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Abstract
The nonlinear behavior of concrete can be attributed to the propagation of microcracks
within the heterogeneous internal material structure. In this thesis, a mesoscale model
is developed which allows for the explicit simulation of these microcracks. Consequently,
the actual physical phenomena causing the complex nonlinear macroscopic behavior of
concrete can be represented using rather simple material formulations.
On the mesoscale, the numerical model explicitly resolves the components of the internal
material structure. For concrete, a three-phase model consisting of aggregates, mortar
matrix and interfacial transition zone is proposed. Based on prescribed grading curves,
an efficient algorithm for the generation of three-dimensional aggregate distributions using
ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is
described using a continuum damage approach. In order to reduce spurious mesh sensitiv-
ities, introduced by the softening behavior of the matrix material, nonlocal integral-type
material formulations are applied. The propagation of cracks at the interface between
aggregates and mortar matrix is represented in a discrete way using a cohesive crack
approach. The iterative solution procedure is stabilized using a new path following con-
straint within the framework of load-displacement-constraint methods which allows for an
efficient representation of snap-back phenomena. In several examples, the influence of the
randomly generated heterogeneous material structure on the stochastic scatter of the re-
sults is analyzed. Furthermore, the ability of mesoscale models to represent size effects is
investigated.
Mesoscale simulations require the discretization of the internal material structure. Com-
pared to simulations on the macroscale, the numerical effort and the memory demand
increases dramatically. Due to the complexity of the numerical model, mesoscale simula-
tions are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous
multiscale approach is presented which allows for the incorporation of mesoscale models
within nonlinear simulations of concrete structures. In heterogeneous multiscale models,
only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale,
whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial
point in simulations with heterogeneous multiscale models is the coupling of sub-domains
discretized on different length scales. The sub-domains differ not only in the size of the
finite elements but also in the constitutive description. In this thesis, different methods for
the coupling of non-matching discretizations – constraint equations, the mortar method
and the arlequin method – are investigated and the application to heterogeneous multiscale
models is presented. Another important point is the detection of critical regions. An adap-
tive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale
is proposed. In this context, several indicators which trigger the model adaptation are
introduced. Finally, the application of the proposed adaptive heterogeneous multiscale
approach in nonlinear simulations of concrete structures is presented.
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Kurzfassung
Das nichtlineare Materialverhalten von Beton ist durch die Entwicklung von Mikrorissen
innerhalb der heterogenen Materialstruktur gekennzeichnet. In dieser Arbeit wird ein Me-
soskalenmodell entwickelt, welches die einzelnen Bestandteile der Materialstruktur explizit
auflöst und somit die Simulation dieser Mikrorisse erlaubt. Dadurch können die wirklichen
physikalischen Vorgänge, welche das komplexe nichtlineare Verhalten von Beton verursa-
chen, durch relativ einfache Materialformulierungen abgebildet werden.
Für Beton wird auf der Mesoskala ein 3-Phasenmodell vorgeschlagen, bestehend aus groben
Zuschlägen, Mörtelmatrix und Übergangszone zwischen Zuschlag und Matrix. In diesem
Zusammenhang wird ein effizienter Algorithmus vorgestellt, welcher ausgehend von ei-
ner gegebenen Sieblinie dreidimensionale Kornstrukturen mittels Ellipsoiden simuliert. Im
Mesoskalenmodell wird das Zugversagen der Mörtelmatrix durch einen Kontinuumsansatz
beschrieben. Um Netzabhängigkeiten, welche durch das Entfestigungsverhalten des Materi-
als hervorgerufen werden, zu reduzieren, kommen nichtlokale Materialformulierungen zum
Einsatz. Risse innerhalb der Übergangszone zwischen Zuschlag und Matrix werden, basie-
rend auf einem kohäsiven Modell, mittels eines diskreten Rissansatzes abgebildet. Die Ver-
wendung einer neuen Nebenbedingung innerhalb der Last-Verschiebungs-Zwangsmethode
führt zu einer Stabilisierung des iterativen Lösungverfahrens, so dass eine effiziente Si-
mulation von Snap-back Phänomenen möglich wird. Anhand von Beispielen wird gezeigt,
dass Mesoskalenmodelle die stochastische Streuung von Ergebnissen und Maßstabseffekte
abbilden können.
Da auf der Mesoskala die Diskretisierung der inneren Materialstruktur erforderlich ist,
steigt im Vergleich zu Simulationen auf der Makroskala der numerische Aufwand erheb-
lich. Aufgrund der Komplexität des numerischen Modells sind Mesoskalensimulationen in
der Regel auf kleine Probekörper beschränkt. In dieser Arbeit wird ein adaptiver hetero-
gener Mehrskalenansatz vorgestellt, welcher die Verwendung von Mesoskalenmodellen in
nichtlinearen Simulationen von Betonstrukturen erlaubt. In heterogenen Mehrskalenmo-
dellen werden nur kritische Bereiche auf der Mesoskala aufgelöst, während ungeschädigte
Bereiche auf der Makroskala abgebildet werden. Ein wichtiger Aspekt in Simulationen mit
heterogenen Mehrskalenmodellen ist die Kopplung der auf unterschiedlichen Längenska-
len diskretisierten Teilgebiete. Diese unterscheiden sich nicht nur in der Größe der finiten
Elemente sondern auch in der Beschreibung des Materials. Verschiedene Methoden zur
Kopplung nicht übereinstimmender Vernetzungen – Kopplungsgleichungen, die Mortar-
Methode und die Arlequin-Methode – werden untersucht und ihre Anwendung in hetero-
genen Mehrskalenmodellen wird gezeigt. Ein weiterer wichtiger Aspekt ist die Bestimmung
kritischer Regionen. Eine adaptive Lösungsstrategie wird entwickelt, welche die Umwand-
lung von Makroskalengebieten auf die Mesoskala erlaubt. In diesem Zusammenhang werden
Indikatoren vorgestellt, die eine Modellanpassung auslösen. Anhand nichtlinearer Simula-
tionen von Betonstrukturen wird die Anwendung des vorgestellten adaptiven heterogenen
Mehrskalenansatzes demonstriert.
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1 Introduction

1.1 Motivation

Concrete is an artificial building material mainly composed of aggregates embedded in a
matrix of hardened cement paste. Consequently, concrete is not a homogeneous material
as it appears to be on structural level, but has a heterogeneous internal material structure.
In general, the size of the material components is significantly smaller than the structural
dimensions. The nonlinear behavior of concrete can be attributed to the initiation, propa-
gation, accumulation and coalescence of microcracks within the internal material structure.
Thus, failure of concrete structures is a multiscale phenomena – the material behavior of
concrete on the macroscale, which corresponds to the structural level, is clearly influenced
by the geometry, the spatial distribution and the material properties of the individual ma-
terial constituents and their mutual interaction. A localization of these microcracks, which
is also triggered by the heterogeneous internal material structure, leads to the formation of
macroscopic cracks and is accompanied by a softening of the material. Other phenomena
such as the stochastic scatter of the structural response or size effects can be, at least
partially, attributed to the random heterogeneous microstructure of concrete.

In macroscale simulations of concrete structures, the heterogeneity of the material is, in
general, neglected and concrete is assumed to be a homogeneous material. In these simula-
tions, the material is represented in a homogenized way using effective material properties.
The advantage of macroscale simulations is the numerical efficiency since the finite element
discretization is predominantly defined by the geometry of the concrete structure. Con-
sequently, the average element size is, in general, significantly larger than the dimension
of the material components, which allows for a relatively coarse finite element mesh. One
central problem in macroscale simulations is the formulation of material models, describing
the overall (homogenized) response of concrete, and the determination of the correspond-
ing effective material parameters. Especially in nonlinear simulations, complex constitutive
models representing the physical effects inside the heterogeneous internal material struc-
ture in a phenomenological way are, in general, used to simulate the deterioration behavior
of concrete. These models only allow for a homogenized interpretation of the individual
processes such as the propagation of microcracks which occur on a smaller length scale
than the structural length scale. Often, the internal parameters of these material models
cannot be measured directly in physical experiments. As a result, the identification of
these parameters is generally difficult.

In mesoscale simulations, the numerical model explicitly represents the individual compo-
nents of the heterogeneous internal material structure of concrete, e.g. the shape and the
spatial distribution of the aggregates. As a result, specific material models can be assigned
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1.1 Motivation

to each component of the mesoscale model. Since the physical effects such as the propaga-
tion of microcracks or failure of the interface between aggregates and matrix are considered
separately in mesoscale simulations, rather simple material formulations can be used for
each material phase to represent the complex macroscopic material behavior of concrete.
Furthermore, these models also represent phenomena such as size effects on the nominal
tensile strength, the stochastic scatter of the results in simulations with specimens with
identical shape but different aggregate configurations or the localization of damage due
to the heterogeneity of the material. Numerical simulations on the mesoscale require the
discretization of the internal material structure. Compared to macroscale simulations, the
numerical effort and the memory demand increases dramatically. Due to the complexity of
the numerical model, mesoscale simulations are, in general, limited to small specimens.

In a multiscale approach, multiple numerical models describing the material behavior on
different length scales are combined. On the macroscale, concrete is considered as a homo-
geneous material whereas on the mesoscale the heterogeneous internal material structure
is explicitly resolved. It is to be noted that multiscale approaches are not limited to two
scales. Additional finer scales can be employed in order to incorporate the influence of the
internal material structure of the aggregates, the mortar matrix or the interfacial transi-
tion zone between aggregates and matrix, which also have a heterogeneous character, in
numerical simulations. In multiscale approaches, the numerical model does not resolve the
entire structure on the mesoscale. As a result, the numerical effort is reduced compared
to full mesoscale simulations. In general, two different multiscale approaches can be dis-
tinguished. In the first approach, the entire structure is discretized on the macroscale.
Using homogenization techniques, the constitutive relationship on the macroscale is de-
rived from the structural response of a representative material sample which is modeled
on the mesoscale. A general problem of such an approach is the definition of the size
of the representative material sample, which becomes impossible in the case of localiza-
tion phenomena. In the second approach, the structure is subdivided into sub-domains.
Critical sub-domains, e.g. sub-domains in which microcracks propagate, are modeled on
the mesoscale resolving explicitly the heterogeneous internal material structure. The re-
maining parts of the structure, which are still in the elastic domain, are represented on
the macroscale using effective material properties and assuming a homogeneous material.
Since the mesoscale sub-domain explicitly represents one part of the structure, this ap-
proach is also applicable if localization phenomena occur. One crucial point in multiscale
simulations is the coupling between the scales, which requires the definition of a relation-
ship between quantities calculated on the mesoscale, e.g. stresses, strains or displacements,
and the corresponding counterparts on the macroscale. Due to the, in general, highly os-
cillating character of these mesoscale quantities, the coupling condition is, in most cases,
only satisfied in an average (integral) sense.

The failure behavior of concrete is characterized by a softening of the material. Conse-
quently, the load starts to decrease for increasing deformations after the maximum load
is reached. In order to capture the post-peak behavior of concrete a displacement con-
trolled loading strategy is required in experiments as well as in numerical simulations.
Depending on the ratio between the specimen size and the size of the fracture process
zone, the load-displacement curve may exhibit snap-backs, which cannot be represented
using direct displacement control. In order to capture snap-back phenomena, a combined

2



1.2 Aims and scope of the work

load-displacement control has to be applied and the equilibrium state of the structure has
to be characterized by an additional constraint, e.g. a predefined crack mouth opening
displacement or a given amount of dissipated energy.

1.2 Aims and scope of the work

The principal goal of this thesis is to improve the accuracy of the damage representation in
nonlinear simulations of concrete structures using mesoscale models. Within this context,
several aspects have to be considered.

First of all, a mesoscale model describing the heterogeneous internal material structure
of concrete is developed. On the mesoscale, three different phases can be distinguished
– coarse aggregates, mortar matrix and the interfacial transition zone (ITZ) at the inter-
face between aggregates and matrix. These components itself also have a heterogeneous
character. The mortar matrix, for example, mainly consists of hardened cement paste, air
voids and fine aggregates which are not explicitly considered as an individual phase in the
model. In this thesis, the heterogeneity of the components is neglected. The material com-
ponents are idealized as homogeneous materials and the material behavior is characterized
by effective material properties. A crucial point in mesoscale simulations is an appropriate
description of the internal material geometry. For concrete simulated on the mesoscale, the
internal material structure is characterized by the shape, the size distribution and the spa-
tial distribution of the aggregates. In this thesis, an efficient algorithm for the simulation
of three-dimensional aggregate distributions with a large number of particles is developed.
This algorithm directly takes into account grading curves used in the experiments. Based
on these aggregate distributions a numerical model is generated which explicitly represents
the heterogeneous internal material structure. In the numerical simulations presented in
this thesis, only tensile failure within the mortar matrix and debonding of the interface
between aggregates and matrix is considered. It is assumed that, due to the influence of the
heterogeneous material structure, compressive failure on the macroscale can be reduced
to tensile failure perpendicular to the direction of compressive stress on the mesoscale.
Furthermore, assuming normal-strength concrete, the nonlinear behavior of the aggregates
can be neglected. Another important aspect is the reliability of numerical simulations. A
problem in numerical simulations of concrete is that the softening behavior of the material
may lead to a spurious dependency of the results on the finite element discretization. In
order to reduce spurious mesh sensitivities, due to softening and localization phenomena
which are also observed on the mesoscale, appropriate regularized material formulations
such as nonlocal formulations are applied. Furthermore, a solution strategy is developed
which allows for an efficient simulation of softening and snap-back phenomena without a
priori knowledge about the final failure zone.

Secondly, the mesoscale models are incorporated in nonlinear simulations of concrete struc-
tures. Due to the high numerical effort and memory demand of mesoscale simulations, it is,
in general, not possible to simulate the full structure on the mesoscale with the computa-
tional power available nowadays. In order to reduce the numerical effort, a heterogeneous
multiscale model is developed, in which only critical parts of the structure, e.g. regions
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1.3 Outline of the work

in which damage develops, are resolved on the mesoscale. A problem in simulations with
heterogeneous multiscale models is the determination of the critical regions which are, in
general, not known a priori. In this thesis, an adaptive solution strategy is introduced
which automatically detects critical regions during the simulation. Consequently, based
on the current loading situation, the numerical model is successively modified during the
simulation – new mesoscale sub-domains are generated or existing mesoscale sub-domains
are enlarged. In this context, indicators for a model adaptation are developed. Further-
more, an efficient procedure for the transfer of critical regions from the macroscale to
the mesoscale is provided. Another problem in simulations with heterogeneous multiscale
models is the coupling between sub-domains which are resolved on different length scales.
On the common boundary between a macro- and a mesoscale sub-domain, the numerical
model differs not only in the size of the finite elements but also in the representation of the
material structure – homogeneous on the macroscale and heterogeneous on the mesoscale.
In order to enforce compatibility between adjacent sub-domains special coupling conditions
are applied.

All methods presented in this thesis are developed for the general three-dimensional case.
Due to the complexity of three-dimensional mesoscale models and especially due to the
limitation of the computational power, most examples are simulated using two-dimensional
models. However, the application to three-dimensional simulations is, in general, straight-
forward.

1.3 Outline of the work

In Chapter 2, the displacement-based finite element method is briefly presented. Further-
more, the extension to nonlinear material behavior and the solution of the corresponding
nonlinear global system of equations using the Newton-Raphson method is addressed. Spe-
cial interest is focused on solution strategies which allow for the simulation of the softening
behavior of concrete and the representation of snap-back phenomena. In the framework of
load-displacement-constraint methods, a new path-following constraint based on the dis-
sipation of the inelastic energy is developed. Since the constraint is based on the internal
energy, the algorithm can be applied to any material formulation for which the inelastic
energy can be defined. The proposed constraint is in particular advantageous in mesoscale
simulations which are characterized by the propagation of multiple cracks, since no a priori
knowledge of the final failure zone is required.

Chapter 3 deals with nonlinear material formulations which are based on the concept of
continuum damage mechanics or on the smeared crack approach. In these material models,
the softening behavior of concrete is described using a strain-softening continuum. In the
first part of the chapter, the problem of spurious mesh dependency of the results due to
localization is addressed. Different regularization techniques – the crack band theory, non-
local integral-type models and gradient enhanced formulations – are discussed. Since the
full Newton-Raphson scheme is applied in the solution of the generally nonlinear global sys-
tem of equations, the derivation of the tangent stiffness matrix for the regularized material
formulations is an important aspect. In the second part, different material formulations
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1.3 Outline of the work

are presented which can be used to describe the tensile failure of the mortar matrix. An
isotropic damage model, a rotating crack model and a microplane based damage model
are introduced. Several model specific aspects, such as failure surfaces, stress evaluation
or parameter identification are addressed. Furthermore, the corresponding regularized
formulations based on the nonlocal integral-type concept are presented for all material
models. Finally, a cohesive zone model describing the nonlinear behavior of the interfacial
transition zone is introduced.

In Chapter 4, a mesoscale model for concrete is proposed. One important aspect is an
appropriate geometry description of the internal material structure. Based on the take-
and-place method, an efficient algorithm for the simulation of three-dimensional aggregate
distributions using ellipsoidal particles is developed. First of all, an algorithm for the
random generation of the ellipsoids is derived, such that the aggregate size distribution
observed in the simulation almost coincides with a prescribed grading curve. Secondly,
the place process is presented. During the random placement of the ellipsoids separa-
tion checks have to be performed in order to avoid overlapping of the ellipsoids. Since a
large number of ellipsoids have to be simulated, special interest is placed on the efficient
application and combination of different inexact and exact separation checks. An exam-
ple with approximately 300 000 ellipsoids is presented to illustrate the performance of the
proposed algorithm. Another important aspect is the generation of the numerical model.
Various discontinuous models and different continuum approaches are briefly discussed,
and a continuum approach with an aligned discretization, in which the finite element mesh
explicitly represents the surface of the aggregates, is proposed. In the last part of this
chapter, the main features of the proposed mesoscale model are illustrated using several
examples taken from literature. First of all, different material formulations for the mortar
matrix and the interfacial transition zone, which were introduced in Chapter 3, are tested
using two-dimensional simulations of tensile tests. In order to investigate the influence of
the randomly generated heterogeneous material structure on the stochastic scatter of the
results, simulations with varying aggregate configurations are performed. Furthermore,
the ability of mesoscale models to represent size effects is analyzed. Finally, a three-
dimensional mesoscale simulation of a compression test is presented. In the examples the
application of the energy release control, which was proposed in Chapter 2, in nonlinear
mesoscale simulations of concrete is illustrated.

Chapter 5 starts with a discussion on different multiscale approaches. Subsequently, a
new heterogeneous multiscale model for concrete is developed and the major aspects of
the implementation of such an approach are addressed. An important point is the cou-
pling of sub-domains which are resolved on different length-scales. Three different coupling
methods for non-matching finite element discretizations – constraint equations, the mor-
tar method and the arlequin method – are presented. The application of these coupling
techniques to heterogeneous multiscale models is illustrated using a two-dimensional linear
elastic example. Another aspect is the model adaptation during the simulation. Several
indicators triggering the conversion from macro- to mesoscale are proposed. Furthermore,
an efficient adaptation procedure for the generation of new mesoscale sub-domains and the
enlargement of existing mesoscale sub-domains is introduced and the application in the
iterative solution procedure is presented. As an extension of the proposed multiscale ap-
proach, the conversion of mesoscale sub-domains back to the macroscale is briefly outlined.
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1.3 Outline of the work

Finally, two examples are presented to show the applicability of the adaptive heterogeneous
multiscale approach to nonlinear simulations of concrete structures.

In Chapter 6, the main conclusions of this thesis are summarized. Furthermore, possible
perspectives for future development of the proposed adaptive heterogeneous multiscale
approach are shortly discussed.
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2 Finite Element Method

2.1 Introduction

Assume a general three-dimensional body that occupies a domain Ω ∈ R3 which is defined
by a set of points x. A body force b̄ is prescribed inside the domain. Furthermore, surface
tractions t̄ and boundary displacements ū are applied on the domain boundary surfaces
Γt and Γu, with Γt ∪ Γu = Γ and Γt ∩ Γu = ∅, where Γ is the total domain boundary
surface. The motion of this body with respect to the applied loading is expressed by the
unknown displacement field u. Assuming small displacements and a linear relationship
between stresses σ and strains ε the governing differential equations can be written as

σij = Ce
ijklεkl ∀x ∈ Ω . . . constitutive equations (2.1)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
∀x ∈ Ω . . . kinematic equations (2.2)

∂σij
∂xj

= b̄i ∀x ∈ Ω . . . static equations (2.3)

ui = ūi ∀x ∈ Γu . . . essential boundary conditions (2.4)
σijnj = t̄i ∀x ∈ Γt . . . natural boundary conditions (2.5)

where n is a vector normal to the boundary surface. Considering an isotropic material,
the linear elastic material tensor Ce is given by

Ce
ijkl = λδijδkl + µ(δikδjl + δilδjk), (2.6)

where δ denotes the Kronecker delta which is defined as

δij =

{
1 if i = j

0 if i 6= j
, (2.7)

and λ and µ are the Lamé’s constants which can be expressed in terms of the Young’s
modulus E and the Poisson’s ratio ν

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
. (2.8)

It is to be noted that in this thesis Einstein’s summation convention is used: whenever an
index appears twice in a single term, summation over that index is performed.
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2.1 Introduction

As an alternative to the differential approach given in Eqs. (2.3) to (2.5), the equilibrium
state can be expressed by the principle of virtual displacements (principle of virtual work)∫

Ω

σijδεij dΩ =

∫
Ω

b̄iδui dΩ +

∫
Γt

t̄iδui dΓt with ui = ūi and δui = 0 ∀x ∈ Γu. (2.9)

This equality must hold for an arbitrary but kinematically compatible virtual displacement
state (δu, δε). In Bathe (1995), it is shown that both formulations are totally equivalent,
if Eq. (2.9) is fulfilled for any kinematically compatible virtual displacement state.

In Eqs. (2.1) to (2.9) the tensor notation is used for the stresses and strains

σij =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 εij =

ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 . (2.10)

Due to the symmetry of these second order tensors, it is possible to store the stress and
strain components in vectors

σ =


σ11

σ22

σ33

σ12

σ13

σ23

 ε =


ε11

ε22

ε33

γ12

γ13

γ23

 =


ε11

ε22

ε33

2ε12

2ε13

2ε23

 . (2.11)

Furthermore, the fourth order material tensor can be written in matrix form. Assuming
an isotropic linear elastic material behavior, the material matrix reads

Ce =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2


. (2.12)

Using vector notation, the constitutive equations, Eq. (2.1), can be rewritten as

σi = Ce
ijεj, (2.13)

and the principle of virtual displacements given in Eq. (2.9) reads∫
Ω

σiδεi dΩ =

∫
Ω

b̄iδui dΩ +

∫
Γt

t̄iδui dΓt with ui = ūi and δui = 0 ∀x ∈ Γu. (2.14)
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2.2 Discretization by Finite Elements

As shown in appendix A.1, special attention must be paid to the transformation and
projection of these vectors.

Closed-form solutions for the boundary value problem given in Eqs. (2.1) to (2.5) exist only
for a small number of problems, usually those with simple geometry and loading. For most
problems arising in engineering applications, the boundary value problem has to be solved
in an approximate way using a numerical method. Today, the finite element method (FEM)
is one of the most universal techniques applicable to problems with arbitrary geometry and
boundary conditions. In the next section, the displacement based version of this method
is briefly introduced. A detailed description can be found in one of the classical textbooks,
e.g. Bathe (1995) or Zienkiewicz et al. (2005).

2.2 Discretization by Finite Elements

Using the finite element method, the entire body is subdivided into finite elements which
are connected at a discrete number of nodes on the element boundaries. Each element is
defined by a certain number of nodes. Within one element, the displacement field u is
approximated by linear combinations of so-called element shape functions N , which are
weighted by nodal displacement values û. One important property of the finite element
shape functions is that the partition of unity is fulfilled in each point of the element

nN∑
k=1

N (k)(x) = 1 ∀x ∈ VE, (2.15)

where VE is the element volume, and nN is the number of nodes defining the element.
Another typical property is that each shape function is associated to one of the element
nodes and that the value of the i-th shape function is equal to one at node i and equal to
zero at all other element nodes. As a result, the nodal displacement values are equal to
the approximated displacement components calculated at the node coordinates. Assum-
ing a displacement-based element with nN nodes, the interpolation of the displacement
components can be written as

u(x) =

nN∑
k=1

N (k)(x) û(k) ∀x ∈ VE, (2.16)

where û(k) are the unknown displacement values of element node k. Substituting the
displacement interpolation into the kinematic equations, given by Eq. (2.2), the approxi-
mation of the strain field is obtained

εij(x) =
1

2

nN∑
k=1

(
∂N (k)

∂xj
(x) û

(k)
i +

∂N (k)

∂xi
(x) û

(k)
j

)
∀x ∈ VE. (2.17)

By storing the unknown nodal displacement values of one single element into a vector d and
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2.2 Discretization by Finite Elements

the associated element shape functions into a matrix N , the displacement interpolation in
Eq. (2.16) can be rewritten as

ui(x) = Nij(x)dj (2.18)

with

N =

N (1) 0 0 N (2) 0 0 · · · N (n) 0 0
0 N (1) 0 0 N (2) 0 · · · 0 N (n) 0
0 0 N (1) 0 0 N (2) · · · 0 0 N (n)

 (2.19)

dT =
[
û

(1)
1 û

(1)
2 û

(1)
3 û

(2)
1 û

(2)
2 û

(2)
3 · · · û

(n)
1 û

(n)
2 û

(n)
3

]
. (2.20)

Introducing vector notation for the strains, the relationship between strains and displace-
ments, given by Eq. (2.17), reads

εi(x) = Bij(x)dj, (2.21)

where B is the well known strain-displacement matrix (B-matrix), which is defined as

B =



∂N (1)

∂x1

0 0
∂N (2)

∂x1

0 0 · · · ∂N (n)

∂x1

0 0

0
∂N (1)

∂x2

0 0
∂N (2)

∂x2

0 · · · 0
∂N (n)

∂x2

0

0 0
∂N (1)

∂x3

0 0
∂N (2)

∂x3

· · · 0 0
∂N (n)

∂x3

∂N (1)

∂x2

∂N (1)

∂x1

0
∂N (2)

∂x2

∂N (2)

∂x1

0 · · · ∂N (n)

∂x2

∂N (n)

∂x1

0

∂N (1)

∂x3

0
∂N (1)

∂x1

∂N (2)

∂x3

0
∂N (2)

∂x1

· · · ∂N (n)

∂x3

0
∂N (n)

∂x1

0
∂N (1)

∂x3

∂N (1)

∂x2

0
∂N (2)

∂x3

∂N (2)

∂x2

· · · 0
∂N (n)

∂x3

∂N (n)

∂x2



. (2.22)

By substituting Eq. (2.21) into Eq. (2.13), the approximation of the stress field is ob-
tained

σi(x) = Ce
ij(x)Bjk(x)dk. (2.23)

As a result, the constitutive equations, Eq. (2.1), and the kinematic equations, Eq. (2.2),
are exactly satisfied. Due to the interpolation of the displacement field, which is now
expressed as a function of a discrete number of nodal values, the static equations given in
Eq. (2.3) cannot, in general, be satisfied exactly in every point of the body. By consid-
ering the approximations of displacements, strains and stresses in the principle of virtual
displacements, Eq. (2.9), the weak form of the equilibrium equations is obtained∫

V

Ce
ij(x)Bjk(x)dkδεi(x) dV =

∫
V

b̄i(x)δui(x) dV +

∫
Γt

t̄i(x)δui(x) dΓt. (2.24)
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2.2 Discretization by Finite Elements

If this equality holds for an arbitrary but kinematically compatible virtual displacement
and strain state, the equilibrium equations are satisfied, but only in an integral sense. Using
the same approximation for the virtual displacement field as for the displacements

δui(x) = Nij(x)δdj (2.25)

and assuming that the virtual strain field satisfies the kinematic equations

δεi(x) = Bij(x)δdj, (2.26)

the discretized form of the principle of virtual displacements can be written as

δdk

∫
V

Bik(x)Ce
ij(x)Bjl(x) dV dl = δdk

∫
V

Nik(x)b̄i(x) dV + δdk

∫
Γt

Nik(x)t̄i(x) dΓt.

(2.27)

For an arbitrary virtual nodal displacement vector δd this equation is only satisfied, if

Kijdj = fext,i, (2.28)

where K is the element stiffness matrix

Kij =

∫
V

Bki(x)Ce
kl(x)Blj(x) dV, (2.29)

and fext is the element equivalent external force vector

fext,i =

∫
V

Nki(x)b̄k(x) dV +

∫
Γt

Nki(x)t̄k(x) dΓt. (2.30)

The discretized equations of equilibrium, Eq. (2.28), for the entire finite element mesh can
be obtained by storing the unknown displacement values of all nodes in a global vector
of nodal displacement values and by assembling the element stiffness matrices and the
element external force vectors with respect to this vector. Due to the local character of
the element shape functions, the global stiffness matrix is sparse and banded. This system
of equations can then be solved for the unknown nodal displacement values.

For practical reasons, it is more convenient to derive shape functions for an element with
a simple geometry defined in a local natural coordinate system ξ and map this element
and the corresponding element matrices and vectors into the global coordinate system x.
Assuming an isoparametric finite element, the same approximation for the displacement
field and for the element geometry is used

ui(ξ) =

nN∑
k=1

N (k)(ξ) û
(k)
i xi(ξ) =

nN∑
k=1

N (k)(ξ) x̂
(k)
i , (2.31)

where x̂(k) is the vector of global coordinates of node k. By applying the chain-rule, the
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2.2 Discretization by Finite Elements

derivatives of the shape functions with respect to the global coordinates, required for the
calculation of the strain-displacement matrix, can be obtained

∂N (k)

∂x1

∂N (k)

∂x2

∂N (k)

∂x3

 =



∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x1

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x2

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3

∂x3


︸ ︷︷ ︸

J−1



∂N (k)

∂ξ1

∂N (k)

∂ξ2

∂N (k)

∂ξ3





∂N (k)

∂ξ1

∂N (k)

∂ξ2

∂N (k)

∂ξ3


=



∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ3

∂x3

∂ξ3


︸ ︷︷ ︸

J



∂N (k)

∂x1

∂N (k)

∂x2

∂N (k)

∂x3

 ,

(2.32)

where J is the Jacobian matrix. It is to be noted that in Eq. (2.32) N (k) directly refers to
the shape function of node k and should not be confused with the components of matrix
N given in Eq. (2.19). The integration of the element matrices and element vectors is
performed in the local natural coordinate system. Using the substitution rule, the element
stiffness matrix, given in Eq. (2.29), can be written as

Kij =

∫∫∫
ξ

Bki(ξ)Ce
kl(ξ)Blj(ξ) detJ(ξ) dξ1 dξ2 dξ3, (2.33)

where detJ is the determinant of the Jacobian matrix. Assuming that the boundary-
surfaces with surface tractions can be described as a function of ξ1 and ξ2 and using
integration by substitution, the element external force vector from Eq. (2.30) reads

fext,i =

∫∫∫
ξ

Nki(ξ)b̄k(ξ) det J(ξ) dξ1 dξ2 dξ3

+

∫∫
ξ1ξ2

Nki(ξ)t̄k(ξ)
√
a1(ξ)a2(ξ)− a3(ξ)2 dξ1 dξ2,

(2.34)

with

a1 =

(
∂x1

∂ξ1

)2

+

(
∂x2

∂ξ1

)2

+

(
∂x3

∂ξ1

)2

a2 =

(
∂x1

∂ξ2

)2

+

(
∂x2

∂ξ2

)2

+

(
∂x3

∂ξ2

)2

a3 =
∂x1

∂ξ1

∂x1

∂ξ2

+
∂x2

∂ξ1

∂x2

∂ξ2

+
∂x3

∂ξ1

∂x3

∂ξ2

.

(2.35)

It is to be noted that in the second term of Eq. (2.34) the surface area A of the element
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2.2 Discretization by Finite Elements

boundary with surface tractions is expressed as

A =

∫∫
ξ1ξ2

√
a1(ξ)a2(ξ)− a3(ξ)2 dξ1 dξ2, (2.36)

cf. Bronstein et al. (1997). The analytical evaluation of the integrals in Eq. (2.33) and
Eq. (2.34) is only possible in some special cases, e.g. for 4-node tetrahedral elements. In
practice, the integration is performed numerically and the integrals are then replaced by
sums

K =

nIP∑
o=1

w(o)BT(ξ(o))Ce(ξ(o))B(ξ(o)) detJ(ξ(o)) (2.37)

fext =

nIP∑
o=1

w(o)NT(ξ(o)) b̄(ξ(o)) detJ(ξ(o))

+

nIP∑
p=1

w(p)NT(ξ(p)) t̄(ξ(p))

√
a1(ξ(p))a2(ξ(p))− a3(ξ(p))

2
,

(2.38)

where nIP and nIP are the number of integration points used for the numerical integration
over the element volume and element boundary surface, ξ(o) and ξ(p) are the integration
point coordinates in the local natural coordinate system and w(o) and w(p) are the corre-
sponding weighting factors. Within the finite element method, Gauss quadrature is most
commonly used for solid elements. Using an n-point Gauss quadrature rule exact results for
polynomials with degree 2n− 1 can be obtained. For selected element types with different
polynomial order, the position of the integration points and the corresponding weighting
factors are given in Bathe (1995). Note that for elements with a complex geometry, e.g.
curved surfaces, the elements of the stiffness matrix are no longer polynomials and an error
due to the numerical integration with a Gauss quadrature is obtained. In most cases, this
error is small and can be further reduced if the number of integration points is increased.

2.2.1 Interface Elements with Zero Thickness

Interface elements can be used to model displacement discontinuities, e.g. cohesive cracks,
in a solid body. In finite element models, line interface elements in 2D, as illustrated
in Fig. 2.1(a), or surface interface elements in 3D, as shown in Fig. 2.1(b), are used to
connect two solid elements. The major difference compared to solid elements are the
kinematic equations and the constitutive relations. For interface elements, the constitutive
law describes the relationship between the relative displacements of the two interface sides
and the tractions transferred through the interface. In this section, the concept of three-
dimensional isoparametric interface elements is briefly introduced. A detailed description
and the application to two-dimensional elements can be, for example, found in Gens et al.
(1989); Mehlhorn and Kolleger (1995); Rots (1988).

For the twelve-node surface interface element, shown in Fig. 2.1(b), the geometry approx-
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2.2 Discretization by Finite Elements
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(a) line interface element (2D)
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(b) surface interface element (3D)

Figure 2.1: Continuous interface elements.

imation of the mid-surface is given by

x(ξ) =
6∑
i=1

N (i)(ξ)
x̂(i) + x̂(i+6)

2
(2.39)

and the displacement field of each surface is interpolated by

u(u)(ξ) =
6∑
i=1

N (i)(ξ) û(i) u(l)(ξ) =
6∑
i=1

N (i)(ξ) û(i+6), (2.40)

where superscript u indicates the upper and superscript l the lower interface surface. In
order to clearly identify the upper surface of an interface element with zero thickness, an
additional reference node is introduced. This node must be located above the upper side
of the interface. The kinematic equations can then be written as

∆u(x)(ξ) = u(u)(ξ)− u(l)(ξ), (2.41)

where ∆u(x) is the relative displacement vector defined in the global coordinate system.
Storing the unknown nodal displacement values in vector d, this equation can be rewritten
as

∆u
(x)
i (ξ) = Bij(ξ)dj (2.42)

with

B =


N (1) 0 0 . . . N (6) 0 0 −N (1) 0 0 . . . −N (6) 0 0
0 N (1) 0 . . . 0 N (6) 0 0 −N (1) 0 . . . 0 −N (6) 0
0 0 N (1) . . . 0 0 N (6) 0 0 −N (1) . . . 0 0 −N (6)


(2.43)

dT =
[
û

(1)
1 û

(1)
2 û

(1)
3 û

(2)
1 û

(2)
2 û

(2)
3 . . . û

(12)
1 û

(12)
2 û

(12)
3

]
. (2.44)
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2.2 Discretization by Finite Elements

In general, the constitutive equations are given in the local element coordinate system,
which is defined by the normal vector n and two vectors t1, t2 tangential to the interface
mid-surface. Assuming linear elastic behavior, the relationship between relative displace-
ments ∆u and interface tractions t in the local coordinate system readstntt1

tt2

 =

Kp,n 0 0
0 Kp,t 0
0 0 Kp,t


︸ ︷︷ ︸

Ce

∆un
∆ut1
∆ut2

 , (2.45)

where Kp is the so-called penalty stiffness. The transformation of relative displacements
and interface tractions between the global and the local coordinate system can be written
as ∆un

∆ut1
∆ut2

 =

n1 t1,1 t2,1
n2 t1,2 t2,2
n3 t1,3 t2,3


︸ ︷︷ ︸

T

∆u1

∆u2

∆u3

 t1t2
t3

 =

n1 n2 n3

t1,1 t1,2 t1,3
t2,1 t2,2 t2,3


︸ ︷︷ ︸
T T = T−1

tntt1
tt2

 , (2.46)

where T is a transformation matrix describing a pure rotation (the normal and tangential
vectors are orthogonal and normalized). Using Eqs. (2.45) and (2.46), the constitutive
equations in the global coordinate system can be written ast1t2

t3

 =

n1 n2 n3

t1,1 t1,2 t1,3
t2,1 t2,2 t2,3

Kp,n 0 0
0 Kp,t 0
0 0 Kp,t

n1 t1,1 t2,1
n2 t1,2 t2,2
n3 t1,3 t2,3

∆u1

∆u2

∆u3

 . (2.47)

By substituting Eqs. (2.42) and (2.47) into the principle of virtual displacements, the
element stiffness matrix is obtained

Kij =

∫∫
ξ1ξ2

Bki(ξ)Tmk(ξ)Ce
mn(ξ)Tnl(ξ)Blj(ξ)

√
a1(ξ)a2(ξ)− a3(ξ)2 dξ1 dξ2, (2.48)

where the parameters a1, a2 and a3 are given by Eq. (2.35). Using a numerical integration
scheme Eq. (2.48) reads

K =

nIP∑
o=1

w(o)BT(ξ(o))T T(ξ(o))Ce(ξ(o))T (ξ(o))B(ξ(o))

√
a1(ξ(o)) a2(ξ(o))− a3(ξ(o))

2
,

(2.49)

where nIP is the number of integration points, ξ(o) are the coordinates of integration point
o in the local natural coordinate system and w(o) is the corresponding weighting factor.

Based on Schellekens and de Borst (1993), the performance of two different integration
schemes - Gaussian quadrature and Newton-Cotes formulas - for line interface elements
is investigated using two-dimensional, linear elastic simulations of a notched four-point
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2.2 Discretization by Finite Elements
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Figure 2.2: Finite element mesh for linear elastic analysis of notched 4-point bending beam with
line interface elements above the notch (dimensions in mm, thickness: 100mm).

bending beam. Figure 2.2 shows the specimen geometry with boundary conditions and
loading conditions. The beam is discretized by rectangular plane elements with an av-
erage element size of 10mm. A Young’s modulus E = 20 000N/mm2 and a Poisson’s
ratio ν = 0.2 is used for these continuum elements. Line interface elements (highlighted
by the red line in Fig. 2.2) are introduced in front of the notch to simulate the potential
development of a discrete crack. In order to approximate a closed crack during the linear
elastic analysis, the penalty stiffness normal and tangential to the interface is chosen as
Kp,n = Kp,t = 100 000N/mm3. The diagrams in Fig. 2.3 show the distribution of the
normal interface tractions for finite elements with linear and quadratic interpolation func-
tions. Using Gauss quadrature, which is exact for the interface elements, oscillations in
the normal tractions are observed, which are caused by the high displacement gradient in
the first interface element in front of the notch. This effect can be significantly reduced
if Newton-Cotes quadrature with the same number of integration points as for the Gauss
quadrature is applied. In one-dimensional problems, Gauss quadrature with n integration
points allows for the exact integration of a polynomial with degree 2n − 1, whereas an
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Figure 2.3: Normal interface tractions in front of the notch of the 4-point bending beam.
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2.3 Material Nonlinearity

n-point Newton-Cotes quadrature is only exact for a polynomial up to degree n − 1. As
a result, the numerical integration with the proposed Newton-Cotes quadrature is inexact
even for interface elements with straight boundary lines. If higher order Newton-Cotes
rules are used which result in an exact integration of the interface (3-point rule for linear
interpolation functions and 5-point rule for quadratic shape functions), the same results
as for simulations with a Gauss quadrature are obtained.

In this thesis, a three-point Gauss rule is used for the 12-node surface interface element
and a three-point Newton-Cotes rule is applied for the numerical integration of the 6-node
line interface element.

2.3 Material Nonlinearity

In the previous sections, a linear relationship between stresses and strains has been as-
sumed. Consequently, the material properties are constant and independent from the
deformation state of the structure. In real materials, this assumption is, in general, valid
until a certain deformation is reached. If the loading is further increased, changes within
the material micro- or nano-structure result in modified macroscopic material parame-
ters. As a consequence, the constitutive equations, representing the relationship between
stresses and strains, become nonlinear. Furthermore, the stresses may depend not only on
the current deformation state, but also on the deformation history of the material. Using
the finite element method with a nonlinear stress strain relationship, the weak form of the
equilibrium can be written as

δdi

∫
V

Bji(x)σj(ε(x)) dV = δdi

∫
V

Nji(x)b̄j(x) dV + δdi

∫
Γt

Nji(x)t̄j(x) dΓt. (2.50)

The final system of equations, representing the equilibrium of the discretized system, is
given by

f int(d) = fext, (2.51)

where fext is the external force vector

fext,i =

∫
V

Nji(x)b̄j(x) dV +

∫
Γt

Nji(x)t̄j(x) dΓt, (2.52)

and f int is the vector of internal forces

fint,i(d) =

∫
V

Bji(x)σj(ε(x)) dV, (2.53)

which depends on the unknown nodal displacement values in a nonlinear way. The concept
of linearization can be used for the numerical solution of this nonlinear system of equations.
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2.4 Solution Strategies

Starting from a strain state ε̄ for which the stresses are known, the constitutive equations
in the vicinity of ε̄ can be approximated by a truncated Taylor series

σi(ε̄+ δε) = σi(ε̄) +
∂σi
∂εj

(ε̄) δεj = σi(ε̄) + Cij(ε̄) δεj, (2.54)

where Cij = ∂σi/∂εj is the tangent material matrix. By substituting the linearized consti-
tutive equations into Eq. (2.53), and by considering the kinematic equations in Eq. (2.2),
an approximation for the internal forces can be obtained

fint,i(d̄+ δd) =

∫
V

Bji(x)σj(ε̄(x)) dV +

∫
V

Bji(x)Cjk(ε̄(x)) δεk(x) dV (2.55)

= fint,i(d̄) +

∫
V

Bji(x)Cjk(ε̄(x))Bkl(x) dV δdl (2.56)

= fint,i(d̄) +Kil(d̄)δdl, (2.57)

where d̄ is the vector of nodal displacement values representing the deformation state for
which the stresses and internal forces are known, and Kij = ∂fint,i/∂dj is the tangential
stiffness matrix. In the implementation, a numerical integration scheme is used for the
evaluation of the element internal forces and the tangent element stiffness matrix

fint(d̄) =

nIP∑
o=1

w(o)BT(ξ(o))σ(ε̄(ξ(o))) detJ(ξ(o)) (2.58)

K(d̄) =

nIP∑
o=1

w(o)BT(ξ(o))C(ε̄(ξ(o)))B(ξ(o)) detJ(ξ(o)), (2.59)

with

ε̄(ξ(o)) = B(ξ(o))d̄ (2.60)

where nIP is the number of integration points, ξ(o) are the coordinates of integration point
o in the local natural coordinate system and w(o) is the corresponding weighting factor.
The global vector of internal forces and the global tangent stiffness matrix is assembled
from the element contributions.

2.4 Solution Strategies

The nonlinear behavior of structures can be characterized by load-displacement curves,
as for example illustrated in Fig. 2.4. Each point on this curve represents an admissible
equilibrium state of the structure in terms of a monitored displacement value and the
corresponding external force. Additionally, the equilibrium state can be characterized by
the opening displacement of a crack or by the amount of dissipated energy. In order
to obtain the equilibrium path of a structure by numerical simulations, the load path is
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2.4 Solution Strategies

turning point
(snap-back)

limit point
(snap-through)

fext

d

Figure 2.4: Load-displacement curve of a softening material, including snap-back.

subdivided into several load increments and the structural response after each load step
is computed using the equilibrium equations given in Eq. (2.51). In this section, several
step size control techniques are introduced. In all of these techniques, Newton’s method
is applied to iteratively solve the generally nonlinear system of equations for each load
increment.

2.4.1 Load Control

Using direct load control, the load increment n is characterized by the vector of external
forces f (n)

ext that acts on the structure at the end of that load step. Consequently, the load-
path is then described by a sequence f (1)

ext, f
(2)
ext, . . ., f

(nL)
ext and the aim of the nonlinear

simulation is to find the corresponding deformations d(1), d(2), . . ., d(nL), such that the
equilibrium equation

f
(n)
int = f

(n)
ext n = 1, 2, 3, . . . , nL (2.61)

is satisfied, where nL is the number of load increments, and f (n)
int = fint(d

(n)) is the vector
of internal forces, given in Eq. (2.53). By applying Newton’s method, an iterative solution
procedure for the unknown nodal displacement values is obtained. In the i-th iteration
step of the n-th load increment, the linearized system of equations reads

K(n,i−1)δd(n,i) = r(n,i−1)

d(n,i) = d(n,i−1) + δd(n,i)

}
i = 1, 2, 3, . . . (2.62)

where K(n,i) = K(d(n,i)) is the tangential stiffness matrix, r(n,i) = f
(n)
ext − fint(d(n,i)) is

the residual vector, which is also known as vector of out-of-balance forces, and δd(n,i+1)

is the correction of the displacement vector. The displacement values obtained for the
previous load increment are used as the starting vector d(n,0) = d(n−1) of the Newton
iteration. It is to be noted that in each iteration step a new (consistent) tangent stiffness
matrix is calculated. The iterative procedure given in Eq. (2.62) is repeated until a certain
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2.4 Solution Strategies

convergence criterion is satisfied. In this thesis, two different convergence criteria are used.
The first criterion is based on the correction of the displacement vector

‖δd(n,i)‖2 ≤ εr‖d(n,i)‖2 + εa, (2.63)

where ‖ . . . ‖2 denotes the L2-norm of a vector, εr is the relative tolerance and εa is the
absolute tolerance. As a result, the iteration is stopped if the correction of the displacement
vector becomes small. In some situations, the obtained displacement approximation does
not satisfy the equilibrium equations in Eq. (2.61) with sufficient accuracy. This motivates
a second convergence criterion which is based on the out-of-balance forces

‖r(n,i)‖2 = ‖f (n)
ext − f

(n,i)
int ‖2 ≤ εr‖f (n)

ext − f
(n−1)
ext ‖2 + εa. (2.64)

Newton’s method converges if the initial guess is sufficiently close to the desired solution.
If the iteration diverges, i.e. a predefined number of iteration steps is reached without con-
vergence or the L2-norm of the out-of-balance force vector exceeds a certain value, the load
increment is reduced and the iteration is restarted from the last converged load increment.
Since in standard load-control the external forces are successively increased, this solution
strategy fails if the load-carrying capacity of the structure is reached. Consequently, only
the nonlinear structural response up to the limit point of the load-displacement curve,
shown in Fig. 2.4, can be simulated by using load control. More advanced solution strate-
gies, such as direct displacement control or load-displacement-constraint methods are re-
quired to simulate the post-peak behavior of the structure.

2.4.2 Direct Displacement Control

Using direct displacement control, the nodal degrees of freedom d(n) of load step n can

be subdivided into two groups
[
d

(n)
1 ,d

(n)
2

]T
. Unknown nodal displacement values belong

to the first group. The second group are nodal degrees of freedom for which the dis-
placement values are prescribed. According to this subdivision, the vectors of internal

and external forces are partitioned into
[
f

(n)
int,1,f

(n)
int,2

]T
and

[
f

(n)
ext,1,f

(n)
ext,2

]T
, respectively.

Consequently, the equilibrium equations, given in Eq. (2.51) can be rewritten as

f
(n)
int,1 = fint,1(d

(n)
1 ,d

(n)
2 ) = f

(n)
ext,1 (2.65)

f
(n)
int,2 = fint,2(d

(n)
1 ,d

(n)
2 ) = f

(n)
ext,2. (2.66)

By using the concept of linearization, this, in general, nonlinear system of equations is
replaced by a linear system of equations, which reads in the first iteration step (i = 1) of
the n-th load increment

f
(n,0)
int,1 +K

(n,0)
11 δd

(n,1)
1 +K

(n,0)
12 δd

(n,1)
2 = f

(n)
ext,1 (2.67)

f
(n,0)
int,2 +K

(n,0)
21 δd

(n,1)
1 +K

(n,0)
22 δd

(n,1)
2 = f

(n)
ext,2, (2.68)
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2.4 Solution Strategies

where K(n,i) = K(d
(n)
1 ,d

(n)
2 ) is the corresponding partitioned tangent stiffness matrix

which is defined as

K =
∂fint
∂d

=


∂fint,1
∂d1

∂fint,1
∂d2

∂fint,2
∂d1

∂fint,2
∂d2

 =

[
K11 K12

K21 K22

]
. (2.69)

Since the displacement increment δd(n,1)
2 = d

(n)
2 − d(n−1)

2 is known from the prescribed
displacement values, Eq. (2.67) can be rewritten as

K
(n,0)
11 δd

(n,1)
1 = f

(n)
ext,1 − f

(n,0)
int,1 −K

(n,0)
12 δd

(n,1)
2 . (2.70)

This system of equations can be solved for the correction of the unknown displacement
vector δd(n,1)

1 independently from Eq. (2.68). Assuming that the start vectors are defined
as d(n,0)

1 = d
(n−1)
1 and d(n,0)

2 = d
(n−1)
2 , the first approximation of the displacement vectors

can be obtained

d
(n,1)
1 = d

(n,0)
1 + δd

(n,1)
1 (2.71)

d
(n,1)
2 = d

(n,0)
2 + δd

(n,1)
2 . (2.72)

After the first iteration step the displacement vector d(n,1)
2 = d

(n)
2 satisfies the prescribed

displacement values. Consequently, in the following iteration steps the iterative solution
procedure for the unknown displacements d(n)

1 can be simplified to

K
(n,i−1)
11 δd

(n,i)
1 = r

(n,i−1)
1

d
(n,i)
1 = d

(n,i−1)
1 + δd

(n,i)
1

}
i = 2, 3, 4, . . . , (2.73)

where r(n,i)
1 = f

(n)
ext,1 − f

(n,i)
int,1 is the vector of out-of-balance forces that corresponds to

the unknown nodal displacement values. This iteration is repeated until the convergence
criterion, given by Eq. (2.63) or Eq. (2.64), is satisfied. Direct displacement control fails,
if, for the controlled nodal degree of freedom, the corresponding load displacement-curve
exhibits a snap-back, as illustrated in Fig. 2.4. If the turning point is reached, the iteration
diverges independently from the chosen load-step size since the displacement increment of
the controlled nodal degree of freedom is successively increased. Alternatively, advanced
incrementation control techniques such as load-displacement-constraint methods can be
used for very brittle failure, which is characterized by a snap-back in the global load-
displacement curve.

2.4.3 Load-Displacement-Constraint Methods

In load-displacement-constraint methods, the values of the external forces or the displace-
ments at the supports after each load-step are not prescribed in advance. Instead, the
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2.4 Solution Strategies

external load vector is parametrized by a scalar load factor µ

fext = f0 + µf̂ , (2.74)

where f0 is a vector of constant loads, e.g. the dead load of the structure, and f̂ is a given
reference load vector. Assuming a constant load factor in each load step, standard load
control is obtained. If the load factor is considered as an unknown during the iteration
process, the equilibrium equation, Eq. (2.51), is enhanced by an additional constraint
equation l

f
(n)
int = fint(d

(n)) = f0 + µ(n)f̂ (2.75)

l(n) = l(d(n), µ(n)) = 0. (2.76)

Linearization of Eq. (2.75) in the i-th iteration of load increment n leads to

K(n,i−1)δd(n,i) = f0 + µ(n,i−1)f̂ − f (n,i−1)
int + δµ(n,i)f̂ , i = 1, 2, 3, . . . , (2.77)

where δµ(n,i) is the unknown correction of the load factor. Using the indirect solution
procedure proposed by Ramm (1980) and Crisfield (1982), the unknown displacement
correction is decomposed into two parts

δd(n,i) = δd
(n,i)
0 + δµ(n,i)δd

(n,i)
f . (2.78)

The first part, vector δd(n,i)
0 , corresponds to the first three terms on the right hand side of

Eq. (2.77) which are known

K(n,i−1)δd
(n,i)
0 = r(n,i−1) = f0 + µ(n,i−1)f̂ − f (n,i−1)

int . (2.79)

The second part of the displacement correction, vector δd(n,i)
f , is obtained from the refer-

ence load vector

K(n,i−1)δd
(n,i)
f = f̂ . (2.80)

Consequently, the correction of the displacement vector can be expressed as function of the
unknown correction of the load factor. By substitution of Eq. (2.78) into the constraint
equation, Eq. (2.76), the correction of the load factor can be calculated.

Direct displacement control can be obtained by assuming a constant displacement value
dconst for a single nodal degree of freedom dk. The corresponding constraint equation
reads

d
(n,i−1)
k + δd

(n,i)
k − dconst = 0. (2.81)

By substituting Eq. (2.78) into Eq. (2.81), a linear equation is obtained which can be
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2.4 Solution Strategies

solved for the correction of the load factor

δµ(n,i) =
dconst − d(n,i−1)

k − δd(n,i)
0,k

δd
(n,i)
f,k

. (2.82)

More advanced definitions of the constraint equation such as arc-length, indirect displace-
ment control or energy release control, which allow for more complex load paths and the
simulation of structures for which the global load-displacement curve exhibits snap-through
and snap-back, are introduced in the next paragraphs.

Arc-Length

The most popular load-displacement-constraint method is the arc-length method intro-
duced by Wempner (1971) and Riks (1972). In this method, the size of the load increment
is represented by the geometrical distance between the initial and the final state in the
global load-displacement space – the so-called arc-length. According to Crisfield (1983),
the constraint equation for the spherical arc-length method can be written as

∆d(n)T∆d(n) + b∆µ(n)2
f̂
T
f̂ −∆l2 = 0 (2.83)

where ∆l is the prescribed arc-length, and b is a scaling parameter that weights the relative
contribution of loads and displacements. In the i-th iteration of the n-th load increment
this constraint equation reads(

∆d(n,i−1)+ δd(n,i)
)T(

∆d(n,i−1)+ δd(n,i)
)

+ b
(
∆µ(n,i−1)+ δµ(n,i)

)2
f̂
T
f̂ −∆l2 = 0,

(2.84)

where ∆d(n,i) are the accumulated corrections of the displacement vector

∆d(n,i) =
i∑

k=1

δd(n,k) ∆d(n,0) = 0 (2.85)

and ∆µ(n,i) are the accumulated corrections of the load factor

∆µ(n,i) =
i∑

k=1

δµ(n,k) ∆µ(n,0) = 0. (2.86)

Substitution of Eq. (2.78) into Eq. (2.84) yields a quadratic equation

a1 δµ
(n,i)2

+ 2 a2 δµ
(n,i) + a3 = 0, (2.87)
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with

a1 = δd
(n,i)
f

T
δd

(n,i)
f + bf̂

T
f̂

a2 = δd
(n,i)
f

T
(
∆d(n,i−1)+ δd

(n,i)
0

)
+ b∆µ(n,i−1)f̂

T
f̂

a3 =
(
∆d(n,i−1)+ δd

(n,i)
0

)T(
∆d(n,i−1)+ δd

(n,i)
0

)
+ b∆µ(n,i−1)2

f̂
T
f̂ −∆l2

(2.88)

which can be solved for the correction of the load factor δµ(n,i). In general, Eq. (2.87) has
two real solutions δµ(n,i)

1 and δµ(n,i)
2 , which correspond to two trial states

∆d
(n,i)
1 = ∆d(n,i−1)+ δd

(n,i)
0 + δµ

(n,i)
1 δd

(n,i)
f ∆µ

(n,i)
1 = ∆µ(n,i−1)+ δµ

(n,i)
1 (2.89)

∆d
(n,i)
2 = ∆d(n,i−1)+ δd

(n,i)
0 + δµ

(n,i)
2 δd

(n,i)
f ∆µ

(n,i)
2 = ∆µ(n,i−1)+ δµ

(n,i)
2 (2.90)

with distance ∆l from the last equilibrium state (d(n−1), µ(n−1)). One crucial point in
nonlinear simulations using the arc-length method is the selection of the right solution.
In this thesis, the cylindrical arc-length method which can be derived from Eq. (2.83) by
setting b = 0 is used. For this method, Crisfield (1991) proposes to select ∆µ(n,i) such that
the smallest angle between the trial displacement increment, ∆d

(n,i)
1 or ∆d

(n,i)
2 , and the

previous displacement increment, ∆d(n,i), is obtained

max

(
∆d(n,i−1)T∆d

(n,i)
1

∆l2
;
∆d(n,i−1)T∆d

(n,i)
2

∆l2

)
. (2.91)

In Hellweg and Crisfield (1998) it is shown that this criterion may fail for sharp snap-backs
and the authors propose a criterion based on the out-of-balance loads. In this approach,
the solution with minimum residual is selected

min
(
‖r(n,i)

1 ‖2; ‖r(n,i)
2 ‖2

)
, (2.92)

with

r
(n,i)
k = f0 +

(
µ(n−1) + ∆µ

(n,i)
k

)
f̂ − fint

(
d(n−1) + ∆d

(n,i)
k

)
k = 1, 2. (2.93)

Indirect Displacement Control

The indirect displacement control can be motivated by the fact that the global load-dis-
placement-curve of a brittle structure may exhibit snap-back but the opening of the dom-
inant macroscopic crack monotonically increases during the failure process. Consequently,
the crack mouth opening displacement can be used as control parameter in numerical sim-
ulations as well as in experiments. In general, it is sufficient to use a linear combination
of displacement values, that increases monotonically during the entire failure process, as
control parameter in numerical simulations. The corresponding constraint equation can
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then be written as

cT∆d(n) −∆l = 0, (2.94)

in which the vector c contains the coefficients of the selected linear combination. In the
i-th iteration of the n-th load step, this constraint equation can be rewritten as

cT
(
∆d(n,i−1)+ δd(n,i)

)
−∆l = 0. (2.95)

By substituting Eq. (2.78) into Eq. (2.95), a linear equation is obtained, which can be
solved for the correction of the load factor

δµ(n,i+1) =
∆l − cT

(
∆d(n,i)+ δd

(n,i+1)
0

)
cTδd

(n,i+1)
f

. (2.96)

Compared to the arc-length method, this approach is much simpler, since the constraint
equation has only one solution. The performance of indirect displacement control tech-
niques depends on the choice of the linear combination of displacement values. In general,
this requires knowledge about the final failure mechanism. Especially in simulations with
multiple cracks, the choice of the right linear combination may become difficult.

Energy Release Control

Gutiérrez (2004) proposes a path-following constraint which is based on the energy release
rate. In contrast to indirect displacement control, this approach is also applicable to non-
linear simulations for which the failure behavior of the structure is not known a priori. In
numerical simulations using continuum damage models to represent the nonlinear material
behavior, the energy ∆G released in load increment n can be written as

∆G =
1

2

[
µ(n−1)∆d(n) −∆µ(n)d(n−1)

]T
f̂ . (2.97)

Assuming that the energy released during a load increment is constant, the constraint
equation can be obtained. In the i-th equilibrium iteration step this constraint equation
reads

1

2

[
µ(n−1)

(
∆d(n,i−1)+ δd(n,i)

)
−
(
∆µ(n,i−1)+ δµ(n,i)

)
d(n−1)

]T
f̂ −∆G = 0. (2.98)

Substituting Eq. (2.78) into Eq. (2.98), the unknown correction of the load factor can be
obtained

δµ(n,i) =
2 ∆G −

[
µ(n−1)

(
∆d(n,i−1)+ δd

(n,i)
0

)
−∆µ(n,i−1)d(n−1)

]T
f̂[

µ(n−1)δd
(n,i)
f − d(n−1)

]T
f̂

. (2.99)
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Due to the limitation to continuum damage models, the constraint equation can be defined
only as a function of external variables: load-factor, reference load vector and displacement
vector. This allows for a very fast evaluation of the constraint equation independently from
the chosen continuum damage formulation.

In this thesis, a more general approach which is directly based on the dissipated (inelastic)
energy is introduced. In general, the inelastic energy can be defined as

Uinel = Utot − Uel, (2.100)

where Utot is the total energy and Uel is the elastic energy. Assuming that a predefined
amount of energy ∆G should be dissipated in each load increment n, the corresponding
constraint equation can be written as

U
(n)
inel − U

(n−1)
inel −∆G = 0, (2.101)

with U
(n)
inel = Uinel(d

(n)) and U
(n−1)
inel = Uinel(d

(n−1)). Approximating the unknown energy
dissipation by a truncated Taylor series, the constraint equation in the i-th iteration step
reads

U
(n,i−1)
inel +

[
∂U

(n,i−1)
inel

∂d

]T
δd(n,i) − U (n−1)

inel −∆G = 0. (2.102)

Using Eq. (2.78), this linear equation can be solved for the unknown correction of the load
factor

δµ(n,i) =

∆G + U
(n−1)
inel − U

(n,i−1)
inel −

[
∂U

(n,i−1)
inel

∂d

]T
δd

(n,i)
0[

∂U
(n,i−1)
inel

∂d

]T
δd

(n,i)
f

. (2.103)

A detailed description of the calculation of the dissipated energy and the corresponding
derivatives is given in appendix A.2. Assuming nonlinear simulations with continuum dam-
age material models, the second approach in Eq. (2.103) is totally equivalent to Eq. (2.99).
Compared to the first approach, a higher numerical effort is required since the derivative
of the inelastic energy with respect to the displacements, which involves the computa-
tion of the tangent material matrix, must be calculated for each element. Furthermore,
an assembling of the corresponding element contributions in the global vector of energy
derivatives must be performed. Due to the usage of the inelastic energy this approach is
not limited to continuum damage models. It is also applicable to plasticity and combined
damage-plasticity models.

Both constraint equations can only be used if damage or plasticity is evolving during the
load step. In general, this is not the case at the beginning of the loading process. As long
as the structure is in the elastic regime, the simulation is performed with load control and
the dissipated energy is calculated in each iteration step using Eq. (2.97) or (2.101). If
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damage or plasticity initiates and inelastic energy starts to dissipate, the load control is
replaced by an energy release control.

2.4.4 Line Search

In nonlinear finite element simulations, line searches can be applied to improve the global
convergence of the iterative solution procedure, see for instance Matthies and Strang
(1979); Crisfield (1982). In each iteration step, an optimum line search parameter η is
determined which scales the correction of the displacement vector. Using line searches
with load control or direct displacement control, the update of the displacement vector is
given by

d(n,i)(η) = d(n,i−1)+ ηδd(n,i) (2.104)

and the residual is defined as

r(n,i)(η) = f
(n)
ext − fint(d(n,i)(η)). (2.105)

According to Schweizerhof (1993), the line search in simulations using load-displacement-
constrained methods is performed in the direction of δd(n,i)

0 and then corrected by the load
term δµ(n,i)δd

(n,i)
f . Consequently, the parameter η not only affects the correction of the

displacement vector

δd(n,i)(η) = d(n,i−1)+ ηδd
(n,i)
0 + δµ(n,i)(η)δd

(n,i)
f , (2.106)

but also the correction of the load factor δµ(n,i). The corresponding out-of-balance forces
are given by

r(n,i)(η) = f0 + (µ(n,i−1)+ δµ(n,i)(η))f̂ − fint(d(n,i−1)+ δd(n,i)(η)). (2.107)

In order to assure convergence of the applied solution procedure, the calculated iteration
step length must result in an sufficient improvement of the displacement approximation.
In the next paragraphs, two different approaches for the determination of the line search
parameter η, based on the total potential and on the residuals are presented.

Total Potential Line Search

Alternatively to the differential approach and the principal of virtual displacements, pre-
sented in Sect. 2.1, the equilibrium state of a body can be expressed for certain problems
as an optimization problem, see for instance Bathe (1995),

Πtot(d)→ min ⇒ ∂Πtot

∂d
(d) = r(d) = 0, (2.108)

where Πtot is the total potential and r are the out-of-balance forces. Crisfield (1991) and
Schweizerhof (1993) propose a line search which is based on the total potential. During
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initialize start values
ηl = η(0) = 0 → gl = g(η(0))
ηr = η(1) = 1 → gr = g(η(1))

ηr,min = η(1)

check sign of start values
gl gr > 0

η = 1

check convergence
|g(η(k))| ≤ ψ|g(η(0))| η = η(k)

check step length
(ηr − ηl) < 0.5ψ(ηr + ηl)

η = η(k)

check number of line search iterations
k ≥ kmax

η = ηr,min
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check residual
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Figure 2.5: Energy based line search – flowchart for calculating the line search step length.

the line search, the direction of the displacement correction, δd(n,i) or δd(n,i)
0 and δd(n,i)

f ,
is fixed and the minimization is performed with respect to the line search parameter η

Πtot(η)→ min ⇒ ∂Πtot

∂η
=

(
∂Πtot

∂d

)T
∂d

∂η
= rT

∂d

∂η
= 0. (2.109)

This equation is solved iteratively using the regula falsi method. Figure 2.5 shows the
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algorithm for the calculation of the line search parameter. In this algorithm the parameter
ψ is the so-called line search tolerance. According to Schweizerhof (1993) this parameter is
chosen in the interval between 0.5 and 0.8. As a result, an inexact line search is performed.
Using standard load control or direct displacement control, the gradient g of the total
potential with respect to the line-search parameter η can be written as

g(η(k)) =
(
r(n,i)(η(k))

)T
δd(n,i). (2.110)

In each iteration step k, a new displacement vector is calculated using Eq. (2.104) and
the out-of-balance force vector given in Eq. (2.105) is updated. Using load-displacement-
constrained methods, the gradient of the total potential reads

g(η(k)) =
(
r(n,i)(η(k))

)T (
δd

(n,i)
0 +

∂δµ(n,i)

∂η
(η(k))δd

(n,i)
f

)
. (2.111)

In addition to the update of the displacement vector, Eq. (2.106), and the out-of-balance
forces, Eq. (2.107), a new correction of the load factor, Eqs. (A.23) to (A.29) in ap-
pendix A.3, and the corresponding derivative of the load factor correction with respect to
the line search parameter, Eqs. (A.30) to (A.35), is calculated in each line search iteration
step.

Residual Line Search

One criterion for the convergence of an iterative solution procedure in finite element sim-
ulations is based on the norm of the out-of-balance forces, which describes the difference
between internal forces and external loads. The algorithm converges if in each iteration
step a sufficiently large decrease of the out-of-balance forces is obtained with the applied
step length. Using the Armijo-Goldstein condition, see for instance Nocedal and Wright
(2006), a sufficiently large decrease is achieved, if the step length factor η satisfies

f(d(n,i−1) + ηδd(n,i)) ≤ f(d(n,i−1)) + ε η
(
∇f(d(n,i−1))

)T
δd(n,i), 0 < ε < 1, (2.112)

where f is the objective function, defined as

f(d(n,i)) =
∥∥r(n,i)

∥∥
2

=
√
r(n,i)Tr(n,i), (2.113)

and ∇f is the corresponding gradient, which can be written as

∇f(d(n,i)) =
∂f

∂d
(d(n,i)) =

−2

2 ‖r(n,i)‖2

(
∂f

(n,i)
int

∂d

)T
r(n,i) = −K

(n,i)Tr(n,i)

‖r(n,i)‖2

. (2.114)

By substituting Eqs. (2.113) and (2.114) into Eq. (2.112) and by considering Eq. (2.62),
this condition can be rewritten as∥∥r(n,i)(η)

∥∥
2
≤
∥∥r(n,i−1)

∥∥
2
− ε η

∥∥r(n,i−1)
∥∥

2
. (2.115)
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initialize start values
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Figure 2.6: Residual based line search – flowchart for calculating the line search step length.

The parameter ε controls the required reduction of the out of balance forces. According
to the user’s guide of the MATLAB PDE Toolbox (2008), ε is chosen to 0.5 and the
Armijo-Goldstein condition, given in Eq. (2.112), is slightly modified∥∥r(n,i−1)

∥∥
2
−
∥∥r(n,i)(η)

∥∥
2
≥ 0.5 η

∥∥r(n,i−1)
∥∥

2
. (2.116)

This condition is not too stringent, since, in general, quadratic convergence is obtained
for nonlinear simulations using the Newton-Raphson method with the consistent tangent
stiffness matrix, if the start vector is sufficiently close to the desired solution. Consequently,
the line search is only performed if the Newton-Raphson method does not converge. The
iterative procedure for the determination of the step length factor η is summarized in
Fig. 2.6. Starting with a value of 1, the step length factor is successively halved until
either Eq. (2.116) is satisfied or the number of line search iterations exceeds a certain
limit. If the maximum number of line search iterations is reached, the step length factor
with the smallest residual is chosen. In this case, the residual may increase compared to
the previous equilibrium iteration step.

2.4.5 Step Size Adaptation

In order to reduce the computing time for nonlinear analyses, the step size is adapted
during the simulation. According to Ramm (1980), the step size is related to the number
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of iterations, n(n−1)
i , required in the previous load increment

∆l(n) =

√
n̄i

n
(n−1)
i

∆l(n−1) n > 1, (2.117)

where n̄i is a desired number of iterations, and ∆l represents the step length. Consequently,
the step size is either increased or decreased depending in the number of iterations required
for convergence. If the number of iterations in the current load-step exceeds a certain limit,
which indicates divergence of the solution, the step-size is halved and the equilibrium
iteration is restarted from the last converged solution.
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3 Continuum Damage Mechanics

3.1 Introduction

According to Kachanov (1986), damage is a, in general, irreversible process of accumu-
lation of microstructural changes, e.g. the initiation and propagation of microcracks or
microvoids, leading to a progressive degradation of the material. This effect is caused by
stress concentrations at material interfaces within the heterogeneous material microstruc-
ture or in the vicinity of initial microdefects or by atomic debonding at the nanolevel. In
the theory of continuum damage mechanics, introduced by Kachanov in 1958 for creep
rupture, damage is described phenomenologically by a set of continuous damage variables
representing the microstructural defects in a material. The value of a damage variable in
a given point is a measure of the amount of microdefects in the vicinity of this point. A
comprehensive study on the definition of damage variables in terms of physical quantities
can be found in Lemaitre and Chaboche (1990) or Krajcinovic (1996). In elasticity based
damage models, it is assumed that the material behavior is linear elastic if damage does not
grow. Furthermore, viscous effects and plastic deformations are neglected. Consequently,
the evolution of microdefects is the primary deterioration mechanism, which is typical for
quasi-brittle materials such as concrete. The initiation, evolution and coalescence of micro-
cracks results in a gradual decrease of the initial elastic material parameters. Furthermore,
it is assumed that in the initial state the material is undamaged. Initial material defects,
which always exist in real materials, are included in the elastic material properties. In this
thesis, elasticity based continuum damage models are used to describe the deterioration
behavior of the mortar matrix.

3.2 Regularization

Tension tests of concrete show that the material starts to soften after the fracture strength
is reached. Consequently, the specimen does not collapse promptly but the stress decreases
gradually for increasing deformation. This phenomenon, termed softening, is characterized
by a high degree of microstructural changes. According to Sluys (1992) and Hofstetter
and Mang (1995), at about 60% of the maximum load, microcracks arise at the interface
between aggregates and mortar matrix. If the load is further increased, the interface cracks
propagate into the mortar matrix and additional microcracks initiate within the mortar
matrix. At maximum load level, the microcracks start to interact and to coalesce which
results in a localization of deformation in macroscopic failure zones. At the same time, the
surrounding material starts to unload. The width of these failure bands, which depends on
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the material microstructure, cf. Bažant and Pijaudier-Cabot (1989), is, in general, much
smaller compared to the region in which microdefects have been developed.

In numerical simulations, damaged concrete can be modeled as a strain-softening contin-
uum using continuum damage models. In these material formulations, the softening is
explicitly considered within the stress-strain relationship, which results in a negative slope
of the stress-strain curve. From the mathematical point of view, a negative tangent mod-
ulus results in the so-called loss of ellipticity of the governing differential equations and
the boundary value problem becomes ill-posed. Assuming the academical case of uniform
material properties and stresses, an infinite number of solutions exist for the equilibrium
problem, see for instance Jirásek and Bažant (2001). If imperfections of the material and
the geometry are taken into account the material properties and the stresses become in-
homogeneous. As a result, softening starts not in the entire structure simultaneously but
only in one cross-section. At the same time the surrounding material starts unloading.
Consequently, damage localizes in the weakened cross-section. Since the softening region
becomes infinitely small, the energy dissipated during the failure process is zero and the
load-displacement curve always exhibits snap-back, Bažant (1976). In finite element simu-
lations, ill-posedness results in a pathological sensitivity of the results to the element size,
see for instance Pietruszczak and Mróz (1981) or de Vree et al. (1995). Damage tends to
localize in a single layer of finite elements if a standard local continuum damage model is
used. Consequently, the numerical solution does not converge to a physically meaningful
solution upon mesh refinement. Furthermore, as shown in Sluys (1992); Jirásek and Zim-
mermann (1998a); Jirásek and Grassl (2008), the direction in which damage develops may
depend on the finite element shape and orientation. In the next subsections regularization
methods for continuum material models are introduced which can be used to improve the
objectivity of the numerical results with respect to the finite element discretization.

3.2.1 Crack-Band Theory

In order to avoid the sensitivity of the constitutive models with respect to the size of
the finite elements, for shear failure of elasto-plastic materials Pietruszczak and Mróz
(1981) introduce a characteristic thickness of the shear band. The post-peak behavior
of the material, represented by the softening modulus, is adjusted using the ratio of this
additional material parameter and the finite element size. As a result, the obtained load-
displacement curves become almost independent from the element size. A similar approach,
the so-called crack-band theory, was proposed by Bažant and Oh (1983a) for smeared crack
models of concrete. In these models, it is assumed that fracture can be modeled as a band
of parallel, densly distributed microcracks. Furthermore, the softening behavior of the
material is expressed as function of the fracture energy Gf , which is defined as the energy
dissipated during the fracture process related to the area of the crack surface. Assuming
one single macroscopic crack, this parameter can be determined from experiments as the
area under the load-displacement curve divided by the area of the crack surface. Note
that the width of the fracture process zone is not considered in this parameter. Since
in the numerical model the inelastic energy is dissipated over the damaged volume, this
area specific material parameter must be related to the width of the localization zone.
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Therefore, on element level, the standard fracture energy is replaced by a volume specific
fracture energy gf which is defined as

gf =
Gf

leq
, (3.1)

where leq is the so-called equivalent element length representing the width of the localization
zone within the numerical model. In Mančevski (1998), this parameter is connected to the
element size

leq =


le line elements√
Ae plane elements

3
√
V e volume elements

(3.2)

in which le, Ae and V e denote the length, area and volume of the element, respectively.
More sophisticated approaches, which additionally take into account the element shape, the
integration scheme or the crack orientation can be found in Rots (1988), Oliver (1989) or
Červenka and Pukl (1994). Even though the crack-band concept was originally developed
for smeared crack models, this approach can be similarly applied to classical damage
models, cf. Jirásek and Grassl (2008).

Using the crack band approach, fracture still localizes in a single layer of elements. Con-
sequently, the numerical model does not represent the actual width of the fracture process
zone, but it preserves the correct amount of energy dissipated during the fracture process.
It is to be noted that the orientation of the localization zone is still influenced by the finite
element mesh, Jirásek and Zimmermann (1998b); Jirásek and Grassl (2008).

3.2.2 Integral-Type Nonlocal Damage Models

Another class of approaches allowing to reduce spurious mesh sensitivities is based on
localization limiters. In contrast to the crack band approach, in which the width of the
localization zone varies with the size of the finite elements, the introduction of a localization
limiter into the constitutive model enforces a realistic and mesh independent size of the
numerically simulated fracture process zone. The width of the fracture process zone is
specified by an additional material parameter, the so-called characteristic length. This
approach can be motivated by experimental results which indicate that the fracture process
zone has a finite width. For example, Bažant and Pijaudier-Cabot (1989) investigate for
tensile specimens of concrete that the characteristic length is approximately 2.7 times the
maximum aggregate size.

A wide class of localization limiters is based on a nonlocal continuum, which was originally
developed for elasticity, e.g. Eringen (1966); Kröner (1967). Pijaudier-Cabot and Bažant
(1987) extend this approach to strain softening materials leading to the nonlocal damage
theory, in which the nonlocal concept is applied only to those variables that control strain
softening, whereas the elastic part of the model remains local. By replacing a certain state
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variable g by its nonlocal counterpart ḡ, the corresponding stress-strain relationship can
be written as

σi(x) = σi (ε(x) , ḡ(x)) = Cs
ij (ḡ(x)) εj(x) (3.3)

where Cs is the secant material matrix. There exist several possibilities of choosing
the nonlocal variable, e.g. the damage energy release rate (Pijaudier-Cabot and Bažant
(1987)), the damage variable (Bažant and Pijaudier-Cabot (1988)), strain components
(Bažant and Lin (1988)) or the equivalent strain (de Vree et al. (1995)). A comprehensive
study of the different approaches can be found in Jirásek (1998b).

In integral-type nonlocal damage models, Jirásek and Bažant (1994), the nonlocal quan-
tity at point x is defined as the weighted average which is evaluated over the spatial
neighborhood of that point

ḡ(x) =

∫
V

α (x, ξ) g(ξ) dξ, (3.4)

where α (x, ξ) is a given weight function. As a result, the constitutive model does not
longer satisfy the principle of local action. The stresses at a given point depend not
only on the deformations and the deformation history in this point itself but also on the
deformations and the deformation history in its vicinity. This results in a smoothing of
the numerically simulated deformation field and the corresponding damage distribution.
Physically, the nonlocal averaging represents in a homogenized way the influence of the
material microlevel on the macroscopic damage evolution. This interrelationship can be
justified by micromechanical considerations. According to Bažant (1991, 1994); Bažant and
Jirásek (2002), nonlocality is caused by the heterogeneity of the material microstructure, by
the fact that the growth of a microcrack depends on the overall energy release in the vicinity
of that microcrack, and by interactions between microcracks. As shown in Jirásek and
Bažant (1994), the consideration of long-range interactions between microcracks requires
a different type of nonlocal formulation, which is not used in this work. Short-range effects
are taken into account by standard nonlocal models, Eq. (3.4), with isotropic averaging
function. In order to guarantee that the nonlocal averaging does not alter a uniform field
and in order to avoid boundary effects, the weight function must satisfy the following
normalizing condition∫

V

α(x, ξ) dξ = 1. (3.5)

This can be achieved by modifying the weight function α

α (x, ξ) =
α0 (‖x− ξ‖)∫

V

α0 (‖x− η‖) dη
, (3.6)

where α0 is a monotonically decreasing nonnegative function of the distance between two
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Figure 3.1: Nonlocal weight functions.

points, and x, ξ and η are the coordinates of these points. Due to this modification, the
weight function becomes non-symmetric with respect to the arguments x and ξ. Borino
et al. (2003) propose another modification of the weight function which preserves sym-
metry and satisfies the normalizing condition, given by Eq. (3.5). Since the tangential
stiffness matrix of continuum damage models may become already in local formulations
non-symmetric, this approach is not further investigated in this work. Several functions α0

can be found in literature. For instance, Askes and Sluys (2000) use the Gauss distribution
function

α0(r) = exp

(
− r

2

2l2c

)
, (3.7)

in which lc denotes the internal (characteristic) length of the nonlocal continuum. The
Gaussian function has an unbounded support which would imply that the nonlocal aver-
aging is performed over the entire body. This can be avoided by truncating the weight
function if the radius exceeds a certain value. As a result, the nonlocal influence of each
point is restricted to its vicinity. Another possible choice for α0, introduced by Bažant and
Ožbolt (1990) and used in this work, is a bell-shaped function with bounded support

α0(r) =


0.0 r > R[
1− r2

R2

]2

r ≤ R
, (3.8)

where R is the so-called nonlocal interaction radius which is related, but not equal, to
the characteristic length. The different meaning of these two parameters is illustrated in
Fig. 3.1(a) which shows the corresponding normalized weight function α. In this plot,
the characteristic length lc is set equal to the nonlocal interaction radius R. According to
Jirásek (1998a), a comparable length scale is imposed by both weight functions if R =

√
7lc,

cf. Fig. 3.1(b).
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Finite Element Implementation

In general, the nonlocal quantity can be a scalar, a vector or a tensor. For the sake of
simplicity, it is assumed that a scalar value, e.g. the equivalent strain, is used for nonlocal
averaging. The extension to a vector or a tensor is straightforward. In finite element
implementations of nonlocal material laws, the integrals given in Eqs. (3.4) and (3.6) are,
in general, evaluated numerically using the integration points of the finite elements. In the
discretized form, the nonlocal averaging in Eq. (3.4) reads

ḡ (x) =

nE∑
q=1

∑
r∈I(q)

w(r) detJ (q)
(
x(r)

)
α
(
x,x(r)

)
g(q)
(
x(r)

)
(3.9)

where nE is the number of elements, I(q) is the set of integration points of element q, detJ (q)

is the determinant of the Jacobian of element q, and x(r) and w(r) are the coordinates and
the weight factor of integration point r. The normalized nonlocal weight factor α is given
by

α (x, ξ) =
α0 (‖x− ξ‖)

nE∑
m=1

∑
n∈I(m)

w(n) detJ (m)
(
x(n)

)
α0

(
‖x− x(n)‖

) . (3.10)

In the implementation, only those integration points with the same material are used
for nonlocal averaging. The calculation of the nonlocal weight factors starts with the
determination of the nonlocal elements of each integration point. Nonlocal elements of
a given integration point are all elements which are not completely outside the domain
of nonlocal influence of that point, which is represented by a sphere of radius R around
that point. The determination of the nonlocal elements is done in an iterative procedure.
Starting with the element to which the integration point belongs, the neighboring elements
are determined. This procedure is successively repeated for each neighboring element,
which is not completely outside the domain of nonlocal influence. Note that an element
is neighbor of another element if both elements have a common surface. If the nonlocal
elements of the integration point are known, the summation in the nonlocal averaging
procedure, Eq. (3.9), can be performed only over the integration points of the nonlocal
elements. For computational efficiency, the nonlocal elements of each integration point
and the corresponding nonlocal weight factors are evaluated and stored at the beginning
of an simulation. In order to save memory, the nonlocal elements are not stored at the
integration points itself, but the union of the nonlocal elements for all integration points of
an element is determined and stored at that element. Only the vector of nonlocal weight
factors are stored at the integration point level. As a result, the number of vanishing
weight factors saved at each integration point might slightly increase.

Due to the integral-type nonlocal formulation, the internal forces of an element, Eq. (2.53),
depend not only on the nodal displacements of the element itself but also on the nodal
values of the neighboring elements. As a consequence, the bandwidth of the tangential
stiffness matrix increases during the simulation depending on the evolution of damage,
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Jirásek and Patzák (2002). The tangential stiffness matrix of an element is stored as block
matrix. Each block of this matrix is defined as the derivative of the internal load vector
f

(o)
int of element o with respect to the displacement vector d(q) of element q

K
(o,q)
ij =

∂f
(o)
int,i

∂d
(q)
j

=
∂

∂d
(q)
j

∫
V (o)

B
(o)
ki (x)σ

(o)
k (x) dV (3.11)

=

∫
V (o)

B
(o)
ki (x)

∑
r∈I(q)

∂σ
(o)
k (x)

∂ε
(q)
l (x(r))

∂ε
(q)
l

(
x(r)

)
∂d

(q)
j

dV (3.12)

=

∫
V (o)

B
(o)
ki (x)

∑
r∈I(q)

∂σ
(o)
k (x)

∂ε
(q)
l (x(r))

B
(q)
lj

(
x(r)

)
dV, (3.13)

where V (o) is the element volume and B(o) is the well known strain-displacement matrix.
Using numerical integration, Eq. (3.13) is rewritten as

K
(o,q)
ij =

∑
p∈I(o)

w(p) detJ (o)
(
x(p)

)
B

(o)
ki

(
x(p)

) ∑
r∈I(q)

∂σ
(o)
k

(
x(p)

)
∂ε

(q)
l (x(r))

B
(q)
lj

(
x(r)

)
. (3.14)

The corresponding tangential material matrix, which is also stored as block matrix, is
given by

∂σ
(o)
k

(
x(p)

)
∂ε

(q)
l (x(r))

=
∂σ

(o)
k

∂ḡ(o)

(
x(p)

) ∂ḡ(o)
(
x(p)

)
∂g(q)(x(r))

∂g(q)

∂ε
(q)
l

(
x(r)

)
+ δoqδprC̄

s(o)
ij

(
x(p)

)
, (3.15)

where δ is the Kronecker delta, and C̄s is the secant (unloading) material matrix of the
nonlocal model. The derivative of the nonlocal quantity, given by Eq. (3.9), with respect
to its local counterpart reads

∂ḡ(o)
(
x(p)

)
∂g(q)(x(r))

= w(r) detJ (q)
(
x(r)

)
α
(
x(p),x(r)

)
. (3.16)

By substituting Eq. (3.16) into Eq. (3.15) the tangential material matrix can be rewritten
as

∂σ
(o)
k

(
x(p)

)
∂ε

(q)
l (x(r))

=w(r) detJ (q)
(
x(r)

)
α
(
x(p),x(r)

) ∂σ(o)
k

∂ḡ(o)

(
x(p)

) ∂g(q)

∂ε
(q)
l

(
x(r)

)
+ δoqδprC̄

s(o)
ij

(
x(p)

)
.

(3.17)

Due to the storage of the element stiffness matrix as block matrices, only minor changes
are required in the global assembling procedure which is performed for each block matrix
separately. During the assembling of block matrix K(o,q), it must be considered that the
global degrees of freedom of the nodes of element o are associated with the rows and that
the columns are specified by the global degrees of freedom of the nodes of element q.
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3.2.3 Nonlocal Averaging of the Displacement Field

Jirásek and Marfia (2005) have demonstrated that the averaging of strain like variables,
presented in Sect. 3.2.2, may result in stress oscillations in certain regions of the fracture
process zone. Furthermore, it is shown that by using a nonlocal damage model based
on displacement averaging these stress oscillations can be substantially reduced. In the
material model presented in Jirásek and Marfia (2005), the evolution of damage is driven
by the nonlocal strain tensor ε̄ which is defined as the symmetric gradient of the nonlocal
displacement field

ε̄ij (x) =
1

2

[
∂ūi
∂xj

(x) +
∂ūj
∂xi

(x)

]
. (3.18)

Using an integral-type approach, the nonlocal displacements ū are derived as the weighted
average of the local displacement field u

ū(x) =

∫
V

α (x, ξ) u(ξ) dξ. (3.19)

In order to avoid artificially induced damage at the specimen boundaries due to rigid body
rotations the nonlocal averaging has to preserve not only a constant field but also a linear
field. Consequently, the nonlocal weight function α must satisfy an additional normalizing
condition∫

V

(ξ − x)α(x, ξ) dξ = 0. (3.20)

This requires a further modification of the nonlocal weight function, which can be written
as

α (x, ξ) =
[
p0 (x) + (ξ − x)T p1 (x)

]
α0(‖x− ξ‖), (3.21)

where p0 and p1 are unknown parameters which can be determined from the normalizing
conditions. Substituting the modified weight function, Eq. (3.21) into the normalizing
conditions, Eqs. (3.5) and (3.20), a linear system of equations, which can be solved for the
parameters p0 and p1, is obtained[

r00 rT10

r10 R11

] [
p0

p1

]
=

[
1
0

]
(3.22)

where

r00(x) =

∫
V

α0(‖x− ξ‖) dξ (3.23)

r10(x) =

∫
V

(ξ − x)α0(‖x− ξ‖) dξ (3.24)
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R11(x) =

∫
V

(ξ − x)(ξ − x)Tα0(‖x− ξ‖) dξ. (3.25)

It is to be noted, that the size of vector p1 is equal to the number of spatial dimensions.

Finite Element Implementation

Using the finite element method, it is convenient to approximate the nonlocal displacement
field ū in each element by standard finite element shape functions

ū
(o)
i (x) =

∑
p∈N (o)

N (o,p)(x) ¯̂u
(p)
i , (3.26)

where N (o) is the set of nodes of element o, ¯̂u
(p) are the nonlocal nodal displacement

values of node p and N (o,p) is the corresponding element shape function. Using a numerical
integration scheme, the nonlocal nodal displacements values, given by Eq. (3.19), can be
written as

¯̂u
(p)
i = ūi

(
x̂(p)

)
(3.27)

=

nE∑
q=1

∑
r∈I(q)

w(r) detJ (q)
(
x(r)

)
α
(
x̂(p),x(r)

)
u

(q)
i

(
x(r)

)
, (3.28)

where nE is the number of elements, detJ (q) is determinant of the Jacobian of element q,
I(q) represents the set of integration points of element q, x(r) and w(r) are the coordinates
and the weight of integration point r, and x̂(p) are the coordinates of node p. Substituting
the interpolation of the local displacement field, given by Eq. (2.16), into Eq. (3.28) the
nonlocal nodal displacement values ¯̂u can be expressed as function of the local nodal
displacement values û

¯̂u
(p)
i =

nE∑
q=1

∑
r∈I(q)

w(r) detJ (q)
(
x(r)

)
α
(
x̂(p),x(r)

) ∑
s∈N (q)

N (q,s)
(
x(r)

)
û

(s)
i . (3.29)

The approximation of the nonlocal strain field is obtained by substituting Eq. (3.26) into
Eq. (3.18). Using vector notation, the nonlocal strain components can be written as

ε̄
(o)
i (x) =

∑
p∈N (o)

B̃
(o,p)
ij (x) ¯̂u

(p)
j , (3.30)
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where B̃
(o,p)

is that part of the B-matrix, which defines the relationship between the strains
of element o and the nodal displacement values of node p

B̃
(o,p)

(x) =



∂N (o,p)

∂x1

(x) 0 0

0
∂N (o,p)

∂x2

(x) 0

0 0
∂N (o,p)

∂x3

(x)

∂N (o,p)

∂x2

(x)
∂N (o,p)

∂x1

(x) 0

∂N (o,p)

∂x3

(x) 0
∂N (o,p)

∂x1

(x)

0
∂N (o,p)

∂x3

(x)
∂N (o,p)

∂x2

(x)



. (3.31)

The corresponding constitutive relationship of element o is given by

σ
(o)
i (x) = σ

(o)
i

(
ε(o)(x) , ε̄(o)(x)

)
= C

s(o)
ij

(
ε̄(o)(x)

)
ε

(o)
j (x) (3.32)

where Cs is the secant material matrix.

In Eq. (3.29), the nonlocal displacements are calculated as sum over elements and integra-
tion points. According to Jirásek and Marfia (2005), the efficiency of the nonlocal model
can be increased if this double sum is replaced by a sum over nodes

¯̂u
(p)
i =

nN∑
m=1

α̃(m)
(
x̂(p)

)
û

(m)
i , (3.33)

where nN is the number of nodes, û(m) are the local nodal displacement values of global
node m, and x̂(p) are the coordinates of node p. Using Eq. (3.29), the factor α̃(m), repre-
senting the influence of the local displacements of node m on the nonlocal displacement
field, can be defined as

α̃(m)(x) =
∑
q∈E(m)

∑
r∈I(r)

w(r) detJ (q)
(
x(r)

)
α
(
x,x(r)

)
N (q,m)

(
x(r)

)
, (3.34)

where E (m) is the set of elements connected to node m. Since the interaction between
two nodes vanishes if the distance exceeds a certain value, the sum in Eq. (3.33) can be
limited to the so-called nonlocal nodes. These are nodes for which the nonlocal weight
factor does not vanish. For computational efficiency, the nonlocal nodes and the corre-
sponding nonlocal weight factors of a node are determined and stored at the beginning of
the simulation.

The tangential element stiffness matrix, representing the derivative of the internal load
vector f (o)

int of element o with respect to the local nodal displacement values û(q) of global
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node q is given by

K
(o,q)
ij =

∂f
(o)
int,i

∂û
(q)
j

=
∂

∂û
(q)
j

∫
V (o)
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(o)
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(o)
k (x) dV (3.35)

=
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∂ε̄
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p∈N (o)

∂ε̄
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j
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∂û
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(o)
ki (x)
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k
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∂û
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(3.36)

=
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V (o)
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(o)
ki (x)
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k

∂ε̄
(o)
l

(x)
∑
p∈N (o)

B̃
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+
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V (o)
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ki (x) C̄

s(o)
kl (x) B̃

(o,q)
lj (x) dV q ∈ N (o)

0 q /∈ N (o)

. (3.37)

By applying a numerical integration scheme, Eq. (3.37) reads

K
(o,q)
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r∈I(o)

w(r) detJ (o)
(
x(r)

)
B
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(
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q ∈ N (o)

0 q /∈ N (o)

.

(3.38)

Since the element stiffness matrix is stored in this way, the same procedure for the assem-
bling of the global stiffness matrix as for standard local material formulations can be used.
The only modification required is that the column index in the global stiffness matrix is not
specified by the global degrees of freedom of the element nodes but by the global degrees
of freedom of the nonlocal nodes of that element.

3.2.4 Gradient Enhanced Damage Models

In an alternative approach, which can be derived as approximation of the nonlocal formu-
lation given by Eq. (3.4), cf. Bažant (1984a); Lasry and Belytschko (1988), nonlocality
is introduced into the constitutive relations by higher-order deformation gradients. Peer-
lings et al. (1996) propose for an isotropic damage model the following partial differential
equation for the nonlocal equivalent strain ε̄eq:

ε̄eq(x)− c∇2ε̄eq(x) = εeq(x) ∀x ∈ Ω (3.39)
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where εeq is the corresponding local equivalent strain, ∇2 is the Laplacian, and c is a
parameter which is related to the internal length scale. Peerlings (1999) has shown that due
to the correlation between gradient enhanced models and nonlocal integral-type models, c
can be related to the free parameters l and R of the nonlocal weight functions, given by
Eqs. (3.7) or (3.8),

c =
l2

2
=
R2

14
. (3.40)

A unique solution of Eq. (3.39) requires the definition of additional boundary conditions
for the nonlocal equivalent strain. According to Peerlings (1999), the natural boundary
condition

∂ε̄eq
∂xi

(x)ni(x) = 0 ∀x ∈ Γ, (3.41)

in which n denotes the outward unit vector normal to the boundary Γ, is used in this
work. Assuming a homogeneous strain field, this boundary condition results in a nonlocal
equivalent strain field which is identical to its local counterpart.

Finite Element Implementation

In order to solve this partial differential equation, the nonlocal field is approximated by a
linear combination of nN̄ linearly independent trial functions N̄

ε̄eq(x) ≈
nN̄∑
i=1

N̄i(x) ēi, (3.42)

where ēi are unknown coefficients. In general, this approximation does not exactly satisfy
Eq. (3.39) and an error or residual can be defined. By applying the method of weighted
residuals, the coefficients are determined such that the weighted average of the error be-
tween the approximation and the actual solution vanishes. This leads to a system of nN̄
equations for the unknown coefficients∫

Ω

W̄i(x) (εeq(x)− ε̄eq(x)) dΩ + c

∫
Ω

W̄i(x) ∇2ε̄eq(x) dΩ = 0 i = 1, 2, . . . , nN̄ ,

(3.43)

in which W̄i denote the weight functions. Using integration by parts and applying the
divergence theorem, the second term of Eq. (3.43) can be rewritten as∫

Ω

W̄i(x) ∇2ε̄eq(x) dΩ =

∫
Γ

W̄i(x)
∂ε̄eq
∂xj

(x)nj(x) dΓ−
∫
Ω

∂W̄i

∂xj
(x)

∂ε̄eq
∂xj

(x) dΩ.

(3.44)
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Substituting Eq. (3.44) into Eq. (3.43) and considering the natural boundary conditions,
Eq. (3.41), the weak form of Eq. (3.39) is obtained∫

Ω

W̄i(x) ε̄eq(x) + c
∂W̄i

∂xj
(x)

∂ε̄eq
∂xj

(x) dΩ =

∫
Ω

W̄i(x) εeq(x) dΩ. (3.45)

By using the Galerkin approach, in which the weight functions W̄i are chosen to be identical
to the trial functions N̄ , and by substituting the approximation of the nonlocal equivalent
strain field, Eq. (3.42), into Eq. (3.45), the weak form can be rewritten as∫

Ω

N̄i(x) N̄j(x) + cB̄ik(x) B̄jk(x) dΩ

︸ ︷︷ ︸
K ēē
ij

ēj =

∫
Ω

N̄i(x) εeq(x) dΩ

︸ ︷︷ ︸
f ēi

i, j = 1, 2, ..., nN̄ ,

(3.46)

in which the matrix B̄ is defined as

B̄ij(x) =
∂N̄i

∂xj
(x) . (3.47)

In the presented approach, the nonlocal variable is interpolated by standard finite element
shape functions using the same spatial discretization as for the local displacement field. In
general, the interpolation functions for both fields can be defined independently. Peerlings
(1999) has shown that for the presented model the usage of interpolation polynomials of
the same order for both fields may result in stress oscillations. In order to avoid these
stress oscillations, Peerlings (1999) proposes to use for the displacements an interpolation
of one order higher than that for the nonlocal equivalent strains.

In an equilibrium state, finite element models with gradient enhanced damage formulations
must satisfy both, the weak form of the standard equilibrium equations, Eq. (2.50), and the
weak form of the partial differential equation for the nonlocal equivalent strain, Eq. (3.45).
This leads to a coupled, two field problem which is represented by a generally nonlinear
system of equations. Using Newton’s method, the unknown nodal values (displacements
d and nonlocal equivalent strains ē) can be determined in an iterative way. In the i-th
iteration step, the linearized equations are given by[

Kdd(i−1) Kdē(i−1)

K ēd(i−1) K ēē

][
∆d(i)

∆ē(i)

]
=

[
fext − f

(i−1)
int

f ē(i−1) −K ēēē(i−1)

]
i = 1, 2, . . . (3.48)

in which the sub-matrices and sub-vectors are defined as

K
dd(i−1)
kl =

∫
Ω

Bmk(x)
∂σm
∂εn

(
u(i−1)(x) , ε̄(i−1)

eq (x)
)
Bnl(x) dΩ (3.49)

K
dē(i−1)
kl =

∫
Ω

Bmk(x)
∂σm
∂ε̄eq

(
u(i−1)(x) , ε̄(i−1)

eq (x)
)
N̄k(x) dΩ (3.50)
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K
ēd(i−1)
kl =

∫
Ω

N̄k(x)
∂εeq
∂εm

(
u(i−1)(x)

)
Bml(x) dΩ (3.51)

K ēē
kl =

∫
Ω

N̄k(x) N̄l(x) + c B̄km(x) B̄lm(x) dΩ (3.52)

f
(i−1)
int,k =

∫
Ω

Bmk(x) σm
(
u(i−1)(x) , ε̄(i−1)

eq (x)
)
dΩ (3.53)

f
ē(i−1)
k =

∫
Ω

N̄k(x) εeq
(
u(i−1)(x)

)
dΩ. (3.54)

By solving this linear system of equations, an improved approximation of the unknown
nodal degrees of freedom is obtained

d
(i)
j = d

(i−1)
j + ∆d

(i)
j (3.55)

ē
(i)
j = ē

(i−1)
j + ∆ē

(i)
j . (3.56)

The successive update of the unknown nodal values is repeated until a predefined conver-
gence criterion is satisfied. Due to the different physical meaning of the two fields, the
system of equations given by Eq. (3.48) may become ill-conditioned even if the material
is still linear elastic. The condition number of the coefficient matrix can be improved by
scaling the partial differential equation for the nonlocal equivalent strain, Eq. (3.39), by
the Young’s modulus E of the undamaged material. Then, the modified equation reads

E(ε̄eq(x)− c∇2ε̄eq(x)) = Eεeq(x) ∀x ∈ Ω. (3.57)

Since Eq. (3.57) is multiplied by the Young’s modulus on both sides, only the sub-matrices
and sub-vectors in the second row of the coefficient matrix and the right-hand-side vector
in Eq. (3.48) are modified, whereas the correction of the unknown nodal values of the
nonlocal variable remain unchanged.

3.2.5 Discussion

In the preceding subsections, three different methods – the crack band approach, the
nonlocal integral type approach and the nonlocal gradient approach – for the regularization
of damage material formulations are presented. In this thesis, the crack band approach
and the nonlocal integral type approach with averaging of strain like variables as well as
averaging of the displacement field are used for the regularization of continuum damage
models and smeared crack models, introduced in Sects. 3.3 to 3.5.

The adjustment of the fracture energy with respect to the element size, as proposed in the
crack band approach (Sect. 3.2.1), is easy to understand and to implement in existing finite
element codes. Using Eq. (3.2), the obtained equivalent element size gives, in general, an
improper approximation of the actual width of the numerically simulated fracture process
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zone, especially for irregular finite element meshes. More sophisticated approaches tak-
ing into account the orientation of the fracture process zone require a substantial higher
computational effort. Furthermore, damage still localizes in a single layer of elements.
Consequently, the orientation of the simulated fracture process zone may depend on the
orientation and shape of the finite elements. On the mesolevel, the evolution of multiple
microcracks, involving crack branching and crack coalescence, must be represented by the
numerical model. In general, these effects cannot be properly simulated using local mate-
rial formulations even with the crack band approach, cf. Eckardt et al. (2004). As a result,
the application of local material formulations to mesoscale simulations of concrete is not
further investigated in this thesis.

By using nonlocal material formulations, pathological sensitivities of the numerical results
with respect to mesh refinement and mesh orientation can be reduced. Patzák and Jirásek
(2004) show that in simulations using nonlocal material formulations an average mesh size
smaller than the nonlocal interaction radius, which is, in general, related to the actual
size of the fracture process zone, is required to obtain a smooth representation of the
damage distribution. Compared to simulations with local material formulations using
the crack band approach, which explicitly assume that the element size is larger than
the actual size of the fracture process zone, the total number of finite elements increases
significantly. In this thesis, the nonlocal integral type approach with averaging of strain
like variables, Sect. 3.2.2, as well as averaging of the displacement field, Sect. 3.2.3, is
used for damage simulations due to the objectivity of the obtained numerical results.
The implementation of integral type nonlocal models in existing finite element codes is
relatively straightforward, since major modifications, e.g. the evaluation of the nonlocal
quantity, are mostly limited to element routines. Due to the different storage of the element
stiffness matrix, an additional minor modification is required within the global assembling
procedure. Since in each iteration step the nonlocal quantity must be calculated for each
integration point, the computational effort increases if a nonlocal integral type model is
used. Furthermore, the storage of nonlocal weight factors, nonlocal elements or nonlocal
nodes require additional memory. The numerical effort and the memory demand for the
solution of the global system of equations is affected by the increasing bandwidth and the
additional loss of symmetry of the tangential stiffness matrix. Compared to simulations
with local material formulations, the analysis with a nonlocal material models show, in
general, a significantly better convergence behavior.

Using a gradient enhanced damage model, additional nodal degrees of freedom are intro-
duced into the numerical model. As a result, the size of the global system of equations,
which must be solved in each iteration step for the unknown nodal displacements and the
nonlocal quantities, increases significantly, even if the material is still in the linear elastic
range. Consequently, the gradient enhanced damage approach is not used in this thesis
for mesoscale simulations of concrete. It is to be noted that, from a mathematical point
of view, the gradient formulation is still local, since stresses in a given point depend only
on values (deformations and nonlocal variables) in this point itself. As a result, this ap-
proach is, in contrast to integral type nonlocal models, well suited for parallel applications
based on domain decomposition, since no further communication between sub-domains is
required for the calculation of the nonlocal value.
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3.3 Isotropic Damage Model

3.3.1 Local Formulation

The simplest version of a continuum damage model is the isotropic damage model. In this
model, only a scalar parameter ω characterizes the density and orientation of microdefects.
This implies the assumption that the orientation of these microdefects is distributed uni-
formly in all directions, Lemaitre and Chaboche (1990). Consequently, the damage state
of the material can be characterized by the amount of microdefects on a cross-section with
arbitrary orientation in the body under consideration. According to Kachanov (1986), the
damage parameter can be defined by relating the damaged part AD of the cross-section
area, to the initial area A0 of this cross-section

ω =
AD
A0

. (3.58)

As a result, the damage parameter monotonically increases, due to the initiation and
propagation of microdefects, from zero, representing the undamaged or virgin material, to
unity, which corresponds to a completely damaged material. By introducing the concept
of effective stresses, Kachanov (1986), and by using the principle of strain-equivalence,
Lemaitre (1984), the constitutive equations can be written as

σi = (1− ω)σeff,i = (1− ω)Ce
ijεj = Cs

ijεj, (3.59)

where σ is the nominal stress vector, σeff is the effective stress vector, Ce is the linear
elastic material matrix, Cs is the secant material matrix, and ε is the vector of total strains.
The nominal stress is, in general, used in the macroscopic equilibrium equations, while the
effective stress can be interpreted as the stress acting on the material microstructure. It
is to be noted that the assumption of isotropic stiffness degradation represented by the
evolution of one scalar parameter ω implies that the Poisson’s ratio is constant during the
failure process.

In general, the evolution of the damage parameter is driven by a so-called equivalent strain,
εeq, which is a scalar measure of the deformation state. The definition of the equivalent
strain directly affects the shape of the failure surface, which represents the boundary of the
elastic domain. In this thesis, the Rankine criterion is used to describe the tensile failure
of the mortar matrix. The corresponding equivalent strain is defined as

εeq =
1

E
max
i=1,2,3

〈seff,i〉, (3.60)

where seff,i is the i-th eigenvalue of the effective stress tensor. The brackets 〈. . .〉 denote
that only positive eigenvalues are considered in the definition of the equivalent strain.
Assuming that the elastic limit is defined by the tensile strength ft, damage initiates if the
largest eigenvalue of the effective stress tensor reaches this value. The normalization by
the Young’s modulus E is introduced to obtain a strain like quantity. In order to avoid
numerical problems due to identical eigenvalues, the original definition of the equivalent
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Figure 3.2: Isotropic damage model – failure surface and damage law.

strain is rewritten as

εeq =
1

E


√√√√ 3∑

i=1

〈seff,i − αft〉2 + αft

 , (3.61)

where α is a dimensionless parameter ranging from zero, which corresponds to the original
Rankine criterion, to unity. Assuming α = 1, the corners in the octants with more than
one positive eigenvalue are rounded. The diagram in Fig. 3.2(a) shows the corresponding
failure surface for varying values of α.

The evolution of the damage parameter ω is defined by an exponential damage law,
Fig. 3.2(b). This implies that the damage variable approaches unity only asymptotically.
In order to guarantee that the damage parameter monotonically increases, a history vari-
able εeq,max is introduced, characterizing the maximum equivalent strain ever reached in
material history, and the damage law is expressed as function of this variable

ω (εeq,max) =

0.0 εeq,max < ε0

1.0− ε0

εeq,max
exp

(
−εeq,max − ε0

εf − ε0

)
εeq,max ≥ ε0

, (3.62)

where ε0 = ft/E is the elastic limit, εf = 2gf/ft is a parameter controlling the ductility of
the material. Assuming a local material formulation and using the crack band approach,
the volume specific fracture energy gf is defined by Eq. (3.1).

3.3.2 Nonlocal Formulation

A nonlocal version of the isotropic damage model is presented in Patzák and Jirásek (2004).
In this model, the equivalent strain is calculated from the nonlocal strain vector ε̄, which
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3.3 Isotropic Damage Model

is defined either as weighted average of the local strain field, Eq. (3.4), or as function of
the nonlocal displacement field, Eq. (3.18). The corresponding stress-strain relationship
can be written as

σi = (1− ω(εeq(ε̄)))C
e
ijεj. (3.63)

A comparison of alternative nonlocal formulations of the isotropic damage model can be
found in Jirásek (1998b). Depending on the chosen nonlocal formulation, the tangential
stiffness matrix is given either by Eq. (3.13) or Eq. (3.37). The corresponding derivative
of the stresses with respect to the components of the nonlocal strain vector can be written
as

∂σi
∂ε̄j

= − ∂ω
∂ε̄j

Ce
ikεk = − ∂ω

∂εeq

∂εeq
∂ε̄j

Ce
ikεk. (3.64)

Determination of the Volume Specific Fracture Energy

In the isotropic damage model presented above, the evolution of damage is characterized
by the Mode I fracture energy. This material parameter is defined as the energy dissipated
during the fracture process divided by the area of the final crack surface. Consequently, the
width of the fracture process zone perpendicular to the crack surface is not included in this
parameter. Using a nonlocal material formulation, the width of the fracture process zone is
introduced as an additional material parameter into the material model. Depending on the
chosen nonlocal weight function, the width is either represented by the characteristic length
lc, Eq. (3.7), or the nonlocal interaction radius R, Eq. (3.8). In general, the actual width
of the fracture process zone in concrete cannot be properly determined by experiments.
Therefore, the significance of the nonlocal radius as material property is neglected in this
thesis and the nonlocal interaction radius is considered as a numerical parameter. As
shown in Patzák and Jirásek (2004), a minimum number of integration points and finite
elements is required inside the fracture process zone in order to represent the nonlocal field
sufficiently smooth. Consequently, the maximum allowable mesh size inside the fracture
process zone is related to the nonlocal interaction radius. By considering the nonlocal
radius as numerical parameter – and not as material property – the nonlocal radius can
be chosen with respect to the present mesh size. Since the numerical effort for calculating
the nonlocal quantity and the memory demand for storing the tangential matrix increases
significantly with increasing ratio between the nonlocal radius and average finite element
size, this approach is especially advantageous for finite element simulations in which a very
fine finite element mesh is required for an appropriate representation of the geometry or
the stress and strain field.

In the isotropic damage model, the damage evolution is described as a function of the
volume specific fracture energy gf . In order to ensure that the dissipation of inelastic
energy is identical in experiments and numerical simulations, the area specific fracture
energy Gf , measured in the experiments, has to be related to the width of the fracture
process zone observed in the numerical simulation. Since in nonlocal material formulations
the size of the fracture process zone depends on the nonlocal radius R, the volume specific
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Figure 3.3: Geometry and loading setup of the bar in uniaxial tension (the dark blue color
indicates the weakened domain).

fracture energy is defined as

gf =
Gf

βR
, (3.65)

where β is a scalar parameter representing the damage distribution in the fracture process
zone. The value of this parameter depends on the nonlocal material formulation, the
nonlocal quantity and the nonlocal weight function. It is to be noted, that this approach
implies the assumption that in numerical simulations the damage profile perpendicular to
the fracture process zone is a typical property of the material model. Furthermore, it is
assumed that the fracture process zone is completely developed. This is not the case if
damage evolves along an material interface. Since the fracture process zone is bounded
by the interface, the volume in which inelastic energy is dissipated decreases. Assuming
a constant volume specific fracture energy, a lower amount of energy would be dissipated
during the fracture process.

The numerical simulation of a uniaxial tension test of a concrete specimen, shown in
Fig. 3.3, is used to determine the parameter β for the nonlocal isotropic damage model
presented above. The corresponding material parameters are summarized in Table 3.1. In
order to ensure that damage localizes during the simulation, the tensile strength is reduced
to 90 % in the middle of the specimen. In Fig. 3.3 the weakened region is plotted in dark
blue. The specimen geometry is discretized by two-dimensional 9-node plane elements
assuming plane stress conditions. Simulations with varying element sizes are performed to
investigate the sensitivity of the numerical results with respect to the element size. The
diagrams in Fig. 3.4 show the damage profile perpendicular to the final crack, the corre-
sponding distribution of the equivalent strain and the distribution of the inelastic energy
density for different mesh sizes and for both nonlocal formulations. In all simulations,
almost the same width of the damage zone is observed. Consequently, due to the nonlocal
formulation of the material law the size of the fracture process zone becomes independent
of the mesh size. In simulations with the coarse mesh, with equal element size and non-

Table 3.1: Material parameters of the nonlocal isotropic damage model.
Young’s modulus E [N/mm2] 30 000
Poisson’s ratio ν [−] 0.2
Tensile strength ft [N/mm2] 3.0
Fracture energy Gf [Nmm/mm2] 0.1
Nonlocal radius R [mm] 1.0
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Figure 3.4: Final distribution of the damage variable, the equivalent strain and the inelastic
energy density for the nonlocal isotropic damage model with averaging of the
displacement field and of the strain field.

local radius, a good approximation of the damage profile is already obtained, but major
variations compared to the finer meshes are noticeable in the distribution of the equivalent
strain and the inelastic energy density. Using a ratio of 0.5 or smaller between element
size and nonlocal radius the differences in the equivalent strain and in the inelastic energy
density become negligible.

The 9-node plane element uses a 3x3 Gauss rule for the numerical integration of the element
contributions. As shown in Fig. 3.4, a local minimum in the inelastic energy density is
observed in the specimen center for the nonlocal model with averaging of the strain field if
integration points are located on the axis of symmetry. Due to the symmetry, a constant
local strain field is observed in the center element. In these points, a maximum is obtained
in the equivalent strain which is calculated from the nonlocal strains and in the damage
parameter. As a consequence of the higher damage parameter, lower nominal stress values
are obtained in the integration points on the axis of symmetry. Since the stresses decrease
faster in these points, a lower amount of inelastic energy is dissipated. This phenomena is
not observed for the isotropic damage model with nonlocal displacement averaging. Due
to symmetry an almost constant nonlocal equivalent strain field is obtained for this model
in the center element. As a result the damage parameter, the nominal stresses and the
inelastic energy density are also almost constant.

The parameter β required for the calculation of the volume specific Mode I fracture en-
ergy, Eq. (3.65), is determined from numerical simulations with the finest mesh. In order
to evaluate the inelastic energy dissipated during the fracture process, the nonlinear sim-
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ulation is performed until the final crack becomes almost stress free. Consequently, the
entire load-displacement curve including the softening branch is obtained. At first, the
numerical simulation is performed assuming β = 1.0. Then, the total amount of dissipated
energy is calculated either from the final distribution of the inelastic energy density or
from the global load-displacement curve. By relating the dissipated energy to the area
of the specimen cross section the fracture energy is obtained. It is to be noted, that this
approach implies the assumption of a single crack. Finally, the parameter β is calculated
as the ratio between the fracture energy obtained in the numerical simulation with β = 1.0
and the actual fracture energy of the material, which is used as input parameter. For both
nonlocal formulations, nonlocal strains and nonlocal displacements, a value of β = 1.7 is
obtained.

3.4 Rotating Crack Model

A special class of constitutive models developed for tensile failure of quasi-brittle materials,
such as concrete, is based on the smeared crack approach, which was introduced by Rashid
(1968). In contrast to the discrete crack concept, in which the crack is modeled as geomet-
rical discontinuity, the smeared crack approach represents the cracked solid as continuum.
By modifying the components of the elastic material stiffness or compliance matrix as a
function of the crack orientation, e.g. Rashid (1968), or by introducing cracking strains
normal and tangential to the crack surface, e.g. Bažant and Gambarova (1980), the crack
is “smeared” over a finite volume. As a result, initial isotropic material behavior becomes
orthotropic as soon as first cracks develop. Smeared crack concepts can be classified into
fixed and rotating crack approaches. With the fixed crack approach, e.g. Rashid (1968);
Bažant and Oh (1983a), the crack orientation, specified by the crack initiation criterion,
remains constant during the simulation. Using the Rankine criterion for crack initiation,
the crack direction coincides with the direction of the principal stress. During the sim-
ulation, the assumption of a fixed crack direction may result in a misalignment between
the axes of material orthotropy, representing the crack, and the principal axes of stresses.
As consequence of this misalignment, the evolution of the crack opening is controlled by
the stresses and strains along the axes of material orthotropy and not, as induced by the
Rankine criterion, by the principal stresses and strains of the current state, cf. Willam
et al. (1987). By using the fixed multi-directional crack concept, as proposed by de Borst
and Nauta (1985) for non-orthogonal cracks, this defect of the fixed single-crack concept
can be avoided. Whenever the misalignment between the crack direction and the direction
of principal stress exceeds a certain angle, a new crack is initiated. In an alternative ap-
proach, proposed by Cope et al. (1980), the axes of material orthotropy co-rotate with the
axes of principal strains. In theses initial versions of a rotating crack model, the direction
of principal stresses may deviate from the direction of principal strains due to the develop-
ing material orthotropy which was criticized by Bažant (1983). As a result, Bažant (1983)
outlined an additional condition for these kind of models that enforces coaxiality between
principal stress and strains. The first true rotating crack formulation, proposed by Gupta
and Akbar (1984), is free of this shortcoming. A comprehensive study of both concepts –
fixed and rotating cracks – can be found in Rots (1988).
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Figure 3.5: Uniaxial stress-strain-relationship and damage law of the rotating crack model.

3.4.1 Local Formulation

In the present work, the rotating crack model (RCM) developed by Jirásek and Zimmer-
mann (1998a) is used. In this model, the total strain vector ε is decomposed into an elastic
part εe, representing the strains in the undamaged material between the cracks, and an
inelastic part εc due to cracking

εi = εei + εci . (3.66)

For the material between the cracks the constitutive equations are given by

σi = Ce
ijε

e
j = Ce

ij

(
εj − εcj

)
= Cs

ijεj, (3.67)

where Ce is the linear elastic material matrix and Cs is the secant material matrix. In the
general three-dimensional case up to three orthogonal cracks, which are aligned with the
principal direction of stresses and strains, may develop independently in a single material
point. The initiation of each crack is defined by the Rankine criterion

si ≤ ft. (3.68)

A crack is initiated if the corresponding principal stress si reaches the tensile strength
ft. After crack initiation, the relationship between the inelastic strain eci normal to the
crack and the corresponding principal stress value representing the stress which is still
transferred through the crack, is given by the cracking law. Assuming that the crack
opens, the constitutive equation of the crack is defined by an exponential function

si(e
c
i) = ft exp

(
−e

c
i

γt

)
, (3.69)
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where γt is a material parameter which can be derived from the uniaxial stress strain
relationship of crack i shown in the diagram in Fig. 3.5(a). Using this uniaxial relationship,
the inelastic energy dissipated at infinite strains, which must be equal to the volume specific
fracture energy gt, Eq. (3.1), can be written as

gt =

∞∫
ei=0

si(ei) dei =

ei,0∫
ei=0

Eei dei +

∞∫
ei=ei,0

ft exp

(
−ei − ei,0

γt

)
dei

=
E

2
e2
i

∣∣∣∣ei,0
0

− γtft exp

(
−ei − ei,0

γt

)∣∣∣∣∞
ei,0

=
E

2
e2
i,0 + γtft (3.70)

where ei,0 indicates the elastic limit, ft is the tensile strength, and E is the Young’s modulus
of the undamaged material. By substituting ei,0 = ft/E into Eq. (3.70) and by rearranging,
the parameter γt is obtained

γt =
gt
ft
− ft

2E
. (3.71)

If the crack is in a closing situation, an unloading to the origin is performed and the
corresponding cracking law reads

si(e
c
i) =

si(e
c
i,max)

eci,max
eci eci < eci,max (3.72)

where eci,max is the maximum inelastic strain ever reached for this crack in the material
history. This relationship is also applied if the crack re-opens. The diagram, Fig. 3.5(b),
illustrates the complete cracking law for a single crack.

Evaluation of Stresses and Inelastic Strains

In the rotating crack model, the evolution of the inelastic strains, representing the damage
state of the material, is a function of the current stress state, which is also unknown.
As a result, the implementation of the rotating crack model requires an algorithm that
evaluates the crack configuration characterized by the corresponding stresses σ(n) and
inelastic strains εc(n) for a prescribed strain state ε(n) at the material point. At the
beginning of this algorithm, it is assumed that the crack configuration obtained for the
previous equilibrium state is known. This includes for each crack i the inelastic strains
e
c(n−1)
i , the maximum inelastic strains ec(n−1)

i,max , the crack direction and the crack status. In
a first step, the principal strain values e(n)

i and the corresponding principal directions ni
are calculated. In order to guarantee that a crack is assigned to the right principal strain,
the principal strains are sorted in the way that for each crack the smallest angle between
previous crack direction and current principal direction is obtained. Rewriting Eq. (3.67)
in terms of the principal components and by considering the maximum inelastic strains in
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this equation, a trial stress state in principal directions can be obtained

striali = C̃e
ij

(
e

(n)
j − e

c (n−1)
j,max

)
, (3.73)

where C̃e is the reduced linear elastic material matrix, defined as

C̃e =
E

(1 + ν)(1− 2ν)

1− ν ν ν
ν 1− ν ν
ν ν 1− ν

 . (3.74)

By comparing the trial stresses with the stresses which would be transferred through the
crack under the assumption that the inelastic strains are equal to the maximum inelastic
strains, the current crack status can be determined

status of crack i =


opening if striali ≥ ft or striali ≥ si(e

c (n−1)
i,max )

closing/re-opening if ec (n−1)
i,max > 0 and striali < si(e

c (n−1)
i,max )

no crack if striali < ft and e
c (n−1)
i,max = 0

.

(3.75)

In a second step, the inelastic strains are calculated. For each crack i, the following equality
must be satisfied

si

(
e
c (n)
i

)
= C̃e

ij

(
e

(n)
j − e

c (n)
j

)
, (3.76)

which implies that the stress transferred through the crack, Eq. (3.69), must be identical
to the corresponding principal stress value. By using Newton’s method, with the inelastic
strains of the last converged load step as starting values, this, in general, nonlinear system
of equations can be solved iteratively for the unknown inelastic strains. Linearization of
Eq. (3.76) leads to[

∂si
∂eck

(
e
c (n,p−1)
i

)
+ C̃e

ik

]
δe
c(n,p)
k = C̃e

ij

(
e

(n)
j − e

c (n,p−1)
j

)
− si

(
e
c (n,p−1)
i

)
e
c (n,p)
i = e

c (n,p−1)
i + δe

c (n,p)
i

 p = 1, 2, . . .

(3.77)

where δec (n,p) is the correction of the inelastic strains in the p-th iteration of load step n.
After convergence of this procedure, the status of each crack is determined again

status of crack i =


closing if old status is opening and e

c (n)
i < e

c (n−1)
i

opening if old status is re-opening and e
c (n)
i > e

c (n−1)
i,max

old status otherwise
.

(3.78)

If the status of a crack is changed, the iterative procedure for the calculation of the inelastic
strains is repeated. Otherwise, the corresponding principal stress values s(n) are calculated.
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As a last step, the transformation of the principal stresses back to the initial coordinate
system is performed

σ11

σ22

σ33

σ12

σ13

σ23

 =


n1,1n1,1 n2,1n2,1 n3,1n3,1

n1,2n1,2 n2,2n2,2 n3,2n3,2

n1,3n1,3 n2,3n2,3 n3,3n3,3

n1,1n1,2 n2,1n2,2 n3,1n3,2

n1,1n1,3 n2,1n2,3 n3,1n3,3

n1,2n1,3 n2,2n2,3 n3,2n3,3


s1

s2

s3

 , (3.79)

where ni is the i− th eigenvector of the strain tensor and the stress tensor.

Tangential Material Matrix

The compliance form of the constitutive equations in principal direction can be written
as

ei = D̃e
n,ijsj + eci , (3.80)

where D̃e
n is the reduced linear elastic compliance matrix defined as

D̃e
n =

1

E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1

 . (3.81)

Differentiating Eq. (3.80) with respect to the principal strains yields

∂ei
∂ek

= δik = D̃e
n,ij

∂sj
∂ek

+
∂eci
∂ek

=

[
D̃e
n,ij +

∂eci
∂sj

]
︸ ︷︷ ︸

D̃n,ij

∂sj
∂ek

, (3.82)

where D̃n is the reduced tangential compliance matrix in principal directions. According
to the cracking law, Eq. (3.69) or Eq. (3.72), the stress transferred through the crack is
only a function of a single inelastic strain component. As a result, the reduced tangential
compliance matrix can be rewritten as

D̃n,ij = D̃e
n,ij + δij

(
∂si
∂eci

)−1

. (3.83)

Willam et al. (1987) have shown that the full tangent material matrix in principal directions
can be written as

C̃ =

[
C̃n 0

0 C̃s

]
, (3.84)
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where the sub-matrix C̃n, which corresponds to the normal components, is given by

C̃n = D̃n
−1
. (3.85)

In order to satisfy the condition of coaxiality between principal stresses and principal
strains, the sub-matrix C̃s, which corresponds to the shear components, is, according to
Bažant (1983), defined as

C̃s =


s1 − s2

2(e1 − e2)
0 0

0
s1 − s3

2(e1 − e3)
0

0 0
s2 − s3

2(e2 − e3)

 . (3.86)

This equation illustrates one weak point of rotating crack formulations, since the shear
coefficients are defined only if the corresponding principal strain components are different.
Jirásek and Zimmermann (1998a) have shown that for the special case of identical prin-
cipal strains and history variables, i.e. identical inelastic strains and maximum inelastic
strains, the corresponding shear coefficient can be expressed as a function of the normal
components. Assuming that the principal directions 1 and 2 are identical, the undefined
value

s1 − s2

2(e1 − e2)
=

0

0
(3.87)

of the shear component C̃44 is replaced by

C̃44 =
C̃11 − C̃12

2
=
C̃22 − C̃21

2
. (3.88)

The transformation of the tangential material matrix C̃ back to the global coordinate
system can be written as

Cij =
∂σi
∂εj

= TkiC̃klTlj, (3.89)

where T is a transformation matrix defined as

T =


n1,1n1,1 n1,2n1,2 n1,3n1,3 n1,1n1,2 n1,1n1,3 n1,2n1,3

n2,1n2,1 n2,2n2,2 n2,3n2,3 n2,1n2,2 n2,1n2,3 n2,2n2,3

n3,1n3,1 n3,2n3,2 n3,3n3,3 n3,1n3,2 n3,1n3,3 n3,2n3,3

2n1,1n2,1 2n1,2n2,2 2n1,3n2,3 n1,1n2,2+n1,2n2,1 n1,1n2,3+n1,3n2,1 n1,2n2,3+n1,3n2,2

2n1,1n3,1 2n1,2n3,2 2n1,3n3,3 n1,1n3,2+n1,2n3,1 n1,1n3,3+n1,3n3,1 n1,2n3,3+n1,3n3,2

2n2,1n3,1 2n2,2n3,2 2n2,3n3,3 n2,1n3,2+n2,2n3,1 n2,1n3,3+n2,3n3,1 n2,2n3,3+n2,3n3,2

 .
(3.90)
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According to Rots (1988); Jirásek and Zimmermann (1998b), standard smeared crack
models such as the rotating crack model presented above, suffer of stress locking, mesh
induced directional bias and, in some cases, material instabilities caused by a negative
shear stiffness. In the next subsections, several modifications of the standard rotating
crack model are introduced to overcome these deficiencies.

3.4.2 Transition to Scalar Damage

In numerical simulations using standard rotating crack models, stress locking, which in this
context means spurious stress transfer across a widely open crack, can be observed. This
phenomena, caused by the poor kinematic representation of the displacement discontinuity
by the finite element interpolation, is investigated in detail in Jirásek and Zimmermann
(1998a). Jirásek and Zimmermann (1998b) propose as a remedy to combine the smeared
crack model with a scalar damage model. In this approach, the standard rotating crack
model is used during the initial stage of cracking. If the crack opening exceeds a certain
limit the transition to a damage-type formulation is performed and the final stage of
cracking is described by the applied damage model. Using a scalar damage model, the
corresponding constitutive equation can be written as

σi = (1− ω)Cs
ijεj, (3.91)

where ω is a scalar damage parameter, which increases from zero (at transition) to one
if damage propagates, and Cs is the secant material matrix computed for the rotating
crack model at the moment of transition. Due to the development of cracks, this matrix
exhibits, in general, anisotropy. Consequently, the proposed combined model represents,
at least partially, the anisotropic character of cracking. Since all stress components vanish
if the damage parameter becomes unity, stress locking due to spurious stress transfer is
not observed for the combined model. The evolution of the damage parameter ω is driven
by the so-called equivalent strain εeq which is defined as

εeq =
1

E
max
i
seff,i, (3.92)

in which seff,i is the i-th eigenvalue of the effective stress tensor, given by

σeff,ij = Ce
ijklεkl (3.93)

where Ce is the linear elastic material tensor. The corresponding damage law reads

ω = 1− s(εeq,max − ε0)

E0 εeq,max
, (3.94)

where s is given by Eq. (3.69), εeq,max is the maximum equivalent strain ever reached in
material history, and ε0 = ft/E is the elastic limit. The equivalent Young’s modulus E0,
which is determined from the set of active cracks at the moment at which the transition
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3.4 Rotating Crack Model

takes place, is defined as

E0 = min
i

si(e
c
i)

ei
, (3.95)

where ei is the i-th eigenvalue of the total strain tensor. The presented damage law allows
for a smooth transition from rotating cracks to scalar damage. Furthermore, the energy
dissipated during the failure process is preserved by the combined model.

As already mentioned above, the transition to scalar damage is performed if, at least for
one crack, the corresponding crack opening exceeds a certain limit. Assuming an active
crack, this condition can be expressed in terms of the stress si transferred across crack i,
given by Eq. (3.69), and the tensile strength ft

si(e
c
i) < αsft, (3.96)

where eci is the corresponding crack strain, and αs is a dimensionless parameter ranging
from zero to unity. By setting this parameter to unity, the model is switched to scalar
damage immediately after a crack initiates. A value of αs = 0 would avoid the transition
to scalar damage. In general, αs is chosen as small as possible. It is to be noted that
the condition is evaluated during the update of the state variables. Consequently, the
transition to scalar damage is not performed until equilibrium is restored for the current
load increment.

In numerical simulations with rotating crack models, the shear stiffness values, given by
Eq. (3.86), may become negative even if the material unloads, see Jirásek and Zimmermann
(1998b). Consequently, the secant material matrix looses positive definiteness which is,
under the assumption that the material is not completely damaged, physically inadmissible.
This results in material instabilities and, as a consequence, the numerical solution may
diverge during the equilibrium iteration. Using a scalar damage model, the secant material
matrix is defined as the scalar multiple of the initial “undamaged” material matrix. As a
result the secant material matrix remains positive definite, if the initial matrix is positive
definite and the damage parameter is not unity. This motivates a second criterion for the
transition to scalar damage

C̃s,ii < αGG
e, (3.97)

where the matrix C̃s is given by Eq. (3.86), Ge is the linear elastic shear modulus, and
αG is a dimensionless parameter between 0 and 1. Consequently, the rotating crack model
is switched to scalar damage if one of the diagonal shear stiffness components becomes
smaller than a predefined fraction of the linear elastic shear modulus. Since Eq. (3.97)
is also satisfied for a negative shear modulus, the determination of αG is more difficult
compared to αs. Consequently, αG has to be chosen in such a way that in the simulation
the shear moduli remain positive.
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3.4 Rotating Crack Model

3.4.3 Nonlocal Formulation

Mesh induced directional bias of the simulated fracture process zone can be alleviated by
introducing the nonlocal concept into the rotating crack model, see Bažant and Lin (1988);
Jirásek and Zimmermann (1998b). As shown in Sect. 3.2, the nonlocal concept not only
reduces the dependency of the numerical results on the element shape and orientation, but
also acts as an efficient localization limiter. According to Jirásek and Zimmermann (1998b),
a nonlocal formulation of the rotating crack model can be obtained if the constitutive
equations of the local rotating crack model, given in Eq. (3.67), are rewritten as

σi = Cs
ij(ε̄)εj, (3.98)

where Cs is the secant material matrix, and ε̄ is the vector of nonlocal strains. In the nu-
merical implementation, the computation of the stress vector starts with the determination
of the nonlocal strain vector, which is either defined by Eq. (3.4) or given by Eq. (3.18).
Then the standard stress-evaluation algorithm of the local model, presented in Sect. 3.4.1,
is applied using the nonlocal strain vector as input and by considering that the volume
specific fracture energy is defined by Eq. (3.65) with β = 1.5. The corresponding nonlocal
secant material matrix is then given by Eq. (3.89). It is to be noted that for the calculation
of the secant matrix, the cracking law for unloading, Eq. (3.72), is used to describe the re-
lationship between the stress transferred across the crack and the crack strain. Finally, the
stress vector is calculated by multiplying the nonlocal secant matrix with the local strain
vector, Eq. (3.98). Depending on the nonlocal formulation – averaging of the local strain
field, Sect. 3.2.2, or averaging of the local displacement field, Sect. 3.2.3 – the tangential
stiffness matrix of the nonlocal rotating crack model can be obtained using Eq. (3.13) or
Eq. (3.37). The corresponding derivatives of the stresses with respect to the components
of the nonlocal strain vector can be written as

∂σi
∂ε̄m

=

(
∂T̄ki
∂ε̄m

¯̃Cs
klT̄lj + T̄ki

∂ ¯̃Cs
kl

∂ε̄m
T̄lj + T̄ki

¯̃Cs
kl

∂T̄lj
∂ε̄m

)
εj, (3.99)

where C̃s is the secant (unloading) material matrix, Eq. (3.89), T is the transformation
matrix, Eq. (3.90), and the bar over a quantity indicates that this quantity is calculated us-
ing the nonlocal strain vector ε̄. In Eq. (3.99), the first derivatives of the principal nonlocal
strains and the corresponding eigenvectors with respect to the nonlocal strain components
are required for the calculation of the derivatives of the nonlocal secant material matrix
¯̃Cs and the derivatives of the transformation matrix T . Algorithms for the computation
of the derivatives of eigenvalues and eigenvectors can be found in Nelson (1976); Liu et al.
(1993); Lee et al. (1996).

In order to avoid spurious stress transfer and material instabilities due to negative shear
stiffness values, which are also observed for the nonlocal rotating crack model, a transition
to a nonlocal scalar damage model is performed if one of the conditions, given in Eqs. (3.96)
and (3.97), is satisfied. The equivalent strain, which controls the evolution of the scalar
damage parameter ω, is calculated using the nonlocal strain vector.
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3.5 Microplane Damage Model

3.5 Microplane Damage Model

Another class of anisotropic damage models is based on the microplane approach, e.g.
Bažant and Oh (1983b, 1985); Carol and Bažant (1997); Kuhl and Ramm (1998); Patzák
and Jirásek (2004). The microplane concept is motivated by the slip theory of metals, Tay-
lor (1938). In contrast to classical constitutive models, which establish a direct relationship
between the stress tensor σ and the strain tensor ε, the constitutive law in the microplane
approach defines a relationship between the stress vector s and the strain vector e act-
ing on a plane with arbitrary orientation, the so-called microplane, within the material.
The orientation of this plane is characterized by the unit normal vector n. Additional
constraints are introduced to define the relationship between vector components on each
microplane and tensor components on macrolevel. The most natural types of constraints
are the static constraint

si = σijnj (3.100)

and the kinematic constraint

ei = εijnj, (3.101)

which simply define the microplane stress and strain vectors as projection of the corre-
sponding tensors. Note that it is impossible to use both constraints at the same time and
still satisfy a general stress-strain law on every microplane. If the kinematic constraint is
used to define the relation between microplane strain vector and macroscopic strain tensor,
the microplane stress vector is, in general, not equal to the projection of the macroscopic
stress tensor. In Bažant (1984b) it is shown that, by applying the principle of virtual work,
the equilibrium between macro- and microlevel can be satisfied in a weak sense. By using
this principle, the following condition is obtained

4π

3
σijδεij = 2

∫
Ω

siδei dΩ, (3.102)

where δ denotes the virtual variations. The left-hand side of this equality represents
the work of macroscopic stresses on virtual macroscopic strains within a unit sphere and
the right-hand side corresponds to the work of microplane stresses on virtual microplane
strains integrated over all possible microplane orientations, which can be represented by
the surface of the unit hemisphere Ω. Assuming that the kinematic constraint is also used
for the virtual strain components, Eq. (3.102) can be written as

4π

3
σijδεij = 2

∫
Ω

siδεijnj dΩ. (3.103)
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Using the condition that this equality must hold for an arbitrary virtual strain tensor, the
components of the macroscopic stress tensor are given by

σij =
3

2π

∫
Ω

sinj dΩ. (3.104)

Equivalent to this approach, the principle of complementary virtual work

4π

3
δσijεij = 2

∫
Ω

δsiei dΩ, (3.105)

can be used in combination with the static constraint, Eq. (3.100), which is applied to
the virtual stress components, to obtain an integral formula for the macroscopic strain
tensor

εij =
3

2π

∫
Ω

einj dΩ. (3.106)

In general, the integrals in Eqs. (3.104) and (3.106) are evaluated numerically. Quadrature
rules for the general three-dimensional case can be found in Bažant and Oh (1986). The
simplified two-dimensional case is given in appendix A.4.1.

3.5.1 Local Formulation

In this work, the microplane-based damage model (MD) developed by Jirásek (1999) is
used. This model is based on the concept of effective stresses and effective strains and
works with the principle of energy equivalence, Cordebois and Sidoroff (1982), which states
that the complementary energy of the damaged material under the nominal stress σ is
equal to the complementary energy of the undamaged material under the effective stress
σ̃. Assuming that the effective stresses σ̃ and the effective strains ε̃ which represent
the conditions in the undamaged material between material defects are linked by the
generalized Hooke’s law

ε̃ij = De
ijklσ̃kl, (3.107)

the principle of energy equivalence can be written as

1

2
σijD

s
ijklσkl =

1

2
σ̃ijD

e
ijklσ̃kl (3.108)

where De is the linear elastic compliance tensor and Ds is the secant (unloading) com-
pliance tensor. Furthermore, the evolution of microdefects is taken into account in the
relationship between effective stresses and and nominal stresses, which can be written as

σ̃ij = Mijklσkl, (3.109)
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3.5 Microplane Damage Model

where M is the fourth-order damage effect tensor. By substituting Eq. (3.109) into
Eq. (3.108), a direct expression for the damaged (secant) compliance tensor is obtained

Ds
ijkl = MmnijD

e
mnopMopkl, (3.110)

and the relationship between nominal stresses and nominal strains can be written as

εij = Ds
ijklσkl = MmnijD

e
mnopMopklσkl. (3.111)

Further substituting Eqs. (3.109) and (3.107) into Eq. (3.111) yields the relationship be-
tween the nominal strain tensor and the effective strain tensor

εij = Mklij ε̃kl. (3.112)

Equivalent to the continuum level, presented above, the concept of effective quantities can
be applied to the microplane theory. Assuming that the relationship between effective and
nominal microplane stresses is given by

s̃i = ψsi, (3.113)

where ψ is a scalar parameter characterizing the relative compliance on the microplane,
the principle of energy equivalence leads to the following relationship between nominal and
effective microplane strains

ei = ψẽi. (3.114)

Even though ψ is a scalar parameter, the macroscopic damage effect is anisotropic, since
the value of this parameter is, in general, different on each microplane.

In the presented microplane-based damage model, a double constraint is applied to derive
the macroscopic damage-effect tensor from the microplane-level. Using the compliance
version of this model, the macroscopic nominal stress tensor is related to the nominal mi-
croplane stress by the static constraint, Eq. (3.100). On each microplane, the relationship
between effective and nominal stress vector is defined by Eq. (3.113). Using Eq. (3.104) and
replacing the nominal microplane stress components with the effective ones, the macro-
scopic effective stress tensor can be obtained. Note that for the derivation of Eq. (3.104)
the kinematic constraint is used in the principal of virtual work to relate the effective
virtual microplane strains with the components of the virtual effective strain tensor. Sub-
stituting Eqs. (3.100) and (3.113) into Eq. (3.104) and considering effective and nominal
quantities, the relationship between nominal and effective stress tensor is given by

σ̃ij =
3

2π

∫
Ω

s̃inj dΩ =
3

2π

∫
Ω

ψ(n)sinj dΩ (3.115)

=
3

2π

∫
Ω

ψ(n)σilnlnj dΩ =
3

2π

∫
Ω

ψ(n)nlnjδik dΩσkl (3.116)

= ψljδikσkl, (3.117)
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Figure 3.6: Microplane based damage model – microplane damage law and uniaxial macroscopic
stress-strain-relationship.

where δ is the Kronecker delta, and ψ is the symmetric second order inverse integrity
tensor, whose components are defined as

ψij =
3

2π

∫
Ω

ψ(n)ninj dΩ. (3.118)

Additionally, considering the macroscopic relationship between the nominal stress tensor
and the effective stress tensor given by Eq. (3.109), the components of the damage effect
tensor M can be defined as

Mijkl = ψljδik. (3.119)

Due to the symmetry of the stress tensors, the fourth order damage effect tensor must
exhibit minor symmetries Mijkl = Mjikl = Mijlk = Mjilk for any i, j, k, l. Symmetrization
of M leads to the damage effect tensor

Mijkl =
1

4
(ψljδik + ψliδjk + ψkjδil + ψkiδik) . (3.120)

Due to the symmetry of the inverse integrity tensor this tensor also exhibits major symme-
tries Mijkl = Mklij for any i, j, k, l. An alternative derivation of the damage effect tensor,
which directly takes into account the symmetry of the stress and strain tensors, is given
in appendix A.4.2.

On the microplane with normal vector n, the evolution of damage is characterized by the
relative compliance ψ(n), which is a scalar parameter ranging from ψ = 1 (undamaged
material) to ψ = ∞ (fully damaged material). The evolution of this parameter is driven
by the equivalent microplane strain eeq, which is, in the presented implementation of this
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Figure 3.7: Microplane based damage model – influence of Poisson’s ratio ν and parameter m on
macroscopic tensile peak stress.

model, equal to the microplane strain component normal to the microplane

eeq = eini = εijninj. (3.121)

A more complex definition of the equivalent microplane strain, which takes into account
the normal and tangential microplane strain components, can be found in Jirásek (1999).
Using an exponential softening law, the relative compliance can be defined as

ψ(n) =


1 if eeq,max ≤ e0√
eeq,max
e0

exp

(
eeq,max − e0

ef − e0

)
if eeq,max > e0,

(3.122)

where e0 is the elastic limit, ef is a parameter controlling the ductility of the material,
and eeq,max is a history variable representing the maximum equivalent microplane strain
ever reached in the history of the material. In the diagram in Fig. 3.6(a), this function is
illustrated. In the elastic range, the relative compliance remains constant. After reaching
the elastic limit, damage occurs and the relative compliance starts growing. Due to the
application of an exponential function this parameter might become very large for realistic
values of the equivalent microplane strains. In order to avoid numerical problems in the
numerical implementation, an upper limit for this parameter is introduced, which repre-
sents a fully damaged material. Figure 3.6(b) shows the macroscopic stress-strain diagram
for uniaxial tension observed in a single material point. The microplane parameter e0

indicates the elastic limit, but is not equal to the state corresponding to the macroscopic
tensile strength. On the microplane level, softening starts in microplanes almost normal
to the loading direction. Since all other microplanes remain linear elastic, this results in a
macroscopic hardening behavior of the material. The biaxial macroscopic failure envelope,
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which is defined as the tensile peak stress, is shown in the diagram in Fig. 3.7(a). It is
clearly visible that this envelope depends on the Poisson’s ratio. Furthermore, for typical
Poison’s ratios of concrete, ν = 0.15 . . . 0.25 (cf. Grübl et al. (2001)), the tensile peak
stress becomes unrealistically small if moderate compressive stresses appear. In order to
prevent this overestimation of damage for compressive loading, Jirásek (1999) proposes the
following modified definition of the equivalent microplane strain

eeq =
εijninj

1− m

Ee0

σkk
, (3.123)

where σkk is the trace of the stress tensor, andm is a dimensionless, non-negative parameter
that controls the sensitivity to the mean stress. Note that according to Jirásek (1999),
the stress tensor of the last converged step is used in Eq. (3.123). The modified failure
envelope for a constant Poisson’s ratio ν = 0.2 and varying parameter m is plotted in the
diagram in Fig. 3.7(b). Using the recommended value of 0.05 for parameter m, the failure
envelope becomes almost independent from compressive stresses.

3.5.2 Nonlocal Formulation

In Patzák and Jirásek (2004) a nonlocal formulation of the MD which is based on the
averaging of the inverse integrity tensor is proposed. In the presented approach, the
nonlocal inverse integrity with components

ψij(x) =

∫
V

α(x, ξ)ψij(ξ) dξ (3.124)

is used for the evaluation of the damage effect tensor

Mijkl =
1

4

(
ψljδik + ψliδjk + ψkjδil + ψkiδik

)
. (3.125)

A detailed description of the applied averaging concept can be found in Sect. 3.2.2.

In this thesis, the nonlocal MD is used for two-dimensional simulations assuming plane
stress. The corresponding secant compliance matrix and the derivation of the tangent
material matrix is given in appendix A.4.3.

3.5.3 Parameter Identification

A general problem of microplane-based material formulations is the determination of the
microplane material parameters. In Patzák and Jirásek (2004), the microplane mate-
rial parameters of the MD are expressed as functions of measurable macroscopic material
properties. Since numerical simulations have shown that the proposed functions cannot
be applied to the numerical implementation of the MD used in this thesis, the relation-
ship between the microplane parameters e0 and ef and macroscopic material properties
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Figure 3.8: Microplane based damage model – finite element model used for parameter
identification (dimensions in mm).

of concrete – Young’s modulus E, tensile strength ft and fracture energy Gf – is inves-
tigated in this section. Two-dimensional non-linear finite element simulations of uniaxial
tension tests on double notched prisms, shown in Fig. 3.8, with varying material parame-
ters, summarized in Table 3.2, are performed. The nonlocal formulation of the MD with
averaging of the inverse integrity tensor is applied. All simulations are performed for a
tensile loading covering the complete softening response. In order to capture snap-backs
during the simulation, an energy-release control, as proposed in Sect. 2.4.3, is applied.
For each simulation, the macroscopic tensile strength ft and the volume specific fracture
energy gf can be calculated from the load-displacement-curve

ft =
maxF

A
(3.126)

gf =
Gf

βR
=

1

AβR

∫
ua

F dua, (3.127)

where ua is the horizontal displacement of point a and A = 8mm2 is the area of the reduced
cross-section. Assuming that the parameter β, which represents the final distribution of
the inelastic energy density, is constant in all simulations, it is more convenient to introduce
a modified volume specific fracture energy g̃f

g̃f =
Gf

R
=

1

AR

∫
ua

F dua. (3.128)

The integral in Eq. (3.128) is evaluated numerically using the trapezoidal rule. In Fig. 3.9,
the obtained material properties are plotted for varying microplane parameters e0 and en
and assuming a constant Young’s modulus E = 20 000N/mm2. Note that a bilinear inter-

Table 3.2: Microplane based damage model – material parameters.
Young’s modulus E [N/mm2] 15 000 . . . 30 000 4 sample points
Poisson’s ratio ν [−] 0.2
elastic limit e0 [10−4] 0.5 . . . 1.5 20 sample points
ductility parameter ef [10−4] 20 . . . 200 20 sample points
nonlocal radius R [mm] 1.0
scalar parameter m [−] 0.05
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Figure 3.9: Microplane based damage model – macroscopic material properties ft and g̃f as
function of microplane material parameters e0 and ef (E = 20 000N/mm2).

polation is used for values between sample points. Both properties can be approximated
with sufficient accuracy by bilinear functions

f(e0, ef ) = c1e0 + c2ef + c3e0ef + c4, (3.129)

where c1 . . . c4 are free coefficients, which are obtained by fitting this curve to the sample
points. In order to incorporate the additional dependency of the macroscopic parameters
on the Young’s modulus, the coefficients are calculated for different Young’s moduli. The
final approximation functions are given by

ft(E, e0, ef ) = E(1.2851e0 − 8.7923 · 10−5ef + 4.8581e0ef + 4.6375 · 10−6) (3.130)

g̃f (E, e0, ef ) = −22.425e0 −
2441.9

E
ef + 3.0708Ee0ef +

39.053

E
. (3.131)

Assuming that the macroscopic material properties E, ft, Gf , R are given and considering
e0 > 0 and ef > e0, this system of equations can be solved for the microplane material
parameters. The diagrams in Fig. 3.10 show the inverse relationships – the microplane ma-
terial parameters as functions of the calculated macroscopic properties assuming a constant
Young’s modulus E = 20 000N/mm2.

3.6 Interface Material Model

In this thesis, the nonlinear behavior of material interfaces is described by a cohesive zone
model, presented by Unger and Könke (2006). This model is based on Tvergaard (2003). In
these models, the constitutive equations, representing the relationship between the normal
and tangential tractions Tn and Tt,i and the corresponding displacement differences across
the interface ∆un and ∆ut,i, are expressed by a nonlinear traction-separation law. An
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Figure 3.10: Microplane based damage model – microplane material parameters e0 and ef as
function of macroscopic material properties ft and g̃f (E = 20 000N/mm2).

equivalent interface opening λ is defined as

λ =

√√√√〈∆un〉2 +
nt∑
i=1

(
α2∆u2

t,i

)
, (3.132)

where the brackets 〈. . .〉 indicate that only a positive interface opening is taken into ac-
count, and nt is the number of tangential components, which is nt = 1 for two-dimensional
models and nt = 2 in the three-dimensional case. The dimensionless parameter α con-
trols the weighting between the normal and tangential interface opening. Figure 3.11(a)
shows the influence of this parameter on the failure surface which is defined by λ = λ0.
Furthermore, a nonlinear traction-separation law, describing the relationship between the
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Figure 3.11: Cohesive zone model – failure surface (two-dimensional case) and equivalent
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69



3.6 Interface Material Model

−λ0
0

λ0
2λ0

0
λ0

2λ0

−ft

0

ft

∆uN∆uT

TN

(a) normal traction
−λ0

0
λ0

2λ0

−2λ0
−λ0

0λ0
2λ0

−ft

0

ft

∆uN∆uT

TT

(b) tangential traction

Figure 3.12: Cohesive zone model – traction separation law.

equivalent interface opening and the equivalent traction σ, is introduced

σ(λ) =

Kpλ λ < λ0

ft exp
−ft(λ− λ0)

Gf

otherwise
, (3.133)

where λ0 = ft/Kp defines the elastic limit, Kp is the penalty stiffness, ft is the tensile
strength, and Gf is the fracture energy. The relationship between the equivalent quantities
is plotted in the diagram in Fig. 3.11(b). Assuming that there exists a potential Φ

Φ =

λ∫
0

σ(λ′)dλ′, (3.134)

the normal and tangential interface tractions can be defined as the derivatives of that
potential with respect to the corresponding interface opening

Tn =
∂Φ

∂∆un
= σ(λ)

∆un
λ

(3.135)

Tt,i =
∂Φ

∂∆ut,i
= σ(λ)

α2∆ut,i
λ

. (3.136)

It is to be noted that Eq. (3.135) applies if the interface is in tension, which is represented
by a positive interface opening in normal direction. If the interface is in compression, the
normal interface traction is approximated by the penalty stiffness

Tn = Kp∆un. (3.137)

The value of the penalty stiffness, which controls the penetration of the two interface sides
under compression, has to be chosen carefully, because large values of the penalty stiffness
lead to an ill-conditioned stiffness matrix. The relationship between interface tractions
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and relative interface displacements is shown in the diagrams in Fig. 3.12. The nonlinear
traction separation law, Equation (3.133), applies for an increasing λ and λ = λmax,
where λmax is a history variable describing the maximum equivalent interface opening ever
reached during the loading process. If λ decreases an elastic unloading to the origin is
assumed. The corresponding interface tractions are given by

Tn = σ(λmax)
∆un
λmax

(3.138)

Tt,i = σ(λmax)
α2∆ut,i
λmax

. (3.139)

It is to be noted that regularization techniques, as presented in Sect. 3.2, are not required
for cohesive zone models. In these models the physical description of the fracture process is
objective because the crack opening is explicitly modeled by a displacement discontinuity.
Consequently, the numerical results do not exhibit pathological mesh sensitivity.

Using the potential formulation, given by Eq. (3.134), the tangential material matrix is
defined as the second derivative of the potential with respect to the interface openings

C =
∂T

∂∆u
=



∂2Φ

∂∆u2
N

∂2Φ

∂∆uN∂∆uT,1

∂2Φ

∂∆uN∂∆uT,2
∂2Φ

∂∆uT,1∂∆uN

∂2Φ

∂∆u2
T,1

∂2Φ

∂∆uT,1∂∆uT,2
∂2Φ

∂∆uT,2∂∆uN

∂2Φ

∂∆uT,2∂∆uT,1

∂2Φ

∂∆u2
T,2

 . (3.140)

Since ∂2Φ/(∂∆uN∂∆uT,i) = ∂2Φ/(∂∆uT,i∂∆uN) the tangent material matrix is always
symmetric, independently from the chosen softening function. A detailed derivation of the
corresponding components of this matrix is given in appendix A.5.
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4 Mesoscale Modeling of Concrete

4.1 Introduction

Concrete is a composite material consisting of inhomogeneities, e.g. aggregates embedded
in the mortar matrix, and structural defects, such as cracks, voids and pores, with varying
sizes. The level of detail with which the numerical model must describe the heterogeneous
material structure of concrete depends on the physical phenomena which should be con-
sidered in the numerical simulation. Zaitsev and Wittmann (1981) propose a hierarchic
system of four different characteristic levels on which the internal structure of concrete can
be observed. On the macrolevel, which is related to the structural length scale, concrete
is treated as a homogeneous continuum. The heterogeneity of the material structure is
taken into account on the mesolevel, at which concrete is, in general, described as a three
phase composite consisting of aggregates, mortar-matrix and the interfacial transition zone
(ITZ) in between. On this level, the typical edge length of a representative volume ele-
ment is of order of magnitude of 102 mm. The main constituent on the microlevel, with
a characteristic length of order of magnitude of 10−1 mm, is the hardened cement paste,
which is composed of cement gel and capillary pores, Cusatis et al. (2006). Finally, the
nanolevel describes the hardened cement gel containing nanopores. On this level, the typ-
ical dimension of a representative volume element is of order of magnitude of 10−4 mm. It
is to be noted that models on a given level of observation are based on the results of the
next smaller length scale, Schlangen (1993).

In this thesis, quasi-brittle failure of concrete structures is investigated using numerical
simulations with mesoscale models. Figure 4.1 shows a load-displacement curve which
is typically observed in uniaxial tensile test of normal strength concrete specimens if the
load is applied under deformation control. The measured macroscopic nonlinear response
can be attributed to the initiation, propagation and coalescence of microcracks within the
heterogeneous internal material structure on the mesolevel, see for instance Sluys (1992).
For small displacements, the response is practically linear. At about 60% of the maximum
load, interface cracks between aggregates and mortar matrix initiate. Consequently, the
slope of the load-displacement curve decreases. If the load is further increased, the interface
cracks propagate into the mortar matrix and additional microcracks initiate within the
mortar matrix. When the maximum load is reached the microcracks at the interface
and within the mortar matrix start to interact. After the peak point, the load starts to
decrease at increasing deformation. The post-peak softening behavior is characterized by a
localization of the deformations in small fracture zones and the formation of a macroscopic
crack. In macroscale simulations, the evolution of microcracks can only be represented
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Figure 4.1: Characteristic load-displacement curve of concrete in tension.

in a phenomenological way. Mesoscale models allow for an explicit consideration of the
individual physical phenomena in numerical simulations.

4.2 Generation of the Internal Material Structure on
the Mesoscale

A crucial point in mesoscale simulations is an appropriate description of the internal mate-
rial structure by the numerical model. On the mesolevel, the material structure of concrete
is characterized by the spatial distribution and the size distribution of the aggregates. In
the literature, two different concepts can be found for obtaining the concrete mesostruc-
ture for numerical simulations. In the first approach, experiments, e.g. X-ray tomography,
Garboczi (2002), or digital images of concrete cross sections, Nagai et al. (2000), are used
to determine the actual mesoscopic structure of an existing concrete specimen. In the
second approach, which is also followed in this thesis, numerical simulations are used to
artificially generate possible realizations of the mesostructure for virtual specimens. In
these models, the aggregates are, in general, idealized by simple geometrical shapes such
as circles, Schlangen and van Mier (1992), spheres, Wriggers and Moftah (2006), ellipsoids,
Leite et al. (2004) or polygons, Wang et al. (1999). Consequently, the surface texture of the
aggregates is neglected in these models. Häfner et al. (2006) combine a modified ellipsoid
with a sine function to take into account the roundness, the sphericity and the surface
roughness of the aggregates. A popular method for the simulation of the aggregates in
concrete is the so-called take-and-place method. During the take-process, the aggregates
are created, taking into account the aggregate shape and the aggregate size distribution,
and fitting a prescribed volume fraction. The grading of the aggregates is either approxi-
mated by Fuller’s curve, Walraven (1980); Wriggers and Moftah (2006), or explicitly given
by a grading curve, Wang et al. (1999); Leite et al. (2004); Häfner et al. (2006). The
final mesoscopic material structure is generated during the place-process. The aggregate
particles are randomly placed one by one into the specimen in such a way that there are no
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4.2 Generation of the Internal Material Structure on the Mesoscale

overlapping regions with already placed particles. This procedure starts with the largest
particle and is successively repeated for smaller ones until all particles are placed into the
specimen.

4.2.1 Simulation of the Aggregate Size Distribution
(Take-Process)

In the presented approach, the aggregates are idealized as ellipsoids. Consequently, the
aggregate surface is approximated by(

x

r1

)2

+

(
y

r2

)2

+

(
z

r3

)2

= 1, (4.1)

where r1, r2 and r3 are the three radii of the ellipsoid, with r1 ≥ r2 ≥ r3. Furthermore,
it is assumed that the radii r1 and r3 can be expressed as a function of the second largest
radius r2

r1 =

(
1 +X2

η13 − 1

η13 + 1

)
r2 (4.2)

r3 =

(
1−X3

η13 − 1

η13 + 1

)
r2, (4.3)

where X2 and X3 are uniformly distributed random numbers between 0 and 1. The pa-
rameter η13, which is defined as the maximum ratio between the radii r1 and r3, controls
the shape of the aggregates. Using a ratio of 1 the aggregates are idealized as spheres,
whereas higher values result in ellipsoidal particles. As a result, the expected value E(V )
of the volume of an aggregate particle can be expressed as a function of r2

E(V ) =
4

3
πr3

2

(
1− 1

2

η13 − 1

η13 + 1

)(
1 +

1

2

η13 − 1

η13 + 1

)
. (4.4)

The radius r2 is determined in such a way that the aggregates fit a given aggregate size
distribution. In concrete, the aggregate size distribution is, in general, described by grading
curves, see for instance Neville (1996), which are obtained from sieve analysis. As a result,
the aggregates are divided into several mineral-size-classes, which are bounded by the
sieve aperture diameters dmin and dmax. From a mathematical point of view, the grading
curve can be interpreted as a cumulative distribution function of the aggregates mass.
In the presented approach, the passing of a particle through a sieve is defined by an
equivalent particle diameter deqv = 2r2, Furthermore, the grading curve is approximated
by multi-linear functions on a logarithmic scale for the equivalent diameter. As a result,
the aggregate size distribution within one mineral-size-class is defined as

Φm(deqv) =
1

ln dmax − ln dmin
ln deqv −

ln dmin
ln dmax − ln dmin

. (4.5)

74



4.2 Generation of the Internal Material Structure on the Mesoscale

The value of Φm at a given diameter d represents the mass fraction of aggregates with
an equivalent diameter smaller than d related to the total mass of the aggregates. By
differentiating Φm(deqv) with respect to the equivalent diameter deqv, the associated density
function ϕm is obtained

ϕm(deqv) =
dΦm

ddeqv
=

1

ln dmax − ln dmin

1

deqv
. (4.6)

Assuming a constant mass density for all aggregates in one mineral-size-class, the proba-
bility of finding an aggregate with equivalent diameter deqv can be defined as

ϕd(deqv) =
1

dmax∫
d=dmin

ϕm(d)

E(V (d))
dd

ϕm(deqv)

E(V (deqv))
, (4.7)

where E(V ) is the expected value of the volume of a single particle, given by Eq. (4.4).
Substituting Eqs. (4.6) and (4.4) into Eq. (4.7) results in the final probability density
function of the equivalent aggregate diameter

ϕd(deqv) =
1

dmax∫
d=dmin

1

d4
dd

1

d4
eqv

=
3d3

mind
3
max

d3
max − d3

min

1

d4
eqv

. (4.8)

By integrating the probability density function, the associated cumulative distribution
function is obtained

Φd(deqv) =

deqv∫
d=dmin

ϕd(d)dd =
d3
mind

3
max

d3
max − d3

min

(
1

d3
min

− 1

d3
eqv

)
. (4.9)

The inversion method, e.g. Devroye (1986), is applied to generate diameters according to
this distribution function from uniformly distributed random numbers X

deqv = 2r2 =
dmaxdmin

3
√
Xd3

min + (1−X)d3
max

(0 ≤ X ≤ 1). (4.10)

The derivation of the equivalent aggregate diameter for Fuller’s curve can be found in
Häfner et al. (2006).

In addition to the mass fraction of each mineral-size-class, given in the grading curve, the
final concrete density %c, the total mass fraction of aggregates ϕa and the aggregate density
%a are used as input parameters in the simulation. In the first step of the take-process, the
aggregate volume for each mineral-size-class is calculated from the final specimen volume
and the input parameters. In a second step, starting with the largest aggregates, the
particles are successively generated for each mineral-size-class until the desired volume is
exceeded. The last generated aggregate particle is removed and the difference between the
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simulated and the prescribed volume of the mineral-size-class is added to the next smaller
class.

4.2.2 Simulation of the Spatial Aggregate Distribution
(Place-Process)

The place-process is successively performed for each mineral-size-class starting with the
class with the largest aggregates and followed by the next smaller classes. In a first step, all
aggregates are sorted according to their volume. Afterwards, the aggregates are randomly
placed within the specimen one by one starting with the aggregate with the largest volume.
In order to take into account a minimum distance between the aggregates and between
the aggregates and the specimen boundary surfaces, the radii of the ellipsoid to be placed
are temporarily enlarged by ∆r. In the presented approach, the enlargement length is a
function of the second largest radius of the ellipsoid r2

∆r = εrr2, (4.11)

where εr is the relative enlargement factor, which is introduced as an additional input pa-
rameter. Physically, this minimum distance can be interpreted as a thin mortar film around
each aggregate, Wittmann et al. (1985). In numerical simulations in which the mesoscale
geometry is discretized using finite elements, the minimum distance is also required to
improve the quality of the finite element mesh. As a general rule, the enlargement factor is
chosen in such a way that the minimum distance between two ellipsoids is approximately
half of the average element size used for the mortar matrix.

The position and orientation of an ellipsoid within the specimen geometry, is defined by
the center point coordinates cx, cy, cz and by the Euler angles θ, ψ, φ. During the place-
process, these parameters are computed using uniformly distributed random variables. A
valid parameter set is obtained if the ellipsoid is completely inside the specimen and if
there are no overlapping regions with already placed ellipsoids. If one of these conditions
is not satisfied, a new position and orientation is calculated for this ellipsoid and the testing
procedure is repeated. Assuming that the ellipsoids are small compared to the specimen
dimensions, the first condition is fulfilled if the center point of the ellipsoid is inside the
specimen and there is no intersection between the ellipsoid and the specimen boundary
surfaces. The separation of two ellipsoids is, in a first step, tested by the separation of
their bounding boxes. If this test fails, an exact separation check, which is based on a very
efficient algorithm introduced by Wang et al. (2001), is performed. This algorithm uses a
matrix representation of an ellipsoid

xTEx = 0, (4.12)

where x = [x, y, z, 1]T are homogeneous coordinates and E is a 4x4 matrix, which incor-
porates the radii of the ellipsoid and its position and orientation in space. Assuming an
ellipsoid with its center at the origin and the radii aligned with the coordinate axes, this
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matrix is given by

E =


1/r2

1 0 0 0
0 1/r2

2 0 0
0 0 1/r2

3 0
0 0 0 −1

 . (4.13)

By introducing the transformation matrices Dt for translations

Dt =


1 0 0 −cx
0 1 0 −cy
0 0 1 −cz
0 0 0 1

 , (4.14)

and Dr for rotations

Dr =


cψcφ − cθsψsφ sψcφ + cθcψsφ sθsφ 0
−cψsφ − cθsψcφ −sψsφ + cθcψcφ sθcφ 0

sθsψ −sθcψ cθ 0
0 0 0 1

 , (4.15)

with

sθ = sin θ sψ = sinψ sφ = sinφ

cθ = cos θ cψ = cosψ cφ = cosφ,

the final matrixE for an ellipsoid with arbitrary position and orientation can be obtained

E = DT
t D

T
rEDrDt. (4.16)

The separation of two ellipsoids, given by xTE1x = 0 and xTE2x = 0, is determined by
evaluating the characteristic polynomial, which is defined as

f(λ) = det(λE1 +E2). (4.17)

In Wang et al. (2001) it is shown that two ellipsoids are separated by a plane if and only
if their characteristic equation f(λ) = 0 has two distinct positive roots. An advantage
of this method is that the characteristic equation must not be solved for the exact roots.
Sturm sequences, cf. Barbeau (2003), are used to determine the number of real roots in
the interval (0,+∞].

A drawback of the presented place-process is that each ellipsoid must be tested with all
previously inserted ellipsoids to accept its position and orientation. Since the number of
placed ellipsoids successively increases, the numerical effort for placing one ellipsoid in-
creases significantly during the simulation, even though the bounding box check is already
sufficient in most cases. In the presented new approach, the specimen is subdivided into
regular cuboids, which are aligned with the coordinate axes. During the simulation, the
number of cuboids is successively increased with decreasing mineral-size-class. The corre-
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sponding number of subdivisions Ndiv,i in each direction i is defined as a function of the
total number of ellipsoids Nel of the already inserted mineral-size-classes and the current
mineral-size-class

Ndiv,i = 3

√
Nel

lxlylz
li i = x, y, z, (4.18)

where lx, ly, lz are the dimensions of the specimen bounding box. It is to be noted that
Ndiv,i is rounded to an integer value. After having placed an ellipsoid within the specimen,
this ellipsoid is assigned to all cuboids which are within or cut by an enlarged bounding
box of this ellipsoid. The standard ellipsoid bounding box is enlarged in each direction
by

∆l =

[
1 +

η13 − 1

η13 + 1
+ ε

]
dmax,k

2
, (4.19)

where dmax,k is the upper sieve aperture diameter of the current mineral-size-class k. As a
result, the separation checks can be reduced to all ellipsoids which are assigned to the same
cuboid. Due to the regular subdivision, the cuboid C which is associated to the ellipsoid
to be placed can be calculated from the center point coordinates of that ellipsoid

C =

⌊
cx −minx

lx

⌋
Ndiv,x +

⌊
cy −miny

ly

⌋
Ndiv,yNdiv,x

+

⌊
cz −minz

lz

⌋
Ndiv,zNdiv,yNdiv,x, (4.20)

where mini are the minimum coordinates of the specimen bounding box, and the brackets
b. . .c indicate the floor function. Consequently, the several summands are rounded to the
next smallest integer. With this modification of the place-process, the number of separation
tests for one parameter set is significantly reduced. Due to the successive adaptation of
the cuboid size, the number of separation checks becomes almost independent of the total
number of already inserted ellipsoids.

The result of the presented algorithm is one sample of a three-dimensional mesoscopic
material structure of concrete. An intersection between the three-dimensional structure
and a plane, as proposed in Leite et al. (2004), is used for two-dimensional simulations of
the material response, leading to aggregates, which are represented by ellipses.

4.2.3 Example

As an example, the generation of the mesoscale geometry within a concrete cube with edge
length of 100 mm is presented to show the performance of this algorithm. The prescribed
grading curve is given in Fig. 4.2(a) and the following input parameters are used: mass
density of aggregates %a = 2.67 t/m3, mass density of macroscopic concrete %c = 2.30 t/m3,
mass fraction of aggregates ϕa = 80 %, and the maximum ratio between the ellipsoid
radii η13 = 3. In order to investigate the influence of the relative enlargement factor εr
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Figure 4.2: Simulation of the mesoscale geometry of concrete.

on the simulation time, this parameter is varied from 0.00 to 0.15. In all simulations, a
constant seed is used for the generation of the random numbers. As a result, the aggregate
size distribution and the aggregate shapes are constant in all simulations. Due to the
variation of the enlargement factor, the simulations result in different spatial distributions
of the aggregates. Approximately 320 000 aggregates with diameters between 0.5 mm
and 32.0 mm are generated within a cube with an edge length of 100 mm. The volume
fraction of the aggregates is 62 %, which is equivalent to the prescribed mass fraction.
The diagram in Fig. 4.2(a) illustrates that the aggregate size distribution obtained in
the simulation statistically fits the given size distribution for a sufficiently large number
of ellipsoids. Figure 4.3(a) shows the three-dimensional aggregate arrangement of the
mineral-size-classes 8/16 (321 ellipsoids, light-gray) and 16/32 (40 ellipsoids, dark-gray).

(a) 3D (b) 2D

Figure 4.3: Artificially generated aggregate distribution.
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Table 4.1: Average time for the simulation of the three-dimensional aggregate distribution.
relative enlargement factor ε with subdivision without subdivision

0.00 23 s 18 652 s (5.18 h)
0.05 27 s 23 108 s (6.42 h)
0.10 35 s 24 965 s (6.93 h)
0.15 48 s 29 379 s (8.16 h)

The result of an intersection between the cube and a plane parallel to the base of the cube
is plotted in Fig. 4.3(b). Only aggregates with diameters larger than 8 mm are shown in
this plot. The area fraction of these aggregates in this cross-section is 35 %. In Table 4.1,
the simulation times on a standard PC (Pentium4, 3.40GHz) running 64-Bit Linux are
summarized. The numerical effort for generating the mesoscale structure increases with
increasing minimum distance between the aggregates, since it becomes more difficult to
place the temporarily enlarged ellipsoid. Using an enlargement factor larger than 15% not
all ellipsoids can be placed into the specimen and the mesoscale geometry is not build with
the given parameter set. Figure 4.2(b) shows the computing time for placing the ellipsoids
as a function of the number of ellipsoids. The vertical lines in the diagram indicate the
boundaries of the mineral-size-classes. If the number of ellipsoids is small, the performance
gain by using the subdivision algorithm is negligible. With increasing number of ellipsoids
the time for placing an ellipsoid is significantly reduced compared to a simulation without
the subdivision algorithm, e.g. factor 638 for the simulation of all ellipsoids.

4.3 Numerical Model

Compared to macroscale simulations, a considerably finer resolution of the numerical
model, e.g. a very fine finite element discretization, is required in mesoscale simulations to
represent the mesoscale geometry of concrete with sufficient accuracy. Since in mesoscale
simulations the numerical model explicitly considers the several physical phenomena lead-
ing to macroscopic failure, such as the propagation of microcracks within the mortar matrix
or debonding effects at the interface between aggregates and matrix, rather simple mate-
rial models can be used for each constituent to describe the complex macroscopic material
behavior of concrete.

Various different approaches for mesoscale models of concrete can be found in literature.
Several models, e.g. Schlangen (1993); Vervuurt (1997); Leite et al. (2004), are based on
beam or truss lattices. In order to incorporate the heterogeneity of the material, the lattice
is projected onto the grain structure and every single beam is assigned to one constituent
of the mesoscale geometry (aggregate, mortar matrix or interfacial transition zone). The
properties of the beams are determined in such a way that simulations with the lattice
model matches macroscopic parameters obtained in experiments, e.g. Young’s modulus
or Poisson’s ratio. The failure of a beam is modeled either by tension cut-off, Schlangen
(1993); Vervuurt (1997), where the beam is deleted after reaching the tensile strength,
or by damage models, Leite et al. (2004); Grassl et al. (2006), which take into account
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material softening. An essential problem of the lattice models is the determination of the
material parameters, since a relationship between the homogenized macroscopic properties
and the beam parameters must be obtained. Furthermore, the obtained crack pattern is
strongly influenced by the structure of the lattice.

Another group of models are particle models (discrete element method), which idealize
the mesoscale structure by a finite number of particles, which interact through contact
conditions with each other. In order to simulate cohesive materials such as concrete with
particle models, beam or interface elements are inserted between neighboring particles. In
Bažant et al. (1990), the particles explicitly represent the aggregates. Another approach is
shown in D’Addetta (2004). In this model, the particles are significantly smaller than the
aggregates. As a result, aggregates and mortar matrix consist of a high number of small
particles. In order to model the mesostructure of concrete, different material parameters
are assigned to the cohesive components. As for the lattice models, the determination
of the material parameters for the cohesive components is difficult and a mesh-induced
directional bias of the crack pattern is observed, Jirásek and Bažant (1995).

Besides the above-mentioned discontinuous models, the continuum approach is also ap-
plied to mesoscale simulations of concrete. Aligned discretizations, Fig. 4.4(b), where the
finite element mesh explicitly represents the aggregate boundary surfaces, are e.g. used
in Wittmann et al. (1985); Carol et al. (2001); Wriggers and Moftah (2006). In these
models various approaches for the simulation of damage are used. In Wang et al. (1992),
microcracks are modeled in a discrete way, that is the cracks are explicitly represented
by the finite element mesh. Consequently, remeshing is required if a crack propagates.
Initial cracks are introduced in the interfacial zone between aggregates and matrix and
the propagation of these cracks is based on linear elastic fracture mechanics. In Carol
et al. (2001), zero-thickness interface elements, representing cohesive cracks, are applied
between all finite elements. The nonlinear behavior of the structure is only considered by
the material model of the interface elements. Since the crack paths are predefined by the
element edges, the results depend on the finite element discretization. A smeared crack
concept is used in Roelfstra (1989) for the simulation of microcracks within the mortar
matrix. In this model, a framework of nonlinear springs, softening elements and friction
elements represent the interfacial zone. A problem of these smeared crack models is the
mesh-induced directional bias of the crack pattern, Rots (1988). Nonlocal material formu-
lations can circumvent this major drawback. In Wriggers and Moftah (2006), a nonlocal
isotropic damage model is applied to the mortar matrix. In this model, rigid bond be-
tween aggregates and matrix is assumed and interface cracks are represented by damaged
zones within the mortar matrix close to the aggregates. As a result, the strength of the
interfacial zone is overestimated. Using aligned discretizations, the numerical effort for
mesh generation increases significantly with the complexity and the size of the mesoscale
structure. An alternative approach, that uses orthogonal (grid-type) meshes, Fig. 4.4(c),
is presented in Zohdi and Wriggers (2001); Häfner et al. (2006); Häfner (2007). In these
models, the mesostructure is taken into account by multiphase finite elements, which allow
for different material properties for each integration point of the finite element. As a result,
a smeared representation of the interfacial zone is obtained. In Unger and Könke (2006),
the extended finite element method is used for an explicit representation of the aggregate
boundaries independent from the finite element discretization, Fig. 4.4(d). The major ad-
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(a) mesoscale geometry (b) aligned mesh (c) orthogonal grid (d) XFEM

Figure 4.4: Finite element discretizations of the mesoscale geometry.

vantage of orthogonal, grid-type meshes is that the numerical effort for mesh generation
is negligible small compared to models with aligned meshes.

In the presented approach, an aligned finite element discretization, as shown in Fig. 4.4(b),
of the mesoscale geometry is used and zero-thickness interface elements are introduced be-
tween aggregates and matrix to model the interfacial transition zone. This implies that
the actual width of the interfacial transition zone is neglected in the numerical simula-
tions. The initial finite element mesh, without interface elements, is generated with Gmsh,
Geuzaine and Remacle (2009). Triangular finite elements with quadratic interpolation
functions are used in two-dimensional simulations. Furthermore, plane stress conditions
are assumed. In three-dimensional simulations, the mesoscale geometry is discretized with
tetrahedrons. Due to the complexity of the mesoscale geometry, the numerical effort for
mesh generation is very high and it increases with the number of aggregates embedded
in the mortar matrix. The quality of the finite element mesh is mainly controlled by
the minimum distance between the aggregates, which is introduced during the geometry
generation process. If the minimum distance is chosen too small compared to the average
finite element size, very small or highly distorted finite elements are created. Especially for
three-dimensional models, a small minimum distance might lead to a situation where the
meshing becomes impossible. After the initial mesh has been created, interface elements
are introduced between elements with different material properties.

In the presented mesoscale simulations, debonding of the ITZ and tensile failure within
the mortar matrix, which corresponds to the initiation, propagation and coalescence of
microcracks, are considered to describe the macroscopic nonlinear material behavior of
concrete. This implies the assumption that compressive failure on the macroscale can
be reduced to tensile failure perpendicular to the direction of compressive stresses on the
mesoscale. For normal-strength concrete, the nonlinear material behavior of the aggregates
can be neglected. Consequently, the material behavior of the aggregates is described by
a linear elastic, isotropic material model. The opening of the material interfaces between
aggregates and matrix is considered by a nonlinear cohesive zone model, presented in
Sect. 3.6. Nonlocal continuum damage models, as introduced in Sects. 3.3 to 3.5, are used
to describe the evolution of microcracks within the mortar matrix.
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4.4 Examples

In this section, three examples taken from literature are presented to illustrate the main
features of the proposed mesoscale approach. Several numerical simulations with varying
model and material parameters are performed to investigate the influence of the interfacial
transition zone, the influence of the spatial aggregate distribution and the influence of the
continuum damage model used for the mortar matrix on the macroscopic response, such as
the global load-displacement curve, the ultimate load or the macroscopic fracture energy.
The numerical results obtained in these simulations are compared to experimental results
documented in literature.

In general, it is difficult to determine the material parameters of the mesoscale models,
even if the material models are characterized by parameters with a clear physical meaning,
such as Young’s modulus, tensile strength or fracture energy. Theoretically, these material
properties can be obtained from experiments. Due to the size of the constituents of the
mesoscale model, for instance as shown in Hashin and Monteiro (2002), the interfacial
transition zone has a typical width of 15 − 40 µm, the experiments are rather difficult.
Alternatively, a parameter fitting for a reference experiment can be performed to determine
the mesoscale material parameters. This parameter set can be used in simulations of
structures with the same material. In this thesis, the Young’s modulus of the mortar
matrix is calculated from the macroscopic Young’s modulus of concrete using the Reuss
bound, Reuss (1929),

1

Ec
=
ϕa
Ea

+
ϕm
Em

, (4.21)

where ϕ is the volume fraction and the subscripts stands for concrete (macroscale): c,
aggregates: a, and mortar matrix: m. The Young’s modulus of the aggregates is either
given in the literature or a fixed ratio between the Young’s moduli of aggregates and
mortar matrix is assumed. In all simulations, the macroscopic Poisson’s ratio of concrete
is also used for the aggregates and the mortar matrix. The fracture energy and the tensile
strength are iteratively identified such that the numerical simulations almost coincide with
the macroscopic load-displacement curve obtained in the experiments. As discussed in
Sect. 3.2.2 the nonlocal radius is interpreted as numerical parameter which is chosen with
respect to the average element size used for the mortar matrix.

All simulations were run on an Opteron workstation (2x2x2.4GHz, 16GB RAM). The
calculation of the element stiffness matrices, the element internal force vectors and the
assembling of the global stiffness matrix was performed on 4 parallel processors. In order
to avoid that two or more processes concurrently try to update the same entry of the
stiffness matrix, the elements are divided into maximal independent sets, see Unterkircher
and Reissner (2005), and the parallel assembling of the stiffness matrix is only performed
for all elements in one set. The MUltifrontal Massively Parallel Solver (MUMPS) package,
Amestoy et al. (2000, 2002, 2006), is used to directly solve the global system of equations
which arises in each iteration step of the simulation, cf. Sect. 2.4.
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Figure 4.5: Uniaxial tension test – specimen dimensions of the concrete prism, test setup and
mesoscale model (all dimensions in mm).

4.4.1 Uniaxial Tension Test

In the first example, several aspects of mesoscale simulations are investigated using a
uniaxial tension test of an unnotched concrete prism with a tapered cross-section. The
advantage of such a specimen is that in a uniaxial tension test the localization of damage
is only triggered by the heterogeneous internal material structure and not by the specimen
shape. Furthermore, due to the increasing cross-section at the specimen supports the
influence of the boundary conditions on the failure mechanism is negligible. The specimen
was designed and experimentally tested by Kessler-Kramer (2002) at the University of
Karlsruhe. Figure 4.5(a) shows the macroscopic specimen dimensions, the position of the
monitoring points and the applied boundary and loading conditions. It is to be noted
that due to the fixation of the specimen in the testing machine the mutual rotation of the
specimen ends is prevented. In order to investigate the post-peak behavior of the specimen,
a combination of load and displacement control was applied. During the experiment the
load is adjusted such that a prescribed relative displacement value is observed between the
monitoring points. Table 4.2 summarizes the mixture parameters used for the preparation
of the normal strength concrete specimens.

The numerical simulations are performed with two-dimensional mesoscale models. Con-
sequently, the aggregates are simplified as cylinders with ellipsoidal cross-section. Fig-
ure 4.5(b) shows one realization of the mesoscale geometry. As shown in Sect. 4.2, the
internal material structure of concrete is obtained by numerical simulations, using the
mixture properties given in Table 4.2 and assuming an enlargement factor ε = 0.25. In
the numerical model, only aggregates with diameters larger than 4mm are considered.
The geometry is discretized by triangular finite elements with quadratic shape functions.
Using an average element size of 0.5mm, the finite element mesh approximately consists of
270 000 elements, 550 000 nodes and 1 100 000 degrees of freedom, respectively. Additional
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Table 4.2: Uniaxial tension test – concrete mixture parameters.
mass [kg/1m3] density [kg/m3] volume [m3]

cement 318 3 100 0.103
water 175 1 000 0.175
air voids (estimated) 0.020
aggregates 0/2 555 2 635 0.211
aggregates 2/8 703 2 635 0.267
aggregates 8/16 592 2 635 0.224
concrete 2 343 2 343 1.000

simulations, considering only aggregates with a minimum diameter of 8mm, are performed
to investigate the influence of the mesh size. In order to investigate the post-peak response
of the specimen, as in the experiments an indirect displacement control, cf. Sect. 2.4.3, is
applied.

Influence of the Mesh Size

In a first simulation, the sensitivity of the numerical results, such as the macroscopic
load-displacement curve or the mesoscopic damage distribution, with respect to mesh
refinement is investigated. In order to reduce the numerical effort in these simulations,
only ellipses with a minimum diameter of 8mm are considered. This allows for varying
the average mesh size le between 0.5mm and 2.0mm. In all simulations, linear elastic
behavior is assumed for the aggregates. The nonlinear behavior of the mortar matrix is
described by the isotropic damage model given in Sect. 3.3, assuming α = 0.01 for the
Rankine criterion. A nonlocal averaging of the displacement field, Sect. 3.2.3, is applied to
regularize this damage model. It is to be noted that in all simulations a constant nonlocal
radius R = 2.0mm is used. The nonlinear behavior of the interface is represented by the
cohesive zone model, introduced in Sect. 3.6. Table 4.3 summarizes all material parameters
used in the simulations.

Table 4.3: Uniaxial tension test – material parameters for simulations with varying mesh sizes.
mortar matrix Young’s modulus Em [N/mm2] 35 338

Poisson’s ratio νm [–] 0.18
tensile strength ft,m [N/mm2] 4.50
fracture energy Gf,m [Nmm/mm2] 0.300
nonlocal radius R [mm] 2.0

aggregates Young’s modulus Ea [N/mm2] 70 677
Poisson’s ratio νa [–] 0.18

ITZ penalty stiffness Kp [N/mm3] 500 000
tensile strength ft,i [N/mm2] 3.40
fracture energy Gf,i [Nmm/mm2] 0.100
weight factor α [–] 1.0
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Figure 4.6: Uniaxial tension test – nominal stress-strain relationship and final damage
distribution for varying mesh sizes.

Figure 4.6(b) shows the macroscopic response of the specimen in terms of nominal stress
and nominal strain, which are defined as

σN =
Fy [N ]

6000mm2
εN =

∆uy [mm]

250mm
, (4.22)

where Fy is the resulting vertical force observed at the top of the specimen and ∆uy is the
vertical relative displacement between the monitoring points. A difference between the
simulations is only distinguishable in the post-peak branch of the curve. Consequently, a
good approximation is already obtained for the coarse mesh, where a ratio of 1 between
nonlocal radius and average element size is used. Compared to simulations with smaller
elements, a slightly larger amount of inelastic energy is dissipated in this simulation, leading
to a small deviation in the post-peak branch of the nominal stress-strain curve. Due to the
coarse discretization, compared to the nonlocal radius, the area of the damaged region is
marginally increased and, as a consequence, the damage profile becomes slightly different.
However, in the plots of the final damage distribution, which are shown in Fig. 4.6(b), these
differences are not distinguishable. In simulations with finite elements with an average size
of 1.0mm or smaller, the deviation in the post-peak branch of the nominal stress-strain
curve becomes negligible. Consequently, a ratio of 2 between nonlocal radius and average
element size is sufficiently large to represent the damage profile in an appropriate way.

Table 4.4 illustrates the numerical effort for simulations with varying mesh size. The
number of unknown degrees of freedom increases approximately by a factor of four when
the average element size is halved. Furthermore, the computing time increases significantly.
On the one hand, this is the result of the increasing number of degrees of freedom. On
the other hand, for each material point the number of elements inside the nonlocal radius
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Table 4.4: Uniaxial tension test – number of active degrees of freedom and computing time for
varying mesh sizes.

average element size le degrees of freedom computing time
2.0mm 62 595 9min
1.0mm 266 944 4 h 22min
0.5mm 1 101 248 77 h 30min

increases. Consequently, the number of material points which are considered in the nonlocal
averaging procedure increases as well. As a result, the computation of the stresses and
of the stiffness matrix becomes more time-consuming and the bandwidth of the stiffness
matrix increases for elements, in which damage develops.

Rigid Bond vs. Cohesive Interface

In order to investigate the influence of the interfacial transition zone, simulations with two
different mesoscale models are performed. In the first model, concrete is considered as a
two phase material consisting of aggregates and mortar matrix. This implies the assump-
tion of rigid bond between aggregates and matrix. In the second model, the interfacial
transition zone is explicitly considered as an additional phase using zero thickness interface
elements, Sect. 2.2.1. The nonlinear behavior of this phase is described by the cohesive
zone model, Sect. 3.6. In both simulations, the nonlocal isotropic damage model, Sect. 3.3
with displacement averaging, Sect. 3.2.3, is applied to the mortar matrix and linear elastic
behavior of the aggregates is assumed. The corresponding material parameters are sum-
marized in Table 4.5. It is to be noted that the material parameters, which are obtained
by fitting the macroscopic response of the numerical models to the experimental results,
are determined separately for each model.

The diagram in Fig. 4.7(a) shows the macroscopic nominal stress-strain relationship. It is
to be noted that in both simulations a nonlinear pre-peak behavior is observed, even though

Table 4.5: Uniaxial tension test – material parameters (rigid bond vs. cohesive interface).
rigid bond cohesive ITZ

mortar matrix Young’s modulus Em [N/mm2] 31 908 31 908
Poisson’s ratio νm [–] 0.18 0.18
tensile strength ft,m [N/mm2] 4.00 4.50
fracture energy Gf,m [Nmm/mm2] 0.150/0.151 0.300
nonlocal radius R [mm] 1.0 1.0

aggregates Young’s modulus Ea [N/mm2] 63 818 63 818
Poisson’s ratio νa [–] 0.18 0.18

ITZ penalty stiffness Kp [N/mm3] 500 000
tensile strength ft,i [N/mm2] 3.40
fracture energy Gf,i [Nmm/mm2] 0.10
weight factor α [–] 1.0
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Figure 4.7: Uniaxial tension test – nominal stress strain relationship and final damage
distribution (rigid bond vs. cohesive interface).

no hardening is considered in the material formulations. As illustrated in Fig. 4.7(b), which
shows the final damage distribution, this phenomenon is the result of the explicit repre-
sentation of the heterogeneous internal material structure on the mesoscale, leading to a
successive initiation and propagation of microcracks. Consequently, both models are capa-
ble of representing the evolution of microcracks and the formation of macroscopic cracks.
Since the material parameters are determined in such a way that the numerical simulation
accurately approximates the experimental curve, both simulations can represent the peak
load. But the simulation with cohesive interface elements shows a better approximation
of the entire curve. Assuming rigid bond, the pre-peak behavior of the material is over-
estimated and the nominal strain at the peak-point is too small. A better approximation
of the post-peak behavior is not possible for this model. As shown in Fig. 4.7(b), a small
variation of the fracture energy results, in the simulations with rigid bond, in a completely
different damage distribution. Using a fracture energy of 0.150Nmm/mm2 for the mortar
matrix a single macroscopic crack is observed. A slight increase of the fracture energy
leads to three competing macroscopic cracks. As a result, the area of the damaged regions
and the inelastic energy dissipated during the simulation significantly increases compared
to the simulation with Gf,m = 0.150Nmm/mm2. This leads to significant deviations in
the nominal stress-strain curve. Consequently, the post-peak behavior is either underes-
timated for Gf,m = 0.150Nmm/mm2 or overestimated for Gf,m = 0.151Nmm/mm2. It
is to be noted that the formation of multiple competing macroscopic damage zones is not
restricted to mesoscale models in which rigid bond is assumed between aggregates and
matrix. As shown in Unger (2009), this phenomenon is also observed for mesoscale models
which explicitly consider the ITZ as an additional phase. Figure 4.8 shows a detailed plot
of the damage distribution in the vicinity of the final macroscopic crack. Assuming rigid
bond, Fig. 4.8(a), failure of the interface between aggregates and matrix is represented
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(a) rigid bond Gf,m = 0.150 (b) nonlinear ITZ

Figure 4.8: Uniaxial tension test – damage distribution in the vicinity of the final macroscopic
crack (displacements 10-times magnified).

by the isotropic damage model, leading to damage zones within the mortar matrix. This
results in an artificial enlargement of damage zones in the vicinity of aggregates. As a
further result, the strength of the ITZ is, in general, overestimated. In the simulation with
cohesive interface elements, the ITZ is considered as the weakest link in the mesoscale
model. Consequently, a lower tensile strength and a lower fracture energy compared to the
mortar matrix is assumed for the ITZ. As a result, the formation of a macroscopic crack is
not only influenced by the spatial aggregate distribution itself, as in the simulations with
rigid bond, but also by the material properties of the ITZ. Figure 4.7(b) illustrates that
due to the explicit consideration of the ITZ, damage within the mortar matrix is signifi-
cantly reduced. As shown in detail in Fig. 4.8(b), the failure of the ITZ is represented as
discrete crack by the cohesive interface formulation. As a result, only microcracks inside
the mortar matrix and interface cracks which start to develop into the mortar matrix are
described by the nonlocal isotropic damage model. As a further result, the numerical effort
is, compared to simulations with rigid bond, reduced due to the lower number of elements
in which nonlocal damage develops. Furthermore, the iterative solution procedure shows
a better convergence behavior for the model with cohesive interfaces.

In summary, the application of cohesive interface elements allows for an explicit consider-
ation of the specific material characteristic of the ITZ which is different from the mortar
matrix, Liao et al. (2004). As a result, initial microcracks start to develop inside the
ITZ which corresponds, for normal-strength concrete, to experimental observations, van
Vliet and van Mier (1995). This leads, in the numerical simulation of a uniaxial tension
test, to a more precise approximation of the pre-peak behavior of concrete. Furthermore,
the numerical simulations illustrate the essential influence of the ITZ on the macroscopic
behavior of concrete.
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Table 4.6: Uniaxial tension test – material parameters (varying continuum damage models).
mortar matrix Young’s modulus Em [N/mm2] 31 525

Poisson’s ratio νm [–] 0.18
tensile strength ft,m [N/mm2] 4.90
fracture energy Gf,m [Nmm/mm2] 0.350
nonlocal radius R [mm] 0.5

aggregates Young’s modulus Ea [N/mm2] 63 050
Poisson’s ratio νa [–] 0.18

ITZ Penalty stiffness Kp [N/mm3] 500 000
tensile strength ft,i [N/mm2] 3.30
fracture energy Gf,i [Nmm/mm2] 0.170
weight factor α [–] 1.0

Comparison of Damage Models

In this paragraph, different continuum damage models, such as the scalar damage model
(SD), Sect. 3.3, the rotating crack model with transition to scalar damage (RCSD),
Sect. 3.4, and the microplane based damage model (MD), Sect. 3.5, are analyzed with
respect to their ability to describe the evolution of microcracks in the mortar matrix. In
order to avoid a spurious mesh sensitivity of the numerical results, the corresponding non-
local material formulations are applied. A nonlocal averaging of the displacement field,
Sect. 3.2.3, is used for the scalar damage model and for the rotating crack model. The
nonlocal formulation of the microplane damage model is based on the averaging of the
inverse integrity tensor. Furthermore, linear elastic behavior of the aggregates is assumed
and the cohesive zone model, Sect. 3.6, is used to describe the nonlinear behavior of the
ITZ. The corresponding material parameters, which are determined in such a way that
the numerical results obtained with the scalar damage model fit the experimental results,
are summarized in Table 4.6. It is to be noted that for the rotating crack model a tran-
sition to scalar damage is performed if the shear modulus in the secant material matrix
becomes smaller than 10 % of the initial elastic shear modulus corresponding to αG = 0.1 in
Eq. (3.97). The material parameters of the microplane damage model, e0 = 9.36132 10−5

and ef = 0.076828, are derived from the material parameters given in Table 4.6 using
Eqs. (3.130) and (3.131) and assuming m = 0.05. It is to be noted that the relationship
between microplane parameters and macroscopic material properties, given in Eqs. (3.130)
and (3.131), was obtained from macroscale simulations.

As illustrated in Figure 4.9(a), which shows the macroscopic nominal stress-strain curves,
a good approximation of the experimental results is obtained in the simulations with
the scalar damage model and with the rotating crack model. Differences between both
simulations can be identified in the post-peak branch of the curve, which can be attributed
to the different scaling of the fracture energy in both material formulations (β = 1, 7 in
the scalar damage model and β = 1.5 in the rotating crack model). A deviation from
the experimental curve, especially in the vicinity of the peak-point, is observed for the
simulation with the microplane based damage model. With this model, the peak-load is
underestimated which is probably due to the parameter set. Obviously, Eqs. (3.130) and
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Figure 4.9: Uniaxial tension test – nominal stress-strain curve and final damage model obtained
in simulations with the isotropic damage model (SD), the rotating crack model with
transition to scalar damage (RCSD) and the microplane based damage model (MD).

(3.131) give only an estimation of the microplane material parameters. Furthermore, a
larger nominal strain at the peak-point is observed, which is the result of the microplane
approach. On the microplane level, damage starts to develop on microplanes almost normal
to the loading direction. Since all other microplanes remain linear elastic, a nonlinear pre-
peak behavior is observed on the macroscale. The macroscopic peak-stress is reached, if
the damage expands to a sufficiently large number of microplanes. Due to this nonlinear
pre-peak behavior, the pre-peak branch of the nominal stress-strain curve becomes more
pronounced as in the experiments and in the simulations with the scalar damage model
and the rotating crack model.

In Fig. 4.9(b), the final damage distribution is shown. It is to be noted that for the
rotating crack model damage is only plotted for elements for which the transition to scalar
damage is performed. Consequently, the actual final crack pattern is slightly larger. For
the microplane damage model, an equivalent damage value is defined as

ωMD = 1− 1(
max
I=1,2

ψ̄I

)2 , (4.23)

where ψ̄I is the I-th eigenvalue of the nonlocal inverse integrity tensor ψ̄. An almost
identical crack pattern is obtained for the scalar damage model and the rotating crack
model. Furthermore, the shape and the position of the final macroscopic crack is identical
for both models. Consequently, the improved representation of the microcracks due to the
anisotropic formulation of the rotating crack model does not, at least for this example,
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result in a significant different structural response. From the numerical point of view, the
scalar damage model is less complex and, as a consequence, more robust as the rotating
crack model. A completely different damage distribution is observed for the simulation
with the microplane based damage model. Damage initiates in almost all elements asso-
ciated to that part of the specimen with the reduced cross-section, which is due to the
nonlinear pre-peak behavior explicitly considered in this model. As a consequence, the
numerical effort increases significantly compared to the other simulations. Due to the non-
local formulation of the material model, the bandwidth of the stiffness matrix increases for
elements in which damage develops. Furthermore, due to the high number of damaged ele-
ments, the localization of damage in the vicinity of the peak-point becomes more difficult.
However, the formation of a macroscopic crack is also observed in the simulation with the
microplane model. Compared to the other simulations, a different shape and position of
the macroscopic crack is obtained.

In summary, assuming macroscopic tensile failure, a realistic crack pattern is already ob-
tained for the scalar damage model. Consequently, the assumption of isotropic damage
is sufficient to represent the anisotropic propagation of microcracks in the mortar matrix.
Compared to the simulations with the other two material formulations, the simulation with
the scalar damage model is, from a computational point of view, less time-consuming and
shows the most robust convergence behavior during the iterative solution procedure.

Influence of the Spatial Aggregate Distribution

In this thesis, the internal material structure of concrete is artificially generated using nu-
merical simulations. As illustrated in Sect. 4.2, the shape, the position and the orientation
of an aggregate are expressed as functions of uniformly distributed random numbers. As a
result, a different aggregate distribution is obtained in each simulation, assuming that the
seed of the random-number generator is not constant. This corresponds to reality, where
two specimen prepared in a similar way differ in their aggregate configuration. In this para-
graph, the sensitivity of the macroscopic response to the spatial aggregate distribution is
investigated. Ten simulations with varying aggregate distributions are performed and the
macroscopic fracture energy Gf and the macroscopic tensile strength ft are determined.
It is to be noted that both parameters can be evaluated from the global load-displacement
curve

Gf =

0.25∫
uy=0

Fy(uy) duy

6000mm2
[N,mm] (4.24)

ft =
maxFy

6000mm2
, (4.25)

where Fy is the resulting vertical force and uy the corresponding vertical displacement
observed at the top of the specimen. In all simulations, linear elastic behavior of the
aggregates is assumed. Furthermore, the cohesive interface model, Sect. 3.6, is applied to
represent the material behavior of the ITZ, and the evolution of microcracks in the mortar
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Figure 4.10: Uniaxial tension test – nominal stress-strain curve and final damage distribution for
varying aggregate configurations.

matrix is described by the isotropic damage model, Sect. 3.3, with nonlocal averaging
of the displacement field, Sect. 3.2.3. The corresponding material parameters, which are
determined for the aggregate distribution shown in Fig. 4.5, are summarized in Table 4.5
on page 87. It is to be noted that in each simulation the Young’s moduli of the aggregates
and the mortar matrix are adapted to the actual area fraction of the aggregates, using
Eq. (4.21). The generation of the aggregates is performed in 3D assuming a constant
volume fraction for the aggregates. Afterwards, the two-dimensional model is obtained by
calculating the intersection of the three-dimensional aggregate distribution and a plane. As
a result, a slightly different area fraction of the aggregates is obtained in each simulation.
In the simulations, the Young’s modulus of the mortar matrix ranges from 31 618N/mm2

to 32 177N/mm2.

The diagram in Fig. 4.10(a) shows the mean values of the stress-strain curves and the
corresponding envelope. The influence of the spatial aggregate distribution is negligible
for the pre-peak behavior of concrete, since this state is characterized by the initiation
of microcracks uniformly distributed over the entire specimen. Reaching the ultimate
load, a localization of damage occurs and a macroscopic crack is formed. As illustrated
in Fig. 4.10(b), which shows the final damage distribution for the first three samples,
a different shape and position of the macroscopic crack is obtained in each simulation.
Consequently, the macroscopic crack path and, related to this, the macroscopic post-
peak behavior strongly depends on the internal material structure. It is to be noted that
the influence of the aggregate configuration is amplified in this tension test, since the
localization of damage is only triggered by the heterogeneous material structure and not
by the loading conditions or the macroscopic specimen geometry. In Table 4.7, the mean
value and the standard deviation of the macroscopic fracture energy and the macroscopic
tensile strength are summarized. It is to be noted that the standard deviation of the
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Table 4.7: Uniaxial tension test – macroscopic material parameters.
material parameter simulation experiments

mean std. dev. mean std. dev.
ft [N/mm2] 3.98 0.04 4.01 0.28
Gf [Nmm/mm2] 0.21 0.02 0.23 –

fracture energy was not calculated for the experiments, since in most cases the experiments
became unstable after having reached the peak load, cf. Kessler-Kramer (2002). Since
the material parameters of the numerical simulations are explicitly determined in such a
way that the nominal stress-strain curve fits the experimental curve, the mean values of
the macroscopic fracture energy and of the macroscopic tensile strength obtained for the
numerical simulations almost coincide with the experimental values. Compared to the
experiments, the standard deviation of the tensile strength is significantly smaller, which
is due to the assumption that all material parameters in the numerical simulation are
deterministic values. In order to consider these additional stochastic effects, the mesoscopic
material parameters can be modeled as random variables or random fields, cf. Unger
(2009).

4.4.2 Size Effect

In the second example, the ability of mesoscale models to represent the size effect is investi-
gated. The numerical simulations are based on the experiments by van Vliet and van Mier
(2000). Figure 4.11 shows the specimen dimensions and the range of specimen sizes which
were investigated in the experiments. The corresponding concrete mixture parameters used
for the preparation of the specimens are given in Table 4.8. Based on these parameters and
assuming an enlargement factor ε = 0.25, the mesoscale geometry of the numerical model
is artificially generated. The numerical simulations are performed with two-dimensional
finite element models assuming an average element size of 0.75mm. In these models, only
aggregates with diameters larger than 2mm are considered. A full mesoscale model, as
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A 50 30 1
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D 400 240 8
E 800 480 16
F 1 600 960 32

Figure 4.11: Size effect – specimen properties and test setup (specimen thickness: 100 mm).
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Table 4.8: Size effect – concrete mixture parameters.
mass [kg/1m3] density [kg/m3] volume [m3]

cement 375 3 100 0.121
water 187 1 000 0.187
air voids (estimated) 0.020
aggregates 0.125/0.250 127 2 690 0.047
aggregates 0.250/0.500 234 2 690 0.087
aggregates 0.500/2.000 544 2 690 0.202
aggregates 2.000/4.000 363 2 690 0.135
aggregates 4.000/8.000 540 2 690 0.201
concrete 2 370 2 370 1.000

shown in Fig. 4.12(a), is used for the numerical simulation of specimen types A, B and
C. The diagram in Figure 4.12(c) shows in a log-log plot the corresponding mean value of
the total number of degrees of freedom in the numerical model. The number of degrees of
freedom increases approximately by a factor of four if the specimen size is doubled. As a
consequence, the nonlinear analysis using a full mesoscale model becomes, from the numer-
ical point of view, already for specimen type D (approximately 2 819 000 dofs) extremely
time-consuming. Furthermore, a nonlinear full mesoscale simulation of specimen types E
(approximately 11 253 000 dofs) and F (approximately 44 911 000 dofs) is not possible with
the available computational power, which allows two-dimensional simulations with up to
3 500 000 degrees of freedom. It is to be noted that, due to the limited amount of memory
available, the mesh generation for specimen type F failed and that the number of degrees of
freedom is extrapolated. In order to decrease the numerical effort, the simulation of speci-
men type D is performed with a reduced mesoscale model. As shown in Fig. 4.12(b), only
that part of the specimen between the monitoring points is simulated on the mesoscale.
In the remaining parts the mesh is coarsened and a homogeneous macroscale model with

(a) full model (b) reduced model
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Figure 4.12: Size effect – full and reduced mesoscale models exemplarily shown for specimen
type A and corresponding number of elements as functions of the specimen size.
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Table 4.9: Size effect – material parameters.
concrete Young’s modulus Ec [N/mm2] 31 000

Poisson’s ratio νc [–] 0.18
mortar matrix Young’s modulus Em [N/mm2] Eq. (4.21)

Poisson’s ratio νm [–] 0.18
tensile strength ft,m [N/mm2] 3.60
fracture energy Gf,m [Nmm/mm2] 0.250
nonlocal radius R [mm] 1.0

aggregates Young’s modulus Ea [N/mm2] 2Em
Poisson’s ratio νa [–] 0.18

ITZ penalty stiffness Kp [N/mm3] 500 000
tensile strength ft,i [N/mm2] 2.70
fracture energy Gf,i [Nmm/mm2] 0.028
weight factor α [–] 1.0

linear elastic material properties of concrete is assumed. For the specimen types E and
F, the reduced model consists of approximately 3 643 000 and 14 339 000 degrees of free-
dom. Consequently, the nonlinear analysis of these specimen types is due to the limited
computational power available also not possible with the reduced model. However, the
numerical results presented in this section for the specimen types E and F are obtained by
using the adaptive heterogeneous multiscale approach which is introduced in Chapter 5.
A detailed description of these simulations and a comparison to mesoscale simulations is
given in Sect. 5.6.2.

As in the experiments, rotating boundary conditions, cf. van Vliet and van Mier (1998),
are imposed in the numerical simulations. Furthermore, the load is applied with a small
eccentricity e. In order to capture snap-back phenomena during the iterative solution
procedure, which are also observed in the experiments of the large specimens, the numerical
simulations are performed using a load-displacement-constraint method with a constraint
based on the dissipated inelastic energy. As shown in Sect. 2.4.3, the external load-vector
is parametrized and the unknown load factor is determined in such a way that a prescribed
amount of inelastic energy is dissipated in each load step.

In the numerical simulations, the development of microcracks within the mortar matrix
is described by the isotropic damage model, Sect. 3.3, with nonlocal averaging of the dis-
placement field, Sect. 3.2.3. Furthermore, the nonlinear behavior of the ITZ is represented
by the cohesive interface material model, Sect. 3.6, and a linear elastic material behavior
is assumed for the aggregates. The corresponding material parameters are summarized in
Table 4.9. It is to be noted that the parameter fitting is performed for one single aggregate
configuration for a specimen of type B considering the ultimate load and the shape of the
corresponding experimental load-displacement curve.

In order to take into account the stochastic character of the aggregate distribution, ten
simulations with varying particle distributions are performed for each specimen type. In
each simulation, the macroscopic nominal strength σN and the macroscopic fracture energy
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Table 4.10: Size effect – mean values and standard deviation of the nominal strength and the
fracture energy.

nominal strength σN [N/mm2] fracture energy Gf [Nmm/mm2]
experiment simulation experiment simulation

type mean std. dev. mean std. dev. mean std. dev. mean std. dev.
A 2.54 0.41 2.98 0.06 0.097 0.012 0.113 0.013
B 2.97 0.19 2.90 0.07 0.126 0.018 0.127 0.016
C 2.75 0.21 2.78 0.07 0.124 0.014 0.116 0.007
D 2.30 0.09 2.66 0.05 0.125 0.014 0.120 0.007
E 2.07 0.12 2.62 0.04 0.142 0.010 – –
F 1.86 0.16 2.53 0.02 0.141 0.010 – –

Gf are determined

σN =
maxFy
0.6D

(4.26)

Gf =
1

0.6D

uy,end∫
uy=0

Fy(uy) duy, (4.27)

where Fy is the vertical load measured at the top of the specimen, uy is the corresponding
vertical displacement value, and uy,end is the vertical displacement value for which, in the
post-peak branch, the vertical load becomes equal to 3 % of the ultimate load maxFy. The
mean value and the standard deviation of the nominal strength and the fracture energy
are summarized in Table 4.10. The influence of the specimen size on these parame-
ters is illustrated in the diagrams in Fig. 4.13. The diagram in Fig. 4.13(a) shows the
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Figure 4.13: Size effect – mean values and standard deviation of the nominal macroscopic
strength and the macroscopic fracture energy as a function of the specimen
dimension.

97



4.4 Examples

A B C D

Figure 4.14: Size effect – final damage distribution for varying specimen types.

mean values of the nominal strength σN as a function of the specimen dimension D in
a bi-logarithmic plot. A clear size effect on the nominal strength is recognizable. As in
the experiments, the nominal strength decreases with increasing specimen dimension. As
shown in Fig. 4.13(a), the difference in the nominal strength between specimen types B and
F is, in the numerical simulations, about 13 % which is considerably smaller compared to
the experiments for which a difference of about 37 % is observed. Size effects are not only
caused by the spatial aggregate distribution, but also by the stochastic character of the
material parameters. Since in the presented simulations deterministic material parameters
are used on the mesoscale, the influence of the specimen size on the nominal strength is
not as strong as in the experiments. Furthermore, the standard deviation of the nominal
strength is smaller compared to the experimental results. As already mentioned in the
first example, cf. Sect. 4.4.1, these additional stochastic effects can be considered in the
numerical model using random variables or random fields for the mesoscale material pa-
rameters. In Fig. 4.13(b), the fracture energy is plotted as a function of the specimen size.
As already observed in the experiments of specimen types B, C and D, the macroscopic
fracture energy is almost independent of the specimen size. Figure 4.14 shows, for one ag-
gregate configuration, the final damage distribution observed in the numerical simulations
of specimen types A, B, C and D. In all simulations, damage localizes close to the center
of the specimen, which is due to the shape of the specimen. Consequently, the influence of
the heterogeneous material structure on the final position of the macroscopic crack is not
as pronounced as in the first example, cf. Sect. 4.4.1. However, the shape of the macro-
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scopic crack still strongly depends on the actual aggregate distribution. Furthermore, an
almost identical width of the zone of localized damage is observed in all simulations. Con-
sequently, the width of this zone is not strongly correlated with the specimen size. It is to
be noted that, especially for the larger specimens, additional zones of localized damage,
which are considerably smaller than the final zone, are observed close to the boundary of
the specimen. Due to the small eccentricity of the applied load these minor cracks are
restricted to the left side of the specimen.

4.4.3 Compression Test

The last example shows the simulation of compression tests for normal-strength concrete
cubes. At first, a two-dimensional simulation is performed for a cube with edge length of
100mm, which coincides with the experiments by van Vliet and van Mier (1995). In a
second simulation, a three-dimensional model is used. A three-dimensional analysis with
the same resolution of the mesoscale material structure as in the two-dimensional model is
not possible with the available computational power. Consequently, the three-dimensional
simulations are performed with a coarser model. The specimen size is reduced to a cube
with edge length of 25mm. In order to compare the numerical results to the experiments,
which were performed for a 100mm specimen, the experimental results are scaled accord-
ingly. It is to be noted that the influence of the specimen size on the numerical results
(size-effect) is neglected in the comparison. In all simulations, high friction boundary
conditions are imposed. Consequently, the displacements at top and bottom surfaces are
restrained in vertical as well as in horizontal direction. In order to capture snap-back
phenomena, which are especially observed in the two-dimensional analysis, the numerical
simulations are performed with the energy release control presented in Sect. 2.4.3. On
the mesoscale, a three-phase model consisting of aggregates, mortar matrix and interfa-
cial transition zone is used. The nonlinear behavior of the mortar matrix is described
by the nonlocal isotropic damage model, Sect. 3.3. In contrast to the previous examples,
Sect. 4.4.1 and 4.4.2, where the nonlocal formulation is based on the nonlocal displace-
ment field, the nonlocal averaging is, in this example, performed for the equivalent strain,
Sect. 3.2.2. Furthermore, the failure surface is described by the rounded Rankine criterion
with parameter α = 1. The nonlinear behavior of the ITZ, which is, in the numerical
model, represented by zero thickness interface elements, is described by the cohesive zone
model, Sect. 3.6. Furthermore linear elastic material behavior is assumed for the aggre-
gates. It is to be noted that in all material formulations failure due to compressive stresses
is not explicitly considered. This implies the assumption that due to the heterogeneous
material structure, which is explicitly represented in mesoscale models, compressive failure
can be described by the development of microcracks which initiate due to tensile stresses
perpendicular to the principal compressive stresses. In the experiments, the same concrete
mixture was used as in the size effect experiments. As a consequence, no additional pa-
rameter fitting is performed for the compression test and the material parameters as given
in Table 4.9 are used in the simulations.
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Figure 4.15: Compression test – macroscopic nominal stress-strain curve and damage
distribution (100mm specimen).

Two-Dimensional Simulation

In the two-dimensional simulation, the mesoscale model consists of aggregates with a
mean diameter between 1mm and 8mm. The mesoscale material structure is discretized
using 6-node triangular elements with quadratic interpolation functions. Additionally,
zero-thickness interface elements are introduced at the boundary between aggregates and
mortar matrix. Assuming an average element size of 0.5mm, the numerical model con-
sists approximately of 92 000 elements, 185 000 nodes and 370 000 degrees of freedom,
respectively. Figure 4.15(a) shows the macroscopic vertical nominal stress-strain curve.
It is to be noted that for the numerical simulation very small snap-backs, not noticeable
in the plot, are observed in this curve. Due to divergence of the iterative solution pro-
cedure, the simulation stops at a vertical top displacement of approximately −0.07mm
(εN = −0.7%�). Up to this point, a nonlinear pre-peak behavior is already observed.
Compared to the experiments, a more pronounced degradation of the macroscopic speci-
men stiffness is obtained with the numerical simulation. The nonlinear pre-peak branch of
this curve is closely related to the damage distribution on the mesoscale, which is shown
in Fig. 4.15(b) for the last converged load-step. First of all, interface elements start to
open in horizontal direction and damage initiates above and below the aggregates and
develops into the mortar matrix. With increasing load, these damage zones coalesce and
a macroscopic damage zone is built. The small snap-backs in the macroscopic load dis-
placement curve are in general caused by the coalescence of two smaller damage zones. A
further localization of damage, which would result in a macroscopic softening behavior, is
not observed until the simulation is stopped. Obviously, the complex failure mechanism of
concrete in compression is only insufficiently represented by the two-dimensional model.
Especially the simplifying assumption of a constant aggregate and damage distribution
over the specimen thickness (in two-dimensional models the aggregates are considered as
elliptic cylinders) results, in combination with the isotropic damage model, in numerical
instabilities during the iterative solution procedure and leads to the small snap-backs in
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Figure 4.16: Compression test – nominal stress-strain curve observed in three-dimensional
simulations.

the nominal stress-strain curve. Furthermore, the assumption that the evolution of mi-
crocracks on the mesoscale is the same in each cross-section over the specimen thickness
does not coincide with experimental observations. Since the nonlinear pre-peak behavior
of concrete is in compression considerably more pronounced as in tension, this assumption
is highly questionable for the simulation of compression tests.

Three-Dimensional Simulation

A three-dimensional model with a similar resolution of the mesoscale material structure
and a comparable finite element discretization as in the two dimensional model presented
before would result in a finite element model with approximately 300 · 106 degrees of
freedom. The nonlinear analysis of such a model is not possible with the available compu-
tational power. As a consequence, the specimen dimensions are, in the three-dimensional
simulation, reduced to 25mm. Furthermore, only aggregates with a nominal diameter
larger than 2mm are considered in the numerical model. The aggregates and the mortar
matrix are discretized with 4-node tetrahedral elements with linear interpolation functions
and the ITZ is modeled by zero-thickness interface elements. Assuming an average element
size of 1mm, the finite element model approximately consists of 285 000 elements, 87 500
nodes, and 175 000 dofs respectively. It is to be noted that a comparable two-dimensional
model would consist of 1 300 triangles. Consequently, the three-dimensional simulation is
performed with a very coarse mesoscale model. In a first simulation (set 1), the material
parameters determined for the size effect simulations are used. As illustrated in Fig. 4.16,
which shows the nominal stress-strain curve, the pre-peak behavior of the material and
the ultimate load is considerably underestimated in the numerical simulation, which cor-
responds to the results obtained with the two-dimensional model. It is to be noted that
in contrast to the two-dimensional simulations no spurious snap-backs are observed in the
nominal stress-strain curve of the three-dimensional model. As a result, a better conver-
gence behavior of the iterative solution procedure is observed for the three-dimensional
simulations. In a second simulation (set 2), the material parameters are modified such
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Table 4.11: Compression test – material parameters (three-dimensional model).
set 1 set 2

concrete Young’s modulus Ec [N/mm2] 31 000 29 000
Poisson’s ratio νc [−] 0.18 0.18

mortar matrix Young’s modulus Em [N/mm2] 26 738 25 013
Poisson’s ratio νm [−] 0.18 0.18
tensile strength ft,m [N/mm2] 3.60 8.40
fracture energy Gf,m [Nmm/mm2] 0.250 0.090
nonlocal radius R [mm] 1.0 1.0

aggregates Young’s modulus Ea [N/mm2] 53 476 50 026
Poisson’s ratio νa [−] 0.18 0.18

ITZ penalty stiffness Kp [N/mm3] 500 000 500 000
tensile strength ft,i [N/mm2] 2.70 2.50
fracture energy Gf,i [Nmm/mm2] 0.028 0.020
weight factor α [−] 1.0 1.0

that the nominal stress-strain curve, observed in the simulation, almost coincides with
the experimental results. The corresponding material parameters for both simulations are
summarized in Table 4.11. Compared to the first parameter set, in particular the fracture
energy and the tensile strength of the mortar matrix are altered. Especially the tensile
strength is increased to an unrealistic value. As illustrated in Fig. 4.16, the numerical
simulation allows for a good approximation of the pre-peak branch and the first part of
the post-peak branch of the nominal stress-strain curve. It is to be noted that for both
models, the simulation is stopped due to divergence of the iterative solution procedure. In
contrast to the nominal stress-strain curve, the final damage distribution, which is plot-
ted in Fig. 4.17 for the last converged load-increment, does not, for both parameter sets,
coincide with the experimental results. As shown in van Mier (1986), in the experiments
primary cracks (the cracks with the greatest widths) are situated close to the free specimen
edges, leading to a splitting of the outer concrete layers. Furthermore, the formation of

(a) set 1 (b) set 2

Figure 4.17: Compression test – damage distribution (last converged step).
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localized shear-zones is observed in compression tests. Both phenomena are not recognized
in the numerical simulations, in which highly irregular crack patterns are obtained.

The main problem of the proposed mesoscale model is, at least for compressive failure, the
assumption of isotropic damage for the mortar matrix. Assuming a vertical compressive
loading, initial microcracks within the mortar matrix develop almost parallel to the loading
direction. In reality, a crack leads to a reduction of the initial material stiffness perpendic-
ular to the crack surface. Consequently, the material stiffness in vertical direction is almost
not affected by these initial vertical cracks. Assuming isotropic damage, the anisotropic
character of the cracks is neglected and the material stiffness is reduced simultaneously in
all directions. As a result, the load-bearing capacity of the material decreases considerably.
This phenomenon is amplified by the nonlocal material formulation, in which the damage
is distributed over several elements. As illustrated in Fig. 4.17, relatively large damage
zones compared to the specimen dimensions are observed in the numerical simulations.
The size of the damage zone can be reduced by decreasing the nonlocal radius, which
requires the refinement of the finite element mesh. In order to represent the anisotropic
character of the microcracks in mesoscale models by an isotropic damage model, the width
of the damage zones has to be significantly smaller than the aggregates. Consequently, the
total size of damaged zones perpendicular to the loading direction has to become small
compared to the specimen dimensions. An alternative approach is to use anisotropic ma-
terial formulations. In Unger (2009), a combined damage plasticity model, in which the
anisotropic degradation of the material is considered by the plasticity part of the model, is
applied to describe in a mesoscale model the development of microcracks within the mortar
matrix. It is furthermore shown that compressive failure of concrete can not be properly
represented only by tensile failure on the mesoscale. As a consequence, the combination of
a Rankine criterion in tension and the Drucker-Prager criterion in compression is proposed
in Unger (2009) to describe the failure of the mortar matrix.
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5 Multiscale Modeling of Concrete

5.1 Introduction

As illustrated in the previous chapter, the macroscopic behavior of concrete structures
(coarse scale) strongly depends on the heterogeneous internal material structure on the
mesoscale (fine scale). It is to be noted that such a multiscale character of the structural
behavior is observed not merely for concrete, but for materials with microheterogeneities in
general. In fine scale simulations, as presented in Chapter 4, the numerical model explicitly
resolves the individual components of the internal material structure. If the finite element
method is applied to fine scale simulations, the internal material structure is discretized
by finite elements with an average element length considerably smaller than the size of the
inhomogeneities considered in the model. As a result, already for small structures such as
specimens usually used in experiments, the numerical model consists of a large number of
elements, nodes and active degrees of freedom. Since the average element size is defined
by the size of the individual material components, the numerical effort and the memory
demand of fine scale simulations increases significantly if the macroscopic dimensions of
the structure are enlarged. As illustrated in Sect. 4.4.2, the number of active degrees of
freedom increases in two-dimensional simulations approximately by a factor of four if the
structure is scaled by a factor of two. In three-dimensional simulations, this effect is more
pronounced since the number of unknowns increases approximately by a factor of eight
if the size of the structure is doubled. As a consequence, fine scale simulations are only
suited for virtual experiments with small specimens. Fine scale simulations of full large-
scale engineering structures are, due to the numerical effort and the memory demand of
such simulations, impossible to solve with the computational power available nowadays.

In multiscale approaches, the numerical efficiency of coarse scale models is combined with
the accuracy of the material description on the fine scale. Consequently, the influence of
the material heterogeneity on the structural response can be, at least partially, consid-
ered in multiscale simulations while the numerical effort and the memory demand can, in
general, be significantly reduced compared to fine scale simulations. According to Hund
(2007), multiscale approaches can be divided into two different classes. In the first class of
multiscale approaches, the constitutive behavior of an infinitesimal material point on the
coarse scale is described by the homogenized response of a representative sample of the
heterogeneous material structure on the fine scale. Such an approach implies the assump-
tion of separation of scales. According to Nemat-Nasser and Hori (1999), separation of
scales is obtained if the structural dimensions are significantly larger than the dimensions
of material inhomogeneities. As a result, a representative volume element (RVE) can be
defined and the averaging can be performed for the RVE. According to Hill (1963), an
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RVE is “a sample that (a) is structurally entirely typical of the whole composite on av-
erage, and (b) contains a sufficient number of inclusions for the apparent overall moduli
to be effectively independent of the surface values of traction and displacement, so long
as these values are ’macroscopically uniform’.”. Consequently, the RVE should be large
compared to the characteristic dimensions of the microstructure, e.g. particle diameters,
but is still small compared to the entire body. In Hashin (1983), the definition of the RVE
size is expressed by the MMM-principle

lmicro � lmini � lmacro, (5.1)

in which lmicro corresponds to the typical dimensions of the individual components on the
fine scale, lmini is the dimension of the RVE, and lmacro is the dimension of the structure
on the coarse scale. A comprehensive overview on different definitions of an RVE and a
detailed investigation on the existence and on the size of an RVE can be found in Gitman
(2006); Gitman et al. (2007). It is to be noted that due to the initiation and accumulation
of microdefects, such as microcracks or microvoids, the assumption of scale separation may
become invalid during the simulation. Gitman (2006) has shown that, in case of softening,
which leads to a localization of microdefects and the formation of macroscopic damage
zones, an RVE cannot be found or that the RVE would be equivalent to the complete
macro-structure, which is of little practical use in computational mechanics. The second
class of multiscale approaches does not require the assumption of scale separation. In
contrast to the first class of multiscale approaches, in which a representative volume of the
fine scale model is associated to an infinitesimal small coarse scale material point, coarse
scale sub-domains are directly linked to fine scale sub-domains of equal size. Consequently,
coarse scale sub-domains are hierarchically refined such that the heterogeneous material
structure observed on the fine scale can be explicitly resolved in these sub-domains. In
general, the refinement is performed locally only for those parts of the model in which,
for example due to the propagation of microdamage, the explicit representation of the
heterogeneous material structure is necessary.

5.1.1 Multiscale Approaches Based on Homogenization

In simulations in which the assumption of scale separation is satisfied, homogenization
techniques can be applied to consider the influence of material inhomogeneities on the
structural response. Using an uncoupled homogenization approach, the behavior of the
heterogeneous material structure on the fine scale is, on the coarse scale, described by a
homogeneous effective material formulation. The corresponding effective material param-
eters are obtained by averaging of the structural response of the heterogeneous material
on the fine scale over an RVE. This implies the additional assumption of statistical homo-
geneity. According to Hashin (1983), a material with microheterogeneity is statistically
homogeneous if “all global geometrical characteristics such as volume fractions [...] are the
same in any RVE, irrespective of its position”. As a consequence, the body averages and
the averages over the RVE are identical. In the concept of effective properties, introduced
by Kröner (1958); Hill (1963), the effective stiffness tensor Ceff describes the relationship
between effective stresses and effective strains, and the effective compliance tensor Deff
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defines the inverse relationship

〈σ〉ij = Ceff
ijkl〈ε〉kl Ceff =

(
Deff

)−1 〈ε〉ij = Deff
ijkl〈σ〉kl, (5.2)

in which the effective (coarse scale) stresses 〈σ〉ij and strains 〈ε〉ij are the volume averages
of the corresponding microscopic quantities within a volume V of the RVE

〈σ〉ij =
1

V

∫
V

σij dV 〈ε〉ij =
1

V

∫
V

εij dV. (5.3)

In the general anisotropic case, the constitutive relationship on the coarse scale is defined
by 21 effective parameters. Assuming linear elastic behavior for all material components
and statistical isotropy of the heterogeneous material structure, the number of effective
parameters can be reduced to two, the bulk and the shear moduli κ and µ. In Voigt
(1889), it is assumed that the strain is uniform throughout the heterogeneous material
structure. As a result, the effective parameters can be obtained by a volume weighting of
the corresponding phase stiffnesses

κV =
n∑
i=1

ϕiκi µV =
n∑
i=1

ϕiµi

n∑
i=1

ϕi = 1, (5.4)

where n is the number of phases, κi and µi are the individual bulk and shear moduli of
phase i, and ϕi the corresponding volume fraction. The dual assumption of uniform stress,
introduced by Reuss (1929), leads to a volume averaging of the compliances

1

κR
=

n∑
i=1

ϕi
κi

1

µR
=

n∑
i=1

ϕi
µi
. (5.5)

In Hill (1952, 1963), it is shown that neither assumption is correct for a statistically
isotropic material. Assuming a uniform strain, the tractions at the phase boundaries would
not be in equilibrium. If uniform stresses are assumed, the inclusions and the matrix could
not remain bonded. Furthermore, it is shown that the Voigt values always exceed the
Reuss ones and that both values bound the actual elastic moduli

κ ≥ κR κ ≤ κV µ ≥ µR µ ≤ µV . (5.6)

Hashin and Shtrikman (1963) propose improved bounds on the effective moduli, which can
be obtained using a variational approach. Assuming a two-phase material (κ1 < κ2 and
µ1 < µ2), the corresponding bounds are given by

κLHS = κ1 +
ϕ2

1

κ2 − κ1

+
3ϕ1

3κ1 + 4µ1

µLHS = µ1 +
ϕ2

1

µ2 − µ1

+
6(κ1 + 2µ1)ϕ1

5µ1(3κ1 + 4µ1)

(5.7)

κUHS = κ2 +
ϕ1

1

κ1 − κ2

+
3ϕ2

3κ2 + 4µ2

µUHS = µ2 +
ϕ1

1

µ1 − µ2

+
6(κ2 + 2µ2)ϕ2

5µ2(3κ2 + 4µ2)

, (5.8)
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where the superscripts L and U indicate the lower and the upper bound. It is to be
noted that neither for the Voigt and the Reuss bounds nor for the Hashin-Shtrikman
bounds, an assumption about the phase geometry and about the spatial distribution of
the phases has been made. Hashin and Shtrikman (1963) show that for this general case
the Hashin-Shtrikmen bounds are the most restrictive ones. A comprehensive overview of
more advanced analytical methods for the determination of the effective moduli, taking
into account the shape of the particles and their spatial distribution, can be found in the
classical textbooks of micromechanics, e.g. Mura (1982); Aboudi (1991); Nemat-Nasser
and Hori (1999).

Analytical homogenization methods are, in general, restricted to simple particle geometries
such as spheres. For more complex internal material structures, numerical homogeniza-
tion techniques are required to determine the components of the effective stiffness and
compliance tensors. As shown in Zohdi et al. (1998), a set of six linearly independent
loading regimes, leading on the coarse scale either to a uniform stress or a uniform strain,
are required to determine the 21 independent parameters of the general three-dimensional
anisotropic case. Each loading is imposed in terms of homogeneous boundary conditions,
cf. Aboudi (1991), on the boundary of the RVE and the corresponding fine scale boundary
value problem is solved. In a second step, the average stresses and strains are calculated
using Eqs. (5.3). As a result, a set of 36 equations, describing the relationship between
effective stresses and effective strains, is obtained, which can be solved for the unknown
effective parameters. Due to the symmetry of the effective stiffness and of the effective
compliance tensor, the number of independent effective parameters reduces to 21.

Uncoupled homogenization techniques can be also applied to nonlinear material behavior.
Suquet (1987) develops a homogenized plasticity model to describe the nonlinear behavior
of flat aluminum specimens with small perforations on the coarse scale. In this model,
the yield surface and the plastic strains are, at least in an approximate manner, defined
on the fine scale. Zohdi et al. (1998) describe the progressive damaged response of an
aluminum-boron composite on the coarse scale as a series of effective linear elastic secant
material tensors which are directly determined from nonlinear fine scale simulations of
representative material samples. As illustrated in Eqs. (5.2), the effective macroscopic
linear elasticity tensor can be derived from the volume averages of the fine scale stresses
and strains over the RVE. Döbert (2001) uses an anisotropic continuum damage material
model to describe the macroscopic nonlinear behavior of fiber-reinforced composites. The
material model is based on the local analysis of the damage evolution in a representa-
tive volume element. In particular, the macroscopic damage functions which describe the
evolution of the individual damage parameters are derived from the effective stress-strain
relationship observed in nonlinear fine scale simulations. In Reese (2003), the nonlinear
behavior of fiber-reinforced rubber-like composites is described by a phenomenological ma-
terial formulation on the macroscale. Mesoscale simulations are used to understand the
characteristic deformation behavior of the composite material and to derive a physically
reasonable continuum mechanical model of finite anisotropic elastoplasticity. Furthermore,
these computer experiments are used to identify the parameters of the macroscopic ma-
terial model. In Unger and Könke (2008), the constitutive relationship of concrete on
the macroscale is approximated by neural networks. The homogenized results of numer-
ical simulations on the mesoscale are used as training data for the approximation of the
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material response.

The advantage of uncoupled homogenization techniques is the numerical efficiency. Time-
consuming fine scale simulations explicitly resolving the heterogeneous internal material
structure are, in general, only used to design the macroscopic material model and to de-
termine the corresponding effective material parameters. The simulation of macroscopic
structures is completely performed on the coarse scale using the effective material formula-
tion. On the other hand, the behavior of individual material components on the fine scale
are only considered in an approximate manner. Consequently, the actual damage state
within the internal heterogeneous material structure on the fine scale is only described in
a homogenized way.

In coupled homogenization techniques, the stress-strain relationship at a material (integra-
tion) point of the coarse scale model is not defined by effective constitutive equations, but is
solely described by the constitutive behavior of a representative sample of the microstruc-
ture associated to that point. Consequently, no assumptions on the macroscopic consti-
tutive behavior are required. As a result, coupled homogenization techniques are more
flexible than uncoupled methods. They allow, for example, the incorporation of geomet-
rical nonlinearity, Smit (1998); Smit et al. (1998), or the consideration of time dependent
material behavior, Kouznetsova et al. (2001). Smit et al. (1998) propose a strain-driven
coupled homogenization procedure which is based on multilevel finite element modeling.
In this approach, an RVE resolving the heterogeneous fine scale material structure is as-
signed to each integration point of the coarse scale finite element discretization. As a first
step, the boundary value problem is solved for the coarse scale model. Secondly, based on
the resulting macroscopic deformation field, appropriate boundary conditions are imposed
on the RVE in such a way that the volume average of the fine scale strain field coincides
with the macroscopic strain tensor. In general, three different types of boundary condi-
tions can be distinguished: linear displacements, constant tractions and a combination
of periodic deformation and antiperiodic tractions. The boundary conditions are either
directly imposed on the RVE, Smit et al. (1998); Kouznetsova et al. (2001), considered as
additional constraints using Lagrange multipliers, Miehe and Koch (2002), or applied via a
penalty approach, Bayreuther (2004). Using finite element simulations, the corresponding
boundary value problem is solved separately for each RVE. Finally, the macroscopic stress
tensor is obtained by averaging the resulting fine scale stress field over the volume of the
RVE. Furthermore, the consistent tangential material matrix at a material point of the
coarse scale model can be derived through static condensation, Wilson (1974), from the
total tangential stiffness matrix of the RVE. Since the determination of the macroscopic
stresses and the macroscopic stiffness matrix requires separate finite element simulations
for each integration point, fully coupled homogenization techniques are computationally
expensive. Feyel and Chaboche (2000) propose parallel computation techniques to reduce
the simulation time in multilevel finite element approaches. Alternatively, Ghosh et al.
(2001) use an adaptive multilevel approach, in which coupled homogenization methods are
only applied in critical regions of the structure, to reduce the numerical effort.

Classical (first order) homogenization techniques, as presented above, cannot be used if
the assumption of scale separation is not satisfied, e.g. materials with softening behav-
ior. Kouznetsova (2002); Gitman (2006) have shown that, in the case of softening, the
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results of classical coupled homogenization techniques depend on the size of the coarse
scale finite element discretization and the size of the RVE. In order to overcome the mesh
dependency, Kouznetsova (2002); Kouznetsova et al. (2002, 2004) propose a gradient en-
hanced (second order) computational homogenization scheme, which is an extension of
the classical homogenization techniques. In this approach, the macroscopic deformation
gradient and the gradient of the macroscopic deformation gradient are imposed in terms of
generalized periodic boundary conditions on the microstructural RVE. The fine scale com-
ponents considered in the RVE are modeled with a classical continuum formulation. A full
second gradient continuum formulation is required on the coarse scale. The constitutive
response of the second gradient macro-continuum is, in terms of the macroscopic stress
tensor, the macroscopic higher-order stress tensor and the corresponding tangents, directly
derived from the solution of the fine scale (RVE) boundary value problem. As shown in
Kouznetsova (2002), the second-order homogenization scheme allows for the analysis of
softening and localization phenomena without spurious dependency of the results on the
macroscopic mesh size. Gitman (2006) demonstrates that, in a second-order homogeniza-
tion procedure, the macroscopic length-scale is proportional to the RVE size. Consequently,
the results strongly depend on the size of the RVE.

In Gitman (2006); Gitman et al. (2008), the coupled volume approach which is based on
classical first order computational homogenization techniques is used for the simulation
of the nonlinear behavior of quasi-brittle materials. In order to avoid – in the case of
softening – a spurious dependency of the results on the macroscopic mesh size and on the
RVE size the assumption of scale separation is abandoned. The homogenized stress-strain
relationship of a material point on the coarse scale is not described by the fine scale response
of an RVE but by the fine scale behavior of a material sample whose size coincides with
the domain associated to the corresponding coarse scale material point. Consequently, the
size and the shape of the fine scale sub-model is directly linked to the coarse scale mesh. In
the coupled volume approach, the macroscopic stress tensor is determined from a fine scale
sub-model using a computational homogenization technique. Based on the macroscopic
strain tensor, displacement boundary conditions are imposed on the fine scale sub-model
and the corresponding fine scale boundary value problem is solved. It is to be noted that
the fine scale problem can be solved for each coarse scale material point separately. The
macroscopic stress tensor is obtained as volume average of the resultant fine scale stress
field. Using the concept of static condensation, the corresponding tangent material matrix
can be determined from the tangential stiffness matrix of the fine scale model. Since
the fine scale model describes the material behavior of a coarse scale sub-domain with
identical size, the coupled volume approach is capable to objectively represent softening
phenomena.

5.1.2 Hierarchical Multiscale Approaches

Hierarchical multiscale approaches can be used if the assumption of scale separation is not
satisfied since the fine scale response is not described by the behavior of a representative
volume element. In hierarchical multiscale models, the structure is, at least in sub-domains,
directly resolved on the fine scale. Consequently, the size of the fine scale model is identical
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to the size of the associated coarse scale sub-domain. In this class of multiscale models,
the solution obtained with the coarse model is improved by a hierarchical refinement of
the model.

In sub-structuring methods, as, e.g., presented in Noor et al. (1978), the number of un-
knowns of the initial problem is reduced by the introduction of super-elements. In this
method, each super-element represents a patch of finite elements of the initial fine mesh.
The corresponding nodes are divided into internal nodes inside the super-element and in-
terface nodes on the boundary of that super-element. Using static condensation, Wilson
(1974), which is performed for each super-element independently, the internal nodal de-
grees of freedom are expressed in terms of interface nodal degrees of freedom. As a result,
the global system of equations is reduced to the interface degrees of freedom. As a post-
processing step the internal degrees of freedom are determined from the interface degrees
of freedom. From a multiscale point of view, the static condensation can be interpreted
as the solution of a fine scale problem, whereas the reduced global system of equations
involving only the interface degrees of freedom represents the coarse scale problem.

In the exact zooming method, proposed by Hirai et al. (1984), the finite element model is
locally refined in a successive manner. In a first step, the unknown displacement values are
determined for a coarse mesh. Secondly, a refined sub-model is created based on the finite
element discretization of the coarse model. Consequently, all nodes of the coarse mesh
in the refined region are also part of the refined discretization. Using static condensation
and structural reanalysis methods, the displacements of the refined sub-model and the
improved displacements of the coarse model can be derived from the initial displacement
field. In contrast to sub-structuring methods, a hierarchical improvement of the initial
coarse scale solution is obtained with each level of zooming.

Another approach to improve the efficiency of finite element analysis is the refined global-
local method proposed by Mao and Sun (1991) and the iterative global-local method
introduced by Whitcomb (1991). In a first step, the entire structure is analyzed using
a relatively coarse finite element mesh. The displacement field obtained with the coarse
mesh is, in a second step, used to derive boundary conditions for local regions of interest
which are analyzed separately with refined finite element discretizations. In a third step,
based on the stress distribution obtained in the refined regions, improved internal forces
are determined on the coarse mesh. In general, the improved internal forces are not in
equilibrium with the external forces. Mao and Sun (1991) and Whitcomb (1991) propose
an iterative procedure to reduce the residual between the results of the coarse model and
of the refined sub-models.

Numerous multiscale methods are based on a hierarchical decomposition of the solution
into global (coarse scale) and local (fine scale) effects. In general, the local effects are only
resolved in critical regions of the structure. In order to enforce compatibility of the solution,
homogeneous boundary conditions on the local effects are imposed at the interface between
the global models and the locally refined models. Consequently, it is assumed that the
local effects vanish outside the critical region. Since the global solution is locally enriched
by the fine scale solution, this class of methods is also referred to as superposition based
multiscale methods. The various methods mainly differ in the approximations of the global
and the local fields and in the selection of the global local interface. In the global-local
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finite element methods, proposed by Mote (1971); Noor and Peters (1980), finite element
approximations are combined with classical Ritz approximations. Belytschko et al. (1990)
use a spectral approximation for the fine scale and the finite element method for the
coarse scale. In the variational multiscale method, presented by Hughes (1995); Hughes
et al. (1998), the coarse scale field is solved numerically using finite elements, whereas
the fine scale solution is determined analytically. It is furthermore assumed that the fine
scale field vanishes at the element boundaries. A superposition of finite element meshes
with arbitrary element size and polynomial order is used in the s-version of the finite
element method developed by Fish (1992). Since, in this method, the boundary of the
refined mesh does not necessarily coincide with the edges of the underlying coarse mesh,
the exact integration of the system matrices may become rather complex. In Fish (1992),
an approximate numerical integration scheme is employed to avoid this complexity. A
hierarchical multiscale method similar to the s-version of the finite element method is
proposed by Rank and Krause (1997); Krause and Rank (2003). The so-called hp-d method
combines a p-version finite element approximation on the coarse scale with an h-version
finite element mesh on the fine scale. Furthermore, it is assumed that elements of the
fine mesh do not overlap with element edges of the coarse mesh. As a result, standard
numerical integration schemes can be applied in this method for the exact integration
of the system matrices. Hund (2007); Hund and Ramm (2007); Hettich et al. (2008)
demonstrate the application of superposition based multiscale methods to simulations of
the nonlinear behavior, including softening and localization phenomena, of materials with
a heterogeneous microstructure. The finite element method is employed on both scales. In
contrast to the s-version of the finite element method and the hp-d method, each fine scale
sub-domain exactly coincides with one element of the coarse scale mesh. As a consequence,
additional boundary or coupling conditions on the fine scale field are required for adjacent
fine scale sub-domains, Hund and Ramm (2007). In Hettich et al. (2008), the nonlinear
material behavior is represented by a discrete crack approach using the extended finite
element method on the fine scale. Hund and Ramm (2007) use a gradient enhanced
isotropic continuum damage formulation to describe the damage evolution on the fine
scale.

5.2 Heterogeneous Multiscale Approach

Figure 5.1(a) shows the final damage distribution in a three-point bending beam obtained
by a nonlinear finite element simulation on the macroscale using the nonlocal isotropic
damage model presented in Sect. 3.3. This example illustrates that damage in concrete
structures is in general a local phenomenon. The size of the fracture process zone, in
which damage develops, is small compared to the macroscopic specimen dimensions. This
phenomenon allows for the usage of the heterogeneous multiscale approach in a nonlinear
simulation of these structures.

Such a heterogeneous multiscale model which consists of several sub-domains describing the
material on different length scales is shown in Fig. 5.1(b) for the three-point bending beam.
Mesoscale models are only used in those parts of the structure in which damage develops.
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F

(a) macroscopic damage distribution

F

meso domain Ωmmacro domain ΩM macro domain ΩM

coupling boundary Γc

(b) heterogeneous multiscale model

Figure 5.1: Macroscopic damage distribution and corresponding heterogeneous multiscale model
of a three-point bending beam.

The nonlinear material behavior is considered only in mesoscale sub-domains. Undamaged
or sparsely damaged regions of the structure are simulated on the macroscale assuming a
linear elastic material behavior which can be characterized by effective material parameters.
The several sub-models with different scales of resolution are combined into one numerical
model, the so-called heterogeneous multiscale model. Consequently, such an approach
combines the advantages of both scales, the numerical efficiency of macroscale models and
the detailed representation of the failure mechanism in mesoscale models. Compared to
simulations using full mesoscale models, the numerical effort can be, in general, significantly
reduced by heterogeneous multiscale models without loosing accuracy.

Two major problems arise in simulations with heterogeneous multiscale models. The first
one is the coupling between sub-domains which describe the material on different length
scales. The second one is the determination of the size and the position of the mesoscale
sub-domains. Both problems will be addressed in the next sections.

5.3 Coupling Conditions

One crucial point in heterogeneous multiscale models is the coupling between macro- and
mesoscale sub-domains. Figure 5.2 shows for a heterogeneous multiscale model the finite
element discretization in the vicinity of a coupling boundary Γc between a macroscale
sub-domain ΩM and a mesoscale sub-domain Ωm. It is illustrated that the sub-domains
vary not only in the size of the finite elements but also in the resolution of the material
structure. A homogeneous material is assumed for the macroscale part of the model. In
the mesoscale sub-domain, the finite element mesh explicitly represents the heterogeneity
of the material structure.
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macro domain ΩM

meso domain Ωm

coupling boundary Γc

Figure 5.2: Heterogeneous multiscale model in the vicinity of a coupling domain.

In Fig. 5.3, three different methods for the coupling of sub-domains with non-matching
finite element discretizations are shown. Using a strong coupling approach, such as con-
straint equations, displacement compatibility of the sub-domains is enforced. Conse-
quently, the relative displacements between two adjacent sub-domains have to vanish in
all points x of the coupling boundary Γc

uM (x)− um(x) = 0 ∀x ∈ Γc = ΩM ∩ Ωm, (5.9)

where uM and um are the displacements of the sub-domains ΩM and Ωm. In a weak
coupling approach, which can be realized by the mortar method or the arlequin method,
the coupling condition Eq. (5.9) is only satisfied in an average sense. The integral of
the relative sub-domain displacements over the coupling boundary Γc of non-overlapping

Γc

constraint equations

Ωm

ΩM

(a) strong coupling

Γc

ΩM

Ωm

mortar method arlequin method

ΩM

Ωm

Ωc

(b) weak coupling

Figure 5.3: Coupling methods for non-matching finite element meshes.
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Ωm Γc ΩM

x̂m(i)(ξ)

ûM(4)

ûM(1) ûM(2)

ûM(3)

ûm(i)

Figure 5.4: Strong displacement coupling with constraint equations.

sub-domains∫
Γc

uM (x)− um(x) dx = 0 Γc = ΩM ∩ Ωm, (5.10)

or the coupling domain Ωc of overlapping sub-domains∫
Ωc

uM (x)− um(x) dx = 0 Ωc = ΩM ∩ Ωm, (5.11)

has to vanish. Consequently, displacement compatibility between the sub-domains may
not be satisfied, which may result in small gaps or overlaps. In the following sections, the
three coupling methods illustrated in Fig. 5.3 are presented for the two-dimensional case.
However, the extension to the three-dimensional case is straightforward.

5.3.1 Constraint Equations

A strong coupling between sub-domains with non-matching finite element discretizations
can be realized using constraint equations. Assuming that in both sub-domains finite
elements with the same interpolation order are used, displacement compatibility between
the sub-domains is enforced. As shown in Fig. 5.4, the nodal degrees of freedom on
the coupling boundary of the mesoscale sub-domain are expressed by the displacement
interpolation of the adjacent finite element in the macroscale sub-domain. Consequently,
the corresponding constraint equation can be written as

ûm(i) =

nMN∑
j=1

NM(j)(ξM (x̂m(i)))ûM(j), (5.12)

where ûm(i) is the vector of nodal degrees of freedom of the mesoscale node i, x̂m(i) are
the corresponding node coordinates, nMN is the number of nodes of the adjacent macroscale
element, ûM(j) is the vector of degrees of freedom of the j-th macroscale element node,
and NM(j) is the corresponding element shape function. In general, the element shape
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functions are defined in the local natural element coordinate system. Consequently, a
transformation of the global node coordinates x̂ to local natural element coordinates ξ is
required. Due to the direct coupling between a certain set of degrees of freedom, the size
of the global system of equations is reduced by the number of constraint equations.

Numerical Implementation

For the sake of simplicity, geometrical and physical linearity is assumed. Consequently,
the equilibrium problem can be solved in one step. In general, constraint equations can be
written as

Ad = d̂, (5.13)

where d is the global vector of nodal degrees of freedom, A is the corresponding coefficient
matrix, and d̂ is the vector of prescribed displacement values. It is to be noted that the
number of rows of matrixA is equal to the number of constraint equations, and the number
of columns correspond to the total number of degrees of freedom. By applying Gauss
elimination, the set of nodal displacement values d can be subdivided into a set of free
displacement values df , which are actually unknown, and a set of depending displacement
values dd, which can be calculated using the constraint equations if the vector df is known.
As a result, the constraint equations can be rewritten as

dd = d̄− Ādf , (5.14)

where Ā is the modified coefficient matrix, and d̄ is the modified right hand side of the
constraint equations. By reordering the global degrees of freedoms, the corresponding
partitioned global system of equations can be obtained[

Kff Kfd

Kdf Kdd

] [
df
dd

]
=

[
fext,f
fext,d

]
. (5.15)

By substituting Eq. (5.14) into Eq. (5.15), the global system of equations reads[
Kff Kfd

Kdf Kdd

]([
I
−Ā

] [
df
]

+

[
0
d̄

])
=

[
fext,f
fext,d

]
, (5.16)

where I is the identity matrix. In order to preserve the symmetric shape of the stiff-
ness matrix, the system of equations is multiplied from the left-hand side by the matrix[
I −ĀT

]
[
I −ĀT

] [Kff Kfd

Kdf Kdd

]([
I
−Ā

] [
df
]

+

[
0
d̄

])
=
[
I −ĀT

] [fext,f
fext,d

]
. (5.17)
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The final system of equations for the unknown nodal displacement values is given by(
Kff − Ā

T
Kdf −KfdĀ+ Ā

T
KddĀ

)
df =fext,f − Ā

T
fext,d

−
(
Kfd − Ā

T
Kdd

)
d̄.

(5.18)

After having solved Eq. (5.18) for the unknown degrees of freedom df , the remaining
dependent degrees of freedom dd can be determined using Eq. (5.14).

In nonlinear simulations, the equilibrium state of a structure is obtained by applying an
iterative solution procedure, cf. Sects. 2.3 and 2.4. Using direct load control or direct
displacement control, the global system of equations solved in the i-th iteration of the n-th
load step can be written as

f
(n,i)
int +

∂f
(n,i)
int

∂d
∆d(n,i+1) = f

(n)
ext

d(n,i+1) = d(n,i) + ∆d(n,i+1)

 i = 0, 1, 2, . . . (5.19)

It is to be noted that the displacements of the last equilibrium state are used as start values
for the Newton-Raphson iteration (d(n,0) = d(n−1)). In each iteration step the constraint
equations, given by

d
(n,i)
d + ∆d

(n,i+1)
d︸ ︷︷ ︸

d
(n,i+1)
d

= d̄
(n) − Ā

(
d

(n,i)
f + ∆d

(n,i+1)
f

)
︸ ︷︷ ︸

d
(n,i+1)
f

(5.20)

have to be satisfied. By considering that

d
(n,i)
d + Ād

(n,i)
f =

{
d̄

(n−1)
i = 0

d̄
(n)

i > 0
(5.21)

the constraint equations can be rewritten as

∆d
(n,i+1)
d = −Ā∆d

(n,i+1)
f +

{
d̄

(n) − d̄(n−1)
i = 0

0 i > 0
. (5.22)

By substituting Eq. (5.22) into the partitioned global system of equations, which is given
by 

∂f
(n,i)
int,f

∂df

∂f
(n,i)
int,f

∂dd

∂f
(n,i)
int,d

∂df

∂f
(n,i)
int,d

∂dd


[
∆d

(n,i+1)
f

∆d
(n,i+1)
d

]
=

[
f

(n)
ext,f

f
(n)
ext,d

]
−

[
f

(n,i)
int,f

f
(n,i)
int,d

]
, (5.23)

and by multiplying from the left-hand side with matrix
[
I −ĀT

]
the final system of
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equations for the unknown (free) nodal degrees of freedom is obtained(
∂f

(n,i)
int,f

∂df
− ĀT ∂f

(n,i)
int,d

∂df
−
∂f

(n,i)
int,f

∂dd
Ā+ Ā

T ∂f
(n,i)
int,d

∂dd
Ā

)
∆d

(n,i+1)
f = f

(n)
ext,f − f

(n,i)
int,f

− ĀT
(
f

(n)
ext,d − f

(n,i)
int,d

)
−


(
∂f

(n,i)
int,f

∂dd
− ĀT ∂f

(n,i)
int,d

∂dd

)(
d̄

(n) − d̄(n−1)
)

i = 0

0 i > 0

.

(5.24)

5.3.2 Mortar Method

The mortar method, originally introduced by Bernardi et al. (1994) for the coupling of spec-
tral elements, is a domain decomposition technique, which can be used for the coupling of
different physical models, different discretization schemes or non-matching triangulations,
Wohlmuth (2001); Lamichhane and Wohlmuth (2004). The general idea of the mortar
method is to replace the strong point-wise displacement continuity, Eq. (5.9), at the in-
terface between two adjacent sub-domains by a weak integral condition, Eqs. (5.10) or
(5.11). According to Wohlmuth (1999), such a weak displacement continuity condition
can be either imposed in terms of constraints on the ansatz space of the displacement
approximation, Bernardi et al. (1994), which results in a nonconforming positive definite
formulation, or in terms of Lagrange multipliers, Belgacem (1999), which yields a saddle
point problem.

In this thesis, the mortar method with Lagrange multipliers is used for the coupling of
finite elements, because it allows for a straightforward parallelization in the framework of
domain decomposition. For the sake of simplicity, it is assumed that the total domain Ω
is decomposed into two non-overlapping polygonal sub-domains ΩM and Ωm such that

Ω = ΩM ∪ Ωm. (5.25)

Furthermore, both sub-domains share a common edge Γc defining the mortar element

Γc = ΩM ∩ Ωm. (5.26)

Lagrange multipliers, which are considered as an additional unknown field in the global
equilibrium problem, are used on that interface to join the sub-domains. The Lagrange
multipliers λ can be interpreted as interface tractions tM and tm acting on the sub-domain
boundaries

λ = −tM = tm. (5.27)

Consequently, the equilibrium state of the problem can be expressed using the principal
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Figure 5.5: Mortar method – finite element discretization and interpolation.

of virtual work, which reads in vector notation∫
ΩM

σMi δε
M
i dΩM +

∫
ΓC

λiδu
M
i dΓc =

∫
ΩM

b̄iδu
M
i dΩM +

∫
ΓMt

t̄iδu
M
i dΓMt

with uMi = ūMi and δuMi = 0 ∀x ∈ ΓMu ,

(5.28)

∫
Ωm

σmi δε
m
i dΩm −

∫
ΓC

λiδu
m
i dΓc =

∫
Ωm

b̄iδu
m
i dΩm +

∫
Γmt

t̄iδu
m
i dΓmt

with umi = ūmi and δumi = 0 ∀x ∈ Γmu ,

(5.29)

∫
Γc

δλi(u
M
i − umi ) dΓc = 0. (5.30)

It is assumed that in Eqs. (5.28) to (5.30) no boundary conditions, t̄ and ū, are imposed
on the common edge

Γc ∩ Γt = ∅ Γc ∩ Γu = ∅. (5.31)

Equations (5.28) and (5.29) must be satisfied for an arbitrary, but kinematically com-
patible, virtual displacement state δuM , δεM and δum, δεm. The coupling condition,
Eq. (5.30), has to be fulfilled for any arbitrary virtual traction state δλ.

The equilibrium problem given in Eqs. (5.28) to (5.30) is solved using the finite element
method. Figure 5.5 shows the corresponding finite element discretization. In the mortar
method, the one-dimensional discretization of the interface is inherited from the finite
element mesh of one of the two sub-domains ΩM or Ωm. Assuming that the discretization
of Γc is derived from Ωm, the side of Γc which is associated with Ωm is labeled non-mortar
or slave side and the other one is labeled mortar or master side. The displacements in
each sub-domain and the Lagrange multipliers on the interface are approximated using
standard finite element shape functions N

uM = NMdM um = Nmdm λ = Nλλ̂, (5.32)
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Figure 5.6: Mortar method – discretization of the Lagrange multipliers at the corner between
two coupling interfaces.

where dM and dm are nodal displacement values, and λ̂ are discrete Lagrange multipliers
introduced at the interior nodes of the mortar element, Fig. 5.5. In the presented mortar
formulation, the shape functions Nλ in the interior of the mortar element coincide with
the shape functions Nm used for the displacement interpolation on the non-mortar side.
Since no support points are located at the ends of the interface, the polynomial order of
the approximation of the Lagrange multipliers is reduced by one in the end segments of
the mortar element. An overview of mortar methods using alternative approximations for
the Lagrange multipliers can be found in Wohlmuth (2001).

As illustrated in Fig. 5.5, no support points for the Lagrange multipliers are located at
the ends of the interface. This is due to the fact that the Lagrange multipliers can be
interpreted as coupling tractions. At the corner between two interfaces the direction of the
tractions might change. If a support point is located at the corner, the tractions cannot
be properly represented in both interfaces. This is illustrated in Fig. 5.6 for a specimen
which is loaded in such a way that a uniform stress distribution is obtained. The specimen
is subdivided into two non-overlapping sub-domains Ω1 and Ω2. Matching finite element
discretizations are used in both sub-domains. Furthermore, identical material behavior is
assumed. In order to couple both sub-domains, Lagrange multipliers are introduced at the
interfaces Γc1 and Γc2. For the applied loading, the normal tractions should be constant
and nonzero in Γc1 and the tangential traction should vanish in Γc2. If a support point
i is introduced at the corner between both interfaces, as in Fig. 5.6(a), the horizontal
component of the corresponding Lagrange multiplier λ̂i is used for the approximation of
the normal tractions in Γc1 and the tangential tractions in Γc2. Consequently, if the normal
tractions are nonzero in Γc1, the tangential tractions in Γc2 automatically become nonzero.
As a result, such a model cannot represent the uniform stress distribution. If no support
points are introduced at the ends of both mortar elements, as in Fig. 5.6(b), the correct
distribution of the coupling tractions can be obtained and the stress distribution becomes
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uniform.

The same approximations as for the displacements and the Lagrange multipliers are used
for the virtual displacement fields and the virtual field of Lagrange multipliers

δuM = NMδdM δum = Nmδdm δλ = δNλδλ̂. (5.33)

By substituting the constitutive equations, Eq. (2.13), the kinematic equations, Eq. (2.21),
and the approximation of the displacements and the Lagrange multiplier field, Eqs. (5.32)
and (5.33), into the principle of virtual work, Eqs. (5.28) to (5.30), and by considering
that the principle of virtual work must hold for arbitrary virtual nodal displacement values
δdM , δdm and arbitrary virtual Lagrange multipliers δλ̂, the final system of equations is
obtained

KM 0 (mM )T

0 Km (mm)T

mM mm 0



dM

dm

λ̂

 =


fMext

fmext

0

 , (5.34)

where the sub-matrices KM and Km are the standard finite element stiffness matrices of
the two sub-domains

KM
ij =

∫
ΩM

BM
ki C

e,M
kl BM

lj dΩM , (5.35)

Km
ij =

∫
Ωm

Bm
kiC

e,m
kl B

m
lj dΩm, (5.36)

the sub-vectors fMext and f
m
ext are the corresponding equivalent external force vectors

fMext,i =

∫
ΩM

NM
ki b̄k dΩM +

∫
ΓMt

NM
ki t̄k dΓMt , (5.37)

fmext,i =

∫
Ωm

Nm
ki b̄k dΩm +

∫
Γmt

Nm
ki t̄k dΓmt , (5.38)

and the sub-matrices mM and mm are the mortar mass matrices

mM
ij = +

∫
Γc

Nλ
kiN

M
kj dΓc, (5.39)

mm
ij = −

∫
Γc

Nλ
kiN

m
kj dΓc. (5.40)

It is to be noted that linear elastic material behavior and small displacements are assumed
in the derivation of the global system of equation presented above. However, an extension
to nonlinear material formulations based on the assumptions presented in Sect. 2.3 is
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straightforward.

The integrals in the computation of the mortar mass matrices, Eqs. (5.39) and (5.40), are
evaluated numerically using a Gauss quadrature. For an exact integration, the mortar
element is divided into integration cells. The integration cells are defined in such a way
that each node associated to one of the three discretizations at the mortar element is an
end-point of an integration cell and no nodes are inside an integration cell. Under the
assumption of polynomial interpolation functions for the displacements and the Lagrange
multipliers, the product of the corresponding shape functions is also a polynomial which
can be integrated exactly, if a Gauss quadrature rule with an appropriate number of
integration points is applied.

First simulations with the mortar finite element method have shown that the global system
of equations, Eq. (5.34), may become ill-conditioned. This is caused by the different
physical units of the unknowns. In order to avoid numerical problems during the solution
of the global system of equations the conditioning of the corresponding coefficient matrix
is improved by a constant scaling of the mortar mass matrices. The preconditioned system
of equations is given by

InM 0 0

0 Inm 0

0 0 P nλ



KM 0 (mM )T

0 Km (mm)T

mM mm 0



InM 0 0

0 Inm 0

0 0 P nλ



dM

dm

λ̄

 =


fMext

fmext

0

 ,
(5.41)

where I is the identity matrix, nM , nm are the dimensions of the sub-matrices KM and
Km, nλ is the number of unknown Lagrange multipliers, λ̄ are the scaled Lagrange mul-
tipliers

λ̄ = P−1λ, (5.42)

and P is a diagonal matrix defined as

Pii = max
(
|KM

jj |; |Km
kk|
)

i = 1 . . . nλ, j = 1 . . . nM , k = 1 . . . nm. (5.43)

In Eq. (5.41), a left and right preconditioning is applied in order to preserve the symmetry
properties of the initial system given in Eq. (5.34).

Using the mortar finite element method with Lagrange multipliers, the global system
of equations is augmented by additional unknowns. In an alternative mortar approach,
proposed by Bernardi et al. (1994), the weak continuity condition, Eq. (5.10), is considered
in a similar way as the essential boundary conditions. Consequently, the displacement
approximation must satisfy not only the essential boundary conditions but also the weak
coupling condition. Using the method of weighted residuals, the corresponding constraint
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equations can be written as∫
Γc

wi(x)
(
uM (x)− um(x)

)
dx = 0 i = 1 . . . nw, (5.44)

where w are arbitrary weight functions, and nw is the number of weight functions. In
general, the functions Nλ, which in the first approach are used for the approximation of
the Lagrange multipliers, are chosen as weight functions. Substituting the displacement
approximation, Eq. (5.32), into Eq. (5.44), the continuity condition can be written in terms
of the unknown nodal displacement values dM and dm

mM
ij d

M
j +mm

ikd
m
k = 0 i = 1 . . . nw, j = 1 . . . nM , k = 1 . . . nm, (5.45)

where the coefficient matricesmM andmM are the standard mortar mass matrices given
by Eqs. (5.39) and (5.40). The imposition of such constraint equations, which results in
a reduction of the global system of equations by the number of constraints, is already
discussed in Sect. 5.3.1.

In this thesis, the mortar finite element method is used for the coupling of sub-domains
which resolve the material on different length-scales. Consequently, the average mesh size
in one sub-domain is significantly smaller than the other one. As a result, the coupling
converges either to a displacement compatibility, if the discretization of the Lagrange mul-
tipliers is obtained from the mesoscale sub-domain with a fine mesh, or a compatibility of
tractions, if the discretization of the Lagrange multipliers is inherited from the macroscale
sub-domain with a coarse mesh. In general, the mortar finite element method is used to
ensure continuity of tractions, since displacement continuity can directly be realized using
constraint equations, which are presented in Sect. 5.3.1.

5.3.3 Arlequin Method

In the previous sections, coupling methods for non-overlapping sub-domains are intro-
duced. In contrast to these methods, the Arlequin approach, proposed by Ben Dhia (1998,
1999); Rateau (2003); Ben Dhia and Rateau (2004a,b); Ben Dhia (2005), allows for a su-
perposition of different mechanical and numerical models. As shown in Fig. 5.7(b), the
total domain Ω is partitioned into two overlapping sub-domains ΩM and Ωm. The gluing
zone Ωc is defined as the intersection between both sub-domains. According to Ben Dhia
(1999), the general idea of the Arlequin method is to double in Ωc the number of mechan-
ical states and to distribute the energies between the two states. In general, Lagrange
multipliers, which can be interpreted as gluing tractions, are introduced to realize a weak
and compatible gluing of both states in Ωc. As an alternative, the penalty approach can
be used to couple both states, cf. Ben Dhia (1999) and Ben Dhia (2005). Using the prin-
ciple of virtual work and assuming that the coupling constraint is given by Eq. (5.11) the
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Figure 5.7: General idea of the arlequin method.

equilibrium state of the Arlequin problem with Lagrange multipliers can be expressed as∫
ΩM

αMσMi δε
M
i dΩM +

∫
ΩC

λiδu
M
i dΩc =

∫
ΩM

βM b̄iδu
M
i dΩM +

∫
ΓMt

βM t̄iδu
M
i dΓMt

with uMi = ūMi and δuMi = 0 ∀x ∈ ΓMu ,

(5.46)

∫
Ωm

αmσmi δε
m
i dΩm −

∫
ΩC

λiδu
m
i dΩc =

∫
Ωm

βmb̄iδu
m
i dΩm +

∫
Γmt

βmt̄iδu
m
i dΓmt

with umi = ūmi and δumi = 0 ∀x ∈ Γmu ,

(5.47)

∫
Ωc

δλi(u
M
i − umi ) dΩc = 0, (5.48)

where δuM , δεM and δum, δεm denote any arbitrary but kinematically compatible virtual
displacement state, and δλ is an arbitrary virtual traction state. In order to prevent that
the energy of the total domain is considered twice in the gluing zone, special Arlequin
weight functions αm, αM and βm, βM are introduced to balance the internal and external
virtual works associated to each sub-domain. As shown in Fig. 5.7(a), each pair of weight
functions form a partition of unity on the total domain

αM(x) = βM(x) = 1 αm(x) = βm(x) = 0 ∀x ∈ ΩM \ Ωc (5.49)
αM(x) = βM(x) = 0 αm(x) = βm(x) = 1 ∀x ∈ Ωm \ Ωc (5.50)
αM(x) + αm(x) = 1 βM(x) + βm(x) = 1 ∀x ∈ Ωc = ΩM ∩ Ωm. (5.51)
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In general, positive piecewise continuous functions are used as Arlequin weight functions.
A comparison of different weight functions is presented in the next paragraph for a one-
dimensional example.

The finite element method is used to solve the equilibrium problem given in Eqs. (5.46)
to (5.48). Thus, the unknown displacements uM , um and Lagrange multipliers λ are
discretized and the interpolation of these fields and the corresponding virtual fields are
given by Eqs. (5.32) and (5.33). It is to be noted that in contrast to the mortar method
also the boundary nodes of the gluing zone are used as support points for the interpolation
of the Lagrange multipliers. Assuming linear elastic material behavior and small strains
the discretized constitutive and kinematic equations are given by Eqs. (2.13) and (2.21).
By substituting Eqs. (2.13), (2.21), (5.32) and (5.33) into Eqs. (5.46) to (5.48) and by
considering that the principle of virtual work must hold for arbitrary nodal displacement
values δdM , δdm and arbitrary virtual Lagrange multipliers δλ, the discrete formulation
of the Arlequin problem can be obtained

KM 0 (cM )T

0 Km (cm)T

cM cm 0



dM

dm

λ̂

 =


fMext

fmext

0

 , (5.52)

where the sub-matrices KM and Km are the standard finite element stiffness matrices
scaled by the Arlequin weight functions αM , αm of the two sub-domains

KM
ij =

∫
ΩM

αMBM
ki C

e,M
kl BM

lj dΩM , (5.53)

Km
ij =

∫
Ωm

αmBm
kiC

e,m
kl B

m
lj dΩm, (5.54)

the sub-vectors fMext and f
m
ext are the corresponding equivalent external force vectors which

are weighted by the functions βM and βm, respectively

fMext,i =

∫
ΩM

βMNM
ki b̄k dΩM +

∫
ΓMt

βMNM
ki t̄k dΓMt , (5.55)

fmext,i =

∫
Ωm

βmNm
ki b̄k dΩm +

∫
Γmt

βmNm
ki t̄k dΓmt , (5.56)

and the sub-matrices cM and cm are the coupling matrices

cMij = +

∫
Ωc

Nλ
kiN

M
kj dΩc, (5.57)

cmij = −
∫
Ωc

Nλ
kiN

m
kj dΩc. (5.58)
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In order to improve the conditioning of the global system of equations a scaling of the
coupling matrices and the Lagrange multipliers is performed as proposed for the mortar
method in Eqs. (5.41) to (5.43).

In the literature, Ben Dhia and Rateau (2004a); Hu et al. (2008), the coupling presented
in Eq. (5.48) is labeled L2-norm or L2-coupling, respectively. In general, an alternative
coupling strategy based on the H1-norm is used in the Arlequin method, cf. Ben Dhia and
Rateau (2004a). The corresponding weak form of that coupling constraint is given by∫

Ωc

δλi(u
M
i − umi ) + `2 εkl(δλ)εkl(u

M − um) dΩc = 0, (5.59)

where ε is given by the kinematic equation, Eq. (2.2), and ` is a strictly positive parameter
homogeneous to a length. By substituting Eqs. (5.32) and (5.33) into Eq. (5.59) the
coupling matrices cM and cm of the discrete form are obtained

cMij = +

∫
Ωc

Nλ
kiN

M
kj + `2PlB

λ
liB

M
lj dΩc, (5.60)

cmij = −
∫
Ωc

Nλ
kiN

m
kj + `2PlB

λ
liB

m
lj dΩc, (5.61)

where B is the well known strain-displacement matrix defined by Eq. (2.22). The vector

P T =

[
1 1 1

1

2

1

2

1

2

]
(5.62)

is introduced due to the vector notation of the strain-like quantities in Eqs. (5.60) and
(5.61). Both coupling strategies, H1-coupling and L2-coupling, are investigated in the
following paragraph.

In general, the Arlequin method allows for the coupling of sub-models with different spatial
dimensions, Hu et al. (2008), or the intermixing of different mechanical models as for
example particle models and continuum models, Bauman et al. (2008). In this thesis, the
Arlequin method is used for the coupling of sub-domains with the same spatial dimension
but different resolution of the internal material structure. Furthermore, it is assumed that
all sub-domains are discretized by finite elements and that the Lagrange multipliers are
established on the macroscale sub-domains. Consequently, the finite element mesh of the
gluing zone is inherited from the coarse mesh of the macroscale sub-domain and the same
finite element interpolation is used in this region for the Lagrange multipliers and the
macroscale displacements.

One-dimensional Example

In this paragraph, the Arlequin method is applied to a one-dimensional mechanical prob-
lem. In this example, the influence of the coupling strategy – L2-coupling or H1-coupling
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Figure 5.8: One-dimensional bar with different arlequin weight functions.

– and the Arlequin weight functions is investigated. As shown in Fig. 5.8(c), a bar of
constant cross-section is fixed at both ends and a constant body force is imposed. The
corresponding Arlequin model consists of two overlapping sub-domains with equally fine
finite element meshes with element size he. Furthermore, the gluing zone coincides with
the overlap of both sub-domains. Inside this gluing zone, either constant, Fig. 5.8(a), or
linear, Fig. 5.8(b), weight functions α and β are applied. As shown in the diagrams in
Fig. 5.9, neither the coupling strategy nor the Arlequin weight function have an influence
on the horizontal displacements. In all simulations the same nodal displacement values
are obtained. In contrast to the displacements, the Lagrange multipliers plotted in the
diagrams in Fig. 5.10 depend on the coupling method and the Arlequin weight function.
As already shown in Ben Dhia and Rateau (2004a) for a similar example, numerical singu-
larities which vary with the element size can be observed at both ends of the gluing zone
if L2-coupling and constant weight functions are applied. These singularities are caused
by the sudden change of the sub-domain stiffness inside the gluing zone. The application
of an H1-coupling with ` = 1mm leads, for a constant weight function, to a smooth field
of Lagrange multipliers. As for the L2-coupling, the Lagrange multipliers deviate from the
exact solution at both ends of the gluing zone. Assuming a sufficiently fine finite element
discretization, these deviations do not depend on the finite element size. The application of
linear weight functions result in a continuous blending from one sub-domain to the other.
This leads for both coupling strategies to a linear distribution of the Lagrange multipliers
which almost coincides with the exact solution. It is to be noted that the influence of
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Figure 5.9: Horizontal displacements in the one-dimensional bar with element size he = 1mm.

the parameter ` in the H1 coupling is not further investigated in this work. However, the
definition of the H1-coupling, Eq. (5.59), implies that by setting the parameter ` smaller
than one the H1-coupling converges to a L2-coupling. For values larger than one, the clear
physical meaning of the Lagrange multipliers as coupling tractions is lost, since the first
term of Eq. (5.59) becomes negligible if ` � 1mm and the Lagrange multipliers are not
constant.

In addition to the numerical singularities observed for an L2-coupling with constant weight
functions, Ben Dhia and Rateau (2004a) criticize that for an L2-coupling the conditioning
of the global system of equations, Eq. (5.52), increases for a decreasing element size by
1/h4

e, whereas for an H1-coupling the condition number is increasing by 1/h2
e, which is
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Figure 5.10: Lagrange multipliers inside the gluing zone of the one-dimensional bar.
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Figure 5.11: Conditioning of the global stiffness matrix for the one-dimensional bar.

usual for finite element matrices. The condition number of a matrix is defined as

cond(K) = ‖K‖∞‖K−1‖∞ (5.63)

where ‖ . . . ‖∞ denotes the infinity norm of a matrix

‖A‖∞ = max
i=1,...,r

c∑
j=1

|Aij|, (5.64)

where r is the number of rows and c the number of columns of the matrix. As shown in
the diagrams in Fig. 5.11, the same correlation between condition number and element
size is observed for this example. Furthermore, the plots illustrate that for both coupling
strategies the condition number is almost independent from the Arlequin weight functions.
The scaling of the coupling matrices and the Lagrange multipliers, proposed in this the-
sis for preconditioning of the global system of equations, leads for an L2-coupling to a
significant improvement of the conditioning. As a result, the condition number increases
for a decreasing element size by 1/h1.6

e . If the H1-coupling is applied, the improvement
of the conditioning due to the proposed preconditioning is not as pronounced as for the
L2-coupling.

Numerical Integration

In the numerical implementation of the Arlequin method, the integrals in Eqs. (5.53) to
(5.58) are evaluated numerically using Gauss quadrature. As shown in Fig. 5.12, the
gluing zone is partitioned into triangular integration cells. In a first step, the geometric
intersection of the finite element meshes of both sub-domains is determined, Fig. 5.12(a).
In a second step, the result of this intersection is triangulated Fig. 5.12(b). The integration
is performed over these triangular integration cells. Assuming that the displacements and
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Figure 5.12: Arlequin method – numerical integration.

Lagrange multipliers are approximated by polynomials, the proposed integration procedure
allows for an exact integration of the coupling matrices, given in Eqs. (5.57) and (5.58) or
Eqs. (5.60) and (5.61), if Gauss quadrature rules with an appropriate number of integration
points are applied. The integration cells are also used in finite elements which are associated
to the gluing zone for the computation of the stiffness matrices and the equivalent external
force vectors. It is to be noted that for non-constant Arlequin weight functions higher
order integration rules are required for finite elements inside the gluing zone.

Weight Function

The one-dimensional example presented above has illustrated that linear Arlequin weight
functions allow for a continuous blending between the sub-domains. As a result, numerical
singularities, which are observed at the end of the gluing zone for an L2-coupling with
constant weight functions, can be avoided. In general, the definition of such continuous
weight functions in two- or three-dimensional models is not straightforward. In this thesis,
the Arlequin weight function inside the gluing zone is represented as level set function
describing the normalized shortest distance of point P to the sub-domain boundaries,
Fig. 5.13. As a result, the Arlequin weight functions of the mesoscale sub-domain can be
written as

αm(xP ) =
∆xmP

∆xMP + ∆xmP
∀xp ∈ Ωc, (5.65)

∆xMP ∆xmP

P

gluing zone mesoscale sub-domainmacroscale sub-domain

Figure 5.13: Arlequin weight function of the slave side as level set function.
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Figure 5.14: Coupling example – uniaxial tension test using mesoscale and heterogeneous
multiscale models with different coupling methods (geometry, material structure
and boundary conditions).

where xP is the coordinate of point P , and ∆xMP and ∆xmP are the shortest distances of
the point to the corresponding sub-domain boundaries. It is to be noted that only those
boundaries are considered for the calculation of the level set value which are not boundaries
of the total domain. For numerical efficiency, Eq. (5.65) is only evaluated at the corner
vertices of the triangular integration cells. Inside the integration cell, the interpolation of
the level set function is given by

αm(x) =
3∑
i=1

N (i)(x)α̂m(i) ∀x ∈ Ωc, (5.66)

where α̂ are the level set values evaluated at the integration cell vertices, and N are the
corresponding standard linear finite element shape functions. As a result, the Arlequin
weight functions in each integration cell are linear. This approach allows for an exact
integration of the element contributions, such as the element stiffness matrices, inside the
gluing zone if an appropriate numerical integration scheme such as a Gauss-quadrature
rule is applied. Another advantage of this approach is that by using the same integration
cells on both sides of the gluing zone, the Arlequin weight functions automatically satisfy
the partition of unity.

5.3.4 Example

In this section, the application of the coupling strategies, presented in Sects. 5.3.1 to 5.3.3,
to heterogeneous multiscale models of concrete is investigated. Linear elastic simulations of
a concrete specimen under uniaxial tension are performed using heterogeneous multiscale
models and, for comparison, a full mesoscale model. The different models with their
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Table 5.1: Coupling example – material parameters of the concrete specimen.
constituent material parameter
concrete Young’s modulus Ec [N/mm2] 22 000

Poisson’s ratio νc [–] 0.20
mortar matrix Young’s modulus Em [N/mm2] 20 000

Poisson’s ratio νm [–] 0.18
aggregates Young’s modulus Ea [N/mm2] 30 000

Poisson’s ratio νa [–] 0.20

geometrical dimensions are summarized in Fig. 5.14. The specimen is fixed at the bottom
and a uniform vertical displacement ∆u = 0.1mm is applied at the top. In the macroscale
sub-domain, concrete is considered as a homogeneous isotropic material. A two phase
model consisting of aggregates and mortar matrix is applied in the mesoscale sub-domain.
All material parameters are summarized in Table 5.1. The concrete mixture parameters
are given in Table 4.8. In the two-dimensional models only aggregates with diameter
greater than 2mm are considered. As a result, the area fraction of the aggregates is
28 %. It is to be noted that the aggregate distribution is identical in all simulations. The
mesoscale part of the models is always discretized with triangular finite elements with
an average size of 0.75mm. In multiscale models with non-overlapping sub-domains, the
mesh size on the macroscale is 10mm. Elements with an edge length of 100mm are used
for the macroscale sub-domain in the Arlequin method. Consequently, in all simulations
the average element size in the mesoscale sub-domain is significantly smaller than in the
macroscale sub-domain. In simulations with the mortar method or the Arlequin method,
the coupling condition is realized by Lagrange multipliers which are established on the
coarse mesh of the macroscale sub-domain. The coupling in the Arlequin model is realized
by the standard L2-norm. Inside the gluing zone, the sub-domains are scaled by linear
Arlequin weight functions.

Figure 5.15 shows the vertical stress distribution observed for the different models. The
plots illustrate that with all models a similar structural response is obtained. In the mul-
tiscale models the stress on the macroscale sub-domain corresponds in an average way to
the mesoscale stress. Differences in the stress distributions of the four models, especially in
the mesoscale sub-domains, are recognizable in the vicinity of the coupling. The mesoscale
stresses in this region are shown in detail in Fig. 5.16. In these plots, the red line indi-
cates the coupling boundary. In the multiscale model with constraint equations, a direct
displacement coupling between both sub-domains is realized. Consequently, the boundary
displacements of the sub-domains are mainly defined by the coarse displacement approxi-
mation of the sub-domain on the macroscale. This leads in the mesoscale sub-domain to
small stress concentrations at the coupling boundary if aggregates are located in the direct
vicinity of that boundary or if aggregates are crossed by that boundary. In non-linear
simulations, these stress concentrations might result in an artificial initiation of damage or
to a spurious localization of damage at the boundary. Compared to the mesoscale simula-
tion, higher stress values are, in general, observed in finite elements in the direct vicinity
of the boundary. The influence of the strong coupling condition becomes negligible in
finite elements with a distance of about twice the maximum aggregate diameter from the
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Figure 5.15: Coupling example – vertical stress.

coupling boundary. In multiscale simulations with the mortar method and the Arlequin
method, a weak coupling is realized. Since the Lagrange multipliers are introduced on
the coarse mesh, the coupling converges to traction continuity. As a result, lower stress
values are observed near the coupling boundary compared to the mesoscale model. In the

(a) full mesoscale (b) constraint equations

(c) mortar method (d) arlequin method

Figure 5.16: Coupling example – vertical stress, detail coupling zone.
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Table 5.2: Coupling example – computing times.
constraint equations mortar method Arlequin method

number of unknowns 364 325 364 619 363 765
coupling 0.002 s 0.057 s 1272.662 s
stiffness matrix 2.351 s 2.363 s 2641.723 s
solving 7.677 s 7.727 s 10.607 s

simulation with the mortar method, the width of the region which is influenced by the
coupling is approximately twice the maximum aggregate diameter, which is similar to the
value observed for the coupling with constraint equations. Using the Arlequin method, the
specimen is partitioned into overlapping sub-domains. Consequently, the domain which
is influenced by the coupling is considerably larger than by multiscale models with non-
overlapping sub-domains. Furthermore, it is observed that outside the gluing zone the
differences compared to the mesoscale simulation are negligible.

The numerical effort for the different coupling methods is illustrated in Table 5.2, which
shows the computing time for the application of the coupling (the time required for the
determination of the coefficients of the constraint equations, or the time required for the
generation of the integration cells in the mortar method and the arlequin method), for
the building of the global stiffness matrix and for solving the global system of equations.
The simulation with constraint equations is marginally faster than the simulation with
the mortar method. In the Arlequin model, already the application of the coupling takes
significantly longer as for the multiscale models with non-overlapping sub-domains. This is
due to the generation of the triangular integration cells in the gluing zone which involves the
expensive computation of the intersection of each mesoscale element with the macroscale
elements. Since in all three finite element discretizations which are associated to the gluing
zone the numerical integration is performed over the triangular integration cells and due
to the evaluation of the Arlequin weight function for each integration point, the numerical
effort for building the global stiffness matrix also increases significantly. In all simulations,
the number of unknowns is roughly the same. Compared to the mortar method, the
computational time for solving the global system of equations increases for the Arlequin
method due to the large bandwidth of the coupling sub-matrices.

The same example is used to investigate the influence of the finite element discretization
of the macroscale sub-domain in multiscale models with the Arlequin method. It is to be
noted that inside the gluing zone the finite element mesh of the macroscale sub-domain
coincides with the discretization of the Lagrange multipliers. In the first simulation, already
presented above, the element size is 100mm which is approximately 12 dmax, where dmax
is the diameter of the largest aggregate. Thus, the gluing zone is discretized with only
one element. In the second simulation, the number of macroscale elements inside the
gluing zone is increased to 16, leading to elements with 25mm edge length. As a result,
the ratio between element edge length and maximum aggregate diameter is reduced to
approximately 3.

The results of both simulations are summarized in Fig. 5.17. In these plots, the vertical
Lagrange multiplier and the vertical stress are shown for elements associated to the gluing
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Figure 5.17: Coupling example – influence of macro domain discretization in the arlequin
method.

zone. Using only one element, an almost constant distribution of the vertical Lagrange
multiplier and the vertical macroscale stress is obtained, which corresponds to the applied
boundary conditions. In the simulation with the refined macroscale mesh, spurious oscilla-
tions in the vertical Lagrange multiplier can be observed. Furthermore, the vertical stress
in the macroscale sub-domain becomes discontinuous. Differences in the stress distribu-
tions of both simulations are particularly prominent in regions in which the corresponding
Arlequin weight function becomes small.

In the Arlequin method, the coupling leads to a homogenization of the mesoscale stresses
in the gluing zone. Since the discretization of the Lagrange multipliers is inherited from
the macroscale sub-domain, the homogenization is constraint by the polynomial order
of the Lagrange multiplier interpolation. The averaging is performed over all mesoscale
elements associated to one macroscale element. As a consequence, a minimum macroscale
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adaptation

(a) initial macroscale model (b) multiscale model after first adaptation (c) detail mesoscale sub-domain
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elastic border
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Figure 5.18: Heterogeneous multiscale model – generation of the initial mesoscale sub-domain.

element size, which depends on the maximum aggregate diameter, is required to represent
the entire mesoscale material structure. In the first simulation, the macroscale element is
large enough so that the associated mesoscale sub-domain is representative. As a result,
the homogenized stress is not influenced by the actual spatial aggregate distribution. In
accordance with the boundary conditions, an almost constant distribution of the Lagrange
multiplier and the macroscale stress is obtained. In the second simulation, the averaging
domain becomes too small. As a result, the homogenized stress depends on the position
of individual aggregates. This leads to the oscillations in the Lagrange multiplier and a
discontinuous macroscopic stress field.

Due to the high numerical effort and the dependency of the macroscale element size on
the maximum aggregate diameter, the Arlequin method is not further investigated in this
thesis. In the following sections, it is assumed that the total domain is partitioned into
non-overlapping sub-domains. The coupling is either realized with constraint equations or
with the mortar method.

5.4 Model Adaptation from Macro- to Mesoscale

In the heterogeneous multiscale approach, nonlinear material behavior is only considered
on the mesoscale. Since, in general, the final damage distribution is not known in advance,
an adaptation of the multiscale model becomes necessary during the simulation. In this
section, indicators are introduced which trigger the conversion of sub-domains from the
macro- to the mesoscale. Consequently, the adaptation results either in the creation of
a new mesoscale sub-domain, as shown in Fig. 5.18 or in an enlargement of an existing
mesoscale sub-domain, as illustrated in Fig. 5.19.

The first step of a simulation with a heterogeneous multiscale model is the generation of the
internal material structure, as for example the size distribution and the spatial distribution
of the aggregates. The simulation starts with a macroscale model of the entire structure. As
in standard nonlinear simulations an incremental solution strategy as proposed in Sect. 2.4
is applied. In general, an update of the history variables is performed after the solution
has converged. A slightly modified update procedure is required in simulations with the
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Figure 5.19: Heterogeneous multiscale model – enlargement of the mesoscale sub-domain.

adaptive heterogeneous multiscale model. In a first step of the update procedure, the
criteria for model adaptation are tested. If no adaptation is required, the history variables
are updated and the iterative solution procedure is continued with the next load increment.
In the case of model adaptation, either new mesoscale sub-domains are created or existing
mesoscale sub-domains are enlarged and the equilibrium state is again determined for the
last converged load step. Consequently, multiple equilibrium states, each associated to one
numerical model, may exist for one load-increment.

In the presented approach, linear elastic material behavior is assumed for sub-domains on
the macroscale. On this scale the stress distribution is used as an indicator for a model
adaptation. If in at least one integration point the principal stress exceeds a certain limit,
the numerical model is adapted. As illustrated in Fig. 5.18, the integration point with
the largest principal stress value is selected and macroscale elements in the vicinity of
that point are replaced by a mesoscale sub-domain. On the mesoscale, the initiation of
damage near a coupling boundary indicates a model adaptation. As shown in Fig. 5.18(c),
the mesoscale sub-domain is subdivided into three zones. Non-linear material behavior is
only considered in the inner and the border zone, whereas linear elastic material behavior
is assumed in elements associated to the elastic border zone. In order to avoid that the
damage distribution in the inner zone is artificially influenced by boundary effects, the
total width of both zones is at least 5 dmax, where dmax is the maximum diameter of the
aggregates considered in the numerical model. If damage initiates in the border zone or
if damage develops into this zone the corresponding mesoscale sub-domain is adapted. As
illustrated in Fig. 5.19, the sub-domain is enlarged into the direction of damage evolution.
It is to be noted that in the damage plots of Fig. 5.19 the green line indicates the boundary
of the inner zone. Assuming that the nonlinear behavior is described by the isotropic
damage model, presented in Sect. 3.3, the evolution of the scalar damage parameter ω can
be used as indicator for model adaptation. If in at least one integration point of elements
associated to the border zone the damage parameter becomes nonzero, a model adaptation
is performed. A more general indicator is based on the inelastic energy density uinel, which
can be defined by Eq. (A.18) independently from the material formulation. Consequently,
the model is adapted if inelastic energy is dissipated in the border zone of a mesoscale
sub-domain.

Depending on the coupling between adjacent sub-domains, a third zone, in Fig. 5.18(c)
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indicated by the red color, is considered in mesoscale sub-domains. If a weak coupling is
realized with the mortar method, this zone is not required. The linear border zone is only
introduced if a strong displacement coupling between the sub-domains is applied. As shown
in Sect. 5.3.4, the application of constraint equations may result in small stress concentra-
tions in the direct vicinity of the coupling boundary. In order to prevent spurious damage
initiation due to these stress concentrations, which would lead to a further enlargement of
the mesoscale sub-domain, linear elastic material behavior is assumed for finite elements
within a distance of twice the maximum aggregate diameter. These elements build the
elastic border zone. As a consequence of this approach, the stresses in the elastic border
zone may exceed the material strength. Due to the small size of this domain, the influ-
ence of this overestimation of the material strength on the nonlinear structural response
of the entire specimen can be neglected. An advantage of the presented approach is that
the mesoscale model is not artificially modified near coupling boundaries. As shown in
Fig. 5.19, such an approach allows for aggregates which are cut by the coupling boundary.
An alternative approach to avoid the initiation of spurious damage due to the coupling
with constraint equations is presented in Eckardt and Könke (2008). A minimum distance
between coupling boundary and aggregates is introduced, leading to a layer of mortar
matrix elements at the boundary. If the width of this element layer is large enough, spuri-
ous stress concentrations near the boundary can be avoided. As a consequence, nonlinear
material models can also be used in the direct vicinity of a coupling boundary. A draw-
back of this approach is that due to the omission of certain aggregates, an artificial wall
effect is introduced into the mesoscale model at coupling boundaries, leading to a modified
structural response in this region.

The adaptation process starts if, after convergence of the iterative solution procedure,
a certain criterion in an integration point is satisfied. In order to obtain a representa-
tive sample of the internal material structure, the region to be refined on the mesoscale
is defined by a rectangle with a minimum edge length of 15 dmax. The center point of
this rectangle is the integration point under consideration. In a first step, all macroscale
elements in the vicinity of this point are determined. A macroscale element is selected
for adaptation, if at least one element node is inside that rectangle. In the next step,
the outer boundary of the element patch, which is the result of this selection procedure,
is calculated and the intersection between this boundary and the boundaries of existing
mesoscale sub-domains is determined. If no common boundary segments are found, a
new mesoscale sub-domain is generated. Otherwise, the corresponding existing mesoscale
sub-domains are enlarged. This may also lead to a unification of mesoscale sub-domains.
In order to improve the mesh quality in sub-domains which are enlarged, all mesoscale
elements within a distance of 2 dmax from common boundary segments are additionally se-
lected for adaptation. Consequently, the outer boundary of the new element patch, which
includes now macroscale and mesoscale elements, is determined. This boundary describes
the macroscopic geometry of the domain of adaptation. In a next step, the corresponding
internal material structure is determined. After that, the geometry is discretized by finite
elements using the finite element mesh generator Gmsh, Geuzaine and Remacle (2009).
All elements which are previously selected for adaptation are replaced by the new finite
element mesh. In order to obtain a first prediction for the displacement field in the adapted
domain, a linear elastic analysis is performed for the new finite element mesh. Therefore,
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the displacements calculated for the last converged load increment are imposed on the
boundary of this element patch. In the presented approach, it is assumed that before an
adaptation is performed, the material in the corresponding domain is still in the elastic
range. As a result, no further transfer of history variables between both element meshes is
required. As a last step of the adaptation process, the coupling between the sub-domains
is established and the new equilibrium state of the modified numerical model is calculated
for the last converged load increment. If the iterative solution procedure diverges, the
model is unloaded and the equilibrium state is determined for a reduced load level. It is to
be noted that the adaptation procedure is always performed for only one integration point.
In general, the integration point with the largest principal stress value on the macroscale
or with the highest inelastic energy density on the mesoscale is chosen. Afterwards, the
new equilibrium state is computed and the adaptation criteria are tested again.

In the presented approach, the stress distribution on the macroscale and the damage
evolution in mesoscale sub-domains are applied as indicators for model adaptation. Con-
sequently, local stress concentrations on the macroscale and a localization of damage on
the mesoscale are required for an effective application of the proposed adaptive heteroge-
neous multiscale approach. Assuming a constant stress field on the macroscale, which is,
for example, observed in macroscale simulations of uniaxial tension tests, the adaptation
procedure would result in a mesoscale model of the entire structure. In such a case, local-
ization of damage is only triggered by the internal material structure on the mesoscale. In
order to capture this phenomenon, the simulation has to start on the mesoscale.

5.5 Model Adaptation from Meso- to Macroscale

In this section, several ideas for a further improvement of the adaptation procedure are
outlined. It is to be noted that the algorithms proposed in this section are neither imple-
mented nor tested for their application to heterogeneous multiscale models.

The post-peak behavior of concrete is characterized by the coalescence of microcracks,
leading to the formation of macroscopic large cracks and to a spatial localization of damage.
Simultaneously, an elastic unloading is observed in regions adjacent to these cracks. As
shown in Sect. 4.4.1, these phenomena can be represented with mesoscale models. The
main advantage of mesoscale models is that the numerical model is capable to describe
changes in the internal material structure, such as the evolution of microcracks. Due to
the, in general, high numerical effort of mesoscale simulations, such an approach is only
reasonable if microstructural changes actually occur. In concrete, the final opening of a
(stress-free) crack or the elastic unloading of a certain region is, in general, not accompanied
by a further evolution of microcracks in that region. Consequently, both phenomena can
be described with sufficient accuracy by macroscale models. This allows for a further
reduction of the numerical effort in simulations with heterogeneous multiscale models.

In an additional adaptation procedure, mesoscale sub-domains in which the evolution of
microcracks has stopped can be transferred back to the macroscale. The inelastic energy
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dissipation on the mesoscale can be applied as indicator for model adaptation. If no inelas-
tic energy is dissipated in a certain region, the model adaptation from meso- to macroscale
is performed for this region. In order to account for the microcracks on the mesoscale,
a numerical homogenization procedure, as proposed by Hashin (1983), can be applied to
calculate the effective linear elastic material matrix on the macroscale. Depending on the
spatial distribution of the microcracks, the macroscopic material behavior may become
anisotropic. The major problem of such an approach is to determine the size of the region
over which the averaging is performed. On the macroscale, the region of localized damage
can be considered by a discrete crack approach. Consequently, the crack is represented
either as additional geometrical boundary of the macroscale finite element mesh, or by
an extended finite element approach, Belytschko and Black (1999); Moës et al. (1999),
which allows to describe the crack independently from the underlying finite element mesh.
It is to be noted that the definition of the macroscopic crack path based on the damage
distribution on the mesoscale may become difficult.

As an alternative approach, sub-structuring techniques, Noor et al. (1978), can be used
to reduce the number of degrees of freedom in mesoscale sub-domains. Elements in which
the evolution of microcracks has stopped are merged together to a super-element. Using
static condensation, Wilson (1974), the nodal degrees of freedom inside a super-element are
expressed in terms of the nodal degrees of freedom on the boundary of that super-element.
Consequently, the behavior of the elements inside the super-element are represented by the
condensed stiffness matrix. Based on the displacement state for which the static conden-
sation has been performed a linear elastic behavior is assumed for the super-element. This
implies the assumption that the elements inside the super-element are either in the elastic
regime or in a linear unloading/reloading situation. The advantage of such a procedure
is that no modification of the corresponding mesoscale sub-domain, such as remeshing, is
required and that no homogenization procedure has to be performed. Furthermore, the
mesoscale solution inside a super-element can be computed in a straightforward way if
the boundary displacements are known. This allows to verify if the assumption of linear
material behavior inside the super-element is still satisfied.

A model adaptation in a heterogeneous multiscale approach from mesoscale sub-domains
back to the macroscale has the potential to significantly reduce the numerical effort in such
simulations. As a result, only those parts of the model with evolving micro-cracks would
be resolved on the mesoscale.

5.6 Examples

5.6.1 L-shaped Panel

The first example illustrates the application of the adaptive heterogeneous multiscale ap-
proach to the nonlinear analysis of an L-shaped panel. The specimen was designed and
experimentally tested by Winkler (2001) at the University of Innsbruck. Figure 5.20(a)
shows the specimen geometry and the test setup. Furthermore, the experimental scatter
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Figure 5.20: L-shaped panel.

of the crack paths which were observed in the experiments of three identical specimens is
plotted.

Figure 5.20(b) shows the initial macroscale finite element model and the applied bound-
ary conditions. The specimen is regularly discretized with 9-node quadrilateral elements
assuming an average element size of approximately 25mm. As a result, the initial finite
element model consists of 300 elements, 1 200 nodes and 2 540 active degrees of freedom,
respectively. On the macroscale, linear elastic material behavior is assumed.

Nonlinear material behavior is considered in mesoscale sub-domains, which are succes-
sively generated and adapted during the simulation. On the mesoscale, a three-phase
model consisting of aggregates, mortar matrix and interfacial transition zone (ITZ) is con-
sidered. Based on the mixture parameters, given in Table 5.3, aggregates with a nominal
diameter between 2mm and 8mm are generated in the entire specimen. In mesoscale
sub-domains, the aggregates and the mortar matrix are discretized by 6-node triangular
elements, assuming an average element size of 0.5mm. Furthermore, the ITZ is repre-
sented by zero-thickness interface elements which are introduced between aggregates and

Table 5.3: L-shaped panel – concrete mixture parameters.
mass [kg/1m3] density [kg/m3] volume [m3]

cement 340 3100 0.110
water 180 1000 0.180
air voids (estimated) 0.020
aggregates 0/2 1316 2720 0.483
aggregates 2/4 470 2720 0.172
aggregates 4/8 94 2720 0.035
concrete 2400 2400 1.000
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Table 5.4: L-shaped panel – material parameters.
concrete Young’s modulus Ec [N/mm2] 20 000

Poisson’s ratio νc [–] 0.18
mortar matrix Young’s modulus Em [N/mm2] 18 500

Poisson’s ratio νm [–] 0.18
tensile strength ft,m [N/mm2] 2.60
fracture energy Gf,m [Nmm/mm2] 0.14
nonlocal radius R [mm] 0.75

aggregates Young’s modulus Ea [N/mm2] 37 000
Poisson’s ratio νa [–] 0.18

ITZ penalty stiffness Kp [N/mm3] 500 000
tensile strength ft,i [N/mm2] 1.30
fracture energy Gf,i [Nmm/mm2] 0.07
weight factor α [–] 1.00

mortar matrix. The nonlinear behavior of the mortar matrix is described by the isotropic
damage model, Sect. 3.3, with nonlocal averaging of the total strains, Sect. 3.2.2. Fur-
thermore, linear elastic behavior is assumed for the aggregates. The specific behavior of
the ITZ is represented by the cohesive zone model presented in Sect. 3.6. In Table 5.4 the
corresponding material parameters are summarized. These parameters are determined in
an iterative procedure, such that the numerical simulation gives a good approximation of
the experimental load-displacement curve, shown in Fig. 5.21(a). It is to be noted that
the Young’s moduli of aggregates and mortar matrix are determined from the macroscopic
Young’s modulus of concrete, using the Reuss bound, given by Eq. (4.21), and taking into
account the actual area fraction of the aggregates in the total specimen.

In the presented numerical simulations, a mesoscale sub-domain is created if in at least
one point of the macroscale sub-domain the maximum principal stress exceeds the ten-
sile strength of the mortar matrix. The size of the domain, which is transferred to the
mesoscale, is defined by a square with an edge length of 23dmax = 184mm. An edge length
larger than the minimum value (15dmax) has been chosen in order to avoid a frequent adap-
tation of the model. An existing mesoscale sub-domain is enlarged, if in the boundary part
of this sub-domain the damage parameter of the isotropic damage model becomes in at
least one point nonzero. The border part of a mesoscale sub-domain comprises all elements
with a distance smaller than 6dmax = 48mm from a coupling boundary. It is to be noted
that, in order to reduce the numerical effort, in the presented simulations the opening of
the interface elements, describing the failure of the ITZ, is not considered as adaptation
criterion. Consequently, it is assumed that the initial opening of the interface cracks does
not significantly influence the response of the specimen. The reduction of the stress limit
on the macroscale sub-domain to the tensile strength of the ITZ and the application of an
additional criterion based on the equivalent interface opening and its corresponding elastic
limit to the border part of the mesoscale sub-domain is straightforward, but the size of the
mesoscale sub-domains and, as a consequence, the numerical effort would considerably be
increased.
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Figure 5.21: L-shaped panel – load-displacement curve and number of active dofs as function the
applied displacement.

In a first simulation, the coupling between the sub-domains is realized with constraint
equations. In order to avoid spurious damage initiation on the mesoscale due the strong
coupling condition, linear elastic material behavior is assumed for all elements within a
distance of 3dmax = 24mm from the coupling boundary. In a second simulation, the mortar
method is applied. Since the Lagrange multipliers are established on the coarse mesh of
the macroscale sub-domain, a weak coupling, enforcing continuity of tractions, between
adjacent sub-domains is obtained. As a consequence, nonlinear material formulations can
be used in all elements of the mesoscale sub-domains. It is to be noted that in both
simulations the same aggregate configuration is considered. In order to capture the global
softening behavior of the specimen, direct displacement control is applied.

Figure 5.21(a) shows the relationship between the load and the vertical displacement at
the point of load application. In both simulations, an almost identical load-displacement
curve is obtained. Compared to the experimental curve, a more pronounced pre-peak
branch is observed. As a consequence, the displacements corresponding to the peak load
is about 7 % larger than in the experiments. The differences between numerical solution
and experimental results can probably be ascribed to the simplified boundary and loading
conditions assumed in the numerical simulations. Furthermore, small jumps can be noticed
in the load-displacement curves observed in the numerical simulations. These jumps can
be attributed to the adaptation criteria. On the macroscale, a new mesoscale model is
created if the maximum principal stress exceeds the tensile strength of the mortar matrix.
Afterwards, the new equilibrium state is determined for the last converged load level.
Due to the heterogeneous material structure of concrete, stress concentrations with higher
stress values as on the macroscale are observed in the mortar matrix of the mesoscale
sub-domain. Furthermore, the tensile strength of the ITZ is considerably smaller than
the tensile strength of the mortar matrix. As a result, damage is, in general, already
developing in the newly created mesoscale sub-domain. Immediately before the adaptation
is performed, the stiffness of the specimen is, in general, slightly overestimated. Using
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direct displacement control, the load decreases for a constant displacement value at the
point of load application. Furthermore, the amount of inelastic energy dissipated during
the simulation is slightly increased. The same holds for the enlargement of an existing
mesoscale sub-domain. Since, the adaptation procedure is triggered by the initiation of
damage in the mortar matrix, interface cracks might already develop in those parts of the
model which are currently transferred to the mesoscale. As a result, the global stiffness of
the specimen slightly decreases after model adaptation. It is to be noted that this effect
is observed for both coupling methods.

Figure 5.21(b) shows the number of active degrees of freedoms as a function of the applied
vertical displacement. Note that a logarithmic scaling is used for the active dofs. In both
simulations, the curves are almost identical. Small differences between the models can be
attributed to varying step lengths in the iterative solution procedure which are the result
of the automatic step size adaptation. The staircase characteristic of the curve is a result
of the applied adaptation procedure. For a given load-level different numerical models
and, as a consequence, different equilibrium states exist. Furthermore, the plot shows the
increasing numerical effort due to the successive enlargement of mesoscale sub-domains
during the simulation. Compared to a full mesoscale model, the number of unknowns is
significantly reduced by the adaptive heterogeneous multiscale approach. In the multiscale
model, the area of the sub-domains which are simulated on the mesoscale is about 18 % of
the total specimen area at the peak point and approximately 27 % at the final stage.

The successive adaptation of the model during the simulation is illustrated in Fig. 5.22,
which shows the damage distribution at selected load levels for the model with constraint
equations. The individual load levels are also indicated in the load-displacement curve,
Fig. 5.21(a), by the labels a to f . As shown in Fig. 5.22(a), the initial mesoscale sub-domain
is created at the corner of the specimen at about 57 % of the ultimate load. Furthermore,
an initial damage zone is observed at this corner. Until the ultimate load is reached,
the mesoscale sub-domain is successively enlarged towards the lower specimen boundary,
Figs. 5.22(b) to 5.22(d). The initial damage zone propagates into the specimen and minor
damage zones initiate in the lower part of the specimen. After having reached the ultimate
load, the development of theses minor damage zones stops. Only the initial damage zone
further develops and a macroscopic crack is formed. As a consequence, the upper part of
the mesoscale sub-domain is enlarged towards the left specimen boundary, Figs. 5.22(d)
to 5.22(f). The damage plots illustrate that, with the criteria proposed in this thesis,
the model adaptation is only performed in those parts of the specimen in which damage
actually develops.

Figure 5.23 shows for both multiscale models the final damage distribution. As in the
experiments, a curved macroscopic crack is observed in the simulations. The influence of
the internal material structure on the final crack pattern is clearly visible. Adjacent to the
macroscopic crack, several smaller cracks can be distinguished. Furthermore, a branching
of the macroscopic crack is observed. It is to be noted that the width of the fracture process
zone is, due to the influence of the material heterogeneity, considerably larger than the
nonlocal radius assumed for the mortar matrix, which is in contrast to a nonlinear analysis
on the macroscale. In both simulations, an identical damage distribution is obtained.
Consequently, the damage distribution is not artificially influenced by the different coupling
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(a) uy = 0.10mm (b) uy = 0.15mm

(c) uy = 0.20mm (d) uy = 0.24mm

(e) uy = 0.31mm (f) uy = 0.50mm

Figure 5.22: L-shaped panel – damage distribution obtained with the multiscale model with
constraint equations for different load levels.
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(a) constraint equations (b) mortar method

Figure 5.23: L-shaped panel – comparison of the final damage distribution (uy = 0.57mm)
observed for multiscale models with different coupling conditions.

conditions. Furthermore, the shape and the position of the final mesoscale sub-domain is
almost the same. Accordingly, it is verified that an elastic border domain is not required if a
weak coupling is realized using the mortar method. The artificial initiation of damage due
to the influence of the coupling constraint in the direct vicinity of common sub-domain
boundaries, leading to an additional enlargement of the mesoscale sub-domain, is not
observed for this model. Furthermore, the numerical simulations with constraint equations
have shown that the influence of high local stress values within the elastic border domain,
which are the result of the direct coupling between adjacent sub-domains, is negligible.

For both simulations, Table 5.5 summarizes the total computing time and the total num-
ber of load-increments. As proposed in Sect. 2.4.5, the step size is automatically adapted
for each load increment. The adaptation is based on the number of iteration steps re-
quired to solve the nonlinear equilibrium problem for the previous load increment. Both
simulations start with the same step length. Compared to the simulation with constraint
equations, a larger number of iteration steps is, in general, required in the simulation with
the mortar method to solve the nonlinear equilibrium problem for a single load increment.
As a consequence, the step size is reduced in the next load increment. Altogether, the
number of load increments required to reach the final displacement state increases. As a
result, the total number of iteration steps performed during the nonlinear analysis is in
the simulation with the mortar method considerably larger than in the simulation with

Table 5.5: L-shaped panel – total computing times for multiscale simulations.
computing time number of load increments

constraint equations 45 416 s (12h 37min) 117
mortar method 63 916 s (17h 45min) 136
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constraint equations. Since in each iteration step a linear system of equations is solved and
the corresponding residual is calculated, the numerical simulation with the mortar method
becomes significantly more time-consuming.

5.6.2 Size Effect

In the second example, the adaptive heterogeneous multiscale approach is applied to the
nonlinear analysis of the large specimens (type E and F) of the size effect experiments by
van Vliet and van Mier (2000). Furthermore, it is shown for specimens of type D that with
the adaptive heterogeneous multiscale approach almost identical results as with a mesoscale
model can be obtained. As illustrated in Sect. 4.4.2, the smaller specimens are numeri-
cally analyzed using full mesoscale models for type A, B and C and reduced mesoscale
models for type D. In the heterogeneous multiscale model, the same mesoscale model as
in the mesoscale simulations is considered for mesoscale sub-domains. The corresponding
material parameters, which are determined for a full mesoscale model of a specimen of
type B, are summarized in Table 4.9 on page 96. In the multiscale simulations, the initial
macroscale model is discretized by triangular 6-node elements leading to an irregular finite
element mesh. The average element size assumed for the initial macroscale model depends
on the specimen type (16mm, 32mm and 64mm for the specimen types D, E and F).
A constant average element size of 0.75mm is assumed in all simulations for mesoscale
sub-domains. As in the previous example, the criteria for model adaptation are defined in
terms of the tensile strength of the mortar matrix on the macroscale and of the damage
distribution within the mortar matrix on the mesoscale. The macroscale element patch for
which the adaptation is performed is defined by a square of size 30dmax = 120mm. It is
to be noted that an edge length larger than the minimum value (15dmax) has been chosen
in order to avoid a frequent adaptation of the model. Furthermore, the border part in
mesoscale sub-domains comprises all elements within a distance of 6dmax = 24mm from
common sub-domain boundaries. A direct displacement coupling realized using constraint
equations is applied between adjacent sub-domains. In order to avoid spurious damage
initiation due to the strong coupling, linear elastic material behavior is assumed in all ele-
ments within a distance of 3dmax = 12mm from a coupling boundary. As in the mesoscale
simulations, a load-displacement-constraint solution procedure, in which the additional
constraint is defined by the amount of dissipated inelastic energy, is applied in order to
investigate the global softening behavior and in order to capture snap-back phenomena in
the global response.

In a first test, the simulations with the adaptive heterogeneous multiscale approach are
compared to mesoscale simulations. Due to the strong influence of the internal material
structure on the macroscopic crack path and, as a consequence, on the macroscopic nominal
strength and the macroscopic fracture energy, the comparison is performed for the mean
value and the standard deviation of these parameters determined from ten simulations with
varying aggregate configurations. Figure 5.24 shows the individual values, the mean value
and the standard deviation of the macroscopic nominal strength σN and the macroscopic
fracture energy Gf for specimen type D. It is to be noted that both parameters can be
determined from the global load-displacement curve using Eqs. (4.26) and (4.27). The
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Figure 5.24: Size effect – individual values, mean value and standard deviation of the
macroscopic nominal strength and of the macroscopic fracture energy of specimen
type D.

mean value and the standard deviation of the nominal strength is almost identical for
both approaches. The slight deviations between both approaches can be attributed to
the small number of samples considered. Due to the adaptation criteria applied in the
adaptive heterogeneous multiscale approach, the mean value of the fracture energy is for
the multiscale simulations slightly larger (about 5 %) as for the mesoscale simulations. In
order to reduce the numerical effort for the multiscale simulations, an adaptation of the
numerical model is performed either if in macroscale sub-domains the maximum principal
stress exceeds the tensile strength of the mortar matrix or if in mesoscale sub-domains
damage initiates within the mortar matrix near common sub-domain boundaries. Both
criteria neglect the influence of interface cracks which, in general, initiate within the ITZ
before damage starts to develop within the mortar matrix. As a consequence, the specimen
stiffness is overestimated before the model is adapted. Furthermore, the macroscopic
fracture energy slightly increases in multiscale simulations. The standard deviation of the
fracture energy is considerably smaller in the multiscale simulations as in the mesoscale
simulations. As illustrated in the plot of the fracture energy for the mesoscale simulation
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Figure 5.25: Size effect – nominal stress-strain curve obtained for specimens of type E.

in Fig. 5.24, a considerably higher fracture energy is obtained for the ninth sample. If this
sample is not considered in the stochastic evaluation of the fracture energy, the standard
deviation decreases significantly and an almost identical standard deviation is obtained for
both approaches. This indicates that either the ninth sample in the mesoscale simulations
is an outlier or that too few samples are used in both simulations.

In a second test, the specimen types E and F are investigated using the adaptive hetero-
geneous multiscale approach. Ten simulations with varying aggregate configuration are
performed for each specimen type. Figure 5.25 shows the nominal stress-strain curve for
the first sample of specimen type E. The nominal stress and the nominal strain are defined
as

σN =
Fy

0.6D
εN =

∆uy
Ls

, (5.67)

where Fy is the vertical resulting force observed at the top of the specimen, and ∆uy is the
vertical relative displacement between the two monitoring points. Figure 5.26 shows the
corresponding final damage distribution. Due to the large size of the specimen compared
to the final damage zone, a snap back is observed in the nominal stress-strain curve. Fur-
thermore, it is illustrated that the failure mechanism observed in the mesoscale simulations
can also be represented by the adaptive heterogeneous multiscale model. The pre-peak be-
havior of the specimen is characterized by the initiation and propagation of small damage
zones (microcracks) near the left specimen boundary. When the peak-load is reached, a
macroscopic damage zone is formed close to the center of the specimen. The post-peak
behavior is accompanied by a further development of the macroscopic damage zone and by
the initiation of microcracks in the fracture process zone in front of the macroscopic damage
zone. Consequently, a relatively large width of the mesoscale sub-domain perpendicular
to the final crack surface is obtained at the beginning of the simulation. After reaching
the peak-load the width of the mesoscale sub-domain decreases due to the localization of
damage. At the end of the simulation, approximately 13 % of the specimen is represented
on the mesoscale. The corresponding numerical model consists of approximately 1 422 000
active degrees of freedom which is about 39 % of the number of unknowns in the reduced
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Figure 5.26: Size effect – final damage distribution for a specimen of type E.

mesoscale model. However, the simulation is still extremely time-consuming. Altogether,
the simulation of the full loading regime requires a computing time of 67h. In order to
reduce the computing time, all the other simulations of the specimen types E and F are
stopped immediately after reaching the peak-load. As a consequence, the average com-
puting time for specimen type E can be reduced to 6h (24h for specimen type F). At
the peak-load the average size of the mesoscale sub-domains is approximately 7 % (5 %)
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of the total specimen area which corresponds to a numerical model with approximately
750 000 (2 125 000) active degrees of freedom. As a further consequence, the influence of
the specimen size on the macroscopic fracture energy can not be investigated for specimen
types E and F. The mean value and the standard deviation of the nominal strength are
summarized in Table 4.10 on page 97. Figure 4.13(a) illustrates the influence of the spec-
imen size on this parameter. As in the mesoscale simulations, a clear size effect on the
nominal strength is noticeable for the specimen types E and F. Thus, the nominal strength
decreases with increasing specimen dimension. Due to the assumption of deterministic ma-
terial parameters, the size effect in the numerical simulations is less pronounced as in the
experiments. As a further consequence, a considerably smaller standard deviation of the
nominal strength is observed in the numerical simulations. It is to be noted that, as in
the mesoscale simulations, these additional stochastic effects can be explicitly considered
in the heterogeneous multiscale model using random variables or random fields for the
material parameters.
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The overall goal of this thesis was to improve the description of the material behavior in
nonlinear simulations of concrete structures. For this purpose, the material was, at least in
critical regions, not idealized as a homogeneous material, but the heterogeneous internal
material structure of concrete, mainly characterized by aggregates and mortar matrix,
was explicitly resolved in the numerical model. In this context, several aspects had to be
considered.

As a first step, a mesoscale model for concrete was developed which is capable of describing
the propagation of microcracks inside the heterogeneous internal material structure. In
this model, the coarse aggregates, the mortar matrix and the interfacial transition zone
(ITZ) between aggregates and matrix are explicitly considered as separate components.
One important point within the generation of the mesoscale model is an appropriate de-
scription of the size distribution and the spatial distribution of the aggregates. Based on
the take-and-place method, an efficient algorithm for the numerical simulation of three-
dimensional mesoscale geometries with a large number of aggregates was introduced. The
aggregates are approximated by ellipsoids which allows for a variable shape of the particles.
Starting from the mathematical representation of grading curves, which characterize the
aggregate size distribution in concrete, an algorithm for the generation of the ellipsoids
was derived. It was shown that the size distribution of the ellipsoids simulated with the
proposed algorithm almost coincides with the prescribed grading-curve. The final spatial
distribution of the aggregates was obtained by randomly placing the ellipsoids one by one
into the specimen. In order to prevent overlapping of particles, separation checks were
performed. In this thesis, a combination of an inexact separation check using bounding
boxes and a very efficient exact separation check for ellipsoids was applied. The speed
of the algorithm was further increased by subdividing the specimen into regular cuboids,
which allows for a significant reduction of the number of separation checks. Using this
new subdivision approach, a substantial improvement in the performance of the particle
placement procedure was obtained. The performance gain was illustrated using a three-
dimensional example with approximately 300 000 ellipsoids. Two-dimensional aggregate
distributions were simulated by cutting a slice out of the three-dimensional model.

For numerical simulations, an aligned finite element discretization was applied allowing to
represent the ITZ by zero-thickness interface elements. It was observed that an appropri-
ate description of the specific material behavior of the ITZ using a cohesive zone approach
is important for a realistic simulation. Otherwise, the failure of the ITZ is modeled inside
the mortar matrix leading to an overestimation of the ITZ’s strength and to artificial dam-
age zones around the aggregates. Different material formulations based on the continuum
damage approach or on the smeared crack concept were investigated for their ability to
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represent tensile failure of the mortar matrix which is accompanied by a softening behavior.
By applying nonlocal material formulations, spurious mesh sensitivity, which is induced
by the representation of the material as strain-softening continuum, was significantly re-
duced. The convergence of the iterative solution of the generally nonlinear global system of
equations was considerably improved by calculating the tangential material matrix for the
nonlocal material models. For tensile failure, a good agreement with experimental results
was already obtained in two-dimensional simulations with the isotropic damage model and
the rotating crack model. Using the microplane based damage model, the pre-peak be-
havior is characterized by an almost homogeneous damage distribution within the mortar
matrix. As a result, the numerical effort increases significantly compared to the simula-
tions with the isotropic damage model or the rotating crack model. Furthermore, it was
realized that the identification of the material parameters of the microplane based damage
model was rather complex, because these parameters cannot be related in a straightfor-
ward way to material properties measurable on the macroscale. Comparing the different
constitutive models, it was observed that the nonlocal isotropic damage model is the most
robust material formulation with respect to convergence speed and stability.

In simulations of uniaxial tension tests, it was demonstrated that a localization of damage
automatically occurs on the mesoscale without introducing any artificial local defects,
which is an important advantage of mesoscale models. Due to the random generation
of the aggregates, a stochastic scatter of the results is naturally included in the model.
Furthermore, the ability of mesoscale models to represent size effects on the macroscopic
nominal strength was illustrated. For the large specimens of the size effect experiments,
the load-displacement curves exhibit snap backs. By applying a path-following algorithm
based on the load-displacement-constraint method within the iterative solution procedure,
the simulation was able to capture these snap-backs. In this thesis, a new path-following
constraint which is based on the dissipation of the inelastic energy was proposed allowing
for an efficient simulation of snap-back phenomena. By defining the constraint in terms of
the internal energy, the proposed path-following algorithm is not restricted to continuum
damage models, but can be applied to any material formulation for which the inelastic
energy can be defined. It was shown that this constraint is especially advantageous in
nonlinear mesoscale simulations of concrete, which are characterized by the propagation
of multiple cracks, since no a priori knowledge about the final failure zone is required.

In this thesis, it was assumed that, due to the mutual interaction between the individual
components within the heterogeneous internal material structure, compressive failure on
the macroscale can be reduced to tensile failure perpendicular to the direction of com-
pressive stresses on the mesoscale. The presented results of a compression test which was
simulated on the mesoscale, could not confirm this assumption. It was shown that, in
contrast to tensile failure, the two-dimensional mesoscale model is not able to represent
the complex failure mechanism of concrete in compression. Using a three-dimensional
model, significantly better results were obtained, but the deviations from the experimen-
tal results are still unacceptably large. The main problem was the numerical complexity,
i.e. the computing time and the memory demand, of three-dimensional mesoscale sim-
ulations. As a consequence, the simulation of the compression test was performed for a
small specimen using a relatively coarse finite element discretization, allowing to consider
only a small number of large aggregates. In order to obtain meaningful results, the spa-
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tial resolution of the mesoscale model has to be increased in the future. Especially the
influence of the fine aggregates has to be further investigated. In this context, additional
research is required regarding the application of advanced parallelization techniques in
three-dimensional mesoscale simulations which allow for computations using distributed
systems.

In a second step, the adaptive heterogeneous multiscale approach was introduced, in which
only critical parts of the structure, e.g. in which damage develops, are resolved on the
mesoscale. It was demonstrated that such an approach allows to incorporate mesoscale
models in simulations of large structures. Consequently, the advantages of mesoscale mod-
els and macroscale simulations are combined. On the one hand, the complex nonlinear
behavior of concrete is precisely described in critical parts of the structure using mesoscale
models. On the other hand, the computational effort is significantly reduced compared to
full scale mesoscale simulations by using macroscale models in those parts of the structure
which are still in the elastic domain.

A crucial point in the heterogeneous multiscale approach is the coupling between sub-
domains which are represented on different length-scales. In this thesis, three different
approaches for the coupling of non-matching finite element discretizations were presented.
In the first approach, constraint equations were used to enforce displacement compatibil-
ity between the sub-domains. As a result, artificial stress concentrations in the vicinity
of coupling boundaries were observed in mesoscale sub-domains. In order to avoid spu-
rious damage initiation due to these stress concentrations, linear elastic material models
were applied in elements in the direct vicinity of the coupling boundary. In the second
approach, the mortar method with Lagrange multipliers was applied in which the coupling
condition is only satisfied in an integral sense. By establishing the Lagrange multipliers
at the boundary nodes of the macroscale sub-domains, slightly lower stress values were
observed near the coupling boundary compared to a full mesoscale simulation. Conse-
quently, the coupling does not result in any spurious initiation of damage, which allows for
the usage of nonlinear material formulations in elements in the direct vicinity of a coupling
boundary. As demonstrated in the example of an L-shaped panel, both coupling methods
– constraint equations and the mortar method – are well suited for the coupling between
mesoscale sub-domains and macroscale sub-domains in heterogeneous multiscale models.
In contrast to the first two approaches which assume that the sub-domains do not overlap,
the third coupling approach – the arlequin method – requires overlapping sub-domains.
As in the mortar method a weak coupling, in which the coupling condition is only satisfied
in an integral sense, is realized using Lagrange multipliers which were introduced on the
coarse mesh. Different arlequin weight functions were investigated using a one-dimensional
linear-elastic example. Applying constant weight functions, singularities in the field of La-
grange multipliers, which represent the coupling tractions, were observed at the boundary
of the coupling domain. It was demonstrated that these singularities can be avoided by us-
ing linear arlequin weight functions. Furthermore, it was illustrated that the conditioning
of the global system of equations is significantly improved compared to simulations with
constant weight functions. One problem in the implementation of the arlequin method
was the integration of the stiffness and the coupling matrices in elements inside the cou-
pling domain. In this thesis, an integration procedure was proposed which is based on a
subdivision of the coupling domain into triangular integration cells. On the one hand, this

153



6 Conclusions

approach allows for an almost exact integration of the matrices. On the other hand, as
shown in the two-dimensional linear elastic example, the generation of the integration cells,
which requires the calculation of the intersection between the finite element discretizations
of both sides, is very time-consuming. Furthermore, it was illustrated that, due to the
evaluation of the arlequin weight function in each integration point, the computing time
for the calculation of the element stiffness matrices increases dramatically compared to
non-overlapping methods. Another problem was that in the coupling domain the material
is described by two different models – homogeneous in the macroscale sub-domain and
heterogeneous in the mesoscale sub-domain. It was shown that each macroscopic element
has to be representative for the associated set of mesoscale elements. As a consequence,
a minimal size of the macroscopic element, which is related to the nominal size of the
material inhomogeneities considered on the mesoscale, is required.

Another crucial point in simulations using adaptive heterogeneous multiscale models was
the detection of critical regions. In this thesis, an adaptive solution procedure allowing for
the transfer of macroscale sub-domains to the mesoscale was presented. On the macroscale,
a criterion based on the maximum principal stress was proposed as indicator for the model
adaptation. A second criterion which is based on the spatial distribution of damage was
introduced in mesoscale sub-domains. As illustrated in the nonlinear simulations of the
L-shaped panel and the large specimens of the size effect experiments, the combination of
both criteria allow for an efficient adaptation of the heterogeneous multiscale model only
in those parts of the structure in which damage develops. Furthermore, it was illustrated
that the usage of heterogeneous multiscale models results in a similar damage distribution
compared to full mesoscale models while significantly reducing the numerical effort.

In summary, it can be concluded that the explicit representation of the heterogeneous
internal material structure in mesoscale models allows for a precise simulation of the com-
plex nonlinear behavior of concrete. Using the proposed adaptive heterogeneous multiscale
approach the numerical effort can be significantly reduced compared to full mesoscale sim-
ulations. As a result, mesoscale models can be incorporated in nonlinear simulations of
large structures.
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A Appendix

A.1 Transformation and Projection of Stresses and
Strains

A.1.1 Orthogonal Transformation

The orthogonal transformation, e.g. rotation, of the stress and strain tensor between two
cartesian coordinate systems defined by their basis vectors {e1, e2, e3} and {e′1, e′2, e′3}
can be written as

σ′ij = TkiσklTlj σij = Tikσ
′
klTjl (A.1)

ε′ij = TkiεklTlj εij = Tikε
′
klTjl, (A.2)

where T is a second order tensor which describes the transformation of vector v

v′i = Tjivj =
∂ej
∂e′i

vj. (A.3)

Using vector notation, the transformation of stresses and strains reads

σ′i = T σijσj σi = T σ
′

ij σ
′
j (A.4)

ε′i = T εijεj εi = T ε
′

ij ε
′
j (A.5)

with

T σ =


T11T11 T21T21 T31T31 2T11T21 2T11T31 2T21T31

T12T12 T22T22 T32T32 2T12T22 2T12T32 2T22T32

T13T13 T23T23 T33T33 2T13T23 2T13T33 2T23T33

T11T12 T21T22 T31T32 T11T22 + T12T21 T11T32 + T12T31 T31T22 + T21T32

T11T13 T21T23 T33T31 T11T23 + T13T21 T11T33 + T13T31 T33T21 + T23T31

T12T13 T22T23 T33T32 T12T23 + T13T22 T12T33 + T13T32 T33T22 + T23T32


(A.6)
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T σ
′
=


T11T11 T12T12 T13T13 2T11T12 2T11T13 2T12T13

T21T21 T22T22 T23T23 2T21T22 2T21T23 2T22T23

T31T31 T32T32 T33T33 2T31T32 2T31T33 2T32T33

T11T21 T12T22 T13T23 T11T22 + T12T21 T11T23 + T21T13 T13T22 + T12T23

T11T31 T12T32 T33T13 T11T32 + T31T12 T11T33 + T13T31 T33T12 + T32T13

T21T31 T22T32 T33T23 T21T32 + T31T22 T21T33 + T31T23 T33T22 + T23T32


(A.7)

T ε =


T11T11 T21T21 T31T31 T11T21 T11T31 T21T31

T12T12 T22T22 T32T32 T12T22 T12T32 T22T32

T13T13 T23T23 T33T33 T13T23 T13T33 T23T33

2T11T12 2T21T22 2T31T32 T11T22 + T12T21 T11T32 + T12T31 T31T22 + T21T32

2T11T13 2T21T23 2T33T31 T11T23 + T13T21 T11T33 + T13T31 T33T21 + T23T31

2T12T13 2T22T23 2T33T32 T12T23 + T13T22 T12T33 + T13T32 T33T22 + T23T32


(A.8)

T ε
′
=


T11T11 T12T12 T13T13 T11T12 T11T13 T12T13

T21T21 T22T22 T23T23 T21T22 T21T23 T22T23

T31T31 T32T32 T33T33 T31T32 T31T33 T32T33

2T11T21 2T12T22 2T13T23 T11T22 + T12T21 T11T23 + T21T13 T13T22 + T12T23

2T11T31 2T12T32 2T33T13 T11T32 + T31T12 T11T33 + T13T31 T33T12 + T32T13

2T21T31 2T22T32 2T33T23 T21T32 + T31T22 T21T33 + T31T23 T33T22 + T23T32

 .
(A.9)

A.1.2 Projection

The projection of the stress tensor onto a surface with normal vector n is given by

ti = σijnj, (A.10)

where t is the vector of tractions. In vectorial notation this equation reads

ti = Pijσj, (A.11)

where P is a special projection matrix

P =

n1 0 0 n2 n3 0
0 n2 0 n1 0 n3

0 0 n3 0 n1 n2

 . (A.12)
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A.2 Energies and Energy Derivatives

The total energy stored in an element with volume V can be written as a function of the
total energy density utot

Utot =

∫
V

utot dV. (A.13)

In this thesis, the density of the total energy is approximated by the trapezoidal rule

utot = ũtot +
1

2
(σ̃i + σi) (εi − ε̃i) , (A.14)

where σ is the stress vector, ε is the strain vector, and the tilde symbol indicates that
the quantity is calculated at the last converged equilibrium state. In material formulations
based on plasticy and/or damage the total energy density, and the total energy respectively,
can be split into an elastic and an inelastic part

utot = uel + uinel (A.15)

Utot = Uel + Uinel =

∫
V

uel dV +

∫
V

uinel dV. (A.16)

In general, the elastic part can be defined as

uel =
1

2
σi (εi − εpl,i) , (A.17)

where εpl denotes the vector of plastic strains. It is to be noted that if a damage material
model is used, the plastic strains vanish. By substituting Eqs. (A.14) and (A.17) into
Eq. (A.15), the inelastic part can be written as

uinel = utot − uel = ũtot +
1

2
(σ̃i (εi − ε̃i) + σi (εpl,i − ε̃i)) . (A.18)

Assuming a local material formulation the energy densities at a given point depend only
on the stresses and the strains at that point. The corresponding derivatives of the energy
densities with respect to the strains can be written as

– total energy density

∂utot
∂εj

=
1

2

(
σ̃j + σj +

∂σi
∂εj

(εi − ε̃i)
)

(A.19)

– elastic energy density

∂uel
∂εj

=
1

2

(
σj +

∂σi
∂εj

(εi − εpl,i)− σi
∂εpl,i
∂εj

)
(A.20)
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– inelastic energy density

∂uinel
∂εj

=
∂utot
∂εj

− ∂uel
∂εj

=
1

2

(
σ̃j +

∂σi
∂εj

(εpl,i − ε̃i) + σi
∂εpl,i
∂εj

)
. (A.21)

By considering the strain-displacement-relationship, given in Eq. (2.21), and by applying
the chain rule the derivative of the energy with respect to the displacements reads

∂U...
∂dj

=

∫
V

Bij
∂u...
∂εi

dV. (A.22)

In the numerical implementation the integrals in Equations (A.13), (A.16) and (A.22) are
evaluated numerically. As a result, the integrals are replaced by sums. After calculating the
energy derivatives of each element, the global vector of the energy derivatives respect to the
nodal displacements is obtained by assembling the corresponding element contributions.

A.3 Line Search for Load-Displacement-Constraint
Methods

If a line-search is applied in simulations using load-displacement-constraint methods, cf.
Sect. 2.4.4, the correction of the load factor can be rewritten as

– arc-length method

δµ(n,i)(η) =
−a2 ±

√
a2

2 − a1a3

a1

(A.23)

with

a1 = δd
(n,i)
f

T
δd

(n,i)
f + bf̂

T
f̂ (A.24)

a2 = δd
(n,i)
f

T
(
∆d(n,i−1) + ηδd

(n,i)
0

)
+ b∆µ(n,i−1)f̂

T
f̂ (A.25)

a3 =
(
∆d(n,i−1) + ηδd

(n,i)
0

)T (
∆d(n,i−1) + ηδd

(n,i)
0

)
+ b∆µ(n,i−1)2

f̂
T
f̂ −∆l2;

(A.26)

– indirect displacement control

δµ(n,i)(η) =
∆l − cT

(
∆d(n,i−1) + ηδd

(n,i)
0

)
cTδd

(n,i)
f

; (A.27)

170



A.3 Line Search for Load-Displacement-Constraint Methods

– energy release control (Gutiérrez (2004))

δµ(n,i)(η) =
2 ∆G −

[
µ(n−1)

(
∆d(n,i−1) + ηδd

(n,i)
0

)
−∆µ(n,i−1)d(n−1)

]T
f̂[

µ(n−1)δd
(n,i)
f − d(n−1)

]T
f̂

; (A.28)

– modified energy release control

δµ(n,i+1)(η) =

∆G + U
(n−1)
inel − U

(n,i−1)
inel − η

[
∂U

(n,i−1)
inel

∂d

]T
δd

(n,i)
0[

∂U
(n,i−1)
inel

∂d

]T
δd

(n,i)
f

. (A.29)

The corresponding derivatives of the load factor correction δµ with repsect to the line
search parameter η reads

– arc-length method

∂δµ(n,i)

∂η
(η) =

1

a1

−∂a2

∂η
±

2a2
∂a2

∂η
− a1

∂a3

∂η

2
√
a2

2 − a1a3

 (A.30)

with

∂a2

∂η
= δd

(n,i)
f

T
δd

(n,i)
0 (A.31)

∂a3

∂η
= 2

(
∆d(n,i−1) + ηδd

(n,i)
0

)T
δd

(n,i)
0 ; (A.32)

– indirect displacement control

∂δµ(n,i)

∂η
(η) = −c

Tδd
(n,i)
0

cTδd
(n,i)
f

; (A.33)

– energy release control (Gutiérrez (2004))

∂δµ(n,i)

∂η
(η) =

−µ(n−1)δd
(n,i)
0

T
f̂[

µ(n−1)δd
(n,i)
f − d(n−1)

]T
f̂

; (A.34)
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– modified energy release control

∂δµ(n,i)

∂η
(η) = −

[
∂U

(n,i−1)
inel

∂d

]T
δd

(n,i)
0[

∂U
(n,i−1)
inel

∂d

]T
δd

(n,i)
f

. (A.35)

A.4 Microplane Damage Model

A.4.1 Numerical Integration of the Inverse Integrity Tensor

In general, the implementation of microplane models involves the numerical integration
of microplane quantities over the unit hemisphere. For the microplane-based damage
model (MD), presented in Sect. 3.5, the evaluation of such an integral is required for the
calculation of the inverse integrity tensor ψ, Eq. (3.118). Using spherical coordinates this
integral reads

ψij =
3

2π

2π∫
0

π/2∫
0

ψ(n)ninj sin θ dθ dϕ, (A.36)

where ψ(n) is a scalar parameter characterizing the relative compliance on the microplane
with normal vector n, ϕ is the azimuth angle and θ the zenith angle. Furthermore, the
orientation of the microplane, represented by the normal vector n, can be expressed as
function of these two angles

n(θ, ϕ) =

sin θ cosϕ
sin θ sinϕ

cos θ

 . (A.37)

By applying a numerical integration scheme, Eq. (A.36) can be written as

ψij =
3

2π

nIP∑
k=1

wk ψ(n(θk, ϕk))ni(θ
k, ϕk)nj(θ

k, ϕk) sin θk, (A.38)

where nIP is the number of integration points, the angles θk and ϕk define the position
of integration point k on the surface of the unit hemisphere, and wk is the corresponding
weight factor. Efficient numerical integration rules for the three-dimensional problem can
be found in Bažant and Oh (1986); Badel and Leblond (2004).

For the two-dimensional model the integration domain is reduced to the boundary of the
unit semicircle. Introducing polar coordinates the components of the inverse integrity
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Table A.1: 13-point Gauss quadrature for the two-dimensional MD.
IP ϕ n1 n2 w
1 ±0.0000000000 +1.0000000000000000 +0.0000000000000000 0.23255155320
2 −0.3620030763 +0.9351893144682923 −0.3541481979402486 0.22628318040
3 +0.3620030763 +0.9351893144682923 +0.3541481979402486 0.22628318040
4 −0.7044907660 +0.7619414539070705 −0.6476459069723050 0.20781604800
5 +0.7044907660 +0.7619414539070705 +0.6476459069723050 0.20781604800
6 −1.0089999830 +0.5327073016090508 −0.8462995514665028 0.17814597340
7 +1.0089999830 +0.5327073016090508 +0.8462995514665028 0.17814597340
8 −1.2591159210 +0.3066585122489681 −0.9518196031104053 0.13887351030
9 +1.2591159210 +0.3066585122489681 +0.9518196031104053 0.13887351030
10 −1.4413601950 +0.1290750118430869 −0.9916348326464268 0.09212149896
11 +1.4413601950 +0.1290750118430869 +0.9916348326464268 0.09212149896
12 −1.5459511280 +0.0248426435376009 −0.9996913739059989 0.04048400460
13 +1.5459511280 +0.0248426435376009 +0.9996913739059989 0.04048400460

tensor can be written as

ψij =
2

π

π/2∫
−π/2

ψ(n)ninj dϕ, (A.39)

and the components of the microplane normal vector are defined as

n(ϕ) =

[
cosϕ
sinϕ

]
. (A.40)

In the present work, this integral is evaluated numericaly using a 13-point Gauss quadrature
rule. As a result, the components of the inverse integrity tensor are given by

ψij =
13∑
k=1

wk ψ(n(ϕk))ni(ϕ
k)nj(ϕ

k), (A.41)

where ϕk defines the position of integration point k on the boundary of the unit semicircle,
and wk is the corresponding weight factor. The position of the individual integration points
characterized by the normal vector n and the associated weight factors w are summarized
in Table A.1.

A.4.2 Derivation of the Damage Effect Tensor

The alternative derivation of the damage effect tensor presented in this section is based
on Carol and Bažant (1997). In their paper the authors define the components of the
microplane stress and strain vectors normal and tangential to the microplane. As a result,
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the static constraint can be written as

sN = σijninj (A.42)
sT r = σrini − sNnr = (δri − nrni)njσij r = 1, 2, (A.43)

where subscript N denotes the normal component and subscript T identifies the two tan-
gential components of the microplane stresses. Knowing that the stress tensor is symmetric,
the tangential microplane stresses can be rewritten to

sT r =
1

2
(niδjr + njδir − 2ninjnr)σij. (A.44)

As presented in Sect. 3.5, scalar microplane damage law is introduced on the microplane.
Consequently, the corresponding effective microplane stresses are given by

s̃N = ψsN (A.45)
s̃T r = ψsT r, (A.46)

where the scalar parameter ψ characterizes the relative compliance on that microplane.
By applying the principle virtual work

4π

3
σ̃ijδε̃ij = 2

∫
Ω

s̃NδẽN + s̃T rδẽT r dΩ, (A.47)

equilibrium between effective macro- and micro-stresses can be satisfied in a weak sense.
Substituting the kinematic constraint, applied to the virtual effective strains

δẽN = δε̃ijninj (A.48)

δẽT r =
1

2
(niδjr + njδir − 2ninjnr) δε̃ij, (A.49)

into the principle of virtual work, Eq. (A.47), and considering that this equality must hold
for an arbitrary virtual effective strain tensor, the effective stress tensor can be obtained

σ̃ij =
3

2π

∫
Ω

s̃Nninj +
1

2
s̃T r (niδjr + njδir − 2ninjnr) dΩ. (A.50)

Note that Eq. (A.49) implies the symmetry of the virtual effective strain tensor. Substi-
tuting Eqs. (A.45) and (A.46) and Eqs. (A.42) and (A.44) into Eq. (A.50) yields

σ̃ij =
3

2π

∫
Ω

ψninjnknl

+
ψ

4
(niδjr + njδir − 2ninjnr) (nkδlr + nlδkr − 2nknlnr) dΩσkl (A.51)

=
3

2π

∫
Ω

ψ

4
(ninkδjl + ninlδjk + njnkδil + njnlδik) dΩσkl. (A.52)
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Introducing the second-order inverse integrity tensor, Eq. (3.118), and considering the
relationship between nominal and effective stress tensor, defined in Eq. (3.109), the com-
ponents of the macroscopic damage effect tensor are given by

Mijkl =
1

4
(ψikδjl + ψilδjk + ψjkδil + ψjlδik) , (A.53)

which is equivalent to Eq. (3.120). This fourth order tensor exhibits not only minor but
also major symmetries.

A.4.3 Secant and Tangent Material Matrix (Plane Stress)

Using vectorial notation, the compliance form of the constitutive equations reads

εi = Ds
ijσj, (A.54)

where Ds
ij are the components of the damaged (secant) compliance matrix. In two-

dimensional simulations the problem can be reduced and the corresponding stress and
strain vectors are given by

σT = [σ11, σ22, σ12] (A.55)
εT = [ε11, ε22, 2ε12]. (A.56)

Assuming plane stress conditions, substituting Eq. (3.120) into Eq. (3.110) and consider-
ing the relationship between tensorial and vectorial notation of stresses and strains, the
components of the damaged compliance matrix can be defined as

Ds
11 = Ds

1111 =
1

E
ψ2

11 +
1 + ν

2E
ψ2

12 (A.57)

Ds
12 = Ds

1122 =
−ν
E
ψ11ψ22 +

1 + ν

2E
ψ2

12 (A.58)

Ds
13 = Ds

1112 +Ds
1121 =

3− ν
2E

ψ11ψ12 +
1 + ν

2E
ψ22ψ12 (A.59)

Ds
22 = Ds

2222 =
1

E
ψ2

22 +
1 + ν

2E
ψ2

12 (A.60)

Ds
23 = Ds

2212 +Ds
2221 =

3− ν
2E

ψ22ψ12 +
1 + ν

2E
ψ11ψ12 (A.61)

Ds
33 = 2(Ds

1212 +Ds
1221) =

2− 2ν

E
ψ2

12 +
1 + ν

2E
(ψ11 + ψ22)2, (A.62)

where ψ is the inverse integrity tensor, which is defined by Eq. (3.118). It is to be noted
that the secant compliance matrix has a symmetric shape (Ds

21 = Ds
12, Ds

31 = Ds
13, Ds

32 =
Ds

23).

The tangent material matrix can be derived from the derivatives of the compliance form
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of the constitutive relationship, Eqs. (A.54), with respect to the strains

∂εi
∂εj

=
∂Ds

ik

∂εj
σk +Ds

ik

∂σk
∂εj

. (A.63)

By rewriting this system of equations and by multiplying with the secant material matrix
Cs = Ds−1, the tangent material matrix for the local fromulation of the MD is obtained

∂σi
∂εj

= Cs
ik

(
δkj −

∂Ds
kl

∂εj
σl

)
. (A.64)

The derivatives of the damaged compliance matrix are given by

∂Ds
11

∂εi
=

2

E
ψ11

∂ψ11

∂εi
+

1 + ν

E
ψ12

∂ψ12

∂εi
(A.65)

∂Ds
12

∂εi
=
−ν
E

(
∂ψ11

∂εi
ψ22 + ψ11

∂ψ22

∂εi

)
+

1 + ν

E
ψ12

∂ψ12

∂εi
(A.66)

∂Ds
13

∂εi
=

3− ν
2E

(
∂ψ11

∂εi
ψ12 + ψ11

∂ψ12

∂εi

)
+

1 + ν

2E

(
∂ψ22

∂εi
ψ12 + ψ22

∂ψ12

∂εi

)
(A.67)

∂Ds
22

∂εi
=

2

E
ψ22

∂ψ11

∂εi
+

1 + ν

E
ψ12

∂ψ12

∂εi
(A.68)

∂Ds
23

∂εi
=

3− ν
2E

(
∂ψ22

∂εi
ψ12 + ψ22

∂ψ12

∂εi

)
+

1 + ν

2E

(
∂ψ11

∂εi
ψ12 + ψ11

∂ψ12

∂εi

)
(A.69)

∂Ds
33

∂εi
=

4− 4ν

E
ψ12

∂ψ12

∂εi
+

1 + ν

E
(ψ11 + ψ22)

(
∂ψ11

∂εi
+
∂ψ22

∂εi

)
, (A.70)

with

∂ψij
∂εk

=
3

2π

∫
Ω

∂ψ

∂eeq

∂eeq
∂εk

ninj dΩ. (A.71)

Using vectorial notation the equivalent microplane strain, given in Eq. (3.123), is rewritten
as

eeq =
ε1n1n1 + ε2n2n2 + ε3n1n2

1− m

Ee0

(σ1 + σ2)
(A.72)

and the corresponding derivatives are given by

eeq
ε1

=
n1n1

1− m

Ee0

(σ1 + σ2)
(A.73)

eeq
ε2

=
n2n2

1− m

Ee0

(σ1 + σ2)
(A.74)

eeq
ε3

=
n1n2

1− m

Ee0

(σ1 + σ2)
. (A.75)
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For increasing equivalent strain, which represents a loading situation on microplane level
(eeq = eeq,max), the derivative of the realtive compliance with respect to the eqivalent strain
reads

∂ψ

∂eeq
=

0 if eeq ≤ e0

ef − e0 + eeq
2ψe0(ef − e0)

exp

(
eeq − e0

ef − e0

)
if eeq > e0,

(A.76)

Otherwise this derivative vanishes.

The advantage of the presented approach compared to the direct derivation of the stiffness
form of the constitutive relationship is, that the derivative of the secant material matrix,
which requires the derivation of the inversion process of the secant compliance matrix, is
not needed. The tangential material matrix for the nonlocal formulation of the MD can
be obtained in a similar way by considering the proposals given in Sect. 3.2.2.

A.5 Interface Material Model - Tangential Material
Matrix

In Sect. 3.6 the constitutive equations of the interface damage model are derived from a
potential formulation. Consequently, the tangent material matrix, which is defined as the
first derivative of the interface tractions with respect to the interface openings, can be
written as the second derivative of the potential

C =



∂TN
∂∆uN

∂TN
∂∆uT,1

∂TN
∂∆uT,2

∂TT,1
∂∆uN

∂TT,1
∂∆uT,1

∂TT,1
∂∆uT,2

∂TT,2
∂∆uN

∂TT,2
∂∆uT,1

∂TT,2
∂∆uT,2


(A.77)

=



∂2Φ

∂∆u2
N

∂2Φ

∂∆uN∂∆uT,1

∂2Φ

∂∆uN∂∆uT,2

∂2Φ

∂∆uT,1∂∆uN

∂2Φ

∂∆u2
T,1

∂2Φ

∂∆uT,1∂∆uT,2

∂2Φ

∂∆uT,2∂∆uN

∂2Φ

∂∆uT,2∂∆uT,1

∂2Φ

∂∆u2
T,2


. (A.78)
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A.5 Interface Material Model - Tangential Material Matrix

By applying the chain rule the components of this matrix can be rewritten as

∂TN
∂∆uN

=
∂2Φ

∂∆u2
N

=

[
∂σ

∂λ
− σ

λ

]
∂λ

∂∆uN

∆uN
λ

+
σ

λ
(A.79)

∂TN
∂∆uT,i

=
∂2Φ

∂∆uN∂∆uT,i
=

[
∂σ

∂λ
− σ

λ

]
∂λ

∂∆uT,i

∆uN
λ

(A.80)

∂TT,i
∂∆uN

=
∂2Φ

∂∆uT,i∂∆uN
=

[
∂σ

∂λ
− σ

λ

]
∂λ

∂∆uN

α2∆uT,i
λ

(A.81)

∂TT,i
∂∆uT,j

=
∂2Φ

∂∆uT,i∂∆uT,j
=

[
∂σ

∂λ
− σ

λ

]
∂λ

∂∆uT,j

α2∆uT,i
λ

+ δij
α2σ

λ
, (A.82)

where λ is the equivalent interface opening, Eq. (3.132), and σ is the equivalent interface
traction, which is defined by the traction separation law, Eq. (3.133). The correspond-
ing derivative of the equivalent interface traction with respect to the equivalent interface
opening reads

∂σ

∂λ
=


Kp λ < λ0

− f
2
t

Gf

exp
−ft(λ− λ0)

Gf

otherwise
(A.83)

and the derivatives of the equivalent interface opening with respect to the relative dis-
placements between the interface surfaces are given by

∂λ

∂∆uN
=

∆uN
λ

(A.84)

∂λ

∂∆uT,i
=
α2∆uT,i

λ
. (A.85)

Equation (A.78) applies if the interface is in tension, that is a positive normal interface
opening. In compression the tangent material matrix reads

C =


Kp 0 0

0
∂TT,1
∂∆uT,1

∂TT,1
∂∆uT,2

0
∂TT,2
∂∆uT,1

∂TT,2
∂∆uT,2

 , (A.86)

in which the derivatives of the tangential interface tractions are given by Eq. (A.82).
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