f

ci

ki

Figure 4.3: The round function of HAS-160

Table 4.10: The bit rotation s1

Round (i mod 20)+ 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
s1,i 13 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5

• Pass 1: s2,i = 10

• Pass 2: s2,i = 17

• Pass 3: s2,i = 25

• Pass 4: s2,i = 30

The 80 subkeys ki, i ∈ {1,2, . . . ,80} are derived from the key K, which consists of
sixteen 32-bit words K = x0,x1, . . . ,x15. The subkeys ki are obtained from the key
schedule described in Table 4.11.

73

Cryptanalysis of Block Ciphers inside Hash Functions

Table 4.11: The key schedule

Round (i mod 20)+ 1 Pass 1 Pass 2 Pass 3 Pass 4
1 x8⊕ x9 x11⊕ x14 x4⊕ x13 x15⊕ x10

⊕x10⊕ x11 ⊕x1⊕ x4 ⊕x6⊕ x15 ⊕x5⊕ x0
2 x0 x3 x12 x4
3 x1 x6 x5 x2
4 x2 x9 x14 x13
5 x3 x12 x7 x8
6 x12⊕ x13 x7⊕ x10 x8⊕ x1 x11⊕ x6

⊕x14⊕ x15 ⊕x13⊕ x0 ⊕x10⊕ x3 ⊕x1⊕ x12
7 x4 x15 x0 x3
8 x5 x2 x9 x14
9 x6 x5 x2 x9
10 x7 x8 x11 x4
11 x0⊕ x1 x3⊕ x6 x12⊕ x5 x7⊕ x2

⊕x2⊕ x3 ⊕x9⊕ x12 ⊕x14⊕ x7 ⊕x13⊕ x8
12 x8 x11 x4 x15
13 x9 x14 x13 x10
14 x10 x14 x6 x5
15 x11 x4 x15 x0
16 x4⊕ x5 x15⊕ x2 x0⊕ x9 x3⊕ x14

⊕x6⊕ x7 ⊕x5⊕ x8 ⊕x2⊕ x11 ⊕x9⊕ x4
17 x12 x7 x8 x11
18 x13 x10 x1 x6
19 x14 x13 x10 x1
20 x15 x0 x3 x12

4.3.2 Some Properties

Property 2 (from [77]) Let Z = X ⊞Y and Z∗ = X∗⊞Y ∗ with X ,Y,X∗,Y ∗ being 32-bit
words. Then, the following properties hold:

1. If X⊕X∗ = e j and Y = Y ∗, then Z⊕Z∗ = e j, j+1,··· , j+k−1 holds with probability
2−k for (j < 31,k ≥ 1 and j+ k− 1 ≤ 30). In addition, if j = 31, Z⊕Z∗ = e31

holds with probability 1.

2. If X⊕X∗= e j and Y⊕Y ∗= e j, then Z⊕Z∗= e j+1,··· , j+k−1 holds with probability
2−k for (j < 31,k ≥ 1 and j + k− 1 ≤ 30). In addition, in the case of j = 31,
Z = Z∗ holds with probability 1.

A more general description of these properties can be derived from the following the-
orem.

Theorem 1 (from [102]) Given three 32-bit XOR differences ∆X ,∆Y and ∆Z. If the
probability Pr[(∆X ,∆Y) ⊞

→ ∆Z]> 0, then

Pr[(∆X ,∆Y) ⊞
→ ∆Z] = 2−k,

74

where the integer k is given by k = #{i|0≤ i≤ 30, not ((∆X)i = (∆Y)i = (∆Z)i)}.

Property 3 Consider the difference ∆Pi = (∆Ai,∆Bi,∆Ci,∆Di,∆Ei) of a message pair
in round i. Then we know some 32-bit differences in rounds i+1, i+2, i+3 and i+4.
The known word differences are as follows:

(∆Bi+1,∆Ci+1,∆Di+1,∆Ei+1) = (∆Ai,∆B≪s2,i+1
i ,∆Ci,∆Di),

(∆Ci+2,∆Di+2,∆Ei+2) = (∆A≪s2,i+2
i ,∆B≪s2,i+1

i ,∆Ci),

(∆Di+3,∆Ei+3) = (∆A≪s2,i+2
i ,∆B≪s2,i+1

i),

(∆Ei+4) = (∆A≪s2,i+2
i)

Property 4 Consider the differences

∆Pi = (∆Ai,∆Bi,∆Ci,∆Di,∆Ei)

and
∆Pi+1 = (∆Ai+1,∆Bi+1,∆Ci+1,∆Di+1,∆Ei+1)

of a message pair in rounds i and i+ 1, respectively. Assume that the intermediate
encryption values Pi+1 and P′i+1 = ∆Pi+1⊕Pi+1 are also known. Then

Ai+1 = A≪s1,i
i ⊞ fi(Bi,Ci,Di)⊞Ei⊞ ki+1 ⊞ ci+1,

= B≪s1,i
i+1 ⊞ fi(Bi,Ci,Di)⊞Ei⊞ ki+1 ⊞ ci+1,

= B≪s1,i
i+1 ⊞ fi(C

≫s2,i
i+1 ,Ci,Di)⊞Ei⊞ ki+1 ⊞ ci+1,

= B≪s1,i
i+1 ⊞ fi(C

≫s2,i
i+1 ,Di+1,Ei+1)⊞Ei ⊞ ki+1 ⊞ ci+1.

We can rearrange the last formula as

Ei = B≪s1,i
i+1 ⊞ fi(C

≫s2,i
i+1 ,Di+1,Ei+1)⊞Ai+1 ⊞ ki+1 ⊞ ci+1. (4.1)

Looking at the righthand side of Equation (4.1) we can see, that the only unknown
value is ki+1. For the known values Pi+1 and P′i+1 we obtain two equations

Ei = B≪s1,i
i+1 ⊞ fi(C

≫s2,i
i+1 ,Di+1,Ei+1)⊞Ai+1 ⊞ ki+1 ⊞ ci+1, and

E ′i = B
′≪s1,i
i+1 ⊞ fi(C

′≫s2,i
i+1 ,D′i+1,E

′
i+1)⊞A′i+1 ⊞ ki+1 ⊞ ci+1.

From the differential for E1 we know the value for ∆Ei = Ei⊕E ′i and thus, the relevant
bits in ki+1 and k′i+1 are determined. Let j mark the position of the most significant
active bit below bit 31 in ∆Ei which is set to one. In a scenario where we want to recover
the subkeys of round i, via decryption, we can only recover bits j, j− 1, . . . ,1,0 of the
subkeys of round i. This is due to the fact that the most significant bits 31, . . . , j+2, j+1
of the subkeys in round i do not influence the difference ∆Ei.

75

Cryptanalysis of Block Ciphers inside Hash Functions

4.3.3 Related-Key Rectangle Attack on a 77-round Compression
Function of HAS-160 in Encryption Mode

In this section, we describe a 68-round related-key rectangle distinguisher, which can
be used to mount a related-key rectangle attack on 77-round HAS-160 in encryption
mode. We can use Property 3 to partially determine whether a candidate quartet is a
right one or not. A wrong quartet can be discarded during the stepwise computation,
which reduces the complexity of the subsequent steps and also the overall complexity
of the attack.

4.3.4 A 68-Round Related-Key Rectangle Distinguisher

Let K = x0,x1, . . . ,x15, be a key where xi is a 32-bit word. Our attack uses four different,
but related keys, Ka,Kb,Kc and Kd . The key differences are as follows:

∆K∗ = Ka⊕Kb = Kc⊕Kd = (e31,0,0,0,0,0,0,0,0,0,e31,0,0,0,0,0),

∆K′ = Ka⊕Kc = Kb⊕Kd = (0,0,0,0,0,0,0,0,0,0,0,0,e31,0,e31,0).

Since the key schedule of HAS-160 is linear, we can easily determine all the 80 subkey
differences derived from the key differences ∆K∗ and ∆K′, respectively. We observe
that if we choose ∆x0 = ∆x10 and the remaining word differences as zero, i.e., ∆xi = 0,
i = 1,2, . . . ,8,9,11,12, . . . ,15, then all the subkeys of rounds 14 to 37 have a zero
difference. We use this observation for the related-key differential for E0. Moreover,
we can observe that if ∆x12 = ∆x14 and the remaining word differences in ∆K′ are all
zero, then all the subkeys of rounds 44 to 65 have a zero difference. This observation
is used in our related-key differential for E1.

Considering Property 2 and Theorem 1 we found a 36-round related-key differential
from round 3 to 39 for E0 (α → β) using the key difference ∆K∗. The related-key
differential is:

(e23,e19,23,e1,4,21,29,e1,4,21,23,29,e1,4,6,11,21,23,29)→ (e4,31,e31,0,0,0).

The related-key differential for E0 is shown in Table 4.12. Note that the following
holds: Let ∆ci be the difference of the constants used in round i. We know that ∆ci = 0
always holds. Thus, Pr[(∆ci,∆ki)

⊞
→ ∆ki] = 1 always holds due to Property 2 and since

∆ki is either zero or e31.

The probability for the differential for E0 is 2−29.

We exploit a 32-round related-key differential γ → δ for E1 that covers rounds 39 to
71 using the key difference ∆K′. The related-key differential is:

(e6,0,0,0,e19)→ (e5,6,7,14,17,18,19,28,29,30,e5,8,9,19,21,29,e5,26,27,e19,e5)

76

Table 4.12: The Related-Key Differential for E0

i ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆ki Prob.
3 e23 e19,23 e1,4,21,29 e1,4,21,23,29 e1,4,6,11,21,23,29 0 2−5

4 e11,23 e23 e1,29 e1,4,21,29 e1,4,21,23 0 2−3

5 e23 e11,23 e1 e1,29 e1,4,21,29 0 2−6

6 e21 e23 e1,21 e1 e1,29 0 2−5

7 0 e21 e1 e1,21 e1 0 2−1

8 0 0 e31 e1 e1,21 0 2−1

9 e21 0 0 e31 e1 0 2−3

10 0 e21 0 0 e31 0 2−2

11 0 0 e31 0 0 e31 2−1

12 0 0 0 e31 0 0 2−1

13 0 0 0 0 e31 0 1
14 0 0 0 0 0 e31 1
15 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
37 0 0 0 0 0 0 1
38 e31 0 0 0 0 e31 2−1

39 e4,31 e31 0 0 0 0

The 160-bit difference δ can be written as a concatenation of five 32-bit word differ-
ences

δ = (δA,δB,δC,δD,δE) = (∆A71,∆B71,∆C71,∆D71,∆E71). (4.2)

The related-key differential for E1 is shown in Table 4.13.

The probability for E1 is 2−24. Thus, the probability of our related-key rectangle dis-
tinguisher for rounds 1–71 is:

(
2−29 ·2−24)2

·2−160 = 2−266

At the same time, the correct difference δ occurs in two ciphertext pairs of a quartet
for a random cipher with probability (2−160)2 = 2−320.

4.3.5 The Attack

The attack works as follows:

1. Choose 2136 plaintexts Pa
0,i =(A0,i,B0,i,C0,i,D0,i,E0,i), i= 1,2, . . . ,2136. Com-

pute 2136 plaintexts Pb
0,i, by setting Pb

0,i = Pa
0,i⊕α, α = (e23,e19,23,e1,4,21,29,

e1,4,21,23,29,e1,4,6,11,21,23,29). Set Pc
0,i = Pa

0,i and Pd
0,i = Pb

0,i. Ask for the encryp-
tion of the plaintexts Pa

0,i,P
b
0,i,P

c
0,i,P

d
0,i under Ka,Kb,Kc, and Kd , respectively,

and obtain the ciphertexts Pa
80,i,P

b
80,i,P

c
80,i, and Pd

80,i.

77

Cryptanalysis of Block Ciphers inside Hash Functions

Table 4.13: The Related-Key Differential for E1

i ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆ki Prob.
39 e6 0 0 0 e19 – 2−1

40 0 e6 0 0 0 0 2−1

41 0 0 e31 0 0 0 1
42 0 0 0 e31 0 e31 2−1

43 0 0 0 0 e31 0 1
44 0 0 0 0 0 e31 1
45 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
65 0 0 0 0 0 0 1
66 e31 0 0 0 0 e31 2−1

67 e7 e31 0 0 0 0 2−1

68 e21 e7 e29 0 0 e31 2−3

69 e7,28,29 e21 e5 e29 0 0 2−6

70 e5,8,9,19,21,29 e7,28,29 e19 e5 e29 0 2−10

71 e5,6,7,14,17,18,19,28,29,30 e5,8,9,19,21,29 e5,26,27 e19 e5 0

2. Guess the 32-bit subkeys ka
80,k

a
79,k

a
78,k

a
77,k

a
76, and ka

75. Guess the 28 least
significant bits of ka

74 and set its most significant bits to one. Compute
kl

80,k
l
79,k

l
78,k

l
77,k

l
76,k

l
75,k

l
74, l ∈{b,c,d} using the known subkey differences.

2.1. Decrypt each of the ciphertexts Pa
80,i,P

b
80,i,P

c
80,i,P

d
80,i under kl

80,k
l
79,k

l
78,

kl
77,k

l
76,k

l
75,k

l
74, l ∈ {a,b,c,d}, respectively, and obtain the intermedi-

ate encryption values Pa
73,i,P

b
73,i,P

c
73,i and Pd

73,i.

2.2. Regarding the differential for E1 we know that the value of the 96-bit
differences δA≪30 , δB≪30 and δC. Using Properties 3 and 4 discard
all quartets (Pa

73,i,P
b
73,i,P

c
73,i,P

d
73,i) which do not satisfy the following

conditions:

Ca
73,i⊕Cc

73,i = δA≪30 =Cb
73,i⊕Cd

73,i,

Da
73,i⊕Dc

73,i = δB≪30 = Db
73,i⊕Dd

73,i,

Ea
73,i⊕Ec

73,i = δC = Eb
73,i⊕Ed

73,i

3. Guess the 4 most significant bits of ka
74 and the 20 least significant bits of

ka
73 and set its most significant bits to one. Compute kl

74,k
l
73, l ∈ {b,c,d}

using the known subkey differences.

3.1. Redecrypt each quartet (Pa
74,i,P

b
74,i,P

c
74,i,P

d
74,i) under the full subkeys

kl
74, l ∈{a,b,c,d}. Decrypt each remaining quartet (Pa

73,i,P
b
73,i,P

c
73,i,P

d
73,i)

under kl
73, l ∈ {a,b,c,d}, respectively, and obtain the intermediate

encryption values Pa
72,i,P

b
72,i,P

c
72,i and Pd

72,i.

78

3.2. Regarding the differential for E1 we know that the value of the 128-bit
differences δA, δB≪30 ,δC and δD. Using Properties 3 and 4 discard
all quartets (Pa

72,i,P
b
72,i,P

c
72,i,P

d
72,i) which do not satisfy the following

conditions:

Ba
72,i⊕Bc

72,i = δA = Bb
72,i⊕Bd

72,i,

Ca
72,i⊕Cc

72,i = δB≪30 =Cb
72,i⊕Cd

72,i,

Da
72,i⊕Dc

72,i = δC = Db
72,i⊕Dd

72,i,

Ea
72,i⊕Ec

72,i = δD = Eb
72,i⊕Ed

72,i

4. Guess the 12 most significant bits of ka
73. Guess the 6 least significant bits

of ka
72 and set its most significant bits to one. Compute kl

73,k
l
72, l ∈ {b,c,d}

using the known subkey differences.

4.1. Redecrypt each remaining quartet (Pa
73,i,P

b
73,i,P

c
73,i,P

d
73,i) under the full

subkeys kl
73, l ∈{a,b,c,d}. Decrypt each quartet (Pa

73,i,P
b
73,i,P

c
73,i,P

d
73,i)

under kl
72, l ∈ {a,b,c,d}, respectively, and obtain the intermediate

encryption values Pa
71,i,P

b
71,i,P

c
71,i and Pd

71,i.

4.2. Regarding the differential for E1 we know that the value of the 160-bit
differences δ . Discard all quartets (Pa

71,i,P
b
71,i,P

c
71,i,P

d
71,i) which do not

satisfy the following conditions:

Aa
71,i⊕Ac

71,i = δA = Ab
71,i⊕Ad

71,i,

Ba
71,i⊕Bc

71,i = δB = Bb
71,i⊕Bd

71,i,

Ca
71,i⊕Cc

71,i = δC =Cb
71,i⊕Cd

71,i,

Da
71,i⊕Dc

71,i = δD = Db
71,i⊕Dd

71,i,

Ea
71,i⊕Ec

71,i = δE = Eb
71,i⊕Ed

71,i

5. Output the keys (kl
80,k

l
79,k

l
78,k

l
77,k

l
76,k

l
75,k

l
74,k

l
73,k

l
72), l ∈ {a,b,c,d}.

4.3.6 Analysis of the Attack

There are 2136 pairs (Pa
i ,Pb

i) and 2136 pairs (Pc
i ,Pd

i) of plaintexts, thus we have (2136)2 =

2272 quartets. The expected number of right quartets that remain for the right subkeys
is about 2272 ·2−266 = 26.

The data complexity of Step 1 is 22 ·2136 = 2138 chosen plaintexts. The time complexity
of Step 1 is about 22 ·2136 = 2138 80-round encryptions.

In Step 2 the adversary guesses the subkeys of round 80 to 75 as well as 28-bits of the
subkey of round 74. The most significant bit in ∆E73 is e27. Due to Property 4 only

79

Cryptanalysis of Block Ciphers inside Hash Functions

bits 27,26, . . . ,0 of ∆k74 are relevant for the key recovery of k74 in this stage. Step
2.1 requires time about 232·6+28 · 22 · 2136 · (7/80)≈ 2354.5 80-round encryptions. The
number of remaining wrong quartets after Step 2.2 is 2272 · (2−96)2 = 280, since we
have a 96-bit filtering condition on both pairs of a quartet.

In Step 3 the adversary has to guess the 4 most significant bits of k74, as their values
affect the difference in the previous rounds. He also guesses the 20 least significant
bits of k73, since the most significant active bit in ∆E72 is e19. The time complexity of
Step 3.1 is about 220+4 ·2220 ·22 ·280 ·(1/80)≈ 2319.6 encryptions. After Step 3.2 about
280 · (2−32)2 = 216 wrong quartets remain, since we have a 32-bit filtering condition on
both pairs of a quartet.

In Step 4 the adversary has to guess the 12 most significant bits of k73, as their values
affect the difference in the previous rounds. He also guesses the 6 least significant bits
of k72, since the most significant active bit in ∆E71 is e5 following Property 4. The
time complexity of Step 4.1 is 26+12 · 224 · 2220 · 22 · 216 · (1/80) ≈ 2273.6 encryptions.
After Step 4.2 the number of remaining wrong quartets is about 216 · (2−32)2 = 2−48

for wrong each subkey guess, since we have a 32-bit filtering condition on both pairs
of a quartet.

Using the Poisson distribution we can compute the success rate of our attack. The
probability that the counter of a wrong key is at least 6 assuming Yi ∼ Poisson(µ =

2−48) is

Pr(Y ≥ 6) = e−2−48
·
(2−48)6

6!
≈ 2−297.

For all the 2262−1 wrong keys used in our analysis we expect about 2262 ·2−297 = 2−35

wrong keys which have a count of at least 6 quartets. The probability that the right key
has a count of at least 6 quartets assuming Z ∼ Poisson(µ = 26) is

Pr(Z ≥ 6)≈ 0.99.

The data complexity of our attack is 2136 ·22 = 2138 chosen plaintexts. The time com-
plexity is determined by Step 2 which is about 2320 80-round HAS-160 encryptions.

80

Chapter 5

Cryptanalysis and Design of
Hash Functions

Hash functions gained a lot of attention during the last years. Most popular hash func-
tions such as MD5 [132], SHA-0 [118] or SHA-1 [119] possess weaknesses in their
design, leading to a huge amount of attacks that were recently found [14, 15, 32, 44,
130, 149, 150, 151]. SHA-1, MD4 and MD5 where broken [150]. Thus, the interest in
hash functions increases, due to the need for new one.

This chapter addresses two main parts. The first is the introduction of a new method for
attacking cryptographic hash functions. The second is a new approach for the design
of hash functions and a specific SHA-3 candidate that follows this methodology. This
candidate was submitted and accepted for the first round of the SHA-3 competition.

5.1 Slide Attacks on a Class of Hash Functions

A natural idea for thwarting the MERKLE-DAMGÅRD limitations is to increase the
size of the internal chaining variables [103] in the iterated process and add a counter
into the compression function, see for example [97]. Using a similar patch, sponge
functions [10] followed the idea to employ a huge internal state (to hold a huge chaining
variable) and to claim a capacity c, typically c≫ n, where a capacity defines the size of
the internal state and n is the size of the hash output. This defends against adversaries
even if they can perform more than 2n/2 operations (but are still restricted to less than
2c/2 units of work).

In this section, we study the applicability of slide attacks to sponge functions. On one
hand, our results indicate that slide attacks can be a serious threat for hash functions

81

Cryptanalysis and Design of Hash Functions

fitting into the sponge framework. On the other hand, if the hash function designer
is aware of slide attacks, we believe that it is easy to defend against such attacks.
We give concrete examples by providing attacks against GRINDAHL [97] and two
slightly tweaked versions of RADIOGATÚN [8]. Our attack applies for both flavours of
Grindahl, the 256-bit version and the 512-bit version.

5.1.1 Slide Attacks

Block ciphers are often designed as a keyed permutation which is applied multiple
times. It is a common belief that increasing the number of rounds makes the ci-
pher stronger, but this is true only for statistical attacks such as differential or linear
cryptanalysis. Some attacks can be applied even for block cipher variants with an ar-
bitrary number of rounds. This is true for certain related-key attacks, and for slide
attacks. Slide attacks [27] are a special form of realted-key attacks that utilizes the
self-similarity of the cipher, typically caused by a periodic key schedule.

Slide Attacks on Block Ciphers

Slide attacks on block ciphers have been applied to several ciphers with a weak key
schedule (for example [19, 27, 28, 37, 67, 84, 125, 126]). The original slide attack [27]
works as follows. An n-bit block cipher E with r rounds is split into b identical rounds
of the same keyed permutation F i for i = {1, . . . ,b}. In the simplest case we have b = r
where the key schedule produces the same key in each round.1 Thus, we write the
cipher as E = F1 ◦F2 ◦ · · · ◦Fb = F ◦F ◦ · · · ◦F . A plaintext Pj is then encrypted as

Pj
F
→ X (1) F

→ X (2) F
→ ···

F
→ X (b−1) F

→C j

where X (i) represents the intermediate encryption value after the application of F i and
X (b) = C j is the corresponding ciphertext. To mount a slide attack one has to find a slid
pair (Pj,Pk), such that

Pk = F(Pj) and Ck = F(C j) (5.1)

hold, see also Figure 5.1 for more details.

The original slide attacks can be applied only to a small class of ciphers with weak
permutations periodic key schedules. In this context, a permutation is weak if, given
the two equations in (5.1), it is easy to extract a non negligible part of the secret key.
With 2n/2 known plaintext/ciphertext pairs (Pi,Ci) we expect about one pair satisfying
Pk = F(Pj) among these texts by the birthday paradox. This gives us a slid pair. Thus,

1Note that F i might include more than one round of the cipher. If the key schedule produces identical
keys with period p then F i includes p rounds of the original cipher.

82

Pj
F
→ X (1) F

→ X (2) F
→ X (3) F

→ ···
F
→ C j

Pk
F
→ X (1) F

→ X (2) F
→ ···

F
→ X (b−1) F

→Ck

Figure 5.1: A slid pair for a block cipher

the classical slide attack allows to recover the unknown key of an n-bit block cipher
using O(2n/2) known plaintexts and O(2n) time. In the case of Feistel ciphers the data
complexity is O(2n/4) chosen plaintexts, and slid pairs are easier to identify because of
its structure.

Advanced sliding techniques like the complementation slide and sliding with a twist
were introduced by Biryukov and Wagner [28]. These techniques allow to attack ci-
phers with a more complex key schedule. The basic concept of the complementation
slide is to slide two encryptions against each other where the inputs to the rounds may
have a difference, which is canceled out by a difference in the keys, while an encryp-
tion is slid against a decryption using a sliding with a twist technique. Biham et al. [19]
improved the slide attack to detect a large amount of slid pairs very efficiently by us-
ing the relation between the cycle structure of the entire cipher and that of the keyed
permutation. Other improvements of the slide attacks are discussed in [30, 37].

Slide Attacks on Hash Functions

Slide attacks in hash function settings have attracted very little attention in the liter-
ature. To our knowledge, there is one paper that considers an attack on the internal
block cipher of SHA-1 [135] and another paper which uses a slide attack against the
ESSENCE hash function [114]. However, this cannot be transformed into a practical
attack on the hash function so far.

The application of slide attacks to hash function is different in some sense than when
applying it on block ciphers. Block ciphers depend on a secret key, and slide attacks are
typically employed to distinguish a block cipher from a random permutation or used
for key recovery attacks.

In the hash function case, there is no secret key to recover, just a message to be hashed,
and the adversary is allowed to know this message – or even to choose it. Typical at-
tacks on hash functions are about finding collisions or preimages – and it is hard to
see how slide attacks could be employed in this context. But even for hash functions, a
slide property that can be detected with some significant probability allows us to differ-
entiate the scheme from a random oracle. Indeed, with such a property, one can show a
non random behavior of the hash function. Going further, when secret data is used as a

83

Cryptanalysis and Design of Hash Functions

part of the input of the hash function, one can try to recover some information from the
hash function. The natural primitive where hash functions handle secret data are the
Message Authentication Codes (MAC), that permit to authenticate a message M with
a symmetric secret key K. For example, constructions such as HMAC [5] are imple-
mented in a lot of different applications and make only two calls to the hash function.
HMAC has the advantage of being secure when the internal function is weakly col-
lision resistant [4] and also provides secure MACs with MERKLE-DAMGÅRD-based
hash functions [5]. Note that a HMAC-based patch is one of the new domain extension
algorithm proposed by Coron et al. [36] to thwart the simple MD-based MAC attacks.

Generally speaking, a good hash function H should provide a good MAC with the
following computations: MAC(K,M) = H(K||M) or MAC(K,M) = H(K||M||K). Just
like for block ciphers, if the hash function considered is not secure, one may be able
to recover some non negligible part of the secret key K with a slide property that can
be detected with a good probability. We also note some relevant work from Sasaki et
al. [136] that attacks prefix, suffix and hybrid approaches for MAC constructions by
using inner collisions for MD4, and a work from Preneel and Van Oorschot [128] that
studies the envelope approach instantiated with MD5.

Slide Attacks on “Extended” Sponge Constructions

We use the “extended” sponge functions, a more general framework for our attack.

The “Extended” Sponge Framework Assume that H is an iterative hash function
with an internal state of c words of p bits each and a final output size of n bits. Let
M = M1||M2|| · · · ||Ml be the m× p-bit blocks of the message to hash with Ml 6= 0m×p

(the message is padded before being split into blocks). Let Mi be the message block
hashed at each round i and X i be the internal state after processing Mi, with X0 = IV .
We then have X i = F(S(X i−1,Mi)), where F is the round function and S defines how
the message is incorporated into the internal state. Once all the l message blocks have
been processed, r blank rounds (rounds with no message input) are applied, i.e., for
i = l, . . . , l + r− 1, compute X i = F(X i−1). Let A := X l+r be the final internal state.
Finally, we derive n output bits by using the final output function T (X l+r). Such a hash
function can be written as

H(M) = X0 F(S(X0,M1))
−→ ·· ·

F(S(X l−1,Ml))
−→ X l

r times
︷ ︸︸ ︷

F(X l)
−→ ·· ·

F(X l+r−1)
−→

A
︷︸︸︷

X l+r
i

T (A)
−→ TA,

where TA represents the hash output. We note that due to efficiency reasons, given the
large internal state, F is usually a quite light and introduces little nonlinearity.

84

This framework is really general and especially more general than the original sponge
framework one. More precisely, in the original model, S introduces the message blocks
by XORing them to particular positions of the internal state. However, in our descrip-
tion, we can also consider a function S that replaces some bits of the internal state by
the message bits. We call the former XOR sponge and the latter overwrite sponge.

Moreover, in the original model, the final output function T , may continue to apply
some blank rounds and extract some bits from the internal state at the end of each
application, until n bits have been received. In our framework we can also consider the
case where the output bits come from a direct truncation of the final internal state A,
and we call it a truncated sponge.

There are two security issues related to the general design of sponge functions. One
issue is invertibility: one can run the function F in both directions. The second issue
is self-similarity: all the blank rounds behave identically, and even a normal round can
behave as a blank round if we have X i−1 = F(S(X i−1,Mi)) (the effect of adding the
message block is void). In the case of an XOR sponge we require Mi = 0 and in the
case of an overwrite sponge we require that Mi is equal to the overwritten part of the
internal state.

We exploit the self-similarity for a slide attack. The idea is that if one message M1 =

M1|| . . . ||Ml is the prefix of a message M2 =M1|| . . . ||Ml ||Ml+1, than the extended state
after processing the first l blocks is the same. If X l+1 is equal to F(X l ,Ml+1), process-
ing the next message block Ml+1 for the longer message is the same as the first blank
round when hashing the shorter message. The extended states remain identical. We
call these two messages a slid pair: the two final internal states are just one permuta-
tion away B := X l+r+1

j = F(X l+r
i). The slide attack is shown in Figure 5.2. Finding a

Figure 5.2: A slid pair
X0

i X0
j

F(S(X0
i ,M0)) ↓ ←M0→ ↓ F(S((X0

j ,M0))
...

...
F(S(X l−1

i ,Ml)) ↓ ←Ml → ↓ F(S((X l−1
j ,Ml))

X l
i X l

j
F(X l

i) ↓ Ml+1→ ↓ F(S((X l
j ,Ml+1))

... X l+1
j

F(X l+r−1
i) ↓ ↓ F(X l+1

j)

X l+r
i = A

...
T (A) ↓ ↓ F(X l+r

j)

TA X l+r+1
j = B
↓ T (B)
TB

85

Cryptanalysis and Design of Hash Functions

slid pair depends on the output function T . When T is defined as in the original sponge
framework, it is very easy to detect a slid pair: most of the output bits are equal, just
shifted by one round. If T is a truncation, we need to do a case by case analysis depend-
ing on the strength of the round function F and the number of bits thrown away. Yet
finding a slid pair already allows us to differentiate the hash function from a random
oracle, if it appears more (or less) often than a random oracle.

We can try to go further, by attacking a MAC with prefix key, i.e., MAC(K,M) =

h(K||M). Note that such a construction makes sense as using HMAC based on a sponge
hash function turns out to be very inefficient. This is due to the fact that hashing very
short messages (required in HMAC by the second hash function call) is quite slow
because of the blank rounds. Therefore, Bertoni et al. [11] propose to use prefix-MAC
instead of HMAC. We note that due to the finalization this MAC does not suffer from
length extension when sponges are used.

Consider a secret key K. For simplicity and without loss of generality, we assume that
some K is uniformly distributed (k×m× p)-bit random value (i.e., m-message words
long), for some public integer constant k. We write K = (K1, . . . ,Km) ∈ ({0,1}m×p)k

or {0,1}c×p if c < k×m. The adversary is allowed to choose message challenges Ci,
while the oracle replies with MAC(K,Ci) = H(K||Ci). Ideally, finding K in such a
scenario would require the adversary to exhaustively search over the set of all possible
K ∈ {0,1}k×m×p, thus taking 2k×m×p−1 units of time on average. Forging a valid MAC
depends on the size of the hash output and the size of the key, with a generic attack
it requires min{2k×m×p−1,2n} units of time, where n is the size of the hash output. A
pair of challenges (Ci,C j), with Ci =C1

i ||C2
i || · · · ||Cl

i and C j =Ci||Cl+s
j , s∈ {1,2, . . . ,r}

is called a slid pair for K if their final internal state are slid by one application of the
blank round function as:

X k+l+s+1
j = F(X k+l+s

i)

Provided that one can generate slid pairs and detect them, one can also try to retrieve
the internal state X k+l+s

i thanks to this information. Again, a case by case analysis is
required here. When X k+l+s

i is known, one can invert all the blank rounds and get X k+l
i .

In the following, our slid pair consists of two message where the longer message con-
tains one additional block. Note that with this information, an adversary can directly
forge valid MACs for any message that contains M as prefix (exactly like the extension
attacks against MERKLE-DAMGÅRD-based hash functions). In case the round function
with the message is invertible, we can continue to invert all the challenge rounds and
get X k

i . This allows us to recover some non trivial information on the secret key K and
to forge MACs for all messages.

A general outline of the attack is as follows:

86

1. Find and detect slid pairs of messages

2. Recover the internal state

3. Uncover some part of the secret key or forge valid MACs

The padding is very important here: for the XOR sponge functions, an appropriate
padding can avoid slide attacks. Indeed, in this case, we require Ml = 0m×p to get a
slid pair. This gives an explanation why the condition Ml 6= 0m×p is needed for the
indifferentiability proofs of XOR sponge functions. However, for the truncated sponge
function, a padding is ineffective in avoiding slide attacks.

5.1.2 Applications of Slide Attacks

The GRINDAHL Hash Function

GRINDAHL is a new hash function introduced by Knudsen et al. in [97], that fits the
extended sponge framework. More precisely, it is an overwrite sponge function. There
are two concrete instantiations of the GRINDAHL hash function family: a 256-bit and
a 512-bit hash function are proposed in the original GRINDAHL paper [97]. We give a
short description of GRINDAHL in the following. For a detailed description the reader
is refered to [97]. The parameters of these instantiations in the framework are defined
as follows. The internal state of GRINDAHL can also be viewed as a matrix. Therefore,
we define Nr and Nc to be the number of rows and columns of p-bit word, respectively:
we have Nr×Nc = c.

Grindahl-256 [97]. Grindahl-256 is a 256-bit hash function with Nr = 4 and Nc = 12.
The rotation amounts are (ρ0, . . . ,ρ3) = (1,2,4,10).

Grindahl-512 [97]. Grindahl-512 is a 512-bit hash function with Nr = 8 and Nc = 12.
The rotation amounts are (ρ0, . . . ,ρ7) = (1,2, . . . ,8).

For each instance of GRINDAHL we have p = 8. The message chunk entering at each
round can then be viewed as one column, thus m = Nr.

For GRINDAHL the padding consists of 10-padding and length-padding:

1. 10-padding appends a “1”-bit to the message, followed by as many “0”-bits as
needed to complete the last message block.

2. Length-padding then appends the number of message blocks (not bits!) for the
entire padded message as a 64-bit value.

87

Cryptanalysis and Design of Hash Functions

One effect of the 10-padding is that the last message block before the Length-padding
can be any value, except for the all-zero block. Or equivalently, any nonzero block B
can be split up into an incomplete block R plus 10-padding: B = R+P“10′′ . Note that
R is 0-bit long if B = 1000 . . .0.

A message M =M1|| . . . ||Ml of 32-bit blocks Mi in the case of GRINDAHL-256, and an
incomplete block Ml , is padded to Pad(M) = M1|| . . . ||Ml +P“10′′

1 ||Ml+1||Ml+2, where
P“10′′

1 is the 10-padding. This padded message has the following properties:

1. The last-but-two message blocks are not zero: Ml +P“10′′
1 6= 032.

2. The final two message blocks contain the 64-bit integer l: (Ml+1||Ml+2) = l.
(From the GRINDAHL sample implementation, we note that the 32 least signifi-
cant bits of the 64-bit value are stored in Ml+2, while the high-significant bits go
into Ml+1.)

Similarly for GRINDAHL-512, a message M = M1|| . . . ||Ml of 64-bit blocks Mi, where
Ml is also incomplete, is padded to Pad(M) = M1|| . . . ||Ml +P“10′′

1 ||Ml+1 has the fol-
lowing properties after padding:

1. The last-but-one message blocks are not zero: Ml +P“10′′
1 6= 064.

2. The last message block contains the 64-bit integer l: Ml+1 = l.

After the message insertion, the output is the first n/(p×Nr) columns of of the final in-
ternal state, i.e., GRINDAHL is a truncated sponge. The compression function takes one
m-word message block and an (Nr×Nc)-word internal state as its input and generates
a new internal state (again of size (Nr×Nc) words), as its output.

GRINDAHL follows a general three-step design strategy. An m-word message block,
which is written as Mi is injected into the internal state which is of size (Nr ×Nc)

words, which is written as a Nc tuple of Nr-words as (X1, . . . ,XNc) ∈ ({0,1}p×Nr)Nc .
The injection step which concatenates a message block to the internal state is straight-
forward:

S : {0,1}p×Nr×{0,1}p×Nr×Nc → {0,1}p×Nr+p×Nr×Nc ,

S(Mi,(X1, . . . ,XNc)) = (Mi,X1, . . . ,XNc).

The (p×Nr + p×Nr×Nc)-bit output of the injecting S, is the extended state labeled
by (X0, . . . ,XNc). The second step is a non linear permutation over the extended state:

F : {0,1}p×Nr+p×Nr×Nc → {0,1}p×Nr+p×Nr×Nc ,

F(X0, . . . ,XNc) = (Y 0, . . . ,Y Nc).

88

F is a permutation based on RIJNDAEL [40]:

F(X0, . . . ,XNc)

= MixColumns◦ShiftRows◦SubBytes◦AddConstant(X0, . . . ,XNc).

MixColumns. Is a linear matrix multiplication of each state column with a constant
matrix over GF(28). This transformation is defined as in the RIJNDAEL specifications
for the 256-bit version of GRINDAHL. An 8×8 MDS matrix is proposed for the 512-bit
version. We do not treat this matrix because we do not need it in our analysis.

ShiftRows. This transformation cyclically shifts each row by a few bytes. The i-th row
is rotated by ρi positions to the right. For GRINDAHL-256 the rotation constants are
(1,2,4,10), and (1,2,3,4,5,6,7,8) for GRINDAHL-512.

SubBytes. The only non-linear part of the permutation, defined as function applying
RIJNDAEL’s S-box to each and every byte.

AddConstant. This function is a simple XORing of the state matrix with a constant
matrix M of the same size, where all bytes are zero except for the last one which is set
to 01.

We refer the reader to [97] for a detailed description of GRINDAHL. The third opera-
tion, R, is as straightforward as the first one – the first p×Nr-bits of the (p×Nr + p×
Nr ×Nc)-bit extended state are truncated away, to get a new p×Nr ×Nc-bit internal
state (Y 1, . . . ,Y Nc):

R: {0,1}p×Nr+p×Nr×Nc → {0,1}p×Nr×Nc , R(Y 0, . . . ,Y Nc) = (Y 1, . . . ,Y Nc).

See Figure 5.3 for a visual illustration of this design strategy. Note that the final trunca-
tion in one iteration and the initial concatenation of the b-bit message block in the next
iteration together are simply overwriting the corresponding column of the extended
internal state.

Let α be the internal state matrix with Nc columns and Nr rows, while α̂ represents
the extended internal state with Nc + 1 columns and Nr rows. For a padded message
M = M1|| . . . ||Md the GRINDAHL hash function does for 0 < i < d:

α ← R(P(S(Mi,α)))

For the last message input Md GRINDAHL performs α̂← P(S(Md ,α)). The truncation
R is omitted after the last message input and finally 8 blank rounds with no message
input are performed. These rounds only consists of the P operation on α̂ . The n-bit
output remains after applying the output truncation T defined as:

T: {0,1}p×Nr+p×Nr×Nc → {0,1}n, T(Y 0, . . . ,Y Nc) = (Y 1, . . . ,Y n/(p×Nr)).

89

Cryptanalysis and Design of Hash Functions

Figure 5.3: The general design of the GRINDAHL compression function

Slide Attacks on GRINDAHL-512

Finding Slid Pairs Building the challenge that generates a slid pair works as follows.
We choose a message M1 =M0

1 ||M
1
1 || . . . ||M

l−1
1 ||Ml

1, where Ml
1 is a non complete block

which is padded. The MAC therefore processes

Pad(K||M1) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10”
1 ||PL

1

where P“10”
1 is the 10-padding to Ml

1 and PL
1 is the one-block of the message length.

The value of PL
1 can be chosen by the adversary while modifying the message length.

For each M1 we build the message M2 = M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10”
1 ||R, where R

is a random incomplete block. The MAC then computes

Pad(K||M2) = K||M0
1 ||M

1
1 || . . . ||Ml−1

1 ||Ml
1 +P“10”

1 ||R+P“10”
2 ||PL

2

and in some cases we have

Pad(K||M2) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10”
1 ||PL

1 ||P
L
2 .

The messages M1 and M2 only differ in one additional block at the end. Such a pair
(M1,M2) is a slid pair with probability 2−64, which is the probability that a random
input message block is of the correct form.

Detecting a slid pair is quite simple. Let TA = A0, . . . ,A7 and TB = B0, . . . ,B7 be the
queries’ output (the truncated final internal states A and B). Then the condition B =

P(A) holds only for a slid pair. We can not directly apply another blank round to A
since we only know TA and not A. However, TA and TB leave enough information for
detecting a slid pair. We can invert TB one blank round and compare the resulting bytes

90

with the known bytes from TA. Thus, we can compare 34 bytes of TA with the known
bytes obtained from inverting TB. Figure 5.4 shows the backward computation of one
blank round.

Figure 5.4: Detecting a slid pair of messages for GRINDAHL-512. Cells in dark gray
mark known bytes while cells in light gray mark unknown bytes. The inverse Mix-
Columns (MC−1) and the inverse ShiftRows (SR−1) are the only two operations which
are important for our analysis: AddConstant and SubBytes functions leave a known
(respectively, unknown) bytes known (respectively, unknown).

Recovering the Internal State A challenge (M1,M2) which produces a slid pair
(TA,TB) can be used to recover the final internal state A (corresponding to the com-
putation of M1) just before the final truncation. Since columns A8 to A12 are unknown,
we have to recover 40 bytes of the unknown state. As shown in Figure 5.4, we can
directly recover 30 bytes from A by applying to TB one blank round backwards, exactly
as when we tried to detect slid pairs: we can fully invert the MixColumns transforma-
tion for the eight first columns (where all the bytes are known), then it is also very easy
to invert ShiftRows, SubBytes and AddConstant transformations. So, when looking at
Figure 5.4, it is clear that the adversary can directly get 30 out of the unknown bytes
of A. The remaining 10 unknown bytes can be recovered in a different way. For each
possibility among those bytes (28·10 = 280 possibilities), we invert all the blank rounds
and check if the last added word (the first encountered when computing backwards) is
PL

1 . Indeed, when inverting the real internal state A, we surely come to the insertion
of PL

1 and this can be easily detected since we know this message block and since the
message insertion overwrite the first column of the internal state. Now we are dealing
with 280−64 = 216 possibilities only and we have to be careful, since some bytes are
undetermined, if we continue the backward computation. The undetermined bytes are
those which are replaced by the inserted message words during the message input step
(due to the overwriting). We can compute one more round backward to check if we fi-
nally obtain the message word Ml

1 +P“10”
1 inserted. This gives us the complete internal

state A. We need 264 pairs of M1 and M2 for the attack to work.

91

Cryptanalysis and Design of Hash Functions

Uncovering some Parts of the Secret Key or forge valid MACs By knowing the
whole internal state A it is straightforward to invert the blank rounds. With this infor-
mation, we can directly generate new valid MACs for messages which contain M1 as
prefix; by just continuing the computation of the hash function ourselves.

We can also try to invert the rounds where known message words are inserted. Some
parts of the internal state are undetermined because of the truncation when adding
message words as mentioned in the previous section. We can guess those undetermined
columns by only keeping those, which lead to the correct inserted message words in the
first column. This is equal to what we did above to recover the final internal state. By
trying all the possible values of the truncated column, we can continue going backwards
and check which one leads to the known correct values of the message blocks inserted
a few rounds before. Some trials lead to wrong message blocks inserted and can be
discarded. The ones leading to the good values have a good chance to be the real
erased bytes. Thus, we can go backward for all the known message words and recover
the erased columns until we have to stop this procedure when we reach the unknown
secret key word. The complexity for this step is in the worst case equivalent to 2
compression function calls for each guess, which are in total 265 compression function
calls per message block. This is negligible compared to the complexity of the other
steps of the attack for messages up to 215 blocks. We need two compression function
calls since we have to invert two rounds in order to check if the guess of the inserted
message block is valid. The last unknown column which can be recovered is the column
before inserting M2

1 . Now, with all this information we can recover 4 bytes from the 8
of the last unknown message block we encounter (the first when computing backward),
which is part of the secret key. The rest of the secret can be then computed exhaustively
(at a lower cost than brute force without slide attacks) or we can use a trick.2 Indeed,
we know that the initial internal state is equal to zero and one can accelerate the secret
recovery with a meet-in-the-middle attack: we compute forward from the known initial
internal state and we compute backward as described earlier. Note that we do not look
for a collision in the internal state. The meet-in-the-middle attack is used only to test
wether a guessed value of the internal state is valid or not.

Slide Attacks on GRINDAHL-256

Finding Slid Pairs

Building the challenge that generates a slid pair works as follows. We choose a message
M1 =M0

1 ||M
1
1 || . . . ||M

l−1
1 ||Ml

1, where Ml
1 is a non complete block which is padded. The

MAC therefore processes the hash input

2If the size of the key is not too big, we do not even require to do any exhaustive search.

92

Pad(K||M1) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10”
1 ||PL1

1 ||PL2
1 ,

where P“10”
1 is the 10-padding of Ml

1 and PL1
1 ||PL2

1 is the two-block of the message
length. Before building the second message, we want the condition

0n 6= PL1
2 = PL2

1

to always hold for M1. Then, for each M1 we build the message M2 = M0
1 ||M

1
1 ||

M2
i || . . . ||M

l−1
1 ||Ml

1+P“10”
1 ||R, where R is an incomplete block which, after 10-padding,

is the same as PL1
1 . As PL1

1 is non-zero, such an R exists. In this case the padded message
is

Pad(K||M2) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10”
1 || R+P“10”

2 ||PL1
2 ||PL2

2
= K||M0

1 ||M
1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10”
1 || PL1

1 ||PL2
1 ||PL2

2 .

Note that the one before last word is equal to the last message word of M1 after padding.
This holds because of the conditions fulfilled by PL1

2 and PL2
1 . In other words, M1 and

M2 only differ in an additional block at the end. Such a pair (M1,M2) is a slid pair with
a probability of 2−32. In this case PL1

2 = PL2
1 holds with probability one. Detecting a

slid pair is as simple as in the case of GRINDAHL-512. For a slid pair the condition
B = P(A) holds. Let Bi be column i of B and let Ai be column i of A, respectively. TA

leaves enough information to compute the column B4 by performing one blank round
on TA. In this way the output (TA,TB) of a challenge (M1,M2) can be checked for a
value of B4. We can further check by using other columns than B4, even if for them
only a subspace of the potential solutions is determined by TA. On average, we need
232 pairs of length about 232 until we find a slid one. Thus, we need to hash 232 values
to obtain and detect a slid pair. Figure 5.5 shows the backward computation of one
blank round.

Figure 5.5: Detecting a slid pair of messages for GRINDAHL-256. Cells in dark gray
mark known bytes while cells in light gray mark unknown bytes. The inverse Mix-
Columns (MC−1) and the inverse ShiftRows (SR−1) are the only two operations which
are important for our analysis: AddConstant and SubBytes functions leave a known
(respectively, unknown) bytes known (respectively, unknown).

93

Cryptanalysis and Design of Hash Functions

Recovering the Internal State

A challenge (M1,M2) which produces a slid pair (TA,TB) can be used to recover the
final internal state A (corresponding to the computation of M1) just before the final
truncation. Since the columns A8 to A12 are unknown, we need to recover 20 bytes. We
can directly recover 10 bytes from A by computing one blank round backward from
TB, exactly as when we tried to detect slid pairs: we can fully invert the MixColumns
transformation for the eight first columns (where all the bytes are known), and it is also
very easy to invert ShiftRows, SubBytes and AddConstant transformations. So, when
considering Figure 5.5, it is obvious that the adversary can directly get 10 unknown
bytes from A. The remaining 10 unknown bytes can be recovered in a different way.
For each possibility among those bytes (28·10 = 280 possibilities), we invert all the
blank rounds and check if the last added word (the first encountered when computing
backward) is PL2

1 . Since we have to invert eight blank rounds the complexity of this
step is equivalent to 23 ·280 = 283 compression function calls. Note that this step is also
the most time consuming part of the attack, while the time complexity of the later steps
is negligible as shown in the attack on the 512-bit version.

Indeed, when inverting the real internal state A, we surely come to the insertion of the
block PL2

1 and this can be easily detected since we know this message block and since
the message insertion overwrites the first column of the internal state. We can continue
to compute backward with the word PL1

1 even if some parts of the internal state at
this point becomes undetermined due to the truncation when inserting the message
words and thus we only have 248−32 = 216 possibilities. Finally, we can continue to
the message word Ml

1 +P“10”
1 which leads to a recovery of the full internal state A. We

have to invert three rounds in order to check if the guess of the truncated column is
valid. The complexity of this step is equivalent to 233.5 compression function calls. In
total recovering the internal state costs about 283 compression function calls.

Using only short Messages

Note that the above attack requires that 0n 6= PL1
2 = PL2

1 , i.e., the most significant and
the least significant word of the length field of (K||M1) must be the same – and nonzero.
Thus, the smallest possible choice for PL1

2 = PL2
1 is PL1

2 = PL2
1 = 1, implying a message

length (for (K||M), i.e., including the key) of 1+ 232 blocks. If dealing with such long
messages is an issue, we can modify the attack to use shorter messages. The modified
attack goes as follows.

We choose a message M1 = M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10”
1 , where the final block Ml

1
is incomplete. The MAC processes the hash input

Pad(K||M1) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10”
1 ||PL1

1 ||P
L2
1 ,

94

with a length-field PL1
1 ||P

L2
1 . Note that PL2

1 holds the 32 least significant bits, while PL1
1

holds the 32 most significant bits. We assume short messages, thus PL1
1 = 0n. This

time, we want the MAC to process the hash input

Pad(K||M2)

= K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10′′
1 ||PL1

1 ||S+P“10′′
2 ||PL1

2 ||P
L2
2

= K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||Ml

1 +P“10′′
1 ||PL1

1 ||P
L2
1 ||P

L1
2 ||P

L2
2 ,

Thus, M1 and M2 differ only in two additional blocks at the end. Accordingly, we
choose

M2 = M0
1 ||M

1
1 || . . . ||Ml−1

1 ||Ml
1 +P“10′′

1 ||PL1
1 ||S.

As PL2
1 is nonzero, an incomplete block S with S+P“10′′

2 = PL2
1 does exist.

Now we define M1 and M2 as a slid-by-two pair. When processing the shorter message
M1, the first two empty rounds behave exactly as the last two nonempty rounds when
processing M2. This happens with a probability of (2−32)2, and on the average, we
need 264 pairs to find slid-by-two pair.

A pair of messages is a slid-by-two pair, if and only if the two corresponding states A
and B satisfy B = P(P(A)). Detecting slid-by-two pairs from T (A) and T (B) and then
recovering the internal state A is slightly more complicated, compared to “ordinarily”
slid-by-one pairs, but still feasible. By applying a meet-in-the-middle approach we do
a forward computation of the output after processing the shorter message. Then we
do a backward computation of the output of the longer message and check if there are
possible matches of both the remaining states. If so, a slid-by-two pair is found. As our
meet-in-the-middle attack uses 19 bytes for comparison, the probability that a wrong
pair is detected as a slid pair is 2−8·19 = 2−152.

Uncovering some Parts of the Secret Key or forge valid MACs

By knowing the whole internal state A it is straightforward to invert the blank rounds.
With this information, we can directly generate new valid MACs for messages which
contain M as prefix: we just have to continue the computation of the hash function by
ourselves.

We can also try to invert the rounds where known message words are inserted. Some
parts of the internal state are undetermined because of the truncation when adding
message words. We do not know what was in the first column before erasing it with
a message word, except for the first undetermined column which is equal to PL2

1 as
described above. But we can guess those undetermined columns by only keeping those,

95

Cryptanalysis and Design of Hash Functions

which lead to the good inserted message words in the first column. This is equal to what
we did previously to recover the final internal state. By trying all the possibles values
of the truncated column, we can continue going backward and check which one leads
to the known correct values of the message blocks inserted a few rounds before. Some
trials lead to wrong message blocks inserted and can be discarded. The one leading
to the good values have a good chance to be the real erased bytes. Thus, we can go
backward for all the known message words and recover the erased columns until we
have to stop this procedure when we reach the unknown secret key word. The last
unknown column which can be recovered is the column before inserting M3

1 . Now,
with all this information we can recover one column of the last unknown message
block we encounter (the first when computing backward), which is part of the secret
key. The rest of the secret key can be then computed exhaustively (at a lower cost
than brute force without slide attacks) or we can use a meet-in-the-middle attack: we
compute forward from the known initial internal state and we compute backward as we
described before.

Protecting against Slide Attacks

It only takes a negligible effort to protect hash functions against slide attacks. Hash
function designers, like block cipher designers, must be aware of possible slide attacks
and be on guard for too much self-similarity in their constructions. For sponge-based
hash functions, a simple patch would be to just to add a nonzero constant just before
running the blank rounds and extracting the hash value. Another option is to marginally
change the blank rounds. For example, Grindahl could be changed such that the blank
rounds use different rotation amounts (while maintaining the old rotation amounts for
all other rounds).

5.2 The SHA-3 Candidate TWISTER

The new hash algorithm, SHA-3 [121] should serve as the new standard for hashing.
It should be a replacement to the entire SHA-2 [120] family and must provide mes-
sage digests of size 224, 256, 384 and 512 bits. The winner of the NIST hash function
competition will define the new SHA-3 standard for hash functions. The competition
started in october 2008 where NIST received 64 submissions. From these, 51 were
selected as meeting the minimum submission requirements and were accepted to par-
ticipate in round one. An overview of all round one SHA-3 candidates as well as a
classification in terms of there underlying primitives and claims made by the authors is
given in [52]. One of the candidates accepted for the first round of the SHA-3 compe-
tition is TWISTER [50, 51, 53, 56]. In the second round 14 of these 51 candidates have

96

be selected. TWISTER was excluded because of some security issues concerning the
512-bit version of it, which we discuss below.

5.2.1 Introduction

One of the most difficult tasks for cryptographers is to design a hash function which
reaches a claimed security level and is efficient as well. It is often only a trade off
between security and speed. On one hand, a hash function with a huge security margin
can offer a high level of security but might be useless for practical applications. On the
other hand, a very fast hash function might offer some unexploited weaknesses, while
it is used for crucial applications.

TWISTER is a new family of cryptographic hash functions. The core of TWISTER

consists of the well studied wide trail strategy known from the AES winner Rijndael.
The biggest advantage of this construction is its simplicity and the well studied security
analysis. This makes the TWISTER hash family very easy to analyze.

TWISTER is defined for different internal state sizes and a variety of output sizes from
32 bits to 512 bits. This allows TWISTER to be a drop-in replacement for the SHA
family of hash functions.

The main advantages of the TWISTER hash function family are:

• portable to many platforms, e.g., 8-, 32-, 64-bit

• using well established and studied design concepts of wide trails

• high speed (comparable to SHA-256/512)

• very fast for short message hashes

All instances of TWISTER make use of the wide-pipe design idea presented in [103].
Its internal state is 512 bits when the output size is smaller then 256 bits, else it is 1024
bits for other cases.

5.2.2 The Design Principles of TWISTER

In this section we explain our design targets and describe why TWISTER was designed
as it is.

Security The security of TWISTER is based on well studied concepts known from
AES [40]. The wide trails strategy allows us to obtain a maximal diffusion inside each
column of the state matrix. Since the message input is orthogonal with the diffusion of

97

Cryptanalysis and Design of Hash Functions

the state, we allow the adversary a small control over the state. Introducing local feed-
forward as well as blank rounds (rounds with no message input) further reduce
the influence of an adversary on the state.

Evolutionary During the last decade many hash functions which use a lot of different
concepts were broken.

The TWISTER design is in some way evolutionary since we have learned from the AES
process in many ways. The well studied and analyzed block ciphers that were in the
final round of the competition lead to some well established design principles offering
a high level of cryptographic knowledge. Rijndael [39] therefore can be seen as one
of the most studied block ciphers during this process and also in the time after. Its
concepts of simple byte-wise operations SubBytes, ShiftRows and MixColumns are
well analyzed and it turns out that their combination can offer high speed. We adopt
some of these concepts for TWISTER and we also learn from recent hash function
breaks.

Simplicity and Analyzability A hash function in general should be easy to analyze
and without having any trapdoors inside. The easier it is to analyze, the more one
can be sure to avoid trivial flaws in its design. We therefore only use very simple
components which form our Mini-Round. These components are well studied and
well known but combining these components to obtain a good hash function is new.
Our very simple design and clear structure of TWISTER makes cryptanalysis easy and
serves the purpose that there are no simple attacks which cannot be found due to a
complex and unreadable algorithm. The security level of TWISTER can be proven for
the inner components which is more worth than just a security claim. Using the concept
of wide trail, leads to a very fast diffusing after just two (64-bit) input blocks.

Portability and Scalability The main design criterion of TWISTER is its use to a
wide range of applications. Due to its byte-wise operations it scales perfectly on 8-
, 16-, 32- and 64-bit platforms. TWISTER can be implemented on smart cards with
small 8-bit processors very efficiently. The portability is enhanced by its low memory
requirements, which makes TWISTER suitable even for low end platforms valuable.
For 32 and 64-bit multi-core we offer a high speed parallel mode of operation which
scales to reach the optimal level of processor usage.

Speed TWISTER has not only a high security level, it is also very fast. We offer an
optimized version for 32-bit and 64-bit environments. Compared with members of the

98

SHA-2 family TWISTER is at least as fast on 64-bit platforms. This makes a parallel
implementation of TWISTER very fast and efficient.

5.2.3 The TWISTER Hash Function Family

In this section we describe the TWISTER family of hash functions [50, 51, 53]. We start
with a description of the general design strategy. The design is based on a blockcipher
that is used in the Davies-Meyer (DM) mode of operation [29]. TWISTER is byte-
oriented and operates on a square state matrix. The building block of the blockcipher is
called Mini-Round. It takes a sub portion of the message and injects it into the state
S whereas S is an N×N byte-matrix, N ∈ N. After two Mini-Rounds, the state is
guaranteed to have a full diffusion. Also, two subsequent iterations of Mini-Round
can be proven to be collision free. See Section 5.2.4 for a detailed discussion of the
security properties.

After processing the padded message (i.e., the message is completely absorbed by the
state S), a finalization step and the output follows. This technique is inspired by the
design ideas of the sponge function [9].

Note that the description of the TWISTER components is slightly more general as they
need to be. The reason for this is to give a better understanding of the design principles.
The following notations are used:

S = (Si, j)1≤i, j≤N internal state matrix
S(→ i) the i-th row vector of S
S(↓ i) the i-th column vector of S
C = (Ci, j)1≤i, j≤N internal checksum matrix
N number of rows and columns of the internal state matrix
msgsize size of unpadded message (in bits)
Rmsg number of N-byte blocks processed per compression

function call
m function calls needed to absorb the message into the state S
M = (M1, . . . ,Mm) padded message to be handled by the TWISTER hash

function
Munpad unpadded message
out size of the hash value measured in N-byte blocks, i.e.,

out = n/(8 ·N)
n size of the hash value in bits, n = out ·8 ·N,

where n≤ 8 ·N2

H = (H1, . . . ,Hout) number of N-byte blocks of the hash output
φ TwistCounter

The State S

TWISTER operates on a square state matrix S = (Si, j), 1 ≤ i, j ≤ N, consisting of N
rows and columns, where each cell Si, j represents one byte. For all proposed instances

99

Cryptanalysis and Design of Hash Functions

of TWISTER we have N = 8, i.e., the internal state matrix is 512 bits.

S =

S1,1 S1,2 ... S1,N
S2,1 S2,2 ... S2,N

...
...

. . .
...

SN,1 SN,2 ... SN,N

We use the following two notations concerning the state S(i→) :=(Si,1, . . . ,Si,N) denotes
the i-th row vector and S(j↓) := (S1, j, . . . ,SN, j) the j-th column vector.

Checksum C

The checksum enlarges the state of TWISTER-384 and TWISTER-512 to address our
wide-pipe design [103] decision.

The checksum is, similar to the state matrix S, a square matrix C = (Ci, j), 1≤ i, j ≤ N,
consisting out of N rows and columns, where each cell Ci, j represents one byte. Recall
that N = 8, and:

C =

C1,1 C1,2 ... C1,N
C2,1 C2,2 ... C2,N

...
...

. . .
...

CN,1 CN,2 ... CN,N

TwistCounter φ

The TwistCounter φ is an unsigned 64-bit integer added to the state within a Mini-Round
to prevent slide attacks. After that the TwistCounter is decreased.

Processed message counter hs ProcessedMsgCounter Processed message length
hs ProcessedMsgCounter is a 64-bit integer. The main purpose of the counter is
to compute the length of the hashed message.

The Compression Function

The compression function of TWISTER consists of building blocks called Mini-Rounds
which are grouped into Maxi-Rounds. Each Mini-Round is a combination of
well studied primitives, which are easy to analyze and fast to implement in software
and hardware. The instances of the TWISTER hash function family differ only in their
number of Maxi-Rounds and the checksum matrix.

The compression function takes a 512-bit message block and processes it into the in-
ternal state matrix S. As a Maxi-Round only indicates the position of the local feed-
forward XOR-operation we normally only discuss a compression function as a set of
Mini-Rounds.

100

Mini-Round

The Mini-Round is the underlying building-block of the TWISTER hash function. Its
main purpose is injecting the message (Message-Injection) and to enhance the diffusion
in the state matrix S. Each Mini-Round processes 64-bit of message data. If a
Mini-Round is processed without a message input, i.e., an all zero message input,
we call it a Blank-Round. The Mini-Round is visualized in Figure 5.6.

Twister can handle at most 264 Mini-Rounds. This limitation is caused by the Ad-
dTwistCounter operation where a 64-bit counter is added. We define the maximal num-
ber of message blocks for TWISTER-224/256 to be 264/9 ≈ 260.8 and for TWISTER-
384/512 to be 264/10≈ 260.7. For longer messages the Mini-Round will not have a
unique constant XOR’ed into the state. This might weaken the construction for slide
attacks and thus we limit the length of the messages. A Mini-Round consists of the

a SB(a)

Message-Injection

AddTwistCounter

SubBytes

ShiftRows

MixColumns

Figure 5.6: A Mini-Round

following operations:

101

Cryptanalysis and Design of Hash Functions

• Message Injection injects a 64-bit message block into the last row of the state
matrix,

• SubBytes applies a non-linear S-box on each byte of the state matrix in parallel,

• AddTwistCounter XORs a round dependent counter into the second column of
the state matrix,

• ShiftRows rotates the i’th row i by i positions to the left,

• MixColumns applies a linear diffusion on each column of the state matrix in
parallel.

Message injection A 64-bit message block m is inserted via XOR into the last row.
By using the notation m = (m[N], . . . ,m[1]) whereas the length of m[i] is one byte, and
let

S(→ j)⊕m = (SN, j⊕m[N], . . . ,S1, j⊕m[1])

we define the message injection process by

S(→N) := S(→N)⊕m.

Add TwistCounter The TwistCounter φ is an unsigned 64-bit integer. The initial
state is the maximal value (0xFFFF FFFF FFFF FFFF). By using the notation φ =

(φ [N], . . . ,φ [1]), where the length of φ [i] is one byte, and φ [1] is the most significant
byte of φ . The counter is byte-wise XORed into the second column of the state S:

S2,↓⊕φ = (S2,N⊕φ [N], . . . ,S2,1⊕φ [1])

and set

S2,↓,φ := S2,↓⊕φ and φ := φ − 1.

SubBytes SubBytes uses a bijective function

S-box : {0,1}8 −→ {0,1}8.

This S-box is applied in parallel to each byte of the state matrix, which forms the
SubBytes operation. It is highly non-linear. A discussion on how to obtain such cryp-
tographically strong S-boxes (for 8x8 S-boxes) can be found in [154]. TWISTER uses
the well known and studied AES S-box. The S-box is given in Appendix A.

We define the SubBytes operation by

Si, j := SB(Si, j) i, j ∈ {1,2, . . . ,N}.

102

ShiftRows ShiftRows is a cyclic left shift similar to the ShiftRows operation of AES.
It rotates the j’th row by j− 1 bytes to the left.

We define the ShiftRows operation by

S(i,(j−i+1 mod N)+1) := S(i, j) i, j ∈ {1,2, . . . ,N}.

MixColumns The MixColumns step is a permutation operation on the state. It ap-
plies an N×N-MDS matrix A (a maximum distance separable matrix as defined below)
to each column, i.e., performs the operation

S↓ := A ·S(j↓) j ∈ {1,2, . . . ,N}

Definition 2 An [n,k,d] code with generator matrix

G = [Ik×k Ak×(n−k)]

is an MDS code if every square submatrix of A is nonsingular. The matrix A is called
an MDS-matrix.

Our chosen MDS matrix is cyclic, i.e., its i-th row can be obtained by a cyclic right
rotation of (02 01 01 05 07 08 06 01) by i entries. It has a branch number of 9, meaning
that if two 8-byte input vectors differ in 1 ≤ k ≤ 8 bytes, the outputs of MixColumns
differ in at least 9− k bytes. The 8× 8-MDS matrix used in all proposed instances of
TWISTER is:

MDS =













02 01 01 05 07 08 06 01
01 02 01 01 05 07 08 06
06 01 02 01 01 05 07 08
08 06 01 02 01 01 05 07
07 08 06 01 02 01 01 05
05 07 08 06 01 02 01 01
01 05 07 08 06 01 02 01
01 01 05 07 08 06 01 02













All of the byte entries are considered to be elements of F28 . An element ∑7
i=0 aixi ∈ F28

is represented by ∑7
i=0 ai2i. The reduction polynomial m(x) of F28 is defined as

m(x) = x8 + x6 + x3 + x2 + 1. (5.2)

Note that this field is different from the one used in the AES for SubBytes. Some
properties of MDS matrices/codes can be found in [105].

Maxi-Round

A Maxi-Round contains three Mini-Rounds in the case of TWISTER-224/256
and three or four in the case of TWISTER-384/512. In TWISTER-224/256 the last

103

Cryptanalysis and Design of Hash Functions

Mini-Rounds in the third Maxi-Round is a Blank-Round. In TWISTER-384/512
the second Mini-Rounds of the second Maxi-Round and the last Mini-Round
of the last Maxi-Round is blank, i.e., Blank-Round.

The checksum matrix is used only in TWISTER-384/512 and is updated before each
Mini-Round takes place. We define a checksum update operation as

∀i : C(i,↓) =C(i,↓)⊕C(i+1,↓)⊞ S(i,↓).

The state matrix is added to the checksum column-wise.

After each Maxi-Round a feed-forward operation is used where the state before a
Maxi-Round Sk is fed-forward with the state after the current Maxi-Round Sk+1.
We defined the feed-forward operation as

S(i, j) := Sk
(i, j)⊕ Sk+1

(i, j) ∀i, j.

Figure 5.7 illustrates a Maxi-Round.

...

M j+sM j

Mini-Mini-
RoundRound

Maxi-Round

Sk Sk+1

Figure 5.7: A Maxi-Round

Compression Function of TWISTER-224 and TWISTER-256

The compression functions of TWISTER-224 and TWISTER-256 consist of three Maxi-
Rounds. Each Maxi-Round contains three Mini-Rounds. Figure 5.8 illustrates
the compression function.

M1 M2 M3 M4 M5 M6 M7 M8 0

Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-
RoundRoundRoundRoundRoundRoundRoundRoundRound

Maxi-RoundMaxi-RoundMaxi-Round

Hi−1 Hi

Figure 5.8: The compression function of TWISTER-224 and TWISTER-256

Compression Function of TWISTER-384 and TWISTER-512

The TWISTER-384 and TWISTER-512 compression functions consist of three Maxi-
Rounds. Where the first and the second Maxi-Round contain three Mini-Rounds

104

and the third one is built out of four Mini-Rounds. Figure 5.9 illustrates the com-
pression function. The second and thirdMaxi-Round contains also a Blank-Round,
to strength the instance against collision attacks. As we explained before, the checksum
C is updated with the internal state before a message injection takes place, i.e., three
times in the first Maxi-Round, twice in the second, and 3 times in the third. After
the compression function call for the last message word, the checksum is regarded as 8
message blocks (i.e., one block for each column) and is inserted into the internal state
in the same way as an original message block but without updating the checksum.

M1 M2 M3 M4 M5 M6 M7 M8 00

Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-

RoundRoundRoundRoundRoundRoundRoundRoundRoundRound

Maxi-RoundMaxi-RoundMaxi-Round

Hi−1 Hi

Figure 5.9: The compression function of TWISTER-384 and TWISTER-512

Post-processing

Post-processing takes place after the last ’full’ message block (i.e., message block
length being divisible by 512-bits) is completely absorbed in the state and, for TWISTER-
384/512, also in the checksum matrix. This post-processing consists of three steps:

1. Padding the message M and processing the last message block into the state
matrix (and checksum matrix if appropriate)

2. TWISTER state finalization (processing the message length and the checksum –
if appropriate – into the state matrix)

3. Message digest computation (performing the Output-Round)

Padding The purpose of this padding is to ensure that the padded message has a
length which is a multiple of 512 bits. Suppose that the length of the message M is
l. Then the message can be divided into ⌈l/512⌉ 512-bit message blocks m1, . . . ,m f−1

and one final message block m f of length between 0 and 511 bits. The 512-bit message
blocks m1, . . . ,m f−1 are processed by the compression function one by one. The final
message block m f is always padded by appending an ′1′ to the end (of the message)
followed by k = 511− (l mod 512) zero bits. Afterwards, the length of m f is exactly
512-bits and it can processed by the compression function like all other message blocks
before. If the last message block is a complete 512-bit block an additional block is
attached containing a one followed by 511 zeros.

105

Cryptanalysis and Design of Hash Functions

State Finalization After the padding procedure, the message length, stored in a 64-
bit unsigned integer, is injected like a message by XORing it byte by byte to the last
row of the state S. This is done after processing the message blocks.

Note that the following steps depend on the TWISTER instantiation. For TWISTER-
384/512, the checksum is processed as follows. The checksum is transformed into a
64-byte message block m where m = m[f], . . . ,m[1] column by column.

m[i] =C(⌊(i−1)/N⌋,i−1mod N) ∀i = 1, . . . ,N2

Each m[i] enters the internal state being processed by a Mini-Round, where m[i] is
treated as a message block.

Finally, the state is updated via eight Blank-Rounds, while the twist counter is not
used anymore. This is done in all instances of TWISTER.

Message Digest Computation The message digest is computed using a so called
Output-Round. The Output-Round of TWISTER contains a global feed-forward
as well as some Mini-Rounds depending on the size of the hash output. First, a
Mini-Round is applied to the state Si−1, then the resulting state is XORed with Si−1.
Then, another Mini-Round is applied which gives the state Si. Let Si be the final
state after the last compression function call (for TWISTER-384/512 this is after the
processing of the check sum). A 64-bit output stream outi is then obtained by XOR-ing
the first column of Si with the first column of Si−1. This procedure takes place until the
needed amount of output bits is obtained. The last output stream can be varied between
32 bits and 64 bits by taking only the first half (lowest order first) of outi. Figure 5.10
gives a high level description overview of an Output-Round.

outi

Mini-Mini-
RoundRoundSi−1 Si

Figure 5.10: An Output-Round

Randomized Hashing

TWISTER supports randomized hashing in the following way. One can choose a so
called salt value of size at most 64 bits. If the salt is zero then the usual hash computa-
tion is performed. For salt values which are not equal to zero and shorter than 64 bits

106

as many zero’s are padded to form a 64-bit block. The salt s is introduced in the hash
computation as a first input block followed by three Blank-Rounds. This protects
TWISTER against any chosen salt attacks.

5.2.4 Security

Generic Attacks

In this section we describe a few generic attacks on hash functions and show that they
do not apply to TWISTER.

Length-Extension Attacks In a length extension attack, given a hash value H(M),
the adversary can compute the hash value H(M||X ||Y) for any non-empty suffix Y , if
the length of unknown message M is known as well as the padding X of M. We protect
TWISTER against this kind of attack, since the adversary has no direct access to the
internal state after the last message input takes place. By knowing only the hash value
an adversary cannot easily recover the internal state S, since the final() function
outputs only a small fraction of the internal state.

Multi-Collision Attacks Joux’s mullti-collision attack [82] works as follows. In
a multi-collision x ≥ 2 messages hash to the same value. Let H be a MERKLE-
DAMGÅRD hash function that computes an n-bit hash value. Joux [82] shows that
finding a set of 2k messages all colliding to the same hash value (a 2k-multi-collision)
is as easy as finding k single collisions for H’s compression function. The adversary
starts by finding a single collision in the compression function then, he iteratively finds
an additional collision starting from the previously colliding chaining value. We want
to find messages blocks Mi and M′i 6= Mi such that C(hi−1,Mi) = C(hi−1,M′i), where
C(·) represents the compression function and hi represents the chaining value. It is then
possible to construct 2k messages with the same hash value by choosing for each block
i either the message block Mi or M′i . This attack can find 2k-way multi-collisions with
a complexity of k ·2n/2.

TWISTER fully resists the multi-collision attack due to the wide-pipe design [103], as
the internal state is at least of size 2n, and thus every internal collision takes 2n time.

Herding Attacks The herding attack [85] is a chosen prefix target preimage attack
on MERKLE-DAMGÅRD hash functions, i.e., the adversary commits to a digest value h
and is then presented with a challenge prefix P. Now, the adversary computes a suffix
S, such that H(P|| S) = h.

107

Cryptanalysis and Design of Hash Functions

The preprocessing of the herding attack works as follows. Let H be a MERKLE-
DAMGÅRD hash function that computes an n-bit chaining value. The adversary takes
2k chaining values which are fixed or randomly chosen. Then he chooses O(2n/2−k/2)

message blocks and computes the output of the compression function for each chaining
value and each block. It is expected that for each chaining value there exists another
chaining value, such that both collide to the same value. The adversary stores the mes-
sage block that leads to such a collision in a table and repeats this process again with
the newly found chaining values. The preprocessing time is 2k/2+n/2+2 applications of
the compression function.

In the online phase, after receiving the challenge P, the adversary exhaustively searches
for message blocks X such P||X , for some message P forced by the adversary, collides
with on of the starting chaining values. Having found such message block X , the
adversary can construct a sequence of message blocks Q, with S = X ||Q such that
the hash value H(P||S) = h. This step requires a negligible amount of work, and the
resulting suffix Y will be k+1 blocks long. The online part of the attack requires trying
O(2n−k) possibilities.

All of our proposed instances of TWISTER resist this kind of attack due to the large
internal state.

Long second pre-image Attacks Dean [42] showed for MERKLE-DAMGÅRD hash
functions that easily found fix-points in the compression function can be used for a
second-pre-image attack against long messages in time O(n · 2n/2) and memory O(n ·
2n/2). Kelsey and Schneier [88] extended this result and provided an attack to find
a second pre-image on a MERKLE-DAMGÅRD construction much faster than the ex-
pected workload of 2n even when it is hard to find fixed points in the compression
function. These attacks use messages of variable sizes that collide internally given a
fixed IV. These expandable messages can be found either using fixed points as in [42] or
as a series of internal collisions between a one-block message and an α-block message
for varying values of α [88]. The expandable messages are used for producing mes-
sages of varying length, which all result in the same internal state. It takes 2n/2+1 work
to discover 2k-expandable message blocks using the method of [88] and 2n−k+1 work
to build a full second preimage. Thus, the total complexity is about k ·2n/2+1 +2n−k+1

compression function calls. The complexity of this attack to find a second pre-image
for a k-message block depends on the complexity of finding expandable messages and
the message length k.

Andreeva et al. [2] showed that a combination of the attacks from [42, 85, 88] can
be mounted to dithered hash functions. This gives the adversary a greater control on
the second pre-images, since he can choose most parts of the second message in an
arbitrary way. The attack is based on the diamond like structure, which is build in

108

the herding attack [85]. If the diamond is a 2l-multicollison, one can obtain a second
pre-image of a message of length 2k blocks with 2n/2+l/2+2+2n−l +2n−k compression
function computations. The attack works as follows. A diamond of size l is a mul-
ticollision that has the shape of a complete converging binary tree of depth l, with 2l

leaves. The nodes of this tree are labeled by chaining values over n bits, and its edges
are labeled by message blocks over m bits, which map between the chaining value at
the two ends of the edge by the compression function. From any one of the 2l leaves,
there is a path labeled by l message blocks that leads to the same target value h labeling
the root of the tree. Now, let M be a target message of length 2k blocks. The main idea
of this attack is that connecting a message to a colliding tree can be done in less than 2n

work and connecting the root of the tree to one of the 2k chaining values encountered
during the computation of H(M) takes only 2n−k compression function calls.

To make TWISTER secure against such attacks we incorporate several security mecha-
nisms. The first countermeasure is a large internal state. We have to avoid small cycles
in the dithering sequence. Therefore, the counter should be of the same size as the
maximal message block length is. Thus, each round function is unique due to the dif-
ferent round constant being used. As the twist counter never repeats, it does not allow
finding expandable messages. We note that the twist counter as well as the wide pipe
design prevent the earlier types of second preimage attacks.

Slide Attacks Slide attacks are common in block cipher cryptanalysis, but they are
also applicable to hash functions as shown in Section 5.1. TWISTER is resistant against
this type of attack since we include a counter φ . It guarantees that a sliding property of
two or more consecutive states is impossible due to the different twist counters.

Differential Attacks The idea is to exploit a high-probability collision producing
differential over some component of the hash function. This means that the adversary
searches for such differentials under the form of a ”perturb-and-correct” strategy3 for
the hash function. In the design of the TWISTER framework, we applied the following
countermeasures against differential attacks:

• High-Speed-Diffusion. The strong diffusion capabilities of the Mini-Round
in combination with the non-linear S-box make it hard to find good differential
characteristics.

• Nested feed-forward. The internal feed-forward operations aim at strengthening
the function against differentials, since it is harder to cancel a difference out once
it has entered the internal state.

3Or any other strategy, as long as it is high probably and produces a collision.

109

Cryptanalysis and Design of Hash Functions

• Internal wide-pipe. this makes internal collisions harder to find, and the Output-
Rounds make the differences much harder to predict in the hash value.

• Using different operators (e.g., ⊕, ⊞) highly complicates the computation of
good differential paths, which makes TWISTER stronger against some classes of
attacks.

A Collision Attack Method The first step in finding a collision for any instance
of the TWISTER hash family is to analyze Mini-Round. We claim that an internal
collision needs at least three applications of a Mini-Round, i.e., three input blocks.
To find a collision we need the differential properties of MixColumns which are shown
in Table 5.1.
H
H
H
H
H
H

DI

DO 0 1 2 3 4 5 6 7 8

0 0 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞
1 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ 0
2 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ -8 0
3 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ -16 -8 0
4 - ∞ - ∞ - ∞ - ∞ - ∞ -24 -16 -8 0
5 - ∞ - ∞ - ∞ - ∞ -32 -24 -16 -8 0
6 - ∞ - ∞ - ∞ -40 -32 -24 -16 -8 0
7 - ∞ - ∞ -48 -40 -32 -24 -16 -8 0
8 - ∞ -56 -48 -40 -32 -24 -16 -8 0

Table 5.1: The approximate probability that two 8-byte input words with DI different
bytes in predefined positions maps to two 8-byte output words with DO different bytes
in predefined positions by the MixColumns operation. The probabilities are in base-2
logarithms. Column Properties of the state matrix after multiplication with the MDS
matrix.

The following lemma gives the number of active bytes after two Mini-Rounds in
the worst case starting from the all zero internal state:

Lemma 1 Starting from the all zero internal state and inserting a one byte difference
in the first input block, then at least 49 bytes are active after the second input round.

Proof 1 To prove the lemma we assume that it is possible to generate an internal state
after the second message input which contains less than 49 active bytes. 49 active bytes
can be constructed by 7 columns with 7 active bytes and one column with zero active
bytes or 8 columns with at least one column with strictly less than seven active bytes.
We start with the first case. Assume that we reduce one column by one active byte,
which leaves 48 active bytes in total. Thus, one column with 6 active bytes must be
a column containing 3 to 8 bytes after MC−1. This means that after SR−1 there must
be at least 3 different rows where at least 3 active bytes have a different index. This
is impossible since there can only be two different indices for the active bytes. After

110

the first round the first column contains 8 active bytes. The following message input
can only introduce active bytes in the last row of the state matrix. This contradicts our
assumption and so at least 49 bytes are active after the second input round. Now we
analyze the second case, where 8 columns with less than seven active bytes are less
than 49 active bytes after the second round in total. If a column after the second round
contains at most six active bytes it contains at least three active bytes after MC−1.
There are at least three different columns and three different rows after SR−1 which
contain one active byte. This state cannot be constructed from the all zero state after
one round.

Input 1 Input 2

SR

SR,

MC

MC

Figure 5.11: Minimal number of active bytes after two Mini-Rounds

�

The following lemma holds only for TWISTER-224 and TWISTER-256.

Lemma 2 i) Starting from the all difference internal state at least two input rounds
are needed to obtain the all zero internal state. ii) Any non-zero differential starting
from the all zero internal state and ending in the all zero internal state needs at least
three input rounds. iii) Such a three round differential with the desired difference has
probability 2−512 if all the bytes of the first input block are non-zero. Note that this
analysis applies for random messages.

Proof 2 i) Assume that we can obtain the all zero internal state after one input round.
Thus, the internal state after MixColumns must be all zero. This is also true for the
internal state before MixColumns and ShiftRows. Since we have started from the all
different internal state the message input must cancel all active bytes out. This is not
possible since it takes place only in the last row of the internal state. Thus, we cannot
have the all zero internal state after one round.

111

Cryptanalysis and Design of Hash Functions

By starting from the all difference internal state and inserting any difference which does
not cancel any state byte difference out we apply a first Mini-Round. According to
Table 5.1 MixColumns may generate a non-zero difference in the last byte of a column
and a zero difference in the remaining bytes with probability 2−56. This occurs for eight
columns with probability 2−448. The input block in of the second round will cancel the
difference in the first row out. This happens for a randomly chosen input block with
probability 2−64. Thus, the all zero internal state occurs after at least two input rounds
with probability 2−512.

Input 1 Input 2
SR,

MC

ii) Assume that we can construct the all zero internal state from the all zero internal
state in two rounds. Therefore, the internal state after the second round is all zero. This
means that the internal state before the ShiftRows and MixColumns of the second round
is all zero. Thus, the message input in the second round must cancel out a difference in
the last row of the internal state. In other word there must be a difference only in some
bytes of the last row. Thus, there are 8 rows, which have at least one active byte before
the ShiftRows and MixColumns of the first round. The message injection of the first
round can only insert a difference into the last row, which contradicts the assumption.

iii) follows from i) and ii).

�

Note, that finding internal collisions can be improved with message modification tech-
niques. These lemmas offer upper bounds on the differential probabilities of collision-
producing differential characteristics.

Pseudo Collisions on Mini-Rounds

It is easy to construct a pseudo-collision of a Mini-Round by the following scenario.
Choosing two states IV1 and IV2 6= IV1 such that for a message block Mi

Mini-Round(IV1,Mi) = Mini-Round(IV2,Mi),

holds. Since a Mini-Round is a bijection, it is invertible. Such an attack cannot lead
to a collision of the Maxi-Round due to the local feedforward of a Maxi-Round.
Thus, although pseudo collisions can be found easily for a Mini-Round they do not
lead to a collision of a Maxi-Round.

112

5.2.5 On (Second) Pre-image Resistance

The Mini-Rounds are permutations and are easily invertible. This is beneficial for
collision-resistance but might lead to problems with (second) pre-image resistance.4

We solve this problem by applying feed-forward XORs in the internal state. So any
adversary that tries to mount a pre-image attack has to recover the state from the hash
value. For this, the adversary has to guess one bit for every hash output bit (this is
due to the Output-function). Let H = (h1, . . . ,hout·N) be the hash output for hashing
a message M, |hi| = 1 byte. Assume that an adversary tries to mount a (second) pre-
image attack. In order to invert a Mini-Round, the adversary has to recover the entire
internal state S. As the adversary has only 1/N-th of the internal state S(1,↓)⊕ T(N,↓)

he has to guess T(N,↓) in order to recover one column S(1,↓) of S. Furthermore, he
has to guess all of the other columns to be able to invert a round. The complexity for
guessing essentially the whole matrix is O(2N·8). Due to the feed forward, a fix point
in a Mini-Round will not lead to a fix point in a Maxi-Round (unless it is the all-
zero value). Pre-images as well as (second) pre-images can be found if an adversary
can easily compute fix points in at least one Maxi-Round. Then, he can combine
different fixed points to obtain a message for a certain hash value.

5.2.6 A Collision attack on TWISTER-512

In this section we describe a collision attack on TWISTER-512 which was proposed by
Mendel et al. [107]. This attack combines a semi-free-start collision in the compres-
sion function using the rebound attack [108] with Wagner’s generalized birthday attack
[145]. The attack works only against TWISTER-512.

A Semi-free-start Collision Attack on the Compression Function of TWISTER

A semi-free-start collision in the compression function of TWISTER can be found in 28

compression function evaluations. This attack works for all instances of TWISTER. The
attack can be summarized as follows. Let r1,r2, and r3 denote three Mini-Rounds
in a Maxi-Round and let Si be the state after the 64-bit message word Mi is pro-
ceeded in ri. The initial state is denoted by S0. Note that this attack targets the three
Mini-Rounds in a Maxi-Round of each block independently.

Let an input difference∆X and an output difference∆Y , where ∆X = x1⊕x2, ∆Y = y1⊕

y2 = S(x1)⊕S(x2) and S(·) represents the S-box of TWISTER. A good S-box as the one
proposed for the AES, which is also used in TWISTER, has a near uniform distribution
of differentials which do exist, i.e., each row of the difference distribution table contains

4Note that not all second pre-image attacks rely on the ability to invert the Mini-Rounds.

113

Cryptanalysis and Design of Hash Functions

very low values which indicate the occurrence of a one-round differential characteristic.
In the case of the AES S-box each row, besides the zero one, contains only zeros, twos
and fours. Counting the number of zeros in the difference distribution table of the AES
S-box, there are 33150 instances where the input difference cannot become a certain
output difference. In the remaining entries there are 32130 entries of twos, 255 entries
of fours and one entry of 256, which mark that certain input differences lead to certain
output differences. The probability that a fixed input, output difference (∆X ,∆Y) has
non-zero probability can be expressed as Pr[(∆X → ∆Y) 6= 0]∼ 1/2. We note that this
is not the differential probability, but it only expresses that an input difference can be
transformed into a certain output difference with a probability greater than zero.

The rebound attack [108] can be split into two phases. First, an inbound phase where
the differences propagate backward and forward through the MixColumns operation
with a probability of one. Second, the outbound phase that tries to find matches for the
resulting input and output differences of the SubBytes operation of r2 and propagates
outwards.

1. Let S0,S1,S′1,S2,S′′2 ,S
′′′
2 and S3 be internal states of TWISTER as shown in Figure

5.12. Starting with 8 active bytes in S′1 and S2 that are injected into r1 and r3

by M1 and M3. Then computing from S2 backward through MC−1 and SR−1 to
obtain the state S′′2 . Compute forward from S′1 through ATC, SB, SR, MC and
obtain S′′′2 . The states S′′2 and S′′′2 contain 64 active bytes.

2. In the second Step of the attack the adversary has to find a match for the input
and output differences of the 64 S-boxes in r2. As explained above a fixed S-box
input/output difference may be satisfied with probability of about 1/2. Starting
with a random difference for the last byte in the first column of S1 he can compute
the corresponding column of S′′2 . The adversary finds a differential characteristic
which has a non-zero probability with probability (1/2)−1 = 2−8. Once a valid
differential is found, he continues with the other columns. This takes about 28

compression function calls.

There are 264 possible states for S′′2 , so the adversary can choose the one to get the
correct input/output difference for SubBytes in the 64 bytes of the internal state. Each
of these states can be computed in forward and backward direction and lead to a semi-
free-start collision of a Maxi-Round. Note that the value of M2 can be freely chosen
in the attack. Once a semi-free collision in a Maxi-Round is found this transforms
into a collision for the compression function of TWISTER. Figure 5.12 outlines the
attack.

114

Figure 5.12: A semi-free-start collision for the TWISTER compression function.
Source: [107]

A Collision Attack on TWISTER-512

The semi-free-start collision attack presented in the previous section can be trans-
formed into a collision attack on TWISTER-512. To find a collision in TWISTER-512
one has to find a collision in the internal chaining value as well as in the value of
the checksum. This can be done by constructing multi collisions [82] and applying
Wagner’s generalized birthday attack [145]. Mendel et al. [107] showed that one can
construct a collision in the compression function of TWISTER-512 with complexity of
2223 compression function calls. They first compute a large number of semi-free start
collisions for the last Maxi-Round. After that computation, they exploit the degrees
of freedom in the last row of the internal state to find a collision in the compression
function. So, the adversary can construct a 2256-collision with a complexity of about
256 ·2223 ≈ 2231 compression function calls. To apply this attack, the adversary needs
memory of about 29 to store the 2256 collisions. In this way he gets 2256 values for
the checksum C that all lead to the same chaining value H256. Using 257 message
blocks which produces the same value in the checksum the adversary can find a colli-
sion in the checksum for TWISTER-512. In other words, 256 message blocks are used
to find a multi collision and an additional message block is needed for the padding
of TWISTER. Using an ordinary birthday attack this would cost about 2256 checksum
computations and memory requirements of 2256 to find these to colliding messages.
Using a memory-less variant of the birthday attack [129] the adversary can find a col-
lision for TWISTER-512 with a complexity of about 2231 compression function calls
and about 2256 checksum computations. Normally, the cost for the computation of
the checksum is much smaller than one computation of the compression function. If
he assumes that the computation of the checksum takes at most 1/16 of the computa-
tion of the compression function, then he can find a collision in TWISTER-512 with a
complexity of 2252 compression function calls.

Protecting TWISTER against this Attack We can defend TWISTER-512 against this
kind of collision attack by expanding the internal state. Another possibility is to intro-
duce a kind of non-linearity into the checksum. However, both patches decrease the

115

Cryptanalysis and Design of Hash Functions

speed dramatically, but this does not really matter for most of the applications of hash
functions.

5.2.7 Second Pre-image Attack on TWISTER-512

The second preimage attack on TWISTER-512 of [107] works as follows. Let m =

m1||m2|| · · · ||m513 be a message for which the adversary wants to find a second preim-
age and let C =C1 ||C2|| · · · ||C8 be the checksum where Ci is a 64-bit word.

1. Construct a 2512 collision for the first 512 message blocks. This step takes about
512 ·2256 ≈ 2265 compression function calls. In this way he gets 2512 values for
the checksum which all lead to the same chaining value H512.

2. Choose m513 arbitrarly with a correct padding and compute H513.

3. For the last compression function evaluation H514 = f (H513,C), he first chooses
arbitrary values for C1||C2|| · · · ||C5, computes the state SF

6 = H513⊕S3⊕S6. This
determines S10 = H514⊕ SF

6 . The value of H514 is already known from the given
message m as it is.

4. For all the 264 possibilities of C8 the adversary computes backward from S10 to
the injection of C7 and stores the 264 candidates for the state S′7 which results
after injecting C7 into S7 in a list L.

5. For all 264 choices of C6 the adversary computes forward from S6 to the injection
of C7 and checks for match of S′7 in the list L. The adversary only needs to match
448 out of 512 bits, since he can still choose C7. The adversary gets 2128 pairs in
total. This step succeeds with probability 2−448+128 = 2−320. Repeating Steps 3
to 5 about 2320 times leads to a match. The overall complexity is then bounded
by 2320+64 = 2384 compression function calls.

6. After finding a second preimage in the internal chaining value, he still has to
ensure that the value of the checksum is correct. Using the fact that the checksum
is invertible he can use all 2512 values for the checksum which all lead to the
same chaining values H512, H513 and H514. Using a meet-in-the-middle attack,
he constructs the values in the checksum that are needed. The time complexity of
this step is about 2257 compression function calls and the memory requirement
is of 2256. The memory requirement can be reduced significantly by using a
memory-less variant of the meet-in-the-middle attack.

Thus, the adversary can construct a second preimage for TWISTER-512 with a time
complexity of about 2384 compression function calls and memory of about 264. The

116

attack needs a message of at least 513 message blocks to succeed. This attack cannot
be adopted to a preimage attack on TWISTER-512 due to the output transformation.

Protecting TWISTER against this Attack TWISTER-512 can be tweaked such that
this second preimage attack cannot be applied. Enlarging the internal state would
strengthen TWISTER-512 against (second) pre-image attacks as well as against col-
lision attacks. Also the checksum can be designed such that it is not invertible. This
can be done by applying one-way functions, e.g., feedforward. The non-linear check-
sum makes it harder to find single block collisions in the internal state as well as in
the checksum value. This is necessary to form a second message, which hashes to the
same value as the first one.

5.2.8 Pre-image Attack on TWISTER-512

In this section we discuss the preimage attack on TWISTER-512 suggested in [107].
To find a preimage for TWISTER-512 the adversary has to invert the output transfor-
mation. Once this is done he can apply the second preimage attack from the previous
section. The preimage of h = out1||out2|| · · · ||out8 found by the adversary consists of
513 message blocks. In this case, the adversary has to find the internal state H514 be-
fore the output transformation proceeds h. The adversary can find H514 such that out1
is accurate with a complexity of about 28 instead of 264 as one could expect. The com-
plexity of inverting the output transformation is therefore 2456. This process is shown
in Figure 5.13.

Figure 5.13: The inversion of the first part of the output transformation of TWISTER.
[107]

1. The adversary chooses a random value for the first column of H514. He uses out1
and the first column of H514 to compute the first column of S2.

2. He computes 8 bytes S′′′1 [i][i+(9− i) mod 8] for (1≤ i≤ 8) of the state S′′′1 using
the first column of H514.

117

Cryptanalysis and Design of Hash Functions

3. He computes backwards through r2 for the first column of S2 to get the 8 diagonal
bytes of S1⊕H514.

4. He chooses random values for the 8 diagonal bytes of H514. Note that this deter-
mines the first column of S′′′1 . Then the adversary computes the 8 diagonal bytes
of S1 from the diagonal bytes of S1⊕H514 and H514 using the feedforward.

5. Now, the adversary needs to find a match of S′′′1 and S1 through MixColumns in
r1. Note that the first column of S′′′1 is already fixed from Step 4. If the first byte
of S1[1][1] does not match, he needs to go back to Step 1 again. After repeating
Steps 1 to 4 about 28 times he expects to find a match for S1[1][1]. Once, a match
is found, modify columns 2 to 8 of S′′′1 such that the remaining 7 bytes match as
well.

a) For each column i = 2,3, . . . ,8 he chooses random values for the bytes
S′′′1 [i][k] with k 6= 9− i. Note that the bytes S′′′1 [i][k] with k = 9− i are already
fixed due to Step 2 of the attack.

b) Next, he computes the MixColumns operation and checks if the byte S1[i][i]
matches. If not, he repeats the previous step. This step has a complexity of
about 28 operations.

Each column can be modified independently in the attack and so this step runs
in about 8 ·28 · (1/10)≈ 27.6 compression function calls.

6. When a match for all columns is found, the adversary computes backwards from
S′′′1 to determine H514. Note that values fixed in Step 1 and Step 4 do not change
anymore.

By repeating the attack 2448 times, the adversary can invert the output transformation of
TWISTER-512 with a complexity of about 2448 ·27.6 ≈ 2456 compression function calls
and memory requirement of 210. Once the output transformation is inverted, i.e., H514

is found, he can apply the second preimage attack of the previous section to construct
a preimage for TWISTER-512 which consists of 513 message blocks. The overall time
complexity of this attack os about 2448 + 2456 ≈ 2456 compression function calls.

Protecting TWISTER against this Attack This preimage attack on TWISTER-512
can be defended against in the same way we discussed for the second preimage attack.
Enlarging the internal state will defend against this attack. Another patch on TWISTER-
512 could be to strengthen the output transformation by squeezing less than 8 bytes
during each output step or add more Blank-Rounds in the output process. The third
way to enhance the security of TWISTER-512 against pre-image attacks is to enlarge
the internal state and use a 16× 16 byte matrix, but this would lead to a decrease in

118

the performance in two ways. First, it decreases the speed of the hash computation.
Second, it is hard to find a 16× 16 MDS-matrix which has low values in most of the
bytes. Thus, the performance of the hash computation decreases dramatically due to
a lack of good MDS-matrixes of this size. We believe that enlarging the internal state
would be a good option since the decrease in speed is not crucial for many applications.

5.2.9 Implementational Aspects and Performance

In this chapter we discuss issues related to the implementation of TWISTER on different
platforms. In essence, our techniques for implementing TWISTER rely on the following
key sources of information due to the similarity to the AES-round function:

• Optimization techniques given by Daemen and Rijmen in [40].

• The techniques for reducing the number of instructions for an AES implementa-
tion [7, 74, 83, 122].

Finite Field Multiplication

In the algorithm of TWISTER there are no multiplications of two variables in GF(28),
but only the multiplications of a variable with a constant. The latter is easier to imple-
ment than the former – especially in the context of hardware and high-speed software
implementations.

64-Bit Platforms

All the different steps for the round transformation can be combined in a single set of
look-up tables including the ShiftRows operation, allowing very fast implementations
on processors with word lengths of 64 bits (or more). We use the following notations
(for 1≤ x,y≤ 8):

ay,x is the byte of the state matrix at the position (x,y),

by,x is the byte of the state matrix after the S-box at position (x,y),

cy,x is the byte of the state matrix after SHIFTROWS at position (x,y),

dy,x is the byte of the state matrix after MIXCOLUMNS at position (x,y).

119

Cryptanalysis and Design of Hash Functions

After the MIXCOLUMNS-Operation, we have for 1≤ j ≤ 8:













d0, j
d1, j
d2, j
d3, j
d4, j
d5, j
d6, j
d7, j













=













02 01 01 05 07 08 06 01
01 02 01 01 05 07 08 06
06 01 02 01 01 05 07 08
08 06 01 02 01 01 05 07
07 08 06 01 02 01 01 05
05 07 08 06 01 02 01 01
01 05 07 08 06 01 02 01
01 01 05 07 08 06 01 02













×













S[a0, j]
S[a1, j+1mod 8]
S[a2, j+2mod 8]
S[a3, j+3mod 8]
S[a4, j+4mod 8]
S[a5, j+5mod 8]
S[a6, j+6mod 8]
S[a7, j+7mod 8]













where S : {0,1}8 −→ {0,1}8 denotes the S-box operation.

The matrix multiplication can be interpreted as a linear combination of all eight column
vectors:













d0, j
d1, j
d2, j
d3, j
d4, j
d5, j
d6, j
d7, j













=













02
01
06
08
07
05
01
01













S[a0, j]⊕













01
02
01
06
08
07
05
01













S[a0, j]⊕ . . .⊕













01
06
08
07
05
01
01
02













S[a0, j+7mod 8]

We define now eight T -tables: T0,T1, . . . ,T7:

T0[α] =













02
01
06
08
07
05
01
01













S[α], T1[α] =













01
02
01
06
08
07
05
01













S[α] . . . T7[α] =













01
06
08
07
05
01
01
02













S[α].













d0, j
d1, j
d2, j
d3, j
d4, j
d5, j
d6, j
d7, j













= T0[a0, j mod 8]⊕T1[a1, j+ 1mod 8]⊕T1[a1, j+ 2mod 8]⊕ . . .

⊕T0[a0, j+ 7mod 8].

All operations are 64-bit XOR operations that can be implemented quite efficiently on
64-bit platforms. Unlike AES, we do not require decryption support, which makes the
implementation footprints smaller.

120

32-Bit Platforms

By splitting the 64-bit look-up tables, T0, . . . ,T7, into 32-bit chunks we take presumably
about twice the time for a MINI-ROUND as compared to the 64-bit implementation, i.e.,
the speed linearly scales down with the bandwidth available on a specific platform.

Specific Remarks for 8-Bit Platforms

The performance on 8-bit processors is an important issue, since most smart cards with
cryptocraphic applications have such a processor. There are several options for im-
plementing TWISTER, depending on whether the requirements demand for minimum
space (i.e., no tables can be stored) or maximum speed. If minimum space is required,
then the multiplication of two elements in GF(28) has to be performed in software and
can not be stored as a lookup table. There are three possible options of how to handle
lookup tables for the simple field multiplication. First, if no memory is available the
operations have to be computed instantly without any table lookups. Second, if there is
only little memory on the devices such that these tables for multiplication can be stored
and third, if the devices have plenty of memory, we can even store our full optimized
lookup tables. Specific details for such issues can be found in [40, Chapter 4.1.1]. If
space limitations is not an issue, the technique for implementing TWISTER via lookup-
tables should be chosen as discussed in this case, if there is no conflict with the word
size in the data path. As nearly all of the operations scale linearly down (i.e., a 64-bit
XOR can be easily implemented via 8 times an 8-bit XOR) we simply have the running
time of 8 times running time on 64-bit.

Dedicated Hardware

TWISTER is suited to be implemented in dedicated hardware. There are several pos-
sible trade-offs between chip area and speed. Because the implementation in software
on general-purpose processors is already fast, the need for hardware implementation is
very probably limited to very specific cases like:

1. Extreme high-speed chips with no area restrictions: the T -tables can be hard-
wired and the XOR operations can be conducted in parallel.

2. Compact coprocessors on smart cards, there can either be only the S-box hard-
wired or, additionally (and if enough memory is available) the T -tables generated
at runtime.

121

Cryptanalysis and Design of Hash Functions

Decomposition of the S-box

As we use the Rijndael S-box, we can assemble it using two transformations:

S[α] = f (g(α)),

where g(α) is the transformation

α → α−1 in GF(28)

and f (α) is an affine transformation.

The problem of designing efficient circuits for inversion in finite field has been studien
extensively before; e.g., by C. Paar and M. Rosner in [123] or, for a short summary, in
[40].

Performance Measurements

TWISTER was especially designed with 64-platforms in mind by making it possible to
aggregate 8 times an 8-bit table lookup into one single 64-bit table lookup. The follow-
ing performance measurements were conducted for 32-bit and 64-bit measurements:

Processor: Core2Duo T7300, 2 MB L2 Cache

Clock Speed: 2000 MHz

Memory: 2048 MB

Operating System: Linux, GNU Debian Lenny, Kernel 2.6.26-1 x64

Compiler: GCC 4.3, Optimization settings: -Os

For comparison, performance measurement results for SHA2 on the this platform are
given in the following table.5

Table 5.2: Performance comparison of TWISTER and SHA-2
Algorithmn Hash size (in bit) Platform Time (in cycles/byte)

SHA-256 256 64-bit 20.1
SHA-512 512 64-bit 13.1

TWISTER-224/256 224/256 64-bit 15.8
TWISTER-384/512 384/512 64-bit 17.5

SHA-256 256 32-bit 29.3
SHA-512 512 32-bit 55.2

TWISTER-224/256 224/256 32-bit 35.8
TWISTER-384/512 384/512 32-bit 39.6

5The reference source code for SHA-2 is taken from the Linux, GNU Debian Lenny, Kernel 2.6.26-1
x64, OpenSSL version: 0.98 implementation.

122

Chapter 6

Summary and Conclusions

This thesis focuses on cryptanalysis of various kinds of block ciphers and hash func-
tions. We have shown flaws in a broad range of block ciphers, which outlines structural
weaknesses. We presented some analyses of the building blocks of several hash func-
tions and outlined some flaws of them. Some of these internal building blocks are
shown to be broken in their use for encryption but remain secure as a component for
a compression function of a hash function. This is for example the case for HAS-160,
where the hash function remains still unbroken but the compression function used as
a block cipher is not. We also introduced a new attack method for hash functions. Fi-
nally, we proposed a new hash function for the SHA-3 competition, which is called
TWISTER.

To summarize we obtained the following results:

• the first known attack on reduced round SHACAL-2 which works with very little
memory,

• attacks on reduced-round variant of the block ciphers AES-192, AES-256 and
ARIA,

• the first known attack on the full Tiger in encryption mode,

• the first known attack on 77-round HAS-160 in encryption mode,

• a new attack method called slide attacks on a class of hash functions,

• a new proposal for the SHA-3 competition called TWISTER.

The designers of block ciphers and hash functions should consider the attacks pre-
sented in this thesis to make future constructions more secure against these kinds of

123

Summary and Conclusions

attacks. As shown by the presented attacks, cryptographic primitives can be weak in
one scenario and strong in another one. Therefore, cryptographic primitives have to be
designed keeping the scenario of application in mind.

Further research should deal with the application of our new attack to other hash func-
tions. It might be possible to adopt more attacks, which are well studied in a block
cipher scenario to hash functions. For example, one should try to combine the slide
attack with other attacks to increase the efficiency of our attack on hash functions.

There are many improvements, which can be applied based on the TWISTER hash
function. If one can find good MDS-matrixes of size 16×16 the TWISTER-512 design
could beware more consistent compared with the TWISTER-256 design. Also a good
way for parallel versions of TWISTER could be approached.

The main results in this thesis have been published in [34, 50, 51, 52, 53, 56, 60, 64,
61, 62, 47, 72]. Other results in symmetric cryptography that are not considered in this
thesis and have been published during my studies, can be found in [58, 59, 63].

124

List of Publications

Lecture Notes in Computer Science

1. Michael Gorski, Thomas Peyrin and Stefan Lucks, Slide Attacks on a Class of
Hash Functions. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of
Lecture Notes in Computer Science, pages 143 – 160. Springer, 2008.

2. Michael Gorski and Stefan Lucks, New Related-Key Boomerang Attacks on
AES. In Chowdhury et al., editors, Progress in Cryptology – INDOCRYPT 2008,
volume 5365 of Lecture Notes in Computer Science, pages 266 – 278, Springer,
2008.

3. Ewan Fleischmann, Christian Forler, Michael Gorski and Stefan Lucks, Twister
– A Framework for Secure and Fast Hash Functions. In Bao et al., editors, Infor-
mation Security Practice and Experience, 5th International Conference, ISPEC
2009, volume 5451 of Lecture Notes in Computer Science, pages 257 – 273,
Springer, 2009.

4. Ewan Fleischmann, Michael Gorski and Stefan Lucks, Memoryless Related-Key
Boomerang Attack on 39-Round SHACAL-2. In Bao et al., editors, Information
Security Practice and Experience, 5th International Conference, ISPEC 2009,
volume 5451 of Lecture Notes in Computer Science, pages 310 – 323, Springer,
2009.

5. Ewan Fleischmann, Michael Gorski and Stefan Lucks, Memoryless Related-Key
Boomerang Attack on the Full Tiger Block Cipher. In Bao et al., editors, Infor-
mation Security Practice and Experience, 5th International Conference, ISPEC
2009, volume 5451 of Lecture Notes in Computer Science, pages 298 – 309,
Springer, 2009.

6. Ewan Fleischmann, Michael Gorski and Stefan Lucks, On the Security of Tandem-
DM. In O. Dunkelman, editor, Proceedings of Fast Software Encryption 2009,

125

List of Publications

volume 5665 of Lecture Notes in Computer Science, pages 84 – 103, Springer,
2009.

7. Ewan Fleischmann, Michael Gorski and Stefan Lucks, Attacking 9 and 10
Rounds of AES-256. In C. Boyd and J. González Nieto, editors, ACISP, volume
5594 of Lecture Notes in Computer Science, pages 60 – 72, Springer, 2009.

8. Ewan Fleischmann, Michael Gorski and Stefan Lucks, Security of Cyclic Dou-
ble Block Length Hash Functions. In M. G. Parker, editor, Proceedings of Cryp-
tography and Coding, 12th IMA International Conference 2009, volume 5921 of
Lecture Notes in Computer Science, pages 153 – 175, Springer, 2009.

9. Orr Dunkelmann, Ewan Fleischmann, Michael Gorski and Stefan Lucks, Related-
Key Rectangle Attack of the Full 80-Round HAS-160 Encryption Mode. In R.
Roy and N. Sendrier, editors, Progress in Cryptology – INDOCRYPT 2009, vol-
ume 5922 of Lecture Notes in Computer Science, pages 157 – 168, Springer,
2009.

10. Ewan Fleischmann, Michael Gorski, Jan-Hendrik Hühne and Stefan Lucks, Key
Recovery Attack on full GOST Block Cipher with Negligible Time and Memory.
Procedings of WEWoRC 2009, to appear in Lecture Notes in Computer Science.

11. Ewan Fleischmann, Michael Gorski and Stefan Lucks, Some observations on
Indifferentiability. Information Security and Privacy, 15th Australasian Confer-
ence, ACISP 2010, to appear in Lecture Notes in Computer Science.

12. Ewan Fleischmann, Christian Forler, Michael Gorski and Stefan Lucks, Col-
lision Resistant Double-Length Hashing. The 4th International Conference on
Provable Security, ProvSec 2010, to appear in Lecture Notes in Computer Sci-
ence.

13. Ewan Fleischmann, Christian Forler, Michael Gorski and Stefan Lucks, New
Boomerang Attacks on ARIA. Progress in Cryptology – INDOCRYPT 2010, to
appear in Lecture Notes in Computer Science.

International Publications in Journals

1. Ewan Fleischmann, Christian Forler, Michael Gorski and Stefan Lucks, Twister
– A Framework for Secure and Fast Hash Functions. International Journal of
Applied Cryptography, ISSN: 1753-0563, 2010. (to appear)

126

IACR ePrint Reports

1. Michael Gorski and Stefan Lucks, New Related-Key Boomerang Attacks on AES
(Extended Version), Cryptographic ePrint, 2008/263.

2. Ewan Fleischmann, Christian Forler and Michael Gorski, Classification of SHA-3
Candidates, Cryptology ePrint, 2008/511.

3. Ewan Fleischmann, Michael Gorski and Stefan Lucks, On the Security of Tandem-
DM (Extended Version), Cryptology ePrint, 2009/054.

4. Ewan Fleischmann, Michael Gorski and Stefan Lucks, Attacking Reduced Rounds
of the ARIA Block Cipher, Cryptology ePrint, 2009/334.

5. Ewan Fleischmann, Christian Forler and Michael Gorski, Some Observations
on SHAMATA, Cryptology ePrint, 2008/501.

6. Ewan Fleischmann, Christian Forler and Michael Gorski, Classification of the
SHA-3 Candidates, Cryptology ePrint, 2008/511.

7. Ewan Fleischmann, Michael Gorski and Stefan Lucks, Cryptanalysis of the full
80-Round HAS-160 Encryption Mode, Cryptology ePrint, 2009/335.

International Conferences/Workshops without Proceed-
ings

1. Ewan Fleischmann, Christian Forler and Michael Gorski, The Twister Hash
Function Family, Submission for the NIST SHA-3 Competition. Presented at
NIST first hash function workshop, Leuven, 2009.

127

128

Bibliography

[1] Ross J. Anderson and Eli Biham. TIGER: A Fast New Hash Function. In
Gollmann [70], pages 89–97.

[2] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch,
John Kelsey, Adi Shamir, and Sébastien Zimmer. Second Preimage Attacks on
Dithered Hash Functions. In Smart [142], pages 270–288.

[3] Feng Bao, Hui Li, and Guilin Wang, editors. Information Security Practice
and Experience, 5th International Conference, ISPEC 2009, Xi’an, China, April
13-15, 2009, Proceedings, volume 5451 of Lecture Notes in Computer Science.
Springer, 2009.

[4] Mihir Bellare. New Proofs for NMAC and HMAC: Security without Collision-
Resistance. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes
in Computer Science, pages 602–619. Springer, 2006.

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. In Neal Koblitz, editor, CRYPTO, volume 1109 of
Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

[6] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In ACM Conference on Computer and Com-
munications Security, pages 62–73, 1993.

[7] Daniel J. Bernstein and Peter Schwabe. New AES Software Speed Records. In
Chowdhury et al. [34], pages 322–336.

[8] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Radio-
Gatún, a belt-and-mill hash function. Presented at Second Cryptographic Hash
Workshop, Santa Barbara, 2006. Available online at http://radiogatun.
noekeon.org/.

129

Bibliography

[9] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge
Functions. Ecrypt Hash Workshop, Barcelona, 2007. Available online at http:
//gva.noekeon.org/papers/bdpv07.html.

[10] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the
Indifferentiability of the Sponge Construction. In Smart [142], pages 181–197.

[11] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge
Functions, presented at ECRYPT Hash Workshop, Barcelona, 2007.

[12] Eli Biham. New Types of Cryptoanalytic Attacks Using related Keys (Extended
Abstract). In Tor Helleseth, editor, EUROCRYPT 1993, volume 765 of Lecture
Notes in Computer Science, pages 398–409. Springer, 1993.

[13] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Re-
duced to 31 Rounds Using Impossible Differentials. In Jacques Stern, editor,
EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer Science, pages
12–23. Springer, 1999.

[14] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Franklin [66], pages
290–305.

[15] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Cramer [38], pages
36–57.

[16] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rectan-
gling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of Lecture Notes in Computer Science, pages 340–357. Springer, 2001.

[17] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang and
Rectangle Attacks. In Cramer [38], pages 507–525.

[18] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Impossible Dif-
ferential Attacks on 8-Round AES-192. In David Pointcheval, editor, CT-
RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 21–33.
Springer, 2006.

[19] Eli Biham, Orr Dunkelman, and Nathan Keller. Improved Slide Attacks. In
Biryukov [23], pages 153–166.

[20] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In Menezes and Vanstone [112], pages 2–21.

[21] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-Round
DES. In Ernest F. Brickell, editor, CRYPTO 1992, volume 740 of Lecture Notes
in Computer Science, pages 487–496. Springer, 1992.

130

[22] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

[23] Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop,
FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Pa-
pers, volume 4593 of Lecture Notes in Computer Science. Springer, 2007.

[24] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi
Shamir. Key Recovery Attacks of Practical Complexity on AES-256 Variants
with up to 10 Rounds. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of
Lecture Notes in Computer Science, pages 299–319. Springer, 2010.

[25] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full
AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912
of Lecture Notes in Computer Science, pages 1–18. Springer, 2009.

[26] Alex Biryukov and Dmitry Khovratovich. Feasible Attack on the 13-round AES-
256. Cryptology ePrint Archive, Report 2010/257, 2010. http://eprint.
iacr.org/.

[27] Alex Biryukov and David Wagner. Slide Attacks. In Knudsen [96], pages 245–
259.

[28] Alex Biryukov and David Wagner. Advanced Slide Attacks. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science,
pages 589–606. Springer, 2000.

[29] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis
of the Block-Cipher-Based Hash-Function Constructions from PGV. In Yung
[156], pages 320–335.

[30] Andrey Bogdanov. Linear Slide Attacks on the KeeLoq Block Cipher. In Dingyi
Pei, Moti Yung, Dongdai Lin, and Chuankun Wu, editors, Inscrypt, volume 4990
of Lecture Notes in Computer Science, pages 66–80. Springer, 2007.

[31] Gilles Brassard, editor. Advances in Cryptology - CRYPTO 1989, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer Science.
Springer, 1990.

[32] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, CRYPTO 1998, volume 1462 of Lecture Notes in Computer
Science, pages 56–71. Springer, 1998.

131

Bibliography

[33] Hong-Su Cho, Sangwoo Park, Soo Hak Sung, and Aaram Yun. Collision Search
Attack for 53-Step HAS-160. In Min Surp Rhee and Byoungcheon Lee, editors,
ICISC 2006, volume 4296 of Lecture Notes in Computer Science, pages 286–
295. Springer, 2006.

[34] Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors. Progress
in Cryptology - INDOCRYPT 2008, 9th International Conference on Cryptology
in India, Kharagpur, India, December 14-17, 2008. Proceedings, volume 5365
of Lecture Notes in Computer Science. Springer, 2008.

[35] Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer
Science. Springer, 2009.

[36] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damgård Revisited: How to Construct a Hash Function. In Shoup [141],
pages 430–448.

[37] Nicolas Courtois, Gregory V. Bard, and David Wagner. Algebraic and Slide
Attacks on KeeLoq. In Nyberg [116], pages 97–115.

[38] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of
Lecture Notes in Computer Science. Springer, 2005.

[39] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. NIST AES, Avail-
able online at http://csrc.nist.gov/encryption/aes/round2/
r2algs.htm, 1999.

[40] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[41] Ivan Damgård. A Design Principle for Hash Functions. In Brassard [31], pages
416–427.

[42] Richared D. Deam. Formal Aspects of Mobile Code Security. Ph.D. thesis,
Princeton University, 1999.

[43] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on
8-Round AES. In Nyberg [116], pages 116–126.

[44] Hans Dobbertin. Cryptanalysis of MD4. Journal Cryptology, 11(4):253–271,
1998.

132

[45] Ali Doganaksoy, Onur Ozen, and Kerem Varıcı. On the Security of the Encryp-
tion Mode of Tiger. private communications.

[46] Orr Dunkelman, editor. Fast Software Encryption, 16th International Workshop,
FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers,
volume 5665 of Lecture Notes in Computer Science. Springer, 2009.

[47] Orr Dunkelman, Ewan Fleischmann, Michael Gorski, and Stefan Lucks.
Related-Key Rectangle Attack of the Full HAS-160 Encryption Mode. In Bimal
Roy and Nicolas Sendrier, editors, INDOCRYPT 2009, volume 5922 of Lecture
Notes in Computer Science, pages 157–168. Springer, 2009.

[48] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks
on 8-round AES. Cryptology ePrint Archive, Report 2010/322, 2010. http:
//eprint.iacr.org/.

[49] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In
Schneier [137], pages 213–230.

[50] Ewan Fleischmann, Christian Forler, and Michael Gorski. The TWISTER Hash
Function Family. Available online at http://csrc.nist.gov/groups/
ST/hash/sha-3/.

[51] Ewan Fleischmann, Christian Forler, and Michael Gorski. The TWISTER Hash
Function Family. Available online at http://www.twister-hash.com.

[52] Ewan Fleischmann, Christian Forler, and Michael Gorski. Classification of the
SHA-3 Candidates. Cryptology ePrint Archive, Report 2008/511, 2008. Avail-
able online at http://eprint.iacr.org/.

[53] Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks.
TWISTER – A Framework for Secure and Fast Hash Functions. In Bao et al.
[3], pages 257–273.

[54] Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks. Secu-
rity of Cyclic Double Block Length Hash Functions. Cryptography and Coding,
12th IMA International Conference, Cirencester (UK), 2009, M. G. Parker (Ed.)
LNCS 5921, pages 153–175, Springer 2009.

[55] Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks. New
Boomerang Attacks on ARIA. In INDOCRYPT 2010, 2010, to appear.

[56] Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks.
TWISTER - A Framework for Secure and Fast Hash Functions. International
Journal of Applied Cryptography, 2010, to appear.

133

Bibliography

[57] Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks. Colli-
sion Resistant Double-Length Hashing. In ProvSec 2010, to appear in Lecture
Notes in Computer Science.

[58] Ewan Fleischmann and Michael Gorski. Some Observations on SHAMATA.
Cryptology ePrint Archive, Report 2008/501, 2008. http://eprint.

iacr.org/.

[59] Ewan Fleischmann, Michael Gorski, Jan-Hendrik Hühne, and Stefan Lucks. Key
Recovery Attack on full GOST Block Cipher with Negligible Time and Mem-
ory. WEWoRC 2009, 2009, to appear in Lecture Notes in Computer Science.

[60] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Attacking 9 and 10
Rounds of AES-256. In C. Boyd and J. González Nieto, editors, ACISP 2009,
volume 5594 of Lecture Notes in Computer Science, pages 60–72. Springer,
2009.

[61] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Memoryless Related-
Key Boomerang Attack on 39-Round SHACAL-2. In Bao et al. [3], pages 310–
323.

[62] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Memoryless Related-
Key Boomerang Attack on the Full Tiger Block Cipher. In Bao et al. [3], pages
298–309.

[63] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. On the Security of
Tandem-DM. In Dunkelman [46], pages 84–103.

[64] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Attacking Reduced
Rounds of the ARIA Block Cipher. WeWORC, 2009, to appear in Lecture Notes
in Computer Science.

[65] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Some observations on
Indifferentiability. In ACISP 2010, to appear in Lecture Notes in Computer
Science.

[66] Matthew K. Franklin, editor. Advances in Cryptology - CRYPTO 2004, 24th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer
Science. Springer, 2004.

[67] Soichi Furuya. Slide Attacks with a Known-Plaintext Cryptanalysis. In Kwangjo
Kim, editor, ICISC 2001, volume 2288 of Lecture Notes in Computer Science,
pages 214–225. Springer, 2001.

134

[68] Henri Gilbert and Helena Handschuh, editors. Fast Software Encryption: 12th
International Workshop, FSE 2005, Paris, France, February 21-23, 2005, Re-
vised Selected Papers, volume 3557 of Lecture Notes in Computer Science.
Springer, 2005.

[69] Henri Gilbert and Marine Minier. A collision attack on 7 rounds of Rijndael. In
The Third AES Candidate Conference, 2000.

[70] Dieter Gollmann, editor. Fast Software Encryption, Third International Work-
shop, Cambridge, UK, February 21-23, 1996, Proceedings, volume 1039 of
Lecture Notes in Computer Science. Springer, 1996.

[71] Michael Gorski and Stefan Lucks. New Related-Key Boomerang Attacks on
AES. In Chowdhury et al. [34], pages 266–278.

[72] Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide Attacks on a Class of
Hash Functions. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of
Lecture Notes in Computer Science, pages 143–160. Springer, 2008.

[73] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced
Meet-in-the-Middle Preimage Attacks: First Results on Full Tiger, and Im-
proved Results on MD4 and SHA-2. Cryptology ePrint Archive, Report
2010/016, 2010. http://eprint.iacr.org/.

[74] Mike Hamburg. Accelerating AES with Vector Permute Instructions. In Clavier
and Gaj [35], pages 18–32.

[75] Helena Handschuh and David Naccache. SHACAL: A Family of Block Ciphers.
Submission to the NESSIE project, 2002. Available online at http://www.
cosic.esat.kuleuven.be/nessie/tweaks.html.

[76] Seokhie Hong and Tetsu Iwata, editors. Fast Software Encryption, 17th In-
ternational Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised
Selected Papers, volume 6147 of Lecture Notes in Computer Science. Springer,
2010.

[77] Seokhie Hong, Jongsung Kim, Guil Kim, Jaechul Sung, Changhoon Lee, and
Sangjin Lee. Impossible Differential Attack on 30-Round SHACAL-2. In
Thomas Johansson and Subhamoy Maitra, editors, INDOCRYPT 2003, volume
2904 of Lecture Notes in Computer Science, pages 97–106. Springer, 2003.

[78] Seokhie Hong, Jongsung Kim, Sangjin Lee, and Bart Preneel. Related-Key
Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192. In Gilbert
and Handschuh [68], pages 368–383.

135

Bibliography

[79] Sebastiaan Indesteege and Bart Preneel. Preimages for Reduced-Round Tiger.
In Stefan Lucks, Ahmad-Reza Sadeghi, and Christopher Wolf, editors, WE-
WoRC 2007, volume 4945 of Lecture Notes in Computer Science, pages 90–99.
Springer, 2007.

[80] Takanori Isobe and Kyoji Shibutani. Preimage Attacks on Reduced Tiger and
SHA-2. In Dunkelman [46], pages 139–155.

[81] Goce Jakimoski and Yvo Desmedt. Related-Key Differential Cryptanalysis of
192-bit Key AES Variants. In Mitsuru Matsui and Robert J. Zuccherato, ed-
itors, Selected Areas in Cryptography 2003, volume 3006 of Lecture Notes in
Computer Science, pages 208–221. Springer, 2003.

[82] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cas-
caded Constructions. In Franklin [66], pages 306–316.

[83] Emilia Käsper and Peter Schwabe. Faster and Timing-Attack Resistant AES-
GCM. In Clavier and Gaj [35], pages 1–17.

[84] Selçuk Kavut and Melek D. Yücel. Slide Attack on Spectr-H64. In Alfred
Menezes and Palash Sarkar, editors, INDOCRYPT 2002, volume 2551 of Lecture
Notes in Computer Science, pages 34–47. Springer, 2002.

[85] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nos-
tradamus Attack. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of Lecture Notes in Computer Science, pages 183–200. Springer, 2006.

[86] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang At-
tacks Against Reduced-Round MARS and Serpent. In Schneier [137], pages
75–93.

[87] John Kelsey and Stefan Lucks. Collisions and Near-Collisions for Reduced-
Round Tiger. In Robshaw [133], pages 111–125.

[88] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions
for Much Less than 2n Work. In Cramer [38], pages 474–490.

[89] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires,
9(1):5–38, 1883.

[90] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-Key Rectangle Attacks
on Reduced AES-192 and AES-256. In Biryukov [23], pages 225–241.

[91] Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, and Dowon Hong. The
Related-Key Rectangle Attack — Application to SHACAL-1. In Wang et al.
[147], pages 123–136.

136

[92] Jongsung Kim, Guil Kim, Sangjin Lee, Jongin Lim, and Jung Hwan Song.
Related-Key Attacks on Reduced Rounds of SHACAL-2. In Anne Canteaut
and Kapalee Viswanathan, editors, INDOCRYPT 2004, volume 3348 of Lecture
Notes in Computer Science, pages 175–190. Springer, 2004.

[93] Lars R. Knudsen. Cryptanalysis of LOKI91. In Jennifer Seberry and Yuliang
Zheng, editors, ASIACRYPT 1992, volume 718 of Lecture Notes in Computer
Science, pages 196–208. Springer, 1992.

[94] Lars R. Knudsen. Practically Secure Feistel Cyphers. In Ross J. Anderson,
editor, FSE 1993, volume 809 of Lecture Notes in Computer Science, pages
211–221. Springer, 1993.

[95] Lars R. Knudsen. Truncated and Higher Order Differentials. In Bart Preneel,
editor, FSE 1994, volume 1008 of Lecture Notes in Computer Science, pages
196–211. Springer, 1994.

[96] Lars R. Knudsen, editor. Fast Software Encryption, 6th International Workshop,
FSE 1999, Rome, Italy, March 24-26, 1999, Proceedings, volume 1636 of Lec-
ture Notes in Computer Science. Springer, 1999.

[97] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl
Hash Functions. In Biryukov [23], pages 39–57.

[98] Kaoru Kurosawa, editor. Advances in Cryptology - ASIACRYPT 2007, 13th In-
ternational Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume
4833 of Lecture Notes in Computer Science. Springer, 2007.

[99] Daesung Kwon, Jaesung Kim, Sangwoo Park, Soo Hak Sung, Yaekwon Sohn,
Jung Hwan Song, Yongjin Yeom, E-Joong Yoon, Sangjin Lee, Jaewon Lee,
Seongtaek Chee, Daewan Han, and Jin Hong. New Block Cipher: ARIA. In
Jong In Lim and Dong Hoon Lee, editors, ICISC 2003, volume 2971 of Lecture
Notes in Computer Science, pages 432–445. Springer, 2003.

[100] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New Impossible
Differential Attacks on AES. In Chowdhury et al. [34], pages 279–293.

[101] Jiqiang Lu and Jongsung Kim. Attacking 44 Rounds of the SHACAL-2
Block Cipher Using Related-Key Rectangle Cryptanalysis. IEICE Transactions,
91-A(9):2588–2596, 2008.

[102] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Related-Key
Rectangle Attack on 42-Round SHACAL-2. In Sokratis K. Katsikas, Javier
Lopez, Michael Backes, Stefanos Gritzalis, and Bart Preneel, editors, ISC 2006,

137

Bibliography

volume 4176 of Lecture Notes in Computer Science, pages 85–100. Springer,
2006.

[103] Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bi-
mal K. Roy, editor, ASIACRYPT 2005, volume 3788 of Lecture Notes in Com-
puter Science, pages 474–494. Springer, 2005.

[104] Stefan Lucks. Attacking Seven Rounds of Rijndael under 192-bit and 256-bit
Keys. In AES Candidate Conference, pages 215–229, Springer, 2000.

[105] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting
Codes, North-Holland, 1977.

[106] Florian Mendel, Bart Preneel, Vincent Rijmen, Hirotaka Yoshida, and Dai
Watanabe. Update on Tiger. In Rana Barua and Tanja Lange, editors,
INDOCRYPT 2006, volume 4329 of Lecture Notes in Computer Science, pages
63–79. Springer, 2006.

[107] Florian Mendel, Christian Rechberger, and Martin Schläffer. Cryptanalysis of
Twister. In Michel Abdalla and David Pointcheval, editors, Applied Cryptog-
raphy and Network Security 2009, Lecture Notes in Computer Science, pages
342–353. Springer, 2009. in press.

[108] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren Steffen
Thomsen. The Rebound Attack: Cryptanalysis of Reduced Whirlpool and
Grøstl. In Dunkelman [46], pages 260–276.

[109] Florian Mendel and Vincent Rijmen. Colliding Message Pair for 53-Step HAS-
160. In Nam and Rhee [115], pages 324–334.

[110] Florian Mendel and Vincent Rijmen. Cryptanalysis of the Tiger Hash Function.
In Kurosawa [98], pages 536–550.

[111] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
applied cryptography. CRC, 1997.

[112] Alfred J. Menezes and Scott A. Vanstone, editors. Advances in Cryptology -
CRYPTO 1990, 10th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture
Notes in Computer Science. Springer, 1991.

[113] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [31], pages
428–446.

138

[114] Nicky Mouha, Gautham Sekar, Jean-Philippe Aumasson, Thomas Peyrin,
Søren S. Thomsen, Meltem Sönmez Turan, and Bart Preneel. Cryptanalysis
of the ESSENCE Family of Hash Functions. In Inscrypt, 2009, to appear in
Lecture Notes in Computer Science.

[115] Kil-Hyun Nam and Gwangsoo Rhee, editors. Information Security and Cryp-
tology - ICISC 2007, 10th International Conference, Seoul, Korea, November
29-30, 2007, Proceedings, volume 4817 of Lecture Notes in Computer Science.
Springer, 2007.

[116] Kaisa Nyberg, editor. Fast Software Encryption, 15th International Workshop,
FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Pa-
pers, volume 5086 of Lecture Notes in Computer Science. Springer, 2008.

[117] National Bureau of Standards. FIPS 46: Data Encryption Standard. 1977.

[118] National Institute of Standards and Technology. FIPS 180-0: Secure Hash Stan-
dard. 1993. Available online at http://csrc.nist.gov.

[119] National Institute of Standards and Technology. FIPS 180-1: Secure Hash Stan-
dard. 1995. Available online at http://csrc.nist.gov.

[120] National Institute of Standards and Technology. FIPS 180-2: Secure Hash Stan-
dard. 2002. Available online at http://csrc.nist.gov.

[121] National Institute of Standards and Technology. Cryptographic Hash
Project. Available online at http://csrc.nist.gov/groups/ST/

hash/index.html.

[122] Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright. Fast software
aes encryption. In Hong and Iwata [76], pages 75–93.

[123] Christof Paar and Martin Rosner. Comparison of arithmetic architectures for
reed-solomon decoders in reconfigurable hardware. In FCCM 1997, pages 219–
225. IEEE Computer Society, 1997.

[124] Raphael Chung-Wei Phan. Impossible differential cryptanalysis of 7-round Ad-
vanced Encryption Standard (AES). Information Processing Letters, 91(1):33–
38, 2004.

[125] Raphael Chung-Wei Phan. Advanced Slide Attacks Revisited: Realigning Slide
on DES. In Ed Dawson and Serge Vaudenay, editors, Mycrypt 2005, volume
3715 of Lecture Notes in Computer Science, pages 263–276. Springer, 2005.

139

Bibliography

[126] Raphael Chung-Wei Phan and Soichi Furuya. Sliding Properties of the DES
Key Schedule and Potential Extensions to the Slide Attacks. In Pil Joong Lee
and Chae Hoon Lim, editors, ICISC 2002, volume 2587 of Lecture Notes in
Computer Science, pages 138–148. Springer, 2002.

[127] Raphael Chung-Wei Phan and M.U. Siddiqi. Generalized Impossible Differ-
entials of the Advanced Encryption Standard (AES). IEE Electronics Letters,
37(14):896–898, 2001.

[128] Bart Preneel and Paul C. van Oorschot. On the Security of Two MAC Algo-
rithms. In Ueli M. Maurer, editor, EUROCRYPT 1996, volume 1070 of Lecture
Notes in Computer Science, pages 19–32. Springer, 1996.

[129] Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is Collision
Search. New Results and Applications to DES. In Brassard [31], pages 408–
413.

[130] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes,
editor, CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages
58–71. Springer, 2005.

[131] Ron Rivest. The MD4 Message Digest Algorithm. In Menezes and Vanstone
[112], pages 303–311.

[132] Ron Rivest. The MD5 Message-Digest Algorithm. Request for Comments:
1321, Available online at http://tools.ietf.org/html/rfc1321, April 1992.

[133] Matthew J. B. Robshaw, editor. Fast Software Encryption, 13th International
Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Pa-
pers, volume 4047 of Lecture Notes in Computer Science. Springer, 2006.

[134] Peng Zhang Ruilin Li, Bing Sun and Chao Li. New Impossible Differential
Cryptanalysis of ARIA. Cryptology ePrint Archive, Report 2008/227, 2008.
Available online at http://eprint.iacr.org/.

[135] Markku-Juhani Olavi Saarinen. Cryptanalysis of Block Ciphers Based on
SHA-1 and MD5. In Thomas Johansson, editor, FSE 2003, volume 2887 of
Lecture Notes in Computer Science, pages 36–44. Springer, 2003.

[136] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. Password Recovery
on Challenge and Response: Impossible Differential Attack on Hash Function.
In Serge Vaudenay, editor, AFRICACRYPT 2008, volume 5023 of Lecture Notes
in Computer Science, pages 290–307. Springer, 2008.

140

[137] Bruce Schneier, editor. Fast Software Encryption, 7th International Workshop,
FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978
of Lecture Notes in Computer Science. Springer, 2001.

[138] Bruce Schneier and John Kelsey. Unbalanced Feistel Networks and Block Ci-
pher Design. In Gollmann [70], pages 121–144.

[139] Claude Shannon. Communication theory of secrecy systems. Bell Systems Tech-
nical Journal, 28(4):656–715, 1949.

[140] YongSup Shin, Jongsung Kim, Guil Kim, Seokhie Hong, and Sangjin Lee.
Differential-Linear Type Attacks on Reduced Rounds of SHACAL-2. In Wang
et al. [147], pages 110–122.

[141] Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science.
Springer, 2005.

[142] Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008, 27th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of
Lecture Notes in Computer Science. Springer, 2008.

[143] Telecommunications Technology Association. Hash Function Standard Part 2:
Hash Function Algorithm Standard (HAS-160). TTAS.KO-12.0011/R1, Decem-
ber 2000.

[144] David Wagner. The Boomerang Attack. In Knudsen [96], pages 156–170.

[145] David Wagner. A Generalized Birthday Problem. In Yung [156], pages 288–303.

[146] Gaoli Wang. Related-Key Rectangle Attack on 43-Round SHACAL-2. In
Ed Dawson and Duncan S. Wong, editors, ISPEC 2007, volume 4464 of Lecture
Notes in Computer Science, pages 33–42. Springer, 2007.

[147] Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors. Information
Security and Privacy: 9th Australasian Conference, ACISP 2004, Sydney, Aus-
tralia, July 13-15, 2004. Proceedings, volume 3108 of Lecture Notes in Com-
puter Science. Springer, 2004.

[148] Lei Wang and Yu Sasaki. Finding Preimages of Tiger Up to 23 Steps. In Hong
and Iwata [76], pages 116–133.

[149] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Cramer [38], pages 1–18.

141

Bibliography

[150] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Shoup [141], pages 17–36.

[151] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Cramer [38], pages 19–35.

[152] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES. In
IEEE Symposium on Security and Privacy, pages 88–90, 1984.

[153] Wenling Wu, Wentao Zhang, and Dengguo Feng. Impossible Differential Crypt-
analysis of Reduced-Round ARIA and Camellia. Journal of Computer Science
and Technology, 22(3):449–456, 2007.

[154] Xun Yi, Shi Xing Cheng, Xiao Hu You, and Kwok Yan Lam. A Method for
Obtaining Cryptographically Strong 8x8 S-boxes. In IEEE Global Telecommu-
nications Conference, GLOBECOM 1997, Volume 2, pages 689–693, 1997.

[155] Aaram Yun, Soo Hak Sung, Sangwoo Park, Donghoon Chang, Seokhie Hong,
and Hong-Su Cho. Finding Collision on 45-Step HAS-160. In Dongho Won and
Seungjoo Kim, editors, ICISC 2005, volume 3935 of Lecture Notes in Computer
Science, pages 146–155. Springer, 2005.

[156] Moti Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 18-
22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer Science.
Springer, 2002.

[157] Wentao Zhang, Wenling Wu, and Dengguo Feng. New Results on Impossible
Differential Cryptanalysis of Reduced AES. In Nam and Rhee [115], pages
239–250.

[158] Wentao Zhang, Wenling Wu, Lei Zhang, and Dengguo Feng. Improved Related-
Key Impossible Differential Attacks on Reduced-Round AES-192. In Eli Biham
and Amr M. Youssef, editors, Selected Areas in Cryptography 2006, volume
4356 of Lecture Notes in Computer Science, pages 15–27. Springer, 2007.

[159] Wentao Zhang, Lei Zhang, Wenling Wu, and Dengguo Feng. Related-Key
Differential-Linear Attacks on Reduced AES-192. In K. Srinathan, C. Pandu
Rangan, and Moti Yung, editors, INDOCRYPT 2007, volume 4859 of Lecture
Notes in Computer Science, pages 73–85. Springer, 2007.

142

Appendix A

The AES/TWISTER S-box

The twister S-box is taken from AES [40] which is as follows.

0x63 0x7c 0x77 0x7b 0xf2 0x6b 0x6f 0xc5
0x30 0x01 0x67 0x2b 0xfe 0xd7 0xab 0x76
0xca 0x82 0xc9 0x7d 0xfa 0x59 0x47 0xf0
0xad 0xd4 0xa2 0xaf 0x9c 0xa4 0x72 0xc0
0xb7 0xfd 0x93 0x26 0x36 0x3f 0xf7 0xcc
0x34 0xa5 0xe5 0xf1 0x71 0xd8 0x31 0x15
0x04 0xc7 0x23 0xc3 0x18 0x96 0x05 0x9a
0x07 0x12 0x80 0xe2 0xeb 0x27 0xb2 0x75
0x09 0x83 0x2c 0x1a 0x1b 0x6e 0x5a 0xa0
0x52 0x3b 0xd6 0xb3 0x29 0xe3 0x2f 0x84
0x53 0xd1 0x00 0xed 0x20 0xfc 0xb1 0x5b
0x6a 0xcb 0xbe 0x39 0x4a 0x4c 0x58 0xcf
0xd0 0xef 0xaa 0xfb 0x43 0x4d 0x33 0x85
0x45 0xf9 0x02 0x7f 0x50 0x3c 0x9f 0xa8
0x51 0xa3 0x40 0x8f 0x92 0x9d 0x38 0xf5
0xbc 0xb6 0xda 0x21 0x10 0xff 0xf3 0xd2
0xcd 0x0c 0x13 0xec 0x5f 0x97 0x44 0x17
0xc4 0xa7 0x7e 0x3d 0x64 0x5d 0x19 0x73
0x60 0x81 0x4f 0xdc 0x22 0x2a 0x90 0x88
0x46 0xee 0xb8 0x14 0xde 0x5e 0x0b 0xdb
0xe0 0x32 0x3a 0x0a 0x49 0x06 0x24 0x5c
0xc2 0xd3 0xac 0x62 0x91 0x95 0xe4 0x79
0xe7 0xc8 0x37 0x6d 0x8d 0xd5 0x4e 0xa9
0x6c 0x56 0xf4 0xea 0x65 0x7a 0xae 0x08
0xba 0x78 0x25 0x2e 0x1c 0xa6 0xb4 0xc6
0xe8 0xdd 0x74 0x1f 0x4b 0xbd 0x8b 0x8a
0x70 0x3e 0xb5 0x66 0x48 0x03 0xf6 0x0e
0x61 0x35 0x57 0xb9 0x86 0xc1 0x1d 0x9e
0xe1 0xf8 0x98 0x11 0x69 0xd9 0x8e 0x94
0x9b 0x1e 0x87 0xe9 0xce 0x55 0x28 0xdf
0x8c 0xa1 0x89 0x0d 0xbf 0xe6 0x42 0x68
0x41 0x99 0x2d 0x0f 0xb0 0x54 0xbb 0x16

Table A.1: The AES/TWISTER S-box

143

144

Index

2nd preimage resistance, 23

Advanced Encryption Standard, 33, 48
amplified boomerang attack, 16
ARIA, 26

Block Cipher
Key Insertion Function, 6
Round Function, 6

block cipher, 5
key mixing layer, 6
key schedule, 6
permutation layer, 6
subkey, 6
substitution layer, 5

boomerang attack, 12
data acquisition step, 13
filtering step, 13
key recovery step, 14

branch number, 26

collision resistance, 23
compression function, 24
Cryptography, 1

difference, 8
difference distribution table, 9
differential, 9
differential characteristic, 9
differential cryptanalysis, 8

exhaustive search, 6
expandable message, 108

general attack method

analysis step, 8
data acquisition step, 8
data filtering step, 8

GRINDAHL, 87

HAS-160, 72
hash function, 3, 23
hash value, 24

initial value, 24
iterated hash function, 24

Kerckhoffs’ principle, 7
key schedule, 6

length extension, 24

MDS, 103
MERKLE-DAMGÅRD, 24
message authentication code, 24
modes of operation, 2

preimage resistants, 23
preliminaries, 6
public key cryptography, 2

quartet, 13

random oracle, 24
Randomized Hashing, 106
rectangle attack, 17
related keys, 12
related-key boomerang attack, 19
related-key differential attack, 12
related-key rectangle attack, 22
right quartet, 14, 17

145

INDEX

S-box, 5
active, 10

secret key cryptography, 2
SHA-2, 97
SHA-3, 97
SHACAL-2, 58
slide attacks, 81

block ciphers, 82
hash functions, 83

sponge function, 81
subcipher, 12

Tiger, 66
truncated differentials, 10
TWISTER, 97

Dedicated Hardware, 121
Maxi-Round, 103
Mini-Round, 101
Performance, 119

146

